Proceedings of the First ERDA Semiannual Solar Photovoltaic Conversion Program Conference
NASA Technical Reports Server (NTRS)
1975-01-01
Organization, basic research and applied technology for the Solar Photovoltaic Conversion Program are outlined. The program aims to provide a technology base for low cost thin film solar cells and solar arrays.
Solar Energy: Its Technologies and Applications
DOE R&D Accomplishments Database
Auh, P. C.
1978-06-01
Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.
Carbon nanostructures for solar energy conversion schemes.
Guldi, Dirk M; Sgobba, Vito
2011-01-14
Developing environmentally friendly, renewable energy is one of the challenges to society in the 21st century. One of the renewable energy technologies is solar energy conversion--a technology that directly converts daylight into electricity. This highlight surveys recent breakthroughs in the field of implementing carbon nanostructures--fullerenes (0D), carbon nanotubes (1D), carbon nanohorns, and graphene (2D)--into solar energy conversion schemes, that is, bulk heterojunction and dye-sensitized solar cells.
The NASA program in Space Energy Conversion Research and Technology
NASA Astrophysics Data System (ADS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
The NASA program in Space Energy Conversion Research and Technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
1982-01-01
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
Thin film solar cells: research in an industrial perspective.
Edoff, Marika
2012-01-01
Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.
Conversion system overview assessment. Volume 1: solar thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayadev, T. S.; Henderson, J.; Finegold, J.
1979-08-01
An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)
NASA Technical Reports Server (NTRS)
Thekaekara, M. P.
1974-01-01
Papers on the state of the art and future prospects of solar energy utilization in the United States are included. Research and technologies for heating and cooling of buildings, solar thermal energy conversion, photovoltaic conversion, biomass production and conversion, wind energy conversion and ocean thermal energy conversion are covered. The increasing funding of the National Solar Energy Program is noted. Individual items are announced in this issue.
Solar thermal technology report, FY 1981. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.
Solar '80s: A Teacher's Handbook for Solar Energy Education.
ERIC Educational Resources Information Center
LaHart, David E.
This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…
Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi
2018-01-17
Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.
SPS Energy Conversion Power Management Workshop
NASA Technical Reports Server (NTRS)
1980-01-01
Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.
Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…
Physical Limits of Solar Energy Conversion in the Earth System.
Kleidon, Axel; Miller, Lee; Gans, Fabian
2016-01-01
Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy.
A review on solar cells from Si-single crystals to porous materials and quantum dots
Badawy, Waheed A.
2013-01-01
Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed. PMID:25750746
A review on solar cells from Si-single crystals to porous materials and quantum dots.
Badawy, Waheed A
2015-03-01
Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.
NASA Technical Reports Server (NTRS)
1973-01-01
Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.
Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu
2013-08-28
The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).
Methods and analysis of factors impact on the efficiency of the photovoltaic generation
NASA Astrophysics Data System (ADS)
Tianze, Li; Xia, Zhang; Chuan, Jiang; Luan, Hou
2011-02-01
First of all, the thesis elaborates two important breakthroughs which happened In the field of the application of solar energy in the 1950s.The 21st century the development of solar photovoltaic power generation will have the following characteristics: the continued high growth of industrial development, the significantly reducing cost of the solar cell, the large-scale high-tech development of photovoltaic industries, the breakthroughs of the film battery technology, the rapid development of solar PV buildings integration and combined to the grids. The paper makes principles of solar cells the theoretical analysis. On the basis, we study the conversion efficiency of solar cells, find the factors impact on the efficiency of the photovoltaic generation, solve solar cell conversion efficiency of technical problems through the development of new technology, and open up new ways to improve the solar cell conversion efficiency. Finally, the paper connecting with the practice establishes policies and legislation to the use of encourage renewable energy, development strategy, basic applied research etc.
Durrant, James R
2013-08-13
This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.
Kolpak, Alexie M; Grossman, Jeffrey C
2013-01-21
Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.
Silicon nanowires for photovoltaic solar energy conversion.
Peng, Kui-Qing; Lee, Shuit-Tong
2011-01-11
Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.
Organic electronics on fibers for energy conversion applications
NASA Astrophysics Data System (ADS)
O'Connor, Brendan T.
Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.
Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.
ERIC Educational Resources Information Center
Longe, Karen M.; McClelland, Michael J.
Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…
NASA Technical Reports Server (NTRS)
1973-01-01
A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.
NASA Technical Reports Server (NTRS)
Billman, K. W.
1978-01-01
Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.
NASA Technical Reports Server (NTRS)
1974-01-01
NASA technology contributions to create energy sources include direct solar heating and cooling systems, wind generation of electricity, solar thermal energy turbine drives, solar cells, and techniques for locating, producing, and collecting organic materials for conversion into fuel.
Beaming-In On Student-Made Solar Technology
ERIC Educational Resources Information Center
Chiotelis, Charles L.
1978-01-01
Completion of a unit on heat energy motivated students to devise their own solar collectors, parabolic solar cookers, and designs for a solar home. Using their solar projects, the students tests hypotheses they might have had concerning heating capacities, insulation values, or energy conversions. (MA)
Toward cost-effective solar energy use.
Lewis, Nathan S
2007-02-09
At present, solar energy conversion technologies face cost and scalability hurdles in the technologies required for a complete energy system. To provide a truly widespread primary energy source, solar energy must be captured, converted, and stored in a cost-effective fashion. New developments in nanotechnology, biotechnology, and the materials and physical sciences may enable step-change approaches to cost-effective, globally scalable systems for solar energy use.
NASA-OAST program in photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.
1982-01-01
The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.
Review of NASA programs in applying aerospace technology to energy
NASA Technical Reports Server (NTRS)
Schwenk, F. C.
1981-01-01
NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.
Space Photovoltaic Research and Technology, 1989
NASA Technical Reports Server (NTRS)
1991-01-01
Remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications is reported. Papers were presented in a variety of technical areas, including multi-junction cell technology, GaAs and InP cells, system studies, cell and array development, and non-solar direct conversion. Five workshops were held to discuss the following topics: mechanical versus monolithic multi-junction cells; strategy in space flight experiments; non-solar direct conversion; indium phosphide cells; and space cell theory and modeling.
Research opportunities to advance solar energy utilization.
Lewis, Nathan S
2016-01-22
Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.
Business developments of nonthermal solar technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.A.; Watts, R.L.; Williams, T.A.
1985-10-01
Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1979-01-01
Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.
NASA Technical Reports Server (NTRS)
Schueler, D. G.
1978-01-01
Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.
Solar concentrator technology development for space based applications, volume 1
NASA Technical Reports Server (NTRS)
Pintz, A.; Castle, C. H.; Reimer, R. R.
1992-01-01
Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.
Solar concentrator technology development for space based applications, volume 2
NASA Technical Reports Server (NTRS)
Pintz, A.; Castle, C. H.; Reimer, R. R.
1992-01-01
Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.
NASA Technical Reports Server (NTRS)
Glaser, P. E.
1977-01-01
Microwave beaming of satellite-collected solar energy to earth for conversion to useful industrial power is evaluated for feasibility, with attention given to system efficiencies and costs, ecological impact, hardware to be employed, available options for energy conversion and transmission, and orbiting and assembly. Advantages of such a power generation and conversion system are listed, plausible techniques for conversion of solar energy (thermionic, thermal electric, photovoltaic) and transmission to earth (lasers, arrays of mirrors, microwave beams) are compared. Structural fatigue likely to result from brief daily eclipses, 55% system efficiency at the present state of the art, present projections of system costs, and projected economic implications of the technology are assessed. Two-stage orbiting and assembly plans are described.
Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu
2015-08-28
Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.
Solar pumped lasers: Work in progress at the University of Chicago
NASA Astrophysics Data System (ADS)
Winston, Roland
Of the variety of solar energy conversion schemes that have been explored, the conversion of solar flux to coherent laser radiation is relatively new. Solar flux at sufficiently high concentrations to overcome threshold for the really important laser materials has not been available. This technological inhibition has recently been overcome through the application of nonimaging optics through the demonstration of concentration levels of 84,000 suns at the University of Chicago in a refractive medium (sapphire) and of over 20,000 suns in air at the Solar Energy Research Institute High Flux Facility. A thermodynamic overview is presented of solar lasers including solid state lasers and dye lasers.
Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.
Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song
2016-10-10
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.
Xie, Ming; Gruen, Dieter M
2010-11-18
State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.
NASA Astrophysics Data System (ADS)
Caban Acevedo, Miguel
The success of solar energy technologies depends not only on highly efficient solar-to-electrical energy conversion, charge storage or chemical fuel production, but also on dramatically reduced cost, to meet the future terawatt energy challenges we face. The enormous scale involved in the development of impactful solar energy technologies demand abundant and inexpensive materials, as well as energy-efficient and cost-effective processes. As a result, the investigation of semiconductor, catalyst and electrode materials made of earth-abundant and sustainable elements may prove to be of significant importance for the long-term adaptation of solar energy technologies on a larger scale. Among earth-abundant semiconductors, iron pyrite (cubic FeS2) has been considered the most promising solar energy absorber with the potential to achieve terawatt energy-scale deployment. Despite extensive synthetic progress and device efforts, the solar conversion efficiency of iron pyrite has remained below 3% since the 1990s, primarily due to a low open circuit voltage (V oc). The low photovoltage (Voc) of iron pyrite has puzzled scientists for decades and limited the development of cost-effective solar energy technologies based on this otherwise promising semiconductor. Here I report a comprehensive investigation of the syntheses and properties of iron pyrite materials, which reveals that the Voc of iron pyrite is limited by the ionization of a high density of intrinsic bulk defect states despite high density surface states and strong surface Fermi level pinning. Contrary to popular belief, bulk defects most-likely caused by intrinsic sulfur vacancies in iron pyrite must be controlled in order to enable this earth-abundant semiconductor for cost-effective and sustainable solar energy conversion. Lastly, the investigation of iron pyrite presented here lead to the discovery of ternary pyrite-type cobalt phosphosulfide (CoPS) as a highly-efficient earth-abundant catalyst material for electrochemical and solar energy driven hydrogen production.
Zhaodong Li; Chunhua Yao; Yanhao Yu; Zhiyong Cai; Xudong Wang
2014-01-01
Among current endeavors to explore renewable energy technologies, photoelectrochemical (PEC) water splitting holds great promise for conversion of solar energy to chemical energy. [ 1â4 ] Light absorption, charge separation, and appropriate interfacial redox reactions are three key aspects that lead to highly efficient solar energy conversion. [ 5â10 ] Therefore,...
Solar thermal program summary. Volume 1: Overview, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-02-01
The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.
Solar-thermal conversion and thermal energy storage of graphene foam-based composites.
Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng
2016-08-14
Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.
Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.
Santra, Pralay K; Kamat, Prashant V
2012-02-08
To make Quantum Dot Sensitized Solar Cells (QDSC) competitive, it is necessary to achieve power conversion efficiencies comparable to other emerging solar cell technologies. By employing Mn(2+) doping of CdS, we have now succeeded in significantly improving QDSC performance. QDSC constructed with Mn-doped-CdS/CdSe deposited on mesoscopic TiO(2) film as photoanode, Cu(2)S/Graphene Oxide composite electrode, and sulfide/polysulfide electrolyte deliver power conversion efficiency of 5.4%.
NASA Technical Reports Server (NTRS)
Wise, J.
1979-01-01
Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.
Recent Progress on Integrated Energy Conversion and Storage Systems.
Luo, Bin; Ye, Delai; Wang, Lianzhou
2017-09-01
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.
Recent Progress on Integrated Energy Conversion and Storage Systems
Luo, Bin; Ye, Delai
2017-01-01
Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future. PMID:28932673
High-performance flat-panel solar thermoelectric generators with high thermal concentration
NASA Astrophysics Data System (ADS)
Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang
2011-07-01
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.
FOCUSing on Innovative Solar Technologies
Rohlfing, Eric; Holman, Zak, Angel, Roger
2018-06-22
Many of ARPA-Eâs technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-Eâs Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-01-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-26
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
NASA Astrophysics Data System (ADS)
Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun
2012-02-01
A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h
NASA Astrophysics Data System (ADS)
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
Photovoltaics and solar thermal conversion to electricity - Status and prospects
NASA Technical Reports Server (NTRS)
Alper, M. E.
1979-01-01
Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.
Advanced Energy Conversion Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.
2006-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.
Potential high efficiency solar cells: Applications from space photovoltaic research
NASA Technical Reports Server (NTRS)
Flood, D. J.
1986-01-01
NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.
Advanced tendencies in development of photovoltaic cells for power engineering
NASA Astrophysics Data System (ADS)
Strebkov, D. S.
2015-01-01
Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.
Recent progress in high-output-voltage silicon solar cells
NASA Technical Reports Server (NTRS)
Muelenberg, A.; Arndt, R. A.; Allison, J. F.; Weizer, V.
1980-01-01
The status of the technology associated with the development of high output voltage silicon solar cells is reported. The energy conversion efficiency of a double diffusion process is compared to that of a single diffusion process. The efficiency of a 0.1 ohm/cm solar cell is characterized both before and after covering.
Organic and perovskite solar cells: Working principles, materials and interfaces.
Marinova, Nevena; Valero, Silvia; Delgado, Juan Luis
2017-02-15
In the last decades organic solar cells (OSCs) have been considered as a promising photovoltaic technology with the potential to provide reasonable power conversion efficiencies combined with low cost and easy processability. Unexpectedly, Perovskite Solar Cells (PSCs) have experienced unprecedented rise in Power Conversion Efficiency (PCE) thus emerging as a highly efficient photovoltaic technology. OSCs and PSCs are two different kind of devices with distinct charge generation mechanism, which however share some similarities in the materials processing, thus standard strategies developed for OSCs are currently being employed in PSCs. In this article, we recapitulate the main processes in these two types of photovoltaic technologies with an emphasis on interfacial processes and interfacial modification, spotlighting the materials and newest approaches in the interfacial engineering. We discuss on the relevance of well-known materials coming from the OSCs field, which are now being tested in the PSCs field, while maintaining a focus on the importance of the material design for highly efficient, stable and accessible solar cells. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1989-01-01
Engines promise cost-effective solar-power generation. Report describes two concepts for Stirling-engine systems for conversion of solar heat to electrical energy. Recognized most promising technologies for meeting U.S. Department of Energy goals for performance and cost for terrestrial electrical-energy sources.
Photovoltaic Power for Future NASA Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey; Bailey, Sheila G.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
Recent advances in crystalline solar cell technology are reviewed. Dual-junction and triple-junction solar cells are presently available from several U. S. vendors. Commercially available triple-junction cells consisting of GaInP, GaAs, and Ge layers can produce up to 27% conversion efficiency in production lots. Technology status and performance figures of merit for currently available photovoltaic arrays are discussed. Three specific NASA mission applications are discussed in detail: Mars surface applications, high temperature solar cell applications, and integrated microelectronic power supplies for nanosatellites.
High-performance flat-panel solar thermoelectric generators with high thermal concentration.
Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang
2011-05-01
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.
Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.
2005-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars.
Projected techno-economic improvements for advanced solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.
1979-01-01
The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.
A Solar Chimney for renewable energy production: thermo-fluid dynamic optimization by CFD analyses
NASA Astrophysics Data System (ADS)
Montelpare, S.; D'Alessandro, V.; Zoppi, A.; Costanzo, E.
2017-11-01
This paper analyzes the performance of a solar tower designed for renewable energy production. The Solar Chimney Power Plant (SCPP) involves technology that converts solar energy by means of three basic components: a large circular solar collector, a high tower in the center of the collector and a turbine generator inside the chimney. SCPPs are characterized by long term operational life, low maintenance costs, zero use of fuels, no use of water and no emissions of greenhouse gases. The main problem of this technology is the low energy global conversion coefficient due to the presence of four conversions: solar radiation > thermal energy > kinetic energy > mechanical energy > electric energy. This paper defines its starting point from the well known power plant of Manzanares in order to calibrate a numerical model based on finite volumes. Following that, a solar tower with reduced dimensions was designed and an analysis on various geometric parameters was conducted: on the inlet section, on the collector slope, and on the fillet radius among the SUPP sections. Once the optimal solution was identified, a curved deflectors able to induce a flow swirl along the vertical tower axis was designed.
Thermionic energy conversion technology - Present and future
NASA Technical Reports Server (NTRS)
Shimada, K.; Morris, J. F.
1977-01-01
Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.
Hybrid photosynthesis-powering biocatalysts with solar energy captured by inorganic devices.
Zhang, Tian; Tremblay, Pier-Luc
2017-01-01
The biological reduction of CO 2 driven by sunlight via photosynthesis is a crucial process for life on earth. However, the conversion efficiency of solar energy to biomass by natural photosynthesis is low. This translates in bioproduction processes relying on natural photosynthesis that are inefficient energetically. Recently, hybrid photosynthetic technologies with the potential of significantly increasing the efficiency of solar energy conversion to products have been developed. In these systems, the reduction of CO 2 into biofuels or other chemicals of interest by biocatalysts is driven by solar energy captured with inorganic devices such as photovoltaic cells or photoelectrodes. Here, we explore hybrid photosynthesis and examine the strategies being deployed to improve this biotechnology.
NASA Astrophysics Data System (ADS)
Brunner, Sebastian; Zajac, Kai; Nadler, Michael; Seifart, Klaus; Kaufmann, Christian A.; Caballero, Raquel; Schock, Hans-Werner; Hartmann, Lars; Otte, Karten; Rahm, Andreas; Scheit, Christian; Zachmann, Hendrick; Kessler, Friedrich; Wurz, Roland; Schulke, Peter
2011-10-01
A group of partners from an academic and industrial background are developing a flexible Cu(In,Ga)Se2 (CIGSe) thin film solar cell technology on a polyimide substrate that aims to be a future alternative to current rigid solar cell technologies for space applications. In particular on missions with high radiation volumes, the superior tolerance of chalcopyrite based thin film solar cell (TFSC) technologies with respect to electron and proton radiation, when compared to the established Si- or III-V based technologies, can be advantageous. Of all thin film technologies, those based on CIGSe have the highest potential to reach attractive photovoltaic conversion efficiencies and combine these with low weight in order to realize high power densities on solar cell and generator level. The use of a flexible substrate ensures a high packing density. A working demonstrator is scheduled for flight this year.
Solar energy for electricity and fuels.
Inganäs, Olle; Sundström, Villy
2016-01-01
Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.
Solar Reforming of Carbon Dioxide to Produce Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis Schuetzle; Robert Schuetzle
2010-12-31
This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies.more » The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Assessment of Current Commercial Scale Fisher-Tropsch (F-T) Technologies for the Conversion of Syngas to Fuels; (4) An Overview of CO2 Capture Technologies from Various Industrial Sources; and (5) Lifecycle Analysis for the Capture and Conversion of CO2 to Synthetic Diesel Fuel. Commercial scale Sunexus CO2 Solar Reformer plant designs, proposed in this report, should be able to utilize waste CO2 from a wide variety of industrial sources to produce a directly usable synthetic diesel fuel that replaces petroleum derived fuel, thus improving the United States energy security while also sequestering CO2. Our material balance model shows that every 5.0 lbs of CO2 is transformed using solar energy into 6.26 lbs (1.0 U.S. gallon) of diesel fuel and into by-products, which includes water. Details are provided in the mass and energy model in this report.« less
Recyclable organic solar cells on cellulose nanocrystal substrates
Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard
2013-01-01
Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333
Recyclable organic solar cells on cellulose nanocrystal substrates.
Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard
2013-01-01
Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.
Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1983-01-01
Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.
Mushrooms as Efficient Solar Steam-Generation Devices.
Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia
2017-07-01
Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy
2017-06-01
Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.
1979-01-01
Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.
NASA Astrophysics Data System (ADS)
Huang, Qi-Zhang; Zhu, Yan-Qing; Shi, Ji-Fu; Wang, Lei-Lei; Zhong, Liu-Wen; Xu, Gang
2017-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 21103194, 51506205, and 21673243), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2014A010106018 and 2013A011401011), the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505015), the Special Support Program of Guangdong Province, China (Grant No. 2014TQ01N610), the Director Innovation Foundation of Guangzhou Institute of Energy Conversion, China (Grant No. y307p81001), and the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province, China (Grant No. 2014B090904071).
Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun
2018-05-09
Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.
Liu, Zhiyong; Zhong, Yan; Sun, Bo; Liu, Xingyue; Han, Jinghui; Shi, Tielin; Tang, Zirong; Liao, Guanglan
2017-07-12
Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm 2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.
Space-based solar power conversion and delivery systems study. Volume 5: Economic analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Space-based solar power conversion and delivery systems are studied along with a variety of economic and programmatic issues relevant to their development and deployment. The costs, uncertainties and risks associated with the current photovoltaic Satellite Solar Power System (SSPS) configuration, and issues affecting the development of an economically viable SSPS development program are addressed. In particular, the desirability of low earth orbit (LEO) and geosynchronous (GEO) test satellites is examined and critical technology areas are identified. The development of SSPS unit production (nth item), and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM) are reported. The RAM was then used to evaluate the current SSPS configuration expected costs and cost-risk associated with this configuration. By examining differential costs and cost-risk as a function of postulated technology developments, the critical technologies, that is, those which drive costs and/or cost-risk, are identified. It is shown that the key technology area deals with productivity in space, that is, the ability to fabricate and assemble large structures in space, not, as might be expected, with some hardware component technology.
Adaptability of solar energy conversion systems on ships
NASA Astrophysics Data System (ADS)
Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.
2016-08-01
International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.
Solar to fuels conversion technologies: a perspective.
Tuller, Harry L
2017-01-01
To meet increasing energy needs, while limiting greenhouse gas emissions over the coming decades, power capacity on a large scale will need to be provided from renewable sources, with solar expected to play a central role. While the focus to date has been on electricity generation via photovoltaic (PV) cells, electricity production currently accounts for only about one-third of total primary energy consumption. As a consequence, solar-to-fuel conversion will need to play an increasingly important role and, thereby, satisfy the need to replace high energy density fossil fuels with cleaner alternatives that remain easy to transport and store. The solar refinery concept (Herron et al. in Energy Environ Sci 8:126-157, 2015), in which captured solar radiation provides energy in the form of heat, electricity or photons, used to convert the basic chemical feedstocks CO 2 and H 2 O into fuels, is reviewed as are the key conversion processes based on (1) combined PV and electrolysis, (2) photoelectrochemically driven electrolysis and (3) thermochemical processes, all focused on initially converting H 2 O and CO 2 to H 2 and CO. Recent advances, as well as remaining challenges, associated with solar-to-fuel conversion are discussed, as is the need for an intensive research and development effort to bring such processes to scale.
ERIC Educational Resources Information Center
Delaware Univ., Newark. Coll. of Education.
This activity is designed for secondary school students. The process of constructing a model solar building includes consideration of many fundamental scientific principles, such as the nature of heat, light, electricity, and energy conversion technology. When the model solar building is completed, there are numerous possibilities for the use of…
Solar photovoltaic power systems: an electric utility R & d perspective.
Demeo, E A; Taylor, R W
1984-04-20
Solar photovoltaic technology is receiving increasing attention as a prospective source of bulk, electric utility power within the next 10 to 20 years. Successful development will require solar energy conversion efficiencies of about 15 percent for photovoltaic flat-plate modules, or about 25 percent for photovoltaic cells using highly concentrated sunlight. Three different cell technologies have a better than even chance of achieving these target efficiencies with costs and operating lifetimes that would allow significant use by electric utilities. The challenge for the next decade is to push photovoltaic technology to its physical limits while expanding markets and user confidence with currently available systems.
Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.
ERIC Educational Resources Information Center
Flavin, Christopher
Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less
Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui; ...
2017-07-13
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less
Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J
2017-07-13
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua
2018-06-14
Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Facing technological challenges of Solar Updraft Power Plants
NASA Astrophysics Data System (ADS)
Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.
2015-01-01
The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.
NASA Technical Reports Server (NTRS)
Allen, Bog; Delventhal, Rex; Frye, Patrick
2004-01-01
Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2004-01-01
The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.
NASA Astrophysics Data System (ADS)
Tanaka, Makoto; Taguchi, Mikio; Matsuyama, Takao; Sawada, Toru; Tsuda, Shinya; Nakano, Shoichi; Hanafusa, Hiroshi; Kuwano, Yukinori
1992-11-01
A new type of a-Si/c-Si heterojunction solar cell, called the HIT (Heterojunction with Intrinsic Thin-layer) solar cell, has been developed based on ACJ (Artificially Constructed Junction) technology. A conversion efficiency of more than 18% has been achieved, which is the highest ever value for solar cells in which the junction was fabricated at a low temperature (<200°C).
NASA Technical Reports Server (NTRS)
Wronski, C. R.
1985-01-01
The stability of solar cells is a key factor in determining the reliability of photovoltaic modules and is of great interest in the case of solar cells having a new technology which has not yet been fully developed. In particular this question arises with hydrogenated amorphous silicon (a-Si) solar cells because a-Si exhibits reversible light induced changes in its electronic properties, commonly referred to as the Staebler-Wronski effect (SWE). Continuous progress is being made in the peak conversion efficiencies of a-Si solar cells and efficiencies in excess of 11% have been achieved. However, stability is still a problem. ARCO Solar reports results on solar cells which, after over a year's exposure to sunlight, under open circuit conditions, still have about 7% conversion efficiency. Other results show a region of fast degradation for about a month, after which the degradation diminishes rapidly.
