Science.gov

Sample records for solar dryers

  1. (Solar dryer. Final report)

    SciTech Connect

    Scanlin, D.

    1985-01-01

    A small solar lumber dryer was designed and constructed with the involvement of junior high students. The dryer is a natural convection solar collector similar in shape to an attached solar greenhouse. The design of the kiln is described, modifications are proposed, and the performance is briefly discussed. (LEW)

  2. Simulation of Hybrid Solar Dryer

    NASA Astrophysics Data System (ADS)

    Yunus, Y. M.; Al-Kayiem, H. H.

    2013-06-01

    The efficient performance of a solar dryer is mainly depending on the good distribution of the thermal and flow field inside the dryer body. This paper presents simulation results of a solar dryer with a biomass burner as backup heater. The flow and thermal fields were simulated by CFD tools under different operational modes. GAMBIT software was used for the model and grid generation while FLUENT software was used to simulate the velocity and temperature distribution inside the dryer body. The CFD simulation procedure was validated by comparing the simulation results with experimental measurement. The simulation results show acceptable agreement with the experimental measurements. The simulations have shown high temperature spot with very low velocity underneath the solar absorber and this is an indication for the poor design. Many other observations have been visualized from the temperature and flow distribution which cannot be captured by experimental measurements.

  3. Optimization of hybrid solar dryer

    SciTech Connect

    Khattab, N.M.

    1996-10-01

    The hybrid solar convective drying system considered here consists of a solar air heater, drying chamber, and electric heater to provide air at constant temperature to the dryer. In order to reduce the electric energy consumed, pebble bed storage was used, comprising one unit with drying chamber. Computer modeling and simulation were carried out to analyze the effect of design dimensions of the air heater and pebble storage bed on energy savings. Measurements of hourly weather conditions were used in the simulation to determine the optimum design dimensions that would realize minimum electric energy for each operating temperature. The energy saved for the four seasons of the year was obtained at different tilt angels of the air heater to discern the best tilt for each drying season, realizing minimum energy consumption.

  4. Using solar dryers to dry clay bricks

    SciTech Connect

    Bernal, J.A.; Wicker, R.B.

    1996-12-31

    Experiments using a small-scale solar dryer have been performed to determine the effect of incorporating solar dryers in the pre-firing stage of clay brick production. A comparison of brick moisture content over time is presented for dry bricks that underwent additional drying either naturally through direct exposure, in convection ovens set at 65.6 C and 104 C, in the solar dryer, or sealed in plastic bags. The ambient temperature and relative humidity were monitored along with the solar dryer temperature. Results indicated the solar dryer removed from one to two percent more moisture than natural drying, but removed less moisture than did the ovens. A similar comparison of wet bricks naturally dried, oven dried, and placed in the solar dryer for periods of five and seven days is also presented. The solar dryer reduced the amount of time required for bricks to be dried to a specified moisture content and increased the amount of moisture removed for a given amount of time.

  5. Experimental investigation of a solar bamboo dryer

    SciTech Connect

    Ong, K.S.

    1996-05-01

    An experimental investigation was conducted on the performance of a solar box dryer for drying bamboo operating under tropical weather conditions. The dryer is a greenhouse-type designed for multi-crop solar drying. Air circulation was by electrically-operated fan. The results showed that the moisture content of the bamboo could be brought down to about 19% from an initial value of nearly 90% in 17 days by operating the dryer over 8 hours each day. Under natural drying conditions, the final moisture content reached was only 22%. Although solar drying of bamboo was only marginally faster than natural drying, nonetheless, final moisture content was lower.

  6. Modular solar food dryers for farm use

    SciTech Connect

    Wagner, C.J. Jr.; Coleman, R.L.; Berry, R.E.

    1981-01-01

    Several solar food dryer modules have been constructed. Their design has been based on a low-cost, small-scale solar dryer using a unique parabolic reflector construction to increase radiation on the drying surface. Each module has a drying surface of 1.1 M/sup 2/ and a parabolic reflector area of 3.3 M/sup 2/. Some modules are being used to dry mango slices (a potential new food product) for market testing, while others are used for experiments to improve drying efficiency. A description is given of the operating conditions of the modules drying mango slices and the most effective modifications.

  7. Solar assist and filter construction for dryer inlet

    SciTech Connect

    Commander, B.C.

    1981-07-21

    An air inlet construction for a domestic clothes dryer is described including a pair of selectively usable air inlet ports. One of the air inlet ports opens outwardly to the area immediately adjacent and exterior of the dryer and the other inlet port opens into the interior of a non-domestically heated portion of the building in which the dryer is disposed, but which portion is subject to being heated by solar energy during the daylight hours.

  8. Prototype testing of a solar dryer of granular materials

    SciTech Connect

    Murdock, J.D.

    1982-01-01

    The results of testing a two module prototype solar convection dryer are presented. Collected data showed that the 540 square foot dryer can evaporate up to 900 pounds of water from a wet granular material over a 24 hour period in the Philadelphia climate. Testing included experimentation with different materials handling systems to determine the best method of moving each wet material through the dryer.

  9. Development of polyhouse type solar dryer for Kashmir valley.

    PubMed

    Shahi, Navin Chandra; Khan, Junaid N; Lohani, Umesh C; Singh, Anupama; Kumar, Anil

    2011-06-01

    Polyhouse type solar dryer (PSD) consist of drying chamber, drying trays and exhaust fan was developed for drying fruits and vegetables. The relative humidity (RH) inside the PSD varied in between 21 to 74% as compared to outside RH which ranged from 40 to 75%. The performance was found suitable and resulted in efficient drying at low RH. The thermal performance test for PSD under full and no load testing conditions were calculated. The temperature inside the dryer was 62 to 76% higher than the ambient conditions. PSD was helpful in reducing the drying ranging from 33 to 53%. The capacity of PSD was 100-150 kg per batch. The economic cost of solar dryer was compared with mechanical drying for beneficial to local producer. The cost of PSD Rs 80,000 could recover within the period of 1.5 years by adopting solar drying technology.

  10. Negative-pressure solar dryer for large round alfalfa bales

    SciTech Connect

    Frisby, J.C.; George, R.M.; Everett, J.T.

    1985-01-01

    A single-bale, portable, negative-pressure solar dryer was constructed and tested. It was found that design criteria established on pressurized systems could be used for negative-pressure systems. Hay packaged at 40 percent moisture content dried more uniformly if baled with a fixed-chamber baler.

  11. (Solar clothes dryer and wastewater heat exchanger). Final report

    SciTech Connect

    Baer, B.F.

    1984-12-04

    The first project investigated the technical possibilities of adapting a domestic electric clothes dryer to utilize solar-heated water as the heat source, replacing electric resistance heat. The second project attempted to extract wastewater heat from a commercial dishwasher to preheat fresh water to be used in the next dish washing cycle. It is felt that the clothes dryer project has met all of intended goals. Although a solar application has some real-world practical problems, the application of a dryer connected directly to the home heating system will prove to be cost-beneficial over the life of a dryer. The additional cost of a heat exchanger is not excessive, and the installation cost, if installed with the initial house plumbing is less than $100. From a practical point of view, the complexity of installing a wastewater heat extracter is considered impractical. The environment in which such equipment must operate is difficult at best, and most restaurants prefer to maintain as simple an operation as possible. If problems were to occur in this type of equipment, the kitchen would effectively be crippled. In conclusion, further research in the concept is not recommended. Recent advances in commercial dishwashers have also considerably reduced the heat losses which accompanied equipment only a few years old.

  12. Comparison between drying of timber in a solar dryer and in an electrically-heated kiln

    SciTech Connect

    Ong, K.S.

