MODIS Solar Diffuser On-orbit Performance
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Chen, H.; Choi, T.; Sun, J.; Angal, A.
2008-01-01
MODIS is a key instrument for the NASA Earth Observing System (EOS), currently operated on both the Terra and Aqua missions. Each MODIS instrument has 20 reflective solar bands (RSBs) and 16 thermal emissive bands (TEBs). MODIS RSB on-orbit calibration is reflectance based using an on-board solar diffuser (SD). The SD bi-directional reflectance factors (BRFs) were characterized pre-launch using reference diffuser samples, which are traceable to NIST reflectance standards. The SD BRF on-orbit degradation (or change) is tracked by another onboard device, called the solar diffuser stability monitor (SDSM). The SDSM is operated during each scheduled SD calibration event, making alternate observations of direct sunlight and the diffusely reflected sunlight from the SD. The time series of the ratios of SDSM's SD view to its Sun view provide SD degradation information. This paper presents and compares the Terra and Aqua MODIS SD on-orbit performance. Results show that the SD on-orbit degradation depends on the amount of solar exposure of the SD plate. In addition, it is strongly wavelengthdependent, with a larger degradation rate at shorter wavelengths. For Terra MODIS, an SD door anomaly occurred in May 2003 that led to a decision to fix the door permanently at an "open" position. Since then, the SD degradation rate has significantly increased due to more frequent solar exposure. As expected, the SD on-orbit performance directly impacts the RSB calibration performance. The lessons learned from MODIS on-orbit calibration will provide useful insights into the development and operation of future SD calibration systems.
Characterization of MODIS and SeaWiFS Solar Diffuser On-Orbit Degradation
NASA Technical Reports Server (NTRS)
Xiong, X.; Eplee, R. E., Jr.; Sun, J.; Patt, F. S.; Angal, A.; McClain, C. R.
2009-01-01
MODIS has 20 reflective solar bands (RSB), covering the VIS, NIR, and SWIR spectral regions. They are calibrated on-orbit using a solar diffuser (SD) panel, made of space-grade Spectralon. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor reference to the NIST reflectance standard. Its on-orbit degradation is tracked by an on-board solar diffuser stability monitor (SDSM). The SeaWifS on-orbit calibration strategy uses monthly lunar observations to monitor the long-term radiometric stability of the instrument and applies daily observations of its solar diffuser (an aluminum plate coated with YB71 paint) to track the short-term changes in the instrument response. This paper provides an overview of MODIS and SeaWiFS SD observations, applications, and approaches used to track their on-orbit degradations. Results from sensors are presented with emphasis on the spectral dependence and temporal trends of the SD degradation. Lessons and challenges from the use of SD for sensor on-orbit calibration are also discussed.
Modeling Suomi-NPP VIIRS Solar Diffuser Degradation due to Space Radiation
NASA Astrophysics Data System (ADS)
Shao, X.; Cao, C.
2014-12-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP uses a solar diffuser (SD) as on-board radiometric calibrator for the reflective solar band (RSB) calibration. Solar diffuser is made of Spectralon (one type of fluoropolymer) and was chosen because of its controlled reflectance in the VIS-NIR-SWIR region and its near-Lambertian reflectance profile. Spectralon is known to degrade in reflectance at the blue end of the spectrum due to exposure to space radiations such as solar UV radiation and energetic protons. These space radiations can modify the Spectralon surface through breaking C-C and C-F bonds and scissioning or cross linking the polymer, which causes the surface roughness and degrades its reflectance. VIIRS uses a SDSM (Solar Diffuser Stability Monitor) to monitor the change in the Solar Diffuser reflectance in the 0.4 - 0.94 um wavelength range and provide a correction to the calibration constants. The H factor derived from SDSM reveals that reflectance of 0.4 to 0.6um channels of VIIRS degrades faster than the reflectance of longer wavelength RSB channels. A model is developed to derive characteristic parameters such as mean SD surface roughness height and autocovariance length of SD surface roughness from the long term spectral degradation of SD reflectance as monitored by SDSM. These two parameters are trended to assess development of surface roughness of the SD over the operation period of VIIRS.
Positional dependence of the SNPP VIIRS SD BRDF degradation factor
NASA Astrophysics Data System (ADS)
Lei, Ning; Chen, Xuexia; Chang, Tiejun; Xiong, Xiaoxiong
2017-09-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager. The VIIRS regularly performs on-orbit radiometric calibration of its reflective solar bands (RSBs) through observing an onboard sunlit solar diffuser (SD). The reflectance of the SD changes over time and the change is denoted as the SD bidirectional reflectance distribution function degradation factor. The degradation factor, measured by an onboard solar diffuser stability monitor, has been shown to be both incident sunlight and outgoing direction dependent. In this Proceeding, we investigate the factor's dependence on SD position. We develop a model to relate the SD degradation factor with the amount of solar exposure. We use Earth measurements to evaluate the effectiveness of the model.
Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash
2013-01-01
Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.
Assessment of MODIS and VIIRS Solar Diffuser On-Orbit Degradation
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim
2015-01-01
Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94 micrometers. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).
Assessment of MODIS and VIIRS solar diffuser on-orbit degradation
NASA Astrophysics Data System (ADS)
Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim
2015-09-01
Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94μm. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).
NASA Technical Reports Server (NTRS)
Lei, Ning; Xiong, Xiaoxiong
2016-01-01
Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.
Suomi-NPP VIIRS Solar Diffuser Stability Monitor Performance
NASA Technical Reports Server (NTRS)
Fulbright, Jon; Lei, Ning; Efremova, Boryana; Xiong, Xiaoxiong
2015-01-01
When illuminated by the Sun, the onboard solar diffuser (SD) panel provides a known spectral radiance source to calibrate the reflective solar bands of the Visible Infrared Imaging Radiometer Suite on the Suomi-NPP satellite. The SD bidirectional reflectance distribution function (BRDF) degrades over time due to solar exposure, and this degradation is measured using the SD stability monitor (SDSM). The SDSM acts as a ratioing radiometer, comparing solar irradiance measurements off the SD panel to those from a direct Sun view. We discuss the design and operations of the SDSM, the SDSM data analysis, including improvements incorporated since launch, and present the results through 1000 days after launch. After 1000 days, the band-dependent H-factors, a quantity describing the relative degradation of the BRDF of the SD panel since launch, range from 0.716 at 412 nanometers to 0.989 at 926 nanometers. The random uncertainty of these H-factors is about 0.1 percent, which is confirmed by the similar standard deviation values computed from the residuals of quadratic exponential fits to the H-factor time trends. The SDSM detector gains have temperature sensitivity of up to about 0.36 percent per kelvin, but this does not affect the derived H-factors. An initial error in the solar vector caused a seasonal bias to the H-factors of up to 0.5 percent. The total exposure of the SD panel to UV light after 1000 orbits is equivalent to about 100 hours of direct sunlight illumination perpendicular to the SD panel surface.
Results from Solar Reflective Band End-to-End Testing for VIIRS F1 Sensor Using T-SIRCUS
NASA Technical Reports Server (NTRS)
McIntire, Jeff; Moyer, David; McCarthy, James K.; DeLuccia, Frank; Xiong, Xiaoxiong; Butler, James J.; Guenther, Bruce
2011-01-01
Verification of the Visible Infrared Imager Radiometer Suite (VIIRS) End-to-End (E2E) sensor calibration is highly recommended before launch, to identify any anomalies and to improve our understanding of the sensor on-orbit calibration performance. E2E testing of the Reflective Solar Bands (RSB) calibration cycle was performed pre-launch for the VIIRS Fight 1 (F1) sensor at the Ball Aerospace facility in Boulder CO in March 2010. VIIRS reflective band calibration cycle is very similar to heritage sensor MODIS in that solar illumination, via a diffuser, is used to correct for temporal variations in the instrument responsivity. Monochromatic light from the NIST T-SIRCUS was used to illuminate both the Earth View (EV), via an integrating sphere, and the Solar Diffuser (SD) view, through a collimator. The collimator illumination was cycled through a series of angles intended to simulate the range of possible angles for which solar radiation will be incident on the solar attenuation screen on-orbit. Ideally, the measured instrument responsivity (defined here as the ratio of the detector response to the at-sensor radiance) should be the same whether the EV or SD view is illuminated. The ratio of the measured responsivities was determined at each collimator angle and wavelength. In addition, the Solar Diffuser Stability Monitor (SDSM), a ratioing radiometer designed to track the temporal variation in the SD BRF by direct comparison to solar radiation, was illuminated by the collimator. The measured SDSM ratio was compared to the predicted ratio. An uncertainty analysis was also performed on both the SD and SDSM calibrations.
NASA Technical Reports Server (NTRS)
Lei, Ning; Xiong, Xiaoxiong
2016-01-01
To assure data quality, the Earth-observing Visible Infrared Imaging Radiometer Suite (VIIRS) regularly performs on-orbit radiometric calibrations of its 22 spectral bands. The primary calibration radiance source for the reflective solar bands (RSBs) is a sunlit solar diffuser (SD). During the calibration process, sunlight goes through a perforated plate (the SD screen) and then strikes the SD. The SD scattered sunlight is used for the calibration, with the spectral radiance proportional to the product of the SD screen transmittance and the SD bidirectional reflectance distribution function (BRDF). The BRDF is decomposed to the product of its value at launch and a numerical factor quantifying its change since launch. Therefore, the RSB calibration requires accurate knowledge of the product of the SD screen transmittance and the BRDF (RSB; launch time). Previously, we calculated the product with yaw maneuver data and found that the product had improved accuracy over the prelaunch one. With both yaw maneuver and regular on orbit data, we were able to improve the accuracy of the SDSM screen transmittance and the product for the solar diffuser stability monitor SD view. In this study, we use both yaw maneuver and a small portion of regular on-orbit data to determine the product for the RSB SD view.
Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.
Sun, Junqiang; Chu, Mike; Wang, Menghua
2016-08-01
The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this "SD degradation nonuniformity effect" with respect to angles relies on a "hybrid methodology" using lunar-based calibration to set the reliable long-term baseline. For MODIS, the use of earth targets in the major release Collection 6 to improve calibration coefficients and time-dependent response-versus-scan-angle characterization inherently averts the use of SD and its associated issues. The work further supports that having an open-close operational capability for the space view door can minimize SD degradation and its associated effects due to solar exposure, and thus provide long-term benefits for maintaining calibration and science data accuracy.
Characterization and Performance of the Suomi-NPP VIIRS Solar Diffuser Stability Monitor
NASA Technical Reports Server (NTRS)
Fulbright, Jon P.; Ning, Lei; Kwofu, Chiang; Xiaoxiong, Xiong
2012-01-01
We describe the on-orbit characterization and performance of the Solar Diffuser Stability Monitor (SDSM) on-board Suomi-NPP/VIIRS. This description includes the observing procedure of each SDSM event, the algorithms used to generate the Solar Diffuser degradation corrective factors, and the results for the mission to date. We will also compare the performance of the VIIRS SDSM and SD to the similar components operating on the MODIS instrument on the EOS Terra and Aqua satellites
VIIRS reflective solar bands on-orbit calibration and performance: a three-year update
NASA Astrophysics Data System (ADS)
Sun, Junqiang; Wang, Menghua
2014-11-01
The on-orbit calibration of the reflective solar bands (RSBs) of VIIRS and the result from the analysis of the up-to-date 3 years of mission data are presented. The VIIRS solar diffuser (SD) and lunar calibration methodology are discussed, and the calibration coefficients, called F-factors, for the RSBs are given for the latest reincarnation. The coefficients derived from the two calibrations are compared and the uncertainties of the calibrations are discussed. Numerous improvements are made, with the major improvement to the calibration result come mainly from the improved bidirectional reflectance factor (BRF) of the SD and the vignetting functions of both the SD screen and the sun-view screen. The very clean results, devoid of many previously known noises and artifacts, assures that VIIRS has performed well for the three years on orbit since launch, and in particular that the solar diffuser stability monitor (SDSM) is functioning essentially without flaws. The SD degradation, or H-factors, for most part shows the expected decline except for the surprising rise on day 830 lasting for 75 days signaling a new degradation phenomenon. Nevertheless the SDSM and the calibration methodology have successfully captured the SD degradation for RSB calibration. The overall improvement has the most significant and direct impact on the ocean color products which demands high accuracy from RSB observations.
Suomi NPP VIIRS solar diffuser screen transmittance model and its applications.
Lei, Ning; Xiong, Xiaoxiong; Mcintire, Jeff
2017-11-01
The visible infrared imaging radiometer suite on the Suomi National Polar-orbiting Partnership satellite calibrates its reflective solar bands through observations of a sunlit solar diffuser (SD) panel. Sunlight passes through a perforated plate, referred to as the SD screen, before reaching the SD. It is critical to know whether the SD screen transmittance measured prelaunch is accurate. Several factors such as misalignments of the SD panel and the measurement apparatus could lead to errors in the measured transmittance and thus adversely impact on-orbit calibration quality through the SD. We develop a mathematical model to describe the transmittance as a function of the angles that incident light makes with the SD screen, and apply the model to fit the prelaunch measured transmittance. The results reveal that the model does not reproduce the measured transmittance unless the size of the apertures in the SD screen is quite different from the design value. We attribute the difference to the orientation alignment errors for the SD panel and the measurement apparatus. We model the alignment errors and apply our transmittance model to fit the prelaunch transmittance to retrieve the "true" transmittance. To use this model correctly, we also examine the finite source size effect on the transmittance. Furthermore, we compare the product of the retrieved "true" transmittance and the prelaunch SD bidirectional reflectance distribution function (BRDF) value to the value derived from on-orbit data to determine whether the prelaunch SD BRDF value is relatively accurate. The model is significant in that it can evaluate whether the SD screen transmittance measured prelaunch is accurate and help retrieve the true transmittance from the transmittance with measurement errors, consequently resulting in a more accurate sensor data product by the same amount.
Analysis of VIIRS TEB noise using solar diffuser measurements
NASA Astrophysics Data System (ADS)
Choi, Taeyoung; Cao, Changyong; Weng, Fuzhong
2015-09-01
The Soumi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on October 28th, 2011 and its Sensor Data Record (SDR) product reached maturity status in March of 2014. Although the VIIRS SDR products are declared at the validated maturity level, there remain issues such as residual stripings in some thermal bands along with the scan direction. These horizontal striping issues in the Thermal Emissive Bands (TEB) were reflected in the sea surface temperature (SST) products. The observed striping magnitude can reach to 0.2 K, especially at the band M14 and M15. As an independent source of calibration, the Solar Diffuser (SD) is utilized in this study. The SD is originally designed for the Reflective Solar Band (RSB), however, it is assumed to be thermally stable at the time of SD observation. For each detector, a linear slope is developed by Integrated Calibration and Validation System (ICVS), which is applied on converting digital number (DN) to radiance unit. After the conversion, detector based noise analyses in VIIRS band M15 and M16 are performed on in-scan and scan-by-scan SD responses. Since SD radiance varies within an orbit, the noise calculation must be derived from the neighborhood Allan deviation. The noise derived Allan deviation shows that detector 1 and 2 in band M15 and detector 9 in band M16 have higher noise content compared to other detectors.
MODIS Solar Diffuser On-Orbit Degradation Characterization Using Improved SDSM Screen Modeling
NASA Technical Reports Server (NTRS)
Chen, H.; Xiong, Xiaoxiong; Angal, Amit Avinash; Wang, Z.; Wu, A.
2016-01-01
The Solar Diffuser (SD) is used for the MODIS reflective solar bands (RSB) calibration. An on-board Solar Diffuser Stability Monitor (SDSM) tracks the degradation of its on-orbit bi-directional reflectance factor (BRF). To best match the SDSM detector signals from its Sun view and SD view, a fixed attenuation screen is placed in its Sun view path, where the responses show ripples up to 10%, much larger than design expectation. Algorithms have been developed since the mission beginning to mitigate the impacts of these ripples. In recent years, a look-up-table (LUT) based approach has been implemented to account for these ripples. The LUT modeling of the elevation and azimuth angles is constructed from the detector 9 (D9) of SDSM observations in the MODIS early mission. The response of other detectors is normalized to D9 to reduce the ripples observed in the sun-view data. The accuracy of all detectors degradation estimation depends on how well the D9 approximated. After multiple years of operation (Terra: 16 years; Aqua: 14 years), degradation behavior of all detectors can be monitored by their own. This paper revisits the LUT modeling and proposes a dynamic scheme to build a LUT independently for each detector. Further refinement in the Sun view screen characterization will be highlighted to ensure the degradation estimation accuracy. Results of both Terra and Aqua SD on-orbit degradation are derived from the improved modeling and curve fitting strategy.
MODIS Solar Diffuser Attenuation Screen Modeling Results
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Xuong, Xiaoxiong; Guenther, Bruce; Barnes, William
2004-01-01
On-orbit calibration of the reflected solar bands on the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) is accomplished by have the instrument view a high reflectance diffuse surface illuminated by the sun. For some of the spectral bands this proves to be much too bright a signal that results in the saturation of detectors designed for measuring low reflectance (ocean) surfaces signals. A mechanical attenuation device in the form of a pin hole screen is used to reduce the signals to calibrate these bands. The sensor response to solar illumination of the SD with and without the attenuation screen in place will be presented. The MODIS detector response to the solar diffuser is smooth when the attenuation screen is absent, but has structures up to a few percent when the attenuation screen is present. This structure corresponds to non-uniform illumination from the solar diffuser. Each pin hole produces a pin-hole image of the sun on the solar diffuser, and there are very many pin hole images of the sun on the solar diffuser for each MODIS detector. Even though there are very many pin-hole images of the sun on the solar diffuser, it is no longer perfectly uniformly illuminated. This non-uniformly illuminated solar diffuser produces intensity variation on the focal planes. The results of a very detailed simulation will be discussed which show how the illumination of the focal plane changes as a result of the attenuation, and the impacts on the calibration will be discussed.
NPP VIIRS and Aqua MODIS RSB Comparison Using Observations from Simultaneous Nadir Overpasses (SNO)
NASA Technical Reports Server (NTRS)
Xiong, X.; Wu, A.
2012-01-01
Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door s opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (0.4 m) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency.
Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-01-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earths surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.
Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-01-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earth's surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.
Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds
NASA Astrophysics Data System (ADS)
Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun
2016-05-01
The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.
Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack
2012-01-01
The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.
Sun, Junqiang; Wang, Menghua
2015-08-20
The reflective solar bands (RSBs) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite are calibrated by a solar diffuser (SD) panel whose performance is itself monitored by an accompanying solar diffuser stability monitor (SDSM). In this comprehensive work we describe the SD-based calibration algorithm of the RSBs, analyze the calibration data, and derive the performance results-the RSB calibration coefficients or F-factors-for the current three and a half years of mission. The application of the newly derived product of the SD bidirectional reflectance factor and the vignetting function for the SD screen and the newly derived SD degradation, so-called H-factors, effectively minimizes the artificial seasonal patterns in the RSB calibration coefficients due to the errors of these ingredient inputs. The full illumination region, the "sweet spot," during calibration events for SD view is carefully examined and selected to ensure high data quality and to reduce noise owing to non-fully illuminated samples. A time-dependent relative spectral response (RSR), coming from the large out-of-band contribution and the VIIRS optical system wavelength-dependent degradation, is derived from an iterative approach and applied in the SD calibration for each RSB. The result shows that VIIRS RSBs degrade much faster at near-infrared (NIR) and shortwave-infrared (SWIR) wavelength ranges due to the faster degradation of the rotating telescope assembly against the remaining part of the system. The gains of the VIIRS RSBs have degraded 2.0% (410 nm, Band M1), 0.2% (443 nm, Band M2), -0.3% (486 nm, Band M3), 0.2% (551 nm, Band M4), 6.2% (640 nm, Band I1), 11.0% (671 nm, Band M5), 21.3% (745 nm, Band M6), 35.8% (862 nm, Band I2), and 35.8% (862 nm, Band M7), respectively, since launch and 24.8% (1238 nm, Band M8), 18.5% (1378 nm, Band M9), 11.5% (1610 nm, Band I3), 11.5% (1610, Band M10), and 4.0% (2250 nm, Band M11), respectively, since 20 January 2012. It is established that the SD calibration accurately catches the on-orbit RSB degradation according to the instrument design and the calibration algorithm. However, due to the inherent nonuniform degradation of the SD affecting especially the short wavelength bands and the lack of capability of the SDSM calibration to catch degradation beyond 935 nm, the direct and the unmitigated application of the SD calibration result will introduce nonnegligible error into the calibration coefficients resulting in long-term drifts in the sensor data records and consequently the high-level products. We explicitly unveil the effect of the nonuniformity in SD degradation in the RSB calibration coefficients but also briefly discuss a critical yet simple mitigation to restore the accuracy of the calibration coefficients based on lunar observations. The methodology presented here thus remains intact as the cornerstone of the RSB calibration, and our derived RSB calibration coefficients represent the optimal result. This work has the most impact on the quality of the ocean color products that sensitively depend on the moderate visible and NIR bands (M1-M7), as well as the SWIR bands (M8, M10, and M11).
NASA Technical Reports Server (NTRS)
Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake
2016-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in detail the recent calibration improvements implemented in the MODIS L1B C6.
NASA Technical Reports Server (NTRS)
Wu, Aisheng; Xiong, Xiaoxiong; Cao, Changyong
2016-01-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite (http:npp.gsfc.nasa.govviirs.html) has been in operation for nearly five years. The onboard calibration of the VIIRS reflective solar bands (RSB) relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The VIIRS response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability. In this study, the RVS stability is examined based on reflectance trends collected from 16-day repeatable orbits over pre-selected pseudo-invariant desert sites in Northern Africa. These trends nearly cover the entire Earth view scan range so that any systematic drifts in the scan angle direction would indicate a change in RVS. This study also compares VIIRS RVS on-orbit stability results with those from both Aqua and Terra MODIS over the first four years of mission for a few selected bands, which provides further information on potential VIIRS RVS on-orbit changes.
Assessment of MODIS On-Orbit Calibration Using a Deep Convective Cloud Technique
NASA Technical Reports Server (NTRS)
Mu, Qiaozhen; Wu, Aisheng; Chang, Tiejun; Angal, Amit; Link, Daniel; Xiong, Xiaoxiong; Doelling, David R.; Bhatt, Rajendra
2016-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites are calibrated on-orbit with a solar diffuser (SD) for the reflective solar bands (RSB). The MODIS sensors are operating beyond their designed lifetime and hence present a major challenge to maintain the calibration accuracy. The degradation of the onboard SD is tracked by a solar diffuser stability monitor (SDSM) over a wavelength range from 0.41 to 0.94 micrometers. Therefore, any degradation of the SD beyond 0.94 micrometers cannot be captured by the SDSM. The uncharacterized degradation at wavelengths beyond this limit could adversely affect the Level 1B (L1B) product. To reduce the calibration uncertainties caused by the SD degradation, invariant Earth-scene targets are used to monitor and calibrate the MODIS L1B product. The use of deep convective clouds (DCCs) is one such method and particularly significant for the short-wave infrared (SWIR) bands in assessing their long-term calibration stability. In this study, we use the DCC technique to assess the performance of the Terra and Aqua MODIS Collection-6 L1B for RSB 1 3- 7, and 26, with spectral coverage from 0.47 to 2.13 micrometers. Results show relatively stable trends in Terra and Aqua MODIS reflectance for most bands. Careful attention needs to be paid to Aqua band 1, Terra bands 3 and 26 as their trends are larger than 1% during the study time period. We check the feasibility of using the DCC technique to assess the stability in MODIS bands 17-19. The assessment test on response versus scan angle (RVS) calibration shows substantial trend difference for Aqua band 1between different angles of incidence (AOIs). The DCC technique can be used to improve the RVS calibration in the future.
NASA Technical Reports Server (NTRS)
Lei, Ning; Xiong, Xiaoxiong
2017-01-01
To ensure data quality, the Earth-observing Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs on-orbit radiometric calibration of its 22 spectral bands. The primary radiance source for the calibration of the VIIRS reflective solar bands (RSBs) is a sunlit onboard solar diffuser (SD).During the calibration process, sunlight goes through a perforated plate (the SD screen) and then strikes the SD. The sunlight, scattered off the SD of near-Lambertian property, is used for the calibration. Consequently, the spectral radiance of the scattered sunlight is proportional to the product of the SD screen transmittance and the SD bidirectional reflectance distribution function (BRDF) value at the observation direction. The BRDF value is decomposed to the product of its initial value at launch and a numerical degradation factor that quantifies the decrease from the initial value. The degradation factor is determined by an onboard SD stability monitor (SDSM). During the BRDF degradation factor determination process, the SDSM receives the SD scattered sunlight and the sunlight that goes through another perforated plate at almost the same time. The ratio of the signal strengths from the two observations is used to determine the BRDF degradation factor. Consequently, the RSB radiometric calibration requires the accurate knowledge of the product of the SD screen transmittance and the initial BRDF value as sensed by the RSB and the SDSM detectors. We use both yaw maneuver and a small portion of regular on-orbit data to determine the products.
NASA Technical Reports Server (NTRS)
Lei, Ning; Chen, Xuexia; Xiong, Xiaoxiong
2015-01-01
The Visible Infrared Imaging Radiometer Suiteaboard the Suomi National Polar-orbiting Partnership (SNPP) satellite performs radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function(BRDF) degradation factor is determined by an onboard SD stability monitor (SDSM), which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor.The degradation-factor-versus-time curves were found to have a number of very large unphysical undulations likely due to the inaccuracy in the prelaunch determined SDSM screen transmittance.To refine the SDSM screen transmittance, satellite yaw maneuvers were carried out. With the SDSM screen relative transmittance determined from the yaw maneuver data, the computed BRDFdegradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and a small portion of regular on-orbit data to determine the SDSM screen relative transmittance at a fine angular scale. We determine that the error standard deviation of the calculated relative transmittance ranges from 0.00030 (672 nm) to 0.00092 (926 nm). With the newly determined SDSM screen relative transmittance, the computed BRDF degradation factor behaves much more smoothly over time.
NASA Astrophysics Data System (ADS)
Wu, Aisheng; Xiong, Xiaoxiong J.; Cao, Changyong
2017-09-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite has been in operation for over five years. VIIRS has 22 bands with a spectral range from 0.4 μm to 2.2 μm for the reflective solar bands (RSB). The Earth view swath covers a distance of 3000 km over scan angles of +/- 56.0° off nadir. The on-board calibration of the RSB relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability, particularly at the short wavelengths (blue) where the most degradation occurs. In this study, the RVS stability is examined based on reflectance trends collected at various scan angles over the selected pseudo-invariant desert sites in Northern Africa and the Dome C snow site in Antarctica. These trends are corrected by the site dependent BRDF (bi-directional reflectance function) model to reduce seasonally related fluctuations. The BRDF corrected trends are examined so any systematic drifts in the scan angle direction would indicate a potential change in RVS. The results of this study provide useful information on VIIRS RVS on-orbit stability performance.
MODIS In-flight Calibration Methodologies
NASA Technical Reports Server (NTRS)
Xiong, X.; Barnes, W.
2004-01-01
MODIS is a key instrument for the NASA's Earth Observing System (EOS) currently operating on the Terra spacecraft launched in December 1999 and Aqua spacecraft launched in May 2002. It is a cross-track scanning radiometer, making measurements over a wide field of view in 36 spectral bands with wavelengths from 0.41 to 14.5 micrometers and providing calibrated data products for science and research communities in their studies of the Earth s system of land, oceans, and atmosphere. A complete suite of on-board calibrators (OBC) have been designed for the instruments in-flight calibration and characterization, including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the radiometric calibration of the 20 reflective solar bands (RSB), a blackbody (BB) for the radiometric calibration of the 16 thermal emissive bands (TEB), and a spectro-radiometric calibration assembly (SRCA) for the spatial (all bands) and spectral (RSB only) characterization. This paper discusses MODIS in-flight Cali bration methodologies of using its on-board calibrators. Challenging issues and examples of tracking and correcting instrument on-orbit response changes are presented, including SD degradation (20% at 412nm, 12% at 466nm, and 7% at 530nm over four and a half years) and response versus scan angle changes (10%, 4%, and 1% differences between beginning of the scan and end of the scan at 412nm, 466nm, and 530nm) in the VIS spectral region. Current instrument performance and lessons learned are also provided.
On-Orbit Noise Characterization for MODIS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Xiong, X.; Xie, X.; Angal, A.
2008-01-01
Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) has operated successfully on-board the NASA Earth Observing System (EOS) Terra and EOS Aqua spacecraft. MODIS is a passive cross-track scanning radiometer that makes observations in 36 spectral bands with spectral wavelengths from visible (VIS) to long-wave infrared. MODIS bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers. They are calibrated on-orbit using an on-board solar diffuser (SD) and a SD stability monitor (SDSM) system. For MODIS RSB, the level 1B calibration algorithm produces top of the atmosphere reflectance factors and radiances for every pixel of the Earth view. The sensor radiometric calibration accuracy, specified at each spectral band's typical scene radiance, is 2% for the RSB reflectance factors and 5% for the RSB radiances. Also specified at the typical scene radiance is the detector signal-to-noise ratio (SNR), a key sensor performance parameter that directly impacts its radiometric calibration accuracy and stability, as well as the image quality. This paper describes an on-orbit SNR characterization approach developed to evaluate and track MODIS RSB detector performance. In order to perform on-orbit SNR characterization, MODIS RSB detector responses to the solar illumination reflected from the SD panel must be corrected for factors due to variations of the solar angles and the SD bi-directional reflectance factor. This approach enables RSB SNR characterization to be performed at different response levels for each detector. On-orbit results show that both Terra and Aqua MODIS RSB detectors have performed well since launch. Except for a few noisy or inoperable detectors which were identified pre-launch, most RSB detectors continue to meet the SNR design requirements and are able to maintain satisfactory short-term stability. A comparison of on-orbit noise characterization results with results derived from pre-launch calibration and characterization are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaud, G.; Bergeron, P.; Wesemael, F.
The abundance anomalies generated by diffusion in the envelopes of hot, hydrogen-rich subdwarfs are studied. It is shown that unimpeded diffusion cannot lead to the large silicon underabundance observed in those stars at effective temperatures above 30,000 K. Calculations of diffusion of heavy elements in the presence of mass loss are also performed. For a mass-loss rate of 2.5 x 10 to the -15th solar masses/year, the observed abundance patterns of C, N, and Si are reproduced on a time scale of about 100,000 yr. Lower mass-loss rates would necessitate longer time scales. The pattern of abundance anomalies may eventuallymore » be used to constrain both the mass-loss rate and the stellar lifetime in the sdB evolutionary phase. 12 references.« less
An Overview of Suomi NPP VIIRS Calibration Maneuvers
NASA Technical Reports Server (NTRS)
Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu
2012-01-01
The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). On-orbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multi-orbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper pro-vides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow-on missions.
Early on-orbit calibration results from Aqua MODIS
NASA Astrophysics Data System (ADS)
Xiong, Xiaoxiong; Barnes, William L.
2003-04-01
Aqua MODIS, also known as the MODIS Flight Model 1 (FM1), was launched on May 4, 2002. It opened its nadir aperture door (NAD) on June 24, 2002, beginning its Earth observing mission. In this paper, we present early results from Aqua MODIS on-orbit calibration and characterization and assess the instrument's overall performance. MODIS has 36 spectral bands located on four focal plane assemblies (FPAs). Bands 1-19, and 26 with wavelengths from 0.412 to 2.1 microns are the reflective solar bands (RSB) that are calibrated on-orbit by a solar diffuser (SD). The degradation of the SD is tracked using a solar diffuser stability monitor (SDSM). The bands 20-25, and 27-36 with wavelengths from 3.75 to 14.5 microns are the thermal emissive bands (TEB) that are calibrated on-orbit by a blackbody (BB). Early results indicate that the on-orbit performance has been in good agreement with the predications determined from pre-launch measurements. Except for band 21, the low gain fire band, band 6, known to have some inoperable detectors from pre-launch characterization, and one noisy detector in band 36, all of the detectors' noise characterizations are within their specifications. Examples of the sensor's short-term and limited long-term responses in both TEB and RSB will be provided to illustrate the sensor's on-orbit stability. In addition, we will show some of the improvements that Aqua MODIS made over its predecessor, Terra MODIS (Protoflight Model - PFM), such as removal of the optical leak into the long-wave infrared (LWIR) photoconductive (PC) bands and reduction of electronic crosstalk and out-of-band (OOB) thermal leak into the short-wave infrared (SWIR) bands.
An overview of Suomi NPP VIIRS calibration maneuvers
NASA Astrophysics Data System (ADS)
Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu
2012-09-01
The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). Onorbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multiorbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper provides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow-on missions.
Studies of hot B subdwarfs. III - Carbon, nitrogen, and silicon abundances in three sdB stars
NASA Technical Reports Server (NTRS)
Lamontagne, R.; Wesemael, F.; Fontaine, G.; Sion, E. M.
1985-01-01
Optical and high-dispersion IUE observations of three hot B subdwarfs (UV 1758 + 36, Ton S-227, and Feige 65) are presented. These data are analyzed with model atmosphere techniques, and element abundances for C, N, and Si are derived. The abundances are either near (N) or below (C, Si) the solar value; large variations (1) in the extent of underabundances of carbon and silicon among the objects, as well as (2) in the abundances (with respect to the solar values) characterizing each star are observed. A preliminary interpretation of the observed variations in these and other hot subdwarfs in terms of radiative forces disrupting the downward diffusion of heavy elements is presented.
NASA Technical Reports Server (NTRS)
Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.
1994-01-01
The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.
Calibration Improvements in the Detector-to-Detector Differences for the MODIS Ocean Color Bands
NASA Technical Reports Server (NTRS)
Li, Yonghong; Angal, Amit; Wu, Aisheng; Geng, Xu; Link, Daniel; Xiong, Xiaoxiong
2016-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS), a major instrument within NASAs Earth Observation System missions, has operated for over 16 and 14 years onboard the Terra and Aqua satellites, respectively. Its reflective solar bands (RSB) covering a spectral range from 0.4 to 2.1 micrometers are primarily calibrated using the on-board solar diffuser(SD), with its on-orbit degradation monitored using the Solar Diffuser Stability Monitor. RSB calibrations are supplemented by near-monthly lunar measurements acquired from the instruments space-view port. Nine bands (bands 8-16) in the visible to near infrared spectral range from 0.412 to 0.866 micrometers are primarily used for ocean color observations.During a recent reprocessing of ocean color products, performed by the NASA Ocean Biology Processing Group, detector-to-detector differences of up to 1.5% were observed in bands 13-16 of Terra MODIS. This paper provides an overview of the current approach to characterize the MODIS detector-to-detector differences. An alternative methodology was developed to mitigate the observed impacts for bands 13-16. The results indicated an improvement in the detector residuals and in turn are expected to improve the MODIS ocean color products. This paper also discusses the limitations,subsequent enhancements, and the improvements planned for future MODIS calibration collections.
NASA Astrophysics Data System (ADS)
Fulbright, Jon; Anderson, Samuel; Lei, Ning; Efremova, Boryana; Wang, Zhipeng; McIntire, Jeffrey; Chiang, Kwofu; Xiong, Xiaoxiong
2014-11-01
Due to a software error, the solar and lunar vectors reported in the on-board calibrator intermediate product (OBC-IP) files for SNPP VIIRS are incorrect. The magnitude of the error is about 0.2 degree, and the magnitude is increasing by about 0.01 degree per year. This error, although small, has an effect on the radiometric calibration of the reflective solar bands (RSB) because accurate solar angles are required for calculating the screen transmission functions and for calculating the illumination of the Solar Diffuser panel. In this paper, we describe the error in the Common GEO code, and how it may be fixed. We present evidence for the error from within the OBC-IP data. We also describe the effects of the solar vector error on the RSB calibration and the Sensor Data Record (SDR). In order to perform this evaluation, we have reanalyzed the yaw-maneuver data to compute the vignetting functions required for the on-orbit SD RSB radiometric calibration. After the reanalysis, we find effect of up to 0.5% on the shortwave infrared (SWIR) RSB calibration.
On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Sun, Junqiang; Xie, Xiaobo; Barnes, William; Salomonson, Vincent
2009-01-01
Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS and the mirror side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than Terra MODIS.
Impact of MODIS SWIR Band Calibration Improvements on Level-3 Atmospheric Products
NASA Technical Reports Server (NTRS)
Wald, Andrew; Levy, Robert; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt
2016-01-01
The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda < 0.94 microns the SDs on-orbit bi-directional reflectance factor (BRF) change is tracked using solar diffuser stability monitor (SDSM) observations. For lambda > 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by > 10%, which is a large change.
Fu, Chuanbo; Dan, Li; Chen, Youlong; Tang, Jiaxiang
2015-08-01
The long-term observational data of sunshine duration (SD) and diffuse radiation percentage (defined as diffuse solar radiation/total solar radiation, DRP) on sunny days during 1960-2005 were analyzed in 7 urban agglomerations and the whole of China. The results show that the sunny sunshine duration (SSD) has decreased significantly except at a few stations over northwestern China in the past 46 years. An obvious decrease of the SSD is found in eastern China, with the trend coefficients lower than -0.8. Accompanied by the SSD decline, the sunny diffuse radiation percentage (SDRP) in most stations shows obvious increasing trends during the 46 years. The averaged SDRP over China has increased 2.33% per decade, while the averaged SSD shows a decrease of -0.13 hr/day per decade. The correlation coefficient between SDRP and SSD is -0.88. SSD decreased over urban agglomerations (small to large city clusters) in the past 46 years, especially in large cities and medium cities, due to the strong anthropogenic activities and air pollution represented by aerosol option depth (AOD) and tropospheric column NO2 (TroNO2). On the regional scale, SSD has an opposite trend from SDRP during 1960 to 2005, and the variation trends of regional mean values of SSD and SDRP in southeastern China are more pronounced than those in northwestern China. Copyright © 2015. Published by Elsevier B.V.
Overview of the solar dynamic ground test demonstration program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1993-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).
Computer modeling of Earthshine contamination on the VIIRS solar diffuser
NASA Astrophysics Data System (ADS)
Mills, Stephen P.; Agravante, Hiroshi; Hauss, Bruce; Klein, James E.; Weiss, Stephanie C.
2005-10-01
The Visible/Infrared Imager Radiometer Suite (VIIRS), built by Raytheon Santa Barbara Remote Sensing (SBRS) will be one of the primary earth-observing remote-sensing instruments on the National Polar-Orbiting Operational Environmental Satellite System (NPOESS). It will also be installed on the NPOESS Preparatory Project (NPP). These satellite systems fly in near-circular, sun-synchronous low-earth orbits at altitudes of approximately 830 km. VIIRS has 15 bands designed to measure reflectance with wavelengths between 412 nm and 2250 nm, and an additional 7 bands measuring primarily emissive radiance between 3700nm and 11450 nm. The calibration source for the reflective bands is a solar diffuser (SD) that is illuminated once per orbit as the satellite passes from the dark side to the light side of the earth near the poles. Sunlight enters VIIRS through an opening in the front of the instrument. An attenuation screen covers the opening, but other than this there are no other optical elements between the SD and the sun. The BRDF of the SD and the transmittance of the attenuation screen is measured pre-flight, and so with knowledge of the angles of incidence, the radiance of the sun can be computed and is used as a reference to produce calibrated reflectances and radiances. Unfortunately, the opening also allows a significant amount of reflected earthshine to illuminate part of the SD, and this component introduces radiometric error to the calibration process, referred to as earthshine contamination (ESC). The VIIRS radiometric error budget allocated a 0.3% error based on modeling of the ESC done by SBRS during the design phase. This model assumes that the earth has Lambertian BRDF with a maximum top-of-atmosphere albedo of 1. The Moderate Resolution Imaging Spectroradiometer (MODIS) has an SD with a design similar to VIIRS, and in 2003 the MODIS Science Team reported to Northrop Grumman Space Technology (NGST), the prime contractor for NPOESS, their suspicion that ESC was causing higher than expected radiometric error, and asked whether VIIRS might have a similar problem. The NPOESS Models and Simulation (M&S) team considered whether the Lambertian BRDF assumption would cause an underestimating of the ESC error. Particularly, snow, ice and water show very large BRDFs for geometries for forward scattered, near-grazing angles of incidence, and in common parlance this is called glare. The observed earth geometry during the period where the SD is illuminated by the sun has just such geometries that produce strongly forward scattering glare. In addition the SD acquisition occurs in the polar regions, where snow, ice and water are most prevalent. Using models in their Environmental Products Verification and Remote Sensing Testbed (EVEREST), the M&S team produced a model that meticulously traced the light rays from the attenuation screen to each detector and combined this with a model of the satellite orbit, with solar geometry and radiative transfer models that include the effect of the BRDF of various surfaces. This modeling showed that radiometric errors up to 4.5% over water and 1.5% over snow or ice. Clouds produce errors up to 0.8%. The likelihood of these high errors occurring has not been determined. Because of this analysis, various remedial options are now being considered.
Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1995-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.
Theoretical and experimental research in space photovoltaics
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria
1995-01-01
Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.
Technology Projections for Solar Dynamic Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.
Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1995-01-01
A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.
Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1994-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.
[Eclipse retinopathy : A case series after the partial solar eclipse on 20 March 2015].
Bachmeier, I; Helbig, H; Greslechner, R
2017-01-01
Solar retinopathy refers to damage to the central macula caused by exposure to intense solar radiation, most frequently observed after a solar eclipse. Description of the morphological changes in spectral domain optical coherence tomography (SD-OCT) and the clinical course in patients with acute solar retinopathy. The study included a retrospective analysis of 12 eyes from 7 patients with solar retinopathy after the partial solar eclipse on 20 March 2015. Best corrected visual acuity, fundus changes and SD-OCT findings were analyzed. Out of the 7 patients 5 underwent treatment with 1 mg prednisolone per kg body weight. The average age of the patients was 30.1±13.1 years. Best corrected visual acuity was 0.65 at initial presentation. In the acute stage all affected eyes showed a small yellowish lesion in the centre of the fovea in the fundoscopic examination. In SD-OCT the continuity of all layers in the foveola appeared disrupted. In the follow-up examination these changes were partially resolved. After 2 months SD-OCT revealed a small defect of the ellipsoid zone. In one patient the defect could not be shown due to slightly excentric imaging sections. Best corrected visual acuity increased to 0.97. The SD-OCT is an appropriate tool to determine the exact localization of the site of damage and for follow-up examination in solar retinopathy. In the acute phase it shows a disruption of the continuity of all layers in the foveola. Despite good recovery of visual acuity a small central defect of the ellipsoid zone remains in the long term.
Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen
2016-01-01
For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.
NASA Astrophysics Data System (ADS)
Obara, Shin'ya
Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.
A Solar Dynamic Power Option for Space Solar Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.
On-Orbit Calibration and Performance of S-NPP VIIRS DNB
NASA Technical Reports Server (NTRS)
Chen, H.; Sun, C.; Chen, X.; Chiang, K.; Xiong, X.
2016-01-01
The S-NPP VIIRS instrument has successfully operated since its launch in October 2011. The VIIRS Day-Night Band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 m that is capable of observing Earth scenes during both day and nighttime orbits at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low, mid, or high gain stages, and it uses an onboard solar diffuser (SD) for its low gain stage calibration. The SD observations also provide a means to compute gain ratios of low-to-mid and mid-to-high gain stages. This paper describes the DNB on-orbit calibration methodologies used by the VIIRS Characterization Support Team (VCST) in supporting the NASA earth science community with consistent VIIRS sensor data records (SDRs) made available by the Land Science Investigator-led Processing Systems (SIPS). It provides an assessment and update of DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, stray light contamination and its correction. Also presented in this paper are performance validations based on earth scenes and lunar observations.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Shen, Hong-Lie; Yue, Zhi-Hao; Jiang, Feng; Wu, Tian-Ru; Pan, Yuan-Yuan
2013-01-01
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/ epitaxial c-Si(47 μm)/epitaxial c-Si(3 μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3+SiH4+H2)) on the performance of the solar cell is studied by means of current density—voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
Chen, Kevin C; Jung, Jesse J; Aizman, Alexander
2012-01-01
To describe ocular findings in 3 cases of solar retinopathy using high definition, spectral domain optical coherence tomography (SD-OCT) and review the literature for optical coherence tomography (OCT) characteristics associated with worse vision. Case series and retrospective review of clinical features and Spectralis SD-OCT (Heidelberg Engineering, Vista, California, United States of America). A literature review of OCT findings in cases of solar retinopathy reported on MEDLINE was also performed and analyzed. Six eyes of 3 patients with solar retinopathy revealed significant foveal pathology. Visual acuity ranged from Snellen 20/30 to 20/50. High definition SD-OCT demonstrated defects at the level of the inner and outer segment junction of the photoreceptors as well as in the inner high reflective layer. There was a significant correlation between chronic disruption of the inner photoreceptor junction with worse vision based on the current case series and literature review. Screening patients with exposure to central foveal damage from solar retinopathy with high definition SD-OCT improves diagnosis and assessment of photoreceptor damage and vision loss.
Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.
2005-01-01
Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other canyon systems. ?? 2004 Published by Elsevier B.V.
Transport Imaging of Multi-Junction and CIGS Solar Cell Materials
2011-12-01
solar cells start with the material charge transport parameters, namely the charge mobility, lifetime and diffusion length . It is the goal of...every solar cell manufacturer to maintain high carrier lifetime so as to realize long diffusion lengths . Long diffusion lengths ensure that the charges...Thus, being able to accurately determine the diffusion length of any solar cell material proves advantageous by providing insights
Calibration Challenges and Improvements for Terra and Aqua MODIS Level-1B Data Product Qualit
NASA Astrophysics Data System (ADS)
Xiong, X.; Angal, A.; Chen, H.; Geng, X.; Li, Y.; Link, D.; Salomonson, V.; Twedt, K.; Wang, Z.; Wilson, T.; Wu, A.
2017-12-01
Terra and Aqua MODIS instruments launched in 1999 and 2002, respectively, have provided the remote sensing community and users worldwide a series of high quality long-term data records. They have enabled a broad range of scientific studies of the Earth's system and changes in its key geophysical and environmental parameters. To date, both MODIS instruments continue to operate nominally with all on-board calibrators (OBC) functioning properly. MODIS reflective solar bands (RSB) are currently calibrated by a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system, coupled with regularly scheduled lunar observations and trending results from selected ground reference targets. The thermal emissive bands (TEB) calibration is performed using an on-board blackbody (BB) on a scan-by-scan basis. The sensor's spectral and spatial characteristics are periodically tracked by the on-board spectroradiometric calibration assembly (SRCA). On-orbit changes in sensor responses or performance characteristics, often in non-deterministic ways, underscore the need for dedicated calibration efforts to be made over the course of the sensor's entire mission. For MODIS instruments, this task has been undertaken by the MODIS Characterization Support Team (MCST). In this presentation, we provide an overview of MODIS instrument operation and calibration activities with a focus on recent challenging issues. We describe the efforts made and methodologies developed to address various challenging issues, including on-orbit characterization of sensor response versus scan angle (RVS) and polarization sensitives in the reflective solar spectral region, and electronic crosstalk impact on sensor calibration. Also discussed are the latest improvements made into the MODIS Level-1B data products as well as lessons that could benefit other instruments (e.g. VIIRS) for their on-orbit calibration and characterization.
Glass diffusion source for constraining BSF region of a solar cell
Lesk, I.A.; Pryor, R.A.; Coleman, M.G.
1982-08-27
The present invention is directed to a method of fabricating a solar cell comprising simultaneous diffusion of the p and n dopant materials into the solar cell substrate. The simultaneous diffusion process is preceded by deposition of a capping layer impervious to doping by thermal diffusion processes.
Solar dynamic power for Earth orbital and lunar applications
NASA Technical Reports Server (NTRS)
Calogeras, James E.; Dustin, Miles O.; Secunde, Richard R.
1991-01-01
Development of solar dynamic (SD) technologies for space over the past 25 years by NASA Lewis Research Center brought SD power to the point where it was selected in the design phase of Space Station Freedom Program as the power source for evolutionary growth. More recent studies showed that large cost savings are possible in establishing manufacturing processes at a Lunar Base if SD is considered as a power source. Technology efforts over the past 5 years have made possible lighter, more durable, SD components for these applications. A review of these efforts and respective benefits is presented.
NASA Astrophysics Data System (ADS)
Dahlem, Markus A.; Graf, Rudolf; Strong, Anthony J.; Dreier, Jens P.; Dahlem, Yuliya A.; Sieber, Michaela; Hanke, Wolfgang; Podoll, Klaus; Schöll, Eckehard
2010-06-01
We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling such as long-range, time-delayed, and global coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Landi, E.; Gibson, S. E., E-mail: lzh@umich.edu
2013-08-20
Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make itmore » timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier HCS in the north than the south, associated with the early reversal of the polar magnetic field in the north relative to the south.« less
Pointing and tracking control for freedom's Solar Dynamic modules and vibration control of freedom
NASA Technical Reports Server (NTRS)
Quinn, Roger D.; Chen, Jiunn-Liang
1992-01-01
A control strategy is presented for pointing particular modules of flexible multibody space structures while simultaneously attenuating structural vibrations. The application that is addressed is the planned Space Station Freedom in a growth configuration with Solar Dynamic (SD) module. A NASTRAN model of Freedom is used to demonstrate the control strategy. Two cases of SD concentrator fine-pointing controller bandwidths are studied with examples. The effect of limiting the controller motor torques to realistic baseline values is examined. SD pointing and station vibration control is accomplished during realistic disturbances due to aerodynamic drag, Shuttle docking, and Shuttle reaction control system plume impingement on SD. Gravity gradient induced torques on SD are relatively small and pseudo-steady.
Electric power - Photovoltaic or solar dynamic?
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.
1985-01-01
The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.
SeaWiFS long-term solar diffuser reflectance trend analysis
NASA Astrophysics Data System (ADS)
Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2006-08-01
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) Team implemented daily solar calibrations of SeaWiFS to look for step-function changes in the instrument response and has used these calibrations to supplement the monthly lunar calibrations in monitoring the radiometric stability of SeaWiFS during its first year of on-orbit operations. The Team has undertaken an analysis of the mission-long solar calibration time series, with the lunar-derived radiometric corrections over time applied, to assess the long-term degradation of the solar diffuser reflectance over nine years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val Team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength-dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The degradation of diffuser reflctance is similar to that observed for SeaWiFS radiometric response itself from lunar calibration time series for bands 1-5 (412-555 nm), though the magnitude of the change is four times larger for the diffuser. Evidently, the same optical degradation process has affected both the telescope optics and the solar diffuser in the blue and green. The Cal/Val Team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series. The on-orbit change in the SNR for each band over the nine-year mission is less than 7%. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as MODIS, VIIRS, and ABI.
Diffusion measurements in the ischemic human brain with a steady-state sequence.
Brüning, R; Wu, R H; Deimling, M; Porn, U; Haberl, R L; Reiser, M
1996-11-01
The authors evaluate the clinical usefulness of a diffusion-weighted steady-state free-precession (SSFP) sequence to detect acute and subacute ischemic changes. Twenty-four patients were examined on a 1.5-tesla scanner, using a SSFP-sequence (repetition time [TR]/ echo time [TE] = 22/3-8 mseconds). The slice thickness was 5 mm, 10 averages, 57 seconds per slice. The diffusion gradient strength was 23 millitesla/m, with b-values from 165 to 598 seconds/mm2. Diffusion-weighted images (DWI) were compared with T2-weighted images. The diffusion-weighted SSFP sequence produced diagnostic quality images in 23 of 24 patients. Diffusion depicted (group 1: 0-12 hours) more acute lesions (3 of 6) than T2-weighted images (2 of 6); the mean lesion diameter depicted by diffusion was 10.9 mm (standard deviation [SD], 12.3) and in T2-weighted images was 4.7 mm (SD 6.8). A significant correlation (P < 0.017) in subacute lesions was found when diffusion was compared with turbo spin echo (mean size difference/T2 = 18.5/17.5 mm, SD 13.2/12.2). The diffusion-weighted SSFP-sequence is more sensitive in acute ischemia and delineates likewise in subacute ischemia, when compared with T2-weighted imaging.
Hein, Sascha; Zangl, Michael
2016-01-01
The aim of this in vitro study was to investigate the color changes of human teeth caused by five different diffuser materials commonly used in dental photography, as well as software influence, and to confirm whether the use of a standardized gray reference card is effective in correcting these color changes during digital postproduction. Forty extracted human teeth were obtained from a specialized oral surgery practice in Cham, Germany. Five commonly used diffuser materials were chosen to be investigated, which included: polyethylene (PET), White Frost photographic paper, LumiQuest polyamide (nylon) material, 80 gsm white printing paper, and 3M linear polarizing filter sheet used for cross polarization. A digital single-lens reflex camera (Canon EOS 5D MKII) was used, together with a twin flash suitable for macrophotography (Canon MT-24EX Macro Twin Lite). Images were tethered into Adobe Lightroom CC using the RAW format. A standardized gray reference card (WhiBal, Michael Tapes Design) was used for exposure calibration and white balancing. Classic Color Me- ter software (Ricci Adams, version 1.6 (122)) was used to obtain CIE L*a*b* values of the specimens before and after white balancing and exposure correction. All diffusers caused visually perceivable color changes on the extracted teeth: White Frost (ΔE* 1.24; sd 0.47), 80 gsm printing paper (ΔE* 2.94; sd 0.35), LumiQuest polyamide (ΔE* 3.68; sd 0.54), PET (ΔE* 6.55; sd 0.41), and 3M linear polarizing filter sheet (ΔE* 7.58; sd 1.00). The use of a standardized gray reference card (WhiBal) could correct these values below the visually perceivable threshold: White Frost (ΔE* 0.58; sd 0.36), 80 gsm printing paper (ΔE* 0.93; sd 0.54), LumiQuest polyamide (ΔE* 0.66; sd 0.58), PET (ΔE* 0.59; sd 0.33), and 3M linear polarizing filter sheet (ΔE* 0.53; sd 0.42). The use of a standardized gray reference card with specified CIE L*a*b* values should be considered when diffusers are used in dental photography in order to reveal the color of preoperative situations (ie, shade documentation) and document postoperative results accurately.
Suomi-NPP VIIRS Day-Night Band On-Orbit Calibration and Performance
NASA Technical Reports Server (NTRS)
Chen, Hongda; Xiong, Xiaoxiong; Sun, Chengbo; Chen, Xuexia; Chiang, Kwofu
2017-01-01
The Suomi national polar-orbiting partnership Visible Infrared Imaging Radiometer Suite (VIIRS) instrument has successfully operated since its launch in October 2011. The VIIRS day-night band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 microns that is capable of observing Earth scenes during both daytime and nighttime at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low-, middle-, and high-gain stages, and it uses an on-board solar diffuser (SD) for its low-gain stage calibration. The SD observations also provide a means to compute the gain ratios of low-to-middle and middle-to-high gain stages. This paper describes the DNB on-orbit calibration methodology used by the VIIRS characterization support team in supporting the NASA Earth science community with consistent VIIRS sensor data records made available by the land science investigator-led processing systems. It provides an assessment and update of the DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, and stray-light contamination and its correction. Also presented in this paper are performance validations based on Earth scenes and lunar observations, and comparisons to the calibration methodology used by the operational interface data processing segment.
Phase change energy storage for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Chiaramonte, F. P.; Taylor, J. D.
1992-01-01
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
Phase change energy storage for solar dynamic power systems
NASA Astrophysics Data System (ADS)
Chiaramonte, F. P.; Taylor, J. D.
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
Correlation of total, diffuse, and direct solar radiation
NASA Technical Reports Server (NTRS)
Buyco, E. H.; Namkoong, D.
1977-01-01
Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.
NASA Astrophysics Data System (ADS)
Ding, Hongxia; Chen, Shangbin; Zeng, Shuai; Zeng, Shaoqun; Liu, Qian; Luo, Qingming
2008-12-01
Spreading depression (SD) shows as propagating suppression of electrical activity, which relates with migraine and focal cerebral ischaemia. The putative mechanism of SD is the reaction-diffusion hypothesis involving potassium ions. In part inspired by optical imaging of two SD waves collision, we aimed to show the merged and large wavefront but not annihilation during collision by experimental and computational study. This paper modified Reggia et al established bistable equation with recovery to compute and visualize SD. Firstly, the media tissue of SD was assumed as one-dimensional continuum. The Crank-Nicholson method was used to solve the modified equations with recovery term. Then, the computation results were extended to two-dimensional space by symmetry. One individual SD was visualized as a concentric wave initiating from the stimulation point. The mergence but not annihilation of two colliding waves of SD was demonstrated. In addition, the dynamics of SD depending on the parameters was studied and presented. The results allied SD with the emerging concepts of volume transmission. This work not only supplied a paradigm to compute and visualize SD but also became a tool to explore the mechanisms of SD.
The Solar Dynamic radiator with a historical perspective
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R.
1988-01-01
A historical perspective on pumped loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kWe each, are planned for growth Station power requirements. The Brayton (cycle) SD module configuration incorporates a pumped loop radiator that must reject up to 99 kW. The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped loop radiator systems. Nevertheless, past program successes have demonstrated a technology base which can be applied to the SD radiator development program to ensure a low risk, low cost system.
MODIS Solar Diffuser: Modelled and Actual Performance
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)
2001-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.
Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region
NASA Astrophysics Data System (ADS)
Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.
2017-12-01
This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match between TIME-GCM and SD-WACCM. Also, with the TIME-GCM outputs, the influence of these MLT circulation changes on the ionospheric winter anomaly will be determined.
Surface photovoltage method extended to silicon solar cell junction
NASA Technical Reports Server (NTRS)
Wang, E. Y.; Baraona, C. R.; Brandhorst, H. W., Jr.
1974-01-01
The conventional surface photovoltage (SPV) method is extended to the measurement of the minority carrier diffusion length in diffused semiconductor junctions of the type used in a silicon solar cell. The minority carrier diffusion values obtained by the SPV method agree well with those obtained by the X-ray method. Agreement within experimental error is also obtained between the minority carrier diffusion lengths in solar cell diffusion junctions and in the same materials with n-regions removed by etching, when the SPV method was used in the measurements.
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses.
Eplee, Robert E; Patt, Frederick S; Barnes, Robert A; McClain, Charles R
2007-02-10
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eplee, Robert E. Jr.; Patt, Frederick S.; Barnes, Robert A.
The NASA Ocean Biology Processing Group's Calibration and Validation(Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch,so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. Anmore » exponential function with a time constant of 200 days yields the best fit to the diffuser time series.The decrease in diffuser reflectance over the mission is wavelength dependent,ranging from 9% in the blue(412 nm) to 5% in the red and near infrared(670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].« less
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses
NASA Astrophysics Data System (ADS)
Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2007-02-01
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].
NASA Astrophysics Data System (ADS)
Sanchez, G.; Cancillo, M. L.; Serrano, A.
2010-09-01
This study is aimed at the analysis of the partitioning of global solar irradiance into its direct and diffuse components at the radiometric station in Badajoz (Spain). The detailed knowledge of the solar radiation field is of increasing interest in Southern Europe due to its use as renewable energy. In particular, the knowledge of the solar radiation partitioning into direct and diffuse radiation has become a major demand for the design and suitable orientation of solar panels in solar power plants. In this study the first measurements of solar diffuse irradiance performed in the radiometric station in Badajoz (Spain) are presented and analyzed in the framework of the partitioning of solar global radiation. Thus, solar global and diffuse irradiance were measured at one-minute basis from 23 November 2009 to 31 March 2010. Solar irradiances were measured by two Kipp&Zonen CMP11 pyranometers, using a Kipp&Zonen CM121 shadow ring for the measurements of solar diffuse irradiance. Diffuse measurements were corrected from the solid angle hidden by the ring and direct irradiance was calculated as the difference between global and diffuse measurements. Irradiance was obtained from the pyranomenters by applying calibration coefficients obtained in an inter-comparison campaign performed at INTA/El Arenosillo, in Huelva (Spain), last September 2009. There, calibration coefficients were calculated using as a reference a CMP11 pyranometer which had been previously calibrated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre in Switzerland. In order to study the partitioning of the solar radiation, the global and diffuse irradiances have been analyzed for three typical different sky conditions: cloud-free, broken clouds and overcast. Particular days within the period of study have been selected by visual inspection. Along with the analysis of the global and diffuse irradiances themselves, ratios of these irradiances to the downward irradiance at the top of the atmosphere have also been analyzed. Several interesting features have been found. It is particularly worth to note the decreasing relative contribution of the direct component to the global irradiance as the solar zenith angle increases, due to a longer path crossed within the atmosphere. In broken clouds and overcast conditions, the diffuse component becomes the major contribution to the irradiance being the high-frequency variability the main difference between both type of cases. While in overcast conditions the global irradiance remains remarkably low, under broken clouds the global irradiance shows a very high variability frequently reaching values higher than the irradiance at the top of the atmosphere, due to multi-reflection phenomenon. The present study contributes to a better knowledge of the radiation field and its partitioning, involving original high-frequency measurements.
Righini, Andrea; Doneda, Chiara; Parazzini, Cecilia; Arrigoni, Filippo; Matta, Ursula; Triulzi, Fabio
2010-11-01
The main purpose was to investigate any early diffusion tensor imaging (DTI) changes in corpus callosum (CC) associated with acute cerebral hemisphere lesions in term newborns. We retrospectively analysed 19 cases of term newborns acutely affected by focal or multi-focal lesions: hypoxic-ischemic encephalopathy, hypoglycaemic encephalopathy, focal ischemic stroke and deep medullary vein associated lesions. DTI was acquired at 1.5 Tesla with dedicated neonatal coil. DTI metrics (apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial λ(∐) and radial λ(⟂) diffusivity) were measured in the hemisphere lesions and in the CC. The control group included seven normal newborns. The following significant differences were found between patients and normal controls in the CC: mean ADC was lower in patients (0.88 SD 0.23 versus 1.18 SD 0.07 μm(2)/s) and so was mean FA (0.50 SD 0.1 versus 0.67 SD 0.05) and mean λ(∐) value (1.61 SD 0.52 versus 2.36 SD 0.14 μm(2)/s). In CC the percentage of ADC always diminished independently of lesion age (with one exception), whereas in hemisphere lesions, it was negative in earlier lesions, but exceeded normal values in the older lesions. CC may undergo early DTI changes in newborns with acute focal or multi-focal hemisphere lesions of different aetiology. Although a direct insult to CC cannot be totally ruled out, DTI changes in CC (in particular λ(∐)) may also be compatible with very early Wallerian degeneration or pre-Wallerian degeneration.
Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion
NASA Astrophysics Data System (ADS)
Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.
2018-04-01
The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.
The solar dynamic radiator with a historical perspective
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R. L.
1988-01-01
A historical perspective on pumped-fluid loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kW (electrical) each, are planned for growth in Station power requirements. The Brayton cycle SD module configuration incorporates a pumped-fluid loop radiator that must reject up to 99 kW (thermal). The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped-fluid loop radiator systems. Nevertheless, past program successes have demonstrated a technology base that can be applied to the SD radiator development program to ensure a low risk, low cost system.
Yi, Kyung Sik; Choi, Chi-Hoon; Lee, Sang-Rae; Lee, Hong Jun; Lee, Youngjeon; Jeong, Kang-Jin; Hwang, Jinwoo; Chang, Kyu-Tae
2016-01-01
Although early diffusion lesion reversal after recanalization treatment of acute ischaemic stroke has been observed in clinical settings, the reversibility of lesions observed by diffusion-weighted imaging remains controversial. Here, we present consistent observations of sustained diffusion lesion reversal after transient middle cerebral artery occlusion in a monkey stroke model. Seven rhesus macaques were subjected to endovascular transient middle cerebral artery occlusion with in-bore reperfusion confirmed by repeated prospective diffusion-weighted imaging. Early diffusion lesion reversal was defined as lesion reversal at 3 h after reperfusion. Sustained diffusion lesion reversal was defined as the difference between the ADC-derived pre-reperfusion maximal ischemic lesion volume (ADCD-P Match) and the lesion on 4-week follow-up FLAIR magnetic resonance imaging. Diffusion lesions were spatiotemporally assessed using a 3-D voxel-based quantitative technique. The ADCD-P Match was 9.7 ± 6.0% (mean ± SD) and the final infarct was 1.2–6.0% of the volume of the ipsilateral hemisphere. Early diffusion lesion reversal and sustained diffusion lesion reversal were observed in all seven animals, and the calculated percentages compared with their ADCD-P Match ranged from 8.3 to 51.9% (mean ± SD, 26.9 ± 15.3%) and 41.7–77.8% (mean ± SD, 65.4 ± 12.2%), respectively. Substantial sustained diffusion lesion reversal and early reversal were observed in all animals in this monkey model of transient focal cerebral ischaemia. PMID:27401804
Gröbner, Julian; Blumthaler, Mario
2007-01-01
The optical reference plane of a J1002 shaped dome diffuser from CMS-Schreder was determined using direct normal spectral solar UV irradiance measurements relative to a flat Teflon diffuser. The spectroradiometers were calibrated relative to the same irradiance standard. The optical reference plane of the shaped J1002 diffuser is 5.3 mm behind the top of the dome with an uncertainty of 1.0 mm. Solar UV irradiance measurements based on a lamp calibration using the top of the dome as the reference will overestimate the global solar irradiance by 2.1% for the usual calibration distance of 500 mm.
Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias
2017-10-01
To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.
An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS
NASA Technical Reports Server (NTRS)
Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.
2004-01-01
The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, D.; Baylon, D.; Smith, O.
1980-01-01
Four commonly used solar radiation models that determine the diffuse and direct components of the solar radiation on a horizontal surface are compared against measured data to determine their predictive and modeling applicability. The John Hay model is determined to underpredict the diffuse and the Pereira/Rabl model to overpredict the diffuse radiation. The daily Liu and Jordan correlation and the hourly Boes correlation are shown to be better predictors.
Approaching conversion limit with all-dielectric solar cell reflectors.
Fu, Sze Ming; Lai, Yi-Chun; Tseng, Chi Wei; Yan, Sheng Lun; Zhong, Yan Kai; Shen, Chang-Hong; Shieh, Jia-Min; Li, Yu-Ren; Cheng, Huang-Chung; Chi, Gou-chung; Yu, Peichen; Lin, Albert
2015-02-09
Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.
Experimental Data for Two Different Alternator Configurations in a Solar Brayton Power System
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Shaltens, Richard K.; Espinosa, William D.
1997-01-01
A solar dynamic (SD) space power system has been under test at the NASA Lewis Research Center since 1994. The SD Ground Test Demonstration (GTD) system includes a solar concentrator, heat receiver with thermal energy storage, Brayton power conversion unit, and radiator installed in a thermal-vacuum chamber with a solar simulator. The Brayton unit has been operated with two different turboalternator compressor (TAC) assemblies, one which included a Rice Lundell alternator and another which incorporated a permanent magnet (PM) alternator. The Rice alternator was part of the mini-Brayton rotating unit, designed and built during the 1970's and refurbished for the GTD. The PM TAC was a development unit from the Joint US/Russian SD Flight Project. This paper highlights the operational differences (and similarities) between the Rice and PM TAC configurations including a comparative evaluation of startup characteristics and operating performance. The two alternator configurations were tested under similar thermal conditions, as an interchangeable component within the SD system. The electrical characteristics of the two units, however, dictated the use of significantly different power conditioning and control strategies. The electrical control architectures are described and compared. Test data are presented on TAC startup and system operating performance for both configurations.
New mounting improves solar-cell efficiency
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1980-01-01
Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.
NASA Astrophysics Data System (ADS)
Lantz, K.; Kiedron, P.; Petropavlovskikh, I.; Michalsky, J.; Slusser, J.
2008-12-01
. Two spectroradiometers reside that measure direct and diffuse UV solar irradiance are located at the Table Mountain Test Facility, 8 km north of Boulder, CO. The UV- Rotating Shadowband Spectrograph (UV-RSS) measures diffuse and direct solar irradiance from 290 - 400 nm. The UV Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) measures diffuse and direct solar irradiance in seven 2-nm wide bands, i.e. 300, 305, 311, 317, 325, and 368 nm. The purpose of the work is to compare radiative transfer model calculations (TUV) with the results from the UV-Rotating Shadowband Spectroradiometer (UV-RSS) and the UV-MFRSR to estimate direct-to-diffuse solar irradiance ratios (DDR) that are used to evaluate the possibility of retrieving aerosol single scattering albedo (SSA) under a variety of atmospheric conditions: large and small aerosol loading, large and small surface albedo. For the radiative transfer calculations, total ozone measurements are obtained from a collocated Brewer spectrophotometer.
Peculiar Abundances Observed in the Hot Subdwarf OB Star LB 3241
NASA Astrophysics Data System (ADS)
Chayer, Pierre; Dupuis, J.; Dixon, W. V.; Giguere, E.
2010-01-01
We present a spectral synthesis analysis of the hot subdwarf OB star LB 3241. The analysis is based on spectra obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE). With an effective temperature of 41,000 K and a gravity of log g = 5.7, the position of LB 3241 in a Teff-log g diagram suggests that it has evolved from the extreme horizontal branch. Such stars evolve into white dwarfs without ascending the asymptotic giant branch after the helium core exhaustion. Arsenic (Z = 33), selenium (34), and tellurium (52) are observed in the atmosphere of LB 3241, and are a first for a hot subdwarf star. LB 3241 shows peculiar chemical abundances that exhibit trends observed in cooler sdB stars. The content of its atmosphere in light elements is about a factor ten lower than that of the Sun, except for nitrogen which has a solar abundance. The Fe abundance is consistent with a solar abundance, but abundances of elements beyond the iron peak (As, Se, Te, Pb) show enrichments over the solar values by factors ranging from 10 to 300. These observations suggest that competing mechanisms must counterbalance the effects of the downward diffusion. The FUSE observations also suggest that LB 3241 is a radial velocity variable.
Detecting Compartmental non-Gaussian Diffusion with Symmetrized Double-PFG MRI
Paulsen, Jeffrey L.; Özarslan, Evren; Komlosh, Michal E.; Basser, Peter J.; Song, Yi-Qiao
2015-01-01
Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present Symmetrized Double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time-dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth moment (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics and act as a novel source of contrast to better resolve tissue micro-structure. PMID:26434812
ERIC Educational Resources Information Center
Burns, Barbara; And Others
The solar energy labor force is analyzed by identifying the importance of education and training in the commercialization and diffusion of solar technologies, discussing issues for planning and analysis of solar education and training efforts, and illustrating the range of programs and courses presently available. Four general perspectives are…
RAPID COMMUNICATION: Diffusion thermopower in graphene
NASA Astrophysics Data System (ADS)
Vaidya, R. G.; Kamatagi, M. D.; Sankeshwar, N. S.; Mulimani, B. G.
2010-09-01
The diffusion thermopower of graphene, Sd, is studied for 30 < T < 300 K, considering the electrons to be scattered by impurities, vacancies, surface roughness and acoustic and optical phonons via deformation potential couplings. Sd is found to increase almost linearly with temperature, determined mainly by vacancy and impurity scatterings. A departure from linear behaviour due to optical phonons is noticed. As a function of carrier concentration, a change in the sign of |Sd| is observed. Our analysis of recent thermopower data obtains a good fit. The limitations of Mott formula are discussed. Detailed analysis of data will enable a better understanding of the scattering mechanisms operative in graphene.
Mechanisms limiting the performance of large grain polycrystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.
1984-01-01
The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.
Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols
NASA Technical Reports Server (NTRS)
Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.
2007-01-01
In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.
Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells
NASA Astrophysics Data System (ADS)
Bi, Enbing; Chen, Han; Xie, Fengxian; Wu, Yongzhen; Chen, Wei; Su, Yanjie; Islam, Ashraful; Grätzel, Michael; Yang, Xudong; Han, Liyuan
2017-06-01
Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm2, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.
Hardie, Andrew D; Egbert, Robert E; Rissing, Michael S
2015-01-01
Diffusion-weighted magnetic resonance imaging (DW-MR) can be useful in the differentiation of hemangiomata from liver metastasis, but improved methods other than by mean apparent diffusion coefficient (mADC) are needed. A retrospective review identified 109 metastatic liver lesions and 86 hemangiomata in 128 patients who had undergone DW-MR. For each lesion, mADC and the standard deviation of the mean ADC (sdADC) were recorded and compared by receiver operating characteristic analysis. Mean mADC was higher in benign hemangiomata (1.52±0.12 mm(2)/s) than in liver metastases (1.33±0.18 mm(2)/s), but there was significant overlap in values. The mean sdADC was lower in hemangiomata (101±17 mm(2)/s) than metastases (245±25 mm(2)/s) and demonstrated no overlap in values, which was significantly different (P<.0001). Hemangiomata may be better able to be differentiated from liver metastases on the basis of sdADC than by mADC, although further studies are needed. Copyright © 2015 Elsevier Inc. All rights reserved.
Microstructure of frontoparietal connections predicts individual resistance to sleep deprivation.
Cui, Jiaolong; Tkachenko, Olga; Gogel, Hannah; Kipman, Maia; Preer, Lily A; Weber, Mareen; Divatia, Shreya C; Demers, Lauren A; Olson, Elizabeth A; Buchholz, Jennifer L; Bark, John S; Rosso, Isabelle M; Rauch, Scott L; Killgore, William D S
2015-02-01
Sleep deprivation (SD) can degrade cognitive functioning, but growing evidence suggests that there are large individual differences in the vulnerability to this effect. Some evidence suggests that baseline differences in the responsiveness of a fronto-parietal attention system that is activated during working memory (WM) tasks may be associated with the ability to sustain vigilance during sleep deprivation. However, the neurocircuitry underlying this network remains virtually unexplored. In this study, we employed diffusion tensor imaging (DTI) to investigate the association between the microstructure of the axonal pathway connecting the frontal and parietal regions--i.e., the superior longitudinal fasciculus (SLF)--and individual resistance to SD. Thirty healthy participants (15 males) aged 20-43 years underwent functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) at rested wakefulness prior to a 28-hour period of SD. Task-related fronto-parietal fMRI activation clusters during a Sternberg WM Task were localized and used as seed regions for probabilistic fiber tractography. DTI metrics, including fractional anisotropy, mean diffusivity, axial and radial diffusivity were measured in the SLF. The psychomotor vigilance test (PVT) was used to evaluate resistance to SD. We found that activation in the left inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) positively correlated with resistance. Higher fractional anisotropy of the left SLF comprising the primary axons connecting IPL and DLPFC was also associated with better resistance. These findings suggest that individual differences in resistance to SD are associated with the functional responsiveness of a fronto-parietal attention system and the microstructural properties of the axonal interconnections. Copyright © 2014 Elsevier Inc. All rights reserved.
Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells
NASA Technical Reports Server (NTRS)
Jain, R. K.; Weinberg, I.; Flood, D. J.
1993-01-01
Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.
Reaction-diffusion waves in neuronal tissue and the window of cortical excitability
NASA Astrophysics Data System (ADS)
Dahlem, M. A.; Müller, S. C.
2004-07-01
Spreading depression (SD) is a dynamic wave phenomenon occurring in all gray matter regions of the central nervous systems (CNS). It is characterized by a sudden breakdown of neuronal activity and accompanied by a massive influx and efflux of ions across the membrane of neurons. The retina is a constituent of the CNS in which one can easily observe the dynamic behavior of the SD wave fronts, because SD changes the optical properties of the tissue. There is ample evidence that SD belongs to the self-organization processes due to the coupling of reaction with diffusion in excitable medium. It is assumed that the occurrence of SD is associated with some neurological symptoms of migraine with aura. A frequently reported aura symptom is a traveling visual blind region (scotoma) with a preceding figure of scintillating line segments. The characteristic form and development of the scotoma suggests that the underlying phenomenon is a wave propagating through the primary visual cortex, most likely the cortical spreading depression. In this article we discuss similarities between SD waves and the migraine aura on the basis of properties of reaction-diffusion waves known from other excitable media. In particular, the propagation velocities, the shape and the dynamics of the waves are compared with each other. We find that the assumption of the neuronal tissue to be in a state of only weak excitability explains some properties of the migraine aura, such as the confined appearance and its propagation with a stable velocity.
Inventory of File gdas1.t06z.sfluxgrbf06.grib2
hour ave Visible Diffuse Downward Solar Flux [W/m^2] 036 surface NBDSF 0-6 hour ave Near IR Beam Downward Solar Flux [W/m^2] 037 surface NDDSF 0-6 hour ave Near IR Diffuse Downward Solar Flux [W/m^2] 038
Inventory of File gfs.t06z.sfluxgrbf06.grib2
hour ave Visible Diffuse Downward Solar Flux [W/m^2] 036 surface NBDSF 0-6 hour ave Near IR Beam Downward Solar Flux [W/m^2] 037 surface NDDSF 0-6 hour ave Near IR Diffuse Downward Solar Flux [W/m^2] 038
Laser doping of boron-doped Si paste for high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi
2015-08-01
Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.
Near Field Imaging of Gallium Nitride Nanowires for Characterization of Minority Carrier Diffusion
2009-12-01
diffusion length in nanowires is critical to potential applications in solar cells , spectroscopic sensing, and/or lasers and light emitting diodes (LED...technique has been successfully demonstrated with thin film solar cell materials [4, 5]. In these experiments, the diffusion length was measured using a...minority carrier diffusion length . This technique has been used in the near-field collection mode to image the diffusion of holes in n-type GaN
Mahfuz, Mohammad Upal; Makrakis, Dimitrios; Mouftah, Hussein T
2016-09-01
Unlike normal diffusion, in anomalous diffusion, the movement of a molecule is described by the correlated random walk model where the mean square displacement of a molecule depends on the power law of time. In molecular communication (MC), there are many scenarios when the propagation of molecules cannot be described by normal diffusion process, where anomalous diffusion is a better fit. In this paper, the effects of anomalous subdiffusion on concentration-encoded molecular communication (CEMC) are investigated. Although classical (i.e., normal) diffusion is a widely-used model of diffusion in molecular communication (MC) research, anomalous subdiffusion is quite common in biological media involving bio-nanomachines, yet inadequately addressed as a research issue so far. Using the fractional diffusion approach, the molecular propagation effects in the case of pure subdiffusion occurring in an unbounded three-dimensional propagation medium have been shown in detail in terms of temporal dispersion parameters of the impulse response of the subdiffusive channel. Correspondingly, the bit error rate (BER) performance of a CEMC system is investigated with sampling-based (SD) and strength (i.e., energy)-based (ED) signal detection methods. It is found that anomalous subdiffusion has distinctive time-dispersive properties that play a vital role in accurately designing a subdiffusive CEMC system. Unlike normal diffusion, to detect information symbols in subdiffusive CEMC, a receiver requires larger memory size to operate correctly and hence a more complex structure. An in-depth analysis has been made on the performances of SD and ED optimum receiver models under diffusion noise and intersymbol interference (ISI) scenarios when communication range, transmission data rate, and memory size vary. In subdiffusive CEMC, the SD method.
NASA Technical Reports Server (NTRS)
Palmer, James M.; Slater, Philip N.
1991-01-01
The use of an on-board solar diffuser has been proposed to monitor the in-flight calibration of satellite sensors. This paper presents the preliminary specifications and design for a ratioing radiometer, to be used to determine the change in radiance of the solar diffuser. The issues involved in spectral channel selection are discussed and the effects of stray light are presented. An error analysis showing the benefit of the ratioing radiometer is included.
Detecting compartmental non-Gaussian diffusion with symmetrized double-PFG MRI.
Paulsen, Jeffrey L; Özarslan, Evren; Komlosh, Michal E; Basser, Peter J; Song, Yi-Qiao
2015-11-01
Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present symmetrized double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth cumulant (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics, and act as a novel source of contrast to better resolve tissue micro-structure. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschwanden, Markus J., E-mail: aschwanden@lmsal.com
2012-09-20
We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission,more » amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.« less
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.
1993-01-01
Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.
Recent progress in high-output-voltage silicon solar cells
NASA Technical Reports Server (NTRS)
Muelenberg, A.; Arndt, R. A.; Allison, J. F.; Weizer, V.
