Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions
NASA Astrophysics Data System (ADS)
Nguyen, Dung Duc
Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research will focus on the development of an adaptable solar array that is able to optimize power output, reconfigure itself when solar cells are damaged and create controllable output voltages and currents. This study will be a technological advancement over the existing technology of solar PV. Presently solar arrays are fixed arrays that require external device to control their output. In this research, the solar array will be able to self-reconfigure, leading to the following advantages: (1) Higher efficiency because no external devices are used. (2) Can reach maximum possible output power that is much higher than the maximum power of fixed solar arrays by arranging the solar cells in optimized connections. (3) Elimination of the hot spot effects. The proposed research has the following goals: First, to create a modeling and computing algorithm, which is able to simulate and analyze the effects of non-uniform changing shadows on the output power of solar PV arrays. Our model will be able to determine the power losses in each solar cell and the collective hot spots of an array. Second, to propose new methods, which are able to predict the performance of solar PV arrays under shadow conditions for long term (days, months, years). Finally, to develop adaptive reconfiguration algorithms to reconfigure connections within solar PV arrays in real time, under shadow conditions, in order to optimize output power.
NASA Technical Reports Server (NTRS)
Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)
1991-01-01
A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.
NASA Technical Reports Server (NTRS)
Rockey, D. E.
1979-01-01
A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.
Solar maximum: Solar array degradation
NASA Technical Reports Server (NTRS)
Miller, T.
1985-01-01
The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.
Optimal Configuration of PV System with Different Solar Cell Arrays
NASA Astrophysics Data System (ADS)
Machida, Sadayuki; Tani, Tatsuo
Photovoltaic (PV) power generation is spreading steadily, and the dispersed PV array system is increasing from the architectural restrictions. In the case of dispersed array system, if the arrays are installed in a different azimuth or if the module that constitutes array is different, mismatching loss will be generated when a single inverter is used to convert the output of arrays, because of the difference of optimal operating voltage. The loss is related to the array configuration. However the relation between array configuration and power generation output is not clear. In order to avoid generation of mismatching loss, introducing a distributed inverter system such as string inverter system or AC modules system is considered. However it is not clear which is more advantageous between a distributed system and a concentrated system. In this paper, we verified the output characteristics of two different solar cell arrays with various strings, azimuths and tilt angles, and clarified the relation between array configuration and power generation output by the computer simulations. We also compared the distributed inverter system with the concentrated inverter system, and clarified the optimal configuration of PV system with different solar cell arrays.
2012-12-01
photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array
A Practical Guide To Solar Array Simulation And PCDU Test
NASA Astrophysics Data System (ADS)
Schmitz, Noah; Carroll, Greg; Clegg, Russell
2011-10-01
Solar arrays consisting of multiple photovoltaic segments provide power to satellites and charge internal batteries for use during eclipse. Solar arrays have unique I-V characteristics and output power which vary with environmental and operational conditions such as temperature, irradiance, spin, and eclipse. Therefore, specialty power solutions are needed to properly test the satellite on the ground, especially the Power Control and Distribution Unit (PCDU) and the Array Power Regulator (APR.) This paper explores some practical and theoretical considerations that should be taken into account when choosing a commercial, off-the-shelf solar array simulator (SAS) for verification of the satellite PCDU. An SAS is a unique power supply with I-V output characteristics that emulate the solar arrays used to power a satellite. It is important to think about the strengths and the limitations of this emulation capability, how closely the SAS approximates a real solar panel, and how best to design a system using SAS as components.
International ultraviolet explorer solar array power degradation
NASA Technical Reports Server (NTRS)
Day, J. H., Jr.
1983-01-01
The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.
Solar power generation system for reducing leakage current
NASA Astrophysics Data System (ADS)
Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi
2018-04-01
This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.
Flight performance of the Pioneer Venus Orbiter solar array
NASA Technical Reports Server (NTRS)
Goldhammer, L. J.; Powe, J. S.; Smith, Marcie
1987-01-01
The Pioneer Venus Orbiter (PVO) solar panel power output capability has degraded much more severely than has the power output capability of solar panels that have operated in earth-orbiting spacecraft for comparable periods of time. The incidence of solar proton events recorded by the spacecraft's scientific instruments accounts for this phenomenon only in part. It cannot explain two specific forms of anomalous behavior observed: 1) a variation of output per spin with roll angle, and 2) a gradual degradation of the maximum output. Analysis indicates that the most probable cause of the first anomaly is that the solar cells underneath the spacecraft's magnetometer boom have been damaged by a reverse biasing of the cells that occurs during pulsed shadowing of the cells by the boom as the spacecraft rotates. The second anomaly might be caused by the effects on the solar array of substances from the upper atmosphere of Venus.
Closed Loop solar array-ion thruster system with power control circuitry
NASA Technical Reports Server (NTRS)
Gruber, R. P. (Inventor)
1979-01-01
A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.
Overview of Photovoltaic Calibration and Measurement Standards at GRC
NASA Technical Reports Server (NTRS)
Baraona, Cosmo; Snyder, David; Brinker, David; Bailey, Sheila; Curtis, Henry; Scheiman, David; Jenkins, Phillip
2002-01-01
Photovoltaic (PV) systems (cells and arrays) for spacecraft power have become an international market. This market demands accurate prediction of the solar array power output in space throughout the mission life of the spacecraft. Since the beginning of space flight, space-faring nations have independently developed methods to calibrate solar cells for power output in low Earth orbit (LEO). These methods rely on terrestrial, laboratory, or extraterrestrial light sources to simulate or approximate the air mass zero (AM0) solar intensity and spectrum.
New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.
2003-01-01
It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.
915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.; Bartholomew, M. J.; Giangrande, S.
When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds onmore » the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.« less
915-Mhz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.; Bartholomew, M. J.; Giangrande, S.
When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds onmore » the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.« less
Design of DSP-based high-power digital solar array simulator
NASA Astrophysics Data System (ADS)
Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo
2013-12-01
To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).
The revised solar array synthesis computer program
NASA Technical Reports Server (NTRS)
1970-01-01
The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.
NASA Technical Reports Server (NTRS)
1998-01-01
This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)
2000-01-01
A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.
Integrally regulated solar array demonstration using an Intel 8080 microprocessor
NASA Technical Reports Server (NTRS)
Petrik, E. J.
1977-01-01
A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.
NASA Technical Reports Server (NTRS)
Alexander, D. W.
1992-01-01
The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.
The 7.5 kW solar array simulator
NASA Technical Reports Server (NTRS)
Robson, R. R.
1975-01-01
A high power solar array simulator capable of providing the input power to simultaneously operate two 30 cm diameter ion thruster power processors was designed, fabricated, and tested. The maximum power point is set to between 150 and 7500 watts representing an open circuit voltage from 50 to 300 volts and a short circuit current from 4 to 36 amps. Illuminated solar cells are used as the control element to provide a true solar cell characteristic and permit the option of simulating changes in this characteristic due to variations in solar intensity and/or temperature of the solar array. This is accomplished by changing the illumination and/or temperature of the control cells. The response of the output to a step change in load closely approximates that of an actual solar array.
Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power
NASA Technical Reports Server (NTRS)
Soeder, James F.; Button, Robert M.
1999-01-01
A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.
NASA Technical Reports Server (NTRS)
1980-01-01
A simple, efficient and very lightweight preliminary design for a 5 KW and 20 KW BOL output concentrated array evolved and is described by drawings. The relative effectiveness of this design, as compared to an unconcentrated planar array of equal power output, was measured by comparing power to mass performance of and the solar cell area required by each. Improvements in power to mass performance as high as 42% together with array area size reduction of 57% are possible in GaAs systems. By contrast, when the same concentrator design is applied to silicon systems, no improvement in power to mass can be obtained although array area reductions as high as 35% are obtainable.
The DS1 Mission and the Validation of the SCARLET Advanced Array
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Nieraeth, Donald G.; Murphy, David M.; Eskenazi, Michael I.
2000-01-01
On October 24, 1998, the first of the NASA New Millenium Spacecraft, DS1, was successfully launched into Space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the SCARLET concentrating solar array. Although part of the advanced technology validation study, the array is also the spacecraft's power source. Funded by BMDO, the SCARLET concentrator solar array is the first application of a refractive lens concentrator designed for space applications. As part of the DS1 validation process, the amount of diagnostics data that will be acquired is more extensive than would be the norm for a more conventional solar array. These data include temperature measurements at numerous locations on the 2-wing, 4-panel per wing, solar array. For each panel, one 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance. In addition, the spacecraft power load can be varied in a number of discrete steps from a small fraction of the array total power capability, up to maximum power. For each of the power loads, array operating voltage can be measured along with the current output from each wing. Preliminary in-space measurements suggest SCARLET performance is within one (1) percent of predictions made from ground data. This paper will briefly discuss the SCARLET configuration and critical features. Emphasis will be given to the results of the in-space validation, including array performance as a function of changing solar distance and array performance compared to pre-launch predictions.
Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach
NASA Technical Reports Server (NTRS)
Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.
1984-01-01
A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.
Convective Array Cooling for a Solar Powered Aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Dolce, James (Technical Monitor)
2003-01-01
A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.
A Robust Design Approach to Cost Estimation: Solar Energy for Marine Corps Expeditionary Operations
2014-04-30
areas as photovoltaic arrays for power harvesting, light emitting diodes (LED) for decreased energy consumption, and improved battery and smart power ...conversion system that allows Marines to power systems with solar energy. Each GREENS is comprised of eight photovoltaic array panels, four high-energy...Brandon Newell conducted an experiment where he assessed the capabilities of the HOMER model in forecasting the power output of a solar panel at the
Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance
Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima
2015-01-01
Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013. PMID:26275303
The Upper Atmosphere Research Satellite In-Flight Dynamics
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.
1997-01-01
Upper Atmosphere Research Satellite flight data from the first 737 days after launch (September 1991) was used to investigate spacecraft disturbances and responses. The investigation included two in-flight dynamics experiments (approximately three orbits each). Orbital and configuration influences on spacecraft dynamic response were also examined. Orbital influences were due to temperature variation from crossing the Earth's terminator and variation of the solar incident energy as the orbit precessed. During the terminator crossing, the rapid ambient temperature change caused the spacecraft's two flexible appendages to experience thermal elastic bending (thermal snap). The resulting response was dependent upon the orientation of the solar array and the solar incident energy. Orbital influences were also caused by on-board and environmental disturbances and spacecraft configuration changes resulting in dynamic responses which were repeated each orbit. Configuration influences were due to solar array rotation changing spacecraft modal properties. The investigation quantified the spacecraft dynamic response produced by the solar array and high gain antenna harmonic drive disturbances. The solar array's harmonic drive output resonated two solar array modes. Friction in the solar array gear drive provided sufficient energy dissipation which prevented the solar panels from resonating catastrophically; however, the solar array vibration amplitude was excessively large. The resulting vibration had a latitude-specific pattern.
Beam-Forming Concentrating Solar Thermal Array Power Systems
NASA Technical Reports Server (NTRS)
Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)
2016-01-01
The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.
Definition study for photovoltaic residential prototype system
NASA Technical Reports Server (NTRS)
Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.
1976-01-01
A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.
Solar cell anomaly detection method and apparatus
NASA Technical Reports Server (NTRS)
Miller, Emmett L. (Inventor); Shumka, Alex (Inventor); Gauthier, Michael K. (Inventor)
1981-01-01
A method is provided for detecting cracks and other imperfections in a solar cell, which includes scanning a narrow light beam back and forth across the cell in a raster pattern, while monitoring the electrical output of the cell to find locations where the electrical output varies significantly. The electrical output can be monitored on a television type screen containing a raster pattern with each point on the screen corresponding to a point on the solar cell surface, and with the brightness of each point on the screen corresponding to the electrical output from the cell which was produced when the light beam was at the corresponding point on the cell. The technique can be utilized to scan a large array of interconnected solar cells, to determine which ones are defective.
Solar Photovoltaic DC Systems: Basics and Safety: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary
Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less
Feasibility study of a 110 watt per kilogram lightweight solar array system
NASA Technical Reports Server (NTRS)
Shepard, N. F.; Stahle, C. V.; Schneider, A.; Hanson, K. L.
1972-01-01
An investigation of the feasibility of a solar array panel subsystem which will produce 10,000 watts of electrical output at 1 A.U. with an overall beginning-of-life power-to-weight ratio of at least 110 watt/kg is reported. A description of the current baseline configuration which meets these requirements is presented. A parametric analysis of the single boom, two blanket planar solar array system was performed to arrive at the optimum system aspect ratio. A novel concept for the stiffening of a lightweight solar array by canting the solar cell blankets at a small angle to take advantage of the inherent in-plane stiffness to increase the symmetric out-of-plane frequency is introduced along with a preliminary analysis of the stiffening effect. A comparison of welded and soldered solar cell interconnections leads to the conclusion that welding is required on this ultralightweight solar array. The use of a boron/aluminum composite material in a BI-STEM type deployable boom is investigated as a possible advancement in the state-of-the-art.
Operational performance of a low cost, air mass 2 solar simulator
NASA Technical Reports Server (NTRS)
Yass, K.; Curtis, H. B.
1975-01-01
Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.
DET/MPS - The GSFC Energy Balance Programs
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1994-01-01
Direct Energy Transfer (DET) and MultiMission Spacecraft Modular Power System (MPS) computer programs perform mathematical modeling and simulation to aid in design and analysis of DET and MPS spacecraft power system performance in order to determine energy balance of subsystem. DET spacecraft power system feeds output of solar photovoltaic array and nickel cadmium batteries directly to spacecraft bus. MPS system, Standard Power Regulator Unit (SPRU) utilized to operate array at array's peak power point. DET and MPS perform minute-by-minute simulation of performance of power system. Results of simulation focus mainly on output of solar array and characteristics of batteries. Both packages limited in terms of orbital mechanics, they have sufficient capability to calculate data on eclipses and performance of arrays for circular or near-circular orbits. DET and MPS written in FORTRAN-77 with some VAX FORTRAN-type extensions. Both available in three versions: GSC-13374, for DEC VAX-series computers running VMS. GSC-13443, for UNIX-based computers. GSC-13444, for Apple Macintosh computers.
Ghanbari, Cheryl M; Ho, Clifford K; Kolb, Gregory J
2014-03-04
Various technologies described herein pertain to evaluating a beam reflected by a heliostat. A portable target that has an array of sensors mounted thereupon is configured to capture the beam reflected by the heliostat. The sensors in the array output measured values indicative of a characteristic of the beam reflected by the heliostat. Moreover, a computing device can generate and output data corresponding to the beam reflected by the heliostat based on the measured values indicative of the characteristic of the beam received from the sensors in the array.
Hubble Space Telescope solar cell module thermal cycle test
NASA Technical Reports Server (NTRS)
Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar
1992-01-01
The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.
Amorphous silicon cell array powered solar tracking apparatus
Hanak, Joseph J.
1985-01-01
An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.
NASA Astrophysics Data System (ADS)
Dinetta, L. C.; Hannon, M. H.
1995-10-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.
1995-01-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
Initial results for the silicon monolithically interconnected solar cell product
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.
1995-01-01
This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.
New mounting improves solar-cell efficiency
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1980-01-01
Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.
A multi-node model for transient heat transfer analysis of stratospheric airships
NASA Astrophysics Data System (ADS)
Alam, Mohammad Irfan; Pant, Rajkumar S.
2017-06-01
This paper describes a seven-node thermal model for transient heat transfer analysis of a solar powered stratospheric airship in floating condition. The solar array is modeled as a three node system, viz., outer layer, solar cell and substrate. The envelope is also modeled in three nodes, and the contained gas is considered as the seventh node. The heat transfer equations involving radiative, infra-red and conductive heat are solved simultaneously using a fourth order Runge-Kutta Method. The model can be used to study the effect of solar radiation, ambient wind, altitude and location of deployment of the airship on the temperature of the solar array. The model has been validated against some experimental data and numerical results quoted in literature. The effect of change in the value of some operational parameters on temperature of the solar array, and hence on its power output is also discussed.
Design of a photovoltaic system for a southwest all-electric residence
NASA Astrophysics Data System (ADS)
Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.
1980-04-01
The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Weiner, H.
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U. S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides all the information necessary tomore » access the DSPA programs, to input required data and to generate appropriate Design Synthesis or Performance Analysis Output.« less
Reverse bias voltage testing of 8 cm x 8cm silicon solar cells
NASA Technical Reports Server (NTRS)
Woike, T.; Stotlar, S.; Lungu, C.
1991-01-01
A study is described of the reverse I-V characteristics of the largest space qualified silicon solar cells currently available (8 x 8 cm) and of reverse bias voltage (RBV) testing performed on these cells. This study includes production grade cells, both with and without cover glass. These cells span the typical output range seen in production. Initial characteristics of these cells are measured at both 28 and 60 C. These measurements show weak correlation between cell output and reverse characteristics. Analysis is presented to determine the proper conditions for RBV stress to simulate shadowing effects on a particular array design. After performing the RBV stress the characteristics of the stressed cells are remeasured. The degradation in cell performance is highly variable which exacerbates cell mismatching over time. The effect of this degradation on array lifetime is also discussed. Generalization of these results to other array configurations is also presented.
Photovoltaic array: Power conditioner interface characteristics
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.
Project STOP (Spectral Thermal Optimization Program)
NASA Technical Reports Server (NTRS)
Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.
1977-01-01
The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.
NASA Astrophysics Data System (ADS)
Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.
2008-09-01
The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.
Improving solar-pumped laser efficiency by a ring-array concentrator
NASA Astrophysics Data System (ADS)
Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.
2018-01-01
We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.
Study of multi-kilowatt solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
Patterson, R. E.
1983-01-01
A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjuction with low cost optics. The MCC single element concept incident slar radiation is reflected rom a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4 millimeter diameter solar cell. A light catcher cone is used to improve off axis performance. The solar cell is mounted to a heat fin. An element is approximately 13 millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC sngle element with a 21 sq cm entrance aperture and a 20 efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30 sq cm of 11-percent efficiency (at 68 C) silicon solar cells.
NASA Technical Reports Server (NTRS)
Smith, J. H.
1994-01-01
This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.
Mass properties survey of solar array technologies
NASA Technical Reports Server (NTRS)
Kraus, Robert
1991-01-01
An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.
The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.
1979-01-01
The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.
Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Rayl, G.
1978-01-01
A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.
The effect of solar array degradation on electric propulsion spacecraft performance.
NASA Technical Reports Server (NTRS)
Sauer, C. G., Jr.; Bourke, R. D.
1972-01-01
Current estimates of solar-electric-propulsion spacecraft performance are based upon a solar-array output power which is degraded by approximately 10-13% to account for possible losses caused by proton, electron and micrometeorite damage. Past studies have used a worst case analysis in which the maximum degradation was taken to occur at the beginning of the mission. This paper presents a comparison of mission studies using a hypothetical exponential decrease in power with time, with those using a sudden degradation of solar power. These comparisons indicate that the performance gain by using a time varying degradation during the mission is quite small for outbound missions in the solar system. In addition an indication of the power allocation strategy to be followed during a mission is presented.
Silicon web process development. [for low cost solar cells
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.
1979-01-01
Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
State-of-the-art technologies applicable to silicon solar cell and solar cell module fabrication were assessed. The assessment consisted of a technical feasibility evaluation and a cost projection for high volume production of solar cell modules. Design equations based on minimum power loss were used as a tool in the evaluation of metallization technologies. A solar cell process sensitivity study using models, computer calculations, and experimental data was used to identify process step variation and cell output variation correlations.
ACTS Battery and Solar Array Assembly On-Orbit Measured Performance
NASA Technical Reports Server (NTRS)
Hilderman, Don R.
2005-01-01
The Advanced Communications Technology Satellite (ACTS) is a NASA experimental communications satellite system designed to demonstrate on-orbit Ka-band communications and switching technologies that will be used by NASA and the commercial sector in the 21st century. The ACTS was launched on September 12, 1993, and has performed over 10 years of successful experimental operations. The purpose of this report is to describe the ACTS power subsystem and the ACTS solar array and battery assemblies located within the power subsystem and then to document on-orbit measured performance from launch to mission end on April 28, 2004. Solar array and battery performance data is presented, and respective conclusions are drawn. The total solar array power available to the spacecraft was measured each year at the same time, and battery voltage performance was measured twice per year at the same times during peak solar eclipse. At the highest spacecraft power demand, the ACTS uses approximately 1113 W of electrical power during the low-burstrate experiment to operate all six satellite subsystems. After 10 years of on-orbit operation, solar array available output power normal to the Sun measured 1508 W, which represents 395 W of excess margin. The ACTS batteries have successfully supported the ACTS experiment program for over 10 years and operated in excess of 900 charge and discharge cycles through 21 eclipse seasons.
Analytical methods development for supramolecular design in solar hydrogen production
NASA Astrophysics Data System (ADS)
Brown, J. R.; Elvington, M.; Mongelli, M. T.; Zigler, D. F.; Brewer, K. J.
2006-08-01
In the investigation of alternative energy sources, specifically, solar hydrogen production from water, the ability to perform experiments with a consistent and reproducible light source is key to meaningful photochemistry. The design, construction, and evaluation of a series of LED array photolysis systems for high throughput photochemistry have been performed. Three array systems of increasing sophistication are evaluated using calorimetric measurements and potassium tris(oxalato)ferrate(II) chemical actinometry and compared with a traditional 1000 W Xe arc lamp source. The results are analyzed using descriptive statistics and analysis of variance (ANOVA). The third generation array is modular, and controllable in design. Furthermore, the third generation array system is shown to be comparable in both precision and photonic output to a 1000 W Xe arc lamp.
Power Converters Maximize Outputs Of Solar Cell Strings
NASA Technical Reports Server (NTRS)
Frederick, Martin E.; Jermakian, Joel B.
1993-01-01
Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.
Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays
NASA Technical Reports Server (NTRS)
Brown, W. C.
1980-01-01
The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.
Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems
NASA Astrophysics Data System (ADS)
Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki
Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.
Photovoltaic power system for a lunar base
NASA Astrophysics Data System (ADS)
Karia, Kris
An assessment is provided of the viability of using photovoltaic power technology for lunar base application during the initial phase of the mission. The initial user power demands were assumed to be 25 kW (daytime) and 12.5 kW (night time). The effect of lunar adverse environmental conditions were also considered in deriving the photovoltaic power system concept. The solar cell array was found to impose no more design constraints than those solar arrays currently being designed for spacecraft and the Space Station Freedom. The long lunar night and the need to store sufficient energy to sustain a lunar facility during this period was found to be a major design driver. A photovoltaic power system concept was derived using high efficiency thin GaAs solar cells on a deployable flexible Kapton blanket. The solar array design was sized to generate sufficient power for daytime use and for a regenerative fuel cell (RFC) energy storage system to provide power during the night. Solar array sun-tracking is also proposed to maximize the array power output capability. The system launch mass was estimated to be approximately 10 metric tons. For mission application of photovoltaic technology other issues have to be addressed including the constraints imposed by launch vehicle, safety, and cost. For the initial phase of the mission a photovoltaic power system offers a safe option.
NASA Technical Reports Server (NTRS)
Nussberger, A. A.; Woodcock, G. R.
1980-01-01
SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.
Significant Science at Jupiter Using Solar Power
NASA Technical Reports Server (NTRS)
Reitsema, H. J.; Smith, E. J.; Spilker, T.; Reinert, R.
2001-01-01
Missions to the Outer Planets are challenging for a number of reasons, primary of which is the low output of solar arrays at large heliocentric distances. The INSIDE Jupiter mission is a Discovery concept for a science investigation at Jupiter that is capable of producing major studies of the Jovian internal structure and ionospheric-magnetospheric coupling. Additional information is contained in the original extended abstract.
High Voltage Solar Concentrator Experiment with Implications for Future Space Missions
NASA Technical Reports Server (NTRS)
Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur
2004-01-01
This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.
Advanced solar energy conversion. [solar pumped gas lasers
NASA Technical Reports Server (NTRS)
Lee, J. H.
1981-01-01
An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.
Electrochemical Orbital Energy Storage (ECOES) technology program. [regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Mcbryar, H.