    1997-03-01

    Solar dryers have been considered for timber drying in a number of countries because of the expected savings in drying costs. From a review of past works on solar, natural, and conventional drying it was observed that while solar dryers were able to dry timber faster compared to natural drying, the difference was only marginal in some instances. The drying rates are expected to be dependent upon ambient conditions in which the dryers are operated. Solar dryers would operate more efficiently in countries with low humidity than in tropical regions. Thus the thermal performance and also the economics of solar dryers is country dependent. In the present paper, a comparison of the drying rates obtained with a solar dryer is made with that obtained with an electrically operated drying kiln.

  13. Drying of vanilla pods using a greenhouse effect solar dryer

    SciTech Connect

    Abdullah, K.; Mursalim

    1997-05-01

    This paper describes the basic design of the GHE solar dryer and evaluates the performance of the dryer when used to dry vanilla pods. From laboratory test results it was indicted that the average drying time for vanilla pods was between 49 to 53.5 hrs. For the case of heating augmentation using coal briquette stoves. The total amount of coal briquettes used to produce drying air temperature between 33 C to 65 C and RH of about 34% during day time was 61 kg equivalent to 6.1 kW heating rate and the average electric energy usage of 36.5 kWh, respectively. Quality test results indicated that the dried products were of grade IA of the export quality standard with vaniline content of 2.36%.

  14. Design and measured performance of a solar chimney for natural circulation solar energy dryers

    SciTech Connect

    Ekechukwu, O.V.; Norton, B.

    1996-02-01

    An experimental solar chimney consisted of a cylindrical polyethylene-clad vertical chamber supported by steel framework and draped internally with a selectively absorbing surface. The performance of the chimney which was monitored extensively is reported. Issues related to the design and construction of solar chimneys for natural circulation solar energy dryers are discussed.

  15. Development and Evaluation of Solar Tunnel Dryer for Commercial Fish Drying

    NASA Astrophysics Data System (ADS)

    Mohod, A. G.; Khandetod, Y. P.; Shrirame, H. Y.

    2014-01-01

    The local practice of drying fish in open sun drying poses problems such as high moisture content, uncontrolled drying and contamination. These problems can be avoided by proper use of improved methods such as the solar tunnel dryer, which results in faster drying of fish. The semi cylindrical walk-in type natural convection solar tunnel dryer, having drying area of 37.5 m2 was developed and evaluated for the drying of fish products in comparison with the conventional method of open sun drying. The experiments were conducted without fish and with fish to evaluate the performance of solar tunnel dryer. The average rise in temperature inside the solar tunnel dryer was found to be 11.24 °C and 18.29 °C over the ambient temperature during no load test in winter and summer respectively. The average 28 % saving in time was observed for selected fish drying using solar tunnel dryer over open sun drying method with average drying efficiency of 19 %. The economics was calculated for drying of prawns ( Parapaeneopsis stylifera) by solar tunnel dryer and open sun drying system on the basis of business as a whole. The economics of the solar tunnel dryer is presented in term of Net present worth, Benefit-Cost Ratio, Payback period, Profitability index and Internal rate of return. The pay back period for solar tunnel dryer was found to be 2.84 years.

  16. Design of solar thermal dryers for 24-hour food drying processes (abstract)

    USDA-ARS?s Scientific Manuscript database

    Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection process or mater...

  17. Development of an efficient family size solar dryer

    SciTech Connect

    Khattab, N.M.

    1996-01-01

    Since the air heater is the most important component in a solar food drying system, improving its performance is desirable, especially when the space available for the dryer is limited and its cost is to be kept as low as possible. The solar system considered is the forced convection type, in which air is driven inside the heater by using a small suction fan of low power consumption. In this work, two configurations of air heaters were tested to increase heat gain without much increase in size or cost. This could be achieved by elongating the air path through the collector or by using two glass covers, between which the air is allowed to flow before it enters the heater. For both configurations, an inexpensive reflecting surface is used to increase heat input. Experimental results show an average increase of daily energy input of 40% and 57% for the first and second heater, respectively. This, in turn, increases the thermal efficiency of both heaters. Although the second type is more efficient than the first, it is accompanied by an increase in power consumption. Tests show that for ratios of temperature rise/insolation up to 0.03, the first type is better from the thermal and economical points of view. However, as this ratio increases, the second type becomes more efficient and economical.

  18. Workshops and incentive loans program for construction of solar greenhouses, grain dryers, window boxes and food dryers. Final performance report

    SciTech Connect

    Walker, D.H.

    1982-02-01

    A Solar Loan Fund was established to provide low-interest incentive loans to families desiring to construct their own solar devices, the only stipulations being allowance of reasonable public visitation and monitoring and employment of parish-trained construction teams if labor is to be hired. About 30 vocational agriculture students built window box collector units as part of their classroom experience, trying several designs. Later, 12 to 15 families built window box collectors for their use. A week long Energy Responsibility: Today and Tomorrow workshop was held involving construction projects and mini-seminars. Another workshop was held to construct bread box type solar hot water heaters, and yet another to build solar food dryers. (LEW)

  19. Design of solar thermal dryers for 24-hour food drying processes

    USDA-ARS?s Scientific Manuscript database

    Solar drying is a method that has been adopted for many years as a food preservation method. To this date, significant advancements have been made in this field with the adoption of a multitude of solar thermal dryer designs for single-layer and multi-layer drying of fruit and vegetables e.g. cabine...

  20. A steady-state model for the forced convection solar cabinet dryer

    SciTech Connect

    Chirarattananon, S.; Chirarattananon, R. , Bangkok ); Chinporncharoenpong, C. )

    1988-01-01

    The insufficient knowledge base for the design and optimization of solar dryer could be the obstacle to the unrealized promise of solar drying. By applying the lumped-parameter approach in the analysis of the transfer processes and utilizing known results from drying theory, this article demonstrates a methodology for the construction of a reduced mathematical model of the forced convection solar cabinet dryer. The model comprises only the variables directly involved in the energy and mass balance relationships for the drying process. The values of the variables determine the state of the processes in the dryer, and the model is a set of relationships that determine such a state. Specializing into thin product bed with sponge pieces constituting the product, this article describes an experiment carried out to verify the model. It also presents an assessment of the model parameter value from the experimental result and a simulation procedure with a result, which positively validates the model.

  1. Performance analysis of solar-assisted chemical heat-pump dryer

    SciTech Connect

    Fadhel, M.I.; Sopian, K.; Daud, W.R.W.

    2010-11-15

    A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experiment of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)

  2. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    NASA Astrophysics Data System (ADS)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  3. Crop drying by indirect active hybrid solar - Electrical dryer in the eastern Algerian Septentrional Sahara

    SciTech Connect

    Boughali, S.; Bouchekima, B.; Mennouche, D.; Bouguettaia, H.; Bechki, D.; Benmoussa, H.

    2009-12-15

    In the present work, a new specific prototype of an indirect active hybrid solar-electrical dryer for agricultural products was constructed and investigated at LENREZA Laboratory, University of Ouargla (Algerian Sahara). In the new configuration of air drying passage; the study was done in a somewhat high range of mass flow rate between 0.04 and 0.08 kg/m{sup 2} s a range not properly investigated by most researchers. Experimental tests with and without load were performed in winter season in order to study the thermal behavior of the dryer and the effect of high air masse flow on the collector and system drying efficiency. The fraction of electrical and solar energy contribution versus air mass flow rate was investigated. Slice tomato was studied with different temperatures and velocities of drying air in order to study the influence of these parameters on the removal moisture content from the product and on the kinetics drying and also to determine their suitable values. Many different thin layer mathematical drying models were compared according to their coefficient of determination (R{sup 2}) and reduced chi square ({chi}{sup 2}) to estimate experimental drying curves. The Middli model in this condition proved to be the best for predicting drying behavior of tomato slice with (R{sup 2} = 0.9995, {chi}{sup 2} = 0.0001). Finally an economic evaluation was calculated using the criterion of payback period which is found very small 1.27 years compared to the life of the dryer 15 years. (author)

  4. Numerical modelling of multi-pass solar dryer filled with granite pebbles for thermal storage enhancement

    NASA Astrophysics Data System (ADS)

    Kareem, M. W.; Habib, K.; Ruslan, M. H.