1980-01-01
The status of the technology associated with the development of high output voltage silicon solar cells is reported. The energy conversion efficiency of a double diffusion process is compared to that of a single diffusion process. The efficiency of a 0.1 ohm/cm solar cell is characterized both before and after covering.
NASA Technical Reports Server (NTRS)
Bahcall, J. N.; Pinsonneault, M. H.
1992-01-01
We calculate improved standard solar models using the new Livermore (OPAL) opacity tables, an accurate (exportable) nuclear energy generation routine which takes account of recent measurements and analyses, and the recent Anders-Grevesse determination of heavy element abundances. We also evaluate directly the effect of the diffusion of helium with respect to hydrogen on the calculated neutrino fluxes, on the primordial solar helium abundance, and on the depth of the convective zone. Helium diffusion increases the predicted event rates by about 0.8 SNU, or 11 percent of the total rate, in the chlorine solar neutrino experiment, by about 3.5 SNU, or 3 percent, in the gallium solar neutrino experiments, and by about 12 percent in the Kamiokande and SNO solar neutrino experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, and radiative opacity predicts a value of 8.0 SNU +/- 3.0 SNU for the C1-37 experiment and 132 +21/-17 SNU for the Ga - 71 experiment, where the uncertainties include 3 sigma errors for all measured input parameters.
NASA Technical Reports Server (NTRS)
Guenther, Bruce W. (Editor)
1991-01-01
Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability.
Application of semiconductor diffusants to solar cells by screen printing
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr.; Brandhorst, H. W., Jr.; Mazaris, G. A.; Scudder, L. R. (Inventor)
1978-01-01
Diffusants were applied onto semiconductor solar cell substrates, using screen printing techniques. The method was applicable to square and rectangular cells and can be used to apply dopants of opposite types to the front and back of the substrate. Then, simultaneous diffusion of both dopants can be performed with a single furnace pass.
Simultaneous junction formation
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
High-risk, high-payoff improvements to a baseline process sequence of simultaneous junction formation of silicon solar cells are discussed. The feasibility of simultaneously forming front and back junctions of solar cells using liquid dopants on dendritic web silicon was studied. Simultaneous diffusion was compared to sequential diffusion. A belt furnace for the diffusion process was tested.
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.
2014-05-01
We demonstrated the application of relative radiance-based continuous wave (cw) measurements for recovering absorption and scattering properties (the effective attenuation coefficient, the diffusion coefficient, the absorption coefficient and the reduced scattering coefficient) of bulk porcine muscle phantoms in the 650-900 nm spectral range. Both the side-firing fiber (the detector) and the fiber with a spherical diffuser at the end (the source) were inserted interstitially at predetermined locations in the phantom. The porcine phantoms were prostate-shaped with ˜4 cm in diameter and ˜3 cm thickness and made from porcine loin or tenderloin muscles. The described method was previously validated using the diffusion approximation on simulated and experimental radiance data obtained for homogenous Intralipid-1% liquid phantom. The approach required performing measurements in two locations in the tissue with different distances to the source. Measurements were performed on 21 porcine phantoms. Spectral dependences of the effective attenuation and absorption coefficients for the loin phantom deviated from corresponding dependences for the tenderloin phantom for wavelengths <750 nm. The diffusion constant and the reduced scattering coefficient were very close for both phantom types. To quantify chromophore presence, the plot for the absorption coefficient was matched with a synthetic absorption spectrum constructed from deoxyhemoglobin, oxyhemoglobin and water. The closest match for the porcine loin spectrum was obtained with the following concentrations: 15.5 µM (±30% s.d.) Hb, 21 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The tenderloin absorption spectrum was best described by 30 µM Hb (±30% s.d), 19 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The higher concentration of Hb in tenderloin was consistent with a dark-red appearance of the tenderloin phantom. The method can be applied to a number of biological tissues and organs for interstitial optical interrogation.
VIIRS day-night band (DNB) electronic hysteresis: characterization and correction
NASA Astrophysics Data System (ADS)
Mills, Stephen
2016-09-01
The VIIRS Day-Night Band (DNB) offers measurements over a dynamic range from full daylight to the dimmest nighttime. This makes radiometric calibration difficult because effects that are otherwise negligible become significant for the DNB. One of these effects is electronic hysteresis and this paper evaluates this effect and its impact on calibration. It also considers possible correction algorithms. The cause of this hysteresis is uncertain, but since the DNB uses a charge-coupled device (CCD) detector array, it is likely the result of residual charge or charge depletion. The effects of hysteresis are evident in DNB imagery. Steaks are visible in the cross-track direction around very bright objects such as gas flares. Dark streaks are also visible after lightning flashes. Each VIIRS scan is a sequence of 4 sectors: space view (SV); Earth-view (EV); blackbody (BB) view; and solar diffuser (SD) view. There are differences among these sectors in offset that can only be explained as being the result of hysteresis from one sector to the next. The most dramatic hysteresis effect is when the sun illuminates the SD and hysteresis is then observed in the SV and EV. Previously this was hypothesized to be due to stray light leaking from the SD chamber, but more careful evaluation shows that this can only be the result of hysteresis. There is a stray light correction algorithm that treats this as stray light, but there are problems with this that could be remedied by instead using the characterization presented here.
Meijboom, Rozanna; Steketee, Rebecca M E; Ham, Leontine S; van der Lugt, Aad; van Swieten, John C; Smits, Marion
2017-01-01
Semantic dementia (SD) and behavioral variant frontotemporal dementia (bvFTD), subtypes of frontotemporal dementia, are characterized by distinct clinical symptoms and neuroimaging features, with predominant left temporal grey matter (GM) atrophy in SD and bilateral or right frontal GM atrophy in bvFTD. Such differential hemispheric predilection may also be reflected by other neuroimaging features, such as brain connectivity. This study investigated white matter (WM) microstructure and functional connectivity differences between SD and bvFTD, focusing on the hemispheric predilection of these differences. Eight SD and 12 bvFTD patients, and 17 controls underwent diffusion tensor imaging and resting state functional MRI at 3T. Whole-brain WM microstructure was assessed to determine distinct WM tracts affected in SD and bvFTD. For these tracts, diffusivity measures and lateralization indices were calculated. Functional connectivity was established for GM regions affected in early stage SD or bvFTD. Results of a direct comparison between SD and bvFTD are reported. Whole-brain WM microstructure abnormalities were more pronounced in the left hemisphere in SD and bilaterally- with a slight predilection for the right- in bvFTD. Lateralization of tract-specific abnormalities was seen in SD only, toward the left hemisphere. Functional connectivity of disease-specific regions was mainly decreased bilaterally in SD and in the right hemisphere in bvFTD. SD and bvFTD show WM microstructure and functional connectivity abnormalities in different regions, that are respectively more pronounced in the left hemisphere in SD and in the right hemisphere in bvFTD. This indicates differential hemispheric predilection of brain connectivity abnormalities between SD and bvFTD.
Computing diffuse fraction of global horizontal solar radiation: A model comparison.
Dervishi, Sokol; Mahdavi, Ardeshir
2012-06-01
For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.
NASA Astrophysics Data System (ADS)
Castelino, Roystan V.; Jana, Suman; Kumhar, Rajesh; Singh, Niraj K.
2018-04-01
The simulation and hardware based experiment in this presented paper shows a possibility of increasing the reliability of solar power under diffused condition by using super capacitor module. This experimental setup can be used in those areas where the sun light is intermittent and under the diffused radiation condition. Due to diffused radiation, solar PV cells operate very poorly, but by using this setup the power efficiency can be increased greatly. Sometimes dependent numerical models are used to measure the voltage and current response of the hardware setup in MATLAB Simulink based environment. To convert the scattered solar radiation to electricity using the conventional solar PV module, batteries have to be linked with the rapid charging or discharging device like super capacitor module. The conventional method consists of a charging circuit, which dumps the power if the voltage is below certain voltage level, but this circuit utilizes the entire power even if the voltage is low under diffused sun light conditions. There is no power dumped in this circuit. The efficiency and viability of this labscale experimental setup can be examined with further experiment and industrial model.
Utilising shade to optimize UV exposure for vitamin D
NASA Astrophysics Data System (ADS)
Turnbull, D. J.; Parisi, A. V.
2008-01-01
Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For diffuse UV exposures of 1/6 and 1/3 MED, solar zenith angles smaller than 60° and 50° respectively can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-330 nm) radiation without experiencing the high levels of damaging UVA observed in full sun.
Utilising shade to optimize UV exposure for vitamin D
NASA Astrophysics Data System (ADS)
Turnbull, D. J.; Parisi, A. V.
2008-06-01
Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For a diffuse UV exposure of 1/3 MED, solar zenith angles smaller than approximately 50° can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-315 nm) radiation without experiencing the high levels of UVA observed in full sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumb, Matthew P.; Naval Research Laboratory, Washington, DC 20375; Steiner, Myles A.
The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close tomore » the fundamental efficiency limit.« less
Solar energy distribution over Egypt using cloudiness from Meteosat photos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosalam Shaltout, M.A.; Hassen, A.H.
1990-01-01
In Egypt, there are 10 ground stations for measuring the global solar radiation, and five stations for measuring the diffuse solar radiation. Every day at noon, the Meteorological Authority in Cairo receives three photographs of cloudiness over Egypt from the Meteosat satellite, one in the visible, and two in the infra-red bands (10.5-12.5 {mu}m) and (5.7-7.1 {mu}m). The monthly average cloudiness for 24 sites over Egypt are measured and calculated from Meteosat observations during the period 1985-1986. Correlation analysis between the cloudiness observed by Meteosat and global solar radiation measured from the ground stations is carried out. It is foundmore » that, the correlation coefficients are about 0.90 for the simple linear regression, and increase for the second and third degree regressions. Also, the correlation coefficients for the cloudiness with the diffuse solar radiation are about 0.80 for the simple linear regression, and increase for the second and third degree regression. Models and empirical relations for estimating the global and diffuse solar radiation from Meteosat cloudiness data over Egypt are deduced and tested. Seasonal maps for the global and diffuse radiation over Egypt are carried out.« less
Research on gallium arsenide diffused junction solar cells
NASA Technical Reports Server (NTRS)
Borrego, J. M.; Ghandi, S. K.
1984-01-01
The feasibility of using bulk GaAs for the fabrication of diffused junction solar cells was determined. The effects of thermal processing of GaAs was studied, and the quality of starting bulk GaAs for this purpose was assessed. These cells are to be made by open tube diffusion techniques, and are to be tested for photovoltaic response under AMO conditions.
Multi-distance diffuse optical spectroscopy with a single optode via hypotrochoidal scanning.
Applegate, Matthew B; Roblyer, Darren
2018-02-15
Frequency-domain diffuse optical spectroscopy (FD-DOS) is an established technique capable of determining optical properties and chromophore concentrations in biological tissue. Most FD-DOS systems use either manually positioned, handheld probes or complex arrays of source and detector fibers to acquire data from many tissue locations, allowing for the generation of 2D or 3D maps of tissue. Here, we present a new method to rapidly acquire a wide range of source-detector (SD) separations by mechanically scanning a single SD pair. The source and detector fibers are mounted on a scan head that traces a hypotrochoidal pattern over the sample that, when coupled with a high-speed FD-DOS system, enables the rapid collection of dozens of SD separations for depth-resolved imaging. We demonstrate that this system has an average error of 4±2.6% in absorption and 2±1.8% in scattering across all SD separations. Additionally, by linearly translating the device, the size and location of an absorbing inhomogeneity can be determined through the generation of B-scan images in a manner conceptually analogous to ultrasound imaging. This work demonstrates the potential of single optode diffuse optical scanning for depth resolved visualization of heterogeneous biological tissues at near real-time rates.
Radiation tolerance of low resistivity, high voltage silicon solar cells
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Weinberg, I.; Swartz, C. K.
1984-01-01
The radiation tolerance of the following three low resistivity, high voltage silicon solar cells was investigated: (1) the COMSAT MSD (multi-step diffused) cell, (2) the MinMIS cell, and (3) the MIND cell. A description of these solar cells is given along with drawings of their configurations. The diffusion length damage coefficients for the cells were calculated and presented. Solar cell spectral response was also discussed. Cells of the MinMIS type were judged to be unsuitable for use in the space radiation environment.
The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Godlewski, M. P.
1984-01-01
It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.
NASA Astrophysics Data System (ADS)
Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.
2017-12-01
It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2016-01-01
An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.
NASA Astrophysics Data System (ADS)
Choi, Michael K.
2016-09-01
An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1977-01-01
In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.
NASA Astrophysics Data System (ADS)
Zimbardo, G.; Pommois, P.; Veltri, P.
2003-09-01
The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.
Diffusion lengths of silicon solar cells from luminescence images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuerfel, P.; Trupke, T.; Puzzer, T.
A method for spatially resolved measurement of the minority carrier diffusion length in silicon wafers and in silicon solar cells is introduced. The method, which is based on measuring the ratio of two luminescence images taken with two different spectral filters, is applicable, in principle, to both photoluminescence and electroluminescence measurements and is demonstrated experimentally by electroluminescence measurements on a multicrystalline silicon solar cell. Good agreement is observed with the diffusion length distribution obtained from a spectrally resolved light beam induced current map. In contrast to the determination of diffusion lengths from one single luminescence image, the method proposed heremore » gives absolute values of the diffusion length and, in comparison, it is much less sensitive to lateral voltage variations across the cell area as caused by local variations of the series resistance. It is also shown that measuring the ratio of two luminescence images allows distinguishing shunts or surface defects from bulk defects.« less
NASA Astrophysics Data System (ADS)
Belucz, Bernadett; Dikpati, Mausumi; Forgács-Dajka, Emese
2015-06-01
Babcock-Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock-Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu
Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterflymore » diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.« less
Savoie, Jennifer G.; LeBlanc, D.R.; Blackwood, D.S.; McCobb, T.D.; Rendigs, R. R.; Clifford, Scott
2000-01-01
Diffusion samplers were installed in the bottom of Johns Pond, Cape Cod, Massachusetts, to confirm that volatile organic compounds from the Storm Drain-5 (SD-5) plume emanating from the Massachusetts Military Reservation (MMR) were discharging into the pond. An array of 134 vapor-diffusion samplers was buried by divers about 0.5 feet below the pond bottom in the presumed discharge area of the SD-5 plume and left in place for about 2 weeks to equilibrate. Two areas of high concentrations of volatile organic compounds (VOCs) were identified. Samples from the first area contained trichloroethene (TCE) and tetrachloroethene with concentrations in vapor as high as 890 and 667 parts per billion by volume, respectively. This discharge area is about 1,000 feet wide, extends from 100 to 350 feet offshore, and is interpreted to be the discharge area of the SD-5 plume. Samples from the second area were located closer to shore than the discharge area of the SD-5 plume and contained unexpectedly high vapor concentrations of TCE (more than 40,000 parts per billion by volume). Ground-water samples collected with a drive-point sampler near the second area had aqueous TCE concentrations as high as 1,100 micrograms per liter. Subsequently, a more closely spaced array of 110 vapor-diffusion samplers was installed to map the area of elevated TCE concentrations . The discharge area detected with the samplers is about 75 feet wide and extends from about 25 to 200 feet offshore . TCE vapor concentrations in this area were as high as 42,800 parts per billion by volume. TCE concentrations in micrograms per liter in water-diffusion samples from 15 selected sites in the two discharge areas were about 35 times lower than the TCE concentrations in parts per billion by volume in corresponding vapor-diffusion samples. The difference in values is due to the volatile nature of TCE and the different units of measure. TCE was detected in diffusion samplers set in the pond water column above the plume discharge areas, but the TCE concentrations were 20 to 30 times lower than the corresponding levels in diffusion samplers buried in the pond bottom.
Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability
NASA Astrophysics Data System (ADS)
Hamdan, Lubna
Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.
A comparative study of p(+)n and n(+)p InP solar cells made by a closed ampoule diffusion
NASA Technical Reports Server (NTRS)
Faur, M.; Faur, M.; Flood, D. J.; Weinberg, I.; Brinker, D. J.; Goradia, C.; Fatemi, N.; Goradia, M.; Thesling, W.
1991-01-01
The purpose was to demonstrate the possibility of fabricating thermally diffused p(+)n InP solar cells having high open-circuit voltage without sacrificing the short circuit current. The p(+)n junctions were formed by closed-ampoule diffusion of Cd through a 3 to 5 nm thick anodic or chemical phosphorus-rich oxide cap layer grown on n-InP:S Czochralski LEC grown substrates. For solar cells made by thermal diffusion the p(+)n configuration is expected to have a higher efficiency than the n(+)p configuration. It is predicted that the AM0, BOL efficiencies approaching 19 percent should be readily achieved providing that good ohmic front contacts could be realized on the p(+) emitters of thickness lower than 1 micron.
NASA Technical Reports Server (NTRS)
1983-01-01
Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.
Cheng, Jian; Deriche, Rachid; Jiang, Tianzi; Shen, Dinggang; Yap, Pew-Thian
2014-11-01
Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete Representation based SD (DR-SD), where the signal profile is represented by a discrete set of basis functions uniformly oriented on the unit sphere. A feasible fODF should be non-negative and should integrate to unity throughout the unit sphere S(2). However, to our knowledge, most existing SH-based SD methods enforce non-negativity only on discretized points and not the whole continuum of S(2). Maximum Entropy SD (MESD) and Cartesian Tensor Fiber Orientation Distributions (CT-FOD) are the only SD methods that ensure non-negativity throughout the unit sphere. They are however computational intensive and are susceptible to errors caused by numerical spherical integration. Existing SD methods are also known to overestimate the number of fiber directions, especially in regions with low anisotropy. DR-SD introduces additional error in peak detection owing to the angular discretization of the unit sphere. This paper proposes a SD framework, called Non-Negative SD (NNSD), to overcome all the limitations above. NNSD is significantly less susceptible to the false-positive peaks, uses SH representation for efficient analytical spherical deconvolution, and allows accurate peak detection throughout the whole unit sphere. We further show that NNSD and most existing SD methods can be extended to work on multi-shell data by introducing a three-dimensional fiber response function. We evaluated NNSD in comparison with Constrained SD (CSD), a quadratic programming variant of CSD, MESD, and an L1-norm regularized non-negative least-squares DR-SD. Experiments on synthetic and real single-/multi-shell data indicate that NNSD improves estimation performance in terms of mean difference of angles, peak detection consistency, and anisotropy contrast between isotropic and anisotropic regions. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1982-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.
Acquisition of a High Performance Computer Cluster for Materials Research and Education
2015-04-17
separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...diffusion and interfacial charge separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project is the development...simulations to predict charge carrier mobilities, exciton diffusion and interfacial charge separation in all- organic and hybrid organic- inorganic solar
Local effects of partly-cloudy skies on solar and emitted radiation
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1982-01-01
A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.
Particle acceleration at shocks in the inner heliosphere
NASA Astrophysics Data System (ADS)
Parker, Linda Neergaard
This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations
A numerical model for charge transport and energy conversion of perovskite solar cells.
Zhou, Yecheng; Gray-Weale, Angus
2016-02-14
Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising.
Veeramuthu, Vigneswaran; Narayanan, Vairavan; Kuo, Tan Li; Delano-Wood, Lisa; Chinna, Karuthan; Bondi, Mark William; Waran, Vicknes; Ganesan, Dharmendra; Ramli, Norlisah
2015-10-01
We explored the prognostic value of diffusion tensor imaging (DTI) parameters of selected white matter (WM) tracts in predicting neuropsychological outcome, both at baseline and 6 months later, among well-characterized patients diagnosed with mild traumatic brain injury (mTBI). Sixty-one patients with mTBI (mean age=27.08; standard deviation [SD], 8.55) underwent scanning at an average of 10 h (SD, 4.26) post-trauma along with assessment of their neuropsychological performance at an average of 4.35 h (SD, 7.08) upon full Glasgow Coma Scale recovery. Results were then compared to 19 healthy control participants (mean age=29.05; SD, 5.84), both in the acute stage and 6 months post-trauma. DTI and neuropsychological measures between acute and chronic phases were compared, and significant differences emerged. Specifically, chronic-phase fractional anisotropy and radial diffusivity values showed significant group differences in the corona radiata, anterior limb of internal capsule, cingulum, superior longitudinal fasciculus, optic radiation, and genu of corpus callosum. Findings also demonstrated associations between DTI indices and neuropsychological outcome across two time points. Our results provide new evidence for the use of DTI as an imaging biomarker and indicator of WM damage occurring in the context of mTBI, and they underscore the dynamic nature of brain injury and possible biological basis of chronic neurocognitive alterations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun Sining, E-mail: alexsyun1974@yahoo.com.c; Lim, Sangwoo
2011-02-15
The application of electrospun nanofibers in electronic devices is limited due to their poor adhesion to conductive substrates. To improve this, a seed layer (SD) is introduced on the FTO substrate before the deposition of the electrospun composite nanofibers. This facilitates the release of interfacial tensile stress during calcination and enhances the interfacial adhesion of the AZO nanofiber films with the FTO substrate. Dye-sensitized solar cells (DSSC) based on these AZO nanofiber photoelectrodes have been fabricated and investigated. An energy conversion efficiency ({eta}) of 0.54-0.55% has been obtained under irradiation of AM 1.5 simulated sunlight (100 mW/cm{sup 2}), indicating amore » massive improvement of {eta} in the AZO nanofiber film DSSCs after SD-treatment of the FTO substrate as compared to those with no treatment. The SD-treatment has been demonstrated to be a simple and facile method to solve the problem of poor adhesion between electrospun nanofibers and the conductive substrate. -- Graphical abstract: The poor adhesion between electrospun nanofibers and substrate is improved by a simple and facile seed layer (SD) treatment. The energy conversion efficiency of AZO nanofiber-based DSSCs has been greatly increased by SD-treatment of the FTO substrate. Display Omitted Research highlights: {yields} A simple and facile method (SD-treatment) has been demonstrated. {yields} The poor adhesion between electrospun nanofibers and substrate is improved by the SD-treatment. {yields} The {eta} of AZO nanofiber-based DSSCs has been greatly improved by SD-treatment of the FTO substrate.« less
VizieR Online Data Catalog: Solar wind 3D magnetohydrodynamic simulation (Chhiber+, 2017)
NASA Astrophysics Data System (ADS)
Chhiber, R.; Subedi, P.; Usmanov, A. V.; Matthaeus, W. H.; Ruffolo, D.; Goldstein, M. L.; Parashar, T. N.
2017-08-01
We use a three-dimensional magnetohydrodynamic simulation of the solar wind to calculate cosmic-ray diffusion coefficients throughout the inner heliosphere (2Rȯ-3au). The simulation resolves large-scale solar wind flow, which is coupled to small-scale fluctuations through a turbulence model. Simulation results specify background solar wind fields and turbulence parameters, which are used to compute diffusion coefficients and study their behavior in the inner heliosphere. The parallel mean free path (mfp) is evaluated using quasi-linear theory, while the perpendicular mfp is determined from nonlinear guiding center theory with the random ballistic interpretation. Several runs examine varying turbulent energy and different solar source dipole tilts. We find that for most of the inner heliosphere, the radial mfp is dominated by diffusion parallel to the mean magnetic field; the parallel mfp remains at least an order of magnitude larger than the perpendicular mfp, except in the heliospheric current sheet, where the perpendicular mfp may be a few times larger than the parallel mfp. In the ecliptic region, the perpendicular mfp may influence the radial mfp at heliocentric distances larger than 1.5au; our estimations of the parallel mfp in the ecliptic region at 1 au agree well with the Palmer "consensus" range of 0.08-0.3au. Solar activity increases perpendicular diffusion and reduces parallel diffusion. The parallel mfp mostly varies with rigidity (P) as P.33, and the perpendicular mfp is weakly dependent on P. The mfps are weakly influenced by the choice of long-wavelength power spectra. (2 data files).
Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu
Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injectedmore » on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.« less
Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field
NASA Astrophysics Data System (ADS)
Zhang, Ming; Zhao, Lulu
2017-09-01
Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Wenmei; Yang, Dongwen; Li, Tianshu
Solar cells based on methylammonium lead triiodide (MAPbI 3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3-based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3. In addition to Au, many other metals have been used as electrodes inmore » MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.« less
Ming, Wenmei; Yang, Dongwen; Li, Tianshu; Zhang, Lijun; Du, Mao-Hua
2018-02-01
Solar cells based on methylammonium lead triiodide (MAPbI 3 ) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3 -based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current-voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3 . In addition to Au, many other metals have been used as electrodes in MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.
Ming, Wenmei; Yang, Dongwen; Li, Tianshu; ...
2017-12-27
Solar cells based on methylammonium lead triiodide (MAPbI 3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3-based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3. In addition to Au, many other metals have been used as electrodes inmore » MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.« less
Ming, Wenmei; Yang, Dongwen; Li, Tianshu
2017-01-01
Abstract Solar cells based on methylammonium lead triiodide (MAPbI3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long‐term stability of MAPbI3‐based solar cells has yet to be achieved. Besides the well‐known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI3. In addition to Au, many other metals have been used as electrodes in MAPbI3 solar cells. However, how the external metal impurities introduced by electrodes affect the long‐term stability of MAPbI3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI3 based on first‐principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI3 while having low resistivities and suitable work functions for carrier extraction. PMID:29610728
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, X.; Florinski, V.
We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Ourmore » results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.« less
Measurement and modeling of solar irradiance components on horizontal and tilted planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padovan, Andrea; Col, Davide del
2010-12-15
In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurementsmore » taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)« less
Resolving the Origin of the Diffuse Soft X-ray Background
NASA Technical Reports Server (NTRS)
Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.
2012-01-01
In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.
White matter microstructural alterations in clinically isolated syndrome and multiple sclerosis.
Huang, Jing; Liu, Yaou; Zhao, Tengda; Shu, Ni; Duan, Yunyun; Ren, Zhuoqiong; Sun, Zheng; Liu, Zheng; Chen, Hai; Dong, Huiqing; Li, Kuncheng
2018-07-01
This study aims to determine whether and how diffusion alteration occurs in the earliest stage of multiple sclerosis (MS) and the differences in diffusion metrics between CIS and MS by using the tract-based spatial statistics (TBSS) method based on diffusion tensor imaging (DTI). Thirty-six CIS patients (mean age ± SD: 34.0 years ± 12.6), 36 relapsing-remitting multiple sclerosis (RRMS) patients (mean age ± SD: 35.0 years ± 9.4) and 36 age- and gender-matched normal controls (NCs) were included in this study. Voxel-wise analyses were performed with TBSS using multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ 1 ) and radial diffusivity (λ 23 ). In the CIS patients, TBSS analyses revealed diffusion alterations in a few white matter (WM) regions including the anterior thalamic radiation, corticospinal tract, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, body and splenium of the corpus callosum, internal capsule, external capsule, and cerebral peduncle. MS patients showed more widespread diffusion changes (decreased FA, increased λ 1 , λ 23 and MD) than CIS. Exploratory analyses also revealed the possible associations between WM diffusion metrics and clinical variables (Expanded Disability Status Scale and disease duration) in the patients. This study provided imaging evidence for DTI abnormalities in CIS and MS and suggested that DTI can improve our knowledge of the path physiology of CIS and MS and clinical progression. Copyright © 2018 Elsevier Ltd. All rights reserved.
Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System
Balan, Mugur C.; Damian, Mihai; Jäntschi, Lorentz
2008-01-01
The paper presents a solar radiation monitoring system, using two scientific pyranometers and an on-line computer home-made data acquisition system. The first pyranometer measures the global solar radiation and the other one, which is shaded, measure the diffuse radiation. The values of total and diffuse solar radiation are continuously stored into a database on a server. Original software was created for data acquisition and interrogation of the created system. The server application acquires the data from pyranometers and stores it into a database with a baud rate of one record at 50 seconds. The client-server application queries the database and provides descriptive statistics. A web interface allow to any user to define the including criteria and to obtain the results. In terms of results, the system is able to provide direct, diffuse and total radiation intensities as time series. Our client-server application computes also derivate heats. The ability of the system to evaluate the local solar energy potential is highlighted. PMID:27879746
Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsien; Chen, Lun-Lun; Wu, Jia-Rong; Wu, Min-Lin
2010-01-01
A new and simple process for fabricating a selective emitter solar cell has been proposed. Lightly and heavily doped emitters could be concurrently formed after a single POCl3 diffusion step through the selective formation of SiNx, which serves as the diffusion barrier and can be grown by NH3 plasma nitridation of the Si surface. The desired phosphorus depth profile for the lightly and heavily doped region verifies the eligibility of this process. From the electrical characterization, the selective emitter solar cell fabricated by this process manifests a higher absolute conversion efficiency than a conventional one by 0.5%. It is the enhanced response to the short wavelength light and the reduced surface recombination that causes the considerable improvement in conversion efficiency which is beneficial to further hold the competitive advantage for solar cell manufacturers. Most importantly, the proposed process can be fully integrated into the conventional solar cell process in a mass-production laboratory.
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag
1996-01-01
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.
Laser processing of solar cells with anti-reflective coating
Harley, Gabriel; Smith, David D.; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John
2016-02-16
Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
Photonic Devices Based on Surface and Composition-Engineered Infrared Colloidal Nanocrystals
2012-01-27
NQD/P3HT solar cells , the need for submicron-phase-separated polymer-NQD blends is therefore expressed by the limiting exciton diffusion length ...P3HT:PbSe are very critical in designing the PM-HJ solar cells : The thickness of P3HT should approximate to the thickness of exciton diffuse length in... cells , luminescent solar concentrators, light emitting diodes, lasers, photonic crystals, CdSe, PbSe, Germanium Jian Xu Pennsylvania State University
NASA Technical Reports Server (NTRS)
Goldman, H.; Wolf, M.
1979-01-01
The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.
Flux concentrations on solar dynamic components due to mispointing
NASA Technical Reports Server (NTRS)
Rylicki, Daniel S.
1992-01-01
Mispointing of the solar dynamic (SD) concentrator designed for use on Space Station Freedom (SSF) causes the optical axis of the concentrator to be nonparallel to the incoming rays from the Sun. This causes solar flux not to be focused into the aperture hole of the receiver and may position the flux on other SSF components. A Rocketdyne analysis has determined the thermal impact of off-axis radiation due to mispointing on elements of the SD module and photovoltaic (PV) arrays. The conclusion was that flux distributions on some of the radiator components, the two-axis gimbal rings, the truss, and the PV arrays could present problems. The OFFSET computer code was used at Lewis Research Center to further investigate these flux distributions incident on components. The Lewis study included distributions for a greater range of mispoint angles than the Rocketdyne study.
Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |
video Download the transcript Agent-based Models of How Segregation and Peer Effects Influence Solar PV to estimate the relative influence of peer effects, cognitive factors, and economic factors in solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Landi, E.; Zurbuchen, T. H.
2014-09-20
The solar wind can be categorized into three types based on its 'freeze-in' temperature (T {sub freeze-in}) in the coronal source: low T {sub freeze-in} wind mostly from coronal holes, high T {sub freeze-in} wind mostly from regions outside of coronal holes, including streamers (helmet streamer and pseudostreamer), active regions, etc., and transient interplanetary coronal mass ejections (ICMEs) usually possessing the hottest T {sub freeze-in}. The global distribution of these three types of wind has been investigated by examining the most effective T {sub freeze-in} indicator, the O{sup 7+}/O{sup 6+} ratio, as measured by the Solar Wind Ion Composition Spectrometermore » on board the Advanced Composition Explorer (ACE) during 1998-2008 by Zhao et al. In this study, we extend the previous investigation to 2011 June, covering the unusual solar minimum between solar cycles 23 and 24 (2007-2010) and the beginning of solar cycle 24. We find that during the entire solar cycle, from the ascending phase of cycle 23 in 1998 to the ascending phase of cycle 24 in 2011, the average fractions of the low O{sup 7+}/O{sup 6+} ratio (LOR) wind, the high O{sup 7+}/O{sup 6+} ratio (HOR) wind, and ICMEs at 1 AU are 50.3%, 39.4%, and 10.3%, respectively; the contributions of the three types of wind evolve with time in very different ways. In addition, we compare the evolution of the HOR wind with two heliospheric current sheet (HCS) parameters, which indicate the latitudinal standard deviation (SD) and the slope (SL) of the HCS on the synoptic Carrington maps at 2.5 solar radii surface. We find that the fraction of HOR wind correlates with SD and SL very well (slightly better with SL than with SD), especially after 2005. This result verifies the link between the production of HOR wind and the morphology of the HCS, implying that at least one of the major sources of the HOR wind must be associated with the HCS.« less
Flat-plate solar array project process development area: Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1986-01-01
Several different techniques to simultaneously diffuse the front and back junctions in dendritic web silicon were investigated. A successful simultaneous diffusion reduces the cost of the solar cell by reducing the number of processing steps, the amount of capital equipment, and the labor cost. The three techniques studied were: (1) simultaneous diffusion at standard temperatures and times using a tube type diffusion furnace or a belt furnace; (2) diffusion using excimer laser drive-in; and (3) simultaneous diffusion at high temperature and short times using a pulse of high intensity light as the heat source. The use of an excimer laser and high temperature short time diffusion experiment were both more successful than the diffusion at standard temperature and times. The three techniques are described in detail and a cost analysis of the more successful techniques is provided.
vddsf.xx.YYYYMMDDHH.daily.grb2 Not Available CFS Near IR Diffuse Downward Solar Flux Filename Inventory Available CFS Near IR Diffuse Downward Solar Flux Filename Inventory nddsf.xx.YYYYMMDDHH.daily.grb2 6hrly Image of NCEP logo For questions related to this website, send mail to Web Manager. NCEP/NCO Production
Solar dynamic power for Space Station Freedom
NASA Technical Reports Server (NTRS)
Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.
1989-01-01
The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.
Solar dynamic power for space station freedom
NASA Technical Reports Server (NTRS)
Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.
1989-01-01
The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harley, Gabriel; Smith, David D.; Dennis, Tim
Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
NASA Technical Reports Server (NTRS)
Weinberg, I.
1975-01-01
The feasibility of using the MOS C-V technique to obtain information regarding impurity and surface state concentrations on the diffused face of silicon solar cells with Ta2O5 coatings is studied. Results indicate that the MOS C-V technique yields useful information concerning surface parameters which contribute to the high, efficiency limiting, surface recombination velocities on the n+ surface of silicon solar cells.
Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John
2013-11-19
Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.
NASA Technical Reports Server (NTRS)
1981-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.
Diffused junction p(+)-n solar cells in bulk GaAs. II - Device characterization and modelling
NASA Technical Reports Server (NTRS)
Keeney, R.; Sundaram, L. M. G.; Rode, H.; Bhat, I.; Ghandhi, S. K.; Borrego, J. M.
1984-01-01
The photovoltaic characteristics of p(+)-n junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are presented in detail. Quantum efficiency measurements were analyzed and compared to computer simulations of the cell structure in order to determine material parameters such as diffusion length, surface recombination velocity and junction depth. From the results obtained it is projected that proper optimization of the cell parameters can increase the efficiency of the cells to close to 20 percent.
A method for optimizing the cosine response of solar UV diffusers
NASA Astrophysics Data System (ADS)
Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki
2013-07-01
Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.
Diffusion of protein through the human cornea.
Charalel, Resmi A; Engberg, Kristin; Noolandi, Jaan; Cochran, Jennifer R; Frank, Curtis; Ta, Christopher N
2012-01-01
To determine the rate of diffusion of myoglobin and bovine serum albumin (BSA) through the human cornea. These small proteins have hydrodynamic diameters of approximately 4.4 and 7.2 nm, and molecular weights of 16.7 and 66 kDa, for myoglobin and BSA, respectively. Diffusion coefficients were measured using a diffusion chamber where the protein of interest and balanced salt solution were in different chambers separated by an ex vivo human cornea. Protein concentrations in the balanced salt solution chamber were measured over time. Diffusion coefficients were calculated using equations derived from Fick's law and conservation of mass in a closed system. Our experiments demonstrate that the diffusion coefficient of myoglobin is 5.5 ± 0.9 × 10(-8) cm(2)/s (n = 8; SD = 1.3 × 10(-8) cm(2)/s; 95% CI: 4.6 × 10(-8) to 6.4 × 10(-8) cm(2)/s) and the diffusion coefficient of BSA is 3.1 ± 1.0 × 10(-8) cm(2)/s (n = 8; SD = 1.4 × 10(-8) cm(2)/s; 95% CI: 2.1 × 10(-8) to 4.1 × 10(-8) cm(2)/s). Our study suggests that molecules as large as 7.2 nm may be able to passively diffuse through the human cornea. With applications in pharmacotherapy and the development of an artificial cornea, further experiments are warranted to fully understand the limits of human corneal diffusion and its clinical relevance. Copyright © 2012 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
Kudish, Avraham I; Harari, Marco; Evseev, Efim G
2011-10-01
The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB radiation does penetrate this supposedly 'protective or comfort zone'. As a result, it is imperative to either apply sunscreen or cover up the exposed body surfaces even when under such shading devices. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Weng, F.
2015-12-01
The Suomi National Polar-Orbiting Partnership (SNPP) satellite carries five instruments on board including ATMS, CrIS, VIIRS, OMPS and CERES. During the SNPP intensive calval, ATMS was pitched over to observe the cold space radiation. This unique data set was used for diagnostics of the ATMS scan-angle dependent bias and a scan-to-scan variation. A new algorithm is proposed to correct the ATMS scan angle dependent bias related to the reflector emission. ATMS radiometric calibration is also revised in IDPS with the full radiance processing (FRP). CrIS is the first Fourier transform Michelson interferometer and measures three infrared spectral bands from 650 to 1095, 1210 to 1750 and 2155 to 2550 cm-1 with spectral resolutions of 0.625 cm-1, respectively. Its spectral calibration is with an accuracy of better than 2 ppm and its noise is also well characterized with the Allan variance. Since CrIS was switched to the transmission of full spectral resolution (FSR) of RDR data to the ground in January 2015. The CrIS FSR SDR data are also produced offline at NOAA STAR. VIIRS has 22 spectral bands covering the spectrum between 0.412 μm and 12.01 μm, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, five imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and one day-night band (DNB) with a nearly-constant 750 m spatial resolution throughout the scan. The calibration of VIIRS reflective solar bands (RSB) requires a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). Using the SNPP yaw maneuver data, SDSM screen transmission function can be updated to better capture the fine structures of the vignetting function. For OMPS nadir mapper (NM) and nadir profiler (NP), the detector signal-to-noise ratio, and sensor signal-to-noise ratio meet the system requirement. Detector gain and bias performance trends are generally stable. System linearity performance is stable and highly consistent with the prelaunch values. The recent updates on OMPS wavelength, solar flux and radiance coefficients have resulted in viewing angle dependent bias in the earth view observations. OMPS dark currents are updated weekly and monitored for further improving the radiometric calibration.
NASA Technical Reports Server (NTRS)
Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.
2011-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the RSB on-orbit performance for MODIS collection 5 data products. To support MCST efforts for future data re-processing, this analysis will be extended to include more spectral bands and temporal coverage.
ERIC Educational Resources Information Center
General Electric Co., Philadelphia, PA. Space Div.
The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings and to provide baseline information for the widespread application of solar energy. The initial step in this program was a study of the technical, economic, societal, legal, and environmental factors…
Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology
NASA Technical Reports Server (NTRS)
Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.
1981-01-01
Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.
Solar dynamic power module design
NASA Technical Reports Server (NTRS)
Secunde, Richard R.; Labus, Thomas L.; Lovely, Ronald G.
1989-01-01
Studies have shown that use of solar dynamic (SD) power for the growth eras of the Space Station Freedom program will result in life cycle cost savings when compared to power supplied by photovoltaic sources. In the SD power module, a concentrator collects and focuses solar energy into a heat receiver which has integral thermal energy storage. A power conversion unit (PCU) based on the closed Brayton thermodynamic cycle removes thermal energy from the receiver and converts that energy to electrical energy. Since the closed Brayton cycle is a single phase gas cycle, the conversion hardware (heat exchangers, turbine, compressor, etc.) can be designed for operation in low earth orbit, and tested with confidence in test facilities on earth before launch into space. The concentrator subassemblies will be aligned and the receiver/PCU/radiator combination completely assembled and charged with gas and cooling liquid on earth before launch to, and assembly on orbit.