1980-01-01
The versatility and flexibility of a regenerative fuel cell power and energy storage system is considered. The principal elements of a Regenerative Fuel Cell System combine the fuel cell and electrolysis cell with a photovoltaic solar cell array, along with fluid storage and transfer equipment. The power output of the array (for LEO) must be roughly triple the load requirements of the vehicle since the electrolyzers must receive about double the fuel cell output power in order to regenerate the reactants (2/3 of the array power) while 1/3 of the array power supplies the vehicle base load. The working fluids are essentially recycled indefinitely. Any resupply requirements necessitated by leakage or inefficient reclamation is water - an ideal material to handle and transport. Any variation in energy storage capacity impacts only the fluid storage portion, and the system is insensitive to use of reserve reactant capacity.
System design of ELITE power processing unit
NASA Astrophysics Data System (ADS)
Caldwell, David J.
The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.
The development and test of a long-life, high reliability solar array drive actuator
NASA Technical Reports Server (NTRS)
Kirkpatrick, D. L.
1973-01-01
To meet the life and reliability requirements of five to ten year space missions, a new solar array drive mechanism for 3-axis stabilized vehicles has been developed and is undergoing life testing. The drive employs a redundant lubrication system to increase its reliability. An overrunning clutch mechanism is used to permit block redundant application of two or more drives to a common array drive shaft. Two prototype actuator and clutch assemblies, in continuous vacuum life test under load at 10 to the minus 8th power torr for more than sixteen months, have each accumulated more than 34,000 output revolutions without anomaly, the equivalent of more than seven years of operation in a 1000 km orbit or nearly ninety-five years at synchronous altitude.
Development of processes for the production of low cost silicon dendritic web for solar cells
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.
1980-01-01
High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).
Experiments on solar photovoltaic power generation using concentrator and liquid cooling
NASA Technical Reports Server (NTRS)
Beam, B. H.; Hansen, C. F.
1975-01-01
Calculations and experimental data are presented leading to the development of a practical, economical solar photovoltaic power supply. The concept involves concentration of sunlight up to about 100 times normal solar intensity in a solar tracking collector and directing this to an array of solar cells. The cells are immersed in water circulated from a thermal reservoir which limits cell temperature rise to about 20 C above ambient during the day and which cools to ambient temperature during the night. Experiments were conducted on solar cells using a Fresnel lens for magnification, a telescope equatorial mount with clock drive, and tap water circulated through the solar cell holder cavity. Test results show that cells operate satisfactorily under these conditions. Power outputs achieved experimentally with cell optimized for 25 suns were linear with concentration to about 15 suns. Cells optimized for 100 suns were not available, but a corresponding linear relation of power output with concentration is anticipated. Test results have been used in a design analysis of the cost of systems utilizing this technique.
Optimal Solar PV Arrays Integration for Distributed Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A; Li, Xueping
2012-01-01
Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introducemore » quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.« less
Survey of Experimental Results From One Year of PASP PLUS Orbital Operation
NASA Technical Reports Server (NTRS)
Guidice, D. A.; Curtis, H. B.; Piszczor, M. F.; Palys, J. R.
1996-01-01
With PASP Plus as its primary payload, the APEX satellite was launched by a standard Pegasus rocket released from a NASA B-52 aircraft on 3 August 1994. A 70 deg inclination, 363 km X 2550 km orbit was achieved, allowing both investigation of space plasma effects on high-voltage operation in the perigee region and investigation of space radiation effects on array power output from passage through the inner radiation belt in the apogee region. Data gathering by PASP Plus was begun on 7 Aug 94 and ended on 11 Aug 95. In one year, PASP Plus collected an order of magnitude more data on environmental interactions on solar arrays than all previous space-borne photovoltaic experiments combined. The test arrays flown and the interactions-measuring and space-environment sensors of PASP Plus are described. The results of measurements of leakage current under test-array positive biasing and arc rates under negative biasing as a function of bias voltage, plasma density, array orientation, and other conditions are presented. The results of measurements of test-array power-output degradation caused by space radiation are also examined.
Zhang, Xi; Huang, Xuezhen; Li, Chensha; Jiang, Hongrui
2013-08-14
Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is achieved, while simultaneously a 3.70% photo-to-electric conversion efficiency is maintained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mercier, F.; Samaniego, B.; Soriano, T.; Beaufils, G.; Fernandez Lisbona, E.; Dettlaff, K.; Jensen, H.
2014-08-01
The thermal / electrical imbalance phenomenon on the satellite solar arrays is a common issue inherent to the negative thermal voltage coefficient of the triple junction cells, which is usually already taken into account with basic precautions on the solar panel layout.In the frame of the ESA TRP study "Investigation on Solar Array thermal and electrical imbalance phenomenon on power systems equipped with Maximum Power Point Tracker (MPPT)" performed by Airbus Defence & Space (former Astrium Toulouse and Ottobrunn) and TERMA, in-depth analyses were conducted for the first time to better understand and characterize the secondary maximum power point phenomenon for various representative mission cases, whether in Earth vicinity or not. With the help of a newly developed detailed thermo-electrical coupled solver and a wide range of solar cell characterizations in flux and temperature, multiple sets of simulations were run to simulate realistic solar panel characteristics.The study showed that no secondary false maximum power point can be created on the solar panel characteristic IV curve for missions around Earth vicinity, at the sole exception of critical shadowing cases. Furthermore, the same conclusions apply for missions up to Mars orbit. The only potential threats come from the missions further than Mars (typically Jupiter missions) where various very high heterogeneities could lead to multiple maxima. This is deeply linked to the LILT (low illumination low temperature) conditions applied to the current solar cell triple junction characteristics and shape. Moreover, thermo-electrical imbalances that do not create secondary power point can still seriously grieve the solar array power output performances. This power loss can however be accurately assessed by the newly developed solver in support of in-development missions like Juice.
Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel
2015-01-01
NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.
NASA Astrophysics Data System (ADS)
Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna
2018-03-01
Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.
Application of Distributed DC/DC Electronics in Photovoltaic Systems
NASA Astrophysics Data System (ADS)
Kabala, Michael
In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.
Qualification test results for blue-red reflecting solar covers
NASA Technical Reports Server (NTRS)
Beauchamp, W. T.
1994-01-01
Recent market forces and design innovations have spurred the development of solar cell covers that significantly reduce the solar absorptance for a cell array. GaAs cells, using Ge as the substrate host material, can have a significantly higher output if the solar absorptance of the cell array is reduced. New optical coating design techniques have allowed the construction of covers that reflect the ultraviolet energy (below 350 nm) and the near infrared energy (above 900 nm) resulting in the beneficial reduction in absorptance. Recent modeling suggests three or more present output increase due to the lowered temperature with such a device. Within the last several months we have completed the testing of production samples of these new covers in a qualification series that included the usual environmental effects associated with the routine testing of solar cell covers and the combined effects of protons, electrons and solar UV as would be encountered in space. For the combined effects testing the samples were exposed to 300 sun days equivalent UV, 5 x 10(exp 14)/sq cm of 0.5 MeV protons and 10(exp 15)/sq cm of 1.0 MeV electrons. Measurements of the reflectance, transmission, emittance and other appropriate parameters were made before and after the testing. As measured by the averaged transmission over the cell operating band, the change in transmission for the samples was less than or about equal to 1 percent. The details of the testing and the results in terms of transmission, reflectance and emittance are discussed in the paper.
Evaluation of Data-Driven Models for Predicting Solar Photovoltaics Power Output
Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas
2017-09-10
This research was undertaken to evaluate different inverse models for predicting power output of solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated whether PV power output prediction accuracy can be improved if module/cell temperature was measured in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar irradiation is not measured on the plane of array but only on a horizontal surface. We have also investigated the significance of different independent or regressor variables, such as wind velocity and incident angle modifier in predicting PV power output and cell temperature.more » The inverse regression model forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are used. Depending on what type of measured climatic and PV performance data is available, different scenarios have been identified and the corresponding appropriate modeling pathways have been proposed. The corresponding models are to be implemented on a controller platform for optimum operational planning of microgrids and integrated energy systems.« less
Hydrogen Generation Through Renewable Energy Sources at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Colozza, Anthony; Prokopius, Kevin
2007-01-01
An evaluation of the potential for generating high pressure, high purity hydrogen at the NASA Glenn Research Center (GRC) was performed. This evaluation was based on producing hydrogen utilizing a prototype Hamilton Standard electrolyzer that is capable of producing hydrogen at 3000 psi. The present state of the electrolyzer system was determined to identify the refurbishment requirements. The power for operating the electrolyzer would be produced through renewable power sources. Both wind and solar were considered in the analysis. The solar power production capability was based on the existing solar array field located at NASA GRC. The refurbishment and upgrade potential of the array field was determined and the array output was analyzed with various levels of upgrades throughout the year. The total available monthly and yearly energy from the array was determined. A wind turbine was also sized for operation. This sizing evaluated the wind potential at the site and produced an operational design point for the wind turbine. Commercially available wind turbines were evaluated to determine their applicability to this site. The system installation and power integration were also addressed. This included items such as housing the electrolyzer, power management, water supply, gas storage, cooling and hydrogen dispensing.
Feasibility Study of Solar Dome Encapsulation of Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
1978-01-01
The technical and economic advantages of using air-supported plastic enclosures to protect flat plate photovoltaic arrays are described. Conceptual designs for a fixed, latitude-tilt array and a fully tracking array were defined. Detailed wind loads and strength analyses were performed for the fixed array. Detailed thermal and power output analyses provided array performance for typical seasonal and extreme temperature conditions. Costs of each design as used in a 200 MWe central power station were defined from manufacturing and material cost estimates. The capital cost and cost of energy for the enclosed fixed-tilt array were lower than for the enclosed tracking array. The enclosed fixed-tilt array capital investment was 38% less, and the levelized bus bar energy cost was 26% less than costs for a conventional, glass-encapsulated array design. The predicted energy cost for the enclosed fixed array was 79 mills/kW-h for direct current delivered to the power conditioning units.
NASA Astrophysics Data System (ADS)
Rehman, Naveed ur; Siddiqui, Mubashir Ali
2018-05-01
This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.
Analysis of S-band solid-state transmitters for the solar power satellite
NASA Technical Reports Server (NTRS)
Belohoubek, E. F.; Ettenberg, M.; Huang, H. C.; Nowogrodzki, M.; Sechi, F. N.
1979-01-01
The possibility of replacing the Reference System antenna in which thermionic devices are used for the dc-to-microwave conversion, with solid-state elements was explored. System, device, and antenna module tradeoff investigations strongly point toward the desirability of changing the transmitter concept to a distributed array of relatively low power elements, deriving their dc power directly from the solar cell array and whose microwave power outputs are combined in space. The approach eliminates the thermal, weight, and dc-voltage distribution problems of a system in which high power tubes are simply replaced with clusters of solid state amplifiers. The proposed approach retains the important advantages of a solid state system: greatly enhanced reliability and graceful degradation of the system.
Comparison of ISS Power System Telemetry with Analytically Derived Data for Shadowed Cases
NASA Technical Reports Server (NTRS)
Fincannon, H. James
2002-01-01
Accurate International Space Station (ISS) power prediction requires the quantification of solar array shadowing. Prior papers have discussed the NASA Glenn Research Center (GRC) ISS power system tool SPACE (System Power Analysis for Capability Evaluation) and its integrated shadowing algorithms. On-orbit telemetry has become available that permits the correlation of theoretical shadowing predictions with actual data. This paper documents the comparison of a shadowing metric (total solar array current) as derived from SPACE predictions and on-orbit flight telemetry data for representative significant shadowing cases. Images from flight video recordings and the SPACE computer program graphical output are used to illustrate the comparison. The accuracy of the SPACE shadowing capability is demonstrated for the cases examined.
NASA Technical Reports Server (NTRS)
Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira
2012-01-01
As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.
Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment
NASA Technical Reports Server (NTRS)
Francis, R. W.; Betz, F. E.
1985-01-01
The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.
Analyzing Power Supply and Demand on the ISS
NASA Technical Reports Server (NTRS)
Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve
2006-01-01
Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittman, P F
1979-03-30
This contract is part of a three phase program to design, fabricate, and operate a solar photovoltaic electric power system with concentrating optics. The system will be located beside a Local Operating Headquarters of the Georgia Power Company in Atlanta, Georgia and will provide part of the power for the on-site load. Fresnel lens concentrators will be used in 2-axis tracking arrays to focus solar energy onto silicon solar cells producing a peak power output of 56 kW. The present contract covers Phase I which has as its objective the complete design of the system and necessary subsystems.
Correlation of ISS Electric Potential Variations with Mission Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard
2014-01-01
Orbiting approximately 400 km above the Earth, the International Space Station (ISS) is a unique research laboratory used to conduct ground-breaking science experiments in space. The ISS has eight Solar Array Wings (SAW), and each wing is 11.7 meters wide and 35.1 meters long. The SAWs are controlled individually to maximize power output, minimize stress to the ISS structure, and minimize interference with other ISS operations such as vehicle dockings and Extra-Vehicular Activities (EVA). The Solar Arrays are designed to operate at 160 Volts. These large, high power solar arrays are negatively grounded to the ISS and collect charged particles (predominately electrons) as they travel through the space plasma in the Earth's ionosphere. If not controlled, this collected charge causes floating potential variations which can result in arcing, causing injury to the crew during an EVA or damage to hardware [1]. The environmental catalysts for ISS floating potential variations include plasma density and temperature fluctuations and magnetic induction from the Earth's magnetic field. These alone are not enough to cause concern for ISS, but when they are coupled with the large positive potential on the solar arrays, floating potentials up to negative 95 Volts have been observed. Our goal is to differentiate the operationally induced fluctuations in floating potentials from the environmental causes. Differentiating will help to determine what charging can be controlled, and we can then design the proper operations controls for charge collection mitigation. Additionally, the knowledge of how high power solar arrays interact with the environment and what regulations or design techniques can be employed to minimize charging impacts can be applied to future programs.
Glass light pipes for solar concentration
NASA Astrophysics Data System (ADS)
Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.
2018-02-01
Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.
Solar-Panel Dust Accumulation and Cleanings
NASA Technical Reports Server (NTRS)
2005-01-01
Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels. This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.The Redox flow system for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Odonnell, P.; Gahn, R. F.
1976-01-01
A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.
Evaluation of scenario-specific modeling approaches to predict plane of array solar irradiation
Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas
2017-12-20
Predicting thermal or electric power output from solar collectors requires knowledge of solar irradiance incident on the collector, known as plane of array irradiance. In the absence of such a measurement, plane of array irradiation can be predicted using relevant transposition models which essentially requires diffuse (or beam) radiation to be to be known along with total horizontal irradiation. The two main objectives of the current study are (1) to evaluate the extent to which the prediction of plane of array irradiance is improved when diffuse radiation is predicted using location-specific regression models developed from on-site measured data as againstmore » using generalized models; and (2) to estimate the expected uncertainties associated with plane of array irradiance predictions under different data collection scenarios likely to be encountered in practical situations. These issues have been investigated using monitored data for several U.S. locations in conjunction with the Typical Meteorological Year, version 3 database. An interesting behavior in the Typical Meteorological Year, version 3 data was also observed in correlation patterns between diffuse and total radiation taken from different years which seems to attest to a measurement problem. Furthermore, the current study was accomplished under a broader research agenda aimed at providing energy managers the necessary tools for predicting, scheduling, and controlling various sub-systems of an integrated energy system.« less
Evaluation of scenario-specific modeling approaches to predict plane of array solar irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas
Predicting thermal or electric power output from solar collectors requires knowledge of solar irradiance incident on the collector, known as plane of array irradiance. In the absence of such a measurement, plane of array irradiation can be predicted using relevant transposition models which essentially requires diffuse (or beam) radiation to be to be known along with total horizontal irradiation. The two main objectives of the current study are (1) to evaluate the extent to which the prediction of plane of array irradiance is improved when diffuse radiation is predicted using location-specific regression models developed from on-site measured data as againstmore » using generalized models; and (2) to estimate the expected uncertainties associated with plane of array irradiance predictions under different data collection scenarios likely to be encountered in practical situations. These issues have been investigated using monitored data for several U.S. locations in conjunction with the Typical Meteorological Year, version 3 database. An interesting behavior in the Typical Meteorological Year, version 3 data was also observed in correlation patterns between diffuse and total radiation taken from different years which seems to attest to a measurement problem. Furthermore, the current study was accomplished under a broader research agenda aimed at providing energy managers the necessary tools for predicting, scheduling, and controlling various sub-systems of an integrated energy system.« less
A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei
2014-05-19
To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.
Design and test hardware for a solar array switching unit
NASA Technical Reports Server (NTRS)
Patil, A. R.; Cho, B. H.; Sable, D.; Lee, F. C.
1992-01-01
This paper describes the control of a pulse width modulated (PWM) type sequential shunt switching unit (SSU) for spacecraft applications. It is found that the solar cell output capacitance has a significant impact on SSU design. Shorting of this cell capacitance by the PWM switch causes input current surges. These surges are minimized by the use of a series filter inductor. The system with a filter is analyzed for ripple and the control to output-voltage transfer function. Stable closed loop design considerations are discussed. The results are supported by modeling and measurements of loop gain and of closed-loop bus impedance on test hardware for NASA's 120 V Earth Observation System (EOS). The analysis and modeling are also applicable to NASA's 160 V Space Station power system.
Solar Array Power Conditioning for a Spinning Satellite
NASA Astrophysics Data System (ADS)
De Luca, Antonio; Chirulli, Giovanni
2008-09-01
The conditioning of the output power from a solar array can mainly be achieved by the adoption of DET or MPPT based architecture. There are several factors that can orientate the choice of the system designer towards one solution or the other; some of them maybe inherent to the mission derived requirements (Illumination levels, EMC cleanliness, etc.), others come directly from a careful assessment of performances and losses of both power conditioner and solar array.Definition of the criteria on which basis the final choice is justified is important as they have to guarantee a clear determination of the available versus the required power in all those mission conditions identifiable as design drivers for the overall satellite system both in terms of mass and costs.Such criteria cannot just be simple theoretical enunciations of principles; nor the meticulous definition of them on a case by case basis for different types of missions as neither option gives a guarantee of being conclusive.The aim of this paper is then to suggest assessment steps and guidelines that can be considered generically valid for any mission case, starting from the exposition of the trade off activity performed in order to choose the power conditioning solution for a spinning satellite having unregulated power bus architecture. Calculations and numerical simulations have been made in order to establish the needed solar array surface in case of adoption of a DET or MPPT solution, taking into account temperature and illumination levels on the solar cells, as well as power losses and inefficiencies from the solar generator to the main power bus, in different mission phases. Particular attention has been taken in order to correctly evaluate the thermal effects on the rest of the spacecraft as function of the adopted power system regulation.
Advanced Rainbow Solar Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
Mardesich, Nick; Shields, Virgil
2003-01-01
Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism array with panels of photovoltaic cells on two sides (see figure). The surface supporting the solar cells can be adjusted in length or angle to accommodate the incident spectral pattern. An unoptimized prototype assembly containing ten adjacent prisms and three photovoltaic cells with different bandgaps (InGaP2, GaAs, and InGaAs) was constructed to demonstrate feasibility. The actual array will consist of a lightweight thin-film silicon layer of prisms curved into a parabolic shape. In an initial test under illumination of 1 sun at zero airmass, the energy-conversion efficiency of the assembly was found to be 20 percent. Further analysis of the data from this test led to a projected energy conversion efficiency as high as 41 percent for an array of 6 cells or strings (GaP, AlGaAs, InGaP2, GaAs, and two different InGaAs cells or strings).
A simple algorithm to compute the peak power output of GaAs/Ge solar cells on the Martian surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glueck, P.R.; Bahrami, K.A.
1995-12-31
The Jet Propulsion Laboratory`s (JPL`s) Mars Pathfinder Project will deploy a robotic ``microrover`` on the surface of Mars in the summer of 1997. This vehicle will derive primary power from a GaAs/Ge solar array during the day and will ``sleep`` at night. This strategy requires that the rover be able to (1) determine when it is necessary to save the contents of volatile memory late in the afternoon and (2) determine when sufficient power is available to resume operations in the morning. An algorithm was developed that estimates the peak power point of the solar array from the solar arraymore » short-circuit current and temperature telemetry, and provides functional redundancy for both measurements using the open-circuit voltage telemetry. The algorithm minimizes vehicle processing and memory utilization by using linear equations instead of look-up tables to estimate peak power with very little loss in accuracy. This paper describes the method used to obtain the algorithm and presents the detailed algorithm design.« less
Three-dimensional carbon nanotube based photovoltaics
NASA Astrophysics Data System (ADS)
Flicker, Jack
2011-12-01
Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values in the range of 2 to 122mV. These figures of merit are low for CdTe cells, so planar cells without CNTs and planar cells with unpatterned CNTs were developed. The planar cells had figures of merit about the same as the 3DCNTPV cells, indicating that the low efficiency of the 3DCNTPV cell is due to processing and not inherent to the 3D structure. CNTs were successfully grown directly on an Ag underlayer, but the growth reproducibility and the CNT height was not sufficient for use in 3DCNTPV devices. Therefore, CNTs were grown on a SiO2 passivated Si wafer and then metallized. This eliminated the CNTs as the back contact and used them only as a structure to provide the 3D morphology. These cells exhibited low shunt resistances on the order of 300O, causing a straight line IV curve. This shunting was found to be caused by the ion assisted deposition of ITO. This plasma process etched away semiconducting layers and caused pinholes in the CdTe/CdS film. Many different strategies were utilized to try and eliminate this shunt and induce curvature in the IV curve, including adding sacrificial metal layers before the ITO deposition, using electron beam evaporated ITO, and using RF sputtered ITO. The addition of metal layers before ITO deposition did not result in cells which could reliably demonstrate both photocurrent and IV curvature. Electron beam deposition of ITO resulted in cells with excellent IV curvature, but the ITO deposited in this manner was too resistive and absorptive to create well functioning cells. The output power of the cells at varying incident angles of light was measured. The cells show an increase in the normalized power output compared to similar planar cells when the solar ux is at off-normal angles. The power output vs. incident angle curve takes an inverted C-type curve as predicted by the theory developed here. The complete theory of 3DCNTPV presented in this work describes the power output vs. incident angle of a 3DCNTPV cell based only on cell morphology. The experimental power output vs. zenith angle was compared to the theoretically calculated power output with very good agreement between the two. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
1996-01-01
Basic requirement of 978.59 watts per Panel output @ 58.9 volts B.O.L. was met on an average basis per agreement with NASA. Lower grade Cells were used on the shadowed Panel (Boom shadow) to maximize available power to the Spacecraft. The average output @ 58.9 volts was 991 watts. The outputs of the four t4) Panels ranged from 960 to 1,022 watts. The Panels successfully passed environmental testing at TRW to the contract specification and subsequent testing at NASA which involved output measurements at elevated temperatures. As this type of Array had never previously been built by TRW (aluminum Substrate with 4 cm x 4.4 cm GaAs Cells), the TRMM Program was a development effort combined with a Qual and Flight production effort. The most significant technical problem was Cell cracking during Qual thermal cycling. The cracking problem was determined to be generic within our Solar Array factory in the application of GaAs Cells to our designs. As a result, a TRW funded manufacturing process verification panel (known as the Manufacturing Verification Panel) was built to demonstrate our ability to properly apply GaAs Cells. The original Qual Panel comprised three (3) design variations with respect to Coverglass-to-Cell and Cell-to-Substrate adhesives. The intent was to qualify multiple designs in case one or more failed. When two of the three combinations failed due to excessive Cell breakage during thermal cycling, NASA was reluctant to allow Flight production based on the one remaining good Qual Panel Quadrant. This issue was pivotal for continuing the contract. Facts and recommendations are as follows: (1) The cause of the excessive cracking was never determined. and (2) The areas where the excessive cracking occurred utilized DC93-500 glassing adhesive which was NASA approved, and had been widely used by TRW on a multitude of projects.
NASA Astrophysics Data System (ADS)
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions
NASA Technical Reports Server (NTRS)
Brophy, John R.; Larson, Tim
2013-01-01
The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape from Earth and then the heliocentric transfer to the science target.
Modeling of high efficiency solar cells under laser pulse for power beaming applications
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Landis, Geoffrey A.
1994-01-01
Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.
McClellan PV system installation provides key lessons
NASA Astrophysics Data System (ADS)
Kauffman, W. R.
Design features and lessons learned in the installation of a 40 kWp solar cell array to supply power to a market on an airbase are outlined. The fixed-position modules interface with an inverter, ac and dc switchgear, controls, instrumentation, and an energy management system. The power control unit has a peak power tracking feature to maximize output from the 1142 cell modules. The inverter has functioned at over 98 percent efficiency near the 25 kW design range of the array. Moisture sealing to prevent ground faults was found necessary during the installation of the underground cabling.