Current Status of Study on Hydrogen Production with Space Solar Power Systems (SSPS)
NASA Astrophysics Data System (ADS)
Mori, M.; Kagawa, H.; Nagayama, H.; Saito, Y.
2004-12-01
Japan Aerospace Exploration Agency (JAXA) has been conducting studies on Space Solar Power Systems (SSPS) using microwave and laser beams for years since FY1998 organizing a special committee and working groups. The microwave based SSPS are huge solar power systems that generate GW power by solar cells. The electric power is transmitted via microwave from the SSPS to the ground. In the laser based SSPS, a solar condenser equipped with lenses or mirrors and laser-generator would be put into orbit. A laser beam would be sent to Earth-based hydrogen generating device. We are proposing a roadmap that consists of a stepwise approach to achieve commercial SSPS in 20-30 years. The first step is 50kW class Technology Demonstration Satellite to demonstrate microwave power transmission. The second step is to demonstrate robotic assembly of 10MW class large scale flexible structure in space on ISS co-orbit. The third step is to build a prototype SSPS in GEO. The final step is to build commercial SSPS in GEO. We continue the study of SSPS concepts and architectures, technology flight demonstration and major technology development. System design of tens of kW class Technology Demonstration Satellite and conceptual study of 10MW class demonstration system on ISS co-orbit are also conducted. Several key technologies which are needed to be developed in appropriate R&D roadmap, such as high-voltage solar cell array, fiber type of direct solar pumping solid-state laser, high efficiency magnetron, thermal control technology and control technology of large scale flexible structure etc. are also investigated. In the study of concept design of commercial SSPS mentioned above, we have studied some configurations of both microwave based SSPS and laser based SSPS. In case of microwave based SSPS, the solar energy must be converted to electricity and then converted to a microwave beam. The on-ground rectifying antenna will collect the microwave beam and convert it to electricity to connect to commercial power grids. From the past experiences of the conceptual design of the1GW class SSPS, it is clear that system with the mirrors and modularized unit which integrated solar cells and microwave power transmitters is promising. In this type of SSPS, the solar lights are directed to the energy conversion unit integrated solar cells and microwave power transmitters using mirrors. The key factor in designing systems is feasibility of thermal system. Considering above these factors, some reference models are being considered now. FY2003 reference model is the model for formation flight without the center truss which connect to primary mirrors to energy conversion unit. Using this model as basis, we are carrying out examination from various viewpoints aiming at the cost minimum to build and maintain the systems. In case of laser based SSPS, the laser beam would be directly produced from the solar light using the direct solar pumping solid-state laser device. This laser beams would be collected on ground and used to produce hydrogen from seawater. The receiving / energy conversion station is settled on an ocean, and producing hydrogen can be stored and transported by ships to consumers. In designing laser based SSPS, conversion efficiency of the direct solar pumping solid-state laser and feasibility of thermal system are critical factors. Since magnification of solar concentrator is very high, improvement of thermal control system is important. Feasibility of its ground facilities and production technology of hydrogen using laser beams has been also studied. Both hydrogen generating systems with photo-catalyst device and electrolytic ones have been examined. From the past experiences of this study, high efficient electric power generating technology using the solar cell which suited the wavelength of laser is promising. The life cycle cost model of laser based SSPS was created and evaluated its validity. Sensitivity analysis of laser based SSPS are also continued aiming at hydrogen generating cost of around 20 cent per Nm3 . This paper presents a summary of studies on SSPS that JAXA has examined.
Solar parabolic dish technology evaluation report
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1984-01-01
The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.
Solar energy conversion with photon-enhanced thermionic emission
NASA Astrophysics Data System (ADS)
Kribus, Abraham; Segev, Gideon
2016-07-01
Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been examined as candidates for radiation absorbers and electron emitters, with no conclusion yet on the best set of materials to achieve high efficiency. Analyses have shown the complexity of the energy conversion and transport processes, and the significance of several loss mechanisms, requiring careful control of material properties and optimization of the device structure. Here we survey current research on PETE modeling, materials, and device configurations, outline the advances made, and stress the open issues and future research needed. Based on the substantial progress already made in this young topic, and the potential of high conversion efficiency based on theoretical performance limits, continued research in this direction is very promising and may yield a competitive technology for solar electricity generation.
Magomedov, Artiom; Sakai, Nobuya; Kamarauskas, Egidijus; Jokubauskaitė, Gabrielė; Franckevičius, Marius; Jankauskas, Vygintas; Snaith, Henry J; Getautis, Vytautas
2017-05-04
Perovskite solar cells are considered a promising technology for solar-energy conversion, with power conversion efficiencies currently exceeding 20 %. In most of the reported devices, Spiro-OMeTAD is used for positive-charge extraction and transport layer. Although a number of alternative hole-transporting materials with different aromatic or heteroaromatic fragments have already been synthesized, a cheap and well-performing hole-transporting material is still in high demand. In this work, a two-step synthesis of a carbazole-based hole-transporting material is presented. Synthesized compounds exhibited amorphous nature, good solubility and thermal stability. The perovskite solar cells employing the newly synthesized material generated a power conversion efficiency of 16.5 % which is slightly lower than that obtained with Spiro-OMeTAD (17.5 %). The low-cost synthesis and high performance makes our hole-transport material promising for applications in perovskite-based optoelectronic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Overview of the DOE/SERI Biochemical Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J D
1986-09-01
The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additionalmore » improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.« less
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
Space Photovoltaic Research and Technology 1995
NASA Technical Reports Server (NTRS)
Landis, Geoffrey (Compiler)
1995-01-01
The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.
Space Photovoltaic Research and Technology 1995
NASA Technical Reports Server (NTRS)
Landis, Geoffrey (Compiler)
1996-01-01
The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.
Roadmap on optical energy conversion
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...
2016-06-24
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.
PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters
Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...
2015-08-25
As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-01
This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials,more » processes, and device structure and characterization techniques.« less
Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)
NASA Technical Reports Server (NTRS)
1993-01-01
The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on a variety of cells were also presented.
Efficiency of bulk-heterojunction organic solar cells
Scharber, M.C.; Sariciftci, N.S.
2013-01-01
During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787
Solar electricity and solar fuels
NASA Astrophysics Data System (ADS)
Spiers, David J.
1989-04-01
The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.
Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.
Guo, Ankang; Ming, Xin; Fu, Yang; Wang, Gang; Wang, Xianbao
2017-09-06
Solar vapor generation is a promising and whole new branch of photothermal conversion for harvesting solar energy. Various materials and devices for solar thermal conversion were successively produced and reported for higher solar energy utilization in the past few years. Herein, a compact device of reduced graphene oxides (rGO) and paper fibers was designed and assembled for efficient solar steam generation under light illumination, and it consists of water supply pipelines (WSP), a thermal insulator (TI) and a double-sided absorbing film (DSF). Heat localization is enabled by the black DSF due to its broad absorption of sunlight. More importantly, the heat transfer, from the hot DSF to the cold base fluid (water), was suppressed by TI with a low thermal conductivity. Meanwhile, bulk water was continuously transported to the DSF by WSP through TI, which was driven by the surface energy and surface tension based on the capillary effect. The effects of reduction degrees of rGO on the photothermal conversion were explored, and the evaporation efficiency reached 89.2% under one sun with 60 mg rGO. This new microdevice provided a basic technical support for distillation, desalination, sewage treatment, and related technologies.
NASA Technical Reports Server (NTRS)
Conway, E. J.
1979-01-01
A brief overview of the development of GaAs solar cell technology is provided. An 18 to 20 percent AMO efficiency, stability under radiation and elevated-temperature operation, and high power-to-weight ratio are among the factors studied. Cell cost and availability are also examined.
Triplet-triplet annihilation photon-upconversion: towards solar energy applications.
Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper
2014-06-14
Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.
Research progress on organic-inorganic halide perovskite materials and solar cells
NASA Astrophysics Data System (ADS)
Ono, Luis K.; Qi, Yabing
2018-03-01
Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.
Berny, Stephane; Blouin, Nicolas; Distler, Andreas; Egelhaaf, Hans-Joachim; Krompiec, Michal; Lohr, Andreas; Lozman, Owen R; Morse, Graham E; Nanson, Lana; Pron, Agnieszka; Sauermann, Tobias; Seidler, Nico; Tierney, Steve; Tiwana, Priti; Wagner, Michael; Wilson, Henry
2016-05-01
The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large-scale production.
Single-graded CIGS with narrow bandgap for tandem solar cells.
Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N
2018-01-01
Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.
Single-graded CIGS with narrow bandgap for tandem solar cells
Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.
2018-01-01
Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, Lee A.; Loomis, James; Bhatia, Bikram
2015-12-09
Solar energy is a bountiful renewable energy resource: the energy in the sunlight that reaches Earth in an hour exceeds the energy consumed by all of humanity in a year.(1) While the phrase “solar energy conversion” probably brings photovoltaic (PV) cells to mind first, PV is not the only option for generating electricity from sunlight. Another promising technology for solar energy conversion is solar–thermal conversion, commonly referred to as concentrating solar power (CSP).(2) The first utility-scale CSP plants were constructed in the 1980s, but in the two decades that followed, CSP saw little expansion.(3, 4) More recent years, however, havemore » seen a CSP renaissance due to unprecedented growth in the adoption of CSP.(3, 5) Photographs of two operating CSP plants, a parabolic trough collector plant and a central receiver (or “power tower”), are shown here.« less
NASA Astrophysics Data System (ADS)
Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko
2017-09-01
We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.
Bayro-Kaiser, Vinzenz; Nelson, Nathan
2017-09-01
Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.
2013-08-01
Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.
Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.
A new dawn for industrial photosynthesis.
Robertson, Dan E; Jacobson, Stuart A; Morgan, Frederick; Berry, David; Church, George M; Afeyan, Noubar B
2011-03-01
Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO(2) into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.
Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology
Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk
2015-01-01
This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer. PMID:26420466
High Efficiency Solar Thermochemical Reactor for Hydrogen Production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Anthony H.
2017-09-30
This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.
Molecular diodes in optical rectennas
NASA Astrophysics Data System (ADS)
Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic
2016-09-01
The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.
Understanding chemically processed solar cells based on quantum dots
NASA Astrophysics Data System (ADS)
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-12-01
Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.
Understanding chemically processed solar cells based on quantum dots.
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-01-01
Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO 2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1991-01-01
The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.
Decades After Developing Technology, NREL Sets New Solar-to-Hydrogen Record
recently achieved 16.2% solar-to-hydrogen conversion efficiency. Photo by Dennis Schroeder Innovation is to split water into hydrogen and oxygen. Photo by Dennis Schroeder Photo shows a photoelectrochemical device to split water into hydrogen and oxygen. Photo by Dennis Schroeder Second Look Leads to Record
Solar Parabolic Dish Annual Technology Evaluation Report
NASA Technical Reports Server (NTRS)
1983-01-01
The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1982 are summarized. Included are discussions on designs of module development including their concentrator, receiver, and power conversion subsystems. Analyses and test results, along with progress on field tests, Small Community Experiment System development, and tests at the Parabolic Dish Test Site are also included.
Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.
Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Raliya, Ramesh; Biswas, Pratim; Naik, Rajesh R; Singamaneni, Srikanth
2017-03-01
Solar steam generation is a highly promising technology for harvesting solar energy, desalination and water purification. We introduce a novel bilayered structure composed of wood and graphene oxide (GO) for highly efficient solar steam generation. The GO layer deposited on the microporous wood provides broad optical absorption and high photothermal conversion resulting in rapid increase in the temperature at the liquid surface. On the other hand, wood serves as a thermal insulator to confine the photothermal heat to the evaporative surface and to facilitate the efficient transport of water from the bulk to the photothermally active space. Owing to the tailored bilayer structure and the optimal thermo-optical properties of the individual components, the wood-GO composite structure exhibited a solar thermal efficiency of ∼83% under simulated solar excitation at a power density of 12 kW/m 2 . The novel composite structure demonstrated here is highly scalable and cost-efficient, making it an attractive material for various applications involving large light absorption, photothermal conversion and heat localization.
Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.
Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian
2017-11-23
Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The application of electrospun titania nanofibers in dye-sensitized solar cells.
Krysova, Hana; Zukal, Arnost; Trckova-Barakova, Jana; Chandiran, Aravind Kumar; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Kavan, Ladislav
2013-01-01
Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated.
Proceedings of the 14Th Space Photovoltaic Research and Technology Conference (SPRAT 14)
NASA Technical Reports Server (NTRS)
Landis, Geoffrey (Compiler)
1995-01-01
The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Heat engines were evaluated for terrestrial Solar Distributed Heat Receivers. The Stirling engine was identified as one of the most promising heat engines for terrestrial applications. Technology development is also conducted for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other.
Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong
2018-06-27
The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar-energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO 2 photoanode in the cathode side. Direct charging of the cell by solar irradiation results in the conversion of solar energy in to chemical energy. Whereas discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br 2 /Br - and I 3 - /I - in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5 V with good round-trip efficiencies. This design is expected to be a potential alternative toward the development of affordable, inexhaustible, and clean solar-energy technologies.
Application of nanomaterials in solar thermal energy storage
NASA Astrophysics Data System (ADS)
Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada
2018-06-01
Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.
Application of nanomaterials in solar thermal energy storage
NASA Astrophysics Data System (ADS)
Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada
2017-12-01
Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.
A Deep Space Power System Option Based on Synergistic Power Conversion Technologies
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2000-01-01
Deep space science missions have typically used radioisotope thermoelectric generator (RTG) power systems. The RTG power system has proven itself to be a rugged and highly reliable power system over many missions, however the thermal-to-electric conversion technology used was approximately 5% efficient. While the relatively low efficiency has some benefits in terms of system integration, there are compelling reasons why a more efficient conversion system should be pursued. The cost savings alone that are available as a result of the reduced isotope inventory are significant. The Advanced Radioisotope Power System (ARPS) project was established to fulfill this goal. Although it was not part of the ARPS project, Stirling conversion technology is being demonstrated with a low level of funding by both NASA and DOE. A power system with Stirling convertors. although intended for use with an isotope heat source. can be combined with other advanced technologies to provide a novel power system for deep space missions. An inflatable primary concentrator would be used in combination with a refractive secondary concentrator (RSC) as the heat source to power the system. The inflatable technology as a structure has made great progress for a variety of potential applications such as communications reflectors, radiators and solar arrays. The RSC has been pursued for use in solar thermal propulsion applications, and it's unique properties allow some advantageous system trades to be made. The power system proposed would completely eliminate the isotope heat source and could potentially provide power for science missions to planets as distant as Uranus. This paper will present the background and developmental status of the technologies and will then describe the power system being proposed.
Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.
2006-01-01
NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.
NASA Technical Reports Server (NTRS)
1994-01-01
Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes
NASA Technical Reports Server (NTRS)
Kelley, J. H.
1979-01-01
Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.
Can industry afford solar energy
NASA Astrophysics Data System (ADS)
Kreith, F.; Bezdek, R.
1983-03-01
Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.
Recent Advances in Solar Cell Technology
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.
1996-01-01
The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1982-01-01
The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.
Assembly and characterization of quantum-dot solar cells
NASA Astrophysics Data System (ADS)
Leschkies, Kurtis Siegfried
Environmentally clean renewable energy resources such as solar energy have gained significant attention due to a continual increase in worldwide energy demand. A variety of technologies have been developed to harness solar energy. For example, photovoltaic (or solar) cells based on silicon wafers can convert solar energy directly into electricity with high efficiency, however they are expensive to manufacture, and thus unattractive for widespread use. As the need for low-cost, solar-derived energy becomes more dire, strategies are underway to identify materials and photovoltaic device architectures that are inexpensive yet efficient compared to traditional silicon solar cells. Nanotechnology enables novel approaches to solar-to-electric energy conversion that may provide both high efficiencies and simpler manufacturing methods. For example, nanometer-size semiconductor crystallites, or semiconductor quantum dots (QDs), can be used as photoactive materials in solar cells to potentially achieve a maximum theoretical power conversion efficiency which exceeds that of current mainstay solar technology at a much lower cost. However, the novel concepts of quantum dot solar cells and their energy conversion designs are still very much in their infancy, as a general understanding of their assembly and operation is limited. This thesis introduces various innovative and novel solar cell architectures based on semiconductor QDs and provides a fundamental understanding of the operating principles that govern the performance of these solar cells. Such effort may lead to the advancement of current nanotechnology-based solar power technologies and perhaps new initiatives in nextgeneration solar energy conversion devices. We assemble QD-based solar cells by depositing photoactive QDs directly onto thin ZnO films or ZnO nanowires. In one scheme, we combine CdSe QDs and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell (QDSSC). An array of ZnO nanowires was grown vertically from a fluorine-doped-tin-oxide conducting substrate and decorated with an ensemble of CdSe QDs, capped with mercaptopropionic acid. When illuminated with visible light, the CdSe QDs absorb photons and inject electrons into the ZnO nanowires. The morphology of the nanowires then provided these photoinjected electrons with a direct and efficient electrical pathway to the photoanode. When using a liquid electrolyte as the hole transport medium, our quantum-dot-sensitized nanowire solar cells exhibited short-circuit current densities up to 2.1 mA/cm 2 and open-circuit voltages between 0.6--0.65 V when illuminated with 100 mW/cm2 of simulated AM1.5 light. Our QDSSCs also demonstrated internal quantum efficiencies as high as 50--60%, comparable to those reported for dye-sensitized solar cells made using similar nanowires. We found that the overall power conversion efficiency of these QDSSCs is largely limited by the surface area of the nanowires available for QD adsorption. Unfortunately, the QDs used to make these devices corrode in the presence of the liquid electrolyte and QDSSC performance degrades after several hours. Consequently, further improvements on the efficiency and stability of these QDSSCs required development of an optimal hole transport medium and a transition away from the liquid electrolyte. Towards improving the reliability of semiconductor QDs in solar cells, we developed a new type of all-solid-based solar cell based on heterojunctions between PbSe QDs and thin ZnO films. We found that the photovoltage obtained in these devices depends on QD size and increases linearly with the QD effective bandgap energy. Thus, these solar cells resemble traditional photovoltaic devices based on a semiconductor--semiconductor heterojunction but with the important difference that the bandgap energy of one of the semiconductors, and consequently the cell's photovoltage, can be varied by changing the size of the QDs. Under simulated 100 mW/cm2 AM1.5 illumination, these QD-based solar cells exhibit short-circuit current densities as high as 15 mA/cm2 and open-circuit voltages up to 0.45 V, larger than that achieved with solar cells based on junctions between PbSe QDs and metal films. Moreover, we found that incident-photon-to-current-conversion efficiency in these solar cells can be increased by replacing the ZnO films with a vertically-oriented array of single crystal ZnO nanowires, separated by distances comparable to the exciton diffusion length, and infiltrating this array with colloidal PbSe QDs. In this scheme, photogenerated excitons can encounter a donor--acceptor junction before they recombine. Thus, we were able to construct solar cells with thick QD absorber layers that were still capable of efficiently extracting charge despite short exciton or charge carrier diffusion lengths. When illuminated with the AM1.5 spectrum, these nanowire-based quantum-dot solar cells exhibited power conversion efficiencies approaching 2%, approximately three times higher than that achieved with thin film ZnO devices constructed with the same amount of QDs. Supporting experiments using field-effect transistors made from the PbSe QDs as well as the sensitivity of these transistors to nitrogen and oxygen gas show that the solar cells described above are unlikely to be operating like traditional p--n heterojunction solar cells. All data, including significant improvements in both photocurrent and power conversion efficiency with increasing nanowire length, suggest that these photovoltaic devices operate as excitonic solar cells.
A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.
Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi
2013-05-01
Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sun, J.; Jasieniak, J. J.
2017-03-01
Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.
A polymer scaffold for self-healing perovskite solar cells
NASA Astrophysics Data System (ADS)
Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing
2016-01-01
Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.
Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.
Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N
2011-09-18
Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.
Pan, Hui
2014-01-01
Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.
A polymer scaffold for self-healing perovskite solar cells
Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing
2016-01-01
Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479
A polymer scaffold for self-healing perovskite solar cells.
Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing
2016-01-06
Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼ 16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.
NASA Astrophysics Data System (ADS)
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-07-01
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. Electronic supplementary information (ESI) available: XRD patterns of the fs laser structured Cu surface as produced and after the photothermal conversion test, directly measured temperature values on Cu surfaces, temperature rise on Cu surfaces at varied solar irradiation angles, comparison of the white light and IR images of the structured Cu surface with the polished Cu surface, temperature rise on the peripheral zones of the blue coating surface. See DOI: 10.1039/c6nr03662g
Thermodynamics, Entropy, Information and the Efficiency of Solar Cells
NASA Astrophysics Data System (ADS)
Abrams, Zeev R.
For well over 50 years, the limits to photovoltaic energy conversion have been known and codified, and have played a vital role in the push for technological breakthroughs to reach—and even attempt to surpass—those limits. This limit, known as the Shockley-Queisser detailed-balance limit, was found by using only the most basic of thermodynamic assumptions, and therefore provides an upper bound that is difficult to contest without violating the laws of thermodynamics. Many different schemes have been devised to improve a solar cell's efficiency beyond this limit, with various benefits and drawbacks for each method. Since the field of solar cell research has been analyzed and dissected for so long by a large variety of researchers, it is quite hard to say or discover anything new without repeating the work of the past. The approach taken in this work is to analyze solar cells from the joint perspective of thermodynamics and information theory. These two subjects have recently been appreciated to be highly interrelated, and using the formalism of Missing Information, we can differentiate between different novel technologies, as well as devise new limits for new and existing methodologies. In this dissertation, the fundamentals of photovoltaic conversion are analyzed from the most basic of principles, emphasizing the thermodynamic parameters of the photovoltaic process. In particular, an emphasis is made on the voltage of the device, as opposed to the current. This emphasis is made since there is a direct relation between the open-circuit voltage of a solar cell and the fundamental equations of thermodynamics and the Free Energy of the system. Moreover, this relation extends to the entropy of the system, which subsequently relates to the field of Information Theory. By focusing on the voltage instead of the current, realizations are made that are not obvious to the majority or researchers in the field, and in particular to efforts of surpassing the Shockley-Queisser limit, known as "3rd generation" concepts. After analyzing the standard single-junction cell, other forms of surpassing the detailed-balance limit are presented and discussed, from the viewpoint of entropy and its relation to the amount of information lost or produced in the photovoltaic conversion process. In addition to the well-known 3rd generation methods: up- and down-conversion, carrier multiplication and intermediate band solar cells, other ideas are discussed such as using Feedback to shift the optimal bandgap of the cell, and the use of spectral splitting to completely utilize the solar spectrum. The focus on entropy (and the open-circuit voltage) as the primary variable of interest uncovers new limitations to these processes, and denotes preferences of certain technologies over others. Using this parallel approach provides insights into the field that were either neglected or not realized. This work thus provides a new set of guidelines for searching for and analyzing innovative techniques to maximize the power conversion efficiency from solar cells.
Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-05-01
The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on amore » variety of cells were also presented. Separate abstracts have been prepared for articles from this report.« less
Nanoscale Light Manipulation for Improved Organic Solar Cells
NASA Astrophysics Data System (ADS)
Fisher, Brett
Organic Solar Cells can be made to be flexible, semi-transparent, and low-cost making them ideal for novel energy harvesting applications such as in greenhouses. However, the main disadvantage of this technology is its low energy conversion efficiency (<15%); mostly due to high recombination rates, compared with other higher performing technologies, such as thinfilm GaAs (>30% Efficiency), and Si-based (>20% Efficiency), solar cells, where recombination within these technologies is much less than Organic Solar Cells. There are still many challenges to overcome to improve the efficiency of Organic Solar Cells. Some of these challenges include: Maximising the absorption of the solar spectrum; improving the charge dynamics; and increasing the lifetime of the devices. One method to address some of these challenges is to include plasmonic nanoparticles into the devices, which has been shown to increase the absorption through scattering, and improve the charge dynamic through localised surface plasmon resonance effects. However, including nanoparticles into Organic Solar Cells has shown to adversely affect the performance of the devices in other ways, such as increasing the recombination of excitons. To address this, an additional (insulating) coating around the nanoparticles supresses this increase, and has shown to be able to increase the performance of the solar cells. In this work, we demonstrate the use of our all-inclusive optical model in the design and optimisation of bespoke colour-specific windows (i.e. Red, Green, and Blue), where the solar cells can be made to have a specific transparency and colour, whilst maximizing their efficiency. For example, we could specify that we wish the colour to be red, with 50% transmissivity; the model will then maximise the Power Conversion Efficiency. We also demonstrate how our extension to Mie theory can simulate nanoparticle systems and can be used to tune the plasmon resonance utilising different coatings, and configurations thereof.
800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1999-01-01
From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.
Sun-to-power cells layer by layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moseke, Dawn; Richards, Robin; Moseke, Daniel
Representing the Center for Interface Science: Solar Electric Materials (CISSEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CISSEM is to advance the understanding of interface science underlyingmore » solar energy conversion technologies based on organic and organic-inorganic hybrid materials; and to inspire, recruit and train future scientists and leaders in basic science of solar electric conversion.« less
Proceedings: Panel on Information Dissemination for Wind Energy
NASA Astrophysics Data System (ADS)
Weis, P.