NASA Technical Reports Server (NTRS)
Meulenberg, A., Jr.; Allison, J. F.; Arndt, R. A.
1980-01-01
A space solar cell concept which combines high cell output with low diffusion length damage coefficients is presented for the purpose of reducing solar cell susceptibility to degradation from the radiation environment. High resistivity n-i-p silicon solar cells ranging from upward of 83 micron-cm were exposed to AM0 ultraviolet illumination. It is shown that high resistivity cells act as extrinsic devices under dark conditions and as intrinsic devices under AM0 illumination. Resistive losses in thin n-i-p cells are found to be comparable to those in low resistivity cells. Present voltage limitations appear to be due to generation and recombination in the diffused regions.
Solar System Connections to the Organic Material In the ISM
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.
2003-01-01
The organic component of the interstellar medium (ISM) has relevance to the formation of the early solar nebula, since our solar system formed out of ISM material. Comparisons of near infrared spectra of the diffuse ISM dust with those of primitive solar system bodies (such as comets and meteorites) show a remarkable similarity, suggesting that perhaps some of the interstellar organic material made its way, unaltered, into our solar system. Tracing the interstellar organic material is necessary to understand how these materials may be important links in the development of prebiotic phenomena. Studies of the ISM reveal that the organic refractory component of the diffuse ISM is largely hydrocarbon in nature, possessing little N or O, with carbon distributed between the aromatic and aliphatic forms. There is a strong similarity in the near IR spectra of the diffuse ISM (the 3.4 micron hydrocarbon bands) and those seen in the Murchison and Orgueil meteorites, however, detailed comparisons at longer wavelengths reveal critical dissimilarities. Here we will present comparisons and discussion of relevant spectra. As we continue to explore, we will gain insight into the connection between planetesimals in the solar system and chemistry in the dusty space between the stars.
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Fincannon, James
1995-01-01
The United States and Russia have agreed to jointly develop a solar dynamic (SD) system for flight demonstration on the Russian MIR space station starting in late 1997. Two important components of this SD system are the solar concentrator and heat receiver provided by Russia and the U.S., respectively. This paper describes optical analysis of the concentrator and solar flux predictions on target receiver surfaces. The optical analysis is performed using the code CIRCE2. These analyses account for finite sun size with limb darkening, concentrator surface slope and position errors, concentrator petal thermal deformation, gaps between petals, and the shading effect of the receiver support struts. The receiver spatial flux distributions are then combined with concentrator shadowing predictions. Geometric shadowing patterns are traced from the concentrator to the target receiver surfaces. These patterns vary with time depending on the chosen MIR flight attitude and orbital mechanics of the MIR spacecraft. The resulting predictions provide spatial and temporal receiver flux distributions for any specified mission profile. The impact these flux distributions have on receiver design and control of the Brayton engine are discussed.
Wi, Jae-Hyung; Kim, Tae Gun; Kim, Jeong Won; Lee, Woo-Jung; Cho, Dae-Hyung; Han, Won Seok; Chung, Yong-Duck
2015-08-12
We selected a sputtered-Zn(O,S) film as a buffer material and fabricated a Cu(In,Ga)Se2 (CIGS) solar cell for use in monolithic tandem solar cells. A thermally stable buffer layer was required because it should withstand heat treatment during processing of top cell. Postannealing treatment was performed on a CIGS solar cell in vacuum at temperatures from 300-500 °C to examine its thermal stability. Serious device degradation particularly in VOC was observed, which was due to the diffusion of thermally activated constituent elements. The elements In and Ga tend to out-diffuse to the top surface of the CIGS, while Zn diffuses into the interface of Zn(O,S)/CIGS. Such rearrangement of atomic fractions modifies the local energy band gap and band alignment at the interface. The notch-shape induced at the interface after postannealing could function as an electrical trap during electron transport, which would result in the reduction of solar cell efficiency.
Development of lithium diffused radiation resistant solar cells, part 2
NASA Technical Reports Server (NTRS)
Payne, P. R.; Somberg, H.
1971-01-01
The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
Fabrication of p(+)-n junction GaAs solar cells by a novel method
NASA Technical Reports Server (NTRS)
Ghandhi, S. K.; Mathur, G.; Rode, H.; Borrego, J. M.
1984-01-01
A novel method for making p(+)-n diffused junction GaAs solar cells, with the formation of a diffusion source, an anti-reflective coating, and a protective cover glass in a single chemical-vapor deposition operation is discussed. Consideration is given to device fabrication and to solar-cell characteristics. The advantages of the technique are that the number of process steps is kept to an absolute minimum, the fabrication procedure is low-cost, and the GaAs surface is protected during the entire operation.
Kudish, Avraham I; Harari, Marco; Evseev, Efim G
2011-01-01
The broad-band normal incidence UVB beam radiation has been measured at Neve Zohar, Dead Sea basin, using a prototype tracking instrument composed of a Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The diffuse and beam fraction of the solar global UVB radiation have been determined using the concurrently measured solar global UVB radiation. The diffuse fraction was observed to exceed 80% throughout the year. The application of the results of these measurements to the possible revision of the photoclimatherapy protocol for psoriasis patients at the Dead Sea medical spas is now under investigation. The suggested revision would enable the sun-exposure treatment protocol to take advantage of the very high diffuse fraction by allowing the patient to receive the daily dose of UVB radiation without direct exposure to the sun, viz. receive the diffuse UVB radiation under a sunshade. This would require an increase in sun-exposure time intervals, as the UVB radiation intensity beneath a sunshade is less than that on an exposed surface. © 2010 The Authors. Photochemistry and Photobiology © 2010 The American Society of Photobiology.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.
1987-01-01
Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.
Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H
2018-03-20
The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.
Estimation of underwater visibility in coastal and inland waters using remote sensing data.
Kulshreshtha, Anuj; Shanmugam, Palanisamy
2017-04-01
An optical method is developed to estimate water transparency (or underwater visibility) in terms of Secchi depth (Z sd ), which follows the remote sensing and contrast transmittance theory. The major factors governing the variation in Z sd , namely, turbidity and length attenuation coefficient (1/(c + K d ), c = beam attenuation coefficient; K d = diffuse attenuation coefficient at 531 nm), are obtained based on band rationing techniques. It was found that the band ratio of remote sensing reflectance (expressed as (R rs (443) + R rs (490))/(R rs (555) + R rs (670)) contains essential information about the water column optical properties and thereby positively correlates to turbidity. The beam attenuation coefficient (c) at 531 nm is obtained by a linear relationship with turbidity. To derive the vertical diffuse attenuation coefficient (K d ) at 531 nm, K d (490) is estimated as a function of reflectance ratio (R rs (670)/R rs (490)), which provides the bio-optical link between chlorophyll concentration and K d (531). The present algorithm was applied to MODIS-Aqua images, and the results were evaluated by matchup comparisons between the remotely estimated Z sd and in situ Z sd in coastal waters off Point Calimere and its adjoining regions on the southeast coast of India. The results showed the pattern of increasing Z sd from shallow turbid waters to deep clear waters. The statistical evaluation of the results showed that the percent mean relative error between the MODIS-Aqua-derived Z sd and in situ Z sd values was within ±25%. A close agreement achieved in spatial contours of MODIS-Aqua-derived Z sd and in situ Z sd for the month of January 2014 and August 2013 promises the model capability to yield accurate estimates of Z sd in coastal, estuarine, and inland waters. The spatial contours have been included to provide the best data visualization of the measured, modeled (in situ), and satellite-derived Z sd products. The modeled and satellite-derived Z sd values were compared with measurement data which yielded RMSE = 0.079, MRE = -0.016, and R 2 = 0.95 for the modeled Z sd and RMSE = 0.075, MRE = 0.020, and R 2 = 0.95 for the satellite-derived Z sd products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Ralph, E-mail: ralph.mueller@ise.fraunhofer.de; Schrof, Julian; Reichel, Christian
2014-09-08
The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implantedmore » phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.« less
Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding
NASA Astrophysics Data System (ADS)
Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.
2018-01-01
The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumm, J.; Samadi, H.; Chacko, R. V.
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less
Atmospheric scattering corrections to solar radiometry
NASA Technical Reports Server (NTRS)
Box, M. A.; Deepak, A.
1979-01-01
Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. This paper discusses the correction factors needed to account for the diffuse (i,e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle of less than 5 deg) and relatively clear skies (optical depths less than 0.4), it is shown that the total diffuse contribution represents approximately 1% of the total intensity.
Developments toward an 18% efficient silicon solar cell
NASA Technical Reports Server (NTRS)
Meulenberg, A., Jr.
1983-01-01
Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.
Predicting efficiency of solar cells based on transparent conducting electrodes
NASA Astrophysics Data System (ADS)
Kumar, Ankush
2017-01-01
Efficiency of a solar cell is directly correlated with the performance of its transparent conducting electrodes (TCEs) which dictates its two core processes, viz., absorption and collection efficiencies. Emerging designs of a TCE involve active networks of carbon nanotubes, silver nanowires and various template-based techniques providing diverse structures; here, voids are transparent for optical transmittance while the conducting network acts as a charge collector. However, it is still not well understood as to which kind of network structure leads to an optimum solar cell performance; therefore, mostly an arbitrary network is chosen as a solar cell electrode. Herein, we propose a new generic approach for understanding the role of TCEs in determining the solar cell efficiency based on analysis of shadowing and recombination losses. A random network of wires encloses void regions of different sizes and shapes which permit light transmission; two terms, void fraction and equivalent radius, are defined to represent the TCE transmittance and wire spacings, respectively. The approach has been applied to various literature examples and their solar cell performance has been compared. To obtain high-efficiency solar cells, optimum density of the wires and their aspect ratio as well as active layer thickness are calculated. Our findings show that a TCE well suitable for one solar cell may not be suitable for another. For high diffusion length based solar cells, the void fraction of the network should be low while for low diffusion length based solar cells, the equivalent radius should be lower. The network with less wire spacing compared to the diffusion length behaves similar to continuous film based TCEs (such as indium tin oxide). The present work will be useful for architectural as well as material engineering of transparent electrodes for improvisation of solar cell performance.
TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeForest, C. E.; Howard, T. A.; Matthaeus, W. H.
2015-10-20
By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysismore » and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.« less
Impact of aerosols on solar energy production - Scenarios from the Sahel Zone
NASA Astrophysics Data System (ADS)
Neher, Ina; Meilinger, Stefanie; Crewell, Susanne
2017-04-01
Solar energy is one option to serve the rising global energy demand with low environmental impact. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields. Depending on aerosol size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols. The aerosol size distribution and composition in the atmosphere is highly variable due to meteorological and land surface conditions. A quantitative assessment of aerosol effects on solar power yields and its relation to land use change is of particular interest for developing countries countries when analyzing the potential of local power production. This study aims to identify the effect of atmospheric aerosols in three different land use regimes, namely desert, urban/polluted and maritime on the tilted plane of photovoltaic energy modules. Here we focus on the Sahel zone, i.e. Niamey, Niger (13.5 N;2.1 E), located at the edge of the Sahara where also detailed measurements of the atmospheric state are available over the year 2006. Guided by observations a model chain is used to determine power yields. The atmospheric aerosol composition will be defined by using the Optical Properties of Aerosols and Clouds (OPAC) library. Direct and diffuse radiation (up- and downward component) are then calculated by the radiative transfer model libRadtran which allows to calculate the diffuse component of the radiance from different azimuth and zenith angles. Then the diffuse radiance will be analytically transformed to an east, south and west facing module with different tilting angles (between 0° and 45°) from each direction and compared to the tilted diffuse radiation derived by the Perez-model (Loutzenhiser et al. 2007) which is widely used in the photovoltaic community. This will allow an assessment how well standard approaches work in tropical region under various aerosol conditions including strong dust outbreaks from the Sahara. This presentation will introduce the modeling chain to assess solar power yields for different photovoltaic modules in the Sahel zone and address their relative dependence on aerosol conditions.
Dynamics of Solar Energetic Particles in the Presence of a Shock Wave
NASA Astrophysics Data System (ADS)
Timofeev, V. E.; Petukhov, Ivan; Petukhov, Stanislav; Starodubtsev, Sergei
2003-07-01
From the analysis of problem solutions on the solar energetic particle propagation in the presence of a plane shock wave described by the diffusion convective transport equation, the condition and manifestations for the influence of a shock wave on the SEP propagation in the solar wind have been determined. Solar energetic particles (SEP) in gradual events are generated by shock waves (see, for example, [1] and references there). The SEP generation region is limited, on the whole, by the solar corona. Proton fluxes of 470 MeV to 21 GeV energies, a maximum of which occur at a time when the shock in the atmosphere of the Sun reaches heights equal to 5 10 solar radii [2] indicate to it. It is also confirmed by the significant advancing of the occurrence time of maximum in the SEP intensity with kinetic energies more than 10 MeV relative to the shock front arrival moment to Earth's orbit. model calculations for the particles acceleration by the diffusive mechanism in conditions, typical for the solar corona, show that the time taken to pass the solar atmosphere by the shock is quite sufficient to form the particle spectrum corresponding to the SEP characteristics observed [3,4]. Lee and Ryan [5] investigated the problem of SEP gradual event generation, propagation and confirmed the close association between the diffusive acceleration mechanism and SEP events. The absence of depending of particle diffusion coefficients on the energy is a lack of this model. As an extension of preceding investigations, in this work the temporal dynamics of the particle spectrum in the presence of a plane shock for diffusion coefficients depending on the particle energy and also their change in time is studied. The SEP event from a moment of arising of a shock to a moment of it's arrival on the Earth's orbit can be divided on two stages: the first stage (duration is ˜ 1 hour) is a generation of SEP in the solar corona, the second stage (duration is ˜ 1 day) is a propagation in interplanetary space in the presence of a shock. Here we consider the second stage only which as believed to be began with the injection of the particle spectrum formed during the first stage.
The Sun is a plasma diffuser that sorts atoms by mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manuel, O., E-mail: omatumr@yahoo.com; Kamat, S. A.; Mozina, M.
2006-11-15
The Sun is a plasma diffuser that selectively moves light elements like H and He and the lighter isotopes of each element to its surface. The Sun formed on the collapsed core of a supernova (SN) and is composed mostly of elements made near the SN core (Fe, O, Ni, Si, and S), like the rocky planets and ordinary meteorites. Neutron emission from the central neutron star triggers a series of reactions that generate solar luminosity, solar neutrinos, solar mass fractionation, and an outpouring of hydrogen in the solar wind. Mass fractionation seems to have operated in the parent starmore » and likely occurs in other stars as well.« less
Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu
2014-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9. In this paper, the algorithms of these approaches are described, their performance is demonstrated, and their impact on L1B products is discussed. In general, the shorter wavelength bands have experienced a larger on-orbit RVS change, which, in general, are mirror side and detector dependent. The on-orbit RVS change due to the degradation of band 8 can be as large as 35 percent for Terra MODIS and 20 percent for Aqua MODIS. Vital to maintaining the accuracy of the MODIS L1B products is an accurate characterization of the on-orbit RVS change. The derived time-independent RVS, implemented in C6, makes an important improvement to the quality of the MODIS L1B products.
Diffusion lengths in irradiated N/P InP-on-Si solar cells
NASA Technical Reports Server (NTRS)
Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.
1995-01-01
Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.
Energetic Particles from Outside our Solar System Increase Artist Concept
2011-12-16
This artist concept shows NASA Voyager 1 spacecraft in a new region at the edge of our solar system where the amount of high-energy particles diffusing into our solar system from outside has increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Ibrahim M.; Andreas, Afshin M.
2017-08-01
Accurate pyranometer calibrations, traceable to internationally recognized standards, are critical for solar irradiance measurements. One calibration method is the component summation method, where the pyranometers are calibrated outdoors under clear sky conditions, and the reference global solar irradiance is calculated as the sum of two reference components, the diffuse horizontal and subtended beam solar irradiances. The beam component is measured with pyrheliometers traceable to the World Radiometric Reference, while there is no internationally recognized reference for the diffuse component. In the absence of such a reference, we present a method to consistently calibrate pyranometers for measuring the diffuse component. Themore » method is based on using a modified shade/unshade method and a pyranometer with less than 0.5 W/m2 thermal offset. The calibration result shows that the responsivity of Hukseflux SR25 pyranometer equals 10.98 uV/(W/m2) with +/-0.86 percent uncertainty.« less
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602
Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.
Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...
Mazzuco, Adriana; Medeiros, Wladimir Musetti; Sperling, Milena Pelosi Rizk; de Souza, Aline Soares; Alencar, Maria Clara Noman; Arbex, Flávio Ferlin; Neder, José Alberto; Arena, Ross; Borghi-Silva, Audrey
2015-01-01
In chronic obstructive pulmonary disease (COPD), functional and structural impairment of lung function can negatively impact heart rate variability (HRV); however, it is unknown if static lung volumes and lung diffusion capacity negatively impacts HRV responses. We investigated whether impairment of static lung volumes and lung diffusion capacity could be related to HRV indices in patients with moderate to severe COPD. Sixteen sedentary males with COPD were enrolled in this study. Resting blood gases, static lung volumes, and lung diffusion capacity for carbon monoxide (DLCO) were measured. The RR interval (RRi) was registered in the supine, standing, and seated positions (10 minutes each) and during 4 minutes of a respiratory sinus arrhythmia maneuver (M-RSA). Delta changes (Δsupine-standing and Δsupine-M-RSA) of the standard deviation of normal RRi, low frequency (LF, normalized units [nu]) and high frequency (HF [nu]), SD1, SD2, alpha1, alpha2, and approximate entropy (ApEn) indices were calculated. HF, LF, SD1, SD2, and alpha1 deltas significantly correlated with forced expiratory volume in 1 second, DLCO, airway resistance, residual volume, inspiratory capacity/total lung capacity ratio, and residual volume/total lung capacity ratio. Significant and moderate associations were also observed between LF/HF ratio versus total gas volume (%), r=0.53; LF/HF ratio versus residual volume, %, r=0.52; and HF versus total gas volume (%), r=-0.53 (P<0.05). Linear regression analysis revealed that ΔRRi supine-M-RSA was independently related to DLCO (r=-0.77, r (2)=0.43, P<0.05). Responses of HRV indices were more prominent during M-RSA in moderate to severe COPD. Moreover, greater lung function impairment was related to poorer heart rate dynamics. Finally, impaired lung diffusion capacity was related to an altered parasympathetic response in these patients.
Crystalline silicon photovoltaics via low-temperature TiO 2/Si and PEDOT/Si heterojunctions
NASA Astrophysics Data System (ADS)
Nagamatsu, Ken Alfred
The most important goals in developing solar cell technology are to achieve high power conversion efficiencies and lower costs of manufacturing. Solar cells based on crystalline silicon currently dominate the market because they can achieve high efficiency. However, conventional p-n junction solar cells require high-temperature diffusions of dopants, and conventional heterojunction cells based on amorphous silicon require plasma-enhanced deposition, both of which can add manufacturing costs. This dissertation investigates an alternative approach, which is to form crystalline-silicon-based solar cells using heterojunctions with materials that are easily deposited at low temperatures and without plasma enhancement, such as organic semiconductors and metal oxides. We demonstrate a heterojunction between the organic polymer, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT), and crystalline silicon, which acts as a hole-selective contact and an alternative to a diffused p-n junction. We also present the use of a heterojunction between titanium dioxide and crystalline silicon as a passivating electron-selective contact. The Si/TiO2 heterojunction is demonstrated for the first time as a back-surface field in a crystalline silicon solar cell, and is incorporated into a PEDOT/Si device. The resulting PEDOT/Si/TiO2 solar cell represents an alternative to conventional silicon solar cells that rely on thermally-diffused junctions or plasma-deposited heterojunctions. Finally, we investigate the merits of using conductive networks of silver nanowires to enhance the photovoltaic performance of PEDOT/Si solar cells. The investigation of these materials and devices contributes to the growing body of work regarding crystalline silicon solar cells made with selective contacts.
Local effects of partly cloudy skies on solar and emitted radiations
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Venable, D. D.
1981-01-01
Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.
Solar Energy Evolution and Diffusion Studies: 2017-2019 | Solar Research |
data fro-m existing LMI adopters to investigate non-economic motivations and barriers for getting solar the design and implementation of an experimental referral market pilot that will be embedded into the
NASA Astrophysics Data System (ADS)
Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco
2016-08-01
A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.
Solar radiation on Mars: Update 1991
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.
Damage and recovery characteristics of lithium-containing solar cells.
NASA Technical Reports Server (NTRS)
Faith, T. J.
1971-01-01
Damage and recovery characteristics were measured on lithium-containing solar cells irradiated by 1-MeV electrons. Empirical expressions for cell recovery time, diffusion-length damage coefficient immediately after irradiation, and diffusion-length damage coefficient after recovery were derived using results of short-circuit current, diffusion-length, and reverse-bias capacitance measurements. The damage coefficients were expressed in terms of a single lithium density parameter, the lithium gradient. A fluence dependence was also established, this dependence being the same for both the immediate-post-irradiation and post-recovery cases. Cell recovery rates were found to increase linearly with lithium gradient.
Diffused junction p(+)-n solar cells in bulk GaAs. I Fabrication and cell performance
NASA Technical Reports Server (NTRS)
Bhat, I.; Bhat, K. N.; Mathur, G.; Borrego, J. M.; Ghandhi, S. K.
1984-01-01
This paper describes the fabrication of solar cells made by a simple open tube p(+)-diffusion into bulk n-GaAs. In addition, cell performance is provided as an indicator of the quality of bulk GaAs for this application. Initial results using this technique (12.2 percent efficiency at AM1 for 0.5 sq cm cells) are promising, and indicate directions for materials improvement. It is shown that the introduction of the diffusant (zinc) with point defects significantly affects the material properties and results in an increase in current capability.
NASA Technical Reports Server (NTRS)
Weinberg, I.
1975-01-01
An experimental and theoretical investigation of the feasibility of using the MOS C-V (capacitance-voltage) technique to determine impurity and surface state concentrations on the diffused face of Si solar cells with Ta2O5 coatings. Impurity concentration 10 A from the diffused surface is found to be 2.9 times 10 to the 20th power per cu cm. Charge density in surface and oxide states is 2.1 times 10 to the 13th power per sq cm. These data agree with theoretical predictions.-
Cosmic ray propagation in interplanetary space
NASA Technical Reports Server (NTRS)
Voelk, H. J.
1975-01-01
The validity of the test-particle picture, the approximation of static fields, and the spatial-diffusion approximation are discussed in a general way before specific technical assumptions are introduced. It is argued that the spatial-diffusion equation for the intensity per unit energy has a much wider range of applicability than the kinetic (Fokker-Planck) equation it is derived from. This gives strong weight to the phenomenological propagation theory. The general success (and possible failure at small energies) of the phenomenological theory for the modulation of galactic cosmic rays and solar events is described. Apparent effects such as the 'free boundary' are given disproportionate weight since they establish the connection with the detailed plasma physics of the solar wind. Greatest attention is paid to the pitch-angle diffusion theory. A general theory is presented which removes the well-known secularities of the quasi-linear approximation. The possible breakdown of any pitch-angle diffusion theory at very small energies is perhaps connected with the observed 'turn up' of the spectrum at low energies. A first attempt to derive the spatial dependence of the diffusion coefficient in the solar cavity, using such a divergence free scattering theory, is described and compared with recent observations out to 5 AU.
NASA Astrophysics Data System (ADS)
Magarreiro, Clarisse de Lurdes Chapa
The proper characterization of solar radiation resource is essential for the design of any solar energy harnessing systems which aims its optimal performance. To this end, the solar resource is often quantified through solar radiation measurements at meteorological stations. Unfortunately radiation data recorded on the desired location is often inexistent. Furthermore, the actual existing solar radiation databases have also a limited temporal span and, more frequently than desired, missing values and non-uniform formats. Also, such databases consist almost entirely of global solar radiation; variables such as the nature of the solar energy (direct or diffuse) are rarely recorded. Atmospheric models can add value to solar energy applications by enabling solar resource assessments as they easily overcome the limited spatial and temporal coverage of irradiance measuring networks. Furthermore, climate models can be used for any region of the planet to assess the solar resource for not only present climate conditions but also to analyse its long-term past evolution and future tendency. Nowadays such models are a popular approach on the field of solar radiation forecasting but the quality evaluation of the solar radiation representation by such models is first of all a fundamental step to understand its usefulness. Having this in mind, in this thesis, a dynamical downscaling approach is used to evaluate simulated solar radiation at the Earth’s surface which will then enable the characterization of the solar resource. The model output is also combined with a statistical downscaling approach used in its simplest form to minimize the model biases. The work focuses primarily in the Iberian Peninsula as its large climate gradients are representative of diverse meteorological conditions, enabling therefore the adaptation of the presented methods to other regions. Then, following the same methodology, the solar resource of the Azores archipelago is also addressed. The Azores region is often neglected in solar resource assessments and solar resource maps of the Earth’s surface or even of Europe region. These methods are used to characterize the present climate renewable solar resource and analyse the impact of climate change on its projections for the end of the 21st century for both Iberia Peninsula and Azores archipelago. Atmospheric numerical models are however limited in the sense that they only provide global solar radiation, the direct normal radiation and diffuse components are not common outputs to the user. Given this, the separation of global radiation into its diffuse and direct components is analysed in this thesis through models of diffuse solar radiation fraction. One important characteristic of these models is that they are empirically derived from site-specific measurements and a model developed and validated in a very specific climate type region may not hold its suitability to other regions. This thesis focuses on the assessment of such models only for the Azores region which has not been object of this type of analysis before.
Inexpensive Meter for Total Solar Radiation
NASA Technical Reports Server (NTRS)
Laue, E. G.
1987-01-01
Pyranometer containing solar cells measures combined intensity of direct light from Sun and diffuse light from sky. Instrument includes polyethylene dome that diffuses entering light so output of light detectors does not vary significantly with changing angle of Sun during day. Not to be calibrated for response of each detector to Sun angle, and sensor outputs not corrected separately before summed and integrated. Aids in deciding on proper time to harvest crops.
Osmotic forces and gap junctions in spreading depression: a computational model
NASA Technical Reports Server (NTRS)
Shapiro, B. E.
2001-01-01
In a computational model of spreading depression (SD), ionic movement through a neuronal syncytium of cells connected by gap junctions is described electrodiffusively. Simulations predict that SD will not occur unless cells are allowed to expand in response to osmotic pressure gradients and K+ is allowed to move through gap junctions. SD waves of [K+]out approximately 25 to approximately 60 mM moving at approximately 2 to approximately 18 mm/min are predicted over the range of parametric values reported in gray matter, with extracellular space decreasing up to approximately 50%. Predicted waveform shape is qualitatively similar to laboratory reports. The delayed-rectifier, NMDA, BK, and Na+ currents are predicted to facilitate SD, while SK and A-type K+ currents and glial activity impede SD. These predictions are consonant with recent findings that gap junction poisons block SD and support the theories that cytosolic diffusion via gap junctions and osmotic forces are important mechanisms underlying SD.
Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3
Yang, Dongwen; Ming, Wenmei; Shi, Hongliang; ...
2016-06-01
CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the electronic properties of CH 3NH 3PbI 3.« less
Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dongwen; Ming, Wenmei; Shi, Hongliang
CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the electronic properties of CH 3NH 3PbI 3.« less
Relativistic Electron Precipitation: An Observational Study.
1980-01-01
al., 1970). These so-called "n + 1/2" waves (- n + 1/2) are found throughout the magnetosphere outside the plasmapause (Kennel et al., 1970; Shaw and...diffusion scattering one requires 2 L D~ . LSD - z ~.(21) 73 where aL = loss cone pitch angle D SD = coefficient for strong diffusion. Equation (20) can be...with substitutions yields a fluctuating field wave amplitude for strong electron diffusion: a." 0- x(23) and 00for f= LSD (24) LRo LRo + For ions
NASA Astrophysics Data System (ADS)
Wilson, Robert S.; Priestley, Kory J.; Thomas, Susan; Hess, Phillip
2009-08-01
The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers were used to measure earth-reflected solar and earth-emitted longwave radiances, at satellite altitude. The bolometers measured the earth radiances in the broadband shortwave solar (0.3 - 5.0 micrometers) and total (0.3->100 micrometers) spectral bands as well as in the (8 - 12 micrometers) water vapor window spectral band over geographical footprints as small as 10 kilometers at nadir. In May 2002, the fourth and fifth sets of CERES bolometers were launched aboard the Aqua spacecraft. Ground vacuum calibrations defined the initial count conversion coefficients that were used to convert the bolometer output voltages into filtered earth radiances. The mirror attenuator mosaic (MAM), a solar diffuser plate, was built into the CERES instrument package calibration system in order to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields-of-view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, overcoated with silicon dioxide. Temperature sensors are located in each MAM plate and baffle. The CERES MAM wass designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. In this paper, the MAM solar calibration procedures are presented along with on-orbit results. Comparisons are also made between the Aqua,Terra and the Tropical Rainfall Measurement Mission (TRMM) CERES MAM solar calibrations.
Dispersion of the solar magnetic flux in the undisturbed photosphere as derived from SDO/HMI data
NASA Astrophysics Data System (ADS)
Abramenko, Valentina I.
2017-11-01
To explore the magnetic flux dispersion in the undisturbed solar photosphere, magnetograms acquired by Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO) were utilized. Two areas, a coronal hole (CH) area and an area of super-granulation (SG) pattern, were analysed. We explored the displacement and separation spectra and the behaviour of the turbulent diffusion coefficient, K. The displacement and separation spectra are very similar to each other. Small magnetic elements (of size 3-100 squared pixels and the detection threshold of 20 Mx sm-2) in both CH and SG areas disperse in the same way and they are more mobile than the large elements (of size 20-400 squared pixels and the detection threshold of 130 Mx sm-2). The regime of super-diffusivity is found for small elements (γ ≈ 1.3 and K growing from ˜100 to ˜ 300 km2 s-1). Large elements in the CH area are scanty and show super-diffusion with γ ≈ 1.2 and K = (62-96) km2 s-1 on a rather narrow range of 500-2200 km. Large elements in the SG area demonstrate two ranges of linearity and two diffusivity regimes: sub-diffusivity on scales 900-2500 km with γ = 0.88 and K decreasing from ˜130 to ˜100 km2 s-1, and super-diffusivity on scales 2500-4800 km with γ ≈ 1.3 and K growing from ˜140 to ˜200 km2 s-1. A comparison of our results with the previously published shows that there is a tendency of saturation of the diffusion coefficient on large scales, I.e. the turbulent regime of super-diffusivity is gradually replaced by normal diffusion.
NASA Technical Reports Server (NTRS)
Marshall, F. E.
1977-01-01
The anisotropy of 1.3 to 2.3 MeV protons in interplanetary space was measured using the Caltech electron/isotope spectrometer aboard IMP-7 for 317 6 hour periods from 72/273 to 74/2. Periods dominated by prompt solar particle events are not included. The convective and diffusive anisotropies were determined from the observed anisotropy using concurrent solar wind speed measurements and observed energy spectra. The diffusive flow of particles was found to be typically toward the sun, indicating a positive radial gradient in the particle density. This anisotropy was inconsistent with previously proposed sources of low energy proton increases seen at 1 AU which involve continual solar acceleration. The typical properties of this new component of low-energy cosmic rays were determined for this period which is near solar minimum.
Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells
NASA Technical Reports Server (NTRS)
Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.
1982-01-01
The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.
NASA Astrophysics Data System (ADS)
Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.
2016-12-01
Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javadi, M.; Abdi, Y., E-mail: y.abdi@ut.ac.ir
2015-08-14
Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO{sub 2}. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO{sub 2} used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, wemore » demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm{sup 2} and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.« less
Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won
2015-09-14
The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.
NASA Astrophysics Data System (ADS)
Javadi, M.; Abdi, Y.
2015-08-01
Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO2. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ˜1 μm2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.
Solar energy potential in the United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, A.; Alnajjar, A.
1995-12-31
In the present study, the global, direct and diffuse components of solar radiation as well as temperature, relative humidity and wind speed have been continuously monitored and analyzed on hourly, daily and monthly basis. Experimental data is compared to the predictions of different theoretical models as functions of declination and hour angles. Correlations are obtained describing the variation of hourly, daily and monthly averages of total and diffuse solar radiation using polynomial expressions. Empirical correlations describing the dependence of the daily average diffuse to total radiation ratio on the clearness index are also obtained. Data of daily diffuse to totalmore » radiation ratio is compared to correlations obtained by other investigators. The comparison shows a reasonable agreement with some scatter due to the seasonal dependence of the correlation. Comparison of calculations with experimental measurements under clear sky conditions show excellent agreement with a maximum error of 8%. The measured ratio of hourly to daily insolation is in excellent agreement with the model of Hottel which is expressed as a function of the clearness index, hour and the sunset hour angles.« less
Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)
Wilcox, S.; Andreas, A.
2007-05-02
A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.
NASA Technical Reports Server (NTRS)
Dorman, L. I.; Kobilinski, Z.
1975-01-01
The modulation of galactic cosmic rays is studied by the magnetic heterogeneities stream on the assumption that the diffusion coefficient is reduced whereas the solar wind velocity is increased with the growth of the angle between the sun's rotation axis and the direction of solar plasma motion. The stationary plane problem of isotropic diffusion is solved as it applies to two cases: (1) with due account of particle retardation by the antiphermium mechanism; and (2) without an account of the above mechanism. This problem is solved by the grid method in the polar coordinate system. The results of the calculations are followed by a discussion of the method of solution and of the errors.
Low temperature Zn diffusion for GaSb solar cell structures fabrication
NASA Technical Reports Server (NTRS)
Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali
1995-01-01
Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.
A Model of Magnetic Braking of Solar Rotation that Satisfies Observational Constraints
NASA Astrophysics Data System (ADS)
Denissenkov, Pavel A.
2010-08-01
The model of magnetic braking of solar rotation considered by Charbonneau & MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.
Knudsen, Hannah K.; Roman, Paul M
2014-01-01
Drawing on diffusion theory to further knowledge about evidence-based practices (EBPs) in the treatment of substance use disorders (SUDs), this study describes the perceived importance of innovation attributes in adoption decisions within a national sample of SUD treatment organizations. Face-to-face interviews were conducted with leaders of 307 organizations. A typology differentiated organizations reporting: (1) adoption of a treatment innovation in the past year (“recent adoption”), (2) plans to adopt an innovation in the upcoming year (“planned adoption”), or (3) no actual or planned adoption (“non-adoption”). About 30.7% of organizations reported recent adoption, 20.5% indicated planned adoption, and 48.8% were non-adopters. Leaders of organizations reporting recent adoption (n = 93) or planned adoption (n = 62) rated the importance of innovation attributes, including relative advantage, compatibility, complexity, and observability, on these adoption decisions using a Likert scale that ranged from 0 to 5. Innovation attributes most strongly endorsed were consistency with the program's treatment philosophy (mean = 4.47, SD = 1.03), improvement in the program's reputation with referral sources (mean = 4.00, SD = 1.33), reputational improvement with clients and their families (mean = 3.98, SD = 1.31), and reductions in treatment dropout (mean = 3.75, SD = 1.54). Innovation characteristics reflecting organizational growth and implementation costs were less strongly endorsed. Adopters and planners were generally similar in their importance ratings. There were modest differences in importance ratings when pharmacological innovations were compared to psychosocial interventions. These findings are consistent with diffusion theory and suggest that efforts to link EBPs with client satisfaction and potential reputational benefits may enhance the diffusion of EBPs. Attention to these attributes when developing and evaluating SUD treatment interventions may enhance efforts to increase subsequent adoption. PMID:25218918
Knudsen, Hannah K; Roman, Paul M
2015-02-01
Drawing on diffusion theory to further knowledge about evidence-based practices (EBPs) in the treatment of substance use disorders (SUDs), this study describes the perceived importance of innovation attributes in adoption decisions within a national sample of SUD treatment organizations. Face-to-face interviews were conducted with leaders of 307 organizations. A typology differentiated organizations reporting: (1) adoption of a treatment innovation in the past year ("recent adoption"), (2) plans to adopt an innovation in the upcoming year ("planned adoption"), or (3) no actual or planned adoption ("non-adoption"). About 30.7% of organizations reported recent adoption, 20.5% indicated planned adoption, and 48.8% were non-adopters. Leaders of organizations reporting recent adoption (n=93) or planned adoption (n=62) rated the importance of innovation attributes, including relative advantage, compatibility, complexity, and observability, on these adoption decisions using a Likert scale that ranged from 0 to 5. Innovation attributes most strongly endorsed were consistency with the program's treatment philosophy (mean=4.47, SD=1.03), improvement in the program's reputation with referral sources (mean=4.00, SD=1.33), reputational improvement with clients and their families (mean=3.98, SD=1.31), and reductions in treatment dropout (mean=3.75, SD=1.54). Innovation characteristics reflecting organizational growth and implementation costs were less strongly endorsed. Adopters and planners were generally similar in their importance ratings. There were modest differences in importance ratings when pharmacological innovations were compared to psychosocial interventions. These findings are consistent with diffusion theory and suggest that efforts to link EBPs with client satisfaction and potential reputational benefits may enhance the diffusion of EBPs. Attention to these attributes when developing and evaluating SUD treatment interventions may enhance efforts to increase subsequent adoption. Copyright © 2015 Elsevier Inc. All rights reserved.
Solar concentrator with diffuser segments
NASA Astrophysics Data System (ADS)
Esparza, Diego; Moreno, Ivan
2011-08-01
Solar energy systems use concentrating optics with photovoltaic cells for optimizing the performance. Advanced concentrators are designed to maximize both the light collection and the spatial uniformity of radiation. This is important because irradiance uniformity is critical for all types of photovoltaic cells. This is difficult to achieve with traditional concentrators, which are built with polished optical surfaces. In this work we propose a new concept of solar concentrator which uses small diffuser segments in key points to increase the irradiation uniformity. We experimentally demonstrate this new concept by analyzing the effects on both efficiency and irradiance uniformity due to the incorporation of scattering ribbons in a compound parabolic concentrator.
In-vivo Reflectance Measurements from Human Skin
NASA Astrophysics Data System (ADS)
Delgado, J. A.; Cornejo, A.; Cunill, M.; Báez, J. J.; Matos, R.; Anasagasti, L.; Santiago, C.
2006-09-01
We evaluate the potential of using a standard commercial spectrophotometer, specifically designed to meet the growing requirement for color control in the digital-imaging application field, to perform in-vivo diffuse reflectance measurements from adult human skin. We report and discuss diffuse reflectance spectra for three practical situations: a) reflectance versus skin type, b) reflectance from normal skin with different grade of solar exposition, c) reflectance from normal skin versus reflectance from seborrheic keratosis. Results show, that using the above spectrophotometer we can easily differentiate two sites of different solar exposition. Besides, significant differences are found in the normal skin diffuse reflectance for patients with different skin types.
Solar-diffuser panel and ratioing radiometer approach to satellite sensor on-board calibration
NASA Technical Reports Server (NTRS)
Slater, Philip N.; Palmer, James M.
1991-01-01
The use of a solar-diffuser panel is a desirable approach to the on-board absolute radiometric calibration of satellite multispectral sensors used for earth observation in the solar reflective spectral range. It provides a full aperture, full field, end-to-end calibration near the top of the sensor's dynamic range and across its entire spectral response range. A serious drawback is that the panel's reflectance, and the response of any simple detector used to monitor its reflectance may change with time. This paper briefly reviews some preflight and on-board methods for absolute calibration and introduces the ratioing-radiometer concept in which the radiance of the panel is ratioed with respect to the solar irradiance at the time the multispectral sensor is viewing the panel in its calibration mode.
Solar Wind Strahl Broadening by Self-Generated Plasma Waves
NASA Technical Reports Server (NTRS)
Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.
2013-01-01
This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
NASA Technical Reports Server (NTRS)
Mcdonald, G.
1980-01-01
Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.
On the generation of solar spicules and Alfvénic waves
NASA Astrophysics Data System (ADS)
Martínez-Sykora, J.; De Pontieu, B.; Hansteen, V. H.; Rouppe van der Voort, L.; Carlsson, M.; Pereira, T. M. D.