    2015-09-01

    In this paper, a theoretical modelling of a cheap solar thermal dryer for small and medium scale farmers with multi-pass approach has been investigated. Comsol Multiphysics modelling tool was employed using numerical technique. The rock particles were used to enhance the thermal storage of the drying system. The local weather data were used during the simulation while parameters and coefficients were sourced from literature. An improvement on efficiency of up to 7% was recorded with error of 10-5 when compared with the reported double pass solar collector. A fair distribution of hot air within the cabinets was also achieved. Though the modelling tool used was robust but the characterization of the system materials need to be done to improve the system accuracy and better prediction.

  5. Solar energy dryer kinetics using flat-plate finned collector and forced convection for potato drying

    NASA Astrophysics Data System (ADS)

    Batubara, Fatimah; Misran, Erni; Dina, Sari Farah; Heppy

    2017-06-01

    Research on potato drying using the indirect solar dryer with flat-plate finned collector and forced convection has been done. The research was conducted at the outdoor field of Laboratory of Institute for Research and Standardization of Industry on June 14th-23rd, 2016 from 9:00 am to 4:00 pm. This research aims to obtain the drying kinetics model of potato (Solanumtuberosum L.) using an indirect solar dryer's (ISD) with flat plate-finned collector and forced convection. The result will be compared to the open sun drying (OSD) method. Weather conditions during the drying process took place as follows; surrounding air temperature was in the range 27 to 34.7 °C, relative humidity (RH) 29.5 to 61.0% and the intensity of solar radiation 105.6 to 863.1 Watt/m2. The dried potato thicknesses were 1.0 cm, 1.5 cm and 2.0 cm, with the average initial water content of 76.46%. The average temperature in the collector chamber ranged from 42.2 to 57.4 °C and the drying chamber was at 46.2 °C. The best drying result was obtained from a sample size of 1 cm thickness using the IDS method with an average drying rate of 0.018 kg H2O per kg dry-weight.hour and the water content was constant at 5.02% in 21 hours of drying time. The most suitable kinetics model is Page model, equation MR = exp (-0.049 t1,336) for 1.0 cm thickness, exp (-0.066 t1,222) for 1.5 cm thickness and exp (-0.049 t1,221) for 2.0 cm thickness. The quality of potato drying using ISD method is better than using OSD which can be seen from the color produced.

  6. Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels

    NASA Astrophysics Data System (ADS)

    Houhou, H.; Yuan, W.; Wang, G.

    2017-05-01

    This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.

  7. A new type of modular dryer combining solar energy and producer gas

    SciTech Connect

    Hirunlabh, J.; Paraboon, T.; Pairintra, R.; Namprakai, P.; Khedari, J.

    1997-03-01

    The main concept of this research is to develop a flexible modular dryer that combines two different sources of non-conventional energy. In this study, solar energy and producer gas generated by an up-flow charcoal gasifier were considered. The drying system was set out by using a 0.6 m{sup 3} modular cabinet supporting a solar collector of 2.5 m{sup 2} surface area. 16 kg of charcoal was used in each batch to feed the gasifier. The experiment was performed for drying beef that required two different stages of drying temperature: the first, which used producer gas requires approximately 60 C for four hours and the second used solar energy at 40 C for six hours. The energy consumed for drying 16 kg of beef was 7.57 MJ/kg H{sub 2}O evaporated which obtained from solar energy, producer gas and blowers in percentages of 8.72%, 31.44% and 59.84%, respectively.

  8. Drying characteristic of barley under natural convection in a mixed-mode type solar grain dryer

    SciTech Connect

    Basunia, M.A.; Abe, T.

    1999-07-01

    Thin-layer solar drying characteristics of barley were determined at average natural air flow temperature ranging from 43.4 to 51.7 C and for relative humidities ranging from 16.5% to 37.5%. A mixed-mode type natural convection solar dryer was used for this experiment. The data of sample weight, and dry and wet bulb temperatures of the drying air were recorded continuously throughout the drying period for each test. The drying data were then fitted to the Page model. The model gave a good fit for the moisture content with an average standard error of 0.305% dry basis. The parameter N in Page's equation was assumed as a product-dependent constant which made it easy to compare the effects of independent variables on the natural convection solar drying rate without causing considerable error in predicting the drying rate for barley. A linear relationship was found between the parameter K, temperature T, and relative humidity R{sub H}.

  9. Building and use of a performance model for a solar dryer

    SciTech Connect

    Puiggali, J.R.; Tiguert, A.

    1986-01-01

    The aim of this study is to show how a simple numerical model can improve the understanding of the thermal and hydrodynamic behaviour of a dryer working under natural conditions. This model is managed taking into account the real operating conditions of the dryer. The general procedure permits a hydrodynamic curve to be obtained and is validated by a comparison with experimental results.

  10. Solar-assisted electric clothes dryer using a home attic as a heat source

    SciTech Connect

    Stana, J. M.

    1983-01-01

    This study was undertaken to determine the suitability of using a southeastern home attic as a means of reducing the energy consumption of an electric clothes dryer. An inexpensive duct (duplicable for $25) was constructed to collect hot attic air from the peak of a south facing roof and introduce it into the dryer inlet. Instrumentation was added to measure inlet temperatures and operating time/energy consumption of the dryer. Standardized test loads, in addition to normal laundry, were observed over the period of one year. The heat-on time of the dryer tested was shown to be reduced .16 to .35 minutes per /sup 0/C rise in inlet temperature. Inlet temperatures produced by the attic duct peaked at 56/sup 0/C(133/sup 9/F) in May/June and 40/sup 0/C(104/sup 0/F) in February. Based on peak temperatures available between 2 and 4 pm each month, a potential 20% yearly average savings could be realized. Economic viability of the system, dependant primarily on dryer usage, can be computed using a formula derived from the test results and included in the report.

  11. Experimental investigation on the comparison of fenugreek drying in an indirect solar dryer and under open sun

    NASA Astrophysics Data System (ADS)

    Shrivastava, Vipin; Kumar, Anil

    2016-09-01

    The convective heat transfer coefficient is an essential parameter for designing of any solar drying system. In this paper heat transfer modeling in term of convective heat transfer coefficient is performed and compared with open sun drying. The data obtained from experimentation under open sun and indirect solar drying conditions have been used to find values of the experimental constant `C' and exponent `n' by regression analysis and, consequently, convective heat transfer coefficient. From this study it is concluded that the convective heat transfer coefficient is decreasing with drying time it is due to decrease in moisture content. Results also showed that convective heat transfer coefficients are more in indirect solar dryer system than under open sun drying.

  12. Design, experimental and economic evaluation of a commercial-type solar dryer for production of high-quality hay

    SciTech Connect

    Arinze, E.A.; Sokhansanj, S.; Schoenau, G.J.; Crerar, B.; Opoku, A.

    1998-03-01

    Design features, development, experimental functional performance and economic evaluation of an energy efficient solar energy dryer for commercial production of high-quality hay and processed forage products are presented. The solar hay dryer consists of an improved solar collector with selective coated aluminum absorber plate and spaced fins, and a drying shed connected to the collector by an insulated duct and having a perforated metal grate floor, swing-away plywood frames and polyethylene curtains for effectively sealing the hay stack, and a crawl space below the floor where a 3-hp in-line centrifugal fan is housed for air circulation by suction. In late August and in early September, 1996, 160 small rectangular bales of alfalfa hay with about 25% bromegrass were successfully dried from 33% initial moisture content to 13%, and from 25% to 11% moisture in 4 and 3 days, respectively, under average weather conditions in Saskatoon, Saskatchewan, Canada. With about 18 m{sup 3}/min per tonne airflow, 10--15 C temperature rise above ambient was obtained during peak bright sunshine hours. Relatively high daily average collector efficiency of 76%, high drying effectiveness, drying uniformity, uniform air distribution and tight sealing of the stack were achieved which resulted in an attractive green color of hay, no mold growth on hay, and an overall system drying efficiency of about 79%. Compared to a conventional natural gas drying system or field-drying method, the payback period on extra investment costs recovered through drying cost savings of $3/t to $6/t or through over two times higher prices for high-quality hay produced by the solar drying system may be just one or two years, respectively.