1980-04-01
A program for coordinating and strengthening technical information activities related to the commercialization of solar energy research and development results is described. The program contains a project for each of the following technologies: biomass; ocean thermal energy conversion; photovoltaics; solar thermal power; and wind energy conversion systems. In addition to the production and dissemination of several types of information materials, the wind energy project aims to support efforts of others in the field. The meeting is the first attempt to acquaint people with the information activities of others, to discuss information needs as an aid to planning, and to promote cooperation in disseminating information on wind energy.
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1990-01-01
The variety of potential future missions under consideration by NASA will impose a broad range of requirements on space solar arrays, and mandates the development of new solar cells which can offer a wide range of capabilities to mission planners. Major advances in performance have recently been achieved at several laboratories in a variety of solar cell types. Many of those recent advances are reviewed, the areas are examined where possible improvements are yet to be made, and the requirements are discussed that must be met by advanced solar cell if they are to be used in space. The solar cells of interest include single and multiple junction cells which are fabricated from single crystal, polycrystalline and amorphous materials. Single crystal cells on foreign substrates, thin film single crystal cells on superstrates, and multiple junction cells which are either mechanically stacked, monolithically grown, or hybrid structures incorporating both techniques are discussed. Advanced concentrator array technology for space applications is described, and the status of thin film, flexible solar array blanket technology is reported.
The economic viability of pursuing a space power system concept
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1977-01-01
The development of a space power system requires no fundamental technological breakthroughs. There are, however, uncertainties regarding the degree to which necessary developments can be achieved or exceeded. An analysis is conducted concerning the implementation of a 5000 MW space-based solar power system based on photovoltaic conversion of solar energy to electrical energy. The solar array is about 13 km long and 5 km wide. Placed in geosynchronous orbit, it provides power to the earth for 30 years. Attention is given to the economic feasibility of a space power system, a risk analysis for space power systems, and the use of the presented methodology for comparing alternative technology development programs.
Placement and efficiency effects on radiative forcing of solar installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burg, Brian R.; Ruch, Patrick; Paredes, Stephan
2015-09-28
The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of differentmore » solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.« less
Understanding chemically processed solar cells based on quantum dots
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-01-01
Abstract Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum. PMID:28567179
Research on ZnO/Si heterojunction solar cells
NASA Astrophysics Data System (ADS)
Chen, Li; Chen, Xinliang; Liu, Yiming; Zhao, Ying; Zhang, Xiaodan
2017-06-01
We put forward an n-ZnO/p-Si heterojunction solar cell model based on AFORS-HET simulations and provide experimental support in this article. ZnO:B (B-doped ZnO) thin films deposited by metal-organic chemical vapor deposition (MOCVD) are planned to act as electrical emitter layer on p-type c-Si substrate for photovoltaic applications. We investigate the effects of thickness, buffer layer, ZnO:B affinity and work function of electrodes on performances of solar cells through computer simulations using AFORS-HET software package. The energy conversion efficiency of the ZnO:B(n)/ZnO/c-Si(p) solar cell can achieve 17.16% ({V}{oc}: 675.8 mV, {J}{sc}: 30.24 mA/cm2, FF: 83.96%) via simulation. On a basis of optimized conditions in simulation, we carry out some experiments, which testify that the ZnO buffer layer of 20 nm contributes to improving performances of solar cells. The influences of growth temperature, thickness and diborane (B2H6) flow rates are also discussed. We achieve an appropriate condition for the fabrication of the solar cells using the MOCVD technique. The obtained conversion efficiency reaches 2.82% ({V}{oc}: 294.4 mV, {J}{sc}: 26.108 mA/cm2, FF: 36.66%). Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project (No. 11TXSYGX22100), the National High Technology Research and Development Program of China (No. 2013AA050302), and the Fundamental Research Funds for the Central Universities (No. 65010341).
Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya
2018-01-22
In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.
Zhang, Chunyang; Chen, Lingzhi; Zhu, Yingjie; Guan, Zisheng
2018-04-03
This paper reports inverted pyramid microstructure-based single-crystalline silicon (sc-Si) solar cell with a conversion efficiency up to 20.19% in standard size of 156.75 × 156.75 mm 2 . The inverted pyramid microstructures were fabricated jointly by metal-assisted chemical etching process (MACE) with ultra-low concentration of silver ions and optimized alkaline anisotropic texturing process. And the inverted pyramid sizes were controlled by changing the parameters in both MACE and alkaline anisotropic texturing. Regarding passivation efficiency, the textured sc-Si with normal reflectivity of 9.2% and inverted pyramid size of 1 μm was used to fabricate solar cells. The best batch of solar cells showed a 0.19% higher of conversion efficiency and a 0.22 mA cm -2 improvement in short-circuit current density, and the excellent photoelectric property surpasses that of the same structure solar cell reported before. This technology shows great potential to be an alternative for large-scale production of high efficient sc-Si solar cells in the future.
Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min
2013-05-06
Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.
Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2005-01-01
NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-08-14
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.
Novel Nuclear Powered Photocatalytic Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
White,John R.; Kinsmen,Douglas; Regan,Thomas M.
2005-08-29
The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC)more » design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.« less
Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun
2012-02-21
A type of highly efficient completely flexible fiber-shaped solar cell based on TiO(2) nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm(-2)) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO(2) nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. This journal is © The Royal Society of Chemistry 2012
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1990-01-01
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Astrophysics Data System (ADS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1990-01-01
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's
Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1991-01-01
Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Tianquan
2013-09-20
The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer
Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)
2001-01-01
Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.
Thermionic/AMTEC cascade converter concept for high-efficiency space power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.
1996-12-31
This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less
Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.
Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi
2018-03-21
Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.
Assessment of 25 kW free-piston Stirling technology alternatives for solar applications
NASA Technical Reports Server (NTRS)
Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.
1992-01-01
The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.
Materials for solar fuels and chemicals.
Montoya, Joseph H; Seitz, Linsey C; Chakthranont, Pongkarn; Vojvodic, Aleksandra; Jaramillo, Thomas F; Nørskov, Jens K
2016-12-20
The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.
2015 Materials Research Society Spring Meeting
2016-05-12
State University, Raleigh, NC 27695 Eicke R. Weber, Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Symposium Highlights: The...emission from fossil fuels. Materials hold the key to advanced renewable energy technologies including solar cells, batteries, fuel cells, and catalysis...systems. For example, among renewable energy technologies, solar energy is a limitless source of energy, and photovoltaic energy conversion is one of the
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.
1979-01-01
Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.
Radioisotope Power Systems Program: A Program Overview
NASA Technical Reports Server (NTRS)
Hamley, John A.
2016-01-01
NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.
Solar energy, its conversion and utilization
NASA Technical Reports Server (NTRS)
Farber, E. A.
1972-01-01
The work being carried out at the University of Florida Solar Energy and Energy Conversion Laboratory in converting solar energy, our only income, into other needed and useful forms of energy is described. A treatment such as this demonstrates, in proper perspective, how solar energy can benefit mankind with its many problems of shortages and pollution. Descriptions were given of the conversion processes, equipment, and performance. The testing of materials, solar water heating, space heating, cooking and baking, solar distillation, refrigeration and air-conditioning, work with the solar furnace, conversion to mechanical power, hot air engines, solar-heated sewage digestion, conversion to electricity, and other devices will be discussed.
NASA Technical Reports Server (NTRS)
1976-01-01
Power requirements for the multipurpose space power platform, for space industrialization, SETI, the solar system exploration facility, and for global services are assessed for various launch dates. Priorities and initiatives for the development of elements of space power systems are described for systems using light power input (solar energy source) or thermal power input, (solar, chemical, nuclear, radioisotopes, reactors). Systems for power conversion, power processing, distribution and control are likewise examined.
Space-based solar power conversion and delivery systems study
NASA Technical Reports Server (NTRS)
1976-01-01
Even at reduced rates of growth, the demand for electric power is expected to more than triple between now and 1995, and to triple again over the period 1995-2020. Without the development of new power sources and advanced transmission technologies, it may not be possible to supply electric energy at prices that are conductive to generalized economic welfare. Solar power is renewable and its conversion and transmission from space may be advantageous. The goal of this study is to assess the economic merit of space-based photovoltaic systems for power generation and a power relay satellite for power transmission. In this study, satellite solar power generation and transmission systems, as represented by current configurations of the Satellite Solar Station (SSPS) and the Power Relay Satellite (PRS), are compared with current and future terrestrial power generation and transmission systems to determine their technical and economic suitability for meeting power demands in the period of 1990 and beyond while meeting ever-increasing environmental and social constraints.
A Simple and Inexpensive Solar Energy Experiment.
ERIC Educational Resources Information Center
Evans, J. H.; Pedersen, L. G.
1979-01-01
An experiment is presented which utilizes the current solid state technology to demonstrate electrochemical generation of hydrogen gas, direct generation of electricity for pumping water, and energy conversion efficiency. The experimental module costs about $100 and can be used repeatedly. (BB)
Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J
2015-12-14
Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0-200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400-2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5-17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m(-2). This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies.
Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K.; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J.
2015-01-01
Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0–200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400–2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5–17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m−2. This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies. PMID:26657535
Overview study of Space Power Technologies for the advanced energetics program. [spacecraft
NASA Technical Reports Server (NTRS)
Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.
1981-01-01
Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.
JPRS Report, Science & Technology, Japan
1990-08-08
gap is created. Many research accomplishments concerning such syn- Based on these requirements, the concept of totally new thesis technologies have...the targets have shifted to active functions, such as Although the theory on characteristics of quasicrystals the conversion of solar ray to electric...organisms, such as humans, there are intel- committee chairman for the report compilation, to dis- ligent materials, including the nerve cells (neurons
NASA Astrophysics Data System (ADS)
Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias
2017-08-01
Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1976-01-01
A variety of economic and programmatic issues are discussed concerning the development and deployment of a fleet of space-based solar power satellites (SSPS). The costs, uncertainties and risks associated with the current photovoltaic SSPS configuration, and with issues affecting the development of an economically viable SSPS development program are analyzed. The desirability of a low earth orbit (LEO) demonstration satellite and a geosynchronous (GEO) pilot satellite is examined and critical technology areas are identified. In addition, a preliminary examination of utility interface issues is reported. The main focus of the effort reported is the development of SSPS unit production, and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM). It is shown that the key technology area deals with the productivity of man in space, not, as might be expected, with some hardware component technology.
Development of advanced Si and GaAs solar cells for interplanetary missions
NASA Technical Reports Server (NTRS)
Strobl, G.; Uegele, P.; Kern, R.; Roy, K.; Flores, C.; Campesato, R.; Signorini, C.; Bogus, K.
1995-01-01
The deep space and planetary exploration project have been acquiring more and more importance and some of them are now well established both in ESA and NASA programs. This paper presents the possibility to utilize both silicon and gallium arsenide solar cells as spacecraft primary power source for missions far from the Sun, in order to overcome the drawbacks related to the utilisation of radioisotope thermoelectric generators - such as cost, safety and social acceptance. The development of solar cells for low illumination intensity and low temperature (LILT) applications is carried out in Europe by ASE (Germany) and CISE (Italy) in the frame of an ESA programme, aimed to provide the photovoltaic generators for ROSETTA: the cometary material investigation mission scheduled for launch in 2003. The LILT cells development and testing objectives are therefore focused on the following requirements: insolation intensity as low as 0.03 Solar Constant, low temperature down to -150 C and solar flare proton environment. At this stage of development, after the completion of the technology verification tests, it has been demonstrated that suitable technologies are available for the qualification of both silicon and gallium arsenide cells and both candidates have shown conversion efficiencies over 25% at an illumination of 0.03 SC and a temperature of -150 C. In particular, when measured at those LILT conditions, the newly developed 'Hl-ETA/NR-LILT' silicon solar cells have reached a conversion efficiency of 26.3%, that is the highest value ever measured on a single junction solar cell. A large quantity of both 'Hl-ETA/NR-LILT' silicon and 'GaAs/Ge-LILT' solar cells are presently under fabrication and they will be submitted to a qualification test plan, including radiation exposure, in order to verify their applicability with respect to the mission requirements. The availability of two valid options will minimize the risk for the very ambitious scientific project. The paper describes how the technical achievements have been possible with Si and GaAs LILT solar cells (including a comparison between measured and modelled l-V characteristics) and it presents the technology verification tests results.
Development of advanced Si and GaAs solar cells for interplanetary missions
NASA Astrophysics Data System (ADS)
Strobl, G.; Uegele, P.; Kern, R.; Roy, K.; Flores, C.; Campesato, R.; Signorini, C.; Bogus, K.
1995-10-01
The deep space and planetary exploration project have been acquiring more and more importance and some of them are now well established both in ESA and NASA programs. This paper presents the possibility to utilize both silicon and gallium arsenide solar cells as spacecraft primary power source for missions far from the Sun, in order to overcome the drawbacks related to the utilisation of radioisotope thermoelectric generators - such as cost, safety and social acceptance. The development of solar cells for low illumination intensity and low temperature (LILT) applications is carried out in Europe by ASE (Germany) and CISE (Italy) in the frame of an ESA programme, aimed to provide the photovoltaic generators for ROSETTA: the cometary material investigation mission scheduled for launch in 2003. The LILT cells development and testing objectives are therefore focused on the following requirements: insolation intensity as low as 0.03 Solar Constant, low temperature down to -150 C and solar flare proton environment. At this stage of development, after the completion of the technology verification tests, it has been demonstrated that suitable technologies are available for the qualification of both silicon and gallium arsenide cells and both candidates have shown conversion efficiencies over 25% at an illumination of 0.03 SC and a temperature of -150 C. In particular, when measured at those LILT conditions, the newly developed 'Hl-ETA/NR-LILT' silicon solar cells have reached a conversion efficiency of 26.3%, that is the highest value ever measured on a single junction solar cell. A large quantity of both 'Hl-ETA/NR-LILT' silicon and 'GaAs/Ge-LILT' solar cells are presently under fabrication and they will be submitted to a qualification test plan, including radiation exposure, in order to verify their applicability with respect to the mission requirements. The availability of two valid options will minimize the risk for the very ambitious scientific project. The paper describes how the technical achievements have been possible with Si and GaAs LILT solar cells (including a comparison between measured and modelled l-V characteristics) and it presents the technology verification tests results.
Assessment of the potential of solar thermal small power systems in small utilities
NASA Technical Reports Server (NTRS)
Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.
1978-01-01
The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
1991-01-01
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
Current challenges in organic photovoltaic solar energy conversion.
Schlenker, Cody W; Thompson, Mark E
2012-01-01
Over the last 10 years, significant interest in utilizing conjugated organic molecules for solid-state solar to electric conversion has produced rapid improvement in device efficiencies. Organic photovoltaic (OPV) devices are attractive for their compatibility with low-cost processing techniques and thin-film applicability to flexible and conformal applications. However, many of the processes that lead to power losses in these systems still remain poorly understood, posing a significant challenge for the future efficiency improvements required to make these devices an attractive solar technology. While semiconductor band models have been employed to describe OPV operation, a more appropriate molecular picture of the pertinent processes is beginning to emerge. This chapter presents mechanisms of OPV device operation, based on the bound molecular nature of the involved transient species. With the intention to underscore the importance of considering both thermodynamic and kinetic factors, recent progress in elucidating molecular characteristics that dictate photovoltage losses in heterojunction organic photovoltaics is also discussed.
Polymer-based chromophore-catalyst assemblies for solar energy conversion
NASA Astrophysics Data System (ADS)
Leem, Gyu; Sherman, Benjamin D.; Schanze, Kirk S.
2017-12-01
The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.
Polymer-based chromophore-catalyst assemblies for solar energy conversion.
Leem, Gyu; Sherman, Benjamin D; Schanze, Kirk S
2017-01-01
The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.
Polychiral semiconducting carbon nanotube-fullerene solar cells.
Gong, Maogang; Shastry, Tejas A; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A; Marks, Tobin J; Grossman, Jeffrey C; Ren, Shenqiang; Hersam, Mark C
2014-09-10
Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings
NASA Technical Reports Server (NTRS)
Holbeck, H. J.
1981-01-01
The development and testing of concentrators, receivers, and power conversion units are reported. System design and development for engineering experiments are described. Economic analysis and market assessments for advanced development activities are discussed. Technology development issues and application/user needs are highlighted.
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
NASA Technical Reports Server (NTRS)
Newsom, D. E.; Wolsko, T.
1980-01-01
A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.
NASA Astrophysics Data System (ADS)
Lerner, Peter B.; Cutler, Paul H.; Miskovsky, Nicholas M.
2015-01-01
Modern technology allows the fabrication of antennas with a characteristic size comparable to the electromagnetic wavelength in the optical region. This has led to the development of new technologies using nanoscale rectifying antennas (rectennas) for solar energy conversion and sensing of terahertz, infrared, and visible radiation. For example, a rectenna array can collect incident radiation from an emitting source and the resulting conversion efficiency and operating characteristics of the device will depend on the spatial and temporal coherence properties of the absorbed radiation. For solar radiation, the intercepted radiation by a micro- or nanoscale array of devices has a relatively narrow spatial and angular distribution. Using the Van Cittert-Zernike theorem, we show that the coherence length (or radius) of solar radiation on an antenna array is, or can be, tens of times larger than the characteristic wavelength of the solar spectrum, i.e., the thermal wavelength, λT=2πℏc/(kBT), which for T=5000 K is about 3 μm. Such an effect is advantageous, making possible the rectification of solar radiation with nanoscale rectenna arrays, whose size is commensurate with the coherence length. Furthermore, we examine the blackbody radiation emitted from an array of antennas at temperature T, which can be quasicoherent and lead to a modified self-image, analogous to the Talbot-Lau self-imaging process but with thermal rather than monochromatic radiation. The self-emitted thermal radiation may be important as a nondestructive means for quality control of the array.
Optimized flexible cover films for improved conversion efficiency in thin film flexible solar cells
NASA Astrophysics Data System (ADS)
Guterman, Sidney; Wen, Xin; Gudavalli, Ganesh; Rhajbhandari, Pravakar; Dhakal, Tara P.; Wilt, David; Klotzkin, David
2018-05-01
Thin film solar cell technologies are being developed for lower cost and flexible applications. For such technologies, it is desirable to have inexpensive, flexible cover strips. In this paper, we demonstrate that transparent silicone cover glass adhesive can be doped with TiO2 nanoparticles to achieve an optimal refractive index and maximize the performance of the cell. Cells covered with the film doped with nanoparticles at the optimal concentration demonstrated a ∼1% increase in photocurrent over the plain (undoped) film. In addition, fused silica beads can be incorporated into the flexible cover slip to realize a built-in pseudomorphic glass diffuser layer as well. This additional degree of freedom in engineering flexible solar cell covers allows maximal performance from a given cell for minimal increased cost.
Metal-halide perovskites for photovoltaic and light-emitting devices.
Stranks, Samuel D; Snaith, Henry J
2015-05-01
Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.
Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearlman, Howard; Chen, Chien-Hua
The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements inmore » this program.« less
Final Scientific/Technical Report -- Single-Junction Organic Solar Cells with >15% Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkenburg, Daken; Weldeab, Asmerom; Fagnani, Dan
Organic solar cells have the potential to offer low-cost solar energy conversion due to low material costs and compatibility with low-temperature and high throughput manufacturing processes. This project aims to further improve the efficiency of organic solar cells by applying a previously demonstrated molecular self-assembly approach to longer-wavelength light-absorbing organic materials. The team at the University of Florida designed and synthesized a series of low-bandgap organic semiconductors with functional hydrogen-bonding groups, studied their assembly characteristics and optoelectronic properties in solid-state thin film, and fabricated organic solar cells using solution processing. These new organic materials absorb light up 800 nm wavelength,more » and provide a maximum open-circuit voltage of 1.05 V in the resulted solar cells. The results further confirmed the effectiveness in this approach to guide the assembly of organic semiconductors in thin films to yield higher photovoltaic performance for solar energy conversion. Through this project, we have gained important understanding on designing, synthesizing, and processing organic semiconductors that contain appropriately functionalized groups to control the morphology of the organic photoactive layer in solar cells. Such fundamental knowledge could be used to further develop new functional organic materials to achieve higher photovoltaic performance, and contribute to the eventual commercialization of the organic solar cell technology.« less
Millimeterwave Space Power Grid architecture development 2012
NASA Astrophysics Data System (ADS)
Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan
This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t- ramp up space solar power level to over 5.6 TeraWatts by year 50 from project start. Runway-based launch and landing are required to achieve the launch productivity as well as the cost reductions to enable such a large deployment on schedule. Advancements in the certainty of millimeter wave conversion technology and runway-based space access, are seen to be the outstanding issues in proceeding to full-scale Space Solar Power.
NASA's Advanced Radioisotope Power Conversion Technology Development Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre
2007-01-01
NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).
Conceptual design of an advanced Stirling conversion system for terrestrial power generation
NASA Technical Reports Server (NTRS)
1988-01-01
A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.
Perovskite Solar Cells and Devices at EPFL Valais Wallis.
Nazeeruddin, Mohammad Khaja
2016-09-22
Stability required! Perovskite solar cells have emerged as one of the most exciting fields of research, owing to their impressive rise in power conversion efficiency surpassing 22% in six short years of research. Current research is focused on ways to improve stability of perovskite-based devices, a key characteristic required to bring this technology from the lab into the market. In this Editorial, guest editor Prof. Mohammad Khaja Nazeeruddin describes the context of this Special Issue, and summarizes the work being performed in his research group toward this low-cost near-future photovoltaic technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.
2016-01-01
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...
2016-12-05
Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less
NASA Astrophysics Data System (ADS)
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.
2016-12-01
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A
2016-12-20
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Interface design principles for high-performance organic semiconductor devices
Nie, Wanyi; Gupta, Gautam; Crone, Brian K.; ...
2015-03-23
Organic solar cells (OSCs) are a promising cost-effective candidate in next generation photovoltaic technology. However, a critical bottleneck for OSCs is the electron/hole recombination loss through charge transfer state at the interface, which greatly limits the power conversion efficiency. W. Nie, A. Mohite, and co-workers demonstrate a simple strategy of suppressing the recombination rate by inserting a spacer layer at the donor-acceptor interface, resulting in a dramatic increase in power conversion efficiency.
NASA Technical Reports Server (NTRS)
Wolsko, T.; Buehring, W.; Cirillo, R.; Gasper, J.; Habegger, L.; Hub, K.; Newsom, D.; Samsa, M.; Stenehjem, E.; Whitfield, R.
1980-01-01
The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. A description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies is presented.
NASA Technical Reports Server (NTRS)
Kran, A.
1978-01-01
PECAN (Photovoltaic Energy Conversion Analysis) is a highly interactive decision analysis and support system. It simulates the prospects for widespread use of solar cells for the generation of electrical power. PECAN consists of a set of integrated APL functions for evaluating the potential of terrestrial photovoltaics. Specifically, the system is a deterministic simulator, which translates present and future manufacturing technology into economic and financial terms, using the production unit concept. It guides solar cell development in three areas: tactical decision making, strategic planning, and the formulation of alternative options.
Modeling and simulation of temperature effect in polycrystalline silicon PV cells
NASA Astrophysics Data System (ADS)
Marcu, M.; Niculescu, T.; Slusariuc, R. I.; Popescu, F. G.
2016-06-01
Due to the human needs of energy, there is a need to apply new technologies in energy conversion to supply the demand of clean and cheap energy in the context of environmental issues. Renewable energy sources like solar energy has one of the highest potentials. In this paper, solar panel is the key part of a photovoltaic system which converts solar energy to electrical energy. The purpose of this paper is to give a MATLAB/ Simulink simulation for photovoltaic module based on the one-diode model of a photovoltaic cell made of polycrystalline silicon. This model reveals the effect of the ambient temperature and the heating of the panel due to the solar infrared radiation. Also the measurements on the solar cell exposed to solar radiation can confirm the simulation.
Novel silicon crystals and method for their preparation
NASA Technical Reports Server (NTRS)
Authier, B.
1977-01-01
Plate shaped silicon crystals and their preparation by pouring a silicon melt into a suitable mold and then allowing it to solidify in a temperature gradient were investigated. The production of energy by direct conversion of solar energy into electrical energy by means of solar cells takes on increasing importance. While this type of energy production is already the prevailing form today in the realm of satellite technology, its terrestrial application has thus far encountered strict limitations owing to the high price of such solar cells. Of the greatest interest in this connection are silicon cells. A substantial reduction in the semiconductor material costs and the costs involved in the further processing to make solar cells are prerequisites for a rational market growth for solar energy.
Dau, Holger; Zaharieva, Ivelina
2009-12-21
Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation, photoinhibitory, protective, and repair processes. The overpotential for catalysis of water oxidation at the Mn(4)Ca complex of PSII may be as low as 0.3 V. To address the specific energetics of water oxidation at the Mn complex of PSII, we propose a new conceptual framework that will facilitate quantitative considerations on the basis of oxidation potentials and pK values. In conclusion, photosynthetic water oxidation works at high efficiency and thus can serve as both an inspiring model and a benchmark in the development of future technologies for production of solar fuels.
Full-spectrum volumetric solar thermal conversion via photonic nanofluids.