2017-06-01
In the lower solar atmosphere, the chromosphere is permeated by jets known as spicules, in which plasma is propelled at speeds of 50 to 150 kilometers per second into the corona. The origin of the spicules is poorly understood, although they are expected to play a role in heating the million-degree corona and are associated with Alfvénic waves that help drive the solar wind. We compare magnetohydrodynamic simulations of spicules with observations from the Interface Region Imaging Spectrograph and the Swedish 1-m Solar Telescope. Spicules are shown to occur when magnetic tension is amplified and transported upward through interactions between ions and neutrals or ambipolar diffusion. The tension is impulsively released to drive flows, heat plasma (through ambipolar diffusion), and generate Alfvénic waves.
Mapping diffuse photosynthetically active radiation from satellite data in Thailand
NASA Astrophysics Data System (ADS)
Choosri, P.; Janjai, S.; Nunez, M.; Buntoung, S.; Charuchittipan, D.
2017-12-01
In this paper, calculation of monthly average hourly diffuse photosynthetically active radiation (PAR) using satellite data is proposed. Diffuse PAR was analyzed at four stations in Thailand. A radiative transfer model was used for calculating the diffuse PAR for cloudless sky conditions. Differences between the diffuse PAR under all sky conditions obtained from the ground-based measurements and those from the model are representative of cloud effects. Two models are developed, one describing diffuse PAR only as a function of solar zenith angle, and the second one as a multiple linear regression with solar zenith angle and satellite reflectivity acting linearly and aerosol optical depth acting in logarithmic functions. When tested with an independent data set, the multiple regression model performed best with a higher coefficient of variance R2 (0.78 vs. 0.70), lower root mean square difference (RMSD) (12.92% vs. 13.05%) and the same mean bias difference (MBD) of -2.20%. Results from the multiple regression model are used to map diffuse PAR throughout the country as monthly averages of hourly data.
Method for fabricating silicon cells
Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent
1998-08-11
A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.
Mathematical and computational modeling simulation of solar drying Systems
USDA-ARS?s Scientific Manuscript database
Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...
Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Young, Matthew Garett
The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.
Lowry Range Solar Station: Arapahoe County, Colorado (Data)
Yoder, M.; Andreas, A.
2008-05-30
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond
2015-01-01
Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024
Diffuse solar radiation and associated meteorological parameters in India
NASA Astrophysics Data System (ADS)
Bhattacharya, A. B.; Kar, S. K.; Bhattacharya, R.
1996-10-01
Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->
NASA Astrophysics Data System (ADS)
Calbó, Josep; González, Josep-Abel; Sanchez-Lorenzo, Arturo
2017-08-01
Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987-2014) and diffuse radiation (1994-2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m-2 (1.4 %) decade-1 (1988-2014 period), mainly due to what occurs in summer (5.6 W m-2 decade-1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at -1.3 W m-2 (-2 %) decade-1 (1994-2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.
Saure, Eirunn Waatevik; Bakke, Per Sigvald; Lind Eagan, Tomas Mikal; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew
2016-01-01
Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007-2008. Emphysema was assessed as percent of low-attenuation areas<-950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was -0.32 (-0.04-(-0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia.
SeaWiFS technical report series. Volume 10: Modeling of the SeaWiFS solar and lunar observations
NASA Technical Reports Server (NTRS)
Woodward, Robert H.; Barnes, Robert A.; Mcclain, Charles R.; Esaias, Wayne E.; Barnes, William L.; Mecherikunnel, Ann T.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1993-01-01
Post-launch stability monitoring of the Sea-viewing Wide Field-of-view Sensor (SeaWifs) will include periodic sweeps of both an onboard solar diffuser plate and the moon. The diffuser views will provide short-term checks and the lunar views will monitor long-term trends in the instrument's radiometric stability. Models of the expected sensor response to these observations were created on the SeaWiFS computer at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) using the Interactive Data Language (IDL) utility with a graphical user interface (GUI). The solar model uses the area of intersecting circles to simulate the ramping of sensor response while viewing the diffuser. This model is compared with preflight laboratory scans of the solar diffuser. The lunar model reads a high-resolution lunar image as input. The observations of the moon are simulated with a bright target recovery algorithm that includes ramping and ringing functions. Tests using the lunar model indicate that the integrated radiance of the entire lunar surface provides a more stable quantity than the mean of radiances from centralized pixels. The lunar model is compared to ground-based scans by the SeaWiFS instrument of a full moon in December 1992. Quality assurance and trend analyses routines for calibration and for telemetry data are also discussed.
Dalapati, Goutam Kumar; Zhuk, Siarhei; Masudy-Panah, Saeid; Kushwaha, Ajay; Seng, Hwee Leng; Chellappan, Vijila; Suresh, Vignesh; Su, Zhenghua; Batabyal, Sudip Kumar; Tan, Cheng Cheh; Guchhait, Asim; Wong, Lydia Helena; Wong, Terence Kin Shun; Tripathy, Sudhiranjan
2017-05-02
We have investigated the impact of Cu 2 ZnSnS 4 -Molybdenum (Mo) interface quality on the performance of sputter-grown Cu 2 ZnSnS 4 (CZTS) solar cell. Thin film CZTS was deposited by sputter deposition technique using stoichiometry quaternary CZTS target. Formation of molybdenum sulphide (MoS x ) interfacial layer is observed in sputter grown CZTS films after sulphurization. Thickness of MoS x layer is found ~142 nm when CZTS layer (550 nm thick) is sulphurized at 600 °C. Thickness of MoS x layer significantly increased to ~240 nm in case of thicker CZTS layer (650 nm) under similar sulphurization condition. We also observe that high temperature (600 °C) annealing suppress the elemental impurities (Cu, Zn, Sn) at interfacial layer. The amount of out-diffused Mo significantly varies with the change in sulphurization temperature. The out-diffused Mo into CZTS layer and reconstructed interfacial layer remarkably decreases series resistance and increases shunt resistance of the solar cell. The overall efficiency of the solar cell is improved by nearly five times when 600 °C sulphurized CZTS layer is applied in place of 500 °C sulphurized layer. Molybdenum and sulphur diffusion reconstruct the interface layer during heat treatment and play the major role in charge carrier dynamics of a photovoltaic device.
Thin film solar cells grown by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Yang, Fan
Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.
Method for fabricating silicon cells
Ruby, D.S.; Basore, P.A.; Schubert, W.K.
1998-08-11
A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.
Silicon-fiber blanket solar-cell array concept
NASA Technical Reports Server (NTRS)
Eliason, J. T.
1973-01-01
Proposed economical manufacture of solar-cell arrays involves parallel, planar weaving of filaments made of doped silicon fibers with diffused radial junction. Each filament is a solar cell connected either in series or parallel with others to form a blanket of deposited grids or attached electrode wire mesh screens.
Sone, Daichi; Sato, Noriko; Kimura, Yukio; Watanabe, Yutaka; Okazaki, Mitsutoshi; Matsuda, Hiroshi
2018-06-01
Although epilepsy in the elderly has attracted attention recently, there are few systematic studies of neuroimaging in such patients. In this study, we used structural MRI and diffusion tensor imaging (DTI) to investigate the morphological and microstructural features of the brain in late-onset temporal lobe epilepsy (TLE). We recruited patients with TLE and an age of onset > 50 years (late-TLE group) and age- and sex-matched healthy volunteers (control group). 3-Tesla MRI scans, including 3D T1-weighted images and 15-direction DTI, showed normal findings on visual assessment in both groups. We used Statistical Parametric Mapping 12 (SPM12) for gray and white matter structural normalization and comparison and used Tract-Based Spatial Statistics (TBSS) for fractional anisotropy and mean diffusivity comparisons of DTI. In both methods, p < 0.05 (family-wise error) was considered statistically significant. In total, 30 patients with late-onset TLE (mean ± SD age, 66.8 ± 8.4; mean ± SD age of onset, 63.0 ± 7.6 years) and 40 healthy controls (mean ± SD age, 66.6 ± 8.5 years) were enrolled. The late-onset TLE group showed significant gray matter volume increases in the bilateral amygdala and anterior hippocampus and significantly reduced mean diffusivity in the left temporofrontal lobe, internal capsule, and brainstem. No significant changes were evident in white matter volume or fractional anisotropy. Our findings may reflect some characteristics or mechanisms of cryptogenic TLE in the elderly, such as inflammatory processes.
Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika
Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less
NASA Astrophysics Data System (ADS)
Belucz, B.; Dikpati, M.; Forgacs-Dajka, E.
2014-12-01
Babcock-Leighton type solar dynamo models with single cell meridional circulation are successful in reproducing many solarcycle features, and recently such a model was applied for solarcycle 24 amplitude prediction. It seems that cycle 24 amplitudeforecast may not be validated. One of the reasons is the assumption of a single cell meridional circulation. Recent observations andtheoretical models of meridional circulation do not indicate a single-celledflow pattern. So it is nessecary to examine the role of complexmulti-cellular circulation patterns in a Babcock-Leighton solar dynamo model in the advection and diffusion dominated regimes.By simulating a Babcock-Leighton solar dynamo model with multi-cellularflow, we show that the presence of a weak, second, high-latitudereverse cell speeds up the cycle and slighty enhances the poleward branch in the butterfly diagram, whereas the presence of a second cellin depth reverses the tilt of the butterfly wing and leads to ananti-solar type feature. If, instead, the butterfly diagram isconstructed from the middle of the convection zone in that case, a solar-like pattern can be retrieved. All the above cases behavequalitatively similar in advection and diffusion-dominated regimes.However, our dynamo with a meridional circulation containing fourcells in latitude behaves distinctly different in the two regimes, producing a solar-like butterfly diagram with fast cycles indiffusion-dominated regime, and a complex branches in the butterflydiagram in the advection-dominated regime. Another interestingfinding from our studies is that a four-celled flow pattern containing two in radius and two in latitude always producesquadrupolar parity as the relaxed solution.
Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells
Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika; ...
2016-04-08
Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less
Solar central receiver reformer system for ammonia plants
NASA Astrophysics Data System (ADS)
1980-07-01
An overview of a study to retrofit the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant with Solar Central Receiver Technology is presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system will displace natural gas presently used in the fossil reformer combustion chamber.
Xcel Energy Comanche Station: Pueblo, Colorado (Data)
Stoffel, T.; Andreas, A.
2007-06-20
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
NASA Astrophysics Data System (ADS)
Yeboah, Douglas; Singh, Jai
2017-11-01
Recently, the dependence of exciton diffusion length (LD ) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein-Smoluchowski diffusion equation to derive analytical models for the diffusion lengths (LD ) and diffusion coefficients (D) of singlet (S) and triplet (T) excitons in organic solids as functions of spectral overlap integral (J) , photoluminescence (PL) quantum yield (φD ) , dipole moment (μT ) and refractive index (n) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length (LDS ) increases with φD and J, and decreases with n. Also, the triplet exciton diffusion length (LDT ) increases with φD and decreases with μT . These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.
Solar Resource Assessment for Sri Lanka and Maldives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renne, D.; George, R.; Marion, B.
2003-08-01
The countries of Sri Lanka and the Maldives lie within the equatorial belt, a region where substantial solar energy resources exist throughout much of the year in adequate quantities for many applications, including solar water heating, solar electricity, and desalination. The extent of solar resources in Sri Lanka has been estimated in the past based on a study of the daily total direct sunshine hours recorded at a number of weather and agricultural stations throughout the country. These data have been applied to the well-known Angstrom relationship in order to obtain an estimate of the distribution of monthly average dailymore » total solar resources at these stations. This study is an effort in improve on these estimates in two ways: (1) to apply a gridded cloud cover database at a 40-km resolution to produce updated monthly average daily total estimates of all solar resources (global horizontal, DNI, and diffuse) for the country, and (2) to input hourly or three-hourly cloud cover observations made at nine weather stations in Sri Lanka and two in the Maldives into a solar model that produces estimates of hourly solar radiation values of the direct normal, global, and diffuse resource covering the length of the observational period. Details and results of these studies are summarized in this report.« less
Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells
NASA Astrophysics Data System (ADS)
Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki
2017-11-01
A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.
Multiple periodicities in the solar magnetic field - Possible origin in a multiple-mode solar dynamo
NASA Technical Reports Server (NTRS)
Boyer, D. W.; Levy, E. H.
1992-01-01
The solar magnetic field is generated in an oscillatory mode with a 22 yr full period and gives rise to the 11 yr sunspot cycle. However, analyses of contemporary solar records, as well as other surrogate indicators of solar activity, suggest the presence also of longer term periodicities in the solar magnetic cycle. This paper suggests that the solar dynamo can operate in a multiply periodic state, with several periodicites being generated simultaneously at different depths in the convection zone. A simple two-layer model of the solar convection zone is used to illustrate the physical mechanism of spatially localized, multiple-periodicity-mode dynamo regeneration. The two layers are characterized by differences in their respective turbulent magnetic diffusivities. Although the magnetic modes interact with one another, each mode is produced large in one layer or the other, and has an oscillation period approximately equal to the time characteristic of magnetic diffusion across the layer. The observed complicated periodicity pattern in the solar magnetic field could be a combination of two (or more) dynamo modes generated in this manner. The calculations are carried out using a differential rotation model consistent with recent helioseismological measurements, illustrating the challenge to dynamo theory raised by those observational results.
Crystal growth for high-efficiency silicon solar cells workshop: Summary
NASA Technical Reports Server (NTRS)
Dumas, K. A.
1985-01-01
The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.
NASA Technical Reports Server (NTRS)
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
Parretta, Antonio; Privato, Carlo; Nenna, Giuseppe; Antonini, Andrea; Stefancich, Marco
2006-10-20
Methods for evaluating the light intensity distribution on receivers of concentrated solar radiation systems are described. They are based on the use of Lambertian diffusers in place of the illuminated receiver and on the acquisition of the scattered light, in reflection or transmission mode, by a CCD camera. The spatial distribution of intensity radiation is then numerically derived from the recorded images via a proprietary code. The details of the method are presented and a short survey of the main applications of the method in the photovoltaic and thermal solar energy conversion field is proposed. Methods for investigating the Lambertian character of commercial diffusers are also discussed.
Cermet Coatings for Solar Stirling Space Power
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Raack, Taylor
2004-01-01
Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.
The shady side of solar protection.
Parsons, P G; Neale, R; Wolski, P; Green, A
1998-04-06
To determine the value of shade in protecting humans from solar ultraviolet (UV) radiation. Measurement with photometers of protection factors for ultraviolet B radiation (UVB) and for total solar radiation for different types of trees and other structures during the summer months (1995-1997) in south-east Queensland. (The protection ratio is the ratio of the intensity of UVB or total solar radiation in direct sunlight to that in shade.) For summer sun at midday, the mean (SD) UV protection ratio for the shade of trees (n = 65) was 4.21 (1.36) on a horizontal surface and 1.33 (0.30) on a vertical surface. In contrast, the mean (SD) protection ratio for total solar energy (primarily infrared) was much higher (12.1 [1.4]). Trees common in recreational areas in Australia (eucalypts: UV protection ratio, 3.52 [0.79]; Norfolk Island pines: UV protection ratio, 3.72 [0.98]) offered reduced protection compared with trees with more dense foliage (UV protection ratio, 5.48 [1.44]). Over a whole day, measurement of shade by trees and other structures showed that the UV protection ratio was lower in the morning and afternoon. Shade from awnings, buildings and hats gave similar results to those for trees. Both at midday and over a whole day satisfactory protection (UV protection ratio > 15) was obtained only in shade which eliminated exposure to the sky as well as to direct sunlight; for example, in thickly wooded areas and under low, widely overhanging structures. Most forms of shade, while useful, offer people insufficient protection from solar UV. A fair-skinned person sheltering under a tree could suffer sunburn after less than one hour. There is a need for appropriate design of structural shade, use of other solar protection measures in conjunction with shade, and research on behavioural responses to shade.
NASA Technical Reports Server (NTRS)
Guenther, D. B.
1994-01-01
The nonadiabatic frequencies of a standard solar model and a solar model that includes helium diffusion are discussed. The nonadiabatic pulsation calculation includes physics that describes the losses and gains due to radiation. Radiative gains and losses are modeled in both the diffusion approximation, which is only valid in optically thick regions, and the Eddington approximation, which is valid in both optically thin and thick regions. The calculated pulsation frequencies for modes with l less than or equal to 1320 are compared to the observed spectrum of the Sun. Compared to a strictly adiabatic calculation, the nonadiabatic calculation of p-mode frequencies improves the agreement between model and observation. When helium diffusion is included in the model the frequencies of the modes that are sensitive to regions near the base of the convection zone are improved (i.e., brought into closer agreement with observation), but the agreement is made worse for other modes. Cyclic variations in the frequency spacings of the Sun as a function of frequency of n are presented as evidence for a discontinuity in the structure of the Sun, possibly located near the base of the convection zone.
A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denissenkov, Pavel A., E-mail: pavel.denisenkov@gmail.co
The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic withmore » the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.« less
Heavy doping effects in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1984-01-01
Several of the key parameters describing the heavily doped regions of silicon solar cells are examined. The experimentally determined energy gap narrowing and minority carrier diffusivity and mobility are key factors in the investigation.
Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells
NASA Technical Reports Server (NTRS)
Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.
1982-01-01
The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.
Indoor Light Performance of Coil Type Cylindrical Dye Sensitized Solar Cells.
Kapil, Gaurav; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi
2016-04-01
A very good performance under low/diffused light intensities is one of the application areas in which dye-sensitized solar cells (DSSCs) can be utilized effectively compared to their inorganic silicon solar cell counterparts. In this article, we have investigated the 1 SUN and low intensity fluorescent light performance of Titanium (Ti)-coil based cylindrical DSSC (C-DSSC) using ruthenium based N719 dye and organic dyes such as D205 and Y123. Electrochemical impedance spectroscopic results were analyzed for variable solar cell performances. Reflecting mirror with parabolic geometry as concentrator was also utilized to tap diffused light for indoor applications. Fluorescent light at relatively lower illumination intensities (0.2 mW/cm2 to 0.5 mW/cm2) were used for the investigation of TCO-less C-DSSC performance with and without reflector geometry. Furthermore, the DSSC performances were analyzed and compared with the commercially available amorphous silicon based solar cell for indoor applications.
Mercury Na exospheric emission related to solar disturbances
NASA Astrophysics Data System (ADS)
Orsini, S.; Mangano, V.; Milillo, A.; Plainaki, C.; Mura, A.; Massetti, S.; Raines, J. M.; De Angelis, E.; Rispoli, R.; Lazzarotto, F.; Aronica, A.
2017-09-01
A first attempt to use Na exospheric emission at Mercury as a proxy of CME transit is presented, in a kind of planetary space weather. The link existing between the dayside exosphere Na pattern at Mercury and the solar wind-magnetosphere-surface interactions is investigated. This goal is pursued by analyzing the Na hourly average distributions, as observed by the ground-based THEMIS solar telescope during 10 selected periods between 2012 and 2013 (seeing <2"), when also data from MESSENGER were available. Very often a two-peak pattern of variable intensity is observed, symmetrically located at high latitudes in both hemispheres. Occasionally, the signal is instead diffused above the sub-solar region. We compare these different Na emission patterns with the time profiles of proton fluxes and magnetic field data, as measured in-situ by MESSENGER. Among these 10 cases, only in one occasion the Na signal is all the time diffused above the subsolar region, and only in this case the MESSENGER data indicate the occurrence of significant solar CME perturbations.
Morrow, Isabel C.; Harper, Callista B.
2016-01-01
Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti–green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)–pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2–pHluorin/Atto647N–tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings. PMID:27810917
Sun Spot One (SS1): San Luis Valley, Colorado (Data)
Stoffel, T.; Andreas, A.
2008-06-10
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
University of Nevada (UNLV): Las Vegas, Nevada (Data)
Stoffel, T.; Andreas, A.
2006-03-18
A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Nevada Power: Clark Station; Las Vegas, Nevada (Data)
Stoffel, T.; Andreas, A.
2006-03-27
A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Record Efficiency on Large Area P-Type Czochralski Silicon Substrates
NASA Astrophysics Data System (ADS)
Hallam, Brett; Wenham, Stuart; Lee, Haeseok; Lee, Eunjoo; Lee, Hyunwoo; Kim, Jisun; Shin, Jeongeun; Cho, Kyeongyeon; Kim, Jisoo
2012-10-01
In this work we report a world record independently confirmed efficiency of 19.4% for a large area p-type Czochralski grown solar cell fabricated with a full area aluminium back surface field. This is achieved using the laser doped selective emitter solar cell technology on an industrial screen print production line with the addition of laser doping and light induced plating equipment. The use of a modified diffusion process is explored in which the emitter is diffused to a sheet resistance of 90 Ω/square and subsequent etch back of the emitter to 120 Ω/square. This results in a lower surface concentration of phosphorus compared to that of emitters diffused directly to 120 Ω/square. This modified diffusion process subsequently reduces the conductivity of the surface in relation to that of the heavily diffused laser doped contacts and avoids parasitic plating, resulting an average absolute increase in efficiency of 0.4% compared to cells fabricated without an emitter etch back process.
Evolution of consumer information preferences with market maturity in solar PV adoption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, D. Cale; Rai, Varun; Margolis, Robert
Residential adoption of solar photovoltaics (PV) is spreading rapidly, supported by policy initiatives at the federal, state, and local levels. Potential adopters navigate increasingly complex decision-making landscapes in their path to adoption. Much is known about the individual-level drivers of solar PV diffusion that steer adopters through this process, but relatively little is known about the evolution of these drivers as solar PV markets mature. By understanding the evolution of emerging solar PV markets over time, stakeholders in the diffusion of solar PV can increase policy effectiveness and reduce costs. This analysis uses survey data to compare two adjacent marketsmore » across a range of relevant characteristics, then models changes in the importance of local vs cosmopolitan information sources by combining theory relating market maturity to adopter behavior with event-history techniques. In younger markets, earlier, innovative adoptions that are tied to a preference for cosmopolitan information sources are more prevalent than expected, suggesting a frustrated demand for solar PV that segues into adoptions fueled by local information preferences contemporary with similar adoptions in older markets. Furthermore, the analysis concludes with policy recommendations to leverage changing consumer information preferences as markets mature.« less
Evolution of consumer information preferences with market maturity in solar PV adoption
Reeves, D. Cale; Rai, Varun; Margolis, Robert
2017-07-04
Residential adoption of solar photovoltaics (PV) is spreading rapidly, supported by policy initiatives at the federal, state, and local levels. Potential adopters navigate increasingly complex decision-making landscapes in their path to adoption. Much is known about the individual-level drivers of solar PV diffusion that steer adopters through this process, but relatively little is known about the evolution of these drivers as solar PV markets mature. By understanding the evolution of emerging solar PV markets over time, stakeholders in the diffusion of solar PV can increase policy effectiveness and reduce costs. This analysis uses survey data to compare two adjacent marketsmore » across a range of relevant characteristics, then models changes in the importance of local vs cosmopolitan information sources by combining theory relating market maturity to adopter behavior with event-history techniques. In younger markets, earlier, innovative adoptions that are tied to a preference for cosmopolitan information sources are more prevalent than expected, suggesting a frustrated demand for solar PV that segues into adoptions fueled by local information preferences contemporary with similar adoptions in older markets. Furthermore, the analysis concludes with policy recommendations to leverage changing consumer information preferences as markets mature.« less
Evolution of consumer information preferences with market maturity in solar PV adoption
NASA Astrophysics Data System (ADS)
Cale Reeves, D.; Rai, Varun; Margolis, Robert
2017-07-01
Residential adoption of solar photovoltaics (PV) is spreading rapidly, supported by policy initiatives at the federal, state, and local levels. Potential adopters navigate increasingly complex decision-making landscapes in their path to adoption. Much is known about the individual-level drivers of solar PV diffusion that steer adopters through this process, but relatively little is known about the evolution of these drivers as solar PV markets mature. By understanding the evolution of emerging solar PV markets over time, stakeholders in the diffusion of solar PV can increase policy effectiveness and reduce costs. This analysis uses survey data to compare two adjacent markets across a range of relevant characteristics, then models changes in the importance of local vs cosmopolitan information sources by combining theory relating market maturity to adopter behavior with event-history techniques. In younger markets, earlier, innovative adoptions that are tied to a preference for cosmopolitan information sources are more prevalent than expected, suggesting a frustrated demand for solar PV that segues into adoptions fueled by local information preferences contemporary with similar adoptions in older markets. The analysis concludes with policy recommendations to leverage changing consumer information preferences as markets mature.
Diffusion length measurements of thin GaAs solar cells by means of energetic electrons
NASA Technical Reports Server (NTRS)
Vonross, O.
1980-01-01
A calculation of the short circuit current density (j sub sc) of a thin GaAs solar cell induced by fast electrons is presented. It is shown that in spite of the disparity in thickness between the N-type portion of the junction and the P-type portion of the junction, the measurement of the bulk diffusion length L sub p of the N-type part of the junction is seriously hampered due to the presence of a sizable contribution to the j sub sc from the P-type region of the junction. Corrections of up to 50% had to be made in order to interpret the data correctly. Since these corrections were not amenable to direct measurements it is concluded that the electron beam method for the determination of the bulk minority carrier diffusion length, which works so well for Si solar cells, is a poor method when applied to thin GaAs cells.
Modeling thermospheric neutral density
NASA Astrophysics Data System (ADS)
Qian, Liying
Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the lifetime of satellites, but also it will increase the amount of space junk.
Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999
NASA Astrophysics Data System (ADS)
Zerefos, C. S.; Balis, D. S.; Meleti, C.; Bais, A. F.; Tourpali, K.; Kourtidis, K.; Vanicek, K.; Cappellani, F.; Kaminski, U.; Colombo, T.; Stübi, R.; Manea, L.; Formenti, P.; Andreae, M. O.
2000-11-01
During the solar eclipse of August 11, 1999, intensive measurements of UV solar irradiance and total ozone were performed at a number of observatories located near the path of the Moon's shadow. At the Laboratory of Atmospheric Physics (LAP) of the Aristotle University of Thessaloniki, Greece, global and direct spectra of UV solar irradiances (285-365 nm) were recorded with a double monochromator, and erythemal irradiances were measured with broadband pyranometers. In addition, higher-frequency measurements of global and direct irradiances at six UV wavelengths were performed with a single Brewer spectrophotometer. Total ozone measurements were also performed with Dobson and Brewer spectrophotometers at Hradec Kralove (Czech Republic), Ispra (Italy), Sestola (Italy), Hohenpeissenberg (Germany), Bucharest (Romania), Arosa (Switzerland), and Thessaloniki (Greece). From the spectral UV measurements the limb darkening effect of the solar disk was tentatively quantified from differences of measured solar spectral irradiances at the peak of the eclipse (near to limb conditions) and before the eclipse. Two blackbody curves were fit to the preeclipse and peak eclipse spectra, which have shown a difference in effective temperatures of about 165°K between the limb and the whole of the solar disk. The limb darkening effect is larger at the shorter UV wavelengths. The ratio of the diffuse to direct solar irradiances during the eclipse shows that the diffuse component is reduced much less compared to the decline of the direct solar irradiance at the shorter wavelengths. Moreover, a 20-min oscillation of erythemal UV-B solar irradiance was observed before and after the time of the eclipse maximum under clear skies, indicating a possible 20-min fluctuation in total ozone, presumably caused by the eclipse-induced gravity waves. This work also shows that routine total ozone measurements with a Brewer or a Dobson spectrophotometer should be used with caution during a solar eclipse. This is because the diffuse light increases by more than 30% with respect to the direct solar radiation, increasing more at the shorter wavelength side of the UV spectrum. This plausible mechanism introduces an artificial decrease in total ozone during solar eclipse of more than 30 Dobson units (DU), which is confirmed by all Brewer and Dobson measurements. Changes in total ozone cited earlier in the refereed literature have not been confirmed in the present study.
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei
2017-08-01
Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics
NASA Astrophysics Data System (ADS)
Musset, S.; Kontar, E. P.; Vilmer, N.
2018-02-01
Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims: We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods: We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results: X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions: We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25-500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.
Cloud Induced Enhancement of Ground Level Solar Radiation
NASA Astrophysics Data System (ADS)
Inman, R.; Chu, Y.; Coimbra, C.
2013-12-01
Atmospheric aerosol and cloud cover are typically associated with long and short-term variability of all three solar radiation components at the ground level. Although aerosol attenuation can be a substantial factor for Direct Normal Irradiance (DNI) in some microclimates, the strongest factor for ground level irradiance attenuation is cloud cover which acts on time-scales associated with strong solar power generation fluctuations. Furthermore, the driving effects of clouds on radiative energy budgets include shortwave cooling, as a result of absorption of incoming solar radiation, and longwave heating, due to reduced emission of thermal radiation by relatively cool cloud tops. Under special circumstances, the presence of clouds in the circumsolar region may lead to the reverse; a local increase in the diffuse downwelling solar radiation due to directional scattering from clouds. This solar beam effect exceed the losses resulting from the backscattering of radiation into space. Such conditions result in radiation levels that temporarily exceed the localized clear sky values. These phenomena are referred to as Cloud Enhancement Events (CEEs). There are currently two fundamental CEE mechanisms discussed in the literature. The first involves well-defined, and optically thick cloud edges close to, but not obscuring, the solar disk. The effect here is of producing little or no change in the normal beam radiation. In this case, cloud edges in the vicinity of the sun create a non-isotropic increase in the local diffuse radiation field with respect to the isotropic scattering of a clear-sky atmosphere. The second type of CEE allows for partial or full obstruction of the solar disk by an optically thin diffuser such as fine clouds, haze or fog; which results in an enhanced but still nearly isotropic diffuse radiation field. In this study, an entire year of solar radiation data and total sky images taken at 30 second resolution at the University of California, Merced (UCM) is used in conjunction with optimized clear sky models, statistical analysis, and wavelet transform methods to investigate the solar radiation Ramp Rates (RRs) associated with both of the fundamental CEE mechanisms. Results indicate that CEEs account for nearly 5% of the total daytime hours in this dataset and produce nearly 4% of the total energy over the year. In addition, wavelet transform techniques suggest that CEEs at UCM location operate on timescales ranging from 2 to 4 minutes. Our results allow estimation of the probability and magnitude of these RRs as well the percentage of annual excess energy production resulting from CEEs which could be used to offset ancillary services required to operate PV power systems.
75 FR 65320 - Environmental Impact Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... Eight Allotments, Black Hills National Forest, Pennington and Custer Counties, SD, Wait Period Ends: 11... necessary under Section 1506.3(b) of the CEQ Regulations. EIS No. 20100416, Draft EIS, WAPA, CA, Rice Solar...
Solar Energy Evolution and Diffusion Studies | Solar Research | NREL
industry-wide studies that use data-driven and evidence-based methods to identify characteristics developed models of U.S. household PV adoption. The project also conducted two market pilots to test methods
Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve
2015-01-01
This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current–voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells. PMID:25907581
Measures for diffusion of solar PV in selected African countries
NASA Astrophysics Data System (ADS)
Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon; Pedersen, Mathilde Brix
2017-08-01
This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called 'technology action plans (TAPs)', which were main outputs of the Technology Needs Assessment project implemented in 10 African countries from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donor-led market for institutional systems). The paper finds that governments' strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include support to: local production; financing schemes; tax exemptions; establishment and reinforcement of standards; technical training; and research and development.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhong, Yonglin; Xu, Mingfeng; Su, Zhiyao
2017-01-01
In order to determine light requirements of indigenous groundcover plants for potential use in urban landscaping, we conducted a plant census in Yinpingshan Nature Reserve, Dongguan, China, and measured canopy structure and understory light regimes using hemispherical photography. We found that canopy openness, transmitted direct solar radiation, and transmitted diffuse solar radiation exhibited highly significant spatial heterogeneity. Species composition and diversity of groundcover plants were highly dependent on canopy structure and understory light condition. Greater diversity and more stems of groundcover plants were associated with greater canopy openness and understory radiation in most cases. Highly significant differences in species composition were detected along canopy openness, transmitted direct solar radiation, and transmitted diffuse solar radiation gradients, respectively. We also detected indicator species for specific understory light regimes, which will provide useful information when applying such species in urban greening under various light environments.
NASA Technical Reports Server (NTRS)
King, M. D.
1979-01-01
A hemispherical radiometer has been used to obtain spectrally narrow-band measurements of the downward hemispheric diffuse and total (global) flux densities at varying solar zenith angles on 14 days over Tucson. Data are presented which illustrate the effects of temporally varying atmospheric conditions as well as clear stable conditions on the ratio of the diffuse to direct solar radiation at the earth's surface. The ground albedo and the effective imaginary term of the complex refractive index of atmospheric particulates are derived from the diffuse-direct ratio measurements on seven clear stable days at two wavelengths using the statistical procedure described by King and Herman (1979). Results indicate that the downwelling diffuse radiation field in the midvisible region in Tucson can be adequately described by Mie scattering theory if the ground albedo is 0.279 + or - 0.100 and the index of absorption is 0.0306 + or - 0.0082.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
Hotta, H; Rempel, M; Yokoyama, T
2016-03-25
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. Copyright © 2016, American Association for the Advancement of Science.
Comparison of Boron diffused emitters from BN, BSoD and H3BO3 dopants
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-12-01
In this work, we are comparing different limited boron dopant sources for the emitter formation in n-type c-Si solar cells. High purity boric acid solution, commercially available boron spin on dopant and boron nitride solid source are used for comparison of emitter doping profiles for the same time and temperature conditions of diffusion. The characterizations done for the similar sheet resistance values for all the dopant sources show different surface morphologies and different device parameters. The measured emitter saturation current densities (Joe) are more than 20 fA cm-2 for all the dopant sources. The bulk carrier lifetimes measured for different diffusion conditions and different solar cell parameters for the similar sheet resistance values show the best result for boric acid diffusion and the least for BN solid source. So, different dopant sources result in different emitter and cell performances.
Assessment of diffuse radiation models in Azores
NASA Astrophysics Data System (ADS)
Magarreiro, Clarisse; Brito, Miguel; Soares, Pedro; Azevedo, Eduardo
2014-05-01
Measured irradiance databases usually consist of global solar radiation data with limited spatial coverage. Hence, solar radiation models have been developed to estimate the diffuse fraction from the measured global irradiation. This information is critical for the assessment of the potential of solar energy technologies; for example, the decision to use photovoltaic systems with tracking system. The different solar radiation models for this purpose differ on the parameters used as input. The simplest, and most common, are models which use global radiation information only. More sophisticated models require meteorological parameters such as information from clouds, atmospheric turbidity, temperature or precipitable water content. Most of these models comprise correlations with the clearness index, kt (portion of horizontal extra-terrestrial radiation reaching the Earth's surface) to obtain the diffuse fraction kd (portion of diffuse component from global radiation). The applicability of these different models is related to the local atmospheric conditions and its climatic characteristics. The models are not of general validity and can only be applicable to locations where the albedo of the surrounding terrain and the atmospheric contamination by dust are not significantly different from those where the corresponding methods were developed. Thus, models of diffuse fraction exhibit a relevant degree of location dependence: e.g. models developed considering data acquired in Europe are mainly linked to Northern, Central or, more recently, Mediterranean areas. The Azores Archipelago, with its particular climate and cloud cover characteristics, different from mainland Europe, has not yet been considered for the development of testing of such models. The Azorean climate reveals large amounts of cloud cover in its annual cycle, with spatial and temporal variabilities more complex than the common Summer/Winter pattern. This study explores the applicability of different existing correlation models of diffuse fraction and clearness index or other plain parameters to the Azorean region. Reliable data provided by the Atmospheric Radiation Measurements (ARM) Climate Research Facility from the Graciosa Island deployment of the ARM Mobile Facility (http://www.arm.gov/sites/amf/grw) was used to perform the analysis. Model results showed a tendency to underestimate higher values of diffuse radiation. From the performance results of the correlation models reviewed it was clear that there is room for improvement.
Development of Low-cost, High Energy-per-unit-area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.
1978-01-01
The development of two hexagonal solar cell process sequences, a laserscribing process technique for scribing hexagonal and modified hexagonal solar cells, a large through-put diffusion process, and two surface macrostructure processes suitable for large scale production is reported. Experimental analysis was made on automated spin-on anti-reflective coating equipment and high pressure wafer cleaning equipment. Six hexagonal solar cell modules were fabricated. Also covered is a detailed theoretical analysis on the optimum silicon utilization by modified hexagonal solar cells.
Maxey, C.; Andreas, A.
2009-02-03
A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.
Land availability and land value assessment for solar ponds in the United States
NASA Technical Reports Server (NTRS)
1982-01-01
The land availability and land values for solar ponds in the United States as they concern the residential, commercial, and institutional land use categories were investigated. Solar ponds were identified as efficient and economical means for collecting and storing direct and diffuse solar energy. Innovative methodologies were applied to arrive at regional projections regarding the amount of land that might potentially be available for retrofit or future solar pond applications. Regional land values were also documented and analyzed.
A study of the solar wind deceleration in the Earth's foreshock region
NASA Technical Reports Server (NTRS)
Zhang, T.-L.; Schwingenschuh, K.; Russell, C. T.
1995-01-01
Previous observations have shown that the solar wind is decelerated and deflected in the earth's upstream region populated by long-period waves. This deceleration is corelated with the 'diffuse' but not with the 'reflected' ion population. The speed of the solar wind may decrease tens of km/s in the foreshock region. The solar wind dynamic pressure exerted on the magnetopause may vary due to the fluctuation of the solar wind speed and density in the foreshock region. In this study, we examine this solar wind deceleration and determine how the solar wind deceleration varies in the foreshock region.
Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-01
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as amore » guide for future development of physics-based transposition models.« less
Diagnosing Model Errors in Simulation of Solar Radiation on Inclined Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-11-21
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models with one substantially underestimating the diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study canmore » be used as a guide for future development of physics-based transposition models.« less
Solar irradiance (W/m2) and downwelling diffuse attenuation coefficients (Kd; m-1) were determined in several locations in Prince William Sound, Alaska, USA, between April 2003 and December 2005 to assess temporal and spatial variation in solar radiation and the risks of photoenh...
Introduction to basic solar cell measurements
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1976-01-01
The basic approaches to solar cell performance and diagnostic measurements are described. The light sources, equipment for I-V curve measurement, and the test conditions and procedures for performance measurement are detailed. Solar cell diagnostic tools discussed include analysis of I-V curves, series resistance and reverse saturation current determination, spectral response/quantum yield measurement, and diffusion length/lifetime determination.
Flat-plate solar array project process development area, process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
The program is designed to investigate the fabrication of solar cells on N-type base material by a simultaneous diffusion of N-type and P-type dopants to form an P(+)NN(+) structure. The results of simultaneous diffusion experiments are being compared to cells fabricated using sequential diffusion of dopants into N-base material in the same resistivity range. The process used for the fabrication of the simultaneously diffused P(+)NN(+) cells follows the standard Westinghouse baseline sequence for P-base material except that the two diffusion processes (boron and phosphorus) are replaced by a single diffusion step. All experiments are carried out on N-type dendritic web grown in the Westinghouse pre-pilot facility. The resistivities vary from 0.5 (UC OMEGA)cm to 5 (UC OMEGA)cm. The dopant sources used for both the simultaneous and sequential diffusion experiments are commercial metallorganic solutions with phosphorus or boron components. After these liquids are applied to the web surface, they are baked to form a hard glass which acts as a diffusion source at elevated temperatures. In experiments performed thus far, cells produced in sequential diffusion tests have properties essentially equal to the baseline N(+)PP(+) cells. However, the simultaneous diffusions have produced cells with much lower IV characteristics mainly due to cross-doping of the sources at the diffusion temperature. This cross-doping is due to the high vapor pressure phosphorus (applied as a metallorganic to the back surface) diffusion through the SiO2 mask and then acting as a diffusant source for the front surface.
VIIRS On-Orbit Calibration for Ocean Color Data Processing
NASA Technical Reports Server (NTRS)
Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.
2012-01-01
The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.
NASA Technical Reports Server (NTRS)
Geiss, J.; Burgi, A.