Performance characteristics of solar-photovoltaic flywheel-storage systems
NASA Astrophysics Data System (ADS)
Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.
A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas
This research was undertaken to evaluate different inverse models for predicting power output of solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated whether PV power output prediction accuracy can be improved if module/cell temperature was measured in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar irradiation is not measured on the plane of array but only on a horizontal surface. We have also investigated the significance of different independent or regressor variables, such as wind velocity and incident angle modifier in predicting PV power output and cell temperature.more » The inverse regression model forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are used. Depending on what type of measured climatic and PV performance data is available, different scenarios have been identified and the corresponding appropriate modeling pathways have been proposed. The corresponding models are to be implemented on a controller platform for optimum operational planning of microgrids and integrated energy systems.« less
Microwave Power for Smart Membrane Actuators
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.
2002-01-01
The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.
Interactions between large space power systems and low-Earth-orbit plasmas
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1985-01-01
There is a growing tendency to plan space missions that will incorporate very large space power systems. These space power systems must function in the space plasma environment, which can impose operational limitations. As the power output increases, the operating voltage also must increase and this voltage, exposed at solar array interconnects, interacts with the local plasma. The implications of such interactions are considered. The available laboratory data for biased array segment tests are reviewed to demonstrate the basic interactions considered. A data set for a floating high voltage array test was used to generate approximate relationships for positive and negative current collection from plasmas. These relationships were applied to a hypothetical 100 kW power system operating in a 400 km, near equatorial orbit. It was found that discharges from the negative regions of the array are the most probable limiting factor in array operation.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.
1978-01-01
Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.
The in-flight performance of the Solar Maximum Mission Electrical Power System
NASA Technical Reports Server (NTRS)
Broderick, R. J.
1981-01-01
Circuitry, power handling, and operational characteristics and anomalies of the Electrical Power System (EPS) of the Solar Maximum Mission are discussed. The EPS is designed as a standard unit to be a candidate for use on future space missions. Blown, improperly derated fuses in the Attitude Control System and the Signal Conditioning Assembly have led to switching to magnetrons for solar angle, with a loss of accuracy, and a loss of one-half of telemetry data, respectively. In addition, reasons for an 11-14% degradation of solar array output are uncertain due to the loss of precise attitude control. Current surges to peak at 76.5 A (down from 94.5 A) at sunrise, stays for four to five minutes, then resumes nominal output for the remainder of the 61-68 daytime period. Eclipse varies between 28 and 35 minutes, with corresponding depth of discharge of 14%. The batteries charge at 20 A, and although an overcharge mode has been continuously sensed, operation has been normal and temperature sensors have not indicated overcharge; cell failure has also not been sensed. The system has a two year design life and a desired life of four years.
Design considerations for Mars photovoltaic power systems
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Appelbaum, Joseph
1990-01-01
Considerations for operation of a photovoltaic power system on Mars are discussed with reference to Viking Lander data. The average solar insolation at Mars is 590 W/sq m, which is reduced yet further by atmospheric dust. Of major concern are dust storms, which have been observed to occur on local as well as on global scales, and their effect on solar array output. While atmospheric opacity may rise to values ranging from 3 to 9, depending on storm severity, there is still an appreciable large diffuse illumination, even at high opacities, so that photovoltaic operation is still possible. If the power system is to continue to generate power even on high-optical-opacity (i.e., dusty atmosphere) days, it is important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. Energy storage will be required for operation during the night. Temperature and wind provide additional considerations for array design.
Low concentration ratio solar array structural configuration
NASA Astrophysics Data System (ADS)
Nalbandian, S. J.
1984-01-01
The design and structural properties of a low concentration ratio solar array are discussed. The assembled module consists of six interconnected containers which are compactly stowed in a volume of 3.24 m(3) for delivery to orbit by the shuttle. The containers deploy in accordian fashion into a rectangular area of 19.4 x 68 meters and can be attached to the user spacecraft along the longitudinal centerline of the end container housing. Five rotary incremental actuators requiring about 8 watts each will execute the 180-degree rotation at each joint. Deployable masts (three per side) are used to extend endcaps from the housing in both directions. Each direction is extended by three masts requiring about 780 watts for about 27 minutes. Concentrator elements are extended by the endcaps and are supported by cable systems that are connected between the housings and endcaps. These power generating elements contain reflector panels which concentrate light onto the solar panels consisting of an aluminum radiator with solar cells positioned within the element base formed by the reflectors. A flat wire harness collects the power output of individual elements for transfer to the module container housing harnesses.
Photovoltaic Plasma Interaction Test 2
NASA Technical Reports Server (NTRS)
Kaufman, Bradford A.; Chrulski, Daniel; Myers, Roger M.
1996-01-01
The International Space Station (ISS) program is developing a plasma contactor to mitigate the harmful effects of charge collection on the station's large photovoltaic arrays. The purpose of the present test was to examine the effects of charge collection on the solar array electrical circuit and to verify the effectiveness of the plasma contactor. The results showed that the plasma contactor was able to eliminate structure arcing for any array output voltage. However, the current requirements of the plasma contactor were higher than those for prior testing and predicted by analysis. Three possible causes for this excess current demand are discussed. The most likely appeared to be a high local pressure on or very near the surface of the array as a result of vacuum tank conditions. Therefore, in actual space conditions, the plasma contactor should work as predicted.
NASA Technical Reports Server (NTRS)
Jones, G. T.
1977-01-01
Forty kilowatts of solar cell modules was produced in this program. This is equivalent to 4123 modules. The average power output per module was 9.7 watts at 16.5 volts, 60 C and 100 mW/sq cm. The peak production rate was 200 modules per week which is equal to 1.9 kW per week. This rate was sustained for over four and one-half months and is equivalent to 100 kW per year. This final report covers the solar cell module design, electrical and power performance, module preproduction environmental test results, production and shipping schedule, program summary, and delivery. A cost analysis section is written. Particular emphasis on the percentage of labor and material utilized in constructing a solar cell module is presented. Also included are cost reduction recommendations.
Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-01
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as amore » guide for future development of physics-based transposition models.« less
Diagnosing Model Errors in Simulation of Solar Radiation on Inclined Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-11-21
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models with one substantially underestimating the diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study canmore » be used as a guide for future development of physics-based transposition models.« less
On-Orbit Reconfigurable Solar Array
NASA Technical Reports Server (NTRS)
Levy, Robert K. (Inventor)
2017-01-01
In one or more embodiments, the present disclosure teaches a method for reconfiguring a solar array. The method involves providing, for the solar array, at least one string of solar cells. The method further involves deactivating at least a portion of at least one of the strings of solar cells of the solar array when power produced by the solar array reaches a maximum power allowance threshold. In addition, the method involves activating at least a portion of at least one of the strings of the solar cells in the solar array when the power produced by the solar array reaches a minimum power allowance threshold.
Ion propulsion cost effectivity
NASA Technical Reports Server (NTRS)
Zafran, S.; Biess, J. J.
1978-01-01
Ion propulsion modules employing 8-cm thrusters and 30-cm thrusters were studied for Multimission Modular Spacecraft (MMS) applications. Recurring and nonrecurring cost elements were generated for these modules. As a result, ion propulsion cost drivers were identified to be Shuttle charges, solar array, power processing, and thruster costs. Cost effective design approaches included short length module configurations, array power sharing, operation at reduced thruster input power, simplified power processing units, and power processor output switching. The MMS mission model employed indicated that nonrecurring costs have to be shared with other programs unless the mission model grows. Extended performance missions exhibited the greatest benefits when compared with monopropellant hydrazine propulsion.
Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems
NASA Technical Reports Server (NTRS)
Fincannon, James
1995-01-01
The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.
Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems
NASA Astrophysics Data System (ADS)
Fincannon, James
1995-05-01
The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.
Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.
Space qualification of IR-reflecting coverslides for GaAs solar cells
NASA Technical Reports Server (NTRS)
Meulenberg, Andrew
1995-01-01
Improvements to GaAs solar array performance, from the use on solar cell coverslides of several reflecting coatings that reject unusable portions of the solar spectrum, are quantified. Blue-red-rejection (BRR) coverslides provide both infrared reflection (IRR) and ultraviolet rejection (UVR). BRR coverslides were compared to conventional antireflection (AR) and ultraviolet (UV) coated coverslides. A 2% improvement in peak-power output, relative to that from Ar-coated coverslides, is seen for cells utilizing BRR coverslides with the widest bandpass. Coverslide BRR-filter bandpass width and covered-solar-cell short-circuit current is a function of incident light angle and the observed narrower-bandpass filters are more sensitive to change in angle from the normal than are wide-bandpass filters. The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has indicated that all multilayer coatings on coverslides and solar cells will experience degradation from the space environment (UV and/or electrons). Five types of coverslide coatings, designed for GaAs solar cells, were tested as part of a NASA-sponsored space-flight qualification for BRR, multi-layer-coated, coverslides. The reponse to the different radiations varied with the coatings. The extent of degradation and its consequences on the solar cell electrical characteristics depend upon the coatings and the radiation. In some cases, an improved optical coupling was observed during long-term UV exposure to the optical stack. The benefits of multi-layered solar cell optics may depend upon both the duration and the radiation environment of a mission.
2014-06-01
systems. It can model systems including both conventional, diesel powered generators and renewable power sources such as photovoltaic arrays and wind...conducted an experiment where he assessed the capabilities of the HOMER model in forecasting the power output of a solar panel at NPS [32]. In his ex...energy efficiency in expeditionary operations, the HOMER micropower optimization model provides potential to serve as a powerful tool for improving
Evaluation of solar cells and arrays for potential solar power satellite applications
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K.; Gaudet, A. D.
1978-01-01
Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.
Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters
NASA Astrophysics Data System (ADS)
Sarma, Dhrupad; Barua, Parimal Bakul; Dey, Nabendu; Nath, Sumitro; Thakuria, Mrinmay; Mallick, Synthia
2018-01-01
One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.
Theory and applications for optimization of every part of a photovoltaic system
NASA Technical Reports Server (NTRS)
Redfield, D.
1978-01-01
A general method is presented for quantitatively optimizing the design of every part and fabrication step of an entire photovoltaic system, based on the criterion of minimum cost/Watt for the system output power. It is shown that no element or process step can be optimized properly by considering only its own cost and performance. Moreover, a fractional performance loss at any fabrication step within the cell or array produces the same fractional increase in the cost/Watt of the entire array, but not of the full system. One general equation is found to be capable of optimizing all parts of a system, although the cell and array steps are basically different from the power-handling elements. Applications of this analysis are given to show (1) when Si wafers should be cut to increase their packing fraction; and (2) what the optimum dimensions for solar cell metallizations are. The optimum shadow fraction of the fine grid is shown to be independent of metal cost and resistivity as well as cell size. The optimum thicknesses of both the fine grid and the bus bar are substantially greater than the values in general use, and the total array cost has a major effect on these values. By analogy, this analysis is adaptable to other solar energy systems.
Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-02
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic panels. Following numerous studies comparing the performance of transposition models, this work aims to understand the quantitative uncertainty in state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models, with one substantially underestimating the diffuse plane-of-array irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of the empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can bemore » used as a guide for the future development of physics-based transposition models and evaluations of system performance.« less
Power and Propulsion System Design for Near-Earth Object Robotic Exploration
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Randolph, Thomas M.; Landau, Damon F.; Bury, Kristen M.; Malone, Shane P.; Hickman, Tyler A.
2011-01-01
Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.
Multi-kW solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
1985-01-01
The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.
Fault Analysis in Solar Photovoltaic Arrays
NASA Astrophysics Data System (ADS)
Zhao, Ye
Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Scheiman, David A.
2005-01-01
This paper documents testing and analyses to quantify International Space Station (ISS) Solar Array Wing (SAW) string electrical performance under highly off-nominal, low-temperature-low-intensity (LILT) operating conditions with nonsolar light sources. This work is relevant for assessing feasibility and risks associated with a Sequential Shunt Unit (SSU) remove and replace (R&R) Extravehicular Activity (EVA). During eclipse, SAW strings can be energized by moonlight, EVA suit helmet lights or video camera lights. To quantify SAW performance under these off-nominal conditions, solar cell performance testing was performed using full moon, solar simulator and Video Camera Luminaire (VCL) light sources. Test conditions included 25 to 110 C temperatures and 1- to 0.0001-Sun illumination intensities. Electrical performance data and calculated eclipse lighting intensities were combined to predict SAW current-voltage output for comparison with electrical hazard thresholds. Worst case predictions show there is no connector pin molten metal hazard but crew shock hazard limits are exceeded due to VCL illumination. Assessment uncertainties and limitations are discussed along with operational solutions to mitigate SAW electrical hazards from VCL illumination. Results from a preliminary assessment of SAW arcing are also discussed. The authors recommend further analyses once SSU, R&R, and EVA procedures are better defined.
Self-Cleaning Microcavity Array for Photovoltaic Modules.
Vüllers, Felix; Fritz, Benjamin; Roslizar, Aiman; Striegel, Andreas; Guttmann, Markus; Richards, Bryce S; Hölscher, Hendrik; Gomard, Guillaume; Klampaftis, Efthymios; Kavalenka, Maryna N
2018-01-24
Development of self-cleaning coatings is of great interest for the photovoltaic (PV) industry, as soiling of the modules can significantly reduce their electrical output and increase operational costs. We fabricated flexible polymeric films with novel disordered microcavity array (MCA) topography from fluorinated ethylene propylene (FEP) by hot embossing. Because of their superhydrophobicity with water contact angles above 150° and roll-off angles below 5°, the films possess self-cleaning properties over a wide range of tilt angles, starting at 10°, and contaminant sizes (30-900 μm). Droplets that impact the FEP MCA surface with velocities of the same order of magnitude as that of rain bounce off the surface without impairing its wetting properties. Additionally, the disordered MCA topography of the films enhances the performance of PV devices by improving light incoupling. Optical coupling of the FEP MCA films to a glass-encapsulated multicrystalline silicon solar cell results in 4.6% enhancement of the electrical output compared to that of an uncoated device.
NASA Astrophysics Data System (ADS)
Yang, Guanghui; Chen, Bingzhen; Liu, Youqiang; Guo, Limin; Yao, Shun; Wang, Zhiyong
2015-10-01
As the critical component of concentrating photovoltaic module, secondary concentrators can be effective in increasing the acceptance angle and incident light, as well as improving the energy uniformity of focal spots. This paper presents a design of transmission-type secondary microprism for dense array concentrating photovoltaic module. The 3-D model of this design is established by Solidworks and important parameters such as inclination angle and component height are optimized using Zemax. According to the design and simulation results, several secondary microprisms with different parameters are fabricated and tested in combination with Fresnel lens and multi-junction solar cell. The sun-simulator IV test results show that the combination has the highest output power when secondary microprism height is 5mm and top facet side length is 7mm. Compared with the case without secondary microprism, the output power can improve 11% after the employment of secondary microprisms, indicating the indispensability of secondary microprisms in concentrating photovoltaic module.
(abstract) Scaling Nominal Solar Cell Impedances for Array Design
NASA Technical Reports Server (NTRS)
Mueller, Robert L; Wallace, Matthew T.; Iles, Peter
1994-01-01
This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
Input Shaping to Reduce Solar Array Structural Vibrations
NASA Technical Reports Server (NTRS)
Doherty, Michael J.; Tolson, Robert J.
1998-01-01
Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.
Recent developments in nickel hydrogen technology
NASA Astrophysics Data System (ADS)
Beauchamp, R. L.; Dunlop, J. D.
1988-05-01
A program to design and develop a multikilowatt-hour nickel hydrogen battery for storing electricity from photovoltaic or other power sources is continuing under a cost sharing contract with Sandia National Laboratories. The challenge has been to dramatically reduce the first cost of the battery to make it economically competitive, on a life-cycle cost basis, with other energy storage batteries used in terrestrial applications. The advantages offered by nickel hydrogen batteries are: (1) long cycle life, (2) no maintenance, and (3) a high tolerance to abuse. The last being the most important, implying that there is no need for a charge controller between the solar array and the battery. This would have a beneficial effect on the installation's long term reliability and cost. It also means that one can take full advantage of the maximum output of the solar array, in contrast to systems where the controller isolates the battery during times of maximum insolation. Couple this to the battery's excellent energy efficiency and there can be a significant reduction in the size of the array. In addition, since the state-of-charge is directly related to pressure, the battery can be used as a load management system.
Results of the 1996 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1996-01-01
The 1996 solar cell calibration balloon flight campaign was completed with the first flight on June 30, 1996 and a second flight on August 8, 1996. All objectives of the flight program were met. Sixty-four modules were carried to an altitude of 120,000 ft (36.6 km). Full 1-5 curves were measured on 22 of these modules, and output at a fixed load was measured on 42 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.
Solar bus regulator and battery charger for IMP's H, I, and J
NASA Technical Reports Server (NTRS)
Paulkovich, J.
1972-01-01
Interplanetary Monitoring Probe (IMP) spacecrafts H, I, and J utilize a direct energy transfer (DET) type of power system operating from a solar array source. A shunt type of regulator prevents the bus voltage from exceeding a preset voltage level. The power system utilizes a single differential amplifier with dual outputs to control the battery charge/shunt regulator and the discharge regulator. A two-voltage level, current limited, series charger and a current sensor control battery state of charge of the silver-cadmium battery pack. Premature termination of the battery charge is prevented by a power available gate that also initiates charge current to the battery upon availability of excess power.
Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Clifford W.; Martin, Curtis E.
2015-08-01
We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature;more » (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.« less
Operational considerations to reduce solar array loads
NASA Technical Reports Server (NTRS)
Gerstenmaier, W.
1992-01-01
The key parameters associated with solar array plume loads are examined, and operational considerations aimed at minimizing the effect of the Shuttle plumes on the Space Station solar arrays are discussed. These include solar array pointing to reduce loads and restrictions on Shuttle piloting. Particular attention is given to the method used to obtain the forcing functions (thruster time firing histories) for solar array plume calculation.
L-Band Ionosphere Scintillations Observed by A GNSS Receiver Array at HAARP
NASA Astrophysics Data System (ADS)
Morton, Y.; Pelgrum, W.; van Graas, F.
2011-12-01
As we enter a new solar maximum period, GNSS receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to gain better understandings of scintillation effects on GNSS signals. During the past decade, many GPS receivers have been deployed around the globe to monitor ionosphere scintillations. Most of these GPS receivers are commercial receivers whose tracking mechanisms are not designed to operate under ionosphere scintillation. When strong scintillations occur, these receivers will either generate erroneous outputs or completely lose lock. Even when the scintillation is mild, the tracking loop outputs are not true representation of the signal parameters due the tracking loop transfer function. High quality, unprocessed GNSS receiver front end raw IF samples collected during ionosphere scintillations are necessary to produce realistic scintillation signal parameter estimations. In this presentation, we will update our effort in establishing a unique GNSS receiver array at HAARP, Alaska to collect GPS and GLONASS satellite signals at various stages of the GNSS receiver processing. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array as well as additional on-site diagnostic instrumentation measurements obtained from two active heating experiment campaigns conducted in 2011 will be presented. Additionally, we will also highlight and contrast the artificial heating experiment results with observations of natural scintillation events captured by our receivers using an automatic event trigger mechanism during the past year. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.
A photovoltaic catenary-tent array for the Martian surface
NASA Technical Reports Server (NTRS)
Crutchik, M.; Colozza, Anthony J.; Appelbaum, J.
1993-01-01
To provide electrical power during an exploration mission to Mars, a deployable tent-shaped structure with a flexible photovoltaic (PV) blanket is proposed. The array is designed with a self-deploying mechanism utilizing pressurized gas expansion. The structural design for the array uses a combination of cables, beams, and columns to support and deploy the PV blanket. Under the force of gravity a cable carrying a uniform load will take the shape of a catenary curve. A catenary-tent collector is self shadowing which must be taken into account in the solar radiation calculation. The shape and the area of the shadow on the array was calculated and used in the determination of the global radiation on the array. The PV blanket shape and structure dimension were optimized to achieve a configuration which maximizes the specific power (W/kg). The optimization was performed for four types of PV blankets (Si, GaAs/Ge, GaAs CLEFT, and amorphous Si) and four types of structure materials (Carbon composite, Aramid Fiber composite, Aluminum, and Magnesium). The results show that the catenary shape of the PV blanket, which produces the highest specific power, corresponds to zero end angle at the base with respect to the horizontal. The tent angle is determined by the combined effect of the array structure specific mass and the PV blanket output power. The combination of carbon composite structural material and GaAs CLEFT solar cells produce the highest specific power. The study was carried out for two sites on Mars corresponding to the Viking Lander locations. The designs were also compared for summer, winter, and yearly operation.
Torsional Buckling Tests of a Simulated Solar Array
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1996-01-01
Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.
Advanced photovoltaic solar array design assessment
NASA Technical Reports Server (NTRS)
Stella, Paul; Scott-Monck, John
1987-01-01
The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.
Wang, Yanhu; Zhang, Lina; Cui, Kang; Xu, Caixia; Li, Hao; Liu, Hong; Yu, Jinghua
2018-02-15
One solar-driven electrochromic photoelectrochemical fuel cell (PFC) with highly efficient energy conversion and storage is easily constructed to achieve quantitative self-powered sensing. Layered bismuth oxyiodide-zinc oxide nanorod arrays (ZnO@BiOI NRA) with a core/shell p-n heterostructure are fabricated as the photoanode with electrochromic Prussian blue (PB) as the cathode. The core/shell p-n heterostructure for the ZnO@BiOI photoanode can effectively boost the photoelectrochemical (PEC) performance through the improvement of photon absorption and charge carrier separation. The optimal assembled PFC yields an open-circuit voltage (V OC ) of 0.48 V with the maximum power output density (P max ) as high as 155 μW cm -2 upon illumination. Benefitting from the interactive color-changing behavior of PB, the cathode not only exhibits cathodic catalytic activity in the PFC but also serves as an electrochromic display for self-powered sensing. The as-constructed PFC possesses multiple readable signal output nanochannels through the maximum power output density (P max ) of the PFC or the color change of PB. Meanwhile, the dual-signal-output makes the as-constructed self-powered sensor highly available in various operations demands with the enhanced reliability. With the advantages of high efficiency of PFCs, unique assay ability, and broad environmental suitability, the constructed self-powered platform shows broad application prospects as an integrated smart analytical device.
A photovoltaic generator on coconut island
NASA Astrophysics Data System (ADS)
Sheridan, N. R.
A description is given of the design principles of a photovoltaic—diesel power generator that has been constructed on Coconut Island, Torres Strait, to supply a village of 130 people with 240 V: 50 Hz electricity. Even though the solar fraction is only 0.4, the system sets a precedent for Australia with an array size of 23 kW. The uniqueness arises, however, from the fact that it is a stand-alone, inverter-driven system of considerable size with a sine-wave output.
Transmitter experiment package for the communications technology satellite
NASA Technical Reports Server (NTRS)
Farber, B.; Goldin, D. S.; Marcus, B.; Mock, P.
1977-01-01
The operating requirements, system design characteristics, high voltage packaging considerations, nonstandard components development, and test results for the transmitter experiment package (TEP) are described. The TEP is used for broadcasting power transmission from the Communications Technology Satellite. The TEP consists of a 12 GHz, 200-watt output stage tube (OST), a high voltage processing system that converts the unregulated spacecraft solar array power to the regulated voltages required for OST operation, and a variable conductance heat pipe system that is used to cool the OST body.
Solar array study for solar electric propulsion spacecraft for the Encke rendezvous mission
NASA Technical Reports Server (NTRS)
Sequeira, E. A.; Patterson, R. E.
1974-01-01
The work is described which was performed on the design, analysis and performance of a 20 kW rollup solar array capable of meeting the design requirements of a solar electric spacecraft for the 1980 Encke rendezvous mission. To meet the high power requirements of the proposed electric propulsion mission, solar arrays on the order of 186.6 sq m were defined. Because of the large weights involved with arrays of this size, consideration of array configurations is limited to lightweight, large area concepts with maximum power-to-weight ratios. Items covered include solar array requirements and constraints, array concept selection and rationale, structural and electrical design considerations, and reliability considerations.
Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.
2015-01-01
To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.
Seven-panel solar wing deployment and on-orbit maneuvering analyses
NASA Astrophysics Data System (ADS)
Hwang, Earl
2005-05-01
BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.
Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors
NASA Technical Reports Server (NTRS)
Gonzalez, C.