Liu, Xianglei; Xuan, Yimin
2017-10-12
Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.
The Status and Outlook for the Photovoltaics Industry
NASA Astrophysics Data System (ADS)
Carlson, David
2006-03-01
The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.
NASA Astrophysics Data System (ADS)
Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.
2018-03-01
Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.
NASA Astrophysics Data System (ADS)
Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.
2018-03-01
In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.
Thin-film reliability and engineering overview
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1984-01-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Thin-film reliability and engineering overview
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1984-10-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Critical technology limits to silicon material and sheet production
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1982-01-01
Earlier studies have indicated that expenditures related to the preparation of high-purity silicon and its conversion to silicon sheet represent from 40 to 52 percent of the cost of the entire panel. The present investigation is concerned with the elements which were selected for study in connection with the Flat-Plate Solar Array (FSA) Project. The first of two technologies which are being developed within the FSA Project involves the conversion of metallurgical-grade silicon through a silane purification process to silicon particles. The second is concerned with the conversion of trichlorosilane to dichlorosilane, and the subsequent production of silicon using modified rod reactors of the Siemens type. With respect to silicon sheet preparation, efforts have been focused both on the preparation of ingots, followed by wafering, and the direct crystallization of molten silicon into a ribbon or film.
NASA Technical Reports Server (NTRS)
Bickler, Donald B.; Callaghan, W. T.
1987-01-01
In 1986 during the flat-plate solar array project, silicon solar cells 4.0 sq cm in area were fabricated at the Jet Propulsion Laboratory (JPL) with a conversion efficiency of 20.1 percent (AM1.5-global). Sixteen cells were processed with efficiencies measuring 19.5 percent (AM1.5 global) or better. These cells were produced using refined versions of conventional processing methods, aside from certain advanced techniques that bring about a significant reduction in a major mechanism (surface recombination) that limits cell efficiency. Wacker Siltronic p-type float-zone 0.18-ohm-cm wafers were used. Conversion efficiencies in this range have previously been reported by other researchers, but generally on much smaller (0.5 vs. 4.0 cm) devices which have undergone sophisticated and costly processing steps. An economic analysis is presented of the potential payoffs for this approach, using the Solar Array Manufacturing Industry Costing Standards (SAMICS) methodology. The process sequence used and the assumptions made for capturing the economies of scale are presented.
Solar-energy conversion and light emission in an atomic monolayer p-n diode.
Pospischil, Andreas; Furchi, Marco M; Mueller, Thomas
2014-04-01
The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.
Zhang, Doudou; Shi, Jingying; Zi, Wei; Wang, Pengpeng; Liu, Shengzhong Frank
2017-11-23
Photoelectrochemical (PEC) technology for the conversion of solar energy into chemicals requires cost-effective photoelectrodes to efficiently and stably drive anodic and/or cathodic half-reactions to complete the overall reactions for storing solar energy in chemical bonds. The shared properties among semiconducting photoelectrodes and photovoltaic (PV) materials are light absorption, charge separation, and charge transfer. Earth-abundant silicon materials have been widely applied in the PV industry, and have demonstrated their efficiency as alternative photoabsorbers for photoelectrodes. Many efforts have been made to fabricate silicon photoelectrodes with enhanced performance, and significant progress has been achieved in recent years. Herein, recent developments in crystalline and thin-film silicon-based photoelectrodes (including amorphous, microcrystalline, and nanocrystalline silicon) immersed in aqueous solution for PEC hydrogen production from water splitting are summarized, as well as applications in PEC CO 2 reduction and PEC regeneration of discharged species in redox flow batteries. Silicon is an ideal material for the cost-effective production of solar chemicals through PEC methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano
2016-03-01
Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.
NASA Astrophysics Data System (ADS)
Yin, Jie; Wang, Yuqiao; Meng, Wenfei; Zhou, Tianyue; Li, Baosong; Wei, Tao; Sun, Yueming
2017-08-01
Honeycomb-like nickel cobalt sulfide (NiCo2S4) nanosheets were directly deposited on fluorine-doped tin oxide substrate by a rapid voltammetric deposition method. The method was also controllable and feasible for preparing NiCo2S4 on flexible Ti foil without any heating processes. Compared with Pt, CoS and NiS, NiCo2S4 exhibited low charge-transfer resistances and excellent electrocatalytic activity for {{{{I}}}3}- reduction, acting as a counter electrode for a dye-sensitized solar cell. The NiCo2S4-based solar cell showed higher power conversion efficiency (7.44%) than that of Pt-based solar cell (7.09%) under simulated illumination (AM 1.5 G, 100 mW cm-2). The device based on the flexible NiCo2S4/Ti foil achieved a power conversion efficiency of 5.28% under the above illumination conditions. This work can be extended to flexible and wearable technologies due to its facile technique.
NASA Technical Reports Server (NTRS)
Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K.V.; Hanson, W.; Amos, D.;
2014-01-01
We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multiwalled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be repurposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual-use or terrestrial applications.
NASA Technical Reports Server (NTRS)
Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.;
2015-01-01
We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual-use or terrestrial applications.
Space-based solar power conversion and delivery systems study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1976-01-01
The technical and economic aspects of satellite solar power systems are presented with a focus on the current configuration 5000 MW system. The technical studies include analyses of the orbital system structures, control and stationkeeping, and the formulation of program plans and costs for input to the economic analyses. The economic analyses centered about the development and use of a risk analysis model for a system cost assessment, identification of critical issues and technologies, and to provide information for programmatic decision making. A preliminary economic examination of some utility interface issues is included. Under the present state-of-knowledge, it is possible to formulate a program plan for the development of a satellite solar power system that can be economically justified. The key area of technological uncertainty is man's ability to fabricate and assemble large structures in space.
Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.
Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan
2017-10-01
Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic conversion of solar generated heat to electricity
NASA Technical Reports Server (NTRS)
Powell, J. C.; Fourakis, E.; Hammer, J. M.; Smith, G. A.; Grosskreutz, J. C.; Mcbride, E.
1974-01-01
The effort undertaken during this program led to the selection of the water-superheated steam (850 psig/900 F) crescent central receiver as the preferred concept from among 11 candidate systems across the technological spectrum of the dynamic conversion of solar generated heat to electricity. The solar power plant designs were investigated in the range of plant capacities from 100 to 1000 Mw(e). The investigations considered the impacts of plant size, collector design, feed-water temperature ratio, heat rejection equipment, ground cover, and location on solar power technical and economic feasibility. For the distributed receiver systems, the optimization studies showed that plant capacities less than 100 Mw(e) may be best. Although the size of central receiver concepts was not parametrically investigated, all indications are that the optimal plant capacity for central receiver systems will be in the range from 50 to 200 Mw(e). Solar thermal power plant site selection criteria and methodology were also established and used to evaluate potentially suitable sites. The result of this effort was to identify a site south of Inyokern, California, as typically suitable for a solar thermal power plant. The criteria used in the selection process included insolation and climatological characteristics, topography, and seismic history as well as water availability.
Proceedings of the First Semiannual Distributed Receiver Program Review
NASA Technical Reports Server (NTRS)
1980-01-01
Point focus and line focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is addressed. Concentrator, receiver, and power conversion development are covered along with hardware tests and evaluation. Mass production costing, parabolic dish applications, and trough and bowl systems are included.
Heat pipe technology. A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1978-01-01
This bibliography cites 55 publications on the theory, design, development, fabrication, and testing of heat pipes. Applications covered include solar, nuclear, and thermoelectric energy conversion. A book (in Russian) on low temperature heat pipes is included as well as abstracts when available. Indexes provided list authors, titles/keywords (permuted) and patents.
Solar Program Assessment: Environmental Factors - Fuels from Biomass.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2014-01-01
This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.
Thermodynamic limit for coherence-limited solar power conversion
NASA Astrophysics Data System (ADS)
Mashaal, Heylal; Gordon, Jeffrey M.
2014-09-01
The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.
A Summary of Closed Brayton Cycle Development Activities at NASA
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2009-01-01
NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.
Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell
Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.
2013-01-01
This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology. PMID:24067664
NASA Astrophysics Data System (ADS)
Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.
GaAs CLEFT solar cells for space applications. [CVD thin film growth technology
NASA Technical Reports Server (NTRS)
Fan, J. C. C.; Mcclelland, R. W.; King, B. D.
1984-01-01
Although GaAs solar cells are radiation-resistant and have high conversion efficiencies, there are two major obstacles that such cells must overcome before they can be widely adopted for space applications: GaAs wafers are too expensive and cells made from these wafers are too heavy. The CLEFT process permits the growth of thin single-crystal films on reusable substrates, resulting in a drastic reduction in both cell cost and cell weight. Recent advances in CLEFT technology have made it possible to achieve efficiencies of about 14 percent AM0 for 0.51-sq cm GaAs solar cells 5 microns thick with a 41-mil-thick coverglass. In preliminary experiments efficiencies close to 19 percent AM1 have been obtained for 10-micron-thick cells. It is suggested that the CLEFT technology should yield inexpensive, highly efficient modules with a beginning-of-life specific power close to 1 kW/kg (for a coverglass thickness of 4 mils).
Ma, Z.; Mehos, M.; Glatzmaier, G.; ...
2015-05-01
Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less
NASA Astrophysics Data System (ADS)
Etxebarria, Ikerne; Ajuria, Jon; Pacios, Roberto
2015-01-01
In spite of the impressive development achieved by organic photovoltaics throughout the last decades, especially in terms of reported power conversion efficiencies, there are still important technological and fundamental obstacles to circumvent before they can be implemented into reliable and long-lasting applications. Regarding device processing, the synthesis of highly soluble polymeric semiconductors first, and then fullerene derivatives, was initially considered as an important breakthrough that would definitely change the fabrication of photovoltaics once and for all. The potential and the expectation raised by this technology is such that it is very difficult to keep track of the most significant progresses being now published in different and even monographic journals. In this paper, we review the development of polymeric solar cells from its origin to the most efficient devices published to date. We separate these achievements into three different categories traditionally followed by the scientific community to push devices over 10% power conversion efficiency: active materials, strategies-fabrication/processing procedures-that can mainly modify the active film morphology, and all the different cell layout/architectures that have been used in order to extract as high a photocurrent as possible from the Sun. The synthesis of new donors, the use of additives and postprocessing techniques, buffer interlayers, inverted and tandem designs are some of the most important aspects that are reviewed in detail in this paper. All have equally contributed to develop this technology and bring it at the doors of commercialization.
Gallium phosphide energy converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, P.E.; Dinetta, L.C.; Goetz, M.A.
1995-10-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured andmore » the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.« less
Gallium phosphide energy converters
NASA Astrophysics Data System (ADS)
Sims, P. E.; Dinetta, L. C.; Goetz, M. A.
1995-10-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.
Gallium phosphide energy converters
NASA Technical Reports Server (NTRS)
Sims, P. E.; Dinetta, L. C.; Goetz, M. A.
1995-01-01
Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.
Singlet fission/silicon solar cell exceeding 100% EQE (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pazos, Luis M.; Lee, Jumin; Kirch, Anton; Tabachnyk, Maxim; Friend, Richard H.; Ehrler, Bruno
2016-09-01
Current matching limits the commercialization of tandem solar cells due to their instability over spectral changes, leading to the need of using solar concentrators and trackers to keep the spectrum stable. We demonstrate that voltage-matched systems show far higher performance over spectral changes; caused by clouds, dust and other variations in atmospheric conditions. Singlet fission is a process in organic semiconductors which has shown very efficient, 200%, down-conversion yield and the generated excitations are long-lived, ideal for solar cells. As a result, the number of publications has grown exponentially in the past 5 years. Yet, so far no one has achieved to combine singlet fission with most low bandgap semiconductors, including crystalline silicon, the dominating solar cell material with a 90% share of the PV Market. Here we show that singlet fission can facilitate the fabrication of voltage-matched systems, opening a simple design route for the effective implementation of down-conversion in commercially available photovoltaic technologies, with no modification of the electronic circuitry of such. The implemention of singlet fission is achieved simply by decoupling the fabrication of the individual subcells. For this demonstration we used an ITO/PEDOT/P3HT/Pentacene/C60/Ag wide-bandgap subcell, and a commercial silicon solar cell as the low-bandgap component. We show that the combination of the two leads to the first tandem silicon solar cell which exceeds 100% external quantum efficiency.
Nanoplasmonics: a frontier of photovoltaic solar cells
NASA Astrophysics Data System (ADS)
Gu, Min; Ouyang, Zi; Jia, Baohua; Stokes, Nicholas; Chen, Xi; Fahim, Narges; Li, Xiangping; Ventura, Michael James; Shi, Zhengrong
2012-12-01
Nanoplasmonics recently has emerged as a new frontier of photovoltaic research. Noble metal nanostructures that can concentrate and guide light have demonstrated great capability for dramatically improving the energy conversion efficiency of both laboratory and industrial solar cells, providing an innovative pathway potentially transforming the solar industry. However, to make the nanoplasmonic technology fully appreciated by the solar industry, key challenges need to be addressed; including the detrimental absorption of metals, broadband light trapping mechanisms, cost of plasmonic nanomaterials, simple and inexpensive fabrication and integration methods of the plasmonic nanostructures, which are scalable for full size manufacture. This article reviews the recent progress of plasmonic solar cells including the fundamental mechanisms, material fabrication, theoretical modelling and emerging directions with a distinct emphasis on solutions tackling the above-mentioned challenges for industrial relevant applications.
Status, technology and development of silicon solar cells at INER
NASA Astrophysics Data System (ADS)
Jao, S. S.; Tseng, H. H.; Cheng, C.; Tzeng, Y. C.; Chang, H. H.; Hwang, H. L.
Test runs using 200 5-cm-diameter silicon wafers are carried out, yielding 87% with an AM1 conversion efficiency greater than 11.5%. The highest efficiency is 12.7%. Concentrator solar cells of 2 x 2 sq cm are made with an AM1 efficiency of 14%. Solar cells with a diameter of 7.5 cm have attained AM1 efficiencies of more than 11.3%, and texturized solar cells of the same diameter fabricated from rejected wafers show AM1 efficiencies of 9.5-10.5%. It is noted that solar panels comprising 68 cells with a maximum output power of 13.5 W have been manufactured. The results of a 6-month test of a photovoltaic charge station for electric motorcycles are reported.
Experimental Results From a 2kW Brayton Power Conversion Unit
NASA Technical Reports Server (NTRS)
Hervol, David; Mason, Lee; Birchenough, Arthur
2003-01-01
This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).
NASA Astrophysics Data System (ADS)
Haney, Michael W.
2015-12-01
The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.
Boeing's High Voltage Solar Tile Test Results
NASA Astrophysics Data System (ADS)
Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.
2002-10-01
Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.
Boeing's High Voltage Solar Tile Test Results
NASA Technical Reports Server (NTRS)
Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.
2002-01-01
Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.
Limits to solar power conversion efficiency with applications to quantum and thermal systems
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.
1983-01-01
An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.
From first generation biofuels to advanced solar biofuels.
Aro, Eva-Mari
2016-01-01
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.
Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.
Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi
2012-08-07
The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.
Contribution of Nanostructures in High Performance Solar Cells
NASA Astrophysics Data System (ADS)
Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad
2017-11-01
Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.
One-Year stable perovskite solar cells by 2D/3D interface engineering
NASA Astrophysics Data System (ADS)
Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; de Angelis, F.; Graetzel, M.; Nazeeruddin, Mohammad Khaja
2017-06-01
Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells.
One-Year stable perovskite solar cells by 2D/3D interface engineering
Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, Mohammad Khaja
2017-01-01
Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells. PMID:28569749
Fabrication & characterization of thin film Perovskite solar cells under ambient conditions
NASA Astrophysics Data System (ADS)
Shah, Vivek T.
High efficiency solar cells based on inorganic materials such as silicon have been commercialized and used to harness energy from the sun and convert it into electrical energy. However, they are energy-intensive and rigid. Thin film solar cells based on inorganic-organic hybrid lead halide perovskite compounds have the potential to be a disruptive technology in the field of renewable energy sector of the economy. Perovskite solar cell (PSC) technology is a viable candidate for low-cost large scale production as it is solution processable at low temperature on a flexible substrate. However, for commercialization, PSCs need to compete with the cost and efficiency of crystalline silicon solar cells. High efficiency PSCs have been fabricated under highly controlled conditions in what is known as a glove-box, which adds to the cost of fabrication of PSCs. This additional cost can be significantly reduced by eliminating the use of glove-box for fabrication. Therefore, in this work, thin film PSCs were fabricated at ambient conditions on glass substrates. A power conversion efficiency of 5.6% was achieved with optimum fabrication control and minimal exposure to moisture.
One-Year stable perovskite solar cells by 2D/3D interface engineering.
Grancini, G; Roldán-Carmona, C; Zimmermann, I; Mosconi, E; Lee, X; Martineau, D; Narbey, S; Oswald, F; De Angelis, F; Graetzel, M; Nazeeruddin, Mohammad Khaja
2017-06-01
Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH 2 ) 4 NH 3 ) 2 PbI 4 /CH 3 NH 3 PbI 3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm 2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells.
Solid state laser applications in photovoltaics manufacturing
NASA Astrophysics Data System (ADS)
Dunsky, Corey; Colville, Finlay
2008-02-01
Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.
TERRASTAR: Terrestrial application of solar technology and research
NASA Technical Reports Server (NTRS)
1973-01-01
The application of solar energy to the energy crisis of the 70's and beyond is discussed in the context of energy consumption in the U.S., energy resources in the U.S., and the state-of-the-art of solar energy applications. Solar energy application concepts, such as solar farms (a term used to describe vast fields of concentrators collecting solar energy for the generation of steam to drive power turbines), an orbiting solar power station, and the conversion of solar energy into solar power for heating and cooling of individual buildings on the earth, are discussed. The report emphasizes the application of solar energy to the heating and cooling of buildings since this application seems to be more promising in the near term as far as research and development are concerned. The importance of initiating research and development on all solar application concepts is stressed as an important step in pursuing the use of solar energy. Immediate steps leading to the application of solar energy to heating and cooling of buildings are outlined to insure appreciable energy displacement through the use of solar energy by the year 2020.
Design and proof of concept of an innovative very high temperature ceramic solar absorber
NASA Astrophysics Data System (ADS)
Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc
2017-06-01
Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.
Solar power satellites - Technical, social and political implications
NASA Astrophysics Data System (ADS)
Knelman, F. H.
Solar power satellite systems (SPS) are examined, together with their environmental and social impacts and the energy policies necessary for their construction. The energy source, the sun, is acceptable to advocates of decentralized technologies, while the conversion system is fitted to large institutions. However, large-scale power plants are subject to persistent malfunctions, and the approximately 50 sq km SPS solar array is projected to suffer from at least recurring cell contact failures. The power could also be generated by heat engines for transmission by either laser or microwaves. Numerous feasibility and cost-benefit studies are still required, including defining the transmission beam's effects on the atmosphere, ionosphere, and human health. Furthermore, the resource allocations, capital costs, insurance, and institutional problems still need clarification, as do the design, logistics, and development of an entire new, much larger launch system based on Shuttle technology. Finally, the military defensibility of the SPS power station is questioned.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
NASA Astrophysics Data System (ADS)
John, J.; Prajapati, V.; Vermang, B.; Lorenz, A.; Allebe, C.; Rothschild, A.; Tous, L.; Uruena, A.; Baert, K.; Poortmans, J.
2012-08-01
Bulk crystalline Silicon solar cells are covering more than 85% of the world's roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90's and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating), junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell). While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si) in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.
Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin
2012-07-01
Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.
Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo
2016-07-20
With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.
Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook
2014-10-01
Titanium tetrachloride (TiCl4) treatment processed by chemical bath deposition is usually adopted as pre- and post-treatment for nanocrystalline titanium dioxide (TiO2) film deposition in the dye-sensitized solar cells (DSSCs) technology. TiCl4 post-treatment is a widely known method capable of improving the performance of dye-sensitized solar cells. In this work, the effect of TiCl4 post-treatment on the TiO2 electrode is proposed and compared to the untreated film. A TiO2 passivating layer was deposited on FTO glass by RF magnetron sputtering. The TiO2 sol prepared sol-gel method, nanoporous TiO2 upper layer was deposited by screen printing method on the passivating layer. TiCl4 post-treatment was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Crystalline structure was adjusted by various TiCl4 concentration and dipping time: 20 mM-150 mM and 30 min-120 min. The conversion efficiency was measured by solar simulator (100 mW/cm2). The dye-sensitized solar cell using TiCl4 post-treatment was measured the maximum conversion efficiency of 5.04% due to electron transport effectively. As a result, the DSSCs based on TiCl4 post-treatment showed better photovoltaic performance than cells made purely of TiO2 nanoparticles. The relative DSSCs devices are characterized in terms of short circuit current density, open circuit voltage, fill factor, conversion efficiency.
Up-conversion media on basis single crystals BaY2F8 for UV and VUV solid state lasers
NASA Astrophysics Data System (ADS)
Pushkar, A. A.; Ouvarova, T. V.; Molchanov, V. N.
2007-04-01
Crystal BaY IIF 8 represents the big interest as the perspective active media for lasers ultra-violet (UV) and vacuumultra- violet (VUV) regions. For the decision of problems with solarization this media and a choice of sources pump it is offered to use up-conversion mechanisms pump with activators from rare-earth elements (RE). We have developed technology of grown of oriented monocrystals BaY IIF 8, have defined influence of orientation on growth rate and quality ofthe received monocrystals.
High efficiency thermionic converter studies
NASA Technical Reports Server (NTRS)
Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.
1977-01-01
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.
ERIC Educational Resources Information Center
Eaton, William W.
Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…
Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong
2015-01-01
An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.
Chemical beam epitaxy for high efficiency photovoltaic devices
NASA Technical Reports Server (NTRS)
Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.
1994-01-01
InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.
A nanophotonic solar thermophotovoltaic device.
Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N
2014-02-01
The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.
Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.
Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J
2017-10-09
Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO 2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al 2 O 3 underlayer for perovskite solar cells. The thickness of the Al 2 O 3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al 2 O 3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al 2 O 3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al 2 O 3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al 2 O 3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al 2 O 3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greiner, Miles; Childress, Amy; Hiibel, Sage
2014-12-16
Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less
Performance analysis of high efficiency InxGa1-xN/GaN intermediate band quantum dot solar cells
NASA Astrophysics Data System (ADS)
Chowdhury, Injamam Ul Islam; Sarker, Jith; Shifat, A. S. M. Zadid; Shuvro, Rezoan A.; Mitul, Abu Farzan
2018-06-01
In this subsistent fifth generation era, InxGa1-xN/GaN based materials have played an imperious role and become promising contestant in the modernistic fabrication technology because of some of their noteworthy attributes. On our way of illustrating the performance, the structure of InxGa1-xN/GaN quantum dot (QD) intermediate band solar cell (IBSC) is investigated by solving the Schrödinger equation in light of the Kronig-Penney model. In comparison with p-n homojunction and heterojunction solar cells, InxGa1-xN/GaN IBQD solar cell manifests larger power conversion efficiency (PCE). PCE strongly depends on position and width of the intermediate bands (IB). Position of IBs can be controlled by tuning the size of QDs and the Indium content of InxGa1-xN whereas, width of IB can be controlled by tuning the interdot distance. PCE can also be controlled by tuning the position of fermi energy bands as well as changing the doping concentration. In this work, maximum conversion efficiency is found approximately 63.2% for a certain QD size, interdot distance, Indium content and doping concentration.
Health and safety implications of alternative energy technologies. II. Solar
NASA Astrophysics Data System (ADS)
Etnier, E. L.; Watson, A. P.
1981-09-01
No energy technology is risk free when all aspects of its utilization are taken into account. Every energy technology has some attendant direct and indirect health and safety concerns. Solar technologies examined in this paper are wind, ocean thermal energy gradients, passive, photovoltaic, satellite power systems, low- and high-temperature collectors, and central power stations, as well as tidal power. For many of these technologies, insufficient historical data are available from which to assess the health risks and environmental impacts. However, their similarities to other projects make certain predictions possible. For example, anticipated problems in worker safety in constructing ocean thermal energy conversion systems will be similar to those associated with other large-scale construction projects, like deep-sea oil drilling platforms. Occupational hazards associated with photovoltaic plant operation would be those associated with normal electricity generation, although for workers involved in the actual production of photovoltaic materials, there is some concern for the toxic effects of the materials used, including silicon, cadmium, and gallium arsenide. Satellite power systems have several unique risks. These include the effects of long-term space travel for construction workers, effects on the ozone layer and the attendant risk of skin cancer in the general public, and the as-yet-undetermined effects of long-term, low-level microwave exposure. Hazards may arise from three sources in solar heating and cooling systems: water contamination from corrosion inhibitors, heat transfer fluids, and bactericides; collector over-heating, fires, and “out-gassing” and handling and disposal of system fluids and wastes. Similar concerns exist for solar thermal power systems. Even passive solar systems may increase indoor exposure levels to various air pollutants and toxic substances, eitherdirectly from the solar system itself or indirectly by trapping released pollutants from furnishings, building materials, and indoor combustion.
Indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1982-12-28
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
Comparison of Stirling engines for use with a 25-kW disk-electric conversion system
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1987-01-01
Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang
"Battle against Phonons" was submitted by the Solid State Solar Thermal Energy Conversion (S3TEC) EFRC to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, "Best with Popcorn". S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MITmore » (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.« less
NASA Astrophysics Data System (ADS)
Sayama, K.; Arai, T.