  13. Alterations in fruit and vegetable beta-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers.

    PubMed

    Ndawula, J; Kabasa, J D; Byaruhanga, Y B

    2004-08-01

    This study investigated the effects of three drying methods (open sun drying, visqueen-covered solar dryer and polyethylene-covered solar dryer) on b-carotene and vitamin C content of edible portions of mango fruit (Mangifera indica) and cowpea leaves (Vigna unguiculata). Commercial samples were analysed for vitamin C by titrimetry and b-carotene by spectrophotometry at 450 nm. Differences in vitamin retention and loss associated with the three drying methods were assessed by analysis of variance and least significant difference (LSD) at (p<0.05. The fresh cowpea leaf b-carotene and vitamin C content was 140.9 and 164.3 mg / 100g DM respectively and decreased (p<0.05) with drying. Open sun drying method caused the greatest b-carotene and vitamin C loss (58% and 84% respectively), while the visqueen-covered solar dryer caused the least loss (34.5% and 71% respectively). Blanching cowpea leaves improved b-carotene and vitamin C retention by 15% and 7.5% respectively. The b-carotene and vitamin C content of fresh ripe mango fruit was 5.9 and 164.3 mg/100g DM respectively. Similar to effects on cowpea leaves, the mango micronutrient content decreased (p<0.05) with drying. The open sun drying method caused the greatest b-carotene (94.2%) and vitamin C (84.5%) loss, while the visqueen-covered solar dryer caused the least (73 and 53% respectively). These results show that the three solar drying methods cause significant loss of pro-vitamin A and vitamin C in dried fruits and vegetables. However, open sun drying causes the most loss and the visqueen-covered solar dryer the least, making the later a probable better drying technology for fruit and vegetable preservation. The drying technologies should be improved to enhance vitamin retention.

  14. Numerical and experimental investigation of direct solar crop dryer for farmers

    NASA Astrophysics Data System (ADS)

    Kareem, M. W.; Habib, Khairul; Sulaiman, S. A.

    2015-07-01

    This article presents a theoretical and experimental investigation on effects of weather on direct solar crop drying technique. The SIMULINK tool was employed to analyze the energy balance equations of the transient system model. A prototype of the drying system was made and data were collected between the months of June and July in Perak, Malaysia. The contribution of intense sunny days was encouraging despite the wet season, and the wind velocity was dynamic during the period of investigation. However, high percentage of relative humidity was observed. This constitutes a hindrance to efficient drying process. The reported studies were silent on the effect of thick atmospheric moisture content on drying rate of agricultural products in tropic climate. This finding has revealed the mean values of insolation, wind speed, moisturized air, system performance efficiency and chili microscopy image morphology. The predicted and measured results were compared with good agreement.

  15. Textile dryer heat recovery system

    SciTech Connect

    Gordon, J. S.

    1985-08-06

    A textile dryer heat recovery system includes a textile dryer and a heat exchanger. A duct is provided for directing dryer exhaust gas to the heat exchanger for preheating dryer input air. A cleaning system within the heat exchanger removes dryer exhaust gas contaminants deposited in the heat exchanger.

  16. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    SciTech Connect

    M Ali, M. K. E-mail: eutoco@gmail.com; Ruslan, M. H. E-mail: eutoco@gmail.com; Muthuvalu, M. S. E-mail: jumat@ums.edu.my; Wong, J. E-mail: jumat@ums.edu.my; Sulaiman, J. E-mail: hafidzruslan@eng.ukm.my; Yasir, S. Md. E-mail: hafidzruslan@eng.ukm.my

    2014-06-19

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.

  17. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    NASA Astrophysics Data System (ADS)

    M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.

    2014-06-01

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.

  18. Optimization of solar thermal dryer designs for the production of sun-dried apricots (Prunus armeniaca)(abstract)

    USDA-ARS?s Scientific Manuscript database

    Solar thermal (ST) drying is a ubiquitous method that has had widespread use for fruit and vegetable crop preservation in developing countries. Conversely, in the United States solar thermal drying has found limited commercialization due to concerns about slow drying rates and poor product quality. ...

  19. 44. VIEW OF SOUTHWEST CORNER OF DRYER ROOM. DRYER FOUNDATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. VIEW OF SOUTHWEST CORNER OF DRYER ROOM. DRYER FOUNDATION AT BOTTOM OF VIEW, WITH 18 INCH REVERSIBLE BELT CONVEYOR (UPPER LEFT), AND 16 INCH BELT CONVEYOR FINES FEED TO CRUSHED OXIDIZED ORE BIN (CENTER TO UPPER RIGHT). DRYER EXHAUST IS BELOW FINES FEED BELT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  20. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    NASA Astrophysics Data System (ADS)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  1. Performance evaluation of greenhouse dryer with opaque north wall

    NASA Astrophysics Data System (ADS)

    Prakash, Om; Kumar, Anil

    2014-04-01

    A laboratory scale modified solar active greenhouse dryer with opaque northern wall has been developed and tested for unload conditions at the Maulana Azad National Institute of Technology, Bhopal, India. The dryer has been tested under two conditions firstly with covered inside concrete floor and secondly when the floor is not covered. Inside covered floor conditions provide higher increase in temperature and decrease in relative humidity.

  2. Thermal dryers for solids

    SciTech Connect

    Billings, C.H.

    1993-12-01

    This article describes an indirect thermal dryer added to dewater solids before incineration of sewage sludge at a Buffalo, New York waste water treatment plant. In the first three months of operation, the solids inventory was reduced from about 799 tons to 250 tons. The solids processed in the plant's multiple hearth incinerators varied from 12 to 14 tons per hour.

  3. Solar collection

    NASA Astrophysics Data System (ADS)

    Cole, S. I.

    1984-08-01

    Solar dishes, photovoltaics, passive solar building and solar hot water systems, Trombe walls, hot air panels, hybrid solar heating systems, solar grain dryers, solar greenhouses, solar hot water worhshops, and solar workshops are discussed. These solar technologies are applied to residential situations.

  4. "Dissection" of a Hair Dryer

    ERIC Educational Resources Information Center

    Eisenstein, Stan; Simpson, Jeff

    2008-01-01

    The electrical design of the common hair dryer is based almost entirely on relatively simple principles learned in introductory physics classes. Just as biology students dissect a frog to see the principles of anatomy in action, physics students can "dissect" a hair dryer to see how principles of electricity are used in a real system. They can…

  5. "Dissection" of a Hair Dryer

    ERIC Educational Resources Information Center

    Eisenstein, Stan; Simpson, Jeff

    2008-01-01

    The electrical design of the common hair dryer is based almost entirely on relatively simple principles learned in introductory physics classes. Just as biology students dissect a frog to see the principles of anatomy in action, physics students can "dissect" a hair dryer to see how principles of electricity are used in a real system. They can…

  6. Clothes Dryer Automatic Termination Evaluation

    SciTech Connect

    TeGrotenhuis, Ward E.

    2014-10-01

    Volume 2: Improved Sensor and Control Designs Many residential clothes dryers on the market today provide automatic cycles that are intended to stop when the clothes are dry, as determined by the final remaining moisture content (RMC). However, testing of automatic termination cycles has shown that many dryers are susceptible to over-drying of loads, leading to excess energy consumption. In particular, tests performed using the DOE Test Procedure in Appendix D2 of 10 CFR 430 subpart B have shown that as much as 62% of the energy used in a cycle may be from over-drying. Volume 1 of this report shows an average of 20% excess energy from over-drying when running automatic cycles with various load compositions and dryer settings. Consequently, improving automatic termination sensors and algorithms has the potential for substantial energy savings in the U.S.