1977-01-01
The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection.
Costs of solar and wind power variability for reducing CO2 emissions.
Lueken, Colleen; Cohen, Gilbert E; Apt, Jay
2012-09-04
We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.
Performance degradation and cleaning of photovoltaic arrays
NASA Technical Reports Server (NTRS)
Sheskin, T. J.; Chang, G. C.; Cull, R. C.; Knapp, W. D.
1982-01-01
NASA tests results from an 18 mo program of cleaning silicone-encapsulated and glass fronted solar cell panels in urban and desert environments to examine the effects of cleaning on module performance are reported. The panels were cleaned on weekly, monthly, quarterly, or semi-annual basis, while other panels of the same construction were not cleaned and served as controls. Commercially-available detergents and city water were employed for the tests, and the measurements were maintained of the modules' continuing short-circuit current output. The decay of the output was determined by least square regression analyses. Performance degradation was noticeably less in glass covered, rather than silicone-encapsulated modules which decayed faster in urban than in desert environments. Lower frequency cleanings are recommended where labor costs are high.
NASA Technical Reports Server (NTRS)
Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.
1979-01-01
Potential long-term degradation modes for the two types of modules in the Mead array were determined and judgments were made as to those environmental stresses and combinations of stresses which accelerate the degradation of the power output. Hierarchical trees representing the severity of effects of stresses (test conditions) on eleven individual degradation modes were constructed and were pruned of tests judged to be nonessential. Composites of those trees were developed so that there is now one pruned tree covering eight degradation modes, another covering two degradation modes, and a third covering one degradation mode. These three composite trees form the basis for selection of test conditions in the final test plan which is now being prepared.
Thermal/Dynamic Characterization Test of the Solar Array Panel for Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jenkins, Kathleen; Hershfeld, Donald J.
1999-01-01
The Hubble Space Telescope has experienced a problem maintaining pointing accuracy during emergence of the spacecraft from the Earth's shadow. The problem has been attributed to the rapid thermal gradient that develops when the heat from the Sun strikes the cold solar arrays. The thermal gradient causes the solar arrays to deflect or bend and this motion is sufficient to disturb the pointing control system. In order to alleviate this problem, a new design for the solar arrays has been fabricated. These new solar arrays will replace the current solar arrays during a future Hubble servicing mission. The new solar arrays have been designed so that the effective net motion of the center of mass of each panel is essentially zero. Although the solar array thermal deflection problem has been studied extensively over a period of years, a full scale test of the actual flight panels was required in order to establish confidence in the analyses. This test was conducted in the JPL Solar Simulation Facility in April, 1999. This presentation will discuss the objectives and methods of the test and present some typical test data.
Developing an Inflatable Solar Array
NASA Technical Reports Server (NTRS)
Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.
1992-01-01
Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.
Goddard Space Flight Center solar array missions, requirements and directions
NASA Technical Reports Server (NTRS)
Gaddy, Edward; Day, John
1994-01-01
The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.
SMEX-Lite Modular Solar Array Architecture
NASA Technical Reports Server (NTRS)
Lyons, John W.; Day, John (Technical Monitor)
2002-01-01
The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.
NASA Technical Reports Server (NTRS)
1976-01-01
The SPS concepts which appear to be technically feasible are discussed in terms of the economic viability and competitive costs with other energy sources. The concepts discussed include: power station, microwave reception and conversion, space construction and maintenance, space transportation, and program costs and analysis. The conclusions presented include: (1) The maximum output of an individual microwave transmission link to earth is about 5 GW. (2) The mass of 10 GW SPS is between 47,000,000 and 124,000,00 kg. (3) The silicon solar cell arrays make up well over half the weight and cost of the satellite. (4) The SPS in equatorial orbit will be eclipsed by the earth and by other satellites.
Results of the 1999 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.
2000-01-01
The 1999 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 14, 1999, and July 6, 1999. All objectives of the flight program were met. Fifty-seven modules were carried to an altitude of approximately equal to 120,000 ft (36.6 km). Full I-V curves were measured on five of these modules, and output at a fixed load was measured on forty-three modules (forty-five cells), with some modules repeated on the second flight. This data was corrected to 28 C and to 1 AU (1.496 x 10 (exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
Atomic Oxygen Durability Testing of an International Space Station Solar Array Validation Coupon
NASA Technical Reports Server (NTRS)
Forkapa, Mark J.; Stidham, Curtis; Banks, Bruce A.; Rutledge, Sharon K.; Ma, David H.; Sechkar, Edward A.
1996-01-01
An International Space Station solar array validation coupon was exposed in a directed atomic oxygen beam for space environment durability testing at the NASA Lewis Research Center. Exposure to atomic oxygen and intermittent tensioning of the solar array were conducted to verify the solar array#s durability to low Earth orbital atomic oxygen and to the docking threat of plume loading both of which are anticipated over its expected mission life of fifteen years. The validation coupon was mounted on a specially designed rotisserie. The rotisserie mounting enabled the solar and anti-solar facing side of the array to be exposed to directed atomic oxygen in a sweeping arrival process replicating space exposure. The rotisserie mounting also enabled tensioning, in order to examine the durability of the array and its hinge to simulated plume loads. Flash testing to verify electrical performance of the solar array was performed with a solar simulator before and after the exposure to atomic oxygen and tensile loading. Results of the flash testing indicated little or no degradation in the solar array#s performance. Photographs were also taken of the array before and after the durability testing and are included along with comparisons and discussions in this report. The amount of atomic oxygen damage appeared minor with the exception of a very few isolated defects. There were also no indications that the simulated plume loadings had weakened or damaged the array, even though there was some erosion of Kapton due to atomic oxygen attack. Based on the results of this testing, it is apparent that the International Space Station#s solar arrays should survive the low Earth orbital atomic oxygen environment and docking threats which are anticipated over its expected mission life.
The Implementation of Advanced Solar Array Technology in Future NASA Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan
2003-01-01
Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.
The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells
NASA Technical Reports Server (NTRS)
Hanak, Joseph J.; Kaschmitter, Jim
1991-01-01
Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1994-01-01
The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1994-01-01
The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1994-01-01
The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories.
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
2000-08-30
Workers rise to the occasion on accordion lifts as they oversee the movement of solar array in front of them. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
An overhead crane in the Space Station Processing Facility lifts a solar array as workers stand by to help guide it. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
NASA Technical Reports Server (NTRS)
1980-01-01
The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.
Means for phase locking the outputs of a surface emitting laser diode array
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor)
1987-01-01
An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.
1970-01-01
This is a photograph of a technician checking on a solar array wing for the Orbital Workshop as it is deployed. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
An IBM PC-based math model for space station solar array simulation
NASA Technical Reports Server (NTRS)
Emanuel, E. M.
1986-01-01
This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.
NASA Technical Reports Server (NTRS)
Berman, P. A.
1972-01-01
Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.
Space solar array reliability: A study and recommendations
NASA Astrophysics Data System (ADS)
Brandhorst, Henry W., Jr.; Rodiek, Julie A.
2008-12-01
Providing reliable power over the anticipated mission life is critical to all satellites; therefore solar arrays are one of the most vital links to satellite mission success. Furthermore, solar arrays are exposed to the harshest environment of virtually any satellite component. In the past 10 years 117 satellite solar array anomalies have been recorded with 12 resulting in total satellite failure. Through an in-depth analysis of satellite anomalies listed in the Airclaim's Ascend SpaceTrak database, it is clear that solar array reliability is a serious, industry-wide issue. Solar array reliability directly affects the cost of future satellites through increased insurance premiums and a lack of confidence by investors. Recommendations for improving reliability through careful ground testing, standardization of testing procedures such as the emerging AIAA standards, and data sharing across the industry will be discussed. The benefits of creating a certified module and array testing facility that would certify in-space reliability will also be briefly examined. Solar array reliability is an issue that must be addressed to both reduce costs and ensure continued viability of the commercial and government assets on orbit.
Experimental study of efficiency of solar panel by phase change material cooling
NASA Astrophysics Data System (ADS)
Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng
2017-07-01
The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.
Space Plasma Shown to Make Satellite Solar Arrays Fail
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
1999-01-01
In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.
Comparison of electrically driven lasers for space power transmission
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.
1988-01-01
High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.
NASA Technical Reports Server (NTRS)
Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.
1998-01-01
This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-09
PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system's plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.
NASA Technical Reports Server (NTRS)
Frickland, P. O.; Repar, J.
1982-01-01
A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.
Retroreflector field tracker. [noncontact optical position sensor for space application
NASA Technical Reports Server (NTRS)
Wargocki, F. E.; Ray, A. J.; Hall, G. E.
1984-01-01
An electrooptical position-measuring instrument, the Retroreflector Field Tracker or RFT, is described. It is part of the Dynamic Augmentation Experiment - a part of the payload of Space Shuttle flight 41-D in Summer 1984. The tracker measures and outputs the position of 23 reflective targets placed on a 32-m solar array to provide data for determination of the dynamics of the lightweight structure. The sensor uses a 256 x 256 pixel CID detector; the processor electronics include three Z-80 microprocessors. A pulsed laser diode illuminator is used.
Review of biased solar arraay. Plasma interaction studies
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1981-01-01
The Solar Electric Propulsion System (SEPS) is proposed for a variety of space missions. Power for operating SEPS is obtained from large solar array wings capable of generating tens of kilowatts of power. To minimize resistive losses in the solar array bus lines, the array is designed to operate at voltages up to 400 volts. This use of high voltage can increase interactions between the biased solar cell interconnects and plasma environments. With thrusters operating, the system ground is maintained at space plasma potential which exposes large areas of the arrays at the operating voltages. This can increase interactions with both the natural and enhanced charged particle environments. Available data on interactions between biased solar array surfaces and plasma environments are summarized. The apparent relationship between collection phenomena and solar cell size and effects of array size on interactions are discussed. The impact of these interactions on SEPS performance is presented.
Design of a 7kW power transfer solar array drive mechanism
NASA Technical Reports Server (NTRS)
Sheppard, J. G.
1982-01-01
With the availability of the Shuttle and the European launcher, Ariane, there will be a continuing trend towards large payload satellite missions requiring high-power, high-inertia, flexible solar arrays. The need arises for a solar array drive with a large power transfer capability which can rotate these solar arrays without disturbing the satellite body pointing. The modular design of such a Solar Array Drive Mechanism (SADM) which is capable of transferring 7kW of power or more is described. Total design flexibility has been achieved, enabling different spacecraft power requirements to be accommodated within the SADM design.
Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal
NASA Technical Reports Server (NTRS)
Masters, R. M.
1975-01-01
A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.
NASA Technical Reports Server (NTRS)
Kellogg, James W.
1993-01-01
The SAMPEX spacecraft, successfully launched in July 1992, carried a yo-yo despin system and deployable solar arrays. The despin and solar array mechanisms formed an integral system as the yo-yo cables held the solar array release mechanism in place. The SAMPEX design philosophy was to minimize size and weight through the use of a predominantly single string system. The design challenge was to build a system in a limited space, which was reliable with minimal redundancy. This paper covers the design and development of the SAMPEX yo-yo despin and solar array deployment mechanisms. The problems encountered during development and testing will also be discussed.
SOSPAC- SOLAR SPACE POWER ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1994-01-01
The Solar Space Power Analysis Code, SOSPAC, was developed to examine the solar thermal and photovoltaic power generation options available for a satellite or spacecraft in low earth orbit. SOSPAC is a preliminary systems analysis tool and enables the engineer to compare the areas, weights, and costs of several candidate electric and thermal power systems. The configurations studied include photovoltaic arrays and parabolic dish systems to produce electricity only, and in various combinations to provide both thermal and electric power. SOSPAC has been used for comparison and parametric studies of proposed power systems for the NASA Space Station. The initial requirements are projected to be about 40 kW of electrical power, and a similar amount of thermal power with temperatures above 1000 degrees Centigrade. For objects in low earth orbit, the aerodynamic drag caused by suitably large photovoltaic arrays is very substantial. Smaller parabolic dishes can provide thermal energy at a collection efficiency of about 80%, but at increased cost. SOSPAC allows an analysis of cost and performance factors of five hybrid power generating systems. Input includes electrical and thermal power requirements, sun and shade durations for the satellite, and unit weight and cost for subsystems and components. Performance equations of the five configurations are derived, and the output tabulates total weights of the power plant assemblies, area of the arrays, efficiencies, and costs. SOSPAC is written in FORTRAN IV for batch execution and has been implemented on an IBM PC computer operating under DOS with a central memory requirement of approximately 60K of 8 bit bytes. This program was developed in 1985.
Energy management of fuel cell/solar cell/supercapacitor hybrid power source
NASA Astrophysics Data System (ADS)
Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard
This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.
Promising Results from Three NASA SBIR Solar Array Technology Development Programs
NASA Technical Reports Server (NTRS)
Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael
2005-01-01
Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.
2000-08-30
A solar array is nearly in place on the Integrated Equipment Assembly, next to Solar Array Wing-3, which is already installed. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2010-09-01
adds an extra dimension to both IPS and other observations. The polarization of the CME synchrotron emission observed by [3] will be of great...base funding. 8. REFERENCES 1. Kassim et al., The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, Vol. 172...The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research
EVA 2 - old solar array installed in payload bay
2002-03-05
STS109-326-008 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, works at the stowage area for the Hubble Space Telescope's port side solar array. Astronauts Massimino and James H. Newman removed the old port solar array and stowed it in Columbias payload bay for a return to Earth. They then went on to install a third-generation solar array and its associated electrical components. Two crew mates had accomplished the same feat with the starboard array on the previous day.
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.
2004-01-01
NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.
Solar electric propulsion thruster interactions with solar arrays
NASA Technical Reports Server (NTRS)
Parks, D. E.; Katz, I.
1977-01-01
The effect of interactions of spacecraft-generated and naturally occurring plasmas with high voltage solar array components on an advanced solar electric propulsion system proposed for the Halley's Comet rendezvous mission was investigated. The spacecraft-generated plasma consists of mercury ions and neutralizing electrons resulting from the operation of ion thrusters (the charge-exchange plasma) and associated hollow cathode neutralizers. Quantitative results are given for the parasitic currents and power coupled into solar arrays with voltage fixed as a function of position on the array.
Space Station Freedom Solar Array design development
NASA Astrophysics Data System (ADS)
Winslow, Cindy
The SSF program's Electrical Power System supports a high-power bus with six solar-array wings in LEO; each solar array generates 30.8 kW at 161.1 V dc, with a deployed natural frequency of 0.1 Hz. Design challenges to the solar array, which must survive exposure for 15 years of operating life, include atomic oxygen, the thermal environment, and spacecraft propulsion plume-impingement loads. Tests thus far completed address cell UV-exposure effects, thermal cycling, and solar-cell deflection.
A Parametric Assessment of the Mission Applicability of Thin-film Solar Arrays
NASA Technical Reports Server (NTRS)
Hoffman, David J.
2002-01-01
Results are presented from a parametric assessment of the applicability and spacecraft-level impacts of very lightweight thin-film solar arrays with relatively large deployed areas for representative space missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. The presentation concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin film cells on flexible substrates may become the best array option for a subset of Earth orbiting and deep space missions.
Results of the 2000 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.
2001-01-01
The 2000 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 27, 2000, and July 5, 2000. All objectives of the flight program were met. Sixty-two modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on sixteen of these modules, and output at a fixed load was measured on thirty-seven modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. This data was corrected to 28 C and to 1 AU (1.496x10(exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
SMEX-Lite Modular Solar Array Architecture
NASA Technical Reports Server (NTRS)
Lyons, John
2002-01-01
For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by similarity to multiple missions. It then becomes possible to procure solar array modules in advance of mission definition and respond quickly and inexpensively to a selected mission's unique requirements. The solar array modular architecture allows the procurement of solar array modules before the array geometry has been frozen. This reduces the effect of procurement lead-time on the mission integration and test flow by as much as 50%. Second, by spreading the non-recurring costs over multiple missions, the cost per unit area is also reduced. In the case of the SMEX-Lite procurement, this reduction was by about one third of the cost per unit area compared to previous SMEX mission-unique procurements. Third, the modular architecture greatly facilitates the infusion of new solar cell technologies into flight programs as these technologies become available. New solar cell technologies need only be fabricated onto a standard-sized module to be incorporated into the next available mission. The modular solar array can be flown in a mixed configuration with some new and some standard cell technologies. Since each module has its own wiring terminals, the array can be arranged as desired electrically with little impact to cost and schedule. The solar array modular architecture does impose some additional constraints on systems and subsystem engineers. First, they must work with discrete solar array modules rather than size the array to fit exactly within an available envelope. The array area is constrained to an integer multiple of the module area. Second, the modular design is optimized for space radiation and thermal environments not greatly different from a typical SMEX LEO environment. For example, a mission with a highly elliptical orbit (e.g., Polar, SMEX/FAST) would require thicker coverglasses to protect the solar cells from the more intense radiation environment.
Theoretical models of Kapton heating in solar array geometries
NASA Technical Reports Server (NTRS)
Morton, Thomas L.
1992-01-01
In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.
PEP solar array definition study
NASA Technical Reports Server (NTRS)
1979-01-01
The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.
2000-08-30
The overhead crane carrying a solar array turns on its axis to move the array to the Integrated Equipment Assembly (IEA) for installation. A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Progressing Deployment of Solar Photovoltaic Installations in the United States
NASA Astrophysics Data System (ADS)
Kwan, Calvin Lee
2011-07-01
This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables. Using the same model, predicted residential solar PV shares were generated and illustrated using GIS software. The results of this model indicate that solar insolation, state energy deregulation and cost of electricity are statistically significant factors positively correlated with the adoption of residential solar PV arrays. With this information, policymakers at the towns and cities level can establish effective solar PV promoting policies and regulations for their respective locations.
Study program for encapsulation materials interface for low-cost solar array
NASA Technical Reports Server (NTRS)
Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.
1981-01-01
The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.
Two-dimensional radiant energy array computers and computing devices
NASA Technical Reports Server (NTRS)
Schaefer, D. H.; Strong, J. P., III (Inventor)
1976-01-01
Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.
A lightweight solar array study
NASA Technical Reports Server (NTRS)
Josephs, R. H.
1977-01-01
A sample module was assembled to model a portion of a flexible extendable solar array, a type that promises to become the next generation of solar array design. The resulting study of this module is intended to provide technical support to the array designer for lightweight component selection, specifications, and tests. Selected from available lightweight components were 127-micron-thick wrap-around contacted solar cells, 34- micron-thick sputtered glass covers, and as a substrate a 13-micron-thick polyimide film clad with a copper printed circuit. Each component displayed weaknesses. The thin solar cells had excessive breakage losses. Sputtered glass cover adhesion was poor, and the covered cell was weaker than the cell uncovered. Thermal stresses caused some cell delamination from the model solar array substrate.
2000-08-30
In the Space Station Processing Facility, workers help guide a solar array into position for installation on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
In the Space Station Processing Facility, the overhead crane carrying a solar array arrives at the Integrated Equipment Assembly (IEA) on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
Workers in the Space Station Processing Facility give close attention to the placement of a solar array on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
NASA Astrophysics Data System (ADS)
Wu, Jianing; Yan, Shaoze; Xie, Liyang
2011-12-01
To address the impact of solar array anomalies, it is important to perform analysis of the solar array reliability. This paper establishes the fault tree analysis (FTA) and fuzzy reasoning Petri net (FRPN) models of a solar array mechanical system and analyzes reliability to find mechanisms of the solar array fault. The index final truth degree (FTD) and cosine matching function (CMF) are employed to resolve the issue of how to evaluate the importance and influence of different faults. So an improvement reliability analysis method is developed by means of the sorting of FTD and CMF. An example is analyzed using the proposed method. The analysis results show that harsh thermal environment and impact caused by particles in space are the most vital causes of the solar array fault. Furthermore, other fault modes and the corresponding improvement methods are discussed. The results reported in this paper could be useful for the spacecraft designers, particularly, in the process of redesigning the solar array and scheduling its reliability growth plan.
Microwave-Driven Multifunctional Capability of Membrane Structures
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.
2002-01-01
A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.
The interactions of solar arrays with electric thrusters
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Isaacson, G. C.; Domitz, S.
1976-01-01
The generation of a charge-exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma can be described accurately from thruster geometry and operating conditions. The transport of the charge-exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster-array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.
Flat-plate solar array progress and plans
NASA Technical Reports Server (NTRS)
Callaghan, W. T.
1984-01-01
The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.
Measurement of high-voltage and radiation-damage limitations to advanced solar array performance
NASA Technical Reports Server (NTRS)
Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.
1991-01-01
A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.
Lightweight Solar Power for Small Satellites
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.
P6 Truss, Photovoltaic (PV) Solar Array Wing (SAW)
2000-12-07
STS097-376-019 (7 December 2000) --- A close-up view of the P6 solar array on the International Space Station (ISS), backdropped against the blackness of space and the Earths horizon. The P6 solar array is the first of eight sets of solar arrays that at the completion of the space station construction in 2006, will comprise the stations electrical power system, converting sunlight to electricity.
P6 Truss, Photovoltaic (PV) Solar Array Wing (SAW)
2000-12-07
STS097-376-006 (7 Dec 2000) --- A close-up view of the P6 solar array on the International Space Station (ISS), backdropped against the blackness of space and the Earth?s horizon. The P6 solar array is the first of eight sets of solar arrays that at the completion of the space station construction in 2006, will comprise the station?s electrical power system, converting sunlight to electricity.
Deployment dynamics and control of large-scale flexible solar array system with deployable mast
NASA Astrophysics Data System (ADS)
Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping
2016-10-01
In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.
NASA Technical Reports Server (NTRS)
Delleur, Ann M.; Kerslake, Thomas W.; Levy, Robert K.
2004-01-01
The U.S. solar array strings on the International Space Station are connected to a sequential shunt unit (SSU). The job of the SSU is to shunt, or short, the excess current from the solar array, such that just enough current is provided downstream to maintain the 160-V bus voltage while meeting the power load demand and recharging the batteries. Should an SSU fail on-orbit, it would be removed and replaced with the on-orbit spare during an astronaut space walk or extravehicular activity (EVA) (see the photograph). However, removing an SSU during an orbit Sun period with input solar array power connectors fully energized could result in substantial hardware damage and/or safety risk to the EVA astronaut. The open-circuit voltage of cold solar-array strings can exceed 320 V, and warm solar-array strings could feed a short circuit with a total current level exceeding 240 A.
Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas
NASA Technical Reports Server (NTRS)
Galofaro, J.; Vayner, B.; Ferguson, D.
2003-01-01
The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.
Mariner 9 Solar Array Design, Manufacture, and Performance
NASA Technical Reports Server (NTRS)
Sequeira, E. A.
1973-01-01
The mission of Mariner 9, the first spacecraft to orbit another planet, was to make scientific observations of the surface of Mars. Throughout this unique mission, the Mariner 9 solar array successfully supported the power requirements of the spacecraft without experiencing anomalies. Basically, the design of the solar array was similar to those of Mariners 6 and 7; however, Mariner 9 had the additional flight operational requirement to perform in a Mars orbit environment mode. The array special tests provided information on the current-voltage characteristics and array space degradation. Tests indicated that total solar array current degradation was 3.5 percent, which could probably be attributed to the gradual degradation of the cover glass and/or the RTV 602 adhesive employed to cement the cover glass to the solar cell.
2000-08-18
In the Space Station Processing Facility, Solar Array Wing-3, an element of the International Space Station, is lifted from a work stand to move it to the Integrated Electronic Assembly for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-18
In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-18
Workers in the Space Station Processing Facility get ready to move Solar Array Wing-3, a component of the International Space Station, for installation onto the Integrated Electronic Assembly. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-18
In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-18
In the Space Station Processing Facility, Solar Array Wing-3 (at top), a component of the International Space Station, hovers above the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
The effect of atmospheric drag on the design of solar-cell power systems for low Earth orbit
NASA Technical Reports Server (NTRS)
Kyser, A. C.
1983-01-01
The feasibility of reducing the atmospheric drag of low orbit solar powered satellites by operating the solar-cell array in a minimum-drag attitude, rather than in the conventional Sun pointing attitude was determined. The weights of the solar array, the energy storage batteries, and the fuel required to overcome the drag of the solar array for a range of design life times in orbit were considered. The drag of the array was estimated by free molecule flow theory, and the system weights were calculated from unit weight estimates for 1990 technology. The trailing, minimum drag system was found to require 80% more solar array area, and 30% more battery capacity, the system weights for reasonable life times were dominated by the thruster fuel requirements.