2008-02-01
Efficient solar energy conversion system for hydrogen production from water, solar-hydrogen system, is one of most important technologies for genuinely sustainable development of the society in the world wide scale. However, there are many problems to breakthrough such as low solar-to-H2 efficiency (STH), high cost, low stability, etc in order to realize the system practically and economically. The solar-hydrogen systems using semiconductors are mainly classified as follows; solar cell-electrolysis system, semiconductor photoelectrode system, and photocatalyst system. There are various merits and demerits in each system. The solar cell-electrolysis system is very efficient but is very high cost. The photocatalyst system is very simple and relatively low cost, but the efficiency is still very low. On the other hand, various semiconductor systems with high efficiency have been investigated. A high STH more than 10% was reported using non-oxide semiconductor photoelectrodes such as InGaP, while the preparation methods were costly. In a European project, some simple oxide semiconductor photoelectrodes such as Fe2O3 and WO3 are mainly studied. Here, we investigated various photoelectrodes using mixed metal oxide especially on BiVO4 semiconductor, and a high throughput screening system of new visible light responsible semiconductors for photoelectrode and photocatalyst. Moreover, photocatalysis-electrolysis hybrid system for economical H2 production is studied to overcome the demerit of photocatalyst system on the gas separation and low efficiency.
Method for forming indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1984-03-13
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
Survey of power tower technology
NASA Astrophysics Data System (ADS)
Hildebrandt, A. F.; Dasgupta, S.
1980-05-01
The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.
NASA Astrophysics Data System (ADS)
Sahin, Mehmet
2018-05-01
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
NASA Astrophysics Data System (ADS)
Perret-Aebi, Laure-Emmanuelle; Escarré, Jordi; Li, Heng-Yu; Sansonnens, Laurent; Galliano, Federico; Cattaneo, Gianluca; Heinstein, Patrick; Nicolay, Sylvain; Bailat, Julien; Eberhard, Sébastien; Ballif, Christophe
2015-09-01
The use of photovoltaic (PV) is not anymore an option but a real need in the construction of nearly zero energy buildings. To date, the lack of PV products specifically designed for building integration, considering aesthetics and architectural aspects, is one important limiting factor allowing a massive deployment of PV in the built environment. Architects are continuously asking for new solutions to customize the colour of PV elements to better integrate them into the building skin. Among these colours, white is especially attractive as it is widely used in architecture for its elegance, versatility and fresh look. Until now, white solar modules were not considered to be an option and even never been though to be a technological possibility. Nonetheless, CSEM recently developed a new technology to make white solar modules a reality. Furthermore, the new Swiss company called Solaxess is now working on the industrialisation of this very innovative technology and the first products are expecting to be on the market at the end of 2015. The technology is based on the combination of two different elements: a solar cell able to convert solar infrared light into electricity and a selective filter which reflects and diffuse the whole visible spectrum. Any PV technology based on crystalline silicon can be used as they have a good response in the infrared. Approximately 55% of the current generated under standard test conditions comes from the infrared leading to conversion efficiencies above 11%. We will demonstrate, that thanks to this very innovative technology PV modules can become attractive and real active building elements and therefore meets the requirements of any future energy management through advanced building skins.
Flash Cracking Reactor for Waste Plastic Processing
NASA Technical Reports Server (NTRS)
Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu
2013-01-01
Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.
ERIC Educational Resources Information Center
Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.
2016-01-01
Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…
NASA Astrophysics Data System (ADS)
Zhang, Qi-Chu; Hadavi, M. S.; Lee, K.-D.; Shen, Y. G.
2003-03-01
High solar performance Zr-ZrO2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO2 or Al2O3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80°C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al2O3/Zr-ZrO2/Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al2O3/Zr-ZrO2/Al solar coating film with two cermet layers has a high solar absorptance value of 0.97 and low hemispherical emittance value of 0.05 at 80°C for a concentration factor of 2. The Al2O3/Zr-ZrO2/Al solar selective coatings with two cermet layers were deposited using dc magnetron sputtering technology. During the deposition of Zr-ZrO2 cermet layer, a Zr metallic target was run in a gas mixture of argon and oxygen. By control of oxygen flow rate the different metal volume fractions in the cermet layers were achieved using dc reactive sputtering. A solar absorptance of 0.96 and normal emittance of 0.05 at 80°C were achieved.
Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo
2017-07-28
In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.
Organohalide Perovskites for Solar Energy Conversion.
Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul
2016-03-15
Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency, fill factor, and ultimately the all-important power conversion efficiency. Finally, we address the key challenges pertinent to actually delivering a new and viable solar cell technology. These include long-term cell stability, scaling to the module level, and the toxicity associated with lead. Organohalide perovskites not only offer exciting possibilities for next generation optoelectronics and photovoltaics, but are an intriguing class of material crossing the boundaries of molecular solids and banded inorganic semiconductors. This is a potential area of rich new chemistry, materials science, and physics.
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1978-01-01
A brief review of the fundamentals of the conversion of solar energy into mechanical work (or electricity via generators) is given. Both past and present work on several conversion concepts are discussed. Solar collectors, storage systems, energy transport, and various types of engines are examined. Ongoing work on novel concepts of collectors, energy storage and thermal energy conversion are outlined and projections for the future are described. Energy costs for various options are predicted and margins and limitations are discussed.
NASA Astrophysics Data System (ADS)
Shabanov, N. S.; Isaev, A. B.; Orudzhev, F. F.; Murliev, E. K.
2018-01-01
The solar-energy conversion in eosin-sensitized solar cells based on cobalt and yttrium modified TiO2 nanotubes has been studied.It is established that the doping with metal ions shifts the absorption edge for Co and Y doped titanium dioxide samples to longer and shorter wavelengths, respectively. The efficiency of solar energy conversion depends on the wide bandgap of the semiconductor anode and reaches a maximum (4.4%) for yttrium-doped TiO2 in comparison to that (4.1%) for pure titanium dioxide.
NASA Astrophysics Data System (ADS)
Lorenzi, Bruno; Acciarri, Maurizio; Narducci, Dario
2015-06-01
Exploitation of solar energy conversion has become a fundamental aspect of satisfying a growing demand for energy. Thus, improvement of the efficiency of conversion in photovoltaic (PV) devices is highly desirable to further promote this source. Because it is well known that the most relevant efficiency constraint, especially for single-junction solar cells, is unused heat within the device, hybrid thermo-photovoltaic systems seem promising . Among several hybrid solutions proposed in the literature, coupling of thermoelectric and PV devices seems one of the most interesting. Taking full advantage of this technology requires proper definition and analysis of the thermal losses occurring in PV cells. In this communication we propose a novel analysis of such losses, decoupling source-dependent and absorber-dependent losses. This analysis enables an evaluation of the actual recoverable amount of energy, depending on the absorber used in the PV cell. It shows that for incoming solar irradiation of , and depending on the choice of material, the maximum available thermal power ranges from (for single-crystal silicon) to (for amorphous silicon).
[Research of spectrum characteristics for light conversion agricultural films].
Zhang, Song-pei; Li, Jian-yu; Chen, Juan; Xiao, Yang; Sun, Yu-e
2004-10-01
The solar spectrum and the function spectrum in chrysanthemum and tomato were determined in this paper. The research for a relation plant growth to solar spectrum showed that the efficiency of plant making use of ultraviolet light of 280-380 nm and yellow-green light of 500-600 nm and near IR spectra over 720 nm are lower, that the blue-purple light of 430-480 nm and red light of 630-690 nm are beneficial to enhancing photosynthesis and promoting plant growth. According to plant photosynthesis and solar spectrum characteristic, the author developed CaS:Cu+, Cl- blue light film, and red light film added with CaS:Eu2+, Mn2+, Cl- to convert green light into red light, and discussed the spectrum characteristic of red-blue double peak in agricultural film and rare earth organic complex which could convert ultraviolet light into red light. Just now, the study on light conversion regents in farm films is going to face new breakthrough and the technology of anti-stocks displacement to study red film which can convert near infrared light are worth to attention.
NASA Astrophysics Data System (ADS)
Ehsan, Md Amimul
Thin-film solar cells are emerging from the research laboratory to become commercially available devices for low cost electrical power generation applications. Silicon which is a cheap, abundant and non-toxic elemental semiconductor is an attractive candidate for these solar cells. Advanced modeling and simulation of Si thin-film solar cells has been performed to make this technology more cost effective without compromising the performance and efficiency. In this study, we focus on the design and optimization of Si/Si1-xGex heterostructures, and microcrystalline and nanocrystalline Si thin-film solar cells. Layer by layer optimization of these structures was performed by using advanced bandgap engineering followed by numerical analysis for their structural, electrical and optical characterizations. Special care has been introduced for the selection of material layers which can help to improve the light absorption properties of these structures for harvesting the solar spectrum. Various strategies such as the optimization of the doping concentrations, Ge contents in Si1-xGex buffer layer, incorporation of the absorber layers and surface texturing have been in used to improve overall conversion efficiencies of the solar cells. To be more specific, the observed improvement in the conversion efficiency of these solar cells has been calculated by tailoring the thickness of the buffer, absorber, and emitter layers. In brief, an approach relying on the phenomena of improved absorption of the buffer and absorber layer which leads to a corresponding gain in the open circuit voltage and short circuit current is explored. For numerical analysis, a PC1D simulator is employed that uses finite element analysis technique for solving semiconductor transport equations. A comparative study of the Si/Si1-xGex and Ge/Si1-xGex is also performed. We found that due to the higher lattice mismatch of Ge to Si, thin-film solar cells based on Si/Si1-xGex heterostructures performed much better. It has been found that microc-Si and nc-Si pin structures have strong dependence on their grain sizes and crystallinity to enhance the light absorption capability of these solar cells. Our results show that silicon based thin-film solar cells exhibit high level of performance making them very competitive for the next generation of low cost photovoltaic technology.
The potential impact of new power system technology on the design of a manned space station
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Schwartz, H. J.
1984-01-01
Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.
The potential impact of new power system technology on the design of a manned Space Station
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Schwartz, H. J.
1984-01-01
Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.
NASA Astrophysics Data System (ADS)
Meng, Lei
Solar energy harvesting through photovoltaic conversion has gained great attention as a sustainable and environmentally friendly solution to meet the rapidly increasing global energy demand. Currently, the high cost of solar-cell technology limits its widespread use. This situation has generated considerable interest in developing alternative solar-cell technologies that reduce cost through the use of less expensive materials and processes. Perovskite solar cells provide a promising low-cost technology for harnessing this energy source. In Chapter two, a moisture-assist method is introduced and studied to facilitate grain growth of solution processed perovskite films. As an approach to achieve high-quality perovskite films, I anneal the precursor film in a humid environment (ambient air) to dramatically increase grain size, carrier mobility, and charge carrier lifetime, thus improving electrical and optical properties and enhancing photovoltaic performance. It is revealed that mild moisture has a positive effect on perovskite film formation, demonstrating perovskite solar cells with 17.1% power conversion efficiency. Later on, in Chapter four, an ultrathin flexible device delivering a PCE of 14.0% is introduced. The device is based on silver-mesh substrates exhibiting superior durability against mechanical bending. Due to their low energy of formation, organic lead iodide perovskites are also susceptible to degradation in moisture and air. The charge transport layer therefore plays a key role in protecting the perovskite photoactive layer from exposure to such environments, thus achieving highly stable perovskite-based photovoltaic cells. Although incorporating organic charge transport layers can provide high efficiencies and reduced hysteresis, concerns remain regarding device stability and the cost of fabrication. In this work, perovskite solar cells that have all solution-processed metal oxide charge transport layers were demonstrated. Stability has been significantly improved compared with cells made with organic layers. Degradation mechanisms were investigated and important guidelines were derived for future device design with a view to achieving both highly efficient and stable solar devices. Organometal halide based perovskite material has great optoelectronic proprieties, for example, shallow traps, benign grain boundaries and high diffusion length. The perovskite LEDs show pure electroluminescence (EL) with narrow full width at half maximum (FWHM), which is an advantage for display, lighting or lasing applications. In chapter five, perovskite LEDs are demonstrated employing solution processed charge injection layers with a quantum efficiency of 1.16% with a very low driving voltage.
Wong, Wai-Yeung; Ho, Cheuk-Lam
2010-09-21
Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device performance. Our group has developed a novel strategy that allows for tuning of the optical absorption and charge transport properties as well as the PSC efficiency of these metallopolyynes. The absorbance of these materials can also be tuned to traverse the near-visible and near-infrared spectral regions. Because of the diversity of transition metals available and chemical versatility of the central spacer unit, we anticipate that this class of materials could soon lead to exciting applications in next-generation PSCs and other electronic or photonic devices. Further research in this emerging field could spur new developments in the production of renewable energy.
NASA Astrophysics Data System (ADS)
Zhang, Zhenlong; Qin, Jianqiang; Shi, Wenjia; Liu, Yanyan; Zhang, Yan; Liu, Yuefeng; Gao, Huiping; Mao, Yanli
2018-05-01
In this paper, Er3+-Yb3+-Li+ tri-doped TiO2 (UC-TiO2) was prepared by an addition of Li+ to Er3+-Yb3+ co-doped TiO2. The UC-TiO2 presented an enhanced up-conversion emission compared with Er3+-Yb3+ co-doped TiO2. The UC-TiO2 was applied to the perovskite solar cells. The power conversion efficiency (PCE) of the solar cells without UC-TiO2 was 14.0%, while the PCE of the solar cells with UC-TiO2 was increased to 16.5%, which presented an increase of 19%. The results suggested that UC-TiO2 is an effective up-conversion material. And this study provided a route to expand the spectral absorption of perovskite solar cells from visible light to near-infrared using up-conversion materials.
Zhang, Zhenlong; Qin, Jianqiang; Shi, Wenjia; Liu, Yanyan; Zhang, Yan; Liu, Yuefeng; Gao, Huiping; Mao, Yanli
2018-05-11
In this paper, Er 3+ -Yb 3+ -Li + tri-doped TiO 2 (UC-TiO 2 ) was prepared by an addition of Li + to Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 presented an enhanced up-conversion emission compared with Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 was applied to the perovskite solar cells. The power conversion efficiency (PCE) of the solar cells without UC-TiO 2 was 14.0%, while the PCE of the solar cells with UC-TiO 2 was increased to 16.5%, which presented an increase of 19%. The results suggested that UC-TiO 2 is an effective up-conversion material. And this study provided a route to expand the spectral absorption of perovskite solar cells from visible light to near-infrared using up-conversion materials.
Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.
Jung, Hyun Suk; Lee, Jung-Kun
2013-05-16
TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.
Perovskite as light harvester: a game changer in photovoltaics.
Kazim, Samrana; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Ahmad, Shahzada
2014-03-10
It is not often that the scientific community is blessed with a material, which brings enormous hopes and receives special attention. When it does, it expands at a rapid pace and its every dimension creates curiosity. One such material is perovskite, which has triggered the development of new device architectures in energy conversion. Perovskites are of great interest in photovoltaic devices due to their panchromatic light absorption and ambipolar behavior. Power conversion efficiencies have been doubled in less than a year and over 15% is being now measured in labs. Every digit increment in efficiency is being celebrated widely in the scientific community and is being discussed in industry. Here we provide a summary on the use of perovskite for inexpensive solar cells fabrication. It will not be unrealistic to speculate that one day perovskite-based solar cells can match the capability and capacity of existing technologies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid bioinorganic approach to solar-to-chemical conversion.
Nichols, Eva M; Gallagher, Joseph J; Liu, Chong; Su, Yude; Resasco, Joaquin; Yu, Yi; Sun, Yujie; Yang, Peidong; Chang, Michelle C Y; Chang, Christopher J
2015-09-15
Natural photosynthesis harnesses solar energy to convert CO2 and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO2 to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts and Methanosarcina barkeri as a biocatalyst for CO2 fixation, we demonstrate robust and efficient electrochemical CO2 to CH4 conversion at up to 86% overall Faradaic efficiency for ≥ 7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO2, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.
Hybrid bioinorganic approach to solar-to-chemical conversion
Nichols, Eva M.; Gallagher, Joseph J.; Liu, Chong; Su, Yude; Resasco, Joaquin; Yu, Yi; Sun, Yujie; Yang, Peidong; Chang, Michelle C. Y.; Chang, Christopher J.
2015-01-01
Natural photosynthesis harnesses solar energy to convert CO2 and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO2 to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts and Methanosarcina barkeri as a biocatalyst for CO2 fixation, we demonstrate robust and efficient electrochemical CO2 to CH4 conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO2, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion. PMID:26305947
Dish Stirling solar receiver program
NASA Technical Reports Server (NTRS)
Haglund, R. A.
1980-01-01
A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.
Photoelectrochemical water splitting in separate oxygen and hydrogen cells
NASA Astrophysics Data System (ADS)
Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner
2017-06-01
Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.
NASA Astrophysics Data System (ADS)
Adams, L. R.; Vonroos, A.
1985-04-01
An investigation being conducted by Astro Aerospace Corporation (Astro) for Jet Propulsion Laboratory in which efficient structures for geosynchronous spacecraft solar arrays are being developed is discussed. Recent developments in solar blanket technology, including the introduction of ultrathin (50 micrometer) silicon solar cells with conversion efficiencies approaching 15 percent, have resulted in a significant increase in blanket specific power. System specific power depends not only on blanket mass but also on the masses of the support structure and deployment mechanism. These masses must clearly be reduced, not only to minimize launch weight, but also to increase array natural frequency. The solar array system natural frequency should be kept high in order to reduce the demands on the attitude control system. This goal is approached by decreasing system mass, by increasing structural stiffness, and by partitioning the blanket. As a result of this work, a highly efficient structure for deploying a solar array was developed.
Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells
NASA Astrophysics Data System (ADS)
Bi, Enbing; Chen, Han; Xie, Fengxian; Wu, Yongzhen; Chen, Wei; Su, Yanjie; Islam, Ashraful; Grätzel, Michael; Yang, Xudong; Han, Liyuan
2017-06-01
Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm2, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.
NASA Astrophysics Data System (ADS)
Mashaal, Heylal; Gordon, Jeffrey M.
2014-10-01
Solar rectifying antennas constitute a distinct solar power conversion paradigm where sunlight's spatial coherence is a basic constraining factor. In this presentation, we derive the fundamental thermodynamic limit for coherence-limited blackbody (principally solar) power conversion. Our results represent a natural extension of the eponymous Landsberg limit, originally derived for converters that are not constrained by the radiation's coherence, and are irradiated at maximum concentration (i.e., with a view factor of unity to the solar disk). We proceed by first expanding Landsberg's results to arbitrary solar view factor (i.e., arbitrary concentration and/or angular confinement), and then demonstrate how the results are modified when the converter can only process coherent radiation. The results are independent of the specific power conversion mechanism, and hence are valid for diffraction-limited as well as quantum converters (and not just classical heat engines or in the geometric optics regime). The derived upper bounds bode favorably for the potential of rectifying antennas as potentially high-efficiency solar converters.
Sahin, Mehmet
2018-05-23
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Space Solar Power: Satellite Concepts
NASA Technical Reports Server (NTRS)
Little, Frank E.
1999-01-01
Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.
NSF presentation. [summary on energy conversion research program
NASA Technical Reports Server (NTRS)
Morse, F. H.
1973-01-01
Wind energy conversion research is considered in the framework of the national energy problem. Research and development efforts for the practical application of solar energy -- including wind energy -- as alternative energy supplies are assessed in: (1) Heating and cooling of buildings; (2) photovoltaic energy conversion; (3) solar thermal energy conversion; (4) wind energy conversion; (5) ocean thermal energy conversion; (6) photosynthetic production of organic matter; and (7) conversion of organic matter into fuels.
Making the Most of Waste Energy
NASA Technical Reports Server (NTRS)
2005-01-01
The Thermo-Mechanical Systems Branch at NASA s Glenn Research Center is responsible for planning and conducting research efforts to advance thermal systems for space, aerospace, and non-aerospace applications. Technological areas pertain to solar and thermal energy conversion. For example, thermo-mechanical systems researchers work with gas (Stirling) and liquid/vapor (Rankine) systems that convert thermal energy to electrical power, as well as solar dynamic power systems that concentrate sunlight to electrical power. The branch s development of new solar and thermal energy technologies is propelling NASA s missions deep into unfamiliar territories of space. Solar dynamic power systems are actively improving the health of orbiting satellites, giving them longer life and a stronger radiation tolerance, thus, creating less need for on-orbit maintenance. For future missions, NASA may probe even deeper into the mysterious cosmos, with the adoption of highly efficient thermal energy converters that have the potential to serve as the source of onboard electrical power for satellites and spacecraft. Research indicates that these thermal converters can deliver up to 5 times as much power as radioisotope thermoelectric generators in use today, for the same amount of radioisotope. On Earth, energy-converting technologies associated with NASA s Thermo-Mechanical Systems Branch are being used to recover and transform low-temperature waste heat into usable electric power, with a helping hand from NASA.
Efficient electrochemical CO2 conversion powered by renewable energy.
Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao
2015-07-22
The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.
Simulation approach for optimization of ZnO/c-WSe{}_{2} heterojunction solar cells
NASA Astrophysics Data System (ADS)
Huang, Shihua; Li, Qiannan; Chi, Dan; Meng, Xiuqing; He, Lü
2017-04-01
Taking into account defect density in WSe{}2, interface recombination between ZnO and WSe{}2, we presented a simulation study of ZnO/crystalline WSe{}2 heterojunction (HJ) solar cell using wxAMPS simulation software. The optimal conversion efficiency 39.07% for n-ZnO/p-c-WSe{}2 HJ solar cell can be realized without considering the impact of defects. High defect density (> 1.0× {10}11 cm{}-2) in c-WSe{}2 and large trap cross-section (> 1.0 × 10{}-10 cm{}2) have serious impact on solar cell efficiency. A thin p-WSe{}2 layer is intentionally inserted between ZnO layer and c-WSe{}2 to investigate the effect of the interface recombination. The interface properties are very crucial to the performance of ZnO/c-WSe{}2HJ solar cell. The affinity of ZnO value range between 3.7-4.5 eV gives the best conversion efficiency. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen
The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetratingmore » network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit are the following: • Photo-excitation of the donor (or the acceptor). • Charge transfer with holes in the donor domain and electrons in the acceptor domain. • Sweep-out to electrodes prior to recombination by the internal electric field. • Energy delivered to the external circuit. Each of these four steps was studied in detail using a wide variety of organic semiconductors with different molecular structures. This UC Santa Barbara group was the first to clarify the origin and the mechanism involved in the ultrafast charge transfer process. The ultrafast charge transfer (time scale approximately 100 times faster than the first step in the photo-synthesis of green plants) is the fundamental reason for the potential for high power conversion efficiency of sunlight to electricity from plastic solar cells. The UCSB group was the first to emphasize, clarify and demonstrate the need for sweep-out to electrodes prior to recombination by the internal electric field. The UCSB group was the first to synthesize small molecule organic semiconductors capable of high power conversion efficiencies. The results of this research were published in high impact peer-reviewed journals. Our published papers (40 in number) provide answers to fundamental questions that have been heavily discussed and debated in the field of Bulk Heterojunction Solar Cells; scientific questions that must be resolved before this technology can be ready for commercialization in large scale for production of renewable energy. Of the forty publications listed, nineteen were co-authored by two or more of the PIs, consistent with the multi-investigator approach described in the original proposal. The specific advantages of this “plastic” solar cell technology are the following: a. Manufacturing by low-cost printing technology using soluble organic semiconductors; this approach can be implemented in large scale by roll-to-roll printing on plastic substrates. b. Low energy cost in manufacturing; all steps carried out at room temperature (approx. a factor of ten less than the use of Silicon which requires high temperature processing). c. Low carbon footprint d. Lightweight, flexible and rugged Because of the resolution of many scientific issues, a significant fraction of which were addressed in the research results of DE-FG02-08ER46535, the power conversion efficiencies are improving at an ever increasing rate. During the funding period of DE-FG02-08ER46535, the power conversion efficiencies of plastic solar cells improved from just a few per cent to values greater than 11% with contributions from our group and from researchers all over the world.« less
NASA Astrophysics Data System (ADS)
Fan, Lin; Wang, Fengyou; Liang, Junhui; Yao, Xin; Fang, Jia; Zhang, Dekun; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan
2017-01-01
A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device. Project supported by the International Cooperation Projects of the Ministry of Science and Technology (No. 2014DFE60170), the National Natural Science Foundation of China (Nos. 61474065, 61674084), the Tianjin Research Key Program of Application Foundation and Advanced Technology (No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province (No. BE2014147-3), and the 111 Project (No. B16027).
Ultrathin and lightweight organic solar cells with high flexibility
Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried
2012-01-01
Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014
Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid bin; Jang, Jin
2016-01-01
Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL. PMID:27277388
NASA Technical Reports Server (NTRS)
Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.
1978-01-01
A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.
Feasibility Study of a Satellite Solar Power Station
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Maynard, O. E.; Mackovciak, J. J. R.; Ralph, E. I.