  7. Particle Breakage in Agitated Dryers

    NASA Astrophysics Data System (ADS)

    Hare, Colin L.; Ghadiri, Mojtaba; Dennehy, Robert; Collier, Alan

    2009-06-01

    A method for predicting particle breakage in agitated dryers is described. The method utilizes an estimation of stresses and strains occurring in a dryer bed sheared by an impeller using the Distinct Element Method (DEM). An assemblage of particles is then subjected to these stresses in a shear cell to assess the extent of attrition under a range of stresses and strains. Paracetamol particles in the size range 500-600 μm are used for the experimental work. The relationship of attrition with stress and strain is then incorporated into the distribution of stress and strain in the dryer estimated by DEM. The extent of attrition for a range of conditions including the impeller speed has been analysed. The prediction shows impeller speed to have limited effect on attrition within the range of speeds tested.

  8. ``Dissection'' of a Hair Dryer

    NASA Astrophysics Data System (ADS)

    Eisenstein, Stan; Simpson, Jeff

    2008-12-01

    The electrical design of the common hair dryer is based almost entirely on relatively simple principles learned in introductory physics classes. Just as biology students dissect a frog to see the principles of anatomy in action, physics students can "dissect" a hair dryer to see how principles of electricity are used in a real system. They can discover how engineers solve problems such as how to vary between low and high heat and fan speed by simply moving the position of a single switch. Principles of alternating versus direct current, series and parallel circuits, electrical safety, voltage dividing, ac rectification, power, and measurement of resistance and continuity all come in to play.

  9. BWR Steam Dryer Alternating Stress Assessment Procedures

    SciTech Connect

    Morante, R. J.; Hambric, S. A.; Ziada, S.

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  10. 30 CFR 77.301 - Dryer heating units; operation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Dryer heating units; operation. 77.301 Section... MINES Thermal Dryers § 77.301 Dryer heating units; operation. (a) Dryer heating units shall be operated...) Dryer heating units which are fired by pulverized coal, shall be operated and maintained in...

  11. 30 CFR 77.301 - Dryer heating units; operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Dryer heating units; operation. 77.301 Section... MINES Thermal Dryers § 77.301 Dryer heating units; operation. (a) Dryer heating units shall be operated...) Dryer heating units which are fired by pulverized coal, shall be operated and maintained in...

  12. 30 CFR 77.301 - Dryer heating units; operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Dryer heating units; operation. 77.301 Section... MINES Thermal Dryers § 77.301 Dryer heating units; operation. (a) Dryer heating units shall be operated...) Dryer heating units which are fired by pulverized coal, shall be operated and maintained in...

  13. 30 CFR 77.301 - Dryer heating units; operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dryer heating units; operation. 77.301 Section... MINES Thermal Dryers § 77.301 Dryer heating units; operation. (a) Dryer heating units shall be operated...) Dryer heating units which are fired by pulverized coal, shall be operated and maintained in...

  14. 30 CFR 77.301 - Dryer heating units; operation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dryer heating units; operation. 77.301 Section... MINES Thermal Dryers § 77.301 Dryer heating units; operation. (a) Dryer heating units shall be operated...) Dryer heating units which are fired by pulverized coal, shall be operated and maintained in accordance...

  15. Centrifugal dryers keep pace with the market

    SciTech Connect

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  16. Design and operation of convective industrial dryers

    SciTech Connect

    Kiranoudis, C.T.; Maroulis, Z.B.; Marinos-Kouris, D.

    1996-11-01

    Design and operational performance of convective industrial dryers are an important field of chemical engineering, which is still governed by empiricism.s This article addresses the design vs. operation problem for three basic types of continuous convective industrial dryers: conveyor-belt, fluidized bed, and rotary. Design procedures determined the optimal construction and operational characteristics in terms of total annual cost for each type involved and for a given production capacity through appropriate mathematical modeling. All dryer types were compared by evaluating optimum configurations for a wide range of product characteristics and production capacity values. Once the dryer configuration was specified, its operational performance was evaluated by comparing the optimum operation cost vs. production capacity for predefined optimum designed structures. Rotary dryers were more expensive to design than fluidized bed dryers. Operationally, however, it is the other way around due to the favored heat transfer achieved in rotary dryers. Conveyor-belt dryers lie somewhere between producing satisfactory results in terms of both design and operation. Case studies on foods and inorganics are included to demonstrate the performance of each process as well as the effectiveness of the proposed approach.

  17. Solar drying in the Caribbean

    SciTech Connect

    Headley, O. )

    1992-03-01

    The United Nations Food and Agricultural Organisation (FAO) has estimated that a quarter of crops are lost through inadequate handling after harvesting. The use of solar dryers can reduce these losses and improve the quality of food. Oliver Headley of the University of the West Indies overviews a range of dryers developed in the Caribbean region. Solar dryers have been used in various parts of the Caribbean for the past eighteen years. The main types are: closed cycle dryers with separate flat plate collector; open cycle dryers with roof vanes against direct sunlight; open cycle dryers with rockbed heat storage units; open cycle dryers with chimneys for air circulation; wire basket dryers with flow through ventilation; barn roof collectors feeding packed bed dryers. During the dry season (January to April), mean daily insolation in a typical Caribbean island is about 25 MJ/m{sup 2}. With such an abundant resource, solar crop drying emerged as a preferred method for the preservation of perishable commodities. In territories without fossil fuel reserves solar energy is an obvious alternative since it does not involve expenditure of scarce foreign exchange. Research and development work in solar crop drying was conducted both at experimental sites in the University and in rural districts throughout the region. Several types of dryer were designed and tested.

  18. Novel design of an agricultural dryer

    SciTech Connect

    Khattab, N.M.

    1997-06-01

    In this article a procedure for designing a multitray agricultural dryer, capable of producing uniform drying of product, is given. An analytical solution based on heat and mass transfer for air and product inside the dryer is used. In the solution, there is an attempt to keep the drying rates of the products on different trays constant during the whole drying period. This could be realized by changing the dryer shape and dimensions for every specific product in accordance with the conditions of the inlet air. It was found that a dryer of pyramidal shape is most suitable for fulfilling the requirement of good quality dried product. The method has been verified experimentally and shows good agreement with the analytical solution. Based on the obtained results, the design of a dryer for many kinds of fruits is obtained with the analytical solution.

  19. Cascaded coal dryer for a coking plant

    SciTech Connect

    Petrovic, V.; Heinz, R.; Jokisch, F.; Schmid, K.

    1984-02-07

    In a coking process, coal to be coked is preheated in a cascaded whirling bed dryer into which the coal is charged from above and exposed to an indirect heat transfer while whirling in a coal-steam mixture. Hot gas applied to the heating pipes in respective cascades of the dryer is branched off from the total amount of hot gases discharged from a dry cooler in which hot coke from the coke oven is cooled by recirculating cooler gas constituted by a partial gas stream discharged from the cascades of the dryer and reunited with the other partial stream subject to a heat exchange for generating steam. Steam from the whirling beds is discharged from the cascaded dryer, separated from the entrained dust particles, and then the excessive steam is drained in a branch conduit and the remaining steam is compressed and reintroduced into the lowermost whirling bed in the dryer.

  20. 30 CFR 77.315 - Thermal dryers; examination and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Thermal dryers; examination and inspection. 77.315 Section 77.315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Thermal Dryers § 77.315 Thermal dryers; examination and inspection. Thermal dryer...

  1. 30 CFR 77.315 - Thermal dryers; examination and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Thermal dryers; examination and inspection. 77.315 Section 77.315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Thermal Dryers § 77.315 Thermal dryers; examination and inspection. Thermal dryer...