1987-01-01
Previous calculations of thermal diffusion coefficients in partially ionized gases are extended to the case of unequal neutral and ion temperatures and/or temperature gradients. Formulas are derived for the general case of a major gas as well as for minor atoms and ions. Strong enhancements of minor-ion thermal diffusion coefficients over their values in the fully ionized gas are found when the degree of ionization in the main gas is relatively low. However, compared to the case of equal temperatures, the enhancements are less strong when the neutrals are cooler than the ions. The specific case of the H-H(+) mixture, which is important in the study of solar and stellar atmospheres, is discussed as an application.
The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Inoue, N.; Wilmsen, C. W.; Jones, K. A.
1981-02-01
Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.
S.J. Cheng; A.L. Steiner; D.Y. Hollinger; G. Bohrer; K.J. Nadelhoffer
2016-01-01
Clouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect...
Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin
2016-07-20
There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.
Status and Progress of High-efficiency Silicon Solar Cells
NASA Astrophysics Data System (ADS)
Xiao, Shaoqing; Xu, Shuyan
High-efficiency Si solar cells have attracted more and more attention from researchers, scientists, engineers of photovoltaic (PV) industry for the past few decades. Many high-quality researchers and engineers in both academia and industry seek solutions to improve the cell efficiency and reduce the cost. This desire has stimulated a growing number of major research and research infrastructure programmes, and a rapidly increasing number of publications in this filed. This chapter reviews materials, devices and physics of high-efficiency Si solar cells developed over the last 20 years. In this chapter there is a fair number of topics, not only from the material viewpoint, introducing various materials that are required for high-efficiency Si solar cells, such as base materials (FZ-Si, CZ-Si, MCZ-Si and multi-Si), emitter materials (diffused emitter and deposited emitter), passivation materials (Al-back surface field, high-low junction, SiO2, SiO x , SiN x , Al2O3 and a-Si:H), and other functional materials (antireflective layer, TCO and metal electrode), but also from the device and physics point of view, elaborating on physics, cell concept, development and status of all kinds of high-efficiency Si solar cells, such as passivated emitter and rear contact (PERC), passivated emitter and rear locally diffused (PERL), passivated emitter and rear totally diffused (PERT), Pluto, interdigitated back-contacted (IBC), emitter-wrap-through (EWT), metallization-wrap-through (MWT), Heterojunction with intrinsic thin-layer (HIT) and so on. Some representative examples of high-efficiency Si solar cell materials and devices with excellent performance and competitive advantages are presented.
Confinement of the solar tachocline by a cyclic dynamo magnetic field
NASA Astrophysics Data System (ADS)
Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul
2017-05-01
Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.
Computation of diffuse sky irradiance from multidirectional radiance measurements
NASA Technical Reports Server (NTRS)
Ahmad, Suraiya P.; Middleton, Elizabeth M.; Deering, Donald W.
1987-01-01
Accurate determination of the diffuse solar spectral irradiance directly above the land surface is important in characterizing the reflectance properties of these surfaces, especially vegetation canopies. This determination is also needed to infer the net radiation budget of the earth-atmosphere system above these surfaces. An algorithm is developed here for the computation of hemispheric diffuse irradiance using the measurements from an instrument called PARABOLA, which rapidly measures upwelling and downwelling radiances in three selected wavelength bands. The validity of the algorithm is established from simulations. The standard reference data set of diffuse radiances of Dave (1978), obtained by solving the radiative transfer equation numerically for realistic atmospheric models, is used to simulate PARABOLA radiances. Hemispheric diffuse irradiance is estimated from a subset of simulated radiances by using the algorithm described. The algorithm is validated by comparing the estimated diffuse irradiance with the true diffuse irradiance of the standard data set. The validations include sensitivity studies for two wavelength bands (visible, 0.65-0.67 micron; near infrared, 0.81-0.84 micron), different atmospheric conditions, solar elevations, and surface reflectances. In most cases the hemispheric diffuse irradiance computed from simulated PARABOLA radiances and the true irradiance obtained from radiative transfer calculations agree within 1-2 percent. This technique can be applied to other sampling instruments designed to estimate hemispheric diffuse sky irradiance.
A model of the photosynthetically available and usable irradiance in the sea
NASA Technical Reports Server (NTRS)
Collins, Donald J.; Davis, Curtiss O.; Booth, C. Rockwell; Kiefer, Dale A.; Stallings, Casson
1988-01-01
A theoretical model describing the depth dependence of the solar irradiance available to phytoplankton for photosynthesis is developed for waters classified as Case I by Jerlov (1976). The techniques used to account for the effects of incident solar irradiance, pigment concentration, and the spectral diffuse attentuation coefficient are described; an expression for the photosynthetically usable irradiance is derived; and particular attention is given to the specific diffuse absorption coefficient for chlorophyll (Morel, 1978). The relationships among the primary model parameters are shown in graphs.
NASA Astrophysics Data System (ADS)
Toušek, J.; Toušková, J.; Remeš, Z.; Chomutová, R.; Čermák, J.; Helgesen, M.; Carlé, J. E.; Krebs, F. C.
2015-12-01
Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD - DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.
NASA Technical Reports Server (NTRS)
Quinn, Roger D.; Kerslake, Thomas W.
1992-01-01
Dynamic simulations of Space Station Freedom (SSF) configured with solar dynamic (SD) power modules were performed. The structure was subjected to Space Shuttle docking disturbances, while being controlled with a 'natural' vibration and tracking control approach. Three control cases were investigated for the purpose of investigating the relationship between actuator effort, SD pointing, and thermal loading on the receiver aperture plate. Transient, one-dimensional heat transfer analyses were performed to conservatively predict temperatures of the multi-layered receiver aperture plate assembly and thermal stresses in its shield layer. Results indicate that the proposed aperture plate is tolerant of concentrated flux impingement during short-lived structural disturbances. Pointing requirements may be loosened and the requirement control torques lessened from that previously specified. Downsizing and simplifying the joint drive system should result in a considerable savings mass.
Solar radiation on Mars: Stationary photovoltaic array
NASA Technical Reports Server (NTRS)
Appelbaum, J.; Sherman, I.; Landis, G. A.
1993-01-01
Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.
Santos, Laura M.; Mattiace, Linda A.; Costa, Manoel L.; Ferreira, Luciano C.; Benabou, Kelly; Kim, Ana H.; Abrahams, John; Bennett, Michael V. L.; Rozental, Renato
2012-01-01
Spreading depression (SD), a slow diffusion-mediated self-sustained wave of depolarization that severely disrupts neuronal function, has been implicated as a cause of cellular injury in a number of central nervous system pathologies, including blind spots in the retina. Here we show that in the hypoglycemic chicken retina, spontaneous episodes of SD can occur, resulting in irreversible punctate lesions in the macula, the region of highest visual acuity in the central region of the retina. These lesions in turn can act as sites of origin for secondary self-sustained reentrant spiral waves of SD that progressively enlarge the lesions. Furthermore, we show that the degeneration of the macula under hypoglycemic conditions can be prevented by blocking reentrant spiral SDs or by blocking caspases. The observation that spontaneous formation of reentrant spiral SD waves leads to the development of progressive retinal lesions under conditions of hypoglycemia establishes a potential role of SD in initiation and progression of macular degeneration, one of the leading causes of visual disability worldwide. PMID:22308470
Evaluation of different models to estimate the global solar radiation on inclined surface
NASA Astrophysics Data System (ADS)
Demain, C.; Journée, M.; Bertrand, C.
2012-04-01
Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.
NASA Astrophysics Data System (ADS)
Dahlem, Markus A.; Schneider, Felix M.; Schöll, Eckehard
2008-06-01
The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The propagation velocity of ˜3mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or noninstantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimization of this feedback is elaborated for different control schemes and ranges of control parameters.
Cosmic rays and other rpace phenomena influenced on the Earth's climate
NASA Astrophysics Data System (ADS)
Lev, Dorman
2016-07-01
We consider effects of cosmic rays (CR) and some other space phenomena on the Earth's climate change. It is well known that the system of internal and external factors formatting the Earth's climate is very unstable: decreasing of planetary average annual temperature leads to an increase of planetary snow surface, and decreasing of the total annual solar energy input into the system decreases the planetary temperature even more. And inverse: increasing planetary temperature leads to an decrease of snow surface, and increasing of the total solar energy input into the system increases the planetary temperature even more. From this follows that even energetically small factors acted long time in one direction may have a big influence on climate change. In our opinion, the most important of these factors are CR (mostly through its influence on planetary cloudiness) and space dust (SD) through their influence on the flux of solar irradiation and on formation of clouds (these actions are in one direction). It is important that CR and SD influenced on global climate change in the same direction. Increasing of CR planetary intensity leads to increasing of formation clouds (especially low clouds on altitudes smaller than 3 km), increasing annual average of raining and decreasing of annual average planetary temperature. Increasing of SD decreases of solar irradiation and increases cloudiness what leads also to decreasing of annual average planetary temperature. Moreover, interactions of CR particles with dust granules decreases their dimensions what increased effectiveness of their actions on clouds. We consider data great variations of planetary temperature much before the beginning of the Earth's technological civilization (mostly caused by moving of the solar system around our Galaxy centre and collisions with molecular-dust clouds). We consider in details not only situation during the last hundred years, but also situation in the last one thousand years (and especially situation during Maunder minimum of solar activity), during many thousand and many millions years. It is shown that very big changes in climate were caused also by some rarely phenomena as impacts of asteroids and nearby supernova explosions with great influence on biosphere. We discuss also the problem on forecasting of global climate change what is especially important for saving present civilization from great climate catastrophes.
Kim, Seongtak; Bae, Soohyun; Lee, Sang-Won; Cho, Kyungjin; Lee, Kyung Dong; Kim, Hyunho; Park, Sungeun; Kwon, Guhan; Ahn, Seh-Won; Lee, Heon-Min; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan
2017-04-26
Organic-inorganic hybrid perovskite solar cells (PSCs) have been extensively studied because of their outstanding performance: a power conversion efficiency exceeding 22% has been achieved. The most commonly used PSCs consist of CH 3 NH 3 PbI 3 (MAPbI 3 ) with a hole-selective contact, such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spiro-bifluorene (spiro-OMeTAD), for collecting holes. From the perspective of long-term operation of solar cells, the cell performance and constituent layers (MAPbI 3 , spiro-OMeTAD, etc.) may be influenced by external conditions like temperature, light, etc. Herein, we report the effects of temperature on spiro-OMeTAD and the interface between MAPbI 3 and spiro-OMeTAD in a solar cell. It was confirmed that, at high temperatures (85 °C), I - and CH 3 NH 3 + (MA + ) diffused into the spiro-OMeTAD layer in the form of CH 3 NH 3 I (MAI). The diffused I - ions prevented oxidation of spiro-OMeTAD, thereby degrading the electrical properties of spiro-OMeTAD. Since ion diffusion can occur during outdoor operation, the structural design of PSCs must be considered to achieve long-term stability.
UIT Observations of Early-Type Galaxies and Analysis of the FUSE Spectrum of a Subdwarf B Star
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Krebs, Carolyn (Technical Monitor)
2001-01-01
This work covers Ultraviolet Imaging Telescope (UIT) observations of early-type galaxies (155 nm) and Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of a Galactic subdwarf B star (sdB). Early UV space astronomy missions revealed that early-type galaxies harbor a population of stars with effective temperatures greater than that of the main sequence turn-off (about 6,000 K) and UV emission that is very sensitive to characteristics of the stellar population. We present UV (155 nm) surface photometry and UV-B color profiles for 8 E and SO galaxies observed by UIT. Some objects have de Vaucouleurs surface brightness profiles, while others have disk-like profiles, but we find no other evidence for the presence of a disk or young, massive stars. There is a wide range of UV-B color gradients, but there is no correlation with metallicity gradients. SdB stars are the leading candidate UV emitters in old, high metallicity stellar populations (e.g., early-type galaxies). We observed the Galactic sdB star PG0749+658 with FUSE and derived abundances with the aim of constraining models of the heavy element distribution in sdB atmospheres. All of the elements measured are depleted with respect to solar, except for Cr and Mn, which are about solar, and Ni, which is enhanced. This work was supported in part by NASA grants NAG5-700 and NAG5-6403 to the University of Virginia and NAS5-32985 to Johns Hopkins University.
ERIC Educational Resources Information Center
Hirshberg, A. S.; And Others
This report examines the role of implementation centers as a vehicle for speeding the use of solar energy and energy conservation. It covers a study of previous building industry innovations; a brief review of the diffusion of innovation literature, including several case studies; identification of the solar thermal application process and…
An Update to the NASA Reference Solar Sail Thrust Model
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Artusio-Glimpse, Alexandra B.
2015-01-01
An optical model of solar sail material originally derived at JPL in 1978 has since served as the de facto standard for NASA and other solar sail researchers. The optical model includes terms for specular and diffuse reflection, thermal emission, and non-Lambertian diffuse reflection. The standard coefficients for these terms are based on tests of 2.5 micrometer Kapton sail material coated with 100 nm of aluminum on the front side and chromium on the back side. The original derivation of these coefficients was documented in an internal JPL technical memorandum that is no longer available. Additionally more recent optical testing has taken place and different materials have been used or are under consideration by various researchers for solar sails. Here, where possible, we re-derive the optical coefficients from the 1978 model and update them to accommodate newer test results and sail material. The source of the commonly used value for the front side non-Lambertian coefficient is not clear, so we investigate that coefficient in detail. Although this research is primarily designed to support the upcoming NASA NEA Scout and Lunar Flashlight solar sail missions, the results are also of interest to the wider solar sail community.
Diffusion into new markets: evolving customer segments in the solar photovoltaics market
NASA Astrophysics Data System (ADS)
Sigrin, Ben; Pless, Jacquelyn; Drury, Easan
2015-08-01
The US residential solar market is growing quickly, and as solar adoption diffuses into new populations, later adopters may differ significantly from earlier ones. Using a unique household-level survey dataset including 1234 adopters and 790 non-adopters from San Diego County, California, we explore differences in attitudinal and socio-economic factors for three groups: (i) adopters and non-adopters; (ii) early and more recent adopters; (iii) consumers adopting via buying or leasing. Our results suggest that adopters overall have higher incomes, are more educated, live in larger homes, and expect to stay in their homes for longer than their non-adopting peers. They also differ in their expectations of electricity retail rate changes and the impact solar could have on their home resale value. When examining differences between early and more recent adopters, we find that recent adopters are more representative of general homeowners and more politically moderate. They are also increasingly installing solar to protect against future electricity price increases and to lower electricity costs as opposed to adopting strictly for environmental reasons. Furthermore, more recent adopters differ significantly from earlier adopters in the situations that prompted them to adopt. The findings demonstrate how solar markets are evolving, reflecting changes in the underlying drivers of consumer adoption as well as innovative solar marketing strategies.
The electron diffusion coefficient in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.
1974-01-01
A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less
Energetic Particle Transport across the Mean Magnetic Field: Before Diffusion
NASA Astrophysics Data System (ADS)
Laitinen, T.; Dalla, S.
2017-01-01
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1-10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.
Gettering in multicrystalline silicon: A design-of-experiments approach
NASA Astrophysics Data System (ADS)
Schubert, W. K.
1994-12-01
Design-of-experiment methods were used to study gettering due to phosphorus diffusion and aluminum alloying in four industrial multicrystalline silicon materials: Silicon-Film material from AstroPower, heat-exchanger method (HEM) material from Crystal Systems, edge-defined film-fed growth (EFG) material from Mobil Solar, and cast material from Solarex. Time and temperature for the diffusion and alloy processes were chosen for a four-factor quadratic interaction experiment. Simple diagnostic devices were used to evaluate the gettering. Only EFG and HEM materials exhibited statistically significant gettering effects within the ranges used for the various parameters. Diffusion and alloying temperature were significant for HEM material; also there was a second-order interaction between the diffusion time and temperature. There was no interaction between the diffusion and alloying processes in HEM material. EFG material showed a first-order dependence on diffusion temperature and a second-order interaction between the diffusion temperature and the alloying time. Gettering recommendations for the HEM material were used to produce the best-yet Sandia cells on this material, but correlation with the gettering experiment was not strong. Some of the discrepancy arises from necessary processing differences between the diagnostic devices and regular solar cells. This issue and other lessons learned concerning this type of experiment are discussed.
Studies of the Solar Radiations' Influence About Geomembranes Used in Ecological Landfill
NASA Astrophysics Data System (ADS)
Vasiluta, Petre; Cofaru, Ileana Ioana; Cofaru, Nicolae Florin; Popa, Dragos Laurentiu
2017-12-01
The study shown in this paper presents the behavior of geomembranes used at the ecological landfills. The influences of the solar radiations has a great importance regarding the correct mounting of the geomembranes. The mathematical model developed for the determination anytime and anywhere in the world for the next values and parameters: apparent solar time, solar declination, solar altitude, solar azimuth and incidence angle, zone angle, angle of sun elevation, solar declination, solar constant, solar flux density, diffuse solar radiation, global radiation, soil albedo, total radiant flux density and relational links of these values. The results of this model was used for creations an AutoCAD subroutines useful for choosing the correct time for correct mounting anywhere of the geomembranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai, E-mail: ghazra@physics.iisc.ernet.in
The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation betweenmore » the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.« less
General working principles of CH3NH3PbX3 perovskite solar cells.
Gonzalez-Pedro, Victoria; Juarez-Perez, Emilio J; Arsyad, Waode-Sukmawati; Barea, Eva M; Fabregat-Santiago, Francisco; Mora-Sero, Ivan; Bisquert, Juan
2014-02-12
Organometal halide perovskite-based solar cells have recently realized large conversion efficiency over 15% showing great promise for a new large scale cost-competitive photovoltaic technology. Using impedance spectroscopy measurements we are able to separate the physical parameters of carrier transport and recombination in working devices of the two principal morphologies and compositions of perovskite solar cells, viz. compact thin films of CH3NH3PbI(3-x)Clx and CH3NH3PbI3 infiltrated on nanostructured TiO2. The results show nearly identical spectral characteristics indicating a unique photovoltaic operating mechanism that provides long diffusion lengths (1 μm). Carrier conductivity in both devices is closely matched, so that the most significant differences in performance are attributed to recombination rates. These results highlight the central role of the CH3NH3PbX3 semiconductor absorber in carrier collection and provide a new tool for improved optimization of perovskite solar cells. We report for the first time a measurement of the diffusion length in a nanostructured perovskite solar cell.
Spatially inhomogeneous acceleration of electrons in solar flares
NASA Astrophysics Data System (ADS)
Stackhouse, Duncan J.; Kontar, Eduard P.
2018-04-01
The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.
de Sisternes, Luis; Hu, Julia; Rubin, Daniel L; Marmor, Michael F
2015-05-01
To evaluate the relative involvement of inner and outer retina in hydroxychloroquine (HCQ) retinopathy while on the drug, and after drug cessation, using data from spectral-domain optical coherence tomography (SD-OCT). A total of 102 SD-OCT scans were obtained from 11 patients (classified as having early, moderate, or severe stages of toxicity) over a period of 4 years after cessation of HCQ. The inner and outer retina boundaries were identified automatically to measure thickness and characterize progression topographically. The segmentation of retinal layers was verified in SD-OCT cross-sections for all eyes and scans included in this study (a total of 102 scans). Topographic analysis showed that inner retina was not involved in HCQ toxicity to any meaningful degree, either between stages of retinopathy or after the drug is stopped. The characteristic bull's eye pattern of outer macula thinning appears when comparing moderate retinopathy (before any RPE damage) to the early stage. Later damage, as toxicity evolved to a severe stage, was diffuse across most of the macula. If the drug was stopped at an early or moderate stage, progression was limited to the first year and occurred diffusely without parafoveal localization. Hydroxychloroquine retinopathy primarily involves outer retina (photoreceptors). Outer retinal thinning while using HCQ initially involves the parafovea, but becomes diffuse across the macula as damage progresses or after drug cessation. When HCQ is stopped at an early or moderate stage (before RPE damage), progression seems to be limited to the first year.
Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells
2015-09-01
determined by the intensity of the illumination that the solar cell is exposed to. The diffusion lengths L can be further defined by n n nL D τ...absorbers with graded Ga concentrations. (3) Back Contact Model Models for back contact silicon solar cells have been created with results that closely...Radiation. New York, NY: Academic Press, 2012. [12] B. Richards, “Enhancing the performance of silicon solar cells via the application of passive
Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan
Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less
Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals
Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; ...
2015-02-27
Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less
Mahato, Prasenjit; Monguzzi, Angelo; Yanai, Nobuhiro; Yamada, Teppei; Kimizuka, Nobuo
2015-09-01
The conversion of low-energy light into photons of higher energy based on sensitized triplet-triplet annihilation upconversion (TTA-UC) has emerged as a promising wavelength-shifting methodology because it permits UC at excitation powers as low as the solar irradiance. However, its application has been significantly hampered by the slow diffusion of excited molecules in solid matrices. Here, we introduce metal-organic frameworks (MOFs) that promote TTA-UC by taking advantage of triplet exciton migration among fluorophores that are regularly aligned with spatially controlled chromophore orientations. We synthesized anthracene-containing MOFs with different molecular orientations, and the analysis of TTA-UC emission kinetics unveiled a high triplet diffusion rate with a micrometre-scale diffusion length. Surface modification of MOF nanocrystals with donor molecules and their encapsulation in glassy poly(methyl methacrylate) (PMMA) allowed the construction of molecular-diffusion-free solid-state upconverters, which lead to an unprecedented maximization of overall UC quantum yield at excitation powers comparable to or well below the solar irradiance.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-03-01
In the production of n-type crystalline silicon solar cells with boron diffused emitters, the formation of a boron rich layer (BRL) is a common phenomenon and is largely responsible for bulk lifetime degradation. The phenomenon of BRL formation during diffusion of boron spin-on dopant and its impact on bulk lifetime degradation are investigated in this work. The BRL formed beneath the borosilicate glass layer has thicknesses varying from 10 nm-150 nm depending on the diffusion conditions. The effective and bulk minority carrier lifetimes, measured with Al2O3 deposited layers and a quinhydron-methanol solution, show that carrier lifetime degradation is proportional to the BRL thicknesses and their surface recombination velocities. The controlled diffusion processes and different oxidation techniques used in this work can partially reduce the BRL thickness and improve carrier lifetime by more than 10%. But for BRL thicknesses higher than 50 nm, different etching techniques further lower the carrier lifetime and the degradation in the device cannot be recovered.
Operational performance of a low cost, air mass 2 solar simulator
NASA Technical Reports Server (NTRS)
Yass, K.; Curtis, H. B.
1975-01-01
Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.
Temperature dependence of damage coefficient in electron irradiated solar cells
NASA Technical Reports Server (NTRS)
Faith, T. J.
1973-01-01
Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.
Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
2016-06-02
Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic panels. Following numerous studies comparing the performance of transposition models, this work aims to understand the quantitative uncertainty in state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models, with one substantially underestimating the diffuse plane-of-array irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of the empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can bemore » used as a guide for the future development of physics-based transposition models and evaluations of system performance.« less
Diffusion in the chromosphere and the composition of the solar corona and energetic particles
NASA Technical Reports Server (NTRS)
Vauclair, S.; Meyer, J. P.
1985-01-01
Composition observations, in the solar photosphere, and in the upper transition region (TR) and corona imply a change of composition of the solar atmosphere somewhere between the photosphere and the upper TR. Heavy elements with first ionization potential (FIP) 9 eV (high-FIP element) are approx. 4 times less abundant in the TR and corona than in the photosphere, as compared to both hydrogen and heavy elements with lower low-FIP elements. A separation is suggested between neutral and ionized elements in a region where the high-FIP elements are mostly neutral, and the low-FIP elements ionized. This occurs in the chromosphere at altitudes above 600 km and below 2000 km above Photosphere. Whether the diffusion processes can explain the observed change in composition is investigated.
Modeling structural change in spatial system dynamics: A Daisyworld example.
Neuwirth, C; Peck, A; Simonović, S P
2015-03-01
System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Ogallagher, J. J.
1975-01-01
The anisotropy of solar flare protons from the direction of the 'garden hose' magnetic field line has been analyzed for 24 events observed by the University of Chicago experiment on Pioneers 10 and 11 in 1972 and 1973. The anisotropy versus time profiles during individual events are in general consistent with diffusive propagation, but several cases are observed where the decay is better described by an exponential time decay. The anisotropy amplitude evaluated at the time of maximum intensity for each event shows evidence for a gradual decrease with increasing distance from the sun which is qualitatively consistent with diffusive propagation and suggests that the effective interplanetary diffusion coefficient parallel to the magnetic field increases slowly with heliocentric distance.
Photospheric Magnetic Diffusion by Measuring Moments of Active Regions
NASA Astrophysics Data System (ADS)
Engell, Alexander; Longcope, D.
2013-07-01
Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Solar radiation for Mars power systems
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1989-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1990-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.
Enhancing energy transport in conjugated polymers
NASA Astrophysics Data System (ADS)
Holmes, Russell J.
2018-05-01
The conversion of light into usable chemical energy by plants is enabled by the precise spatial arrangement of light-absorbing photosynthetic systems and associated molecular complexes (1). In organic solar cells, there is also the need to control intermolecular spacing and molecular orientation, as well as thin-film crystallinity and morphology, so as to enable efficient energy migration and photoconversion (2). In an organic solar cell, light absorption creates excitons, tightly bound electron-hole pairs that must be efficiently dissociated into their component charge carriers in order to create an electrical current. Thus, long-range exciton migration must occur from the point of photogeneration to a dissociating site. On page 897 of this issue, Jin et al. (3) report on a conjugated polymer nanofiber system that yields exciton diffusion lengths greater than 200 nm. In comparison, organic solar cells are typically constructed with materials having exciton diffusion lengths one order of magnitude smaller than this value, which limits device thickness and optical absorption. Their approach exploits a sequential synthesis method that enables measurement of this long exciton diffusion length (see the figure).
U.S. Department of Energy Solar Decathlon Visitors Guide 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-03
The U.S. Department of Energy 2015 Visitors Guide is a free, hard-copy publication distributed free to those attending the Solar Decathlon event. The publications' objectives are to serve as the primary information resource for those in attendance, and to deliver a compelling message about the Solar Decathlon's success as a proven workforce development program and its role in educating students and the public about clean energy products and design solutions. The U.S. Department of Energy 2015 Visitors Guide SD15 Visitors Guide goals are to guide attendees through the Solar Decathlon village; List and explain the 10 contests; educate attendees aboutmore » the participating teams and their competition houses; provide access to more information on the Solar Decathlon website through the use of QR codes; and acknowledge the support of all event sponsors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potgieter, M. S.; Vos, E. E.; Munini, R.
The last solar minimum activity period, and the consequent minimum modulation conditions for cosmic rays, was unusual. The highest levels of Galactic protons were recorded at Earth in late 2009 in contrast to expectations. A comprehensive model was used to study the proton modulation for the period from 2006 to 2009 in order to determine what basic processes were responsible for solar modulation during this period and why it differs from proton modulation during previous solar minimum modulation periods. This established model is now applied to studying the solar modulation of electron spectra as observed for 80 MeV–30 GeV bymore » the PAMELA space detector from mid-2006 to the end of 2009. Over this period the heliospheric magnetic field had decreased significantly until the end of 2009 while the waviness of the heliospheric current sheet decreased moderately and the observed electron spectra increased by a factor of ∼1.5 at 1.0 GeV to ∼3.5 at 100 MeV. In order to reproduce the modulation evident from seven consecutive semesters, the diffusion coefficients had to increase moderately while maintaining the basic rigidity dependence. It is confirmed that the main diffusion coefficients are independent of rigidity below ∼0.5 GV, while the drift coefficient had to be reduced below this value. The 2006–2009 solar minimum epoch indeed was different than previously observed minima, at least since the beginning of the space exploration era. This period could be called “diffusion-dominated” as was also found for the modulation of protons.« less
Modeling and Simulation of III-Nitride-Based Solar Cells using NextnanoRTM
NASA Astrophysics Data System (ADS)
Refaei, Malak
Nextnano3 software is a well-known package for simulating semiconductor band-structures at the nanoscale and predicting the general electronic structure. In this work, it is further demonstrated as a viable tool for the simulation of III-nitride solar cells. In order to prove this feasibility, the generally accepted solar cell simulation package, PC1D, was chosen for comparison. To critique the results from both PC1D and Nextnano3, the fundamental drift-diffusion equations were used to calculate the performance of a simple p-n homojunction solar cell device analytically. Silicon was picked as the material for this comparison between the outputs of the two simulators as well as the results of the drift-diffusion equations because it is a well-known material in both software tools. After substantiating the capabilities of Nextnano3 for the simulation solar cells, an InGaN single-junction solar cell was simulated. The effects of various indium compositions and device structures on the performance of this InGaN p-n homojunction solar cell was then investigated using Nextnano 3 as a simulation tool. For single-junction devices with varying bandgap, an In0.6Ga0.4N device with a bandgap of 1.44 eV was found to be the optimum. The results of this research demonstrate that the Nextnano3 software can be used to usefully simulate solar cells in general, and III-nitride solar cells specifically, for future study of nanoscale structured devices.
NASA Astrophysics Data System (ADS)
Li, Z.; Hudson, M. K.; Chen, Y.
2013-12-01
The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on THEMIS measurements to express the boundary flux as three fit functions of solar wind parameters in a response window, that depend on energy and which solar parameter is used: speed, density, or both (Shin and Lee, 2013). The Dartmouth radial diffusion model has been run using LANL geosynchronous satellite measurements as the outer boundary for a one-month interval in July to August 2004 and the calculated phase space density (PSD) is compared with GPS measurements at the GPS orbit (L=4.16), at magnetic equatorial plane crossings, as a test of the model. We also used the outer boundary generated from the Shin and Lee model and examined this boundary condition by computing the error relative to the simulation using a LANL geosynchronous spacecraft data-driven outer boundary. The calculation shows that there is overestimation and underestimation at different times, however the new boundary condition can be used to drive the radial diffusion model generally, producing the phase space density increase and dropout during a storm with a relatively small error. Having this new method based on a solar wind parametrized data set, we can run the radial diffusion model for storms when particle measurements are not available at the outer boundary. We chose the Whole Heliosphere Interval (WHI) as an example and compared the result with MHD/test-particle simulations (Hudson et al., 2012), obtaining much better agreement with PSD based on GPS measurements at L=4.16 using the diffusion model, which incorporates atmospheric losses.
Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
Nagarajan, Vivek Krishna; Yu, Bing
2016-09-01
Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, <μ's (λ)> and <μa (λ)>, for native porcine tissues (n = 66) at room temperature, were 5.4 ± 0.3 cm(-1) and 0.780 ± 0.008 cm(-1) (SD), respectively. The <μ's (λ)> and <μa (λ)> for native chicken breast tissues (n = 66) at room temperature, were 2.69 ± 0.08 cm(-1) and 0.29 ± 0.01 cm(-1) (SD), respectively. In the first experiment, the <μ's (λ)> of coagulated porcine and chicken breast tissue rose to 56.4 ± 3.6 cm(-1) at 68.7 ± 1.7°C (SD), and 52.8 ± 1 cm(-1) at 57.1 ± 1.5°C (SD), respectively. Correspondingly, the <μa (λ)> of coagulated porcine (140.6°C), and chicken breast tissues (130°C) were 0.75 ± 0.05 cm(-1) and 0.263 ± 0.004 cm(-1) (SD). For both tissues, charring was observed at temperatures above 80°C. During continuous monitoring of porcine tissue (with connective tissues) heating, the <μ's (λ)> started to rise rapidly from 13.7 ± 1.5 minutes and plateaued at 19 ± 2.5 (SD) minutes. The <μ's (λ)> plateaued at 11.7 ± 3 (SD) minutes for porcine tissue devoid of connective tissue between probe and tissue surface. No charring was observed during continuous monitoring of thermal ablation process. The changes in optical absorption and scattering properties can be continuously quantified, which could be used as a diagnostic biomarker for assessing tissue coagulation/damage during thermal ablation. Lasers Surg. Med. 48:686-694, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gradient zone boundary control in salt gradient solar ponds
Hull, John R.
1984-01-01
A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.
Gradient zone-boundary control in salt-gradient solar ponds
Hull, J.R.
1982-09-29
A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.
Development of low cost contacts to silicon solar cells
NASA Technical Reports Server (NTRS)
Tanner, D. P.
1980-01-01
The results of the second phase of the program of developing low cost contacts to silicon solar cells using copper are presented. Phase 1 yielded the development of a plated Pd-Cr-Cu contact system. This process produced cells with shunting problems when they were heated to 400 C for 5 minutes. Means of stopping the identified copper diffusion which caused the shunting were investigated. A contact heat treatment study was conducted with Pd-Ag, Ci-Ag, Pd-Cu, Cu-Cr, and Ci-Ni-Cu. Nickel is shown to be an effective diffusion barrier to copper.
Silicon solar cell process development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Leung, D. C.; Iles, P. A.
1983-01-01
Measurements of minority carrier diffusion lengths were made on the small mesa diodes from HEM Si and SILSO Si. The results were consistent with previous Voc and Isc measurements. Only the medium grain SILSO had a distinct advantage for the non grain boundary diodes. Substantial variations were observed for the HEM ingot 4141C. Also a quantitatively scaled light spot scan was being developed for localized diffusion length measurements in polycrystalline silicon solar cells. A change to a more monochromatic input for the light spot scan results in greater sensitivity and in principle, quantitative measurement of local material qualities is now possible.
Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region
NASA Astrophysics Data System (ADS)
Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.
2017-12-01
Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high biomass burning aerosol loads, changing from being a source to being a sink of CO2 to the atmosphere.
Preshock region acceleration of implanted cometary H(+) and O(+)
NASA Astrophysics Data System (ADS)
Gombosi, T. I.
1988-01-01
A self-consistent, three-fluid model of plasma transport and implanted ion acceleration in the unshocked solar wind is presented. The solar wind plasma is depleted by charge exchange with the expanding cometary exosphere, while implanted protons and heavy ions are produced by photoionization and charge transfer and lost by charge exchange. A generalized transport equation describing convection, adiabatic and diffusive velocity change, and the appropriate production terms is used to describe the evolution of the two cometary ion components, while the moments of the Boltzmann equation are used to calculate the solar wind density and pressure. The flow velocity is obtained self-consistently by combining the conservation equations of the three ion species. The results imply that second-order Fermi acceleration can explain the implanted spectra observed in the unshocked solar wind. Comparison of measured and calculated distribution indicates that spatial diffusion of implanted ions probably plays an important role in forming the energetic particle environment in the shock vicinity.
NASA Astrophysics Data System (ADS)
Simayi, Shalamujiang; Mochizuki, Toshimitsu; Kida, Yasuhiro; Shirasawa, Katsuhiko; Takato, Hidetaka
2017-10-01
This paper presents a large-area (239-cm2) high-efficiency n-type bifacial solar cell that is processed using tube-furnace thermal diffusion employing liquid sources BBr3 for the front-side boron emitter and POCl3 for the rear-side phosphorus back surface field (BSF). The SiN x /Al2O3 stack was applied to the front-side boron emitter as a passivation layer. Both the front and rear-side electrodes are obtained using screen-printed contacts with H-patterns. The resulting highest-efficiency solar cell has front- and rear-side efficiencies of 20.3 and 18.7%, respectively, while the corresponding bifaciality is up to 92%. Finally, the passivation quality of the SiN x /Al2O3 stack on the front-side boron emitter and rear-side phosphorus BSF is investigated and visualized by measuring the internal quantum efficiency mapping of the bifacial solar cell.
NASA Technical Reports Server (NTRS)
Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.
1993-01-01
A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.
NASA Astrophysics Data System (ADS)
Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.
2011-02-01
4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).
Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne
2018-02-26
Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.
Evidence for solar flare rare gases in the Khor Temiki aubrite.
NASA Technical Reports Server (NTRS)
Rajan, R. S.; Price, P. B.
1973-01-01
It has been found by studying a number of gas-rich meteorites, including Khor Temiki that there is a correlation between the abundance of 'track-rich' grains and the concentration of trapped rare gases. The amount of solar flare gas in Khor Temiki is examined. It is pointed out that the Khor Temiki enstatite is an ideal sample in which to look for evidence of solar flare gases because there has been little or no diffusion loss of solar wind gases.
Diffusion lengths in irradiated N/P InP-on-Si solar cells
NASA Technical Reports Server (NTRS)
Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.
1996-01-01
Indium phosphide (InP) solar cells were made on silicon (Si) wafers (InP/Si) by to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. Spire has made N/P InP/Si cells of sizes up to 2 cm by 4 cm with beginning-of-life (BOL) AM0 efficiencies over 13% (one-sun, 28C). These InP/Si cells have higher absolute efficiency and power density after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells after a fluence of about 2e15 1 MeV electrons/sq. cm. In this work, we investigate the minority carrier (electron) base diffusion lengths in the N/P InP/Si cells. A quantum efficiency model was constructed for a 12% BOL AM0 N/P InP/Si cell which agreed well with the absolutely measured quantum efficiency and the sun-simulator measured AM0 photocurrent (30.1 mA/sq. cm). This model was then used to generate a table of AM0 photocurrents for a range of base diffusion lengths. AM0 photocurrents were then measured for irradiations up to 7.7e16 1 MeV electrons/sq. cm (the 12% BOL cell was 8% after the final irradiation). By comparing the measured photocurrents with the predicted photocurrents, base diffusion lengths were assigned at each fluence level. A damage coefficient K of 4e-8 and a starting (unirradiated) base electron diffusion length of 0.8 microns fits the data well. The quantum efficiency was measured again at the end of the experiment to verify that the photocurrent predicted by the model (25.5 mA/sq. cm) agreed with the simulator-measured photocurrent after irradiation (25.7 mA/sq. cm).
Diffusion of excitons in materials for optoelectronic device applications
NASA Astrophysics Data System (ADS)
Singh, Jai; Narayan, Monishka Rita; Ompong, David
2015-06-01
The diffusion of singlet excitonsis known to occur through the Förster resonance energy transfer (FRET) mechanism and that of singlet and triplet excitonscan occur through the Dexter carrier transfer mechanism. It is shown here that if a material possesses the strong exciton-spin-orbit-photon interaction then triplet excitonscan also be transported /diffused through a mechanism like FRET. The theory is applicable to the diffusion of excitonsin optoelectronic devices like organic solar cells, organic light emitting devices and inorganic scintillators.
[Contribution of multimodal imaging in the various stages of Stargardt disease].