1974-01-01
A feasibility study of a satellite solar power station (SSPS) was conducted to: (1) explore how an SSPS could be flown and controlled in orbit; (2) determine the techniques needed to avoid radio frequency interference (RFI); and (3) determine the key environmental, technological, and economic issues involved. Structural and dynamic analyses of the SSPS structure were performed, and deflections and internal member loads were determined. Desirable material characteristics were assessed and technology developments identified. Flight control performance of the SSPS baseline design was evaluated and parametric sizing studies were performed. The study of RFI avoidance techniques covered (1) optimization of the microwave transmission system; (2) device design and expected RFI; and (3) SSPS RFI effects. The identification of key issues involved (1) microwave generation, transmissions, and rectification and solar energy conversion; (2) environmental-ecological impact and biological effects; and (3) economic issues, i.e., costs and benefits associated with the SSPS. The feasibility of the SSPS based on the parameters of the study was established.
Functionalized nanostructures for enhanced photocatalytic performance under solar light.
Guo, Liejin; Jing, Dengwei; Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai
2014-01-01
Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology.
Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
Sivula, Kevin
2013-01-01
Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.
Sharenko, Alexander; Toney, Michael F
2016-01-20
Solution-processed lead halide perovskite thin-film solar cells have achieved power conversion efficiencies comparable to those obtained with several commercial photovoltaic technologies in a remarkably short period of time. This rapid rise in device efficiency is largely the result of the development of fabrication protocols capable of producing continuous, smooth perovskite films with micrometer-sized grains. Further developments in film fabrication and morphological control are necessary, however, in order for perovskite solar cells to reliably and reproducibly approach their thermodynamic efficiency limit. This Perspective discusses the fabrication of lead halide perovskite thin films, while highlighting the processing-property-performance relationships that have emerged from the literature, and from this knowledge, suggests future research directions.
NASA Astrophysics Data System (ADS)
Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng
2017-09-01
Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.
Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.
Sergeant, Nicholas P; Pincon, Olivier; Agrawal, Mukul; Peumans, Peter
2009-12-07
Spectral control of the emissivity of surfaces is essential in applications such as solar thermal and thermophotovoltaic energy conversion in order to achieve the highest conversion efficiencies possible. We investigated the spectral performance of planar aperiodic metal-dielectric multilayer coatings for these applications. The response of the coatings was optimized for a target operational temperature using needle-optimization based on a transfer matrix approach. Excellent spectral selectivity was achieved over a wide angular range. These aperiodic metal-dielectric stacks have the potential to significantly increase the efficiency of thermophotovoltaic and solar thermal conversion systems. Optimal coatings for concentrated solar thermal conversion were modeled to have a thermal emissivity <7% at 720K while absorbing >94% of the incident light. In addition, optimized coatings for solar thermophotovoltaic applications were modeled to have thermal emissivity <16% at 1750K while absorbing >85% of the concentrated solar radiation.
NASA Astrophysics Data System (ADS)
Pandey, Rahul; Chaujar, Rishu
2016-12-01
In this work, a novel four-terminal perovskite/SiC-based rear contact silicon tandem solar cell device has been proposed and simulated to achieve 27.6% power conversion efficiency (PCE) under single AM1.5 illumination. 20.9% efficient semitransparent perovskite top subcell has been used for perovskite/silicon tandem architecture. The tandem structure of perovskite-silicon solar cells is a promising method to achieve efficient solar energy conversion at low cost. In the four-terminal tandem configuration, the cells are connected independently and hence avoids the need for current matching between top and bottom subcell, thus giving greater design flexibility. The simulation analysis shows, PCE of 27.6% and 22.4% with 300 μm and 10 μm thick rear contact Si bottom subcell, respectively. This is a substantial improvement comparing to transparent perovskite solar cell and c-Si solar cell operated individually. The impact of perovskite layer thickness, monomolecular, bimolecular, and trimolecular recombination have also been obtained on the performance of perovskite top subcell. Reported PCEs of 27.6% and 22.4% are 1.25 times and 1.42 times higher as compared to experimentally available efficiencies of 22.1% and 15.7% in 300 μm and 10 μm thick stand-alone silicon solar cell devices, respectively. The presence of SiC significantly suppressed the interface recombination in bottom silicon subcell. Detailed realistic technology computer aided design (TCAD) analysis has been performed to predict the behaviour of the device.
Chen, Gang (Director, Solid-State Solar-Thermal Energy Conversion Center); S3TEC Staff
2017-12-09
'Battle against Phonons' was submitted by the Solid-State Solar-Thermal Energy Conversion (S3TEC) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, 'Best with Popcorn'. S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MIT (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.
Screen printed silver top electrode for efficient inverted organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min
2015-10-15
Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinitymore » and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.« less
Conservation and solar energy program: congressional budget request, FY 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-01-01
Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Informationmore » and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)« less
All-Weather Solar Cells: A Rising Photovoltaic Revolution.
Tang, Qunwei
2017-06-16
Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improving Si solar cell performance using Mn:ZnSe quantum dot-doped PLMA thin film
2013-01-01
Poly(lauryl methacrylate) (PLMA) thin film doped with Mn:ZnSe quantum dots (QDs) was spin-deposited on the front surface of Si solar cell for enhancing the solar cell efficiency via photoluminescence (PL) conversion. Significant solar cell efficiency enhancements (approximately 5% to 10%) under all-solar-spectrum (AM0) condition were observed after QD-doped PLMA coatings. Furthermore, the real contribution of the PL conversion was precisely assessed by investigating the photovoltaic responses of the QD-doped PLMA to monochromatic and AM0 light sources as functions of QD concentration, combined with reflectance and external quantum efficiency measurements. At a QD concentration of 1.6 mg/ml for example, among the efficiency enhancement of 5.96%, about 1.04% was due to the PL conversion, and the rest came from antireflection. Our work indicates that for the practical use of PL conversion in solar cell performance improvement, cautions are to be taken, as the achieved efficiency enhancement might not be wholly due to the PL conversion. PMID:23787125
Final Scientific/Technical Report – March 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Neal R.
The Center for Interface Science: Solar Electric Materials (CISSEM) was funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES) from August 1, 2009 – December 31, 2014 under Award Number DE-SC0001084, as part of a broad set of Energy Frontier Research Centers (EFRCs) designed to underpin the development of economical energy conversion platforms for the 21st century. CISSEM successfully integrated the research groups of 19 principal investigators at The University of Arizona (the lead institution), the Georgia Institute of Technology, Princeton University, the University of Washington, and the National Renewable Energy Laboratory (NREL) into amore » coordinated and synergistic program, while also building a highly productive collaboration with the SLAC National Accelerator Laboratory. Our mission was to advance the understanding of interface science underlying solar energy conversion technologies based on organic and organic-inorganic hybrid materials – specifically in organic photovoltaic solar cells (OPVs); and to inspire, recruit and train future scientists and leaders in the basic science of solar electric energy conversion. CISSEM researchers focused on establishing a foundational understanding of the electronic properties of interfaces in area-scalable, thin-film photovoltaic platforms. Metal oxide interlayers used in OPVs to improve the efficiency of charge harvesting at electrodes was our central focus. A key feature of CISSEM research has been our ability to develop a comprehensive understanding of interfaces and interfacial processes at the atomic and molecular scales. This is a scientific foundation for thin-film photovoltaic technologies and our nation’s pursuit of lowering the costs of transforming the sun’s energy into electricity. Our efforts combined: i) theoretical modeling; ii) new materials development; iii) developing new measurement science approaches to characterize composition, molecular and supramolecular structure, band edge energies, electrical properties, and charge harvesting or injection; and iv) integrating our use-inspired new materials and enhanced knowledge of interfaces and interfacial processes into OPV platforms. The strengths of the characterization methodologies developed in CISSEM were recognized within the EFRC network, and were a major component of our interactions with other DOE-funded programs including EFRCs. CISSEM research has resulted in a legacy of 120+ peer-reviewed publications describing our basic science. Much of this highly collaborative research will now be built upon at CISSEM member institutions, with other extramural funding sources. Furthermore, the state-of-the-art facilities and expertise created for modern interface science, especially as they pertain to energy conversion and energy storage challenges, will ensure their broadest continued impact. DOE EFRC funding has positively impacted and enhanced the training and development of more than 140 graduate students, postdoctoral researchers and research scientists at the five CISSEM institutions, and students from three Colorado universities associated with NREL. Our legacy also includes these student, postdoctoral researcher and scientist alumni who have taken positions of impact and responsibility in technology industries, government agencies and academia in the U.S., Asia and Europe.« less
10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.
You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang
2013-08-07
Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boriskina, Svetlana; Kraemer, Daniel; McEnaney, Kenneth
Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.
NASA Technical Reports Server (NTRS)
Williams, J. R.
1974-01-01
The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.
Progress in amorphous silicon based large-area multijunction modules
NASA Astrophysics Data System (ADS)
Carlson, D. E.; Arya, R. R.; Bennett, M.; Chen, L.-F.; Jansen, K.; Li, Y.-M.; Maley, N.; Morris, J.; Newton, J.; Oswald, R. S.; Rajan, K.; Vezzetti, D.; Willing, F.; Yang, L.
1996-01-01
Solarex, a business unit of Amoco/Enron Solar, is scaling up its a-Si:H/a-SiGe:H tandem device technology for the production of 8 ft2 modules. The current R&D effort is focused on improving the performance, reliability and cost-effectiveness of the tandem junction technology by systematically optimizing the materials and interfaces in small-area single- and tandem junction cells. Average initial conversion efficiencies of 8.8% at 85% yield have been obtained in pilot production runs with 4 ft2 tandem modules.
Gallium arsenide (GaAs) power conversion concept
NASA Technical Reports Server (NTRS)
Nussberger, A. A.
1980-01-01
A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.
NASA Technical Reports Server (NTRS)
1980-01-01
The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.
Turbulence convective heat transfer for cooling the photovoltaic cells
NASA Astrophysics Data System (ADS)
Arianmehr, Iman
Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.
Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology
NASA Technical Reports Server (NTRS)
Fiegl, G. F.; Bonora, A. C.
1980-01-01
The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.
NREL Pyrheliometer Comparisons: September 26-October 7, 2016 (NPC-2016)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Ibrahim; Dooraghi, Mike; Andreas, Afshin
Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for developing and deploying solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by the operator of commercially available radiometers. Maintaining accurate radiometer calibrations that are traceable to an international standard is the first step in producing research-quality solar irradiance measurements. National Renewable Energy Laboratory (NREL) pyrheliometer comparisons (NPCs) are held annually at the Solar Radiation Research Laboratory (SRRL) inmore » Golden, Colorado. Open to all pyrheliometer owners and operators, each NPC provides an opportunity to determine the unique World Radiometric Reference transfer factor (WRR-TF) for each participating pyrheliometer. By adjusting all subsequent pyrheliometer measurements by the appropriate WRR-TF, the solar irradiance data are traceable to the WRR. NPC-2016 was September 26 through October 7, 2016. Participants operated 45 absolute cavity radiometers and 27 conventional thermopile-based pyrheliometers to simultaneously measure clear-sky, direct normal solar irradiance during this period.« less
The status of power supplies for primary electric propulsion in the U.S.A.
NASA Technical Reports Server (NTRS)
Jones, R. M.; Scott-Monck, J. A.
1984-01-01
This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.
Papaya drying and waste conversion system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-02-12
This project, performed under United States Department of Energy Small-scale Appropriate Energy Technology Grant, involves demonstration of an integrated system using solar energy to process off-grade or reject fruit into marketable food products. The integrated system consists of three phases: (1) solar dehydration of usable fruit; (2) solar vacuum distillation of fermented wastes (peelings, rinds, skins, and seeds) to produce an ethanol fuel to use as a backup source of heat for dehydration; and (3) land reclamation by mixing stillage and compost with volcanic cinder and ash to produce on marginal land a rich soil suitable for growing more cropsmore » to dry. Although the system is not 100% complete the investigators have demonstrated that a small business can efficiently use solar energies in an integrated fashion to process waste into food, improve the quality of the land, and provide meaningful jobs in a region of very high unemployment.« less
NASA Technical Reports Server (NTRS)
Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.
1981-01-01
A computer simulation code was employed to evaluate several generic types of solar power systems (up to 10 MWe). Details of the simulation methodology, and the solar plant concepts are given along with cost and performance results. The Solar Energy Simulation computer code (SESII) was used, which optimizes the size of the collector field and energy storage subsystem for given engine-generator and energy-transport characteristics. Nine plant types were examined which employed combinations of different technology options, such as: distributed or central receivers with one- or two-axis tracking or no tracking; point- or line-focusing concentrator; central or distributed power conversion; Rankin, Brayton, or Stirling thermodynamic cycles; and thermal or electrical storage. Optimal cost curves were plotted as a function of levelized busbar energy cost and annualized plant capacity. Point-focusing distributed receiver systems were found to be most efficient (17-26 percent).
NASA Astrophysics Data System (ADS)
Domanski, Konrad; Alharbi, Essa A.; Hagfeldt, Anders; Grätzel, Michael; Tress, Wolfgang
2018-01-01
Perovskite solar cells have achieved power-conversion efficiency values approaching those of established photovoltaic technologies, making the reliable assessment of their operational stability the next essential step towards commercialization. Although studies increasingly often involve a form of stability characterization, they are conducted in non-standardized ways, which yields data that are effectively incomparable. Furthermore, stability assessment of a novel material system with its own peculiarities might require an adjustment of common standards. Here, we investigate the effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells. On this basis, we comment on our perceived relevance of the different ways these are currently aged. We also demonstrate how the results of the experiments can be distorted and how to avoid the common pitfalls. We hope this work will initiate discussion on how to age perovskite solar cells and facilitate the development of consensus stability measurement protocols.
Solar Thermal Energy Storage in a Photochromic Macrocycle.
Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted
2016-07-25
The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Infrared power cells for satellite power conversion
NASA Technical Reports Server (NTRS)
Summers, Christopher J.
1991-01-01
An analytical investigation is performed to assess the feasibility of long-wavelength power converters for the direct conversion of IR radiation onto electrical power. Because theses devices need to operate between 5 and 30 um the only material system possible for this application is the HgCdTe system which is currently being developed for IR detectors. Thus solar cell and IR detector theories and technologies are combined. The following subject areas are covered: electronic and optical properties of HgCdTe alloys; optimum device geometry; junction theory; model calculation for homojunction power cell efficiency; and calculation for HgCdTe power cell and power beaming.
NASA Astrophysics Data System (ADS)
Essig, Stephanie; Allebé, Christophe; Remo, Timothy; Geisz, John F.; Steiner, Myles A.; Horowitz, Kelsey; Barraud, Loris; Ward, J. Scott; Schnabel, Manuel; Descoeudres, Antoine; Young, David L.; Woodhouse, Michael; Despeisse, Matthieu; Ballif, Christophe; Tamboli, Adele
2017-09-01
Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the record III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Stephanie; Allebé, Christophe; Remo, Timothy
Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the recordmore » III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.« less
Microfabrication of microsystem-enabled photovoltaic (MEPV) cells
NASA Astrophysics Data System (ADS)
Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose L.; Resnick, Paul J.; Wanlass, Mark W.; Clews, Peggy J.; Pluym, Tammy C.; Sanchez, Carlos A.; Gupta, Vipin P.
2011-02-01
Microsystem-Enabled Photovoltaic (MEPV) cells allow solar PV systems to take advantage of scaling benefits that occur as solar cells are reduced in size. We have developed MEPV cells that are 5 to 20 microns thick and down to 250 microns across. We have developed and demonstrated crystalline silicon (c-Si) cells with solar conversion efficiencies of 14.9%, and gallium arsenide (GaAs) cells with a conversion efficiency of 11.36%. In pursuing this work, we have identified over twenty scaling benefits that reduce PV system cost, improve performance, or allow new functionality. To create these cells, we have combined microfabrication techniques from various microsystem technologies. We have focused our development efforts on creating a process flow that uses standard equipment and standard wafer thicknesses, allows all high-temperature processing to be performed prior to release, and allows the remaining post-release wafer to be reprocessed and reused. The c-Si cell junctions are created using a backside point-contact PV cell process. The GaAs cells have an epitaxially grown junction. Despite the horizontal junction, these cells also are backside contacted. We provide recent developments and details for all steps of the process including junction creation, surface passivation, metallization, and release.
Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen
2013-11-04
A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.
Satellite Power Systems /SPS/ - Overview of system studies and critical technology
NASA Technical Reports Server (NTRS)
Manson, S. V.
1980-01-01
Systems studies and critical technology issues for the development and evaluation of Satellite Power Systems (SPS) for the photovoltaic generation of electrical energy and its transmission to earth are reviewed. Initial concept studies completed in 1976 and system definition studies initiated in the same year have indicated the technical feasibility of SPS and identified challenging issues to be addressed as part of the SPS Concept Development and Evaluation Program. Systems considered in the study include photovoltaic and solar thermal power conversion configurations employing klystron or solid state microwave generators or lasers for power transmission, and power transmission options, system constructability and in-orbit and ground operations. Technology investigations are being performed in the areas of microwave power transmission, structure/controls interactions and the behavior of key materials in the space/SPS environment. Favorable results have been obtained in the areas of microwave phase distribution and phase control, dc-RF conversion, antenna radiating element, and no insurmountable problems have been discovered in any of the investigations to date.
Hjerrild, Natasha E; Neo, Darren C J; Kasdi, Assia; Assender, Hazel E; Warner, Jamie H; Watt, Andrew A R
2015-04-01
Transfer-printed silver nanowire transparent conducting electrodes are demonstrated in lead sulfide-zinc oxide quantum dot solar cells. Advantages of using this transparent conductor technology are increased junction surface energy, solution processing, and the potential cost reduction of low temperature processing. Joule heating, device aging, and film thickness effects are investigated to understand shunt pathways created by nanowires protruding perpendicular to the film. A V(oc) of 0.39 ± 0.07 V, J(sc) of 16.2 ± 0.2 mA/cm(2), and power conversion efficiencies of 2.8 ± 0.4% are presented.
Quantum-dot-sensitized solar cells.
Rühle, Sven; Shalom, Menny; Zaban, Arie
2010-08-02
Quantum-dot-sensitized solar cells (QDSCs) are a promising low-cost alternative to existing photovoltaic technologies such as crystalline silicon and thin inorganic films. The absorption spectrum of quantum dots (QDs) can be tailored by controlling their size, and QDs can be produced by low-cost methods. Nanostructures such as mesoporous films, nanorods, nanowires, nanotubes and nanosheets with high microscopic surface area, redox electrolytes and solid-state hole conductors are borrowed from standard dye-sensitized solar cells (DSCs) to fabricate electron conductor/QD monolayer/hole conductor junctions with high optical absorbance. Herein we focus on recent developments in the field of mono- and polydisperse QDSCs. Stability issues are adressed, coating methods are presented, performance is reviewed and special emphasis is given to the importance of energy-level alignment to increase the light to electric power conversion efficiency.
NASA Astrophysics Data System (ADS)
Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin
2018-05-01
It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient–induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors.
Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell
NASA Astrophysics Data System (ADS)
Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.
2015-04-01
Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.
Perovskite Materials: Solar Cell and Optoelectronic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Geohegan, David B; Xiao, Kai
2017-01-01
Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure,more » and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.« less
Thin film solar cells grown by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Yang, Fan
Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.
Chapter 1: Reliably Measuring the Performance of Emerging Photovoltaic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumbles, Garry; Reese, Matthew O; Marshall, Ashley
Determining the power conversion efficiency of photovoltaic solar cells, especially those from new, emerging areas of technology, is important if advances in performance are to be made. However, although precise measurements are important, it is the accuracy of these types of measurements that can cause issues. Accurate measurements not only promote the development of new technology platforms, but they also enable comparisons with established technologies and allow assessments of advancements within the same field. This chapter provides insights into how measurements can be made with reasonable accuracy using both the components of the measuring system and a good protocol tomore » acquire good data. The chapter discusses how to measure a calibrated lamp spectrum, determine a spectral mismatch factor, identify the correct reference cell and filter, define the illuminated active area, measure J-V curves to avoid any hysteresis effects, take note of sample degradation issues and avoid the temptation to artificially enhance efficiency data.« less
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
Renewable energy - Target for 2050
NASA Astrophysics Data System (ADS)
Rowe, W. D.
1982-02-01
The possibilities of various renewable energy technologies to supply a projected world demand for 40,000 GW years of energy each year by the year 2050 are examined. Noting that industrial processes consume 50% of all energy needs, fossil fuel reserves are shown to be sufficient for a maximum of 370 yr in the U.S., when all supplies become depleted. Breeder reactors have a doubling time which is 30 yr too long for meeting more than 0.5% of world energy demand in 2050, while fusion, even considering ocean-derived deuterium as a fuel source, will not be supplying energy for another 35-70 yr. Among the solar technologies, the installation of ten million 100 m tall 4 MW wind generators is feasible to meet all the projected energy needs, and solar cells with 10% conversion efficiency could do the same with 14 times less land. Further discussion is given to geothermal, fuel cell, and OTEC technologies, as well as the forty trillion dollars necessary to erect the fully renewable systems.
Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.
Ameen, Sadia; Rub, Malik Abdul; Kosa, Samia A; Alamry, Khalid A; Akhtar, M Shaheer; Shin, Hyung-Shik; Seo, Hyung-Kee; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja
2016-01-08
The recent advances in perovskite solar cells (PSCs) created a tsunami effect in the photovoltaic community. PSCs are newfangled high-performance photovoltaic devices with low cost that are solution processable for large-scale energy production. The power conversion efficiency (PCE) of such devices experienced an unprecedented increase from 3.8 % to a certified value exceeding 20 %, demonstrating exceptional properties of perovskites as solar cell materials. A key advancement in perovskite solar cells, compared with dye-sensitized solar cells, occurred with the replacement of liquid electrolytes with solid-state hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), which contributed to enhanced PCE values and improved the cell stability. Following improvements in the perovskite crystallinity to produce a smooth, uniform morphology, the selective and efficient extraction of positive and negative charges in the device dictated the PCE of PSCs. In this Review, we focus mainly on the HTMs responsible for hole transport and extraction in PSCs, which is one of the essential components for efficient devices. Here, we describe the current state-of-the-art in molecular engineering of hole-transporting materials that are used in PSCs and highlight the requisites for market-viability of this technology. Finally, we include an outlook on molecular engineering of new functional HTMs for high efficiency PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advancing colloidal quantum dot photovoltaic technology
NASA Astrophysics Data System (ADS)
Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.
2016-06-01
Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.
Harnessing Solar Energy Using Photosynthetic and Organic Pigments
NASA Astrophysics Data System (ADS)
Fitzsimons, Toby Ryan
Fossil fuels are a finite energy resource that must be supplemented or replaced by more stable forms of electrical energy. Solar technology research strives to supplement and provide eventual replacement for fossil fuel technology. This experiment focused on the use of natural pigments as photo-sensitizers in the current generation of solar cells called dye sensitized solar cells (DSSCs). Pigments from purified chlorophyll a, chlorophyll b, chlorophyll a/b, crude spinach (Spinacia oleracea) extract, phycocyanin, and chlorophyllin were used to construct DSSCs and evaluated, along with a control containing no pigment, for solar energy conversion. The anode of the solar cells consisted of titanium dioxide (TiO2) plates soaked in pigment solutions for twenty-four hours. The plates were assembled, along with an electrolyte sandwiched between cells, and a platinum-coated counter plate that functioned as the cathode. A gasket seal was placed between the plates and held together with rubber bands. The DSSCs were each tested for a maximum power (Pmax) point and a resistor was selected that corresponded to the resistance at that point. The cells were randomly placed into a power block assembly located in an environmental chamber with lighting that provided an average of 27,590 lumens at the surface of DSSCs. With appropriate resistors in place, the cells were subjected to twelve-hour days and twelve-hour nights for ten days, and measurements were recorded every ten minutes. Data were collected to obtain values for voltage in millivolts (mV), current in microamps (microA), and power in microwatts (microW), as well as beginning and ending efficiencies in converting light to usable energy. Voltages were substantially higher during the day than at night for all pigments, except for the control, indicating that the pigments functioned as DSSCs. Hence, only daytime values were used for data analysis. Voltage during the ten-day experiment ranged from 3.99 to 274 mV; current ranged from 0.0180 to 41.9 microA, and power ranged from 0.00 to 11.3 microW. Chlorophyllin had the highest peak and least voltage (274 and 161 mV), highest peak and least current (41.9 and 21.8 microA), and highest peak and least power (11.3 and 4.84 microW). The ranking of the pigments for peak voltage was: Chlorophyllin = Crude Extract ≥ Chlorophyll a = Chlorophyll a/b ≥ Phycocyanin = Chlorophyll b > Control. The ranking for least voltage was: Chlorophyllin > Phycocyanin ≥ Chlorophyll a/b ≥ Crude Extract ≥ Chlorophyll b ≥ Chlorophyll a ≥ Control. Ranking for peak and least values were similar for current and power. Solar energy conversion (efficiency in converting light energy to usable energy in watts per square meter) for all treatments ranged from 0.000595 to 0.0217% at the beginning of the experiment, and was highest in cells constructed with chlorophyllin. Based on rankings from peak and ending voltage values, as well as other measurements, it was concluded that DSSCs constructed with chlorophyllin performed the best and lasted the longest as photo-sensitizers, compared to other pigments used in this investigation. The DSSCs constructed with crude extract performed almost as well as those constructed with chlorophyllin at the beginning of the experiment, but degradation of this naturally-made pigment may have prevented these cells from sustaining solar energy conversion for more than a few days. Other pigments demonstrated conversion values higher than those of control DSSCs which contained no pigments. The results from this project provide evidence that DSSCs can produce useable energy. More research is needed to enhance and prolong the efficiency of DSSCs in solar energy conversion.