  2. 30 CFR 77.300 - Thermal dryers; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Thermal dryers; general. 77.300 Section 77.300... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Thermal Dryers § 77.300 Thermal dryers; general. On and after July 1, 1971 dryer systems used for drying coal at...

  3. 30 CFR 77.300 - Thermal dryers; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Thermal dryers; general. 77.300 Section 77.300... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Thermal Dryers § 77.300 Thermal dryers; general. On and after July 1, 1971 dryer systems used for drying coal at...

  4. 30 CFR 77.300 - Thermal dryers; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Thermal dryers; general. 77.300 Section 77.300... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Thermal Dryers § 77.300 Thermal dryers; general. On and after July 1, 1971 dryer systems used for drying coal at...

  5. 30 CFR 77.315 - Thermal dryers; examination and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Thermal dryers; examination and inspection. 77.315 Section 77.315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Thermal Dryers § 77.315 Thermal dryers; examination and inspection. Thermal dryer...

  6. 30 CFR 77.300 - Thermal dryers; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Thermal dryers; general. 77.300 Section 77.300... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Thermal Dryers § 77.300 Thermal dryers; general. On and after July 1, 1971 dryer systems used for drying coal at...

  7. 30 CFR 77.315 - Thermal dryers; examination and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Thermal dryers; examination and inspection. 77.315 Section 77.315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Thermal Dryers § 77.315 Thermal dryers; examination and inspection. Thermal dryer...

  8. 30 CFR 77.300 - Thermal dryers; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Thermal dryers; general. 77.300 Section 77.300... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Thermal Dryers § 77.300 Thermal dryers; general. On and after July 1, 1971 dryer systems used for drying coal at...

  9. 30 CFR 77.315 - Thermal dryers; examination and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Thermal dryers; examination and inspection. 77.315 Section 77.315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Thermal Dryers § 77.315 Thermal dryers; examination and inspection. Thermal dryer...

  10. Comparison of timber drying using solar energy, electrical heating and dehumidifier

    SciTech Connect

    Ong, K.S.

    1999-04-01

    The performance of three different types of dryers for the hot air drying of sawn-timber planks are compared. These were the electric resistance dryer, solar dryer, and the dehumidifier dryer. While the electric and solar dryers depended only upon hot air for drying, the dehumidifier dryer relied on hot dehumidified air. The results of investigations carried out on timber drying employing these three types of dryers in the Engineering Faculty are compiled and compared here in this paper. The results showed that the electric dryer produced the fastest drying time and lowest moisture content, followed by dehumidifier drying. The solar dryer achieved a lower moisture content and a faster drying rate compared to natural drying, although the difference in drying times was marginal.

  11. Credit PSR. This interior view shows the vacuum tumble dryer. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This interior view shows the vacuum tumble dryer. The tumble dryer is lined with a water jacket to maintain temperature during the drying of ammonium perchlorate ("AP"); water enters and exits the dryer jacket through the pipe fittings along the horizontal center line of the dryer. The wall at the right is constructed to blow out in the event of an explosion - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Building, Edwards Air Force Base, Boron, Kern County, CA

  12. Turbulent group reaction model of spray dryer

    SciTech Connect

    Ma, H.K.; Huang, H.S.; Chiu, H.H.

    1987-01-01

    A turbulent group reaction model consisting of several sub-models was developed for the prediction of SO/sub 2/ removal efficiency in spray dryers. Mathematical models are developed on the basis of Eulerian-type turbulent Navier-Stokes equations for both gas and condensed phases with interphase transport considerations. The group reaction number, G, is defined as the ratio of the SO/sub 2/ absorption rate to a reference convective mass flux. This number represents the fraction of SO/sub 2/ absorbed into the lime slurry. The model is incorporated into a computer code which permits the investigation of spray dryer design concepts and operating conditions. Hence, it provides a theoretical basis for spray dryer performance optimization and scale-up. This investigation can be a practical guide to achieve high SO/sub 2/ removal efficiency in a spray dryer.

  13. Vegetable Drying in Two Novel Food Dryers.

    DTIC Science & Technology

    1994-11-01

    TECHNICAL REPORT AD NATICK/TR-95/008 VEGETABLE DRYING IN TWO NOVEL FOOD DRYERS by Joseph Cohen, Christopher Rees, Linnea Hallberg, and Tom C.S. Yang...VEGETABLE DRYING IN TWO NOVEL FOOD DRYERS 6. AUTHOR(S) FTBB 1313 PR: ID:TB-PST Joseph Cohen, Christopher Rees, Linnea Hallberg, and Tom C.S. Yan__ 7...up from the laboratory to large commercial units. ( Priestley , 1962). The technique involves levitating particulate solids in an upward-flowing gas

  14. Drying characteristics of paddy in an integrated dryer.

    PubMed

    Manikantan, M R; Barnwal, P; Goyal, R K

    2014-04-01

    Drying characteristics of paddy (long grain variety PR-118 procured from PAU, Ludhiana) in an integrated dryer using single as well as combined heating source was studied at different air temperatures. The integrated dryer comprises three different air heating sources such as solar, biomass and electrical. Drying of paddy occurred in falling rate period. It was observed that duration of drying of paddy from 22 to 13 % moisture content (w.b.) was 5-9 h depending upon the source of energy used. In order to select a suitable drying curve, six thin layer-drying models (Newton, Page, Modified Page, Henderson and Pabis, Logarithmic and Wang and Singh) were fitted to the experimental moisture ratio data. Among the mathematical models investigated, Wang and Singh model best described the drying behaviour of paddy using solar, biomass and combined heating sources with highest coefficient of determination (r (2)) values and least chi-square, χ (2), mean bias error (MBE) and root mean square error (RMSE) values. However, Page model adequately described the drying behavior of paddy using electrical heating source.

  15. 61. INTERIOR VIEW OF THE COKE DRYER BUILDING, LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. INTERIOR VIEW OF THE COKE DRYER BUILDING, LOOKING AT FIRE BOXES AND SILOS FOR COKE DRYERS. APRIL 22, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  16. 16. VIEW OF OVERHEAD DOOR TO HOP DRYER NO. 3. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF OVERHEAD DOOR TO HOP DRYER NO. 3. ALL EIGHT HOP DRYERS ARE ON THE SECOND FLOOR. - James W. Seavey Hop Driers, 0.6 mile East from junction of Highway 99 & Alexander Avenue, Corvallis, Benton County, OR

  17. Affordable Hybrid Heat Pump Clothes Dryer

    SciTech Connect

    TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.; Crook, Alexander

    2016-06-30

    This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency over heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.

  18. 37. REDUCTION PLANT DRYER Stainless steel screen cylinder, encased ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. REDUCTION PLANT - DRYER Stainless steel screen cylinder, encased within an outer steel shell (top half missing). As fish were tumbled by the rotating screen, they were cooked and dried by live steam piped into the dryer through overhead pipes. The dryer is mounted on a slight angle, aiding the process by moving the drying fish towards the exhaust end of the dryer. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  19. 40 CFR 1065.342 - Sample dryer verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 1065.342 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... maintenance, for thermal chiller. For osmotic membrane dryers, verify the performance upon installation, after...-membrane dryer or thermal chiller. (d) Sample dryer verification procedure. Use the following method...

  20. 40 CFR 1065.342 - Sample dryer verification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 1065.342 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... maintenance, for thermal chiller. For osmotic membrane dryers, verify the performance upon installation, after...-membrane dryer or thermal chiller. (d) Sample dryer verification procedure. Use the following method...

  1. 40 CFR 1065.342 - Sample dryer verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 1065.342 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... maintenance, for thermal chiller. For osmotic membrane dryers, verify the performance upon installation, after...-membrane dryer or thermal chiller. (d) Sample dryer verification procedure. Use the following method...