2000-08-30
Workers in the Space Station Processing Facility help guide an overhead crane toward a workstand containing a solar array in order to move it for installation onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
In the Space Station Processing Facility, the overhead crane carrying a solar array maneuvers its cargo into position on the Integrated Equipment Assembly on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
NASA Technical Reports Server (NTRS)
Stanhouse, R.; Cokonis, J.; Rayl, G.
1976-01-01
Progress in an investigation of the feasibility of designing a lightweight solar array with a power-to-weight ratio of 200 watts per kilogram is described. This solar array will produce 10,000 watts of electrical power at 1 A.U. at its beginning of life (BOL), and degrade less than 20% over a three year period in interplanetary flight. A review of existing lightweight solar array system concepts is presented along with discussion pertaining to their applicable technology as it relates to a 200 watt/kilogram array. Also presented is a discussion of the candidate development solar cells being considered, and various deployable boom concepts under investigation.
Solar-to-vehicle (S2V) systems for powering commuters of the future
NASA Astrophysics Data System (ADS)
Birnie, Dunbar P.
Hybrid electric vehicles are growing in popularity and significance in our marketplace as gasoline prices continue to rise. Consumers are also increasingly aware of their carbon "footprint" and seek ways of lowering their carbon dioxide output. Plug-in hybrid and electric vehicles appear to be the next wave in helping transition from a gasoline-based transportation infrastructure to an electric-grid-sourced mode, though most plug-in scenarios ultimately rely on having the electric utilities converted from fossil sources to renewable generation in the long run. At present, one of the key advantages of plug-in hybrid/electric vehicles is that they can be charged at home, at night, when lower off-peak rates could apply. The present analysis considers a further advancement: the impact of daytime recharging using solar arrays located at commuters' work sites. This would convert large parking areas into solar recharge stations for commuters. The solar power would be large enough to supply many commuters' needs. The implications for electric car design in relation to commuter range are discussed in detail.
Thermal Development Test of the NEXT PM1 ION Engine
NASA Technical Reports Server (NTRS)
Anderson, John R.; Snyder, John Steven; Van Noord, Jonathan L.; Soulas, George C.
2007-01-01
NASA's Evolutionary Xenon Thruster (NEXT) is a next-generation high-power ion thruster under development by NASA as a part of the In-Space Propulsion Technology Program. NEXT is designed for use on robotic exploration missions of the solar system using solar electric power. Potential mission destinations that could benefit from a NEXT Solar Electric Propulsion (SEP) system include inner planets, small bodies, and outer planets and their moons. This range of robotic exploration missions generally calls for ion propulsion systems with deep throttling capability and system input power ranging from 0.6 to 25 kW, as referenced to solar array output at 1 Astronomical Unit (AU). Thermal development testing of the NEXT prototype model 1 (PM1) was conducted at JPL to assist in developing and validating a thruster thermal model and assessing the thermal design margins. NEXT PM1 performance prior to, during and subsequent to thermal testing are presented. Test results are compared to the predicted hot and cold environments expected missions and the functionality of the thruster for these missions is discussed.
Thermal Development Test of the NEXT PM1 Ion Engine
NASA Technical Reports Server (NTRS)
Anderson, John R.; Snyder, John S.; VanNoord, Jonathan L.; Soulas, George C.
2010-01-01
NASA's Evolutionary Xenon Thruster (NEXT) is a next-generation high-power ion propulsion system under development by NASA as a part of the In-Space Propulsion Technology Program. NEXT is designed for use on robotic exploration missions of the solar system using solar electric power. Potential mission destinations that could benefit from a NEXT Solar Electric Propulsion (SEP) system include inner planets, small bodies, and outer planets and their moons. This range of robotic exploration missions generally calls for ion propulsion systems with deep throttling capability and system input power ranging from 0.6 to 25 kW, as referenced to solar array output at 1 Astronomical Unit (AU). Thermal development testing of the NEXT prototype model 1 (PM1) was conducted at JPL to assist in developing and validating a thruster thermal model and assessing the thermal design margins. NEXT PM1 performance prior to, during and subsequent to thermal testing are presented. Test results are compared to the predicted hot and cold environments expected missions and the functionality of the thruster for these missions is discussed.
High-efficiency concentration/multi-solar-cell system for orbital power generation
NASA Technical Reports Server (NTRS)
Onffroy, J. R.; Stoltzmann, D. E.; Lin, R. J. H.; Knowles, G. R.
1980-01-01
An analysis was performed to determine the economic feasibility of a concentrating spectrophotovoltaic orbital electrical power generation system. In this system dichroic beam-splitting mirrors are used to divide the solar spectrum into several wavebands. Absorption of these wavebands by solar cells with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat which must be rejected. The optical concentration is performed in two stages. The first concentration stage employs a Cassegrain-type telescope, resulting in a short system length. The output from this stage is directed to compound parabolic concentrators which comprise the second stage of concentration. Ideal efficiencies for one-, two-, three-, and four-cell systems were calculated under 1000 sun, AMO conditions, and optimum energy bands were determined. Realistic efficiencies were calculated for various combinations of Si, GaAs, Ge and GaP. Efficiencies of 32 to 33 percent were obtained with the multicell systems. The optimum system consists of an f/3.5 optical system, a beam splitter to divide the spectrum at 0.9 microns, and two solar cell arrays, GaAs and Si.
NASA Astrophysics Data System (ADS)
Phenneger, Milton; Knack, Jennifer L.
1996-10-01
The GOES-8 and -9 Sun analog sensor (SAS) flight data is analyzed to evaluate the attitude motion environment of payloads mounted on the solar array. The work was performed in part to extend analysis in progress to support the solar x-ray imager to be flown on the GOES-M. The SAS is a two axis sensor mounted on the x-ray sensor pointing (XRP) module to measure the east/west error angle between the SUn and the solar array normal and to provide a north south error angle for automatic solar pointing of the x-ray sensor by the XRP. The goal was to search for evidence of solar array vibrational modes in the 2 Hz and 0.5 Hz range and to test the predicted amplitudes. The results show that the solar array rotates at the rate of the mean Sun with unexpected oscillation periods of 5.6 minutes, 90 minutes, and 1440 minutes originating from the two 16.1 gear drive train stages between the solar array drive stepper motor and the solar array yoke. The higher frequency oscillations are detected as random noise at the 1/16 Hz telemetry sampling rate of the SAS. This supports the preflight predictions for the high frequency modes but provide s no detailed measurement of the frequency as expected for this data period. In addition to this the data indicates that the solar array is responding unexpectedly to GOES imager instrument blackbody calibration events.
NASA Astrophysics Data System (ADS)
Olakonu, Kolapo
As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.
Cost study of solar cell space power systems
NASA Technical Reports Server (NTRS)
Bernatowicz, D. T.
1972-01-01
Historical costs for solar cell space power systems were evaluated. The study covered thirteen missions that represented a broad cross section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization reduce costs.
Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster
NASA Technical Reports Server (NTRS)
Gruber, R. P.
1977-01-01
A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.
Boeing's High Voltage Solar Tile Test Results
NASA Astrophysics Data System (ADS)
Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.
2002-10-01
Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.
Boeing's High Voltage Solar Tile Test Results
NASA Technical Reports Server (NTRS)
Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.
2002-01-01
Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.
NASA Technical Reports Server (NTRS)
Fisher, Edward M., Jr.
1991-01-01
Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.
LEO high voltage solar array arcing response model, continuation 5
NASA Technical Reports Server (NTRS)
Metz, Roger N.
1989-01-01
The modeling of the Debye Approximation electron sheaths in the edge and strip geometries was completed. Electrostatic potentials in these sheaths were compared to NASCAP/LEO solutions for similar geometries. Velocity fields, charge densities and particle fluxes to the biased surfaces were calculated for all cases. The major conclusion to be drawn from the comparisons of our Debye Approximation calculations with NASCAP-LEO output is that, where comparable biased structures can be defined and sufficient resolution obtained, these results are in general agreement. Numerical models for the Child-Langmuir, high-voltage electron sheaths in the edge and strip geometries were constructed. Electrostatic potentials were calculated for several cases in each of both geometries. Velocity fields and particle fluxes were calculated. The self-consistent solution process was carried through one cycle and output electrostatic potentials compared to NASCAP-type input potentials.
Evaluation of space station solar array technology
NASA Technical Reports Server (NTRS)
1972-01-01
The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.
Tan, Ming-Hui; Chong, Kok-Keong; Wong, Chee-Woon
2014-01-20
Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120 m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.
Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard
2012-01-01
NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.
Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.
Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying
2017-08-30
The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.
Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2
NASA Technical Reports Server (NTRS)
Rhee, S. S.; Jones, G. T.; Allison, K. L.
1978-01-01
Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.
White butterflies as solar photovoltaic concentrators.
Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K
2015-07-31
Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.
White butterflies as solar photovoltaic concentrators
NASA Astrophysics Data System (ADS)
Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.
2015-07-01
Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.
Interaction of a solar array with an ion thruster due to the charge-exchange plasma
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1976-01-01
The generation of a charge exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma is described accurately from thruster geometry and operating conditions. The transport of the charge exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.
Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System.
Ma, Nan; Zhang, Kewei; Yang, Ya
2017-12-01
Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7-4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8-20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near-UV irradiations. Here, a ferroelectric BaTiO 3 film-based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light-induced photovoltaic-pyroelectric coupled effect. A self-powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-01
Transposition models are widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic (PV) panels. These transposition models have been developed using various assumptions about the distribution of the diffuse radiation, and most of the parameterizations in these models have been developed using hourly ground data sets. Numerous studies have compared the performance of transposition models, but this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty using high-resolution ground measurements in the plane of array. Our results suggest that the amount of aerosol optical depthmore » can affect the accuracy of isotropic models. The choice of empirical coefficients and the use of decomposition models can both result in uncertainty in the output from the transposition models. It is expected that the results of this study will ultimately lead to improvements of the parameterizations as well as the development of improved physical models.« less
The impact of solar cell technology on planar solar array performance
NASA Technical Reports Server (NTRS)
Mills, Michael W.; Kurland, Richard M.
1989-01-01
The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.
Thin-Film Solar Array Earth Orbit Mission Applicability Assessment
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.
2002-01-01
This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.
Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System
NASA Technical Reports Server (NTRS)
Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.
2003-01-01
The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.
Study of solar array switching power management technology for space power system
NASA Technical Reports Server (NTRS)
Cassinelli, J. E.
1982-01-01
This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts were identified that could safisfy the mission requirements. These switching concepts were compared with a conventional buck regulator system on the basis of cost, weight and volume, reliability, efficiency and thermal control. For the missions reviewed, solar array switching provided significant advantages in all areas of comparison.
Preliminary space station solar array structural design study
NASA Technical Reports Server (NTRS)
Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.
1984-01-01
Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.
Preliminary space station solar array structural design study
NASA Astrophysics Data System (ADS)
Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.
Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.
Study of solar array switching power management technology for space power system
NASA Technical Reports Server (NTRS)
Cassinelli, J. E.
1982-01-01
This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.
Development of the solar array deployment and drive system for the XTE spacecraft
NASA Technical Reports Server (NTRS)
Farley, Rodger; Ngo, Son
1995-01-01
The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.
2000-08-18
Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is lowered toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
Workers in the Space Station Processing Facility prepare an overhead crane they will use to move a solar array, a component of the International Space Station, for installation onto the Integrated Equipment Assembly. The solar array is the second one being installed. They are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-18
Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is moved toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Thermal cycle testing of Space Station Freedom solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Schieman, David A.
1991-01-01
Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.
History of Hubble Space Telescope (HST)
1985-01-01
This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.
Estimated power quality for line commutated photovoltaic residential system
NASA Astrophysics Data System (ADS)
McNeill, B. W.; Mirza, M. A.
1983-10-01
A residential photovoltaic system using a line commutated inverter is modeled using a single diode model for the solar cells and a four switch model for the inverter. The model predicts power factor and total harmonic distortion as a function of solar radiation, array voltage, inverter output voltage, and inverter filter capacitor and inductor size. The model was run using parameter values appropriate for the John F. Long PV System and the predicted results compared well with measured results from the system. The model shows that improvements in total harmonic distortion are made at the expense of the power factor. The harmonic distortion is least when the inverter is operating at just continuous conduction. The total harmonic distortion can be kept to less than 0.17 all day if a variable inductor is used in the inverter's input filters.
NASA Technical Reports Server (NTRS)
Woodcock, G. R.
1980-01-01
The design analysis of a silicon power conversion system for the solar power satellite (SPS) is summarized. The solar array, consisting of glass encapsulated 50 micrometer silicon solar cells, is described. The general scheme for power distribution to the array/antenna interface is described. Degradation by proton irradiation is considered. The interface between the solar array and the klystron equipped power transmitter is described.
NASA Technical Reports Server (NTRS)
2001-01-01
Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed panel applications, these radiators maintain the battery cells in an appropriate operational temperature range.
SOLARTRAK. Solar Array Tracking Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manish, A.B.; Dudley, J.
1995-06-01
SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board`s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maish, Alexander
1995-06-22
SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less
Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Lindena, S.
1976-01-01
A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.
Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares
NASA Technical Reports Server (NTRS)
Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel
2014-01-01
The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.
Plasma chamber testing of advanced photovoltaic solar array coupons
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1994-01-01
The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.
Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. J.; George, R.; Bush, B.
2009-04-29
This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.
Reduction of solar photovoltaic resources due to air pollution in China
Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L.
2017-01-01
Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003–2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth’s Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20–25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. PMID:29078360
Reduction of solar photovoltaic resources due to air pollution in China.
Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L
2017-11-07
Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.
The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells
NASA Astrophysics Data System (ADS)
Hanak, J. J.; Kaschmitter, J. L.
1991-05-01
An ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) has been identified as a potential low-cost power source for small satellites. We have conducted a survey of the status of the a-Si PV array technology with respect to present and future performance, availability, cost and risks. For existing, experimental array 'blankets' made of commercial cell material, utilizing metal foil substrates, the BOL performance at AM0 and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated EOL power output after 10 years in a nominal low-earth orbit would be 80 percent of BOL, the degradation being due to largely light-induced effects (minus 10 to minus 15 percent) and in part (minus 5 percent) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing US national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long-range development program toward developing of this important power source for space. One new US developer has emerged as a future potential supplier of a-Si PV devices on thin, polyimide substrates.
By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.
Development of an Ultraflex-Based Thin Film Solar Array for Space Applications
NASA Technical Reports Server (NTRS)
White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.
2003-01-01
As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.
Space Station Freedom solar array containment box mechanisms
NASA Technical Reports Server (NTRS)
Johnson, Mark E.; Haugen, Bert; Anderson, Grant
1994-01-01
Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.
Enhanced photovoltaic performance of an inclined nanowire array solar cell.
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2015-11-30
An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.
High voltage solar cell power generating system for regulated solar array development
NASA Technical Reports Server (NTRS)
Levy, E., Jr.; Hoffman, A. C.
1973-01-01
A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.
Stretched Lens Array Photovoltaic Concentrator Technology Developed
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; O'Neill, Mark J.
2004-01-01
Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.
Early commercial demonstration of space solar power using ultra-lightweight arrays
NASA Astrophysics Data System (ADS)
Reed, Kevin; Willenberg, Harvey J.
2009-11-01
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.
Updated Model of the Solar Energetic Proton Environment in Space
NASA Astrophysics Data System (ADS)
Jiggens, Piers; Heynderickx, Daniel; Sandberg, Ingmar; Truscott, Pete; Raukunen, Osku; Vainio, Rami
2018-05-01
The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) model provides environment specification outputs for all aspects of the Solar Energetic Particle (SEP) environment. The model is based upon a thoroughly cleaned and carefully processed data set. Herein the evolution of the solar proton model is discussed with comparisons to other models and data. This paper discusses the construction of the underlying data set, the modelling methodology, optimisation of fitted flux distributions and extrapolation of model outputs to cover a range of proton energies from 0.1 MeV to 1 GeV. The model provides outputs in terms of mission cumulative fluence, maximum event fluence and peak flux for both solar maximum and solar minimum periods. A new method for describing maximum event fluence and peak flux outputs in terms of 1-in-x-year SPEs is also described. SAPPHIRE proton model outputs are compared with previous models including CREME96, ESP-PSYCHIC and the JPL model. Low energy outputs are compared to SEP data from ACE/EPAM whilst high energy outputs are compared to a new model based on GLEs detected by Neutron Monitors (NMs).
APSA - A new generation of photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Stella, P. M.; Kurland, R. M.
1989-01-01
This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.
LSSA (Low-cost Silicon Solar Array) project
NASA Technical Reports Server (NTRS)
1976-01-01
The Photovoltaic Conversion Program was established to find methods of economically generating enough electrical power to meet future requirements. Activities and progress in the following areas are discussed: silicon-refinement processes; silicon-sheet-growth techniques; encapsulants; manufacturing of off-the-shelf solar arrays; and procurement of semistandardized solar arrays.
Cost study of solar cell space power systems.
NASA Technical Reports Server (NTRS)
Bernatowicz, D. T.
1972-01-01
A study of historical costs for solar cell space power systems was made by a NASA ad hoc study group. The study covered thirteen missions that represented a broad cross-section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization would reduce costs.
Study of Power Options for Jupiter and Outer Planet Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Fincannon, James
2015-01-01
Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.
Large area pulsed solar simulator
NASA Technical Reports Server (NTRS)
Kruer, Mark A. (Inventor)
1999-01-01
An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.
Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Pour, Maria Z. A.
2016-01-01
Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.
The Impact of Solar Arrays on Arid Soil Hydrology: Some Numerical Simulations
NASA Astrophysics Data System (ADS)
Luo, Y.; Berli, M.; Koonce, J.; Shillito, R.; Dijkema, J.; Ghezzehei, T. A.; Yu, Z.
2016-12-01
Hot deserts are prime locations for solar energy generation but also recognized as particularly fragile environments. Minimizing the impact of facility-scale solar installations on desert environments is therefore of increasing concern. This study focuses on the impact of photovoltaic solar arrays on the water balance of arid soil underneath the array. The goal was to explore whether concentrated rainwater infiltration along the solar panel drip lines would lead to deeper infiltration and an increase in soil water storage in the long term. A two-dimensional HYDRUS model was developed to simulate rainwater infiltration into the soil within a photovoltaic solar array. Results indicate that rainwater infiltrates deeper below the drip lines compared to the areas between solar panels but only for coarse textured soil. Finer-textured soils redistribute soil moisture horizontally and the concentrating effect of solar panels on rainwater infiltration appears to be small.
NASA Technical Reports Server (NTRS)
Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel
2010-01-01
The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.
Silicon solar photovoltaic power stations
NASA Technical Reports Server (NTRS)
Chowaniec, C. R.; Ferber, R. R.; Pittman, P. F.; Marshall, B. W.
1977-01-01
Modular design of components and arrays, cost estimates for modules and support structures, and cost/performance analysis of a central solar photovoltaic power plant are discussed. Costs of collector/reflector arrays are judged the dominant element in the total capital investment. High-concentration solar tracking arrays are recommended as the most economic means for producing solar photovoltaic energy when solar cells costs are high ($500 per kW generated). Capital costs for power conditioning subsystem components are itemized and system busbar energy costs are discussed at length.
Process of making solar cell module
Packer, M.; Coyle, P.J.
1981-03-09
A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.
Automatic generation and analysis of solar cell IV curves
Kraft, Steven M.; Jones, Jason C.
2014-06-03
A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.
NREL Adds Solar Array Field to Help Inform Consumers | NREL
PV modules at NREL's new solar array field. Workers install PV modules just north of the NREL parking be Added Each Year Once completed, the new solar array field will house four rows of PV modules. The the lifetime of a PV system, and that increases the per-kilowatt-hour cost of generating solar
InSight Lander Solar Array Test
2018-01-23
The solar arrays on NASA's InSight Mars lander were deployed as part of testing conducted Jan. 23, 2018, at Lockheed Martin Space in Littleton, Colorado. Engineers and technicians evaluated the solar arrays and performed an illumination test to confirm that the solar cells were collecting power. The launch window for InSight opens May 5, 2018. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22205
NASA Technical Reports Server (NTRS)
1986-01-01
Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.
Usable Electricity from the Sun.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
This brochure gives an overview to solar photovoltaic energy production. Some of the topics discussed are: (1) solar cell construction; (2) parallel and series cell arrays; (3) effects of location on solar cell array performance; (4) solar economics; (5) space aplications of solar photovoltaic power; and (6) terrestrial applications of solar…
NASA Solar Array Demonstrates Commercial Potential
NASA Technical Reports Server (NTRS)
Creech, Gray
2006-01-01
A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes two fixed-angle solar arrays and one single-axis Sun-tracking array. One of the fixed arrays contains typical less-efficient commercial solar cells and is being used as a baseline for comparison of the other fixed array, which contains the advanced cells. The Sun-tracking array tilts to follow the Sun, using an advanced, real-time tracking device rather than customary pre-programmed mechanisms. Part of the purpose served by the demonstration is to enable determination of any potential advantage of a tracking array over a fixed array. The arrays are monitored remotely on a computer that displays pertinent information regarding the functioning of the arrays.
Reliability analysis of the solar array based on Fault Tree Analysis
NASA Astrophysics Data System (ADS)
Jianing, Wu; Shaoze, Yan
2011-07-01
The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.
A circuit-based photovoltaic module simulator with shadow and fault settings
NASA Astrophysics Data System (ADS)
Chao, Kuei-Hsiang; Chao, Yuan-Wei; Chen, Jyun-Ping
2016-03-01
The main purpose of this study was to develop a photovoltaic (PV) module simulator. The proposed simulator, using electrical parameters from solar cells, could simulate output characteristics not only during normal operational conditions, but also during conditions of partial shadow and fault conditions. Such a simulator should possess the advantages of low cost, small size and being easily realizable. Experiments have shown that results from a proposed PV simulator of this kind are very close to that from simulation software during partial shadow conditions, and with negligible differences during fault occurrence. Meanwhile, the PV module simulator, as developed, could be used on various types of series-parallel connections to form PV arrays, to conduct experiments on partial shadow and fault events occurring in some of the modules. Such experiments are designed to explore the impact of shadow and fault conditions on the output characteristics of the system as a whole.
Angular Positioning Sensor for Space Mechanisms
NASA Astrophysics Data System (ADS)
Steiner, Nicolas; Chapuis, Dominique
2013-09-01
Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.
Economical photovoltaic power generation with heat recovery
NASA Technical Reports Server (NTRS)
Ascher, G.
1977-01-01
Three designs for conversion of solar radiation to electricity and thermal energy are analyzed. The objective of these converters is to increase the electric and thermal output for each photovoltaic array so as to lower the cell cost relative to the amount of energy delivered. An analysis of the economical aspects of conversion by photovoltaic cells with heat recovery is carried out in terms of hypothetical examples. Thus, it is shown that the original cost of say $40,000 per generated kilowat can be reduced to $572.00 per kilowatt by increasing the original electric output of 1 kW to 10 kW in electricity and 60 kW in thermal energy. The newly derived specific cost is only 1.4 percent of the original one. It is expected that a cost reduction of roughly 2% of the present specific cost per kilowatt will greatly stimulate public acceptance of photovoltaic terrestrial conversion to electricity.
Interconnnect and bonding technologies for large flexible solar arrays
NASA Technical Reports Server (NTRS)
1976-01-01
Thermocompression bonding and conductive adhesive bonding are developed and evaluated as alternate methods of joining solar cells to their interconnect assemblies. Bonding materials and process controls applicable to fabrication of large, flexible substrate solar cell arrays are studied. The primary potential use of the techniques developed is on the solar array developed by NASA/MSFC and LMSC for solar electric propulsion (SEP) and shuttle payload applications. This array is made up of flexible panels approximately 0.7 by 3.4 meters. It is required to operate in space between 0.3 and 6 AU for 5 years with limited degradation. Materials selected must be capable of enduring this space environment, including outgassing and radiation.
Space Station Freedom Solar Array design development
NASA Technical Reports Server (NTRS)
Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo R.
1989-01-01
The Space Station Freedom Solar Array Program is required to provide a 75 kW power module that uses eight solar array (SA) wings over a four-year period in low Earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-year design point. Lockheed Missles and Space Company, Inc. (LMSC) is providing the flexible substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years. Trade studies and development testing, important for evolving any design to maturity, are presently underway at LMSC on the flexible solar array. The trade study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions
NASA Technical Reports Server (NTRS)
Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi
1992-01-01
All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.
Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions
NASA Technical Reports Server (NTRS)
Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi
1992-01-01
All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.
STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.
1997-01-01
The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.
NASA Technical Reports Server (NTRS)
Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.
2004-01-01
A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.
Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3
NASA Astrophysics Data System (ADS)
Adams, L. R.; Hedgepeth, J. M.
1981-09-01
Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.
Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3
NASA Technical Reports Server (NTRS)
Adams, L. R.; Hedgepeth, J. M.
1981-01-01
Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.
Compact, semi-passive beam steering prism array for solar concentrators.
Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A
2017-05-10
In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.
Vibration energy harvesting using a piezoelectric circular diaphragm array.
Wang, Wei; Yang, Tongqing; Chen, Xurui; Yao, Xi
2012-09-01
This paper presents a method for harvesting electric energy from mechanical vibration using a mechanically excited piezoelectric circular membrane array. The piezoelectric circular diaphragm array consists of four plates with series and parallel connection, and the electrical characteristics of the array are examined under dynamic conditions. With an optimal load resistor of 160 kΩ, an output power of 28 mW was generated from the array in series connection at 150 Hz under a prestress of 0.8 N and a vibration acceleration of 9.8 m/s(2), whereas a maximal output power of 27 mW can be obtained from the array in parallel connection through a resistive load of 11 kΩ under the same frequency, prestress, and acceleration conditions. The results show that using a piezoelectric circular diaphragm array can significantly increase the output of energy compared with the use of a single plate. By choosing an appropriate connection pattern (series or parallel connections) among the plates, the equivalent impedance of the energy harvesting devices can be tailored to meet the matched load of different applications for maximal power output.
Feasibility study of a 110 watt per kilogram lightweight solar array system
NASA Technical Reports Server (NTRS)
Shepard, N. F.; Stahle, C. V.; Hanson, K. L.; Schneider, A.; Blomstrom, L. E.; Hansen, W. T.; Kirpich, A.
1973-01-01
The feasibility of a 10,000 watt solar array panel which has a minimum power-to-mass ratio of 110 watt/kg is discussed. The application of this ultralightweight solar array to three possible missions was investigated. With the interplanetary mission as a baseline, the constraining requirements for a geosynchronous mission and for a manned space station mission are presented. A review of existing lightweight solar array system concepts revealed that changes in the system approach are necessary to achieve the specified 110 watt/kg goal. A comprehensive review of existing component technology is presented in the areas of thin solar cells, solar cell covers, welded interconnectors, substrates and deployable booms. Advances in the state-of-the-art of solar cell and deployable boom technology were investigated. System level trade studies required to select the optimum boom bending stiffness, system aspect ratio, bus voltage level, and solar cell circuit arrangement are reported. Design analysis tasks included the thermal analysis of the solar cell blanket, thermal stress analysis of the solar cell interconnectors/substrate, and the thermostructural loading of the deployed boom.
Key techniques for space-based solar pumped semiconductor lasers
NASA Astrophysics Data System (ADS)
He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua
2014-12-01
In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.
Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays
NASA Technical Reports Server (NTRS)
Glaser, P. E.
1974-01-01
The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.
NASA Astrophysics Data System (ADS)
Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun
2012-02-01
A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h
P6 Truss solar array, SABB and PV Radiator seen during EVA 3
2005-08-03
Photograph documenting the P6 Truss Solar Array Wing (SAW), Mast Canisters, Photovoltaic (PV) Radiator and Solar Array Blanket Boxes (SABB) as seen by the STS-114 crew during the third of three Extravehicular Activities (EVAs) of the mission. Part of the orbiter Discovery's nosecone is visible in the upper right of the frame.
A review of the solar array manufacturing industry costing standards
NASA Technical Reports Server (NTRS)
1977-01-01
The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.
Design and development of a solar array drive. [a direct drive solar array pointing mechanism
NASA Technical Reports Server (NTRS)
Rees, T.; Standing, J. M.
1977-01-01
The design and development of a dry lubricated direct drive solar array pointing mechanism is discussed for use on the Orbital Test Satellite (OTS), MAROTS, European Communication Satellite (ECS), and others. Results of life testing the original prototype and the OTS mechanism are presented together with an appraisal of expected future development.
Astronauts Akers and Thornton remove one of HST solar arrays during EVA
1993-12-06
STS061-95-075 (6 Dec 1993) --- Astronauts Kathryn C. Thornton and Thomas D. Akers work to remove one of the solar arrays on the Hubble Space Telescope (HST) on the second of five extravehicular activity?s (EVA). The two space walkers later replaced both solar array panels. Part of Australia is in the background.
A 928 sq m (10000 sq ft) solar array
NASA Technical Reports Server (NTRS)
Lindberg, D. E.
1972-01-01
As the power requirements for space vehicles increases, the area of solar arrays that convert solar energy to usable electrical power increases. The requirements for a 928 sq m (10,000 sq ft) array, its design, and a full-scale demonstration of one quadrant (232 sq m (2500 sq ft)) deployed in a one-g field are described.
Solar array stepping problems in satellites and solutions
NASA Astrophysics Data System (ADS)
Maharana, P. K.; Goel, P. S.
1992-01-01
The dynamics problems arising due to stepping motion of the solar arrays of spacecraft are studied. To overcome these problems, design improvements in the drive logic based on the phase plane analysis are suggested. The improved designs are applied to the Solar Array Drive Assembly (SADA) of IRS-1B and INSAT-2A satellites. In addition, an alternate torquing strategy for very successful slewing of the arrays, and with minimum excitation of flexible modes, is proposed.
A simplified solar cell array modelling program
NASA Technical Reports Server (NTRS)
Hughes, R. D.
1982-01-01
As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.
An introduction to the Astro Edge solar array
NASA Technical Reports Server (NTRS)
Spence, B. R.; Marks, G. W.
1994-01-01
The Astro Edge solar array is a new and innovative low concentrator power generating system which has been developed for applications requiring high specific power, high stiffness, low risk, light modular construction which utilizes conventional materials and technology, and standard photovoltaic solar cells and laydown processes. Mechanisms, restraint/release devices, wiring harnesses, substrates, and support structures are designed to be simple, functional, lightweight, and modular. A brief overview of the Astro Edge solar array is discussed.
Spraylon fluorocarbon encapsulation for silicon solar cell arrays
NASA Technical Reports Server (NTRS)
1977-01-01
A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2001-01-01
The purpose of this report was to analyze the heat-transfer problem posed by the determination of spacecraft temperatures and to incorporate the theoretically derived relationships in the computational code TSCALC. The basis for the code was a theoretical analysis of the thermal radiative equilibrium in space, particularly in the Solar System. Beginning with the solar luminosity, the code takes into account these key variables: (1) the spacecraft-to-Sun distance expressed in astronomical units (AU), where 1 AU represents the average Sun-to-Earth distance of 149.6 million km; (2) the angle (arc degrees) at which solar radiation is incident upon a spacecraft surface (ILUMANG); (3) the spacecraft surface temperature (a radiator or photovoltaic array) in kelvin, the surface absorptivity-to-emissivity ratio alpha/epsilon with respect to the solar radiation and (alpha/epsilon)(sub 2) with respect to planetary radiation; and (4) the surface view factor to space F. Outputs from the code have been used to determine environmental temperatures in various Earth orbits. The code was also utilized as a subprogram in the design of power system radiators for deep-space probes.
Regional thermal and electric energy output of salt-gradient solar ponds in the U.S.
NASA Technical Reports Server (NTRS)
Singer, M. J.; Lin, E. I. H.
1982-01-01
Salt-gradient solar pond thermal and electrical energy output was calculated for each of twelve regions within the United States as part of an effort to assess solar pond applicability and extent of requisite physical resources on a regional basis. The energy output level is one of the key factors affecting the economic feasibility of solar ponds. Calculated thermal energy output ranges from 6.9 Wt/sq m in Fairbanks, Alaska, to 73.1 Wt/sq m in Daggett, California, at an energy extraction temperature of 45 C. The output ranges from 0.0 Wt/sq m in Fairbanks to 63.2 Wt/sq m in Daggett at 60 C. Electrical energy output ranges from 0.0 We/sq m in Fairbanks to 3.11 We/sq m in Daggett. Although these estimates constitute a reasonable basis for regional comparison, site-specific analysis must be performed for an actual application design.
White butterflies as solar photovoltaic concentrators
Shanks, Katie; Senthilarasu, S.; ffrench-Constant, Richard H.; Mallick, Tapas K.
2015-01-01
Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341
Power output and carrier dynamics studies of perovskite solar cells under working conditions.
Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng
2017-08-02
Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.
Mars Array Technology Experiment Developed to Test Solar Arrays on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2001-01-01
Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types and two different solar cell strings, to qualify advanced solar cell types for future Mars missions. The MATE instrument, designed for the Mars-2001 Surveyor Lander mission, contains a capable suite of sensors that will provide both scientific information as well as important engineering data on the operation of solar power systems on Mars. MATE will characterize the intensity and spectrum of the solar radiation on Mars and measure the performance of solar arrays in the Mars environment. MATE flight hardware was built and tested at the NASA Glenn Research Center and is ready for flight.
NASA Technical Reports Server (NTRS)
Kolecki, J. C.; Riley, T. J.
1980-01-01
The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.
Methods for utilizing maximum power from a solar array
NASA Technical Reports Server (NTRS)
Decker, D. K.
1972-01-01
A preliminary study of maximum power utilization methods was performed for an outer planet spacecraft using an ion thruster propulsion system and a solar array as the primary energy source. The problems which arise from operating the array at or near the maximum power point of its 1-V characteristic are discussed. Two closed loop system configurations which use extremum regulators to track the array's maximum power point are presented. Three open loop systems are presented that either: (1) measure the maximum power of each array section and compute the total array power, (2) utilize a reference array to predict the characteristics of the solar array, or (3) utilize impedance measurements to predict the maximum power utilization. The advantages and disadvantages of each system are discussed and recommendations for further development are made.
Hall, John Champlin; Martins, Guy Lawrence
2015-09-06
A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.
Quality assessment of solar UV irradiance measured with array spectroradiometers
NASA Astrophysics Data System (ADS)
Egli, L.; Gröbner, J.; Hülsen, G.; Bachmann, L.; Blumthaler, M.; Dubard, J.; Khazova, M.; Kift, R.; Hoogendijk, K.; Serrano, A.; Smedley, A. R. D.; Vilaplana, J.-M.
2015-12-01
The reliable quantification of ultraviolet (UV) radiation at the Earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers are small, light, robust and cost effective instruments and are increasingly used for spectral irradiance measurements. Within the European EMRP-ENV03 project "Solar UV", new devices, guidelines, and characterization methods have been developed to improve solar UV measurements with array spectroradiometers and support to the end-user community has been provided. In order to assess the quality of 14 end-user array spectroradiometers, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the intercomparison revealed that array spectroradiometers, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema weighted UV index - in particular at low solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available array spectroradiometer within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range or solar zenith angle. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 to 400 nm under all atmospheric conditions.
77 FR 17456 - Buy American Exception Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
...,000.00 to Adon Construction for the construction of a 120kw photovoltaic solar array system to be built in eight 15kw sub-arrays at NIST's WWVH radio station in Kauai, HI. The objective of the solar... Recovery Act), for inverters necessary for the construction of a solar array system at NIST's WWVH radio...
NASA Astrophysics Data System (ADS)
Perez, Marc J. R.
With extraordinary recent growth of the solar photovoltaic industry, it is paramount to address the biggest barrier to its high-penetration across global electrical grids: the inherent variability of the solar resource. This resource variability arises from largely unpredictable meteorological phenomena and from the predictable rotation of the earth around the sun and about its own axis. To achieve very high photovoltaic penetration, the imbalance between the variable supply of sunlight and demand must be alleviated. The research detailed herein consists of the development of a computational model which seeks to optimize the combination of 3 supply-side solutions to solar variability that minimizes the aggregate cost of electricity generated therefrom: Storage (where excess solar generation is stored when it exceeds demand for utilization when it does not meet demand), interconnection (where solar generation is spread across a large geographic area and electrically interconnected to smooth overall regional output) and smart curtailment (where solar capacity is oversized and excess generation is curtailed at key times to minimize the need for storage.). This model leverages a database created in the context of this doctoral work of satellite-derived photovoltaic output spanning 10 years at a daily interval for 64,000 unique geographic points across the globe. Underpinning the model's design and results, the database was used to further the understanding of solar resource variability at timescales greater than 1-day. It is shown that--as at shorter timescales--cloud/weather-induced solar variability decreases with geographic extent and that the geographic extent at which variability is mitigated increases with timescale and is modulated by the prevailing speed of clouds/weather systems. Unpredictable solar variability up to the timescale of 30 days is shown to be mitigated across a geographic extent of only 1500km if that geographic extent is oriented in a north/south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar generation of 1 per watt, optimal model results show that meeting a 100% predictable output target with solar will cost no more than $0.08 per kilowatt-hour.
NASA Astrophysics Data System (ADS)
Laget, R.
1986-01-01
Studies that led to selection of the distributed concentration biplane concept for the solar cell generator to be flown on the coorbiting platform mission, and the major characteristics of such a spaceborne solar array are summarized. It is concluded that there is not a considerable interest in concentration either for array area reduction or cost reduction, although improvements of 15% for both domains are feasible. Only predevelopment activities to verify concentrator performances and system studies to assess respective importance of cost and area saving may increase the level of interest of concentrator solar arrays for this kind of mission.
Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin
2012-07-01
Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.
Landsat 7 Solar Array Testing Experiences
NASA Technical Reports Server (NTRS)
Helfrich, Daniel
2000-01-01
This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.
LSA Low-cost Solar Array project
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.
Thruster array design approaches for a solar electric propulsion Encke Flyby mission
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1973-01-01
Design approaches are described and evaluated for a mercury electron-bombardment ion thruster array. Such an array might be used on a solar electric interplanetary spacecraft that obtains electrical energy from large solar panels. Thruster array designs are described and evaluated as they would apply to an Encke Flyby mission. Besides several well known approaches, a new concept utilizing individual two-axis gimbal actuators on each thruster is described and shown to have many structural and thermal advantages.
Anti-static coat for solar arrays
NASA Astrophysics Data System (ADS)
Fellas, C. N.
1982-06-01
A Kapton based composite material, suitable as a substrate for flexible solar arrays, was designed, constructed and tested under electron energies ranging from 5 to 30 keV. The rear of the array under adverse eclipse conditions (-197 C) produced voltages well below the discharge threshold. An antistatic coat suitable as a front cover for solar arrays is also described. The thermal and optical transmission characteristics were tested and are satisfactory, but the UV and particle degradation of the Tedlar material needs to be evaluated.
Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal
NASA Astrophysics Data System (ADS)
Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko
2017-04-01
In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.
Low-cost Solar Array (LSA) project
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.
An approach for configuring space photovoltaic tandem arrays based on cell layer performance
NASA Technical Reports Server (NTRS)
Flora, C. S.; Dillard, P. A.
1991-01-01
Meeting solar array performance goals of 300 W/Kg requires use of solar cells with orbital efficiencies greater than 20 percent. Only multijunction cells and cell layers operating in tandem produce this required efficiency. An approach for defining solar array design concepts that use tandem cell layers involve the following: transforming cell layer performance at standard test conditions to on-orbit performance; optimizing circuit configuration with tandem cell layers; evaluating circuit sensitivity to cell current mismatch; developing array electrical design around selected circuit; and predicting array orbital performance including seasonal variations.
Solar electric propulsion for Mars transport vehicles
NASA Technical Reports Server (NTRS)
Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.
1990-01-01
Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.
NASA Astrophysics Data System (ADS)
Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao
2018-05-01
High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.
Parametric analysis of ATM solar array.
NASA Technical Reports Server (NTRS)
Singh, B. K.; Adkisson, W. B.
1973-01-01
The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.
Scattering Effects of Solar Panels on Space Station Antenna Performance
NASA Technical Reports Server (NTRS)
Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.
1994-01-01
Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.
Solar module having reflector between cells
Kardauskas, Michael J.
1999-01-01
A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.
Planetary and deep space requirements for photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Bennett, R. B.; Stella, P. M.
1995-01-01
In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100 watts, up to several kilowatts (at Earth) in the case of solar electric propulsion missions. Thus, mass and stowage volume minimization will be required over a range of array sizes. Concentrator designs, inflatable structures, and the combination of solar arrays with the telecommunications system have been proposed. Performance, launch vehicle constraints, an cost will be the principal parameters in the design trade space. Other special applications will also be discussed, including requirements relating to planetary landers and probes. In those cases, issues relating to shock loads on landing, operability in (possibly dusty) atmospheres, and extreme temperature cycles must be considered, in addition to performance, stowed volume, and costs.
Analysis of spacecraft battery charger systems
NASA Astrophysics Data System (ADS)
Kim, Seong J.; Cho, Bo H.
In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.
Effect of wind speed on performance of a solar-pv array
USDA-ARS?s Scientific Manuscript database
Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...
Telescoping Solar Array Concept for Achieving High Packaging Efficiency
NASA Technical Reports Server (NTRS)
Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff
2015-01-01
Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.
Spoked wheels to deploy large surfaces in space-weight estimates for solar arrays
NASA Technical Reports Server (NTRS)
Crawford, R. F.; Hedgepeth, J. M.; Preiswerk, P. R.
1975-01-01
Extensible booms were used to deploy and support solar cell arrays of varying areas. Solar cell array systems were built with one or two booms to deploy and tension a blanket with attached cells and bussing. A segmented and hinged rim supported by spokes joined to a common hub is described. This structure can be compactly packaged and deployed.
Power management circuits for self-powered systems based on micro-scale solar energy harvesting
NASA Astrophysics Data System (ADS)
Yoon, Eun-Jung; Yu, Chong-Gun
2016-03-01
In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.
Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kolosov, Vladimir
1999-01-01
The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar energy incident on the arrays. KHSC used the incident energy results to determine Zarya's electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.
Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments
NASA Technical Reports Server (NTRS)
Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul
2017-01-01
This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).
Space Station Freedom solar array panels plasma interaction test facility
NASA Technical Reports Server (NTRS)
Martin, Donald F.; Mellott, Kenneth D.
1989-01-01
The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.
Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems
NASA Astrophysics Data System (ADS)
Zhou, Wei
Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.
Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.
2015-01-01
CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.
High voltage solar array experiments
NASA Technical Reports Server (NTRS)
Kennerud, K. L.
1974-01-01
The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.
Solar Array Structures for 300 kW-Class Spacecraft
NASA Technical Reports Server (NTRS)
Pappa, Richard; Rose, Geoff; Mann, Troy O.; Warren, Jerry E.; Mikulas, Martin M., Jr.; Kerslake, Tom; Kraft, Tom; Banik, Jeremy
2013-01-01
State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.
Evaluation of materials for high performance solar arrays
NASA Technical Reports Server (NTRS)
Whitaker, A. F.; Smith, C. F., Jr.; Peacock, C. L., Jr.; Little, S. A.
1978-01-01
A program has been underway to evaluate materials for advanced solar arrays which are required to provide power to weight ratios up to 100 W/kg. Severe mission environments together with the lack of knowledge of space environmental materials degradation rates require the generation of irradiation and outgassing engineering data for use in the initial design phase of the flight solar arrays. Therefore, approximately 25 candidate array materials were subjected to selected mission environments of vacuum, UV, and particle irradiation, and their mechanical and/or optical properties were determined where appropriate.
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.
1985-01-01
A large amount of experimental and analytical effort has been directed toward understanding the plasma sheath growth and discharge phenomena which lead to high voltage solar array-space plasma interactions. An important question which has not been addressed is how the surface voltage gradient on such an array may affect these interactions. The results of this study indicate that under certain conditions, the voltage gradient should be taken into account when evaluating the effect on a solar array operating in a plasma environment.
NASA Technical Reports Server (NTRS)
Young, Leighton E.
1993-01-01
Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, R. W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1987-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar Power for Future NASA Missions
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Landis, Geoffrey A.
2014-01-01
An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Hillard, G. Barry
1994-01-01
SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the OAST-2 mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials and floating potentials for arrays and spacecraft in LEO.
Review of biased solar array - Plasma interaction studies
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1981-01-01
Possible high voltage surface interactions on the Solar Electric Propulsion System (SEPS) are examined, with particular regard for potential effects on SEPS performance. The SEPS is intended for use for geosynchronous and planetary missions, and derives power from deployed solar cell arrays which are susceptible to collecting ions and electrons from the charged and thermal particle environment of space. The charge exchange plasma which provides the thrust force can also enhance the natural charged particle environment and increase interactions between the thrust system and the biased solar array surface. Tests of small arrays have shown that snapover, where current collection becomes proportional to the panel area, can be avoided by larger cell sizes. Arcing is predicted to diminish with larger array sizes, while the problems of efflux environments are noted to be as yet undefined and require further study.
Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2018-02-23
An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.
Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell
NASA Astrophysics Data System (ADS)
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2018-02-01
An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.
Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell
NASA Astrophysics Data System (ADS)
Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei
2017-07-01
The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22200
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22203
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22202
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22201
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22204
Space Station Freedom solar array design development
NASA Technical Reports Server (NTRS)
Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo
1989-01-01
The Space Station Freedom solar array program is required to provide a 75-kW power module that uses eight solar array (SA) wings over a four-year period in low earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-yr design point. The design of flexible-substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years is discussed. The tradeoff study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.
Space Station Freedom Solar Array tension mechanism development
NASA Technical Reports Server (NTRS)
Allmon, Curtis; Haugen, Bert
1994-01-01
A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.
LSSA (Low-cost Silicon Solar Array) project
NASA Technical Reports Server (NTRS)
1976-01-01
Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.
DTO 1118 - Damaged Spektr solar array
1998-03-04
S89-E-5190 (25 Jan 1998) --- This Electronic Still Camera (ESC) image shows the Russian Mir Space Station's damaged solar array panel. The solar array panel was damaged as a result of an impact with an unmanned Progress re-supply ship which collided with the Mir on June 25, 1997, causing the Spektr Module to depressurize. This ESC view was taken on January 25, 1998 at 16:56:30 GMT.
JUNO Photovoltaic Power at Jupiter
NASA Technical Reports Server (NTRS)
Dawson, Stephen F.; Stella, Paul; McAlpine, William; Smith, Brian
2012-01-01
This paper summarizes the Juno modeling team work on predicting the Juno solar array performance at critical mission points including Juno Orbit Insertion (JOI) and End of Mission (EOM). This report consists of background on Juno solar array design, a summary of power estimates, an explanation of the modeling approach used by Aerospace, a detailed discussion of loss factors and performance predictions, a thermal analysis, and a review of risks to solar array performance
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Minow, Joseph I.; Parker, Linda N.; Pour, Maria Z. A.; Swenson, Charles; Nishikawa, Ken-ichi; Krause, Linda Habash
2016-01-01
The International Space Station (ISS) continues to be a world-class space research laboratory after over 15 years of operations, and it has proven to be a fantastic resource for observing spacecraft floating potential variations related to high voltage solar array operations in Low Earth Orbit (LEO). Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS floating potential are obtained from the Floating Potential Measurement Unit (FPMU). In particular, rapid variations in ISS floating potential during solar array operations on time scales of tens of milliseconds can be recorded due to the 128 Hz sample rate of the Floating Potential Probe (FPP) pro- viding interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting transient floating potential variations with mission operations. These complex variations are not reproduced by current models and require further study to understand the underlying physical processes. In this paper we present some of the floating potential transients observed over the past few years along with the relevant space environment parameters and solar array operations data.
NASA Astrophysics Data System (ADS)
Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf
2011-10-01
In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.
Charge efficiency of Ni/H2 cells during transfer orbit of Telstar 4 satellites
NASA Technical Reports Server (NTRS)
Fang, W. C.; Maurer, Dean W.; Vyas, B.; Thomas, M. N.