NASA Astrophysics Data System (ADS)
Pint, Cary L.; Westover, Andrew S.; Cohn, Adam P.; Erwin, William R.; Share, Keith; Metke, Thomas; Bardhan, Rizia
2015-10-01
This work will discuss our recent advances focused on integrating high power energy storage directly into the native materials of both conventional photovoltaics (PV) and dye-sensitized solar cells (DSSCs). In the first case (PV), we demonstrate the ability to etch high surface-area porous silicon charge storage interfaces directly into the backside of a conventional polycrystalline silicon photovoltaic device exhibiting over 14% efficiency. These high surface area materials are then coupled with solid-state ionic liquid-polymer electrolytes to produce solid-state fully integrated devices where the PV device can directly inject charge into an on-board supercapacitor that can be separately discharged under dark conditions with a Coulombic efficiency of 84%. In a similar manner, we further demonstrate that surface engineered silicon materials can be utilized to replace Pt counterelectrodes in conventional DSSC energy conversion devices. As the silicon counterelectrodes rely strictly on surface Faradaic chemical reactions with the electrolyte on one side of the wafer electrode, we demonstrate double-sided processing of electrodes that enables dual-function of the material for simultaneous energy storage and conversion, each on opposing sides. In both of these devices, we demonstrate the ability to produce an all-silicon coupled energy conversion and storage system through the common ability to convert unused silicon in solar cells into high power silicon-based supercapacitors. Beyond the proof-of-concept design and performance of this integrated solar-storage system, this talk will conclude with a brief discussion of the hurdles and challenges that we envision for this emerging area both from a fundamental and technological viewpoint.
Excitonic Materials for Hybrid Solar Cells and Energy Efficient Lighting
NASA Astrophysics Data System (ADS)
Kabra, Dinesh; Lu, Li Ping; Vaynzof, Yana; Song, Myounghoon; Snaith, Henry J.; Friend, Richard H.
2011-07-01
Conventional photovoltaic technology will certainly contribute this century, but to generate a significant fraction of our global power from solar energy, a radically new disruptive technology is required. Research primarily focused on developing the physics and technologies being low cost photovoltaic concepts are required. The materials with carbon-based solution processible organic semiconductors with power conversion efficiency as high as ˜8.2%, which have emerged over the last decade as promising alternatives to expensive silicon based technologies. We aim at exploring the morphological and optoelectronic properties of blends of newly synthesized polymer semiconductors as a route to enhance the performance of organic semiconductor based optoelectronic devices, like photovoltaic diodes (PV) and Light Emitting Diodes (LED). OLED efficiency has reached upto 150 lm/W and going to be next generation cheap and eco friendly solid state lighting solution. Hybrid electronics represent a valuable alternative for the production of easy processible, flexible and reliable optoelectronic thin film devices. I will be presenting recent advancement of my work in the area of hybrid photovoltaics, PLED and research path towards realization electrically injectable organic laser diodes.
Photovoltaic solar energy conversion in the '80s
NASA Astrophysics Data System (ADS)
Chevalier, I.
1981-04-01
The potential for photovoltaic solar energy conversion in the generation of electricity to meet the needs of industrial and developing nations in the 1980s is discussed. The current technology of photovoltaic cells and modules, which are for the most part based on single crystal silicon and can deliver peak powers of 2 to 40 W at 6 to 12 V, is reviewed and prospects for cost reduction in the short- and medium-term by the development of new materials and production methods and increased cell efficiency and in the long term by the development of thin film cells, alternative compounds and mass production are indicated. Possible applications of photovoltaic-derived electricity are pointed out, including educational television receivers, rural telephones, refrigerators, water pumping and hospitals in developing nations and telecommunications, cathodic protection, signaling, telemetry and low-power pumping applications in industrial nations. Predictions of a photovoltaic peak Watt installed costing less than 10 francs by 1990 and a market above 100 MW in 1985 are pointed out.
Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Yanyan; Zhao, Li; Wei, Shoubin; Xiao, Meng; Dong, Binghai; Wan, Li; Wang, Shimin
2018-05-01
In this work, perovskite solar cells (PSCs) were fabricated in the ambient air, with a scaffold layer composed of TiO2/ZrO2 double layer as the mesoscopic layer and carbon as the counter electrode. The effect of ZrO2 thin film thickness on the photovoltaic performances of PSCs was also studied in detail. Results showed that the photoelectric properties of as-prepared PSCs largely depend on the thin film thickness due to a series of factors, including surface roughness, charge transport resistance, and electron-hole recombination rate. The power conversion efficiency of PSCs increased from 8.37% to 11.33% by varying the thin film thickness from 75 nm to 305 nm, and the optimal power conversion efficiency was realized up to the 11.33% with a thin film thickness of 167 nm. This research demonstrates a promising route for the high-efficiency and low-cost photovoltaic technology.
Common Data Format: New XML and Conversion Tools
NASA Astrophysics Data System (ADS)
Han, D. B.; Liu, M. H.; McGuire, R. E.
2002-12-01
Common Data Format (CDF) is a self-describing platform-independent data format for storing, accessing, and manipulating scalar and multidimensional scientific data sets. Significant benefit has accrued to specific science communities from their use of standard formats within those communities. Examples include the International Solar Terrestrial Physics (ISTP) community in using CDF for traditional space physics data (fields, particles and plasma, waves, and images), the worldwide astronomical community in using FITS (Flexible Image Transport System) for solar data (primarily spectral images), the NASA Planetary community in using Planetary Data System (PDS) Labels, and the earth science community in using Hierarchical Data Format (HDF). Scientific progress in solar-terrestrial physics continues to be impeded by the multiplicity of available standards for data formats and dearth of general data format translators. As a result, scientists today spend a significant amount of time translating data into the format they are familiar with for their research. To minimize this unnecessary data translation time and to allow more research time, the CDF office located at GSFC National Space Science Data Center (NSSDC) has developed HDF-to-CDF and FITS-to-CDF translators, and employed the eXtensible Markup Language (XML) technology to facilitate and promote data interoperability within the space science community. We will present the current status of the CDF work including the conversion tools that have been recently developed, conversion tools that are planned in the near future, share some of the XML experiences, and use the discussion to gain community feedback to our planned future work.
Direct energy conversion using liquid metals
NASA Astrophysics Data System (ADS)
Onea, Alexandru; Diez de los Rios Ramos, Nerea; Hering, Wolfgang; Stieglitz, Robert; Moster, Peter
2014-12-01
Liquid metals have excellent properties to be used as heat transport fluids due to their high thermal conductivity and their wide applicable temperature range. The latter issue can be used to go beyond limitations of existing thermal solar energy systems. Furthermore, the direct energy converter Alkali Metal Thermo Electric Converter (AMTEC) can be used to make intangible areas of energy conversion suitable for a wide range of applications. One objective is to investigate AMTEC as a complementary cycle for the next generation of concentrating solar power (CSP) systems. The experimental research taking place in the Karlsruhe Institute of Technology (KIT) is focused on the construction of a flexible AMTEC test facility, development, test and improvement of liquid-anode and vapor-anode AMTEC devices as well as the coupling of the AMTEC cold side to the heat storage tank proposed for the CSP system. Within this project, the investigations foreseen will focus on the analyses of BASE-metal interface, electrode materials and deposition techniques, corrosion and erosion of materials brought in contact with high temperature sodium. This prototype demonstrator is planned to be integrated in the KArlsruhe SOdium LAboratory (KASOLA), a flexible closed mid-size sodium loop, completely in-house designed, presently under construction at the Institute for Neutron Physics and Reactor Technology (INR) within KIT.
NASA-OAST photovoltaic energy conversion program
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Loria, J. C.
1984-01-01
The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.
NASA Technical Reports Server (NTRS)
Boeer, K. W.
1975-01-01
Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.
Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan
2017-07-12
An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.
Surface Plasmon-Assisted Solar Energy Conversion.
Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun
2016-01-01
The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.
Toward a III-V Multijunction Space Cell Technology on Si
NASA Technical Reports Server (NTRS)
Ringel, S. A.; Lueck, M. R.; Andre, C. L.; Fitzgerald, E. A.; Wilt, D. M.; Scheiman, D.
2007-01-01
High efficiency compound semiconductor solar cells grown on Si substrates are of growing interest in the photovoltaics community for both terrestrial and space applications. As a potential substrate for III-V compound photovoltaics, Si has many advantages over traditional Ge and GaAs substrates that include higher thermal conductivity, lower weight, lower material costs, and the potential to leverage the extensive manufacturing base of the Si industry. Such a technology that would retain high solar conversion efficiency at reduced weight and cost would result in space solar cells that simultaneously possess high specific power (W/kg) and high power density (W/m2). For terrestrial solar cells this would result in high efficiency III-V concentrators with improved thermal conductivity, reduced cost, and via the use of SiGe graded interlayers as active component layers the possibility of integrating low bandgap sub-cells that could provide for extremely high conversion efficiency.1 In addition to photovoltaics, there has been an historical interest in III-V/Si integration to provide optical interconnects in Si electronics, which has become of even greater relevance recently due to impending bottlenecks in CMOS based circuitry. As a result, numerous strategies to integrate GaAs with Si have been explored with the primary issue being the approx.4% lattice mismatch between GaAs and Si. Among these efforts, relaxed, compositionally-graded SiGe buffer layers where the substrate lattice constant is effectively tuned from Si to that of Ge so that a close lattice match to subsequent GaAs overlayers have shown great promise. With this approach, threading dislocation densities (TDDs) of approx.1 x 10(exp 6)/sq cm have been uniformly achieved in relaxed Ge layers on Si,5 leading to GaAs on Si with minority carrier lifetimes greater than 10 ns,6 GaAs single junction solar cells on Si with efficiencies greater than 18%,7 InGaAs CW laser diodes on Si,8 and room temperature GaInP red laser diodes on Si.9 Here we report on the first high performance dual junction GaInP/GaAs solar cells grown on Si using this promising SiGe engineered substrate approach.
Efficient electrochemical CO 2 conversion powered by renewable energy
Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...
2015-06-29
Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less
Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng
2015-09-02
Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ibrayev, N.; Serikov, T.; Zavgorodniy, A.; Sadykova, A.
2018-01-01
A module based on dye-sensitized solar cells with Ag/TiO2 structure was developed. It is shown that the addition of the core-shell structure to the semiconductor film of titanium dioxide, where the nanoparticle Ag serves as the core, and the TiO2 is shell, increases the coefficient of solar energy conversion into electrical energy. The effect of the photoanode area on the efficiency of conversion of solar energy into electrical energy is studied. It is shown that the density of the photocurrent decreases with increasing of the photoanode area, which leads to a drop in the efficiency of solar cells.
A solar simulator-pumped gas laser for the direct conversion of solar energy
NASA Technical Reports Server (NTRS)
Weaver, W. R.; Lee, J. H.
1981-01-01
Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.
Early Results from Solar Dynamic Space Power System Testing
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1996-01-01
A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang
2018-01-01
Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.
Inganäs, Olle; Admassie, Shimelis
2014-02-12
The role of materials in civilization is well demonstrated over the centuries and millennia, as materials have come to serve as the classifier of stages of civilization. With the advent of materials science, this relation has become even more pronounced. The pivotal role of advanced materials in industrial economies has not yet been matched by the influence of advanced materials during the transition from agricultural to modern societies. The role of advanced materials in poverty eradication can be very large, in particular if new trajectories of social and economic development become possible. This is the topic of this essay, different in format from the traditional scientific review, as we try to encompass not only two infant technologies of solar energy conversion and storage by means of organic materials, but also the social conditions for introduction of the technologies. The development of organic-based photovoltaic energy conversion has been rapid, and promises to deliver new alternatives to well-established silicon photovoltaics. Our recent development of organic biopolymer composite electrodes opens avenues towards the use of renewable materials in the construction of wooden batteries or supercapacitors for charge storage. Combining these new elements may give different conditions for introduction of energy technology in areas now lacking electrical grids, but having sufficient solar energy inputs. These areas are found close to the equator, and include some of the poorest regions on earth. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Almgren, D. W.
1978-01-01
In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.
NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prša, Andrej; Harmanec, Petr; Torres, Guillermo
In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the timemore » of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.« less
Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3
NASA Astrophysics Data System (ADS)
Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques; Mason, Brian D.; Milone, Eugene F.; Montgomery, Michele; Richards, Mercedes; Schmutz, Werner; Schou, Jesper; Stewart, Susan G.
2016-08-01
In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.
NASA Radioisotope Power System Program - Technology and Flight Systems
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.; Dudzinski, Leonard A.
2009-01-01
NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.
Intrinsic non-radiative voltage losses in fullerene-based organic solar cells
NASA Astrophysics Data System (ADS)
Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Fan, Yeli; Tropiano, Manuel; McGarry, Kathryn A.; Zeika, Olaf; Riede, Moritz K.; Douglas, Christopher J.; Barlow, Stephen; Marder, Seth R.; Neher, Dieter; Spoltore, Donato; Vandewal, Koen
2017-06-01
Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to 1.45-1.65 eV, that is, 0.2-0.3 eV higher than for technologies with minimized non-radiative voltage losses.
Designing of new structure PID controller of boost converter for solar photovoltaic stability
NASA Astrophysics Data System (ADS)
Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi
2017-03-01
Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.
Flat-plate solar array project. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Callaghan, W.; Mcdonald, R.
1986-01-01
In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.
Wind power for the electric-utility industry: Policy incentives for fuel conservation
NASA Astrophysics Data System (ADS)
March, F.; Dlott, E. H.; Korn, D. H.; Madio, F. R.; McArthur, R. C.; Vachon, W. A.
1982-06-01
A systematic method for evaluating the economics of solar-electric/conservation technologies as fuel-savings investments for electric utilities in the presence of changing federal incentive policies is presented. The focus is on wind energy conversion systems (WECS) as the solar technology closest to near-term large scale implementation. Commercially available large WECS are described, along with computer models to calculate the economic impact of the inclusion of WECS as 10% of the base-load generating capacity on a grid. A guide to legal structures and relationships which impinge on large-scale WECS utilization is developed, together with a quantitative examination of the installation of 1000 MWe of WECS capacity by a utility in the northeast states. Engineering and financial analyses were performed, with results indicating government policy changes necessary to encourage the entrance of utilities into the field of windpower utilization.
Revised congressional budget request, FY 1982. Conservation and renewable energy program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-01
Programs dealing with conservation and renewable energy are reprinted from the Revised Congressional Budget Request FY 1982. From Volume 7, Energy Conservation, information is presented on: buildings and community systems; industrial programs; transportation programs; state and local programs; inventor's program energy conversion technology; energy impact assistance; and residential/commercial retrofit. From Volume 2, Energy Supply Research and Development, information and data are presented on: solar building applications; solar industrial applications; solar power applications; solar information systems; SERI facility; solar international activities; alcohol fuels; geothermal; and hydropower. From Volume 6, Energy Production, Demonstration, and Distribution, information and data on solar energy production,more » demonstration, and distribution are presented. From Volume 3, Energy Supply and R and D Appropriation, information and data on electric energy systems and energy storage systems are included. From Volume 4, information and data are included on geothermal resources development fund. In Volume 5, Power Marketing Administrations, information and data are presented on estimates by appropriations, positions and staff years by appropriation, staffing distribution, and power marketing administrations. Recissions and deferrals for FY 1981 are given. (MCW)« less
Progress in nanostructured photoanodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong
2016-09-01
Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.
Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; To, Bobby; Nanayakkara, Sanjini U.; Luther, Joseph M.; Zhou, Weilie; Berry, Joseph J.; van de Lagemaat, Jao; Padture, Nitin P.; Zhu, Kai; Al-Jassim, Mowafak M.
2015-01-01
Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfaces and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. Combining the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells. PMID:26411597
Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; ...
2015-09-28
Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. Moreover, the distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfacesmore » and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. When we combined the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells.« less
Zero-reabsorption doped-nanocrystal luminescent solar concentrators.
Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L
2014-04-22
Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.
Energy Conversion in Natural and Artificial Photosynthesis
McConnell, Iain; Li, Gonghu; Brudvig, Gary W.
2010-01-01
Summary Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil fuel dependence has severe consequences including energy security issues and greenhouse gas emissions. The consequences of fossil fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices including photoelectrochemical cells for solar energy conversion. PMID:20534342
Tyystjärvi, Esa; Méndez‐Ramos, Jorge; Müller, Frank A.; Zhang, Qinyuan
2015-01-01
Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis. Clearly contrary to application in photovoltaic energy conversion, implementation of solar spectral conversion for extrinsic sensitization of a photosynthetic machinery is very straightforward, and—when compared to intrinsic sensitization—less‐strict limitations with regard to quantum coherence are seen. We now argue the ways in which extrinsic sensitization through photoluminescent spectral converters will—and will not—play its role in the area of ultra‐efficient photosynthesis, and also illustrate how such extrinsic sensitization requires dedicated selection of specific conversion schemes and design strategies on system scale. PMID:27774377
Wondraczek, Lothar; Tyystjärvi, Esa; Méndez-Ramos, Jorge; Müller, Frank A; Zhang, Qinyuan
2015-12-01
Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis. Clearly contrary to application in photovoltaic energy conversion, implementation of solar spectral conversion for extrinsic sensitization of a photosynthetic machinery is very straightforward, and-when compared to intrinsic sensitization-less-strict limitations with regard to quantum coherence are seen. We now argue the ways in which extrinsic sensitization through photoluminescent spectral converters will-and will not-play its role in the area of ultra-efficient photosynthesis, and also illustrate how such extrinsic sensitization requires dedicated selection of specific conversion schemes and design strategies on system scale.
Alternative Architecture for Commercial Space Solar Power
NASA Technical Reports Server (NTRS)
Potter, Seth
2000-01-01
This presentation discuss the space solar power (SSP) concept. It takes us step by step through the process: the use of sunlight and solar cells to create power, the conversion of the sunlight into electricity, the conversion of electricity to microwaves, and finally the from microwaves back to electricity by the Rectennas on Earth.
Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M C; Hua, Ruinian; Lei, Qin; Tian, Yue
2018-04-11
Solar-driven water splitting using powdered catalysts is considered as the most economical means for hydrogen generation. However, four-electron-driven oxidation half-reaction showing slow kinetics, accompanying with insufficient light absorption and rapid carrier combination in photocatalysts leads to low solar-to-hydrogen energy conversion efficiency. Here, we report amorphous cobalt phosphide (Co-P)-supported black phosphorus nanosheets employed as photocatalysts can simultaneously address these issues. The nanosheets exhibit robust hydrogen evolution from pure water (pH = 6.8) without bias and hole scavengers, achieving an apparent quantum efficiency of 42.55% at 430 nm and energy conversion efficiency of over 5.4% at 353 K. This photocatalytic activity is attributed to extremely efficient utilization of solar energy (~75% of solar energy) by black phosphorus nanosheets and high-carrier separation efficiency by amorphous Co-P. The hybrid material design realizes efficient solar-to-chemical energy conversion in suspension, demonstrating the potential of black phosphorus-based materials as catalysts for solar hydrogen production.
Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.
Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao
2016-09-07
The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.
Luminescent Spectral Conversion to Improve the Performance of Dye-Sensitized Solar Cells.
Hosseini, Zahra; Taghavinia, Nima; Wei-Guang Diau, Eric
2017-12-06
Relative to the broadband solar spectrum, a narrow range of spectral absorption of photovoltaic (PV) devices is considered an important determinant that the efficiency of light harvesting of these devices is less than unity. Having the narrowest spectral response to solar radiation among all PV devices, dye-sensitized solar cells (DSSCs) suffer severely from this loss. Luminescent spectral conversion provides a mechanism to manipulate and to adapt the incident solar spectrum by converting, through photoluminescence, the energies of solar photons into those that are more effectively captured by a PV device. This mechanism is particularly helpful for DSSCs because there is much flexibility in both the choice of the light-harvesting materials and the architecture of the DSSC. Here we review and discuss recent advances in the field of luminescent spectral conversion for DSSCs. The focus is on the architectural design of DSSCs, and the complications, advantages and new functionalities offered by each of their configurations are discussed. The loss mechanisms are examined and important parameters governing the spectral conversion mechanism of a DSSC are introduced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inertial energy storage for advanced space station applications
NASA Technical Reports Server (NTRS)
Van Tassel, K. E.; Simon, W. E.
1985-01-01
Because the NASA Space Station will spend approximately one-third of its orbital time in the earth's shadow, depriving it of solar energy and requiring an energy storage system to meet system demands, attention has been given to flywheel energy storage systems. These systems promise high mechanical efficiency, long life, light weight, flexible design, and easily monitored depth of discharge. An assessment is presently made of three critical technology areas: rotor materials, magnetic suspension bearings, and motor-generators for energy conversion. Conclusions are presented regarding the viability of inertial energy storage systems and of problem areas requiring further technology development efforts.
NASA Technical Reports Server (NTRS)
Barnett, John W.
1991-01-01
Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.
Tulsani, Srikanth Reddy; Rath, Arup Kumar
2018-07-15
The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.
Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots
Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching
2016-01-01
Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073
Mishra, Amaresh; Fischer, Markus K R; Bäuerle, Peter
2009-01-01
Dye-sensitized solar cells (DSSC) have attracted considerable attention in recent years as they offer the possibility of low-cost conversion of photovoltaic energy. This Review focuses on recent advances in molecular design and technological aspects of metal-free organic dyes for applications in dye-sensitized solar cells. Special attention has been paid to the design principles of these dyes and on the effect of various electrolyte systems. Cosensitization, an emerging technique to extend the absorption range, is also discussed as a way to improve the performance of the device. In addition, we report on inverted dyes for photocathodes, which constitutes a relatively new approach for the production of tandem cells. Special consideration has been paid to the correlation between the molecular structure and physical properties to their performance in DSSCs.
Hole-Transport Materials for Perovskite Solar Cells.
Calió, Laura; Kazim, Samrana; Grätzel, Michael; Ahmad, Shahzada
2016-11-14
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion
NASA Technical Reports Server (NTRS)
Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.;
2012-01-01
Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.
NASA Astrophysics Data System (ADS)
Song, Pei; Jiang, Chun
2013-05-01
The effect on photoelectric conversion efficiency of an a-Si-based solar cell by applying a solar spectral downshifter of rare earth ion Ce3+ single-doped complexes including yttrium aluminum garnet Y3Al5O12 single crystals, nanostructured ceramics, microstructured ceramics and B2O3-SiO2-Gd2O3-BaO glass is studied. The photoluminescence excitation spectra in the region 360-460 nm convert effectively into photoluminescence emission spectra in the region 450-550 nm where a-Si-based solar cells exhibit a higher spectral response. When these Ce3+ single-doped complexes are placed on the top of an a-Si-based solar cell as precursors for solar spectral downshifting, theoretical relative photoelectric conversion efficiencies of nc-Si:H and a-Si:H solar cells approach 1.09-1.13 and 1.04-1.07, respectively, by means of AMPS-1D numerical modeling, potentially benefiting an a-Si-based solar cell with a photoelectric efficiency improvement.
Ultrafast Electron Dynamics in Solar Energy Conversion.
Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy
2017-08-23
Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.
NASA Astrophysics Data System (ADS)
Zhang, Yaoju; Zheng, Jun; Zhao, Xuesong; Ruan, Xiukai; Cui, Guihua; Zhu, Haiyong; Dai, Yuxing
2018-03-01
A practical model of crystalline silicon-wafer solar cells is proposed in order to enhance the light absorption and improve the conversion efficiency of silicon solar cells. In the model, the front surface of the silicon photovoltaic film is designed to be a textured-triangular-grating (TTG) structure, and the ITO contact film and the antireflection coating (ARC) of glass are coated on the TTG surface of silicon solar cells. The optical absorption spectrum of solar cells are simulated by applying the finite difference time domain method. Electrical parameters of the solar cells are calculated using two models with and without carrier loss. The effect of structure parameters on the performance of the TTG cell is discussed in detail. It is found that the thickness (tg) of the ARC, period (p) of grating, and base angle (θ) of triangle have a crucial influence on the conversion efficiency. The optimal structure of the TTG cell is designed. The TTG solar cell can produce higher efficiency in a wide range of solar incident angle and the average efficiency of the optimal TTG cell over 7:30-16:30 time of day is 8% higher than that of the optimal plane solar cell. In addition, the study shows that the bulk recombination of carriers has an influence on the conversion efficiency of the cell, the conversion efficiency of the actual solar cell with carrier recombination is reduced by 20.0% of the ideal cell without carrier recombination.
Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells.