  2. 40 CFR 1065.342 - Sample dryer verification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 1065.342 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... maintenance, for thermal chiller. For osmotic membrane dryers, verify the performance upon installation, after...-membrane dryer or thermal chiller. (d) Sample dryer verification procedure. Use the following method...

  3. 40 CFR 60.252 - Standards for thermal dryers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for thermal dryers. 60.252... and Processing Plants § 60.252 Standards for thermal dryers. (a) On and after the date on which the... or operator of a thermal dryer constructed, reconstructed, or modified on or before April 28, 2008...

  4. 10 CFR 429.21 - Residential clothes dryers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential clothes dryers. 429.21 Section 429.21 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.21 Residential clothes dryers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to clothes dryers; and...

  5. 10 CFR 429.21 - Residential clothes dryers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential clothes dryers. 429.21 Section 429.21 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.21 Residential clothes dryers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to clothes dryers; and...

  6. 10 CFR 429.21 - Residential clothes dryers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential clothes dryers. 429.21 Section 429.21 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.21 Residential clothes dryers. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to clothes dryers; and...

  7. Oblique view of stacks and towers alongside the Dryer House, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of stacks and towers alongside the Dryer House, note the pivot windows in the saw tooth monitor atop the Dryer House, view facing southeast - Kahului Cannery, Plant No. 28, Cannery Building and Dryer House/Feed Storage Building, 120 Kane Street, Kahului, Maui County, HI

  8. Drying radioactive wastewater salts using a thin film dryer

    SciTech Connect

    Scully, D.E.

    1998-03-19

    This paper describes the operational experience in drying brines generated at a radioactive wastewater treatment facility. The brines are composed of aqueous ammonium sulfate/sodium sulfate and aqueous sodium nitrate/sodium sulfate, The brine feeds receive pretreatment to preclude dryer bridging and fouling. The dryer products are a distillate and a powder. The dryer is a vertical thin film type consisting of a steam heated cylinder with rotor. Maintenance on the dryer has been minimal. Although many operability problems have had to be overcome, dryer performance can now be said to be highly reliable.

  9. Design of starch coated seed cotton dryers

    USDA-ARS?s Scientific Manuscript database

    A model was developed for the design and analysis of a high temperature tunnel dryer, primarily used with a new cotton ginning product, EASIflo ® cottonseed (starch-coated cottonseed). This form of cottonseed has emerged as a viable, value-added product for the cotton ginning industry. Currently, li...

  10. Mathematical model development and simulation of heat pump fruit dryer

    SciTech Connect

    Achariyaviriya, S.; Soponronnarit, S.; Terdyothin, A.

    2000-01-01

    A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporator bypass air affected markedly the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.

  11. Thin layer solar drying of rough rice

    SciTech Connect

    Zaman, M.A.; Bala, B.K. )

    1989-01-01

    This paper presents a set of simple empirical equations for natural air flow solar drying of rough rice in mixed-mode type dryer, box-type dryer and open floor drying system. The moisture contents predicted by the equations were in good agreement with the observed values. The effect of drying air temperature on the drying rate constants for these three cases were found to be insignificant. The equilibrium moisture content appeared to be the most important variable controlling the drying rate. The highest drying rate was observed in case of mixed-mode dryer. The drying rate of box dryer was next to that of mixed-mode dryer. This study shows that the introduction of solar dryer for drying of rough rice is highly recommended in Bangladesh.

  12. Product quality multi-objective dryer design

    SciTech Connect

    Kiranoudis, C.T.; Maroulis, Z.B.; Marinos-Kouris, D.

    1999-11-01

    Design of conveyor-belt dryers constitutes a mathematical programming problem involving the evaluation of appropriate structural and operational process variables so that total annual plant cost involved is optimized. The increasing need for dehydrated products of the highest quality, imposes the development of criteria that, together with cost, determine the design rules for drying processes. Quality of dehydrated products is a complex resultant of properties characterizing the final products, where the most important one is color. Color is determined as a three-parameter resultant, whose values for products, which have undergone drying should deviate from the corresponding ones of natural products, as little as possible. In this case, product quality dryer design is a complex multi-objective optimization problem, involving the color deviation vector as an objective function and as constraints the ones deriving from the process mathematical model. The mathematical model of the dryer was developed and the fundamental color deterioration laws were determined for the drying process. Non-preference multi-criteria optimization methods were used and the Pareto-optimal set of efficient solutions was evaluated. An example was included to demonstrate the performance of the design procedure, as well as the effectiveness of the proposed approach.

  13. Performance evaluation of heat pump dryer.

    PubMed

    Pal, U S; Khan, M K

    2010-03-01

    A batch type heat pump assisted dehumidified air dryer was developed successfully with a medium range of temperatures (30-41°C) for safe drying of heat sensitive crops. Dehumidification system of the developed heat pump dryer (HPD) maintained the relative humidity (RH) of air entering the drying chamber below 40%. The inlet drying air temperature decreased during early hours of drying followed by rapid rise between the 2nd and 10th h, after which the temperature was almost stable. The RH of inlet and exhaust drying air increased initially and decreased subsequently with drying time as product became drier. The HPD was found to have a specific moisture extraction rate between 0.55 and 1.10 kg/kWh. Energy consumption for HPD for 24 h of operation was found less (4.48-5.05 kWh) than the hot air dryer (5.65-9.6 kWh) while operating under different drying conditions. Better quality dried sweet pepper (Capsicum annuum L.) was obtained in HPD owing to lower drying air temperature.

  14. Energy recovery from textile dryer operations. Phase 1

    SciTech Connect

    McCrosson, F.J.; Jenkins, J.D.; Yngve, P.W.

    1981-08-01

    A two-step approach to conserving energy in the textile industry by decreasing gas consumption in dryer operations involves 1) the automatic control of dryer dampers to minimize the flow of exhaust heat and 2) the recovery and use of the exhaust heat to preheat incoming air. These measures could reduce natural gas consumption by 45-65%. Decreasing the exhaust flow rates entails increasing the dryer humidity to a maximum level (about 0.1 lb water/lb dry air) and controlling it by the stack dampers. Three types of air-to-air heat exchangers appear suitable for preheating the dryer air by the sensible exhaust heat.

  15. INTERIOR OF SHT (ROTARY DRYER FOR SODA) BUILDING OR DRYSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SHT (ROTARY DRYER FOR SODA) BUILDING OR DRYSIDE DRYERS WHICH REMOVED TRACES OF LIQUID FROM STD FILTRATE. HEAT CONVERTED SODIUM BICARBONATE TO SODIUM CARBONATE OR SODA ASH, THE PRINCIPAL PRODUCT OF THE WORKS. - Solvay Process Company, SHT Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  16. Steam generator with integral downdraft dryer

    SciTech Connect

    Hochmuth, F.W.

    1992-02-01

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  17. Heat Pump Clothes Dryer Model Development

    SciTech Connect

    Shen, Bo

    2016-01-01

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model to simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.

  18. 30 CFR 77.307 - Thermal dryers; location and installation; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Thermal dryers; location and installation... OF UNDERGROUND COAL MINES Thermal Dryers § 77.307 Thermal dryers; location and installation; general. (a) Thermal dryer systems erected or installed at any coal mine after June 30, 1971 shall be located...

  19. 30 CFR 77.307 - Thermal dryers; location and installation; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Thermal dryers; location and installation... OF UNDERGROUND COAL MINES Thermal Dryers § 77.307 Thermal dryers; location and installation; general. (a) Thermal dryer systems erected or installed at any coal mine after June 30, 1971 shall be located...

  20. 30 CFR 77.307 - Thermal dryers; location and installation; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Thermal dryers; location and installation... OF UNDERGROUND COAL MINES Thermal Dryers § 77.307 Thermal dryers; location and installation; general. (a) Thermal dryer systems erected or installed at any coal mine after June 30, 1971 shall be located...