1994-01-01
The TELSTAR 4 communication satellites being manufactured by Martin Marietta Astro Space (Astro Space) for AT&T are three axis stabilized spacecraft scheduled to be launched on expendable vehicles such as the Atlas or Ariane rockets. Typically, these spacecraft consist of a box that holds the electronics and supports the antenna reflectors and the solar array wings. The wings and reflectors are folded against the sides of the box during launch and the spacecraft is spun for attitude control in that phase; they are then deployed after achieving the final orbit. The launch phase and transfer orbits required to achieve the final geosynchronous orbit typically take 4 to 5 days during which time the power required for command, telemetry, attitude control, heaters, etc., is provided by two 50 AH nickel hydrogen batteries augmented by the exposed outboard solar panels. In the past, this situation has presented no problem since there was a considerable excess of power available from the array. In the case of large high powered spacecraft such as TELSTAR 4, however, the design power levels in transfer orbit approach the time-averaged power available from the exposed surface area of the solar arrays, resulting in a very tight power margin. To compound the difficulty, the array output of the spinning spacecraft in transfer orbit is shaped like a full wave rectified sine function and provides very low charging rates to the batteries during portions of the rotation. In view of the typically low charging efficiency of alkaline nickel batteries at low rates, it was decided to measure the efficiency during a simulation of the TELSTAR 4 conditions at the expected power levels and temperatures on three nickel hydrogen cells of similar design. The unique feature of nickel hydrogen cells that makes the continuous measurement of efficiency possible is that hydrogen is one of the active materials and thus, cell pressure is a direct measure of the state of charge or available capacity. The pressure is measured with a calibrated strain gage mounted on the outside of the pressurized cell.
Colorful solar selective absorber integrated with different colored units.
Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei
2016-01-25
Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.
Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery
NASA Astrophysics Data System (ADS)
Benfield, David; Yue, Shichao; Lou, Edmond; Moussa, Walied A.
2014-08-01
A six-axis sensor array has been developed to quantify the 3D force and moment loads applied in scoliosis correction surgery. Initially this device was developed to be applied during scoliosis correction surgery and augmented onto existing surgical instrumentation, however, use as a general load sensor is also feasible. The development has included the design, microfabrication, deployment and calibration of a sensor array. The sensor array consists of four membrane devices, each containing piezoresistive sensing elements, generating a total of 16 differential voltage outputs. The calibration procedure has made use of a custom built load application frame, which allows quantified forces and moments to be applied and compared to the outputs from the sensor array. Linear or non-linear calibration equations are generated to convert the voltage outputs from the sensor array back into 3D force and moment information for display or analysis.
High Voltage Solar Array ARC Testing for a Direct Drive Hall Effect Thruster System
NASA Technical Reports Server (NTRS)
Schneider, T.; Vaughn, J.; Carruth, M. R.; Mikellides, I. G.; Jongeward, G. A.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.
2003-01-01
The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (112HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration "trigger" arcs as well as long duration "sustained" arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of vo!tage, (current and power. The data will be used to propose a new, high-voltage (>300 V) solar array design for which the likelihood of damage from arcing is minimal.
High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System
NASA Technical Reports Server (NTRS)
Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.
2004-01-01
The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.
Parametric study of two planar high power flexible solar array concepts
NASA Technical Reports Server (NTRS)
Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.
1978-01-01
The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.
The SMILE Soft X-ray Imager (SXI) CCD design and development
NASA Astrophysics Data System (ADS)
Soman, M. R.; Hall, D. J.; Holland, A. D.; Burgon, R.; Buggey, T.; Skottfelt, J.; Sembay, S.; Drumm, P.; Thornhill, J.; Read, A.; Sykes, J.; Walton, D.; Branduardi-Raymont, G.; Kennedy, T.; Raab, W.; Verhoeve, P.; Agnolon, D.; Woffinden, C.
2018-01-01
SMILE, the Solar wind Magnetosphere Ionosphere Link Explorer, is a joint science mission between the European Space Agency and the Chinese Academy of Sciences. The spacecraft will be uniquely equipped to study the interaction between the Earth's magnetosphere-ionosphere system and the solar wind on a global scale. SMILE's instruments will explore this science through imaging of the solar wind charge exchange soft X-ray emission from the dayside magnetosheath, simultaneous imaging of the UV northern aurora and in-situ monitoring of the solar wind and magnetosheath plasma and magnetic field conditions. The Soft X-ray Imager (SXI) is the instrument being designed to observe X-ray photons emitted by the solar wind charge exchange process at photon energies between 200 eV and 2000 eV . X-rays will be collected using a focal plane array of two custom-designed CCDs, each consisting of 18 μm square pixels in a 4510 by 4510 array. SMILE will be placed in a highly elliptical polar orbit, passing in and out of the Earth's radiation belts every 48 hours. Radiation damage accumulated in the CCDs during the mission's nominal 3-year lifetime will degrade their performance (such as through decreases in charge transfer efficiency), negatively impacting the instrument's ability to detect low energy X-rays incident on the regions of the CCD image area furthest from the detector outputs. The design of the SMILE-SXI CCDs is presented here, including features and operating methods for mitigating the effects of radiation damage and expected end of life CCD performance. Measurements with a PLATO device that has not been designed for soft X-ray signal levels indicate a temperature-dependent transfer efficiency performance varying between 5×10-5 and 9×10-4 at expected End of Life for 5.9 keV photons, giving an initial set of measurements from which to extrapolate the performance of the SXI CCDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Waight, Jim; Grover, Shailendra
OMNETRIC Corp., Duke Energy, CPS Energy, and the University of Texas at San Antonio (UTSA) created a project team to execute the project 'OpenFMB Reference Architecture Demonstration.' The project included development and demonstration of concepts that will enable the electric utility grid to host larger penetrations of renewable resources. The project concept calls for the aggregation of renewable resources and loads into microgrids and the control of these microgrids with an implementation of the OpenFMB Reference Architecture. The production of power from the renewable resources that are appearing on the grid today is very closely linked to the weather. Themore » difficulty of forecasting the weather, which is well understood, leads to difficulty in forecasting the production of renewable resources. The current state of the art in forecasting the power production from renewables (solar PV and wind) are accuracies in the range of 12-25 percent NMAE. In contrast the demand for electricity aggregated to the system level, is easier to predict. The state of the art of demand forecasting done, 24 hours ahead, is about 2-3% MAPE. Forecasting the load to be supplied from conventional resources (demand minus generation from renewable resources) is thus very hard to forecast. This means that even a few hours before the time of consumption, there can be considerable uncertainty over what must be done to balance supply and demand. Adding to the problem of difficulty of forecasting, is the reality of the variability of the actual production of power from renewables. Due to the variability of wind speeds and solar insolation, the actual output of power from renewable resources can vary significantly over a short period of time. Gusts of winds result is variation of power output of wind turbines. The shadows of clouds moving over solar PV arrays result in the variation of power production of the array. This compounds the problem of balancing supply and demand in real time. Establishing a control system that can manage distribution systems with large penetrations of renewable resources is difficult due to two major issues: (1) the lack of standardization and interoperability between the vast array of equipment in operation and on the market, most of which use different and proprietary means of communication and (2) the magnitude of the network and the information it generates and consumes. The objective of this project is to provide the industry with a design concept and tools that will enable the electric power grid to overcome these barriers and support a larger penetration of clean energy from renewable resources.« less
Gallium arsenide (GaAs) power conversion concept
NASA Technical Reports Server (NTRS)
Nussberger, A. A.
1980-01-01
A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.
A SEP Mission to Jupiter Using the Stretched Lens Array
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W.; Rodiek, Julie A.; Ferguson, Dale C.; O'Neill, Mark J.; Piszczor, Michael F.; Oleson, Steve
2008-01-01
As space exploration continues to be a primary focus of NASA, solar electric propulsion (SEP) becomes a forerunner in the mode of transportation to reach other planets in our solar system. Several critical issues emerge as potential barriers to this approach such as reducing solar array radiation damage, operating the array at high voltage (>300 V) for extended times for Hall or ion thrusters, and designing an array that will be resistant to micrometeoroid impacts and the differing environmental conditions as the vehicle travels further into space. It is also of great importance to produce an array that is light weight to preserve payload mass fraction and to do this at a cost that is lower than today's arrays. This paper will describe progress on an array that meets all these requirements and will detail its use in a solar electric mission to Jupiter. From 1998-2001, NASA flew the Deep Space 1 mission that validated the use of ion propulsion for extended space missions. This highly successful two-year mission also used a novel SCARLET solar array that concentrated sunlight eight-fold onto small area solar cells. This array performed flawlessly and within 2% of its projected performance over the entire mission. That design has evolved into the Stretched Lens Array (SLA) shown in figure 1. The primary difference between SCARLET and the SLA is that no additional glass cover is used over the silicone lens. This has led to significant mass, cost and complexity reductions. The module shown in figure 1 is the latest version of the design. This design leads to a specific power exceeding 300 W/kg at voltages exceeding 300 V. In addition, this module has been tested to voltages over 1000 V while under hypervelocity particle impact in a plasma environment with no arcing. Furthermore array segments are under test for corona breakdown that can become a critical issue for long term, high voltage missions.
Ericson, M. Nance; Rochelle, James M.
1994-01-01
A logarithmic current measurement circuit for operating upon an input electric signal utilizes a quad, dielectrically isolated, well-matched, monolithic bipolar transistor array. One group of circuit components within the circuit cooperate with two transistors of the array to convert the input signal logarithmically to provide a first output signal which is temperature-dependant, and another group of circuit components cooperate with the other two transistors of the array to provide a second output signal which is temperature-dependant. A divider ratios the first and second output signals to provide a resultant output signal which is independent of temperature. The method of the invention includes the operating steps performed by the measurement circuit.
Fiber bundle phase conjugate mirror
Ward, Benjamin G.
2012-05-01
An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.
Advanced photovoltaic solar array development
NASA Technical Reports Server (NTRS)
Kurland, Richard M.; Stella, Paul
1989-01-01
Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.
General formula for the incidence factor of a solar heliostat receiver system.
Wei, L Y
1980-09-15
A general formula is derived for the effective incidence factor of an array of heliostat mirrors for solar power collection. The formula can be greatly simplified for arrays of high symmetry and offers quick computation of the performance of the array. It shows clearly how the mirror distribution and locations affect the overall performance and thus provide a useful guidance for the design of a solar heliostat receiver system.
Concentrator enhanced solar arrays design study
NASA Technical Reports Server (NTRS)
Lott, D. R.
1978-01-01
The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.
Design and analysis considerations for deployment mechanisms in a space environment
NASA Technical Reports Server (NTRS)
Vorlicek, P. L.; Gore, J. V.; Plescia, C. T.
1982-01-01
On the second flight of the INTELSAT V spacecraft the time required for successful deployment of the north solar array was longer than originally predicted. The south solar array deployed as predicted. As a result of the difference in deployment times a series of experiments was conducted to locate the cause of the difference. Deployment rate sensitivity to hinge friction and temperature levels was investigated. A digital computer simulation of the deployment was created to evaluate the effects of parameter changes on deployment. Hinge design was optimized for nominal solar array deployment time for future INTELSAT V satellites. The nominal deployment times of both solar arrays on the third flight of INTELSAT V confirms the validity of the simulation and design optimization.
NASA Technical Reports Server (NTRS)
Galofaro, Joel T.; Vayner, Boris V.
2006-01-01
Plasma ground testing results, conducted at the Glenn Research Center (GRC) National Plasma Interaction (N-PI) Facility, are presented for a number of thin-film photovoltaic cells. The cells represent a mix of promising new technologies identified by the Air Force Research Laboratory (AFRL) under the CYGNUS Space Science Technology Experiment (SSTE-4) Program. The current ground tests are aimed at characterizing the performance and survivability of thin film technologies in the harsh low earth orbital space environment where they will be flown. Measurements of parasitic current loss, charging/dielectric breakdown of cover-slide coatings and arcing threshold tests are performed for each individual cell. These measurements are followed by a series of experiments designed to test for catastrophic arc failure mechanisms. A special type of power supply, called a solar array simulator (SAS) with adjustable voltage and current limits on the supply s output, is employed to bias two adjacent cells at a predetermined voltage and current. The bias voltage is incrementally ramped up until a sustained arc results. Sustained arcs are precursors to catastrophic arc failure where the arc current rises to a maximum value for long timescales often ranging between 30 to 100 sec times. Normal arcs by comparison, are short lived events with a timescale between 10 to 30 sec. Sustained arcs lead to pyrolization with extreme cell damage and have been shown to cause the loss of entire array strings in solar arrays. The collected data will be used to evaluate the suitability of thin-film photovoltaic technologies for future space operations.
Analysis of Roll Steering for Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Pederson, Dylan, M.; Hojnicki, Jeffrey, S.
2012-01-01
Nothing is more vital to a spacecraft than power. Solar Electric Propulsion (SEP) uses that power to provide a safe, reliable, and, most importantly, fuel efficient means to propel a spacecraft to its destination. The power performance of an SEP vehicle s solar arrays and electrical power system (EPS) is largely influenced by the environment in which the spacecraft is operating. One of the most important factors that determines solar array power performance is how directly the arrays are pointed to the sun. To get the most power from the solar arrays, the obvious solution is to point them directly at the sun at all times. Doing so is not a problem in deep space, as the environment and pointing conditions that a spacecraft faces are fairly constant and are easy to accommodate, if necessary. However, large and sometimes rapid variations in environmental and pointing conditions are experienced by Earth orbiting spacecraft. SEP spacecraft also have the additional constraint of needing to keep the thrust vector aligned with the velocity vector. Thus, it is important to analyze solar array power performance for any vehicle that spends an extended amount of time orbiting the Earth, and to determine how much off-pointing can be tolerated to produce the required power for a given spacecraft. This paper documents the benefits and drawbacks of perfectly pointing the solar arrays of an SEP spacecraft spiraling from Earth orbit, and how this might be accomplished. Benefits and drawbacks are defined in terms of vehicle mass, power, volume, complexity, and cost. This paper will also look at the application of various solar array pointing methods to future missions. One such pointing method of interest is called roll steering . Roll steering involves rolling the entire vehicle twice each orbit. Roll steering, combined with solar array gimbal tracking, is used to point the solar arrays perfectly towards the sun at all points in the orbit, while keeping the vehicle thrusters aligned in the velocity direction. Roll steering is particularly attractive for a recently proposed mission that involves a spiral trajectory from low Earth orbit (LEO) to the Earth-Moon Lagrange Point 1 (E-M L1). During the spiral, the spacecraft will spend over 300 days experiencing the full spectrum of near-earth environments and solar array pointing conditions. An extensive study of the application of SEP (and roll steering) to this spiral mission is included, highlighting the ultimate goal of reduced vehicle cost and mass. Tools used for this analysis include the Systems Power Analysis for Capability Evaluation (Refs. 1 and 2) (SPACE) electrical power systems code, and SEP trajectory simulation tools developed at NASA Glenn Research Center.
Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array
NASA Astrophysics Data System (ADS)
Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie
2017-11-01
Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.
Attitude maneuvers of a solar-powered electric orbital transfer vehicle
NASA Astrophysics Data System (ADS)
Jenkin, Alan B.
1992-08-01
Attitude maneuver requirements of a solar-powered electric orbital transfer vehicle have been studied in detail. This involved evaluation of the yaw, pitch, and roll profiles and associated angular accelerations needed to simultaneously steer the vehicle thrust vector and maintain the solar array pointed toward the sun. Maintaining the solar array pointed exactly at the sun leads to snap roll maneuvers which have very high (theoretically unbounded) accelerations, thereby imposing large torque requirements. The problem is exacerbated by the large solar arrays which are needed to generate the high levels of power needed by electric propulsion devices. A method of eliminating the snap roll maneuvers is presented. The method involves the determination of relaxed roll profiles which approximate a forced transition between alternate exact roll profiles and incur only small errors in solar array pointing. The method makes it feasible to perform the required maneuvers using currently available attitude control technology such as reaction wheels, hot gas jets, or gimballed main engines.
A simple method for verifying the deployment of the TOMS-EP solar arrays
NASA Technical Reports Server (NTRS)
Koppersmith, James R.; Ketchum, Eleanor
1995-01-01
The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) mission relies upon a successful deployment of the spacecraft's solar arrays. Several methods of verification are being employed to ascertain the solar array deployment status, with each requiring differing amounts of data. This paper describes a robust attitude-independent verification method that utilizes telemetry from the coarse Sun sensors (CSS's) and the three-axis magnetometers (TAM's) to determine the solar array deployment status - and it can do so with only a few, not necessarily contiguous, points of data. The method developed assumes that the solar arrays are deployed. Telemetry data from the CSS and TAM are converted to the Sun and magnetic field vectors in spacecraft body coordinates, and the angle between them is calculated. Deployment is indicated if this angle is within a certain error tolerance of the angle between the reference Sun and magnetic field vectors. Although several other methods can indicate a non-deployed state, with this method there is a 70% confidence level in confirming deployment as well as a nearly 100% certainty in confirming a non-deployed state. In addition, the spacecraft attitude (which is not known during the first orbit after launch) is not needed for this algorithm because the angle between the Sun and magnetic field vectors is independent of the spacecraft attitude. This technique can be applied to any spacecraft with a TAM and with CSS's mounted on the solar array(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, R. W.; Dayeh, M. A.; Desai, M. I.
2013-05-10
We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF betweenmore » {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.« less
Analysis and simulation tools for solar array power systems
NASA Astrophysics Data System (ADS)
Pongratananukul, Nattorn
This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.
Space Station Power Generation Investigated in Support of the Beta Gimbal Anomaly Resolution
NASA Technical Reports Server (NTRS)
Delleur, Ann M.; Propp, Timothy
2004-01-01
The International Space Station (ISS) is the largest and most complex spacecraft ever assembled and operated in orbit. The first U.S. photovoltaic module, containing two solar arrays, was launched, installed, and activated in early December 2000. After the first week of continuously rotating the U.S. solar arrays, engineering personnel in the ISS Mission Evaluation Room observed higher than expected electrical currents on the drive motor in one of the Beta Gimbal Assemblies (BGA), the mechanism used to maneuver a U.S. solar array (see the on-orbit photograph). The magnitude of the motor currents continued to increase over time on both BGAs, creating concerns about the ability of the gimbals to continue pointing the solar arrays towards the Sun, a function critical for continued assembly of the ISS. The BGA provides two critical capabilities to the ISS: (1) transfer of electrical power across a rotating joint and (2) positioning of the solar arrays. A number of engineering disciplines convened in May 2001 to address this on-orbit hardware anomaly. Over the course of a year, many scenarios were developed and used. Only two are discussed here: parked arrays and dual-angle mode.
The systems impact of a concentrated solar array on a Jupiter orbiter
NASA Technical Reports Server (NTRS)
Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.
1981-01-01
Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.
Solar array electrical performance assessment for Space Station Freedom
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Brisco, Holly
1993-01-01
Electrical power for Space Station Freedom will be generated by large Photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis, and test data to date. A description of the LMSC performance model, future test plans, and predicted performance ranges are also given.
Operating manual: Fast response solar array simulator
NASA Technical Reports Server (NTRS)
Vonhatten, R.; Weimer, A.; Zerbel, D. W.
1971-01-01
The fast response solar array simulator (FRSAS) is a universal solar array simulator which features an AC response identical to that of a real array over a large range of DC operating points. In addition, short circuit current (I sub sc) and open circuit voltage (V sub oc) are digitally programmable over a wide range for use not only in simulating a wide range of array sizes, but also to simulate (I sub sc) and (V sub oc) variations with illumination and temperature. A means for simulation of current variations due to spinning is available. Provisions for remote control and monitoring, automatic failure sensing and warning, and a load simulator are also included.
Solar array electrical performance assessment for Space Station Freedom
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Brisco, Holly
1993-01-01
Electrical power for Space Station Freedom will be generated by large photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis and test data to date. A description of the LMSC performance model future test plans and predicted performance ranges are also given.
Optical Design of Segmented Hexagon Array Solar Mirror
NASA Technical Reports Server (NTRS)
Huegele, Vince
2000-01-01
A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.
Rapid thermal cycling of new technology solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.
1990-01-01
NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Hillard, G. Barry
1994-01-01
SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.
Concept Definition Study for In-Space Structural Characterization of a Lightweight Solar Array
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pappa, Richard S.; Jones, Thomas W.; Spellman, Regina; Scott, Willis; Mockensturm, Eric M.; Liddle, Donn; Oshel, Ed; Snyder, Michael
2002-01-01
A Concept Definition Study (CDS) was conducted to develop a proposed "Lightweight High-Voltage Stretched-Lens Concentrator Solar Array Experiment" under NASA's New Millennium Program Space Technology-6 (NMP ST-6) activity. As part of a multi-organizational team, NASA Langley Research Center's role in this proposed experiment was to lead Structural Characterization of the solar array during the flight experiment. In support of this role, NASA LaRC participated in the CDS to de.ne an experiment for static, dynamic, and deployment characterization of the array. In this study, NASA LaRC traded state-of-the-art measurement approaches appropriate for an in-space, STS-based flight experiment, provided initial analysis and testing of the lightweight solar array and lens elements, performed a lighting and photogrammetric simulation in conjunction with JSC, and produced an experiment concept definition to meet structural characterization requirements.
Electrostatically clean solar array
NASA Technical Reports Server (NTRS)
Stern, Theodore Garry (Inventor); Krumweide, Duane Eric (Inventor)
2004-01-01
Provided are methods of manufacturing an electrostatically clean solar array panel and the products resulting from the practice of these methods. The preferred method uses an array of solar cells, each with a coverglass where the method includes machining apertures into a flat, electrically conductive sheet so that each aperture is aligned with and undersized with respect to its matched coverglass sheet and thereby fashion a front side shield with apertures (FSA). The undersized portion about each aperture of the bottom side of the FSA shield is bonded to the topside portions nearest the edges of each aperture's matched coverglass. Edge clips are attached to the front side aperture shield edges with the edge clips electrically and mechanically connecting the tops of the coverglasses to the solar panel substrate. The FSA shield, edge clips and substrate edges are bonded so as to produce a conductively grounded electrostatically clean solar array panel.
NASA Astrophysics Data System (ADS)
Adams, L. R.; Vonroos, A.
1985-04-01
An investigation being conducted by Astro Aerospace Corporation (Astro) for Jet Propulsion Laboratory in which efficient structures for geosynchronous spacecraft solar arrays are being developed is discussed. Recent developments in solar blanket technology, including the introduction of ultrathin (50 micrometer) silicon solar cells with conversion efficiencies approaching 15 percent, have resulted in a significant increase in blanket specific power. System specific power depends not only on blanket mass but also on the masses of the support structure and deployment mechanism. These masses must clearly be reduced, not only to minimize launch weight, but also to increase array natural frequency. The solar array system natural frequency should be kept high in order to reduce the demands on the attitude control system. This goal is approached by decreasing system mass, by increasing structural stiffness, and by partitioning the blanket. As a result of this work, a highly efficient structure for deploying a solar array was developed.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.
NASA Technical Reports Server (NTRS)
Christensen, Elmer
1985-01-01
The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... to allow its affiliate, EGP Solar 1, LLC, to construct and maintain a 2.2 megawatt solar photovoltaic... solar array would be constructed on both sides of Heather Lane (the project's access road), but public... be used for the solar array is currently devoid of trees, although some grading and tree cutting is...
Solar cell system having alternating current output
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1980-01-01
A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.
Progress of the Mars Array Technology Experiment (MATE) on the '01 Lander
NASA Technical Reports Server (NTRS)
Scheiman, D. A.; Baraona, C. R.; Jenkins, P.; Wilt, D.; Krasowski, M.; Greer, L.; Lekki, J.; Spina, D.
1999-01-01
Future missions to Mars will rely heavily on solar power from the sun, various solar cell types and structures must be evaluated to find the optimum. Sunlight on the surface of Mars is altered by air-borne dust that fluctuates in density from day to day. The dust affects both the intensity and spectral content of the sunlight. The MATE flight experiment was designed for this purpose and will fly on the Mars 2001 Surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure the performance of several solar cell technologies and characterize the Martian environment in terms of solar power. This will be done by measuring full IV curves on solar cells, direct and global insolation, temperature, and spectral content. The Lander is is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator and last from 100 to 300 days. The intent of this of this paper is to describe and update the progress on MATE. MATE has four main objectives for its mission to Mars. First is to measure the performance of solar cells daily on the surface of Mars, this will determine the day to day fluctuations in sunlight and temperature and provide a nominal power output. Second, in addition to measuring solar cell performance, it will allow for an intercomparison of different solar cell technologies. Third, It will study the long term effects of dust on the solar cells. Fourth and last, it will characterize the mars environment as viewed by the solar cell, measuring spectrum, insolation, and temperature. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
1979-01-01
Concentrator concepts which utilize Kapton mirror material were evaluated and selected for solar array use due to their zero mass. All concepts considered employed thin silicon solar cells. Design requirements for the concentrator were: the cell temperature was not to exceed 150 C; the concentrators were to produce illumination of the array within 15% of being perfectly uniform; the concentrators were to operate while misaligned as much as 5 degrees with the solar axis. Concentrator designs along with mirror structure and configurations are discussed and comparisons are made for optimal space applications.