El Matri, L; Falfoul, Y; Kortli, M; Hassairi, A; Charfi, H; Turki, A; Kort, F; Chebil, A
2017-10-01
To describe the contribution of multimodal imaging in the various stages of Stargardt disease (STGD). We retrospectively reviewed 46 eyes of 23 STGD patients with identified ABCA4 mutations. All patients underwent a complete ophthalmic examination, spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), fluorescein angiography (FA) and Indocyanine green angiography (ICGA). The mean age of patients was 25.5 years (range 8-56). Fundus examination was normal in 2 patients (subclinical stage), where SD-OCT showed localized retrofoveolar retinal pigment epithelium (RPE) thickening. FAF was normal in 1 eye and showed mild heterogeneous hyper-FAF in 3 eyes. Twelve eyes had mild salt and pepper changes in the macula (early stage) with diffuse retinal atrophy on SD-OCT and mixed hyper and hypoautofluorescence on FAF. Nine patients showed central atrophy with white-yellow flecks distributed in the posterior pole and mid-periphery. This phenotype showed total foveal atrophy on SD-OCT and normal peripapillary area on FAF. Twelve eyes had a large demarcated area of RPE atrophy, pigment clumping and migration extending to the peripheral retina associated with peripapillary atrophy. These eyes showed diffuse retinochoroidal atrophy on OCT with diffuse alterations reaching the peripapillary area on FAF. On FA, it was difficult to analyze the choroidal silence sign in patients with advanced stages of the disease. A hyperfluorescent window defect pattern was also found in patients with white-yellow flecks and did not correspond exactly to them, or to the areas of peripheral autofluorescent lesions. ICGA showed hypocyanescent areas seen at intermediate and late phases with multiple cyanescent points adjacent to them. On ICGA, hypocyanescent areas were more extensive than lesions observed on FAF. Multimodal imaging is helpful for the diagnosis of early stages of STGD disease and to better understand its pathophysiology. FAF and mostly SD-OCT have supplanted FA in the early, especially subclinical, stages. Over all, ICGA shows more extensive damage, making this tool useful for better understanding STGD and suggesting possible direct damage to the choriocapillaris associated with RPE lesions. In advanced stages, only DNA testing can confirm the diagnosis of STGD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
On the 3He anomaly in hot subdwarf B stars
NASA Astrophysics Data System (ADS)
Schneider, David; Irrgang, Andreas; Heber, Ulrich; Nieva, Maria F.; Przybilla, Norbert
2017-12-01
Decades ago, 3He isotope enrichment in helium-weak B-type main-sequence, in blue horizontal branch and in hot subdwarf B (sdB) stars, i.e., helium-core burning stars of the extreme horizontal branch, were discovered. Diffusion processes in the atmosphere of these stars lead to the observed abundance anomalies. Quantitative spectral analyses of high-resolution spectra to derive photospheric isotopic helium abundance ratios for known 3He sdBs have not been performed yet. We present preliminary results of high-resolution and high S/N spectra to determine the 3He and 4He abundances of nine known 3He sdBs. We used a hybrid local/non-local thermodynamic equilibrium (LTE/NLTE) approach for B-type stars investigating multiple He i lines, including λ4922 Å and λ6678 Å, which show the strongest isotopic shifts in the optical spectral range.We also report the discovery of four new 3He sdBs from the ESO Supernova Progenitor survey. Most of the 3He sdBs cluster in a narrow temperature strip between ˜ 26000 K and ˜ 30000 K and have almost no atmospheric 4He at all. Interestingly, three 3He sdBs show evidence for vertical helium stratification.
Development of New Front Side Metallization Method of Aluminum Electroplating for Silicon Solar Cell
NASA Astrophysics Data System (ADS)
Willis, Megan D.
In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4x10-6 Ω-cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of +/-0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13°C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.
Solar models with helium and heavy-element diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahcall, J.N.; Pinsonneault, M.H.; Wasserburg, G.J.
1995-10-01
Helium and heavy-element diffusion are both included in precise calculations of solar models. In addition, improvements in the input data for solar interior models are described for nuclear reaction rates, the solar luminosity, the solar age, heavy-element abundances, radiative opacities, helium and metal diffusion rates, and neutrino interaction cross sections. The effects on the neutrino fluxes of each change in the input physics are evaluated separately by constructing a series of solar models with one additional improvement added at each stage. The effective 1{sigma} uncertainties in the individual input quantities are estimated and used to evaluate the uncertainties in themore » calculated neutrino fluxes and the calculated event rates for solar neutrino experiments. The calculated neutrino event rates, including all of the improvements, are 9.3{sub {minus}1.4}{sup +1.2} SNU for the {sup 37}Cl experiment and 137{sub {minus}7}{sup +8} SNU for the {sup 71}Ga experiments. The calculated flux of {sup 7}Be neutrinos is 5.1(1.00{sub {minus}0.07}{sup +0.06}){times}10{sup 9} cm{sup {minus}2}s{sup {minus}1} and the flux of {sup 8}B neutrinos is 6.6(1.00{sub {minus}0.17}{sup +0.14}){times}10{sup 6} cm{sup {minus}2}s{sup {minus}1}. The primordial helium abundance found for this model is {ital Y}=0.278. The present-day surface abundance of the model is {ital Y}{sub {ital s}}=0.247, in agreement with the helioseismological measurement of {ital Y}{sub {ital s}}=0.242{plus_minus}0.003 determined by Hernandez and Christensen-Dalsgaard (1994). The computed depth of the convective zone is {ital R}=0.712{ital R}{sub {circle_dot}}, in agreement with the observed value determined from {ital p}-mode oscillation data of {ital R}=0.713{plus_minus}0.003{ital R}{sub {circle_dot}} found by Christensen-Dalsgaard {ital et} {ital al}. (1991). (Abstract Truncated)« less
NASA Astrophysics Data System (ADS)
Rains, D.; Dunipace, D.; Woo, C. K.
1981-02-01
Consumer motivations for choosing a solar energy equipped home when the nonsolar or conventional model was available were investigated. The approach was to test the relative importance of demographic, dwelling unit, and heating system characteristics in household decisions to purchase a home equipped with solar energy devices. Two statistical models were developed: one to examine the relationship between the types of home buyers (as an identifiable market segment) and the decision to purchase a solar home; and the other to compare the energy use of solar vs. conventional homes selected in the sample.
NASA Technical Reports Server (NTRS)
Mueller, Robert L.
1987-01-01
Calculations of the influence of atmospheric conditions on solar cell short-circuit current (Isc) are made using a recently developed computer model for solar spectral irradiance distribution. The results isolate the dependence of Isc on changes in the spectral irradiance distribution without the direct influence of the total irradiance level. The calculated direct normal irradiance and percent diffuse irradiance are given as a reference to indicate the expected irradiance levels. This method can be applied to the calibration of photovoltaic reference cells. Graphic examples are provided for amorphous silicon and monocrystalline silicon solar cells under direct normal and global normal solar irradiances.
Charge collection and pore filling in solid-state dye-sensitized solar cells.
Snaith, Henry J; Humphry-Baker, Robin; Chen, Peter; Cesar, Ilkay; Zakeeruddin, Shaik M; Grätzel, Michael
2008-10-22
The solar to electrical power conversion efficiency for dye-sensitized solar cells (DSCs) incorporating a solid-state organic hole-transporter can be over 5%. However, this is for devices significantly thinner than the optical depth of the active composites and by comparison to the liquid electrolyte based DSCs, which exhibit efficiencies in excess of 10%, more than doubling of this efficiency is clearly attainable if all the steps in the photovoltaic process can be optimized. Two issues are currently being addressed by the field. The first aims at enhancing the electron diffusion length by either reducing the charge recombination or enhancing the charge transport rates. This should enable a larger fraction of photogenerated charges to be collected. The second, though less actively investigated, aims to improve the physical composite formation, which in this instance is the infiltration of mesoporous TiO(2) with the organic hole-transporter 2,2',7,7'-tetrakis(N,N-di-p-methoxypheny-amine)-9,9'-spirobifluorene (spiro-MeOTAD). Here, we perform a broad experimental study to elucidate the limiting factors to the solar cell performance. We first investigate the charge transport and recombination in the solid-state dye-sensitized solar cell under realistic working conditions via small perturbation photovoltage and photocurrent decay measurements. From these measurements we deduce that the electron diffusion length near short-circuit is as long as 20 µm. However, at applied biases approaching open-circuit potential under realistic solar conditions, the diffusion length becomes comparable with the film thickness, ∼2 µm, illustrating that real losses to open-circuit voltage, fill factor and hence efficiency are occurring due to ineffective charge collection. The long diffusion length near short-circuit, on the other hand, illustrates that another process, separate from ineffective charge collection, is rendering the solar cell less than ideal. We investigate the process of TiO(2) mesopore infiltration with spiro-MeOTAD by examining the cross-sectional images of and performing photo-induced absorption spectroscopy on devices with a range of thickness, infiltrated with spiro-MeOTAD with a range of concentrations. We present our interpretation of the mechanism for material infiltration, and by improving the casting conditions demonstrate efficient charge collection through devices of over 7 µm in thickness. This investigation represents an improvement in our understanding of the limiting factors to the dye-sensitized solar cell. However, much work, focused on composite formation and improved kinetic competition, is required to realize the true potential of this concept.
Modelling and fabrication of high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Rohatgi, A.; Smith, A. W.; Salami, J.
1991-10-01
This report covers the research conducted on modelling and development of high efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. The third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high efficiency silicon cells.
Application of the SEM to the measurement of solar cell parameters
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Andrews, C. W.
1977-01-01
A pair of techniques are described which make use of the SEM to measure, respectively, the minority carrier diffusion length and the metallurgical junction depth in silicon solar cells. The former technique permits the measurement of the true bulk diffusion length through the application of highly doped field layers to the back surfaces of the cells being investigated. The technique yields an absolute value of the diffusion length from a knowledge of the collected fraction of the injected carriers and the cell thickness. It is shown that the secondary emission contrast observed in the SEM on a reverse-biased diode can depict the location of the metallurgical junction if the diode has been prepared with the proper beveled geometry. The SEM provides the required contrast and the option of high magnification, permitting the measurement of extremely shallow junction depths.
Reconnection in the Post-impulsive Phase of Solar Flares
NASA Astrophysics Data System (ADS)
Forbes, Terry G.; Seaton, Daniel B.; Reeves, Katharine K.
2018-05-01
Using a recently developed analytical procedure, we determine the rate of magnetic reconnection in the “standard” model of eruptive solar flares. During the late phase, the neutral line is located near the lower tip of the reconnection current sheet, and the upper region of the current sheet is bifurcated into a pair of Petschek-type shocks. Despite the presence of these shocks, the reconnection rate remains slow if the resistivity is uniform and the flow is laminar. Fast reconnection is achieved only if there is some additional mechanism that can shorten the length of the diffusion region at the neutral line. Observations of plasma flows by the X-ray telescope on Hinode imply that the diffusion region is, in fact, quite short. Two possible mechanisms for reducing the length of the diffusion region are localized resistivity and MHD turbulence.
NASA Technical Reports Server (NTRS)
Ogallagher, J. J.
1973-01-01
A simple one-dimensional time-dependent diffusion-convection model for the modulation of cosmic rays is presented. This model predicts that the observed intensity at a given time is approximately equal to the intensity given by the time independent diffusion convection solution under interplanetary conditions which existed a time iota in the past, (U(t sub o) = U sub s(t sub o - tau)) where iota is the average time spent by a particle inside the modulating cavity. Delay times in excess of several hundred days are possible with reasonable modulation parameters. Interpretation of phase lags observed during the 1969 to 1970 solar maximum in terms of this model suggests that the modulating region is probably not less than 10 a.u. and maybe as much as 35 a.u. in extent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskar, Ankush; Vichare, Geeta; Subramanian, Prasad, E-mail: ankushbhaskar@gmail.com
2016-09-10
We study 50 cosmic-ray Forbush decreases (FDs) from the Oulu neutron monitor data during 1997–2005 that were associated with Earth-directed interplanetary coronal mass ejections (ICMEs). Such events are generally thought to arise due to the shielding of cosmic rays by a propagating diffusive barrier. The main processes at work are the diffusion of cosmic rays across the large-scale magnetic fields carried by the ICME and their advection by the solar wind. In an attempt to better understand the relative importance of these effects, we analyze the relationship between the FD profiles and those of the interplanetary magnetic field (B) andmore » the solar wind speed (V {sub sw}). Over the entire duration of a given FD, we find that the FD profile is generally (anti)correlated with the B and V {sub sw} profiles. This trend holds separately for the FD main and recovery phases too. For the recovery phases, however, the FD profile is highly anti-correlated with the V {sub sw} profile, but not with the B profile. While the total duration of the FD profile is similar to that of the V {sub sw} profile, it is significantly longer than that of the B profile. Using the convection–diffusion model, a significant contribution of advection by solar wind is found during the recovery phases of the FD.« less
NASA Astrophysics Data System (ADS)
Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun
2018-04-01
As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.
A new empirical model to estimate hourly diffuse photosynthetic photon flux density
NASA Astrophysics Data System (ADS)
Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L.
2018-05-01
Knowledge of the photosynthetic photon flux density (Qp) is critical in different applications dealing with climate change, plant physiology, biomass production, and natural illumination in greenhouses. This is particularly true regarding its diffuse component (Qpd), which can enhance canopy light-use efficiency and thereby boost carbon uptake. Therefore, diffuse photosynthetic photon flux density is a key driving factor of ecosystem-productivity models. In this work, we propose a model to estimate this component, using a previous model to calculate Qp and furthermore divide it into its components. We have used measurements in urban Granada (southern Spain), of global solar radiation (Rs) to study relationships between the ratio Qpd/Rs with different parameters accounting for solar position, water-vapour absorption and sky conditions. The model performance has been validated with experimental measurements from sites having varied climatic conditions. The model provides acceptable results, with the mean bias error and root mean square error varying between - 0.3 and - 8.8% and between 9.6 and 20.4%, respectively. Direct measurements of this flux are very scarce so that modelling simulations are needed, this is particularly true regarding its diffuse component. We propose a new parameterization to estimate this component using only measured data of solar global irradiance, which facilitates its use for the construction of long-term data series of PAR in regions where continuous measurements of PAR are not yet performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. Wemore » show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.« less
Diffusion into new markets: Evolving customer segments in the solar photovoltaics market
Sigrin, Ben; Pless, Jacquelyn; Drury, Easan
2015-08-03
The US residential solar market is growing quickly, and as solar adoption diffuses into new populations, later adopters may differ significantly from earlier ones. Using a unique household-level survey dataset including 1234 adopters and 790 non-adopters from San Diego County, California, we explore differences in attitudinal and socio-economic factors for three groups: (i) adopters and non-adopters; (ii) early and more recent adopters; (iii) consumers adopting via buying or leasing. Our results suggest that adopters overall have higher incomes, are more educated, live in larger homes, and expect to stay in their homes for longer than their non-adopting peers. They alsomore » differ in their expectations of electricity retail rate changes and the impact solar could have on their home resale value. When examining differences between early and more recent adopters, we find that recent adopters are more representative of general homeowners and more politically moderate. They are also increasingly installing solar to protect against future electricity price increases and to lower electricity costs as opposed to adopting strictly for environmental reasons. Furthermore, more recent adopters differ significantly from earlier adopters in the situations that prompted them to adopt. Lastly, the findings demonstrate how solar markets are evolving, reflecting changes in the underlying drivers of consumer adoption as well as innovative solar marketing strategies.« less
Diffusion into new markets: Evolving customer segments in the solar photovoltaics market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigrin, Ben; Pless, Jacquelyn; Drury, Easan
The US residential solar market is growing quickly, and as solar adoption diffuses into new populations, later adopters may differ significantly from earlier ones. Using a unique household-level survey dataset including 1234 adopters and 790 non-adopters from San Diego County, California, we explore differences in attitudinal and socio-economic factors for three groups: (i) adopters and non-adopters; (ii) early and more recent adopters; (iii) consumers adopting via buying or leasing. Our results suggest that adopters overall have higher incomes, are more educated, live in larger homes, and expect to stay in their homes for longer than their non-adopting peers. They alsomore » differ in their expectations of electricity retail rate changes and the impact solar could have on their home resale value. When examining differences between early and more recent adopters, we find that recent adopters are more representative of general homeowners and more politically moderate. They are also increasingly installing solar to protect against future electricity price increases and to lower electricity costs as opposed to adopting strictly for environmental reasons. Furthermore, more recent adopters differ significantly from earlier adopters in the situations that prompted them to adopt. Lastly, the findings demonstrate how solar markets are evolving, reflecting changes in the underlying drivers of consumer adoption as well as innovative solar marketing strategies.« less
Spectral measurements and analyses of atmospheric effects on remote sensor data
NASA Technical Reports Server (NTRS)
Hulstrom, R. L.
1975-01-01
The radiance as measured by a satellite remote sensor is determined by a number of different factors, including the intervening atmosphere, the target reflectivity characteristics, the characteristics of the total incident solar irradiance, and the incident solar irradiance/sensor viewing geometry. Measurement techniques and instrumentation are considered, taking into account total and diffuse solar irradiance, target reflectance/radiance, atmospheric optical depth/transmittance, and atmospheric path radiance.
The Effect of Planetary Albedo on Solar Orientation of Spacecraft
NASA Technical Reports Server (NTRS)
Fontana, Anthony
1967-01-01
The analytical expression for the solar orientation error caused by planetary albedo is derived. A typical solar sensor output characteristic is assumed and a computer solution to the analytical is obtained. The computer results are presented for a spacecraft in the vicinity of Earth, Venus, Mars, and the Moon. Each planetary body is assumed to be a spherical diffuse reflector with cylindrical shadows and a constant albedo. The data generated herein permit the selection of an appropriate coarse-sensor to fine-sensor switching angle for solar orientation control systems and facilitate the the interpretation of solar-referenced scientific experiment data.
New Solution of Diffusion-Advection Equation for Cosmic-Ray Transport Using Ultradistributions
NASA Astrophysics Data System (ADS)
Rocca, M. C.; Plastino, A. R.; Plastino, A.; Ferri, G. L.; de Paoli, A.
2015-11-01
In this paper we exactly solve the diffusion-advection equation (DAE) for cosmic-ray transport. For such a purpose we use the Theory of Ultradistributions of J. Sebastiao e Silva, to give a general solution for the DAE. From the ensuing solution, we obtain several approximations as limiting cases of various situations of physical and astrophysical interest. One of them involves Solar cosmic-rays' diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latour, M.; Fontaine, G.; Brassard, P.
2011-06-01
We first present our new grids of model atmospheres and spectra for hot subdwarf O (sdO) stars: standard non-LTE (NLTE) H+He models with no metals, NLTE line-blanketed models with C+N+O, and NLTE line-blanketed models with C+N+O+Fe. Using hydrogen and helium lines in the optical range, we make detailed comparisons between theoretical spectra of different grids in order to characterize the line-blanketing effects of metals. We find these effects to be dependent on both the effective temperature and the surface gravity. Moreover, we find that the helium abundance also influences in an important way the effects of line blanketing on themore » resulting spectra. We further find that the addition of Fe (solar abundance) leads only to incremental effects on the atmospheric structure as compared with the case where the metallicity is defined by C+N+O (solar abundances). We use our grids to perform fits on a 9 A resolution, high signal-to-noise ratio ({approx}300 blueward of 5000 A) optical spectrum of SDSS J160043.6+074802.9, the only known pulsating sdO star. Our best and most reliable result is based on the fit achieved with NLTE synthetic spectra that include C, N, O, and Fe in solar abundances, leading to the following parameters: T{sub eff} = 68,500 {+-} 1770 K, log g = 6.09 {+-} 0.07, and log N(He)/N(H) = -0.64 {+-} 0.05 (formal fitting errors only). This combination of parameters, particularly the comparatively high helium abundance, implies that line-blanketing effects due to metals are not very large in the atmosphere of this sdO star.« less
Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.
1994-01-01
Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.
NASA Astrophysics Data System (ADS)
Ali, A.; Elkington, S. R.; Malaspina, D.
2014-12-01
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.
Reconstruction of daily solar UV irradiation from 1893 to 2002 in Potsdam, Germany
NASA Astrophysics Data System (ADS)
Junk, Jürgen; Feister, Uwe; Helbig, Alfred
2007-08-01
Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281 293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280 315 nm), UV-A (315 400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.
NASA Astrophysics Data System (ADS)
Mehrotra, A.; Alemu, A.; Freundlich, A.
2011-02-01
Crystalline defects (e.g. dislocations or grain boundaries) as well as electron and proton induced defects cause reduction of minority carrier diffusion length which in turn results in degradation of efficiency of solar cells. Hetro-epitaxial or metamorphic III-V devices with low dislocation density have high BOL efficiencies but electron-proton radiation causes degradation in EOL efficiencies. By optimizing the device design (emitter-base thickness, doping) we can obtain highly dislocated metamorphic devices that are radiation resistant. Here we have modeled III-V single and multi junction solar cells using drift and diffusion equations considering experimental III-V material parameters, dislocation density, 1 Mev equivalent electron radiation doses, thicknesses and doping concentration. Thinner device thickness leads to increment in EOL efficiency of high dislocation density solar cells. By optimizing device design we can obtain nearly same EOL efficiencies from high dislocation solar cells than from defect free III-V multijunction solar cells. As example defect free GaAs solar cell after optimization gives 11.2% EOL efficiency (under typical 5x1015cm-2 1 MeV electron fluence) while a GaAs solar cell with high dislocation density (108 cm-2) after optimization gives 10.6% EOL efficiency. The approach provides an additional degree of freedom in the design of high efficiency space cells and could in turn be used to relax the need for thick defect filtering buffer in metamorphic devices.
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
Gamma Ray Astrophysics: New insight into the universe
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Trombka, J. I.
1981-01-01
Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.
Amorphous semiconductor solar cell
Dalal, Vikram L.
1981-01-01
A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.
Lustbader, J.; Andreas, A.
2012-04-01
This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.
Brain Structural Changes in Obstructive Sleep Apnea
Macey, Paul M.; Kumar, Rajesh; Woo, Mary A.; Valladares, Edwin M.; Yan-Go, Frisca L.; Harper, Ronald M.
2008-01-01
Study Objectives: Determine whether obstructive sleep apnea (OSA) subjects show indications of axonal injury. Design: We assessed fiber integrity in OSA and control subjects with diffusion tensor imaging (DTI). We acquired four whole-brain DTI series from each subject. The four series were realigned, and the diffusion tensor calculated at each voxel. Fractional anisotropy (FA), a measure of fiber integrity, was derived from the diffusion tensor, resulting in a whole brain FA “map.” The FA maps were spatially normalized, smoothed, and compared using voxel-based statistics to determine differences between OSA and control groups, with age as a covariate (P < 0.05, corrected for multiple comparisons). Setting: University medical center. Subjects: We studied 41 patients with untreated OSA (mean age ± SD: 46.3 ± 8.9 years; female/male: 7/34) with apnea-hypopnea index 15 to 101 (mean ± SD: 35.7 ± 18.1 events/hour), and 69 control subjects (mean age ± SD: 47.5 ± 8.79 years; female/male: 25/44). Measurements and Results: Multiple regions of lower FA appeared within white matter in the OSA group, and included fibers of the anterior corpus callosum, anterior and posterior cingulate cortex and cingulum bundle, right column of the fornix, portions of the frontal, ventral prefrontal, parietal and insular cortices, bilateral internal capsule, left cerebral peduncle, middle cerebellar peduncle and corticospinal tract, and deep cerebellar nuclei. Conclusions: White matter is extensively affected in OSA patients; the alterations include axons linking major structures within the limbic system, pons, frontal, temporal and parietal cortices, and projections to and from the cerebellum. Citation: Macey PM; Kumar R; Woo MA; Valladares EM; Yan-Go FL; Harper RM. Brain structural changes in obstructive sleep apnea. SLEEP 2008;31(7):967-977. PMID:18652092
Kishimoto, Keiko; Tajima, Shinya; Maeda, Ichiro; Takagi, Masayuki; Ueno, Takahiko; Suzuki, Nao; Nakajima, Yasuo
2016-08-01
Diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) are widely used for detecting uterine endometrial cancer. The relationships between ADC values and pathological features of endometrial cancer have not yet been established. To investigate whether ADC values of endometrial cancer vary according to histologic tumor cellularity and tumor grade. We retrospectively reviewed 30 pathologically confirmed endometrial cancers. All patients underwent conventional non-enhanced magnetic resonance imaging (MRI) and DWI procedures, and ADC values were calculated. Tumor cellularity was evaluated by counting cancer cells in three high-power ( × 400) fields. The correlation between ADC values and tumor cellularity was assessed using Pearson's correlation coefficient test for statistical analysis. The mean ± standard deviation (SD) ADC value ( ×10(-3) mm(2)/s) of endometrial cancer was 0.85 ± 0.22 (range, 0.55-1.71). The mean ± SD tumor cellularity was 528.36 ± 16.89 (range, 298.0-763.6). ADC values were significantly inversely correlated with tumor cellularity. No significant relationship was observed between ADC values and tumor grade (mean ADC values: G1, 0.88 ± 0.265 × 10(-3) mm(2)/s; G2, 0.80 ± 0.178 × 10(-3) mm(2)/s; G3, 0.81 ± 0.117 × 10(-3) mm(2)/s). There is a significant inverse relationship between ADC values and tumor cellularity in endometrial cancer. No significant differences in average ADC value were observed between G1, G2, and G3 tumors. However, the lower the tumor grade, the wider the SD. © The Foundation Acta Radiologica 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Tong; Wan, Yan; Guo, Zhi
2016-06-27
By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiengarten, T.; Fichtner, H.; Kleimann, J.
2016-12-10
We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results frommore » the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.« less
Associations of blood pressure, sunlight, and vitamin D in community-dwelling adults.
Rostand, Stephen G; McClure, Leslie A; Kent, Shia T; Judd, Suzanne E; Gutiérrez, Orlando M
2016-09-01
Vitamin D deficiency/insufficiency is associated with hypertension. Blood pressure (BP) and circulating vitamin D concentrations vary with the seasons and distance from the equator suggesting BP varies inversely with the sunshine available (insolation) for cutaneous vitamin D photosynthesis. To determine if the association between insolation and BP is partly explained by vitamin D, we evaluated 1104 participants in the Reasons for Racial and Geographic Differences in Stroke study whose BP and plasma 25-hydroxyvitamin D [25(OH)D] concentrations were measured. We found a significant inverse association between SBP and 25(OH)D concentration and an inverse association between insolation and BP in unadjusted analyses. After adjusting for other confounding variables, the association of solar insolation and BP was augmented, -0.3.5 ± SEM 0.01 mmHg/1 SD higher solar insolation, P = 0.01. The greatest of effects of insolation on SBP were observed in whites (-5.2 ± SEM 0.92 mmHg/1 SD higher solar insolation, P = 0.005) and in women (-3.8 ± SEM 1.7 mmHg, P = 0.024). We found that adjusting for 25(OH)D had no effect on the association of solar insolation with SBP. We conclude that although 25(OH)D concentration is inversely associated with SBP, it did not explain the association of greater sunlight exposure with lower BP.
Singer, Adam D; Pattany, Pradip M; Fayad, Laura M; Tresley, Jonathan; Subhawong, Ty K
2016-01-01
Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity. Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent. Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
Nguyen, Hieu T.; Johnston, Steve; Paduthol, Appu; ...
2017-09-01
A micro-photoluminescence-based technique is presented, to quantify and map sheet resistances of boron-diffused layers in silicon solar cell precursors with micron-scale spatial resolution at room temperature. The technique utilizes bandgap narrowing effects in the heavily-doped layers, yielding a broader photoluminescence spectrum at the long-wavelength side compared to the spectrum emitted from lightly doped silicon. By choosing an appropriate spectral range as a metric to assess the doping density, the impacts of photon reabsorption on the analysis can be avoided; thus, an accurate characterization of the sheet resistance can be made. This metric is demonstrated to be better representative of themore » sheet resistance than the surface doping density or the total dopant concentration of the diffused layer. The technique is applied to quantify sheet resistances of 12-um-wide diffused fingers in interdigitated back-contact solar cell precursors and large diffused areas. The results are confirmed by both 4-point probe and time-of-flight secondary-ion mass spectrometry measurements. Lastly, the practical limitations associated with extending the proposed technique into an imaging mode are presented and explained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hieu T.; Johnston, Steve; Paduthol, Appu
A micro-photoluminescence-based technique is presented, to quantify and map sheet resistances of boron-diffused layers in silicon solar cell precursors with micron-scale spatial resolution at room temperature. The technique utilizes bandgap narrowing effects in the heavily-doped layers, yielding a broader photoluminescence spectrum at the long-wavelength side compared to the spectrum emitted from lightly doped silicon. By choosing an appropriate spectral range as a metric to assess the doping density, the impacts of photon reabsorption on the analysis can be avoided; thus, an accurate characterization of the sheet resistance can be made. This metric is demonstrated to be better representative of themore » sheet resistance than the surface doping density or the total dopant concentration of the diffused layer. The technique is applied to quantify sheet resistances of 12-um-wide diffused fingers in interdigitated back-contact solar cell precursors and large diffused areas. The results are confirmed by both 4-point probe and time-of-flight secondary-ion mass spectrometry measurements. Lastly, the practical limitations associated with extending the proposed technique into an imaging mode are presented and explained.« less
The generation and dissipation of solar and galactic magnetic fields.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1973-01-01
Turbulent diffusion of magnetic field plays an essential role in the generation of magnetic field in most astrophysical bodies. Review of what can be proved and what can be believed about the turbulent diffusion of magnetic field. Observations indicate the dissipation of magnetic field at rates that can be understood only in terms of turbulent diffusion. Theory shows that a large-scale weak magnetic field diffuses in a turbulent flow in the same way that smoke is mixed throughout the fluid by the turbulence. The small-scale fields (produced from the large-scale field by the turbulence) are limited in their growth by reconnection of field lines at neutral points, so that the turbulent mixing of field and fluid is not halted by them. Altogether, it appears that the mixing of field and fluid in the observed turbulent motions in the sun and in the Galaxy is unavoidable. Turbulent diffusion causes decay of the general solar fields in a decade or so, and of the galactic field in 100 m.y. to 1 b.y. It is concluded that continual dynamo action is implied by the observed existence of the fields.
NASA Astrophysics Data System (ADS)
Kita, N. T.; Ushikubo, T.; Valley, J. W.
2008-05-01
The CAMECA IMS-1280 large radius, multicollector ion microprobe at the Wisc-SIMS National Facility is capable of high accuracy and precision for in situ analysis of isotope ratios. With improved hardware stability and software capability, high precision isotope analyses are routinely performed, typically 5 min per spot. We have developed analytical protocols for stable isotope analyses of oxygen, carbon, Mg, Si and Sulfur using multi-collector Faraday Cups (MCFC) and achieved precision of 0.1-0.2 ‰ (1SD) from a typically 10μm spot analyses. A number of isotopically homogeneous mineral standards have been prepared and calibrated in order to certify the accuracy of analyses in the same level. When spatial resolution is critical, spot size is reduced down to sub- μm for δ 18O to obtain better than 0.5‰ (1SD) precision by using electron multiplier (EM) on multi-collection system. Multi-collection EM analysis is also applied at 10 ppm level to Li isotope ratios in zircon with precision better than 2‰ (1SD). A few applications will be presented. (1) Oxygen three isotope analyses of chondrules in ordinary chondrites revealed both mass dependent and mass independent oxygen isotope fractionations among chondrules as well as within individual chondrules. The results give constraints on the process of chondrule formation and origin of isotope reservoirs in the early solar system. (2) High precision 26Al-26Mg (half life of 0.73 Ma) chronology is applied to zoned melilite and anorthite from Ca, Al-rich inclusions (CAI) in Leoville meteorite, and a well-defined internal isochron is obtained. The results indicate the Al- Mg system was remained closed within 40ky of the crystallization of melilite and anorthite in this CAI. (3) Sub- μm spot analyses of δ18O in isotopically zoned zircon from high-grade metamorphism reveals a diffusion profile of ~6‰ over 2μm, indicating slow diffusion of oxygen in zircon. This result also implies that old Archean detrital zircons (> 4Ga) might preserve their primary oxygen isotopic records, which allows us to trace the geological processes of the early earth [1]. Lithium isotope analyses of pre- 4Ga zircon from Jack Hills show high Li abundance and low δ 7Li, indicating existence of highly weathered crustal material as early as 4.3Ga. In conclusion, these new techniques allow us to study small natural variations of stable isotopes at μm-scale that permit exciting and fundamental research where samples are small, precious, or zoned. [1] Page FZ et al. (2007) Am Min 92, 1772-1775.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
In-situ Plasma Analysis of Ion Kinetics in the Solar Wind and Hermean Magnetosphere
NASA Astrophysics Data System (ADS)
Tracy, Patrick J.
The heating of the solar wind and its interaction with the unique planetary magnetosphere of Mercury is the primary focus of this work. The first aspect of this study focused on the heavy ion population of the solar wind (A > 4 amu), and how well the signature of the heating process responsible for creating the solar wind is preserved in this heavy ion population. We found that this signature in the heavy ion population is primarily erased (thermalized) via Coulomb collisional interactions with solar wind protons. The heavy ions observed in collisionally young solar wind reveal a clear, stable dependence on mass, along with non-thermal heating that is not in agreement with current predictions based on turbulent transport and kinetic dissipation. Due to its weak magnetic dipole, the solar wind can impinge on the surface of Mercury, one of the processes contributing to the desorption of neutrals and, through ionization, ions that make up the planet's exosphere. Differentiating between surface mechanisms and analyzing magnetospheric plasma dynamics requires the quantification of a variety of ion species. A detailed forward model and a robust statistical method were created to identify new ion signatures in the measurement space of the FIPS instrument, formerly orbiting Mercury onboard the MESSENGER spacecraft. The recovery of new heavy ions species, including Al, Ne, Si, and Mg, along with tentative recoveries of S, Ar, K, and C, enable in depth studies of the plasma dynamics in the Hermean magnetosphere. The interaction of the solar wind with the bow shock of the Hermean magnetosphere leads to the creation of a foreshock region. New tools and methods were created to enable the analysis of the diffuse and Field Aligned Beam (FAB) populations in unique parameter regime of the Hermean foreshock. One result suggests that the energization process for the observed FABs can be explained by Shock Drift Acceleration, and not limited by the small spatial size of Mercury's bow shock. Analysis of diffuse populations shows that a connection time limited diffusive shock acceleration is likely responsible for the behavior of the observed energy distributions.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barnes, Robert A.; Eplee, Robert E., Jr.; Biggar, Stuart F.; Thome, Kurtis J.; Zalewski, Edward F.; Slater, Philip N.; Holmes, Alan W.
1999-01-01
The solar radiation-based calibration (SRBC) of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was performed on 1 November 1993. Measurements were made outdoors in the courtyard of the instrument manufacturer. SeaWiFS viewed the solar irradiance reflected from the sensor's diffuser in the same manner as viewed on orbit. The calibration included measurements using a solar radiometer designed to determine the transmittances of principal atmospheric constituents. The primary uncertainties in the outdoor measurements are the transmission of the atmosphere and the reflectance of the diffuser. Their combined uncertainty is about 5 or 6%. The SRBC also requires knowledge of the extraterrestrial solar spectrum. Four solar models are used. When averaged over the responses of the SeaWiFS bands, the irradiance models agree at the 3.6% level, with the greatest difference for SeaWiFS band 8. The calibration coefficients from the SRBC are lower than those from the laboratory calibration of the instrument in 1997. For a representative solar model, the ratios of the SRBC coefficients to laboratory values average 0.962 with a standard deviation of 0.012. The greatest relative difference is 0.946 for band 8. These values are within the estimated uncertainties of the calibration measurements. For the transfer-to-orbit experiment, the measurements in the manufacturer's courtyard are used to predict the digital counts from the instrument on its first day on orbit (August 1, 1997). This experiment requires an estimate of the relative change in the diffuser response for the period between the launch of the instrument and its first solar measurements on orbit (September 9, 1997). In relative terms, the counts from the instrument on its first day on orbit averaged 1.3% higher than predicted, with a standard deviation of 1.2% and a greatest difference of 2.4% or band 7. The estimated uncertainty for the transfer-to-orbit experiment is about 3 or 4%.
NASA Astrophysics Data System (ADS)
Yang, Chengyun; Smith, Anne K.; Li, Tao; Dou, Xiankang
2018-05-01
The response of the mesospheric migrating diurnal (DW1) tide to the Madden-Julian oscillation (MJO) is investigated for the first time using a simulation from the Specified-Dynamic Whole Atmosphere Community Climate Model (SD-WACCM), which is driven by reanalysis data. Analysis shows that a significant connection exists between the MJO and the mesospheric DW1 tidal amplitude. During MJO phases 2 and 3, the convection anomalies are associated with enhancement in both the solar insolation absorption and latent heat release in the equatorial troposphere; these in turn lead to stronger DW1 forcing. Conversely, the forcing of DW1 by solar and latent heating in the troposphere is weaker during MJO phase 8. The difference of the tidal amplitude during the opposite MJO phases from the boreal winter mean state is 15-20%. The parameterized gravity wave variations are found to have a significant impact on the DW1 tidal response in some phases of the MJO.
Luminescent solar concentrators with fiber geometry.
Edelenbosch, Oreane Y; Fisher, Martyn; Patrignani, Luca; van Sark, Wilfried G J H M; Chatten, Amanda J
2013-05-06
The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear with fibre length. A 1 m long, radius 1 mm, fibre LSC doped with Lumogen Red 305 is predicted to concentrate the AM1.5 g spectrum up to 1100 nm at normal incidence by ~35 x. The collection efficiency under diffuse and direct irradiance in London has been analysed showing that, even under clear sky conditions, in winter the diffuse contribution equals the direct.
Herek, Duygu; Karabulut, Nevzat; Kocyıgıt, Ali; Yagcı, Ahmet Baki
2016-01-01
Our aim was to compare the apparent diffusion coefficient (ADC) values of normal abdominal parenchymal organs and signal-to-noise ratio (SNR) measurements in the same patients with breath hold (BH) and free breathing (FB) diffusion weighted imaging (DWI). Forty-eight patients underwent both BH and FB DWI. Spherical region of interest (ROI) was placed on the right hepatic lobe, spleen, pancreas, and renal cortices. ADC values were calculated for each organ on each sequence using an automated software. Image noise, defined as the standard deviation (SD) of the signal intensities in the most artifact-free area of the image background was measured by placing the largest possible ROI on either the left or the right side of the body outside the object in the recorded field of view. SNR was calculated using the formula: SNR=signal intensity (SI) (organ) /standard deviation (SD) (noise) . There were no statistically significant differences in ADC values of the abdominal organs between BH and FB DWI sequences ( p >0.05). There were statistically significant differences between SNR values of organs on BH and FB DWIs. SNRs were found to be better on FB DWI than BH DWI ( p <0.001). Free breathing DWI technique reduces image noise and increases SNR for abdominal examinations. Free breathing technique is therefore preferable to BH DWI in the evaluation of abdominal organs by DWI.
Javadi, Mohammad; Alizadeh, Saba; Khosravi, Yusef; Abdi, Yaser
2016-11-04
The integration of fast electron transport and large effective surface area is critical to attaining higher gains in the nanostructured photovoltaic devices. Here, we report facilitated electron transport in the quasi-two-dimensional (Q2D) porous TiO 2 . Liquid electrolyte dye-sensitized solar cells were prepared by utilizing photoanodes based on the Q2D porous substructures. Due to electron confinement in a microscale porous medium, directional diffusion toward collecting electrode is induced into the electron transport. Our measurements based on the photocurrent and photovoltage time-of-flight transients show that at higher Fermi levels, the electron diffusion coefficient in the Q2D porous TiO 2 is about one order of magnitude higher when compared with the conventional layer of porous TiO 2 . The results show that microstructuring of the porous TiO 2 leads to an approximately threefold improvement in the electron diffusion length. Such a modification may considerably affects the electrical functionality of moderate or low performance dye-sensitized solar cells for which the internal gain or collection efficiency is typically low. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.
2016-12-01
The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the diffusion regions. At stage IV, the magnetic reconnection type nanoplasmid (200km) stop expanding and carrying enough energy to eject particles as constant velocity. Last, the role of magnetic field turbulence and electric field turbulence in electron and ion acceleration at the diffusion regions in solar flare fractural current sheet is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillingham, Kenneth; Bollinger, Bryan
This is the final report for a systematic, evidence-based project using an unprecedented series of large-scale field experiments to examine the effectiveness and cost-effectiveness of novel approaches to reduce the soft costs of solar residential photovoltaics. The approaches were based around grassroots marketing campaigns called ‘Solarize’ campaigns, that were designed to lower costs and increase adoption of solar technology. This study quantified the effectiveness and cost-effectiveness of the Solarize programs and tested new approaches to further improve the model.
Beam-plasma instability in the presence of low-frequency turbulence. [during type 3 solar emission
NASA Technical Reports Server (NTRS)
Goldman, M. V.; Dubois, D. F.
1982-01-01
General equations are derived for a linear beam-plasma instability in the presence of low-frequency turbulence. Within a 'quasi-linear' statistical approximation, these equations contain Langmuir wave scattering, diffusion, resonant and nonresonant anomalous absorption, and a 'plasma laser' effect. It is proposed that naturally occurring density irregularities in the solar wind may stabilize the beam-unstable Langmuir waves which occur during type III solar emissions.
Process research of non-Czochralski silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1986-01-01
Simultaneous diffusion of liquid precursors containing phosphorus and boron into dendritic web silicon to form solar cell structures was investigated. A simultaneous junction formation techniques was developed. It was determined that to produce high quality cells, an annealing cycle (nominal 800 C for 30 min) should follow the diffusion process to anneal quenched-in defects. Two ohm-cm n-base cells were fabricated with efficiencies greater than 15%. A cost analysis indicated that the simultansous diffusion process costs can be as low as 65% of the costs of the sequential diffusion process.