Tang, Qunwei; Zhu, Wanlu; He, Benlin; Yang, Peizhi
2017-02-28
A great challenge for state-of-the-art solar cells is to generate electricity in all weather. We present here the rapid conversion of carbon quantum dots (CQDs) from carbohydrates (including glucose, maltol, sucrose) for an all-weather solar cell, which comprises a CQD-sensitized mesoscopic titanium dioxide/long-persistence phosphor (m-TiO 2 /LPP) photoanode, a I - /I 3 - redox electrolyte, and a platinum counter electrode. In virtue of the light storing and luminescent behaviors of LPP phosphors, the generated all-weather solar cells can not only convert sunlight into electricity on sunny days but persistently realize electricity output in all dark-light conditions. The maximized photoelectric conversion efficiency is as high as 15.1% for so-called all-weather CQD solar cells in dark conditions.
One-dimension-based spatially ordered architectures for solar energy conversion.
Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun
2015-08-07
The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.
Space power systems technology
NASA Technical Reports Server (NTRS)
Coulman, George A.
1994-01-01
Reported here is a series of studies which examine several potential catalysts and electrodes for some fuel cell systems, some materials for space applications, and mathematical modeling and performance predictions for some solid oxide fuel cells and electrolyzers. The fuel cell systems have a potential for terrestrial applications in addition to solar energy conversion in space applications. Catalysts and electrodes for phosphoric acid fuel cell systems and for polymer electrolyte membrane (PEM) fuel cell and electrolyzer systems were examined.
NASA Astrophysics Data System (ADS)
Gardelis, Spiros; Nassiopoulou, Androula G.
2014-05-01
We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.
2013-01-01
The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889
OTEC to hydrogen fuel cells - A solar energy breakthrough
NASA Astrophysics Data System (ADS)
Roney, J. R.
Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.
NASA Astrophysics Data System (ADS)
Mincuzzi, Girolamo; Vesce, Luigi; Reale, Andrea; Di Carlo, Aldo; Brown, Thomas M.
2009-09-01
By identifying the right combination of laser parameters, in particular the integrated laser fluence Φ, we fabricated dye solar cells (DSCs) with UV laser-sintered TiO2 films exhibiting a power conversion efficiency η =5.2%, the highest reported for laser-sintered devices. η is dramatically affected by Φ and a clear trend is reported. Significantly, DSCs fabricated by raster scanning the laser beam to sinter the TiO2 films are made as efficient as those with oven-sintered ones. These results, confirmed on three batches of cells, demonstrate the remarkable potential (noncontact, local, low cost, rapid, selective, and scalable) of scanning laser processing applied to DSC technology.
NASA Astrophysics Data System (ADS)
Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.
2013-12-01
Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.
Perovskite solar cells: from materials to devices.
Jung, Hyun Suk; Park, Nam-Gyu
2015-01-07
Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Results of aperture area comparisons for exo-atmospheric total solar irradiance measurements.
Johnson, B Carol; Litorja, Maritoni; Fowler, Joel B; Shirley, Eric L; Barnes, Robert A; Butler, James J
2013-11-20
Exo-atmospheric solar irradiance measurements made by the solar irradiance community since 1978 have incorporated limiting apertures with diameters measured by a number of metrology laboratories using a variety of techniques. Knowledge of the aperture area is a critical component in the conversion of radiant flux measurements to solar irradiance. A National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) sponsored international comparison of aperture area measurements of limiting apertures provided by solar irradiance researchers was performed, the effort being executed by the National Institute of Standards and Technology (NIST) in coordination with the EOS Project Science Office. Apertures that had institutional heritage with historical solar irradiance measurements were measured using the absolute aperture measurement facility at NIST. The measurement technique employed noncontact video microscopy using high-accuracy translation stages. We have quantified the differences between the participating institutions' aperture area measurements and find no evidence to support the hypothesis that preflight aperture area measurements were the root cause of discrepancies in long-term total solar irradiance satellite measurements. Another result is the assessment of uncertainties assigned to methods used by participants. We find that uncertainties assigned to a participant's values may be underestimated.
Energy conversion in natural and artificial photosynthesis.
McConnell, Iain; Li, Gonghu; Brudvig, Gary W
2010-05-28
Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.
Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario
2017-03-01
The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.
Sakadjian, B.; Hu, S.; Maryamchik, M.; ...
2015-06-05
Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakadjian, B.; Hu, S.; Maryamchik, M.
Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less
Gupta, Vinay; Bharti, Vishal; Kumar, Mahesh; Chand, Suresh; Heeger, Alan J
2015-08-01
Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector
NASA Astrophysics Data System (ADS)
Olawole, Olukunle C.; De, Dilip Kumar
2018-01-01
Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes
NASA Astrophysics Data System (ADS)
Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan
2018-02-01
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes.
Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan
2018-02-14
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.
NASA Astrophysics Data System (ADS)
Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis
2017-06-01
The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.
Photo Degradation of Methyl Orange by Persulfate Activated with Zero Valent Iron
NASA Astrophysics Data System (ADS)
Munkoeva, V. A.; Sizykh, M. R.; Batoeva, A. A.
2017-11-01
The oxidative degradation of Methyl Orange (MO) subjected to direct photolysis (Solar) and various oxidative systems was studied. The comparative experiments have shown that MO conversion and mineralization increases in the following order: Solar ∼ Solar/Fe0 ∼ Solar/S2O82- < S2O82-/Fe0 < Solar/S2O82-/Fe0. The influence of the main factors (duration of exposure, the ratio of initial concentrations of MO:S2O82-:Fe0, pH and temperature of the reaction medium) on the degree of MO conversion and mineralization was studied. The optimal pH and temperature of the reaction medium were 5.8 and 25°C, respectively. The rate of MO decomposition and mineralization increased proportionally to the initial concentration of the oxidant at the molar ratios [S2O82-] :[MO] ≤ 12. Judging by the nature of the kinetic curves, a further increase of this ratio is impractical. However, an increase in the oxidant concentration had a positive effect on the degrees of conversion and mineralization of total organic carbon (TOC). Thus, at the ratios of 12:1 and 48:1, the conversion efficiency of TOC was 23 and 60 %, respectively. The optimal concentration of Fe0 was 100 mg/l.
CNRS interdisciplinary research program for solar energy development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The contributions of CNRS to the French national solar energy R and D program are reviewed. The three principal processes in which solar radiation is converted into other, directly usable energy forms are discussed in detail. These include thermodynamic conversion, photovoltaic conversion, and bioconversion to produce a substitute fuel. Related research on insolation and the weather is mentioned and relations with the industrial sector are considered. French collaboration with other countries in solar energy is discussed.
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.; Curtis, H. B.; Gianelos, L.
1975-01-01
The spectral reflectance properties of electroplated and chemically converted zinc were measured for both chromate and chloride conversion coatings. The reflectance properties were measured for various times of conversion and for conversion at various chromate concentrations. The values of absorptance, integrated over the solar spectrum, and of infrared emittance, integrated over black body radiation at 250 F were then calculated from the measured reflectance values. The interdependent variations of absorptance and infrared emittance were plotted. The results indicate that the optimum combination of the highest absorptance in the solar spectrum and the lowest emittance in the infrared of the converted electroplated zinc is produced by chromate conversion at 1/2 concentration of the standard NEOSTAR chromate black solution for 0.50 minute or by chloride conversion for 0.50 minute.
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.; Curtis, H. B.; Gianelos, L.
1975-01-01
The spectral reflectance properties of electroplated and chemically converted zinc were measured for both chromate and chloride conversion coatings. The reflectance properties were measured for various times of conversion and for conversion at various chromate concentrations. The values of absorptance, alpha, integrated over the solar spectrum, and of infrared emittance, epsilon, integrated over black body radiation at 250 F were then calculated from the measured reflectance values. The interdependent variations of alpha and epsilon were plotted. The results indicate that the optimum combination of the highest absorptance in the solar spectrum and the lowest emittance in the infrared of the converted electroplated zinc is produced by chromate conversion at 1/2 concentration of the standard NEOSTAR chromate black solution for 0.50 minute or by chloride conversion for 0.50 minute.
NASA Astrophysics Data System (ADS)
Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel
2017-04-01
While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.
Atwater, Harry (Director, Light-Material Interactions in Energy Conversion (LMI), California Institute of Technology); LMI Staff
2017-12-09
'Light Matters' was submitted by the Center for Light-Material Interactions in Energy Conversion (LMI) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'striking photography and visual impact'. LMI, an EFRC directed by Harry Atwater at the California Institute of Technology is a partnership of scientists from three institutions: CalTech (lead), University of California, Berkeley, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Light-Material Interactions in Energy Conversion is 'to tailor the morphology, complex dielectric structure, and electronic properties of matter to sculpt the flow of sunlight, enabling light conversion to electrical and chemical energy with unprecedented efficiency.' Research topics are: catalysis (imines hydrocarbons), solar photovoltaic, solar fuels, photonic, solid state lighting, metamaterial, optics, phonons, thermal conductivity, solar electrodes, photsynthesis, CO{sub 2} (convert), greenhouse gas, and matter by design.
Kranthiraja, Kakaraparthi; Gunasekar, Kumarasamy; Kim, Hyunji; Cho, An-Na; Park, Nam-Gyu; Kim, Seonha; Kim, Bumjoon J; Nishikubo, Ryosuke; Saeki, Akinori; Song, Myungkwan; Jin, Sung-Ho
2017-06-01
Perovskite solar cells (PSCs) and organic solar cells (OSCs) are promising renewable light-harvesting technologies with high performance, but the utilization of hazardous dopants and high boiling additives is harmful to all forms of life and the environment. Herein, new multirole π-conjugated polymers (P1-P3) are developed via a rational design approach through theoretical hindsight, further successfully subjecting them into dopant-free PSCs as hole-transporting materials and additive-free OSCs as photoactive donors, respectively. Especially, P3-based PSCs and OSCs not only show high power conversion efficiencies of 17.28% and 8.26%, but also display an excellent ambient stability up to 30 d (for PSCs only), owing to their inherent superior optoelectronic properties in their pristine form. Overall, the rational approach promises to support the development of environmentally and economically sustainable PSCs and OSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling of a solar-pumped iodine laser
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Lee, J. H.
1980-01-01
The direct conversion in space of solar radiation into laser radiation for power transmission to earth, satellites, or deep space probes shows promise as a reasonably simple technology and may have cost advantage in deployment and greater reliability compared to other methods of space power generation and transmission. The main candidates for solar pumping are the gas dynamic, photochemical, and direct photoexcited lasers. Here consideration is given to the photochemical reaction of alkyliodides which predominantly excite the I(2P1/2) state which then lases at 1.315 microns. The iodine ground state is eventually lost to reconstituting the gas or in the formation of molecular iodine. The rates at which the gas is required to be recycled through the laser system are modest. The side exposure at 100-fold solar concentration of a 100-m long tube with a 1 sq m cross section is estimated to provide 20 kW of continuous laser output. Scaling laws and optimum operating conditions of this system are discussed.
Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter
2015-10-12
Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide.
Cui, Jin; Meng, Fanping; Zhang, Hua; Cao, Kun; Yuan, Huailiang; Cheng, Yibing; Huang, Feng; Wang, Mingkui
2014-12-24
Herein we report an investigation of a CH3NH3PbI3 planar solar cell, showing significant power conversion efficiency (PCE) improvement from 4.88% to 6.13% by introducing a homogeneous and uniform NiO blocking interlayer fabricated with the reactive magnetron sputtering method. The sputtered NiO layer exhibits enhanced crystallization, high transmittance, and uniform surface morphology as well as a preferred in-plane orientation of the (200) plane. The PCE of the sputtered-NiO-based perovskite p-i-n planar solar cell can be further promoted to 9.83% when a homogeneous and dense perovskite layer is formed with solvent-engineering technology, showing an impressive open circuit voltage of 1.10 V. This is about 33% higher than that of devices using the conventional spray pyrolysis of NiO onto a transparent conducting glass. These results highlight the importance of a morphology- and crystallization-compatible interlayer toward a high-performance inverted perovskite planar solar cell.
NASA Astrophysics Data System (ADS)
Baba, Masaaki; Makita, Kikuo; Mizuno, Hidenori; Takato, Hidetaka; Sugaya, Takeyoshi; Yamada, Noboru
2017-12-01
This paper describes a method that remarkably reduces the bonding resistance of mechanically stacked two-terminal GaAs/Si and InGaP/Si tandem solar cells, where the top and bottom cells are bonded using a Pd nanoparticle array. A transparent conductive oxide (TCO) layer, which partially covers the surface of the Si bottom cell below the electrodes of the III-V top cell, significantly enhances the fill factor (FF) and cell conversion efficiency. The partial TCO layer reduces the bonding resistance and thus, increases the FF and efficiency of InGaP/Si by factors of 1.20 and 1.11, respectively. Eventually, the efficiency exceeds 15%. Minimizing the optical losses at the bonding interfaces of the TCO layer is important in the fabrication of high-efficiency solar cells. To help facilitate this, the optical losses in the tandem solar cells are thoroughly characterized through optical simulations and experimental verifications.
Towards stable and commercially available perovskite solar cells
Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu; ...
2016-10-17
Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less
Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr3 as Light Absorber.
Duan, Jialong; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei
2018-05-01
Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO 2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr 3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr 3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI 2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.
Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong
2018-06-21
Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.
Improved Nuclear Reactor and Shield Mass Model for Space Applications
NASA Technical Reports Server (NTRS)
Robb, Kevin
2004-01-01
New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.
Quantum Dots for Solar Cell Application
NASA Astrophysics Data System (ADS)
Poudyal, Uma
Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.
Agua Caliente Wind/Solar Project at Whitewater Ranch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooks, Todd; Stewart, Royce
2014-12-16
Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly hasmore » excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.« less
General working principles of CH3NH3PbX3 perovskite solar cells.
Gonzalez-Pedro, Victoria; Juarez-Perez, Emilio J; Arsyad, Waode-Sukmawati; Barea, Eva M; Fabregat-Santiago, Francisco; Mora-Sero, Ivan; Bisquert, Juan
2014-02-12
Organometal halide perovskite-based solar cells have recently realized large conversion efficiency over 15% showing great promise for a new large scale cost-competitive photovoltaic technology. Using impedance spectroscopy measurements we are able to separate the physical parameters of carrier transport and recombination in working devices of the two principal morphologies and compositions of perovskite solar cells, viz. compact thin films of CH3NH3PbI(3-x)Clx and CH3NH3PbI3 infiltrated on nanostructured TiO2. The results show nearly identical spectral characteristics indicating a unique photovoltaic operating mechanism that provides long diffusion lengths (1 μm). Carrier conductivity in both devices is closely matched, so that the most significant differences in performance are attributed to recombination rates. These results highlight the central role of the CH3NH3PbX3 semiconductor absorber in carrier collection and provide a new tool for improved optimization of perovskite solar cells. We report for the first time a measurement of the diffusion length in a nanostructured perovskite solar cell.
Small molecule organic semiconductors on the move: promises for future solar energy technology.
Mishra, Amaresh; Bäuerle, Peter
2012-02-27
This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characteristic and comparison of different submounts on concentrating photovoltaic module
NASA Astrophysics Data System (ADS)
Lee, Yueh-Mu; Shih, Zun-Hao; Hong, Hwen-Fen; Shin, Hwa-Yuh; Kuo, Cherng-Tsong
2014-09-01
High concentration photovoltaics systems employ concentrating optics consisting of dish reflectors or fresnel lenses that concentrate sunlight to 500 suns or more. In general, under concentrating light operation condition, the device temperature rises quickly and the open-circuit voltage of solar cell will decrease with increasing temperature; therefore, the system output power or energy-conversion efficiency will decrease while temperature of solar cell increased. In this study, we analyze the ceramic thermal resistance and propose a direct temperature measurement method of the solar cell. The direct temperature measurement of the cell and the ceramic was achieved by utilizing buried thermocouples with a diameter of 50 μm between the cell/ceramic and aluminum plate. The different light flux densities ranging from 500 to 800 W/m2 at 100 W/m2 interval by solar simulator are provided to measure temperature, and the cell temperatures measured are 39.8 °C, 41 °C, 45 °C and 48 °C, respectively. The temperature differences between the cell and aluminum plate of the light flux densities from 500 W/m2 to 800 W/m2 are in the range of 4.2 °C to 8 °C. Accordingly we can obtain the temperature distribution of HCPV module at difference region. The results can help us to optimize module package technology and to choose better material applied to the module to improve conversion efficiency of the cell.
Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranganathan, Shashidhar
Desalination technologies have been used increasingly throughout the world to produce the drinking water from the brackish ground and sea water for the past few decades. Among the commercially available desalination technologies, reverse osmosis (RO) and multi-stage flash distillation are the most widely used technologies globally. However, these technologies are difficult to be directly integrated with green energies without converting them to electricity. Dewvaporation, a desalination process, uses saturated steam as a carrier-gas to evaporate water from saline feeds and form pure condensate. It has the major technical benefit of reusing energy, released from vapor condensation, multiple times. The currentmore » proposal has been planned to address this issue. In Phase I, we have successfully demonstrated the feasibility of a new plasmonic nanoparticle based approach through fabrication and evaluation of a solar powered water vapor generation module. The water vapor generation module allows generation of high temperature plasmon on a fiber bundle end, where strong water and plasmon interaction occurs generating water vapor. Plasmon enhanced water evaporation has been realized on plasmonic nanoparticle immobilized substrate with an energy conversion efficiency of over 50%.« less
Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems
NASA Technical Reports Server (NTRS)
Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.
2000-01-01
This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.
Power processing and control requirements of dispersed solar thermal electric generation systems
NASA Technical Reports Server (NTRS)
Das, R. L.
1980-01-01
Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.
Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics
NASA Astrophysics Data System (ADS)
Morfa, Anthony J.; Rowlen, Kathy L.; Reilly, Thomas H.; Romero, Manuel J.; van de Lagemaat, Jao
2008-01-01
Plasmon-active silver nanoparticle layers were included in solution-processed bulk-heterojunction solar cells. Nanoparticle layers were fabricated using vapor-phase deposition on indium tin oxide electrodes. Owing to the increase in optical electrical field inside the photoactive layer, the inclusion of such particle films lead to increased optical absorption and consequently increased photoconversion at solar-conversion relevant wavelengths. The resulting solar energy conversion efficiency for a bulk heterojunction photovoltaic device of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester was found to increase from 1.3%±0.2% to 2.2%±0.1% for devices employing thin plasmon-active layers. Based on six measurements, the improvement factor of 1.7 was demonstrated to be statistically significant.
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.
1978-01-01
A preliminary comparative evaluation of dispersed solar thermal power plants utilizing advanced technologies available in 1985-2000 time frame is under way at JPL. The solar power plants of 50 KWe to 10 MWe size are equipped with two axis tracking parabolic dish concentrator systems operating at temperatures in excess of 1000 F. The energy conversion schemes under consideration include advanced steam, open and closed cycle gas turbines, stirling, and combined cycle. The energy storage systems include advanced batteries, liquid metal, and chemical. This paper outlines a simple methodology for a probabilistic assessment of such systems. Sources of uncertainty in the development of advanced systems are identified, and a computer Monte Carlo simulation is exercised to permit an analysis of the tradeoffs of the risk of failure versus the potential for large gains. Frequency distribution of energy cost for several alternatives are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu
Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less
Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin
2018-05-25
It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FUJITA,E.
2000-01-12
Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.
Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction
NASA Astrophysics Data System (ADS)
Wu, Haiyan; Ma, Ziguang; Jiang, Yang; Wang, Lu; Yang, Haojun; Li, Yangfeng; Zuo, Peng; Jia, Haiqiang; Wang, Wenxin; Zhou, Junming; Liu, Wuming; Chen, Hong
2016-11-01
A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported. According to the well established light-to-electricity conversion theory, quantum wells (QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels, owing to quantum confinement, and cannot form a photocurrent. We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent, indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs. We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions. Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, and 11374340) and the Innovative Clean-energy Research and Application Program of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515001).
Rakstys, Kasparas; Paek, Sanghyun; Grancini, Giulia; Gao, Peng; Jankauskas, Vygintas; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja
2017-10-09
The synthesis, characterization and photovoltaic performance of series of novel molecular hole transport materials (HTMs) based on bistricyclic aromatic enes (BAEs) are presented. The new derivatives were obtained following a simple and straightforward procedure from inexpensive starting reagents mimicking the synthetically challenging 9,9'-spirobifluorene moiety of the well-studied spiro-OMeTAD. The novel HTMs were tested in mixed cations and anions perovskite solar cells (PSCs) yielding a power conversion efficiency (PCE) of 19.2 % under standard global 100 mW cm -2 AM1.5G illumination using 9-{2,7-bis[bis(4-methoxyphenyl)amino]-9H-fluoren-9-ylidene}-N 2 ,N 2 ,N 7 ,N 7 -tetrakis(4-methoxyphenyl)-9H-thioxanthene-2,7-diamine (coded as KR374). The power conversion efficiency data confirms the easily attainable heteromerous fluorenylidenethioxanthene structure as valuable core for low-cost and highly efficient HTM design and paves the way towards cost-effective PSC technology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.
2015-05-01
We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.
Advanced solar energy conversion. [solar pumped gas lasers
NASA Technical Reports Server (NTRS)
Lee, J. H.
1981-01-01
An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.
Radiation energy conversion in space
NASA Technical Reports Server (NTRS)
Billman, K. W.
1979-01-01
Topics discussed at the third NASA conference on radiant energy conversion are reviewed. The unconcentrated-photovoltaic-generation version of a solar power satellite is described, noting that it will consist of a 21.3 x 5.3-sq-km silicon-solar-cell array expected to provide 17 Gw of electrical power, with 1 km in diam transmitters oriented to beam 2.45 GHz microwave power to two receiving/rectifying 'rectennas' on earth. The Solares space-energy-system concept, designed for providing a large fraction of the world's energy needs at costs comparable to those of future coal/nuclear alternative, is considered, as are subsystems for improving the economics of the solar power satellite. A concept proposing the use of relativistic-electron-storage rings for electron-beam energy transmission and storage, and a report on the production of a high temperature plasma with concentrated solar radiation are taken into account. Laser-conversion systems, including the direct-solar-pumped space laser, and the telec-powered spacecraft, are discussed.
Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying
2015-07-08
Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.
Radiation energy conversion in space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billman, K.W.
1979-03-01
Topics discussed at the third NASA conference on radiant energy conversion are reviewed. The unconcentrated-photovoltaic-generation version of a solar power satellite is described, noting that it will consist of a 21.3 x 5.3-sq-km silicon-solar-cell array expected to provide 17 Gw of electrical power, with 1 km in diam transmitters oriented to beam 2.45 GHz microwave power to two receiving/rectifying 'rectennas' on earth. The Solares space-energy-system concept, designed for providing a large fraction of the world's energy needs at costs comparable to those of future coal/nuclear alternative, is considered, as are subsystems for improving the economics of the solar power satellite.more » A concept proposing the use of relativistic-electron-storage rings for electron-beam energy transmission and storage, and a report on the production of a high temperature plasma with concentrated solar radiation are taken into account. Laser-conversion systems, including the direct-solar-pumped space laser, and the telec-powered spacecraft, are discussed.« less
Thermophotovoltaic Energy Conversion for Space Applications
NASA Astrophysics Data System (ADS)
Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.
2006-01-01
Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.
Solar cooling - comparative study between thermal and electrical use in industrial buildings
NASA Astrophysics Data System (ADS)
Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.
2016-08-01
The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.
Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can
2016-05-04
Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.
Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.
Shen, S C; Chang, S J; Yeh, C Y; Teng, P C
2013-11-04
In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.
Space reflector technology and its system implications
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1979-01-01
The technical feasibility of providing nearly continuous solar energy to a world-distributed set of conversion sites by means of a system of orbiting, large-area, low-areal-density reflecting structures is examined. Requisite mirror area to provide a chosen, year-averaged site intensity is shown. A modeled reflector structure, with suitable planarity and ability to meet operational torques and loads, is discussed. Typical spatial and temporal insolation profiles are presented. These determine the sizing of components and the output electric power from a baselined photovoltaic conversion system. Technical and economic challenges which, if met, would allow the system to provide a large fraction of future world energy needs at costs competitive to circa-1995 fossil and nuclear sources are discussed.
Potential active materials for photo-supercapacitor: A review
NASA Astrophysics Data System (ADS)
Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.
2015-11-01
The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.
Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin
2017-11-01
Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.
Device physics of Cu(In,Ga)Se2 solar cells for long-term operation
NASA Astrophysics Data System (ADS)
Nishinaga, J.; Shibata, H.
2017-02-01
The degradation mechanism of Cu(In,Ga)Se2 (CIGS) solar cells on exposure to air has been investigated. Exposure to air at room temperature slightly reduces the conversion efficiency of CIGS solar cells, and the conversion efficiency decreases significantly under damp heat testing at 85 °C and 85% relative humidity due to low shunt resistance. On the other hand, shunt resistance increases after dry nitrogen heating. Therefore, oxygen and humidity should degenerate the solar cell performance. The low shunt resistance and conversion efficiency are completely recovered after removing the side edges of the CIGS solar cells by mechanical scribing. These results suggest that low-resistive layers are formed on the sidewalls of the solar cells during damp heat testing. The low-resistive layers on the sidewalls are identified to be molybdenum oxides and sodium molybdate by Auger electron spectroscopy. After etching the oxides on the sidewalls by alkaline solution, the saturation current density and ideality factor are confirmed to be improved. These results suggest that metal oxides on the sidewalls of CIGS solar cells may act as recombination centers.