High voltage solar cell power generating system
NASA Technical Reports Server (NTRS)
Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.
1974-01-01
A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.
Integrated Solar-Panel Antenna Array for CubeSats
NASA Technical Reports Server (NTRS)
Baktur, Reyhan
2016-01-01
The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.
Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun
2012-02-21
A type of highly efficient completely flexible fiber-shaped solar cell based on TiO(2) nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm(-2)) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO(2) nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. This journal is © The Royal Society of Chemistry 2012
2017-06-18
iss052e002857 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.
2017-06-18
iss052e004379 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.
2017-06-18
iss052e002871 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.
Solar array strip and a method for forming the same
NASA Technical Reports Server (NTRS)
Mueller, R. L.; Yasui, R. K. (Inventor)
1979-01-01
A flexible solar array strip is formed by providing printed circuitry between flexible layers of a nonconductive material, depositing solder pads on the printed circuitry, and storing the resulting substrate on a drum from which it is then withdrawn and advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads and are infrared radiation to melt the solder and attach the cells to the circuitry. Excess flux is cleaned from the solar cells which are then encapsulated in a protective coating. The resulting array is then wound on a drum.
Laboratory 15 kV high voltage solar array facility
NASA Technical Reports Server (NTRS)
Kolecki, J. C.; Gooder, S. T.
1976-01-01
The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.
NASA Technical Reports Server (NTRS)
Clancy, Daniel J.; Oezguener, Uemit; Graham, Ronald E.
1994-01-01
The potential for excessive plume impingement loads on Space Station Freedom solar arrays, caused by jet firings from an approaching Space Shuttle, is addressed. An artificial neural network is designed to determine commanded solar array beta gimbal angle for minimum plume loads. The commanded angle would be determined dynamically. The network design proposed involves radial basis functions as activation functions. Design, development, and simulation of this network design are discussed.
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.
The proposed NRAO millimeter array and its use for solar studies
NASA Technical Reports Server (NTRS)
Kundu, Mukul R.
1986-01-01
A brief summary is given of the proposed National Radio Astronomy Observatory (NRAO) Millimeter Array discussed at a workshop held in Green Bank, W. Va., September 30 to October 2, 1985. A brief description of the solar studies that can be made with such an array is provided.
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Kurland, Richard M.
1992-01-01
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Astrophysics Data System (ADS)
Stella, Paul M.; Kurland, Richard M.
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
NASA Technical Reports Server (NTRS)
Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark
2012-01-01
The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.
High performance spectrograph for solar UV 250-400 band
NASA Astrophysics Data System (ADS)
Di Menno, I.; Rafanelli, C.; De Simone, S.; Di Menno, M.
2007-09-01
The solar electromagnetic radiation flux is one of the important factors to evaluate the energy balance of the planet. It is important in the studies on the properties of the atmosphere and its components as AOD, on the energy requirements for anthropogenic activities as agriculture, industry and so on. The ever-increasing interest about the effects on the biosphere as consequence of anthropogenic activities has contributed to develop further studies about the solar radiation and in particular the UV band, 280-320 nm. The consequence has been a growing of instrumental site and radiometric networks. Many decisions affecting on civil society are taken using the data of these nets and consequently it is very important to study the effect of the environmental factors on the instrument output. The classical electromechanical equipments have good sensibility and resolution but their handicap is the time of the measure, generally some minutes. In this time, the sun is moved and the clouds in the sky too. The new generation of spectrometer based on solid state technology avoid the long time measurements. The paper show a new radiograph (fast spectroradiometer) for solar UV band 250-400 nm. It is based on CCD array and optical fiber. The performance are compared with a Brewer spectrophotometer during a comparison campaign close to Rome, Italy.
High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C
2015-09-16
Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.
Solar power plant performance evaluation: simulation and experimental validation
NASA Astrophysics Data System (ADS)
Natsheh, E. M.; Albarbar, A.
2012-05-01
In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.
NASA Technical Reports Server (NTRS)
Finckenor, M. M.; Albyn, K. C.; Watts, E. W.
2006-01-01
Onorbit photos of the International Space Station (ISS) solar array blanket box foam pad assembly indicate degradation of the Kapton film covering the foam, leading to atomic oxygen (AO) exposure of the foam. The purpose of this test was to determine the magnitude of particulate generation caused by low-Earth orbital environment exposure of the foam and also by compression of the foam during solar array wing retraction. The polyimide foam used in the ISS solar array wing blanket box assembly is susceptible to significant AO erosion. The foam sample in this test lost one-third of its mass after exposure to the equivalent of 22 mo onorbit. Some particulate was generated by exposure to simulated orbital conditions and the simulated solar array retraction (compression test). However, onorbit, these particles would also be eroded by AO. The captured particles were generally <1 mm, and the particles shaken free of the sample had a maximum size of 4 mm. The foam sample maintained integrity after a compression load of 2.5 psi.
Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays
NASA Technical Reports Server (NTRS)
Johnston, John D.; Thornton, Earl A.
1997-01-01
The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.
EOL performance comparison of GaAs/Ge and Si BSF/R solar arrays
NASA Technical Reports Server (NTRS)
Woike, Thomas J.
1993-01-01
EOL power estimates for solar array designs are significantly influenced by the predicted degradation due to charged particle radiation. New radiation-induced power degradation data for GaAs/Ge solar arrays applicable to missions ranging from low earth orbit (LEO) to geosynchronous earth orbit (GEO) and compares these results to silicon BSF/R arrays. These results are based on recently published radiation damage coefficients for GaAs/Ge cells. The power density ratio (GaAs/Ge to Si BSF/R) was found to be as high as 1.83 for the proton-dominated worst-case altitude of 7408 km medium Earth orbit (MEO). Based on the EOL GaAs/Ge solar array power density results for MEO, missions which were previously considered infeasible may be reviewed based on these more favorable results. The additional life afforded by using GaAs/Ge cells is an important factor in system-level trade studies when selecting a solar cell technology for a mission and needs to be considered. The data presented supports this decision since the selected orbits have characteristics similar to most orbits of interest.
NASA Astrophysics Data System (ADS)
Pfefferkorn, T.; Oxynos, C.; Greff, P.; Gerlach, L.
2008-09-01
After the successful series of Eurostar 3000 and Spacebus 4000 satellites and due to the demand of satellite operators for even larger and more powerful satellites, ESA decided to co-fund the development of a new satellite platform which covers the market segment beyond the upper limits of both satellite families.The new satellite bus family Alphabus is developed in the frame of ARTES 8 project by a joint project team of ASTRIUM and TAS, whereas the solar array is developed by ASTRIUM GmbH.The main approaches in this design phase for the Alphabus solar array were to find a standardized and scaleable design to production and to use qualification heritage from former projects, especially Eurostar 3000, as far as possible. The main challenges for the solar array design and test philosophy were the usage of lateral deployment and related sequential deployment and the bus voltage of 102,5V and related ESD precautions.This paper provides an overview of the different configurations, their main design features and performance parameters. In addition it summarizes the development and verification approach and shows the actual qualification status.
Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul
2007-10-23
A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.
Silicon-fiber blanket solar-cell array concept
NASA Technical Reports Server (NTRS)
Eliason, J. T.
1973-01-01
Proposed economical manufacture of solar-cell arrays involves parallel, planar weaving of filaments made of doped silicon fibers with diffused radial junction. Each filament is a solar cell connected either in series or parallel with others to form a blanket of deposited grids or attached electrode wire mesh screens.
NASA Technical Reports Server (NTRS)
Dillard, P. A.; Waddington, D.
1971-01-01
The technology status and problem areas which exist for the application of flat conductor cabling to solar cell arrays are summarized. Details covering the design, connector manufacture, and prototype test results are also summarized.
1Mbps NLOS solar-blind ultraviolet communication system based on UV-LED array
NASA Astrophysics Data System (ADS)
Sun, Zhaotian; Zhang, Lijun; Li, Ping'an; Qin, Yu; Bai, Tingzhu
2018-01-01
We proposed and demonstrated a high data rate ultraviolet communication system based on a 266nm UV LED array with 50mW luminous power. The emitting source is driven by a three outputs constant-current control circuit, whose driving speed is up to 2Mbps. At the receiving side, in order to achieve the amplification for high-speed signal, a two-stage differential preamplifier is designed to make I-V conversion. The voltage-current gain is up to 140dB and bandwidth is 1.9MHz. An experiment is conducted to test the performance of the UV communication system. The effects of elevation angles and transmission distance are analyzed. It is shown that the ultraviolet communication system has high data rate of up to 921.6kbps and bit error rate of less than 10-7 in 150m, which can beat the best record created by UV-LED communication system in terms of the transmission rate.
Field trial of rural solar photovoltaic system
NASA Astrophysics Data System (ADS)
Basu, P.; Mukhopadhyay, K.; Banerjee, T.; Das, S.; Saha, H.
Experience, costs, and performance of photovoltaic (PV) systems set up in a remote Indian village to power an adult literacy center and an irrigation pump are described. The center was furnished with a 14-module, 200 W array to power a television and three fluorescent lamps. The pumping installation has 20 modules for a 300 W output directly coupled to a 300-W dc pump motor. Data were gathered on the open circuit voltage, short circuit current, specific gravity of the battery fluid, degradation of the cells, nominal operating temperature of the cells, load currents, Amp-hours, water flow rate (pump), and the static head and draw down rate (pump). Monitoring of the array performances in the dusty environment showed that once/week cleaning is necessary. Al-substrates cracked at the center installation and sealant evaporation caused condensation which degraded the light transmissivity and thereby the short-circuit current of the modules. The combination of low-efficiency (5 pct) cells and cheap labor demonstrated economic operation without high-efficiency cells.
NASA Technical Reports Server (NTRS)
Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.
1979-01-01
An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.
Experimental Study of Arcing on High-voltage Solar Arrays
NASA Technical Reports Server (NTRS)
Vayner, Boris; Galofaro, Joel; Ferguson, Dale
2005-01-01
The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.
Experimental Study of Arcing on High-Voltage Solar Arrays
NASA Technical Reports Server (NTRS)
Vayner, Boris; Galofaro, Joel; Ferguson, Dale
2003-01-01
The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism suggests that such modifications can be done in the following directions: 1) To insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); 2) To change a coverglass geometry (overhang); 3) To increase a coverglass thickness; 4) To outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in a large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that stimulates the LEO operational temperature. The experimental setup is described below.
Horikawa, Yo
2016-04-01
Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Micrometeorite Impact Test of Flex Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.
2016-01-01
Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.
Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating
2012-01-01
An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells. PMID:22704578
Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Scheiman, David A.
1997-01-01
The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).
NASA Technical Reports Server (NTRS)
Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Cunningham, Thomas J. (Inventor); Newton, Kenneth W. (Inventor)
2014-01-01
An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.
Spacecraft level impacts of integrating concentrator solar arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Piszczor, M.F. Jr.
1994-12-31
The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less
Physical studies of Centaurs and Trans-Neptunian Objects with the Atacama Large Millimeter Array
NASA Astrophysics Data System (ADS)
Moullet, Arielle; Lellouch, Emmanuel; Moreno, Raphael; Gurwell, Mark
2011-05-01
Once completed, the Atacama Large Millimeter Array (ALMA) will be the most powerful (sub)millimeter interferometer in terms of sensitivity, spatial resolution and imaging. This paper presents the capabilities of ALMA applied to the observation of Centaurs and Trans-Neptunian Objects, and their possible output in terms of physical properties. Realistic simulations were performed to explore the performances of the different frequency bands and array configurations, and several projects are detailed along with their feasibility, their limitations and their possible targets. Determination of diameters and albedos via the radiometric method appears to be possible on ˜500 objects, while sampling of the thermal lightcurve to derive the bodies' ellipticity could be performed at least 30 bodies that display a significant optical lightcurve. On a limited number of objects, the spatial resolution allows for direct measurement of the size or even surface mapping with a resolution down to 13 milliarcsec. Finally, ALMA could separate members of multiple systems with a separation power comparable to that of the HST. The overall performance of ALMA will make it an invaluable instrument to explore the outer Solar System, complementary to space-based telescopes and spacecrafts.
Mass modeling for electrically powered space-based Yb:YAG lasers
NASA Astrophysics Data System (ADS)
Fitzgerald, Kevin F.; Leshner, Richard B.; Winsor, Harry V.
2000-05-01
An estimate for the mass of a nominal high-energy laser system envisioned for space applications is presented. The approach features a diode pumped solid state Yb:YAG laser. The laser specifications are10 MW average output power, and periods of up to 100 seconds continuous, full-power operation without refueling. The system is powered by lithium ion batteries, which are recharged by a solar array. The power requirements for this system dominate over any fixed structural features, so the critical issues in scaling a DPSSL to high power are made transparent. When based on currently available space qualified batteries, the design mass is about 500 metric tons. Therefore, innovations are required before high power electrical lasers will be serious contenders for use in space systems. The necessary innovations must improve the rate at which lithium ion batteries can output power. Masses for systems based on batteries that should be available in the near future are presented. This analysis also finds that heating of the solid state lasing material, cooling of the diode pump lasers and duty cycle are critical issues. Features dominating the thermal control requirements are the heat capacity of garnet, the operational temperature range of the system, and the required cooling time between periods of full operation. The duty cycle is a critical factor in determining both the mass of the diode array needed, and the mass of the power supply system.
Recent progress in high-output-voltage silicon solar cells
NASA Technical Reports Server (NTRS)
Muelenberg, A.; Arndt, R. A.; Allison, J. F.; Weizer, V.
1980-01-01
The status of the technology associated with the development of high output voltage silicon solar cells is reported. The energy conversion efficiency of a double diffusion process is compared to that of a single diffusion process. The efficiency of a 0.1 ohm/cm solar cell is characterized both before and after covering.
Advanced photovoltaic solar array - Design and performance
NASA Technical Reports Server (NTRS)
Kurland, Richard; Stella, Paul
1992-01-01
This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.
Arcing in LEO: Does the Whole Array Discharge?
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry
2005-01-01
The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.
Plasma Interaction with International Space Station High Voltage Solar Arrays
NASA Technical Reports Server (NTRS)
Heard, John W.
2002-01-01
The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.
The Air Force concentrating photovoltaic array program
NASA Technical Reports Server (NTRS)
Geis, Jack W.
1987-01-01
A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.
GPM Solar Array Gravity Negated Deployment Testing
NASA Technical Reports Server (NTRS)
Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso
2014-01-01
NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.
Digitally programmable signal generator and method
Priatko, G.J.; Kaskey, J.A.
1989-11-14
Disclosed is a digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output. 6 figs.
Digitally programmable signal generator and method
Priatko, Gordon J.; Kaskey, Jeffrey A.
1989-01-01
A digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output.
Port side of the P6 Solar Array during the first attempt to retract
2006-12-13
S116-E-05789 (13 Dec. 2006) --- This digital still image was taken by a crew member aboard the Space Shuttle Discovery of a kink that occurred in the port-side P6 solar array during the first attempt to retract that array on Dec. 13. The crew later extended the array and cleared this kink. The slow retraction of the array was then begun again with similar retraction and extension cycles repeated as the day progressed.
Development of an Electrostatically Clean Solar Array Panel
NASA Technical Reports Server (NTRS)
Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira
2000-01-01
The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.
Lee, Dong Hyun; Oh, Hwa Jin; Bai, Seoung Jae; Song, Young Seok
2014-06-24
Unwanted biofilm formation has a detrimental effect on bioelectrical energy harvesting in microbial cells. This issue still needs to be solved for higher power and longer durability and could be resolved with the help of nanoengineering in designing and manufacturing. Here, we demonstrate a photosynthetic solar cell (PSC) that contains a nanostructure to prevent the formation of biofilm by micro-organisms. Nanostructures were fabricated using nanoimprint lithography, where a film heater array system was introduced to precisely control the local wall temperature. To understand the heat and mass transfer phenomena behind the manufacturing and energy harvesting processes of PSC, we carried out a numerical simulation and experimental measurements. It revealed that the nanostructures developed on the proton exchange membrane enable PSC to produce enhanced output power due to the retarded microbial attachment on the Nafion membrane. We anticipate that this strategy can provide a pathway where PSC can ensure more renewable, sustainable, and efficient energy harvesting performance.
Structurally stable, thin silicon solar cells
NASA Technical Reports Server (NTRS)
Arndt, R. A.; Meulenberg, A.
1984-01-01
A fabrication process for structurally stable thin solar cell wafers that produce good power output after irradiation is described. The fabrication process is as follows. A 6 mil, circular wafer is oxidized on both sides. One side is then patterned with a rectangular array of holes in the oxide that are nominally 75 mils square and separated by 2 mil spacings. Wells are then etched into the silicon with KOH to a depth of 4 mils, leaving a 2 mil, unetched thickness. Two areas on the surface are left unetched to provide pads for bonding or testing. All oxide is then removed and the rest of the processing is normal; the unetched face is used as the illuminated face. When all other processing is complete, a 2 X 2 cm cell is sawed from the starting wafer leaving a border that is approximately 10 mils wide. The effective thickness, determined by weighing an unmetallized sample, of such a cell is about 2.4 mil.
Hybrid thermoelectric solar collector design and analysis
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.; Shaheen, K. E.
1982-01-01
A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.
NASA Astrophysics Data System (ADS)
Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.
2016-10-01
Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.
NASA Astrophysics Data System (ADS)
Wilson, Robert S.; Priestley, Kory J.; Thomas, Susan; Hess, Phillip
2009-08-01
The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers were used to measure earth-reflected solar and earth-emitted longwave radiances, at satellite altitude. The bolometers measured the earth radiances in the broadband shortwave solar (0.3 - 5.0 micrometers) and total (0.3->100 micrometers) spectral bands as well as in the (8 - 12 micrometers) water vapor window spectral band over geographical footprints as small as 10 kilometers at nadir. In May 2002, the fourth and fifth sets of CERES bolometers were launched aboard the Aqua spacecraft. Ground vacuum calibrations defined the initial count conversion coefficients that were used to convert the bolometer output voltages into filtered earth radiances. The mirror attenuator mosaic (MAM), a solar diffuser plate, was built into the CERES instrument package calibration system in order to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields-of-view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, overcoated with silicon dioxide. Temperature sensors are located in each MAM plate and baffle. The CERES MAM wass designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. In this paper, the MAM solar calibration procedures are presented along with on-orbit results. Comparisons are also made between the Aqua,Terra and the Tropical Rainfall Measurement Mission (TRMM) CERES MAM solar calibrations.
Laser photovoltaic power system synergy for SEI applications
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Hickman, J. M.
1991-01-01
Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.
SCARLET: Design of the Fresnel concentrator array for New Millennium Deep Space 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, D.M.; Eskenazi, M.I.
1997-12-31
The primary power for the JPL New Millennium Deep Space 1 spacecraft is a 2.6 kW concentrator solar array. This paper surveys the design and analysis employed to combine line-focus Fresnel lenses and multijunction (GaInP{sub 2}/GaAs/Ge) solar cells in the second-generation SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) system. The array structure and mechanisms are reviewed. Discussion is focused on the lens and receiver, from the optimizations of optical efficiency and thermal management, to the design issues of environmental extremes, reliability, producibility, and control of pointing error.
Solar array stepping to minimize array excitation
NASA Technical Reports Server (NTRS)
Bhat, Mahabaleshwar K. P. (Inventor); Liu, Tung Y. (Inventor); Plescia, Carl T. (Inventor)
1989-01-01
Mechanical oscillations of a mechanism containing a stepper motor, such as a solar-array powered spacecraft, are reduced and minimized by the execution of step movements in pairs of steps, the period between steps being equal to one-half of the period of torsional oscillation of the mechanism. Each pair of steps is repeated at needed intervals to maintain desired continuous movement of the portion of elements to be moved, such as the solar array of a spacecraft. In order to account for uncertainty as well as slow change in the period of torsional oscillation, a command unit may be provided for varying the interval between steps in a pair.
Siaw, Fei-Lu; Chong, Kok-Keong
2013-01-01
This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.
A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System
Siaw, Fei-Lu
2013-01-01
This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823
NASA Technical Reports Server (NTRS)
Nguyen, Daniel H.; Skladany, Lynn M.; Prats, Benito D.; Griffin, Thomas J. (Technical Monitor)
2001-01-01
The Hubble Space Telescope (HST) is one of NASA's most productive astronomical observatories. Launched in 1990, the HST continues to gather scientific data to help scientists around the world discover amazing wonders of the universe. To maintain HST in the fore front of scientific discoveries, NASA has routinely conducted servicing missions to refurbish older equipment as well as to replace existing scientific instruments with better, more powerful instruments. In early 2002, NASA will conduct its fourth servicing mission to the HST. This servicing mission is named Servicing Mission 3B (SM3B). During SM3B, one of the major refurbishment efforts will be to install new rigid-panel solar arrays as a replacement for the existing flexible-foil solar arrays. This is necessary in order to increase electrical power availability for the new scientific instruments. Prior to installing the new solar arrays on HST, the HST project must be certain that the new solar arrays will not cause any performance degradations to the observatory. One of the major concerns is any disturbance that can cause pointing Loss of Lock (LOL) for the telescope. While in orbit, the solar-array temperature transitions quickly from sun to shadow. The resulting thermal expansion and contraction can cause a "mechanical disturbance" which may result in LOL. To better characterize this behavior, a test was conducted at the European Space Research and Technology Centre (ESTEC) in the Large Space Simulator (LSS) thermal-vacuum chamber. In this test, the Sun simulator was used to simulate on-orbit effects on the solar arrays. This paper summarizes the thermal performance of the Solar Array-3 (SA3) during the Disturbance Verification Test (DVT). The test was conducted between 26 October 2000 and 30 October 2000. Included in this paper are: (1) brief description of the SA3's components and its thermal design; (2) a summary of the on-orbit temperature predictions; (3) pretest thermal preparations; (4) a description of the chamber and thermal monitoring sensors; and (6) presentation of test thermal data results versus flight predictions.
Theoretical analysis of phase locking in an array of globally coupled lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vysotskii, D V; Elkin, N N; Napartovich, A P
2013-09-30
A model of an array of globally coupled fibre lasers, with the same fraction of the total output beam power injected into each laser, is considered. Phase self-locking of the laser array makes it possible to increase the brightness of the total output beam without any devices for controlling the phases of output beams, which significantly complicate the laser system. The spread of the laser optical lengths is several hundreds of wavelengths (or even more); within the theory of hollow cavities, this spread should lead to a fast decrease in the total power with an increase in the number ofmore » lasers. The presence of the active medium may reduce this drop to a great extent due to the self-tuning of the laser array radiation wavelength to a value providing a maximum gain for the array lasing mode. The optical length of each element is assumed to be random. The increase in the phase-locking efficiency due to the gain saturation is explained based on the probabilistic approach. An iterative procedure is developed to find the array output power in the presence of steady-state phase locking. Calculations for different values of small-signal gain and the output-power fraction spent on global coupling are performed. It is shown that, when this fraction amounts to ∼20 % – 30 %, phase locking of up to 20 fibre lasers can be implemented with an efficiency as high as 70 %. (control of laser radiation parameters)« less
NASA Technical Reports Server (NTRS)
Smith, J. H.
1980-01-01
A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.
PASP Plus: An experiment to measure space-environment effects on photovoltaic power subsystems
NASA Technical Reports Server (NTRS)
Guidice, Donald A.
1992-01-01
The Photovoltaic Array Space Power Plus Diagnostic experiment (PASP Plus) was accepted as part of the APEX Mission payload aboard a Pegastar satellite to be orbited by a Pegasus launch vehicle in late 1992. The mission's elliptical orbit will allow us to investigate both space plasma and space radiation effects. PASP Plus will have eleven types of solar arrays and a full complement of environmental and interactions diagnostic sensors. Measurements of space-plasma interactions on the various solar arrays will be made at large negative voltages (to investigate arcing parameters) and at large positive voltages (to investigate leakage currents) by biasing the arrays to various levels up to -500 and +500 volts. The long-term deterioration in solar array performance caused by exposure to space radiation will also be investigated; radiation dosage will be measured by an electron/proton dosimeter included in the environmental sensor complement. Experimental results from PASP Plus will help establish cause-and-effect relationships and lead to improved design guidelines and test standards for new-technology solar arrays.