Solar radiation on Mars: Update 1990
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.
1990-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. The authors present a procedure and solar radiation related data from which the diurnally and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras and computation based on multiple wavelength and multiple scattering of the solar radiation. This work is an update to NASA-TM-102299 and includes a refinement of the solar radiation model.
An Overview of Follow-On Testing Activities of the A-3 Subscale Diffuser Test Project
NASA Technical Reports Server (NTRS)
Ryan, James E.
2009-01-01
An overview of NASA Stennis Space Center's (SSC) A-3 Subscale Diffuser Test (SDT) Project is presented. The original scope of the SDT Project, conducted from April 2007 to January 2008, collected data to support mitigation of risk associated with design and procurement activities of the A-3 Test Stand Project, an effort to construct a simulated altitude test facility at SSC in support of NASA's Constellation Program. Follow-on tests were conducted from May 2008 through August 2009, utilizing the SDT test setup as a testbed for additional risk mitigation activities. Included are descriptions of the Subscale Diffuser (SD) test article, the test facility configuration, and test approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orange, N. Brice; Chesny, David L.; Gendre, Bruce
Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory ’ s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency acrossmore » large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.« less
The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells
Xu, Feng; Zhu, Kai; Zhao, Yixin
2016-10-10
Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less
NASA Technical Reports Server (NTRS)
Song, Yan; Lysak, Robert L.
1992-01-01
A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.
Probing molecular orientation of P3HT nanofibers in fiber-based organic solar cells
NASA Astrophysics Data System (ADS)
Yoon, Sangcheol; Han, Yaeeun; Hwang, Inchan
2018-01-01
Molecular orientation of conjugated polymers plays a key role in exciton generation/separation and charge transport, and thus significantly influence photovoltaic devices. Herein, we fabricated fiber-based organic solar cells and investigated the photovoltaic parameters with different diameters of fibers and PCBM diffusion. The open-circuit voltage that varies with molecular orientation whether it is face-on or edge-on was observed to differ. The investigation of the open-circuit voltage dependence reveals that thick fibers have core/shell like structures with different orientations. Thick fibers have face-on in the core and edge-on orientations in the shell. The face-on orientations are not preferentially formed in thin fibers, but the PCBM diffusion can induce face-on orientations that exist within the intermixed phase. Our results may shed a light on better understanding on fiber-based solar cells and suggest a way toward improving photovoltaic efficiency. [Figure not available: see fulltext.
The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feng; Zhu, Kai; Zhao, Yixin
Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less
Burri, Susanne; Sturm, Patrick; Baur, Thomas; Barthel, Matti; Knohl, Alexander; Buchmann, Nina
2014-01-01
Pulse labelling experiments provide a common tool to study short-term processes in the plant-soil system and investigate below-ground carbon allocation as well as the coupling of soil CO(2) efflux to photosynthesis. During the first hours after pulse labelling, the measured isotopic signal of soil CO(2) efflux is a combination of both physical tracer diffusion into and out of the soil as well as biological tracer release via root and microbial respiration. Neglecting physical back-diffusion can lead to misinterpretation regarding time lags between photosynthesis and soil CO(2) efflux in grassland or any ecosystem type where the above-ground plant parts cannot be labelled in gas-tight chambers separated from the soil. We studied the effects of physical (13)CO(2) tracer back-diffusion in pulse labelling experiments in grassland, focusing on the isotopic signature of soil CO(2) efflux. Having accounted for back-diffusion, the estimated time lag for first tracer appearance in soil CO(2) efflux changed from 0 to 1.81±0.56 h (mean±SD) and the time lag for maximum tracer appearance from 2.67±0.39 to 9.63±3.32 h (mean±SD). Thus, time lags were considerably longer when physical tracer diffusion was considered. Using these time lags after accounting for physical back-diffusion, high nocturnal soil CO(2) efflux rates could be related to daytime rates of gross primary productivity (R(2)=0.84). Moreover, pronounced diurnal patterns in the δ(13)C of soil CO(2) efflux were found during the decline of the tracer over 3 weeks. Possible mechanisms include diurnal changes in the relative contributions of autotrophic and heterotrophic soil respiration as well as their respective δ(13)C values. Thus, after accounting for physical back-diffusion, we were able to quantify biological time lags in the coupling of photosynthesis and soil CO(2) efflux in grassland at the diurnal time scale.
Magnetic diffusion and flare energy buildup
NASA Technical Reports Server (NTRS)
Wu, S. T.; Yin, C. L.; Yang, W.-H.
1992-01-01
Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear 2D force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field and photospheric velocity field are used, it is found that 3-4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.
How I Learned to Stop Worrying and Love the SWCX Emission
NASA Technical Reports Server (NTRS)
Snowden, Steven
2011-01-01
In the last twenty years solar wind change exchange (SWCX) X-ray emission has gone from a significant and irritating background component of unknown origin for astrophysical observations to a field of study in its own right. On one hand, it provides an uncertain offset to observations of extended astrophysical objects and the diffuse X-ray background, and severely compromises the interpretation of many results. On the other hand, SWCX emission has the potential to shed light on physical phenomena in the near-Earth environment and the solar system. In addition, charge exchange emission may prove significant in many other areas of astrophysical diffuse X-ray emission such as supernova remnants. I will present an historical background from the perspective of studying the diffuse X-ray background, cover a variety of SWCX observations and implications, and discuss the realm of possible research and practical applications based on SWCX emission
Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone
NASA Astrophysics Data System (ADS)
Rüdiger, G.; Kitchatinov, L. L.; Brandenburg, A.
2011-03-01
In a density-stratified turbulent medium, the cross helicity < u'ṡ B'> is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s-1. Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.
Upgraded metallurgical-grade silicon solar cells with efficiency above 20%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, P.; Rougieux, F. E.; Samundsett, C.
We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less
NASA Technical Reports Server (NTRS)
Vonroos, O. H.
1982-01-01
When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.
Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan
2013-01-01
Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966
Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fuchs, B.; Fujii, T.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lu, L.; Lucero, A.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhu, Y.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration
2015-05-01
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°-75° and 75°-90° as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 ×1 017 eV - 2.5 ×1 019 eV is Eν2d Nν/d Eν<6.4 ×10-9 GeV cm-2 s-1 sr-1 .
Retinal microvasculature and white matter microstructure: The Rotterdam Study.
Mutlu, Unal; Cremers, Lotte G M; de Groot, Marius; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Klaver, Caroline C W; Ikram, M Arfan; Vernooij, Meike W; Ikram, M Kamran
2016-09-06
To investigate whether retinal microvascular damage is related to normal-appearing white matter microstructure on diffusion tensor MRI. We included 2,436 participants (age ≥45 years) from the population-based Rotterdam Study (2005-2009) who had gradable retinal images and brain MRI scans. Retinal arteriolar and venular calibers were measured semiautomatically on fundus photographs. White matter microstructure was assessed using diffusion tensor MRI. We used linear regression models to investigate the associations of retinal vascular calibers with markers of normal-appearing white matter microstructure, adjusting for age, sex, the fellow vascular caliber, and additionally for structural MRI markers and cardiovascular risk factors. Narrower arterioles and wider venules were associated with poor white matter microstructure: adjusted difference in fractional anisotropy per SD decrease in arteriolar caliber -0.061 (95% confidence interval -0.106 to -0.016), increase in venular caliber -0.054 (-0.096 to -0.011), adjusted difference in mean diffusivity per SD decrease in arteriolar caliber 0.048 (0.007-0.088), and increase in venular caliber 0.047 (0.008-0.085). The associations for venules were more prominent in women. Retinal vascular calibers are related to normal-appearing white matter microstructure. This suggests that microvascular damage in the white matter is more widespread than visually detectable as white matter lesions. © 2016 American Academy of Neurology.
Studying Solar Wind Properties Around CIRs and Their Effects on GCR Modulation
NASA Astrophysics Data System (ADS)
Ghanbari, K.; Florinski, V. A.
2017-12-01
Corotating interaction region (CIR) events occur when a fast solar wind stream overtakes slow solar wind, forming a compression region ahead and a rarefaction region behind in the fast solar wind. Usually this phenomena occurs along with a crossing of heliospheric current sheet which is the surface separating solar magnetic fields of opposing polarities. In this work, the solar plasma data provided by the ACE science center are utilized to do a superposed epoch analysis on solar parameters including proton density, proton temperature, solar wind speed and solar magnetic field in order to study how the variations of these parameters affect the modulation of galactic cosmic rays. Magnetic fluctuation variances in different parts a of CIR are computed and analyzed using similar techniques in order to understand the cosmic-ray diffusive transport in these regions.
Solar Energy Evolution and Diffusion Studies: 2014-2016 | Solar Research |
motivations for adoption A non-adopter considerer survey that targeted lost leads by installers to identify two experimental market pilots to test methods to increase lead generation and conversion using concerned individuals may need to emphasize non-environmental benefits. The results also support leveraging
Suzaku Observations of Charge Exchange Emission from Solar System Objects
NASA Technical Reports Server (NTRS)
Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.;
2012-01-01
Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.
Daugirdas, John T; Depner, Thomas A
2017-11-01
A convenient method to estimate the creatinine generation rate and measures of creatinine clearance in hemodialysis patients using formal kinetic modeling and standard pre- and postdialysis blood samples has not been described. We used data from 366 dialysis sessions characterized during follow-up month 4 of the HEMO study, during which cross-dialyzer clearances for both urea and creatinine were available. Blood samples taken at 1 h into dialysis and 30 min and 60 min after dialysis were used to determine how well a two-pool kinetic model could predict creatinine concentrations and other kinetic parameters, including the creatinine generation rate. An extrarenal creatinine clearance of 0.038 l/kg/24 h was included in the model. Diffusive cross-dialyzer clearances of urea [230 (SD 37 mL/min] correlated well (R2 = 0.78) with creatinine clearances [164 (SD 30) mL/min]. When the effective diffusion volume flow rate was set at 0.791 times the blood flow rate for the cross-dialyzer clearance measurements at 1 h into dialysis, the mean calculated volume of creatinine distribution averaged 29.6 (SD 7.2) L], compared with 31.6 (SD 7.0) L for urea (P < 0.01). The modeled creatinine generation rate [1183 (SD 463) mg/day] averaged 100.1 % (SD 29; median 99.3) of that predicted in nondialysis patients by an anthropometric equation. A simplified method for modeling the creatinine generation rate using the urea distribution volume and urea dialyzer clearance without use of the postdialysis serum creatinine measurement gave results for creatinine generation rate [1187 (SD 475) mg/day; that closely matched the value calculated using the formally modeled value, R2 = 0.971]. Our analysis confirms previous findings of similar distribution volumes for creatinine and urea. After taking extra-renal clearance into consideration, the creatinine generation rate in dialysis patients is similar to that in nondialysis patients. A simplified method based on urea clearance and urea distribution volume not requiring a postdialysis serum creatinine measurement can be used to yield creatinine generation rates that closely match those determined from standard modeling. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Phosphorus Diffusion Gettering Efficacy in Upgraded Metallurgical-Grade Solar Silicon
NASA Astrophysics Data System (ADS)
Jiménez, A.; del Cañizo, C.; Cid, C.; Peral, A.
2018-05-01
In the context of the continuous price reduction in photovoltaics (PV) in recent years, Si feedstock continues to be a relevant component in the cost breakdown of a PV module, highlighting the need for low-cost, low-capital expenditure (CAPEX) silicon technologies to further reduce this cost component. Upgraded metallurgical-grade silicon (UMG Si) has recently received much attention, improving its quality and even attaining, in some cases, solar cell efficiencies similar to those of conventional material. However, some technical challenges still have to be addressed when processing this material to compensate efficiently for the high content of impurities and contaminants. Adaptation of a conventional solar cell process to monocrystalline UMG Si wafers has been studied in this work. In particular, a tailored phosphorus diffusion gettering step followed by a low-temperature anneal at 700°C was implemented, resulting in enhanced bulk lifetime and emitter recombination properties. In spite of the need for further research and material optimization, UMG Si wafers were successfully processed, achieving efficiencies in the range of 15% for a standard laboratory solar cell process with aluminum back surface field.
Bifacial aspects of industrial n-Pasha solar cells
NASA Astrophysics Data System (ADS)
Van Aken, Bas B.; Tool, Kees; Kossen, Eric J.; Carr, Anna J.; Janssen, Gaby J. M.; Newman, Bonna K.; Romijn, Ingrid G.
2017-08-01
Bifacial photovoltaic (PV) modules make optimal use of diffuse and ground-reflected light. The gain in energy yield depends on both the local climatic conditions and the PV system layout. These determine the additional irradiance on the rear of the PV panels. The rear response of the (laminated) solar cell(s) determines how much additional energy this rear irradiance generates. Based on our experiments and simulations, the main parameters that determine the bifaciality factor of solar cells with a front side junction are the rear metal coverage, the base resistivity and the diffusion profile on the rear. These will be evaluated and discussed in this paper. Front-junction solar cells with low base resistivity have a lower short circuit current when illuminated from the rear due to enhanced recombination in the BSF. Stencil printed rear metallization yields a higher bifaciality factor compared to screen printed by reducing the metal coverage and consumption and maintaining the front side efficiency. For our optimized 239 cm2 bifacial cell we estimate that the output with 20% contributed by the rear side is equivalent to that of a 24.4% efficient monofacial cell.
An investigation of the solar zenith angle variation of D-region ionization
NASA Technical Reports Server (NTRS)
Ratnasiri, P. A. J.; Sechrist, C. F., Jr.
1975-01-01
Model calculations are carried out with a view to interpreting the solar zenith angle variation of D-region ionization. A model is developed for the neutral chemistry including the transport terms relating to molecular and eddy diffusion. The diurnal behavior is described of the minor neutral constituents formed in an oxygen-hydrogen-nitrogen atmosphere, in the height interval between 30 and 120 km. Computations carried out for two cases of the eddy diffusion coefficients models indicate that the constituents which are important for the D-region positive-ion chemistry do not show a significant variation with zenith angle for values up to 75 deg over the D-region heights. In the ion chemistry model, ion-pair production rates are calculated for solar X-rays between 1 A and 100 A, EUV radiations from 100 A up to the Lyman-alpha line, precipitating electrons, and galactic cosmic rays. The solar zenith angle variation of the positive-ion composition, negative-ion composition, and the electron densities are described up to 75 deg zenith angle, in the height interval between 60 and 100 km.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigrin, Benjamin O
High customer acquisition costs remain a persistent challenge in the U.S. residential solar industry. Effective customer acquisition in the residential solar market is increasingly achieved with the help of data analysis and machine learning, whether that means more targeted advertising, understanding customer motivations, or responding to competitors. New research by the National Renewable Energy Laboratory, Sandia National Laboratories, Vanderbilt University, University of Pennsylvania, and the California Center for Sustainable Energy and funded through the U.S. Department of Energy's Solar Energy Evolution and Diffusion (SEEDS) program demonstrates novel computational methods that can help drive down costs in the residential solar industry.
Long-term temperature effects on GaAs solar cells
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Hong, K. H.
1979-01-01
The thermal degradation of AlGaAs solar cells resulting from a long-term operation in a space environment is investigated. The solar cell degradation effects caused by zinc and aluminum diffusion as well as deterioration by arsenic evaporation are presented. Also, the results are presented of experimental testing and measurements of various GaAs solar cell properties while the solar cell was operating in the temperature range of 27 C to 350 C. In particular, the properties of light current voltage curves, dark current voltage curves, and spectral response characteristics are given. Finally, some theoretical models for the annealing of radiation damage over various times and temperatures are included.
Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...
Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.
Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida
2016-07-01
The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.
NASA Astrophysics Data System (ADS)
Vuilleumier, Laurent; Milon, Antoine; Bulliard, Jean-Luc; Moccozet, Laurent; Vernez, David
2013-05-01
Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.
NASA Astrophysics Data System (ADS)
Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.
2016-12-01
The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.
Status of Diffused Junction p(+)n InP Solar Cells for Space Applications
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Flood, D. J.; Brinker, D. J.; Goradia, C.; Fatemi, N. S.; Jenkins, P. P.; Wilt, D. M.; Bailey, S.
1994-01-01
Recently, we have succeeded in fabricating diffused junction p(+)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3%. The maximum AMO, 25 C efficiency recorded to date on bare cells is, however, only 13.2%. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(+)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: 1) the formation of thin p(+) InP:Cd emitter layers, 2) electroplated front contacts, 3) surface passivation and 4) the design of a new native oxide/AI203/MgF2 three layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.
Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing
NASA Astrophysics Data System (ADS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-09-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
Sensor On-orbit Calibration and Characterization Using Spacecraft Maneuvers
NASA Technical Reports Server (NTRS)
Xiong, X.; Butler, Jim; Barnes, W. L.; Guenther, B.
2007-01-01
Spacecraft flight operations often require activities that involve different kinds of maneuvers for orbital adjustments (pitch, yaw, and roll). Different maneuvers, when properly planned and scheduled, can also be applied to support and/or to perform on-board sensor calibration and characterization. This paper uses MODIS (Moderate Resolution Imaging Spectroradiometer) as an example to illustrate applications of spacecraft maneuvers for Earth-observing sensors on-orbit calibration and characterization. MODIS is one of the key instruments for NASA's Earth Observing System (EOS) currently operated on-board the EOS Terra and Aqua spacecraft launched in December 1999 and May 2002, respectively. Since their launch, both Terra and Aqua spacecraft have made a number of maneuvers, specially the yaw and roll maneuvers, to support the MODIS on-orbit calibration and characterization. For both Terra and Aqua MODIS, near-monthly spacecraft roll maneuvers are executed for lunar observations. These maneuvers are carefully scheduled so that the lunar phase angles are nearly identical for each sensor's lunar observations. The lunar observations are used to track MODIS reflective solar bands (RSB) calibration stability and to inter-compare Terra and Aqua MODIS RSB calibration consistency. To date, two sets of yaw maneuvers (each consists of two series of 8 consecutive yaws) by the Terra spacecraft and one set by the Aqua spacecraft have been performed to validate MODIS solar diffuser (SD) bi-directional reflectance factor (BRF) and to derive SD screen transmission. Terra spacecraft pitch maneuvers, first made on March 26, 2003 and the second on April 14, 2003 (with the Moon in the spacecraft nadir view), have been applied to characterize MODIS thermal emissive bands (TEB) response versus scan angle (RVS). This is particularly important since the pre-launch TEB RSV measurements made by the sensor vendor were not successful. Terra MODIS TEB RVS obtained from pitch maneuvers have been used in the current LIB calibration algorithm. Lunq observations from pitch maneuvers also provided information to cross-calibrate MODIS with other sensors (MISR and ASTER) on the same platform. We will provide a summary of MODIS maneuver activities and their applications for MODIS calibration and characterization. The results and lessons learned discussed in this paper from MODIS maneuver activities will provide useful insights into future spacecraft and sensor operation.
Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system
NASA Astrophysics Data System (ADS)
Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham
2013-10-01
According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.
NASA Technical Reports Server (NTRS)
Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila
1995-01-01
It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.
NASA Technical Reports Server (NTRS)
Moulot, Jacques; Faur, M.; Faur, M.; Goradia, C.; Goradia, M.; Bailey, S.
1995-01-01
It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.
[Central nervous system involvement in systemic diseases: Spectrum of MRI findings].
Drier, A; Bonneville, F; Haroche, J; Amoura, Z; Dormont, D; Chiras, J
2010-12-01
Central nervous system (CNS) involvement in systemic disease (SD) is unusual. MRI features of such lesions are unfamiliar to most radiologists. The diagnosis of SD is still based on clinical features and laboratory findings but some characteristic MRI findings exist for each SD: micronodular leptomeningeal enhancement in sarcoidosis, diffuse or focal pachymeningeal involvement in Wegener disease, dentate nuclei and brain stem lesions in Langerhans cell histiocytosis, meningeal masses, dentate nuclei lesions and periarterial infiltration in Erdheim-Chester disease, meningeal masses in Rosai-Dorfman disease, veinular pontic lesions and cerebral vein thrombosis in Behçet, supratentorial microvascular lesions in lupus and antiphospholipid and Gougerot-Sjögren syndrome. In this work, we explain, describe and illustrate the most characteristic MRI findings for each disease. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Variations of transparency derived from GOCI in the Bohai Sea and the Yellow Sea.
Mao, Ying; Wang, Shengqiang; Qiu, Zhongfeng; Sun, Deyong; Bilal, Muhammad
2018-04-30
Secchi disk depth (Z sd ), represents water transparency which is an intuitive indicator of water quality and can be used to derive inherent optical properties, chlorophyll-a concentrations, and primary productivity. In this study, the Z sd was derived from the Geostationary Ocean Color Imager (GOCI) data over the Bohai Sea (BHS) and the Yellow Sea (YS) using a regional tuned model. To validate the GOCI derived Z sd observations, in situ data, were collected for the BHS and YS regions. Results showed a good agreement between the GOCI derived Z sd observations and in situ measurements with a determination coefficient of 0.90, root mean square error of 2.17 m and mean absolute percent error of 24.56%. Results for diurnal variations showed an increasing trend of Z sd at the first and then decreasing, and all the maxima of Z sd in the central areas of the BHS and YS were found in the midday. For seasonal variations, higher values of Z sd , both in range and intensity, were observed in summer compared with those in winter. The reasons to explain the variations of Z sd have also been explored. Solar zenith angle (SOLZ) has an impact on the daily dynamics of Z sd , due to the influence of SOLZ on the attenuation of light radiation in water. The influence level of SOLZ on Z sd is largely determined by the water bodies' composition. The significant seasonal variations are mainly controlled by the stability of the water column stratification, because it can lead to the sediment resuspension and influence the growth and distribution of phytoplankton. Runoff and sediment discharge are not the main factors that impact the seasonal dynamics of Z sd. Tidal currents and mean currents may have influences on the variations of Z sd . However, due to the lack of in situ measurements to support, further studies are still needed.
Application of the SEM to the measurement of solar cell parameters
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Andrews, C. W.
1977-01-01
Techniques are described which make use of the SEM to measure the minority carrier diffusion length and the metallurgical junction depth in silicon solar cells. The former technique permits the measurement of the true bulk diffusion length through the application of highly doped field layers to the back surfaces of the cells being investigated. It is shown that the secondary emission contrast observed in the SEM on a reverse-biased diode can depict the location of the metallurgical junction if the diode has been prepared with the proper beveled geometry. The SEM provides the required contrast and the option of high magnification, permitting the measurement of extremely shallow junction depths.
NASA Technical Reports Server (NTRS)
Tucker, O. J.; Farrell, W. M.; Killen, R. M.; Hurley, D. M.
2018-01-01
Recently, the near-infrared observations of the OH veneer on the lunar surface by the Moon Mineralogy Mapper (M3) have been refined to constrain the OH content to 500-750 parts per million (ppm). The observations indicate diurnal variations in OH up to 200 ppm possibly linked to warmer surface temperatures at low latitude. We examine the M3 observations using a statistical mechanics approach to model the diffusion of implanted H in the lunar regolith. We present results from Monte Carlo simulations of the diffusion of implanted solar wind H atoms and the subsequently derived H and H2 exospheres.
NASA Technical Reports Server (NTRS)
Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino
1993-01-01
We have updated a previous attempt to incorporate within a solar model a treatment of convection based upon numerical simulations of convection rather than mixing-length theory (MLT). We have modified our formulation of convection for a better treatment of the kinetic energy flux. Our solar model has been updated to include a complete range of OPAL opacities, the Debye-Hueckel correction to the equation of state, helium diffusion due to gravitational settling, and atmospheres by Kurucz. We construct a series of models using both MLT and our revised formulation of convection and the compared results to measurements of the solar radius, the solar luminosity, and the depth of the solar convection zone as inferred from helioseismology. We find X(solar) = 0.702 +/- 0.005, Y(solar) = 0.278 +/- 0.005, and Z(solar) = 0.0193 +/- 0.0005.
ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A., E-mail: andreasm4@yahoo.com
2015-02-01
In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzik, J.A.; Swenson, F.J.
We compare the thermodynamic and helioseismic properties of solar models evolved using three different equation of state (EOS) treatments: the Mihalas, D{umlt a}ppen & Hummer EOS tables (MHD); the latest Rogers, Swenson, & Iglesias EOS tables (OPAL), and a new analytical EOS (SIREFF) developed by Swenson {ital et al.} All of the models include diffusive settling of helium and heavier elements. The models use updated OPAL opacity tables based on the 1993 Grevesse & Noels solar element mixture, incorporating 21 elements instead of the 14 elements used for earlier tables. The properties of solar models that are evolved with themore » SIREFF EOS agree closely with those of models evolved using the OPAL or MHD tables. However, unlike the MHD or OPAL EOS tables, the SIREFF in-line EOS can readily account for variations in overall Z abundance and the element mixture resulting from nuclear processing and diffusive element settling. Accounting for Z abundance variations in the EOS has a small, but non-negligible, effect on model properties (e.g., pressure or squared sound speed), as much as 0.2{percent} at the solar center and in the convection zone. The OPAL and SIREFF equations of state include electron exchange, which produces models requiring a slightly higher initial helium abundance, and increases the convection zone depth compared to models using the MHD EOS. However, the updated OPAL opacities are as much as 5{percent} lower near the convection zone base, resulting in a small decrease in convection zone depth. The calculated low-degree nonadiabatic frequencies for all of the models agree with the observed frequencies to within a few microhertz (0.1{percent}). The SIREFF analytical calibrations are intended to work over a wide range of interior conditions found in stellar models of mass greater than 0.25M{sub {circle_dot}} and evolutionary states from pre-main-sequence through the asymptotic giant branch (AGB). It is significant that the SIREFF EOS produces solar models that both measure up to the stringent requirements imposed by solar oscillation observations and inferences, and are more versatile than EOS tables. {copyright} {ital 1997} {ital The American Astronomical Society}« less
NASA Astrophysics Data System (ADS)
Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Uno, T.; Kondo, T.; Morioka, A.
2012-12-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent intensive observations of JSR revealed short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed a scenario for the short term variations; i.e, the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. The purpose of this study is to investigate whether sufficient solar UV/EUV heating in Jupiter's upper atmosphere can actually causes variation in the JSR total flux and brightness distribution. Previous JSR observations using the Giant Metrewave Radio Telescope (GMRT) suggested important characteristics of short term variations; relatively low energy particles are accelerated by some acceleration processes which might be driven by solar UV/EUV heating and/or Jupiter's own magnetic activities. In order to evaluate the effect of solar UV/EUV heating on JSR variations, we made coordinated observations using the GMRT and NASA Infra-Red Telescope Facility (IRTF). By using IRTF, we can estimate the temperature of Jupiter's upper atmosphere from spectroscopic observation of H_3^+ infrared emission. Hence, we can evaluate the relationship between variations in Jupiter's upper atmosphere initiated by the solar UV/EUV heating and its linkage with the JSR. The GMRT observations were made during Nov. 6-17, 2011 at the frequency of 235/610MHz. The H_3^+ 3.953 micron line was observed using the IRTF during Nov. 7-12, 2011. During the observation period, the solar UV/EUV flux variations expected on Jupiter showed monotonic increase. A preliminary analysis of GMRT 610MHz band showed a radio flux variation similar to that in the solar UV/EUV. Radio images showed that the emission intensity increased at the outer region and the position of equatorial peak emission moved in the outward direction. If radial diffusion increases globally by the solar UV/EUV heating, it is expected that the peak intensity would increase and the peak position move inwards. However, our results are not consistent with the global enhancement of radial diffusion. In addition to that, the equatorial H_3^+ emission indicated that emission intensity decreased from the first day of observation to the last day. It is expected that equatorial temperature of Jupiter's atmosphere decreases during this observation period. Therefore, we propose that radial diffusion increased not globally but only at the outer region around L=2-3 during this period. From this hypothesis, it is expected that enhancement of radial diffusion at the outer region is caused by high latitude temperature enhancement. We discuss possible causes of the short term variations of JSR from the IRTF observation results at high latitude.
Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Stoffel, T.; Reda, I.
2014-03-01
Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang
1998-06-16
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.
Solar Drivers of 11-yr and Long-Term Cosmic Ray Modulation
NASA Technical Reports Server (NTRS)
Cliver, E. W.; Richardson, I. G.; Ling, A. G.
2011-01-01
In the current paradigm for the modulation of galactic cosmic rays (GCRs), diffusion is taken to be the dominant process during solar maxima while drift dominates at minima. Observations during the recent solar minimum challenge the pre-eminence of drift: at such times. In 2009, the approx.2 GV GCR intensity measured by the Newark neutron monitor increased by approx.5% relative to its maximum value two cycles earlier even though the average tilt angle in 2009 was slightly larger than that in 1986 (approx.20deg vs. approx.14deg), while solar wind B was significantly lower (approx.3.9 nT vs. approx.5.4 nT). A decomposition of the solar wind into high-speed streams, slow solar wind, and coronal mass ejections (CMEs; including postshock flows) reveals that the Sun transmits its message of changing magnetic field (diffusion coefficient) to the heliosphere primarily through CMEs at solar maximum and high-speed streams at solar minimum. Long-term reconstructions of solar wind B are in general agreement for the approx. 1900-present interval and can be used to reliably estimate GCR intensity over this period. For earlier epochs, however, a recent Be-10-based reconstruction covering the past approx. 10(exp 4) years shows nine abrupt and relatively short-lived drops of B to < or approx.= 0 nT, with the first of these corresponding to the Sporer minimum. Such dips are at variance with the recent suggestion that B has a minimum or floor value of approx.2.8 nT. A floor in solar wind B implies a ceiling in the GCR intensity (a permanent modulation of the local interstellar spectrum) at a given energy/rigidity. The 30-40% increase in the intensity of 2.5 GV electrons observed by Ulysses during the recent solar minimum raises an interesting paradox that will need to be resolved.
Effects of solar dimming and brightening on the terrestrial carbon sink
NASA Astrophysics Data System (ADS)
Mercado, L.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P. M.
2009-04-01
Plant photosynthesis increases with solar radiation. Recent studies have shown that photosynthesis is more efficient under diffuse light conditions (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). Changes in cloud cover and atmospheric aerosol loadings from either volcanic and anthropogenic sources, modify the total radiation reaching the surface and the fraction of this radiation which is diffuse, with uncertain overall effects on plant productivity and the global land carbon sink. A decrease in total solar radiation (Liepert, 2002, Stanhill and Cohen, 2001, Wild et al., 2005) has been observed at the Earth surface over the 1950-1990 period, called solar dimming. Such dimming gradually started to transform into brightening in some regions of the world since the late 1980s (Wild et al. 2005). The effect of these changes in total solar radiation and associated changes in diffuse radiation and diffuse fraction on the land biosphere has not yet been accounted for in global carbon cycle simulations because such models lack the mechanism that includes the diffuse irradiance effects on photosynthesis In this study we estimate the total impact of variations in clouds and atmospheric aerosols on the land carbon sink using a global land carbon cycle model modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis (Mercado et al., 2007) during the global dimming and brightening period. References Gu L.H., Baldocchi D.D., Wofsy S.C., Munger J.W., Michalsky J.J., Urbanski S.P. & Boden T.A. (2003) Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 2035-2038. Liepert B.G. (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. 29, 1421. Mercado L.M., Huntingford C., Gash J.H.C., Cox P.M. & Jogireddy V. (2007) Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus Series B-Chemical and Physical Meteorology, 59, 553-565. Niyogi D., Chang H.I., Saxena V.K., Holt T., Alapaty K., Booker F., Chen F., Davis K.J., Holben B., Matsui T., Meyers T., Oechel W.C., Pielke R.A., Wells R., Wilson K. & Xue Y.K. (2004) Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophysical Research Letters, 31. Oliveira P.H.F., Artaxo P., Pires C., De Lucca S., Procopio A., Holben B., Schafer J., Cardoso L.F., Wofsy S.C. & Rocha H.R. (2007) The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus Series B-Chemical and Physical Meteorology, 59, 338-349. Roderick M.L., Farquhar G.D., Berry S.L. & Noble I.R. (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129, 21-30. Stanhill G. & Cohen S. (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. 107, 255-278. Wild M., Gilgen H., Roesch A., Ohmura A., Long C.N., Dutton E.G., Forgan B., Kallis A., Russak V. & Tsvetkov A. (2005) From dimming to brightening: Decadal changes in solar radiation at Earth's surface. Science, 308, 847-850.
Effects of Solar Wind Conditions on the Plasma Wake Within a Polar Crater: Preliminary Results
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.
2011-01-01
As the solar wind sweeps horizontally past a shadowed lunar crater it simultaneously diffuses toward the surface through an ambipolar process, forming a plasma wake (e.g., Figure 1). Importantly, the resulting electric field structure diverts solar wind protons toward the cold crater floor where they may represent a source of surficial hydrogen. We present a handful of two-dimensional kinetic simulations exploring the range of wake structures and surface particle fluxes possible under various background plasma conditions.
NASA Technical Reports Server (NTRS)
Pryor, R. A.
1980-01-01
Three inch diameter Czochralski silicon substrates sliced directly to 5 mil, 8 mil, and 27 mil thicknesses with wire saw techniques were procured. Processing sequences incorporating either diffusion or ion implantation technologies were employed to produce n+p or n+pp+ solar cell structures. These cells were evaluated for performance, ease of fabrication, and cost effectiveness. It was determined that the use of 7 mil or even 4 mil wafers would provide near term cost reductions for solar cell manufacturers.
Ground-based observations of the corona in the visible and NIR spectral ranges
NASA Technical Reports Server (NTRS)
Epple, Alexander; Schwenn, Rainer
1995-01-01
Since late 1993 we have been using a mirror coronagraph on Pic du Midi (PICO) to observe the solar emission corona in several spectral lines of (FE-X), (FE-XIII), and (FE-XIV). For good meteorological conditions the diffuse corona and coronal holes in between can be seen out to 1.2 solar mass for sun center. Active regions can be mapped to bond 1.5 solar mass in the green and infrared lines. Recent observations of PICO are presented.
Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.
Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H
2016-01-13
A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1999-01-01
From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.
Solar central receiver reformer system for ammonia plants
NASA Astrophysics Data System (ADS)
1980-07-01
Details of the conceptual design, economic analysis, and development plan for a solar central receiver system for retrofitting the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant are presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system displaces natural gas presently used in the fossil reformer combustion chamber. The solar reformer retrofit system characteristics and its interface with the existing plant are simple, incorporating state of the art components with proven technology. A northfield composed of one thousand forty second generation heliostats provides solar energy to the receiver which is positioned on top of a 90 meter high steel tower. The overall economics of this system can provide over 20% discount cash flow rate of return with proper investment and market conditions.
Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A
2014-04-14
ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the Spectral Hardening at gsim300 keV in Solar Flares
NASA Astrophysics Data System (ADS)
Li, G.; Kong, X.; Zank, G.; Chen, Y.
2013-05-01
It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies gsim300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range ~k -2.7. A ~k -2.7 dissipation range spectrum is consistent with recent solar wind observations.
Cell swelling increases the severity of spreading depression in Locusta migratoria
Chin, Brittany; Witiuk, Kelsey L. M.
2015-01-01
Progressive accumulation of extracellular potassium ions can trigger propagating waves of spreading depression (SD), which are associated with dramatic increases in extracellular potassium levels ([K+]o) and arrest in neural activity. In the central nervous system the restricted nature of the extracellular compartment creates an environment that is vulnerable to disturbances in ionic homeostasis. Here we investigate how changes in the size of the extracellular space induced by alterations in extracellular osmolarity affect locust SD. We found that hypotonic exposure increased susceptibility to experimentally induced SD evidenced by a decrease in the latency to onset and period between individual events. Hypertonic exposure was observed to delay the onset of SD or prevent the occurrence altogether. Additionally, the magnitude of extracellular K+ concentration ([K+]o) disturbance during individual SD events was significantly greater and they were observed to propagate more quickly under hypotonic conditions compared with hypertonic conditions. Our results are consistent with a conclusion that hypotonic exposure reduced the size of the extracellular compartment by causing cell swelling and thus facilitated the accumulation of K+ ions. Lastly, we found that pharmacologically reducing the accumulation of extracellular K+ using the K+ channel blocker tetraethylammonium slowed the rate of SD propagation while increasing [K+]o through inhibition of the Na-K-2Cl cotransporter increased propagation rates. Overall our findings indicate that treatments or conditions that act to reduce the accumulation of extracellular K+ help to protect against the development of SD and attenuate the spread of ionic disturbance adding to the evidence that diffusion of K+ is a leading event during locust SD. PMID:26378209
Foston, Marcus; Katahira, Rui; Gjersing, Erica; Davis, Mark F; Ragauskas, Arthur J
2012-02-15
The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.
Modulation of galactic cosmic rays in solar cycles 22-24: Analysis and physical interpretation
NASA Astrophysics Data System (ADS)
Kalinin, M. S.; Bazilevskaya, G. A.; Krainev, M. B.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Starodubtsev, S. A.
2017-09-01
This work represents a physical interpretation of cosmic ray modulation in the 22nd-24th solar cycles, including an interpretation of an unusual behavior of their intensity in the last minimum of the solar activity (2008-2010). In terms of the Parker modulation model, which deals with regularly measured heliospheric characteristics, it is shown that the determining factor of the increased intensity of the galactic cosmic rays in the minimum of the 24th solar cycle is an anomalous reduction of the heliospheric magnetic field strength during this time interval under the additional influence of the solar wind velocity and the tilt angle of the heliospheric current sheet. We have used in the calculations the dependence of the diffusion tensor on the rigidity in the form K ij ∝ R 2-μ with μ = 1.2 in the sector zones of the heliospheric magnetic field and with μ = 0.8 outside the sector zones, which leads to an additional amplification of the diffusion mechanism of cosmic ray modulation. The proposed approach allows us to describe quite satisfactorily the integral intensity of protons with an energy above 0.1 GeV and the energy spectra in the minima of the 22nd-24th solar cycles at the same value of the free parameter. The determining factor of the anomalously high level of the galactic cosmic ray intensity in the minimum of the 24th solar cycle is the significant reduction of the heliospheric magnetic field strength during this time interval. The forecast of the intensity level in the minimum of the 25th solar cycle is provided.
Ultra-Widefield Fluorescein Angiography in Intermediate Uveitis.
Laovirojjanakul, Wipada; Acharya, Nisha; Gonzales, John A
2017-10-17
To examine associations between pattern of vascular leakage on ultrawide-field fluorescein angiography (UWFFA) and visual acuity, cystoid macular edema (CME), and inflammatory activity in intermediate uveitis. Single center cross-sectional, retrospective review of medical records, spectral domain optical coherence tomography (SD-OCT) and angiographic images of intermediate uveitis patients who underwent UWFFA over a 12-month period. Forty-one eyes from 24 patients were included. Twelve eyes (29%) exhibited peripheral leakage, 26 eyes (64%) had diffuse leakage and three eyes (7%) had no leakage. Diffuse leakage was associated with 0.2 logMAR worse visual acuity than peripheral leakage (p = 0.02). There was no statistically significant difference in the odds of having CME when diffuse leakage was compared to peripheral leakage. UWFFA identifies retinal vascular pathology in intermediate uveitis not present on clinical examination. Diffuse retinal vascular leakage was associated with worse visual acuity when compared to peripheral and no leakage patterns.
Transport of Internetwork Magnetic Flux Elements in the Solar Photosphere
NASA Astrophysics Data System (ADS)
Agrawal, Piyush; Rast, Mark P.; Gošić, Milan; Bellot Rubio, Luis R.; Rempel, Matthias
2018-02-01
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfvén wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in Hinode/Narrowband Filter Imager magnetograms and study the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 s, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short increments is a consequence of random changes in barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in distribution can be modeled analytically by accounting for supergranular advection along with granular motions. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive tracer motions in measured photospheric flows may yield more robust transport statistics.
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING.
Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
Preliminary Results of BTDF Calibration of Transmissive Solar Diffusers for Remote Sensing
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.