  1. 30 CFR 77.307 - Thermal dryers; location and installation; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Thermal dryers; location and installation... OF UNDERGROUND COAL MINES Thermal Dryers § 77.307 Thermal dryers; location and installation; general. (a) Thermal dryer systems erected or installed at any coal mine after June 30, 1971 shall be located...

  2. 30 CFR 77.307 - Thermal dryers; location and installation; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Thermal dryers; location and installation... OF UNDERGROUND COAL MINES Thermal Dryers § 77.307 Thermal dryers; location and installation; general. (a) Thermal dryer systems erected or installed at any coal mine after June 30, 1971 shall be located...

  3. Fuzzy control of a fluidized bed dryer

    SciTech Connect

    Taprantzis, A.V.; Siettos, C.I.; Bafas, G.V.

    1997-05-01

    Fluidized bed dryers are utilized in almost every area of drying applications and therefore improved control strategies are always of great interest. The nonlinear character of the process, exhibited in the mathematical model and the open loop analysis, implies that a fuzzy logic controller is appropriate because, in contrast with conventional control schemes, fuzzy control inherently compensates for process nonlinearities and exhibits more robust behavior. In this study, a fuzzy logic controller is proposed; its design is based on a heuristic approach and its performance is compared against a conventional PI controller for a variety of responses. It is shown that the fuzzy controller exhibits a remarkable dynamic behavior, equivalent if not better than the PI controller, for a wide range of disturbances. In addition, the proposed fuzzy controller seems to be less sensitive to the nonlinearities of the process, achieves energy savings and enables MIMO control.

  4. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  5. First Clothes Dryers to Earn EPAs Energy Star Label Now Available Nationwide/Energy Star dryers offer Americans savings of up to $1.5 billion annually

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) announced today that Energy Star certified clothes dryers are now available nationwide through major retailers. At least 45 models of dryers earning the Energy Star label, including Whirlpoo

  6. 45. Communication equipment room, cable air dryer on left, motorola ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Communication equipment room, cable air dryer on left, motorola base station (vhf) at right, looking southwest - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  7. Looking Northwest at Uranium Dryers Along North Side of Green ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Uranium Dryers Along North Side of Green Room in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  8. Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in Red Room within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  9. View of furnace feeding into the drum type coffee dryer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of furnace feeding into the drum type coffee dryer on second floor of structure, view towards southeast - Santaella Coffee Processing Site, Highway 139, Kilometer 10.6, Maraguez, Ponce Municipio, PR

  10. Steam sand dryer in northeast part of sand tower. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steam sand dryer in northeast part of sand tower. View to northeast - Duluth & Iron Range Rail Road Company Shops, Sand Tower, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  11. Photovoltaic dryer with dual packed beds for drying medical herb

    SciTech Connect

    Abdel-Rehim, Z.S.; Fahmy, F.H.

    1998-03-01

    This work presents design and optimization of a cylindrical photovoltaic dryer with dual packed beds thermal energy storage for drying medical herb. The dryer is provided with electrical heater where the electrical energy is generated by using photovoltaic system. The electrical heater is designed and sized to realize continuous drying (day and night) to minimize the drying time. Two packed beds are used to fix the drying temperature in dryer during day and night. The main packed bed thermal energy storage is charged during the sunlight hours directly, to realize continued drying after sunset. An efficient PV dryer is devised to work under forced air created by air blower and heated by the electrical coils.

  12. Optimization of the drying process in batch dryers

    SciTech Connect

    Khattab, N.M.

    1996-04-01

    Because batch dryers are relatively cheap to build and inexpensive to maintain, they are widely used to dry agricultural products. A major drawback of these dryers is the continuously changing temperature and humidity of the drying air due to heat and mass transfer inside the dryers so that saturation level of the air is often reached before it leaves the dryer. This problem can be avoided by determining the suitable loading capacity for the dryer in relation to the inlet air condition. The maximum load can be determined either by limiting the number of trays, or by fixing tray loading with the above constrained condition of saturation. In either case, productivity, which is the maximum load divided by the corresponding drying time, is obtained and the optimum condition for each flow rate can then be determined. It was found for both drying conditions that there is a maximum value of productivity that determines the optimum dimensions and performance of the dryer at every flow rate.

  13. Comparative evaluation of the hygienic efficacy of an ultra-rapid hand dryer vs conventional warm air hand dryers

    PubMed Central

    Snelling, AM; Saville, T; Stevens, D; Beggs, CB

    2011-01-01

    Aims: To compare an ultra-rapid hand dryer against warm air dryers, with regard to: (A) bacterial transfer after drying and (B) the impact on bacterial numbers of rubbing hands during dryer use. Methods and Results: The Airblade™ dryer (Dyson Ltd) uses two air ‘knives’ to strip water from still hands, whereas conventional dryers use warm air to evaporate moisture whilst hands are rubbed together. These approaches were compared using 14 volunteers; the Airblade™ and two types of warm air dryer. In study (A), hands were contaminated by handling meat and then washed in a standardized manner. After dryer use, fingers were pressed onto foil and transfer of residual bacteria enumerated. Transfers of 0–107 CFU per five fingers were observed. For a drying time of 10 s, the Airblade™ led to significantly less bacterial transfer than the other dryers (P<0·05; range 0·0003–0·0015). When the latter were used for 30–35 s, the trend was for the Airblade to still perform better, but differences were not significant (P>0·05, range 0·1317–0·4099). In study (B), drying was performed ± hand rubbing. Contact plates enumerated bacteria transferred from palms, fingers and fingertips before and after drying. When keeping hands still, there was no statistical difference between dryers, and reduction in the numbers released was almost as high as with paper towels. Rubbing when using the warm air dryers inhibited an overall reduction in bacterial numbers on the skin (P < 0·05). Conclusions: Effective hand drying is important for reducing transfer of commensals or remaining contaminants to surfaces. Rubbing hands during warm air drying can counteract the reduction in bacterial numbers accrued during handwashing. Significance and Impact of the Study: The Airblade™ was superior to the warm air dryers for reducing bacterial transfer. Its short, 10 s drying time should encourage greater compliance with hand drying and thus help reduce the spread of infectious agents

  14. Comparative evaluation of the hygienic efficacy of an ultra-rapid hand dryer vs conventional warm air hand dryers.

    PubMed

    Snelling, A M; Saville, T; Stevens, D; Beggs, C B

    2011-01-01

    To compare an ultra-rapid hand dryer against warm air dryers, with regard to: (A) bacterial transfer after drying and (B) the impact on bacterial numbers of rubbing hands during dryer use. The Airblade™ dryer (Dyson Ltd) uses two air 'knives' to strip water from still hands, whereas conventional dryers use warm air to evaporate moisture whilst hands are rubbed together. These approaches were compared using 14 volunteers; the Airblade™ and two types of warm air dryer. In study (A), hands were contaminated by handling meat and then washed in a standardized manner. After dryer use, fingers were pressed onto foil and transfer of residual bacteria enumerated. Transfers of 0-10(7) CFU per five fingers were observed. For a drying time of 10 s, the Airblade™ led to significantly less bacterial transfer than the other dryers (P < 0·05; range 0·0003-0·0015). When the latter were used for 30-35 s, the trend was for the Airblade to still perform better, but differences were not significant (P > 0·05, range 0·1317-0·4099). In study (B), drying was performed ± hand rubbing. Contact plates enumerated bacteria transferred from palms, fingers and fingertips before and after drying. When keeping hands still, there was no statistical difference between dryers, and reduction in the numbers released was almost as high as with paper towels. Rubbing when using the warm air dryers inhibited an overall reduction in bacterial numbers on the skin (P < 0·05). Effective hand drying is important for reducing transfer of commensals or remaining contaminants to surfaces. Rubbing hands during warm air drying can counteract the reduction in bacterial numbers accrued during handwashing. The Airblade™ was superior to the warm air dryers for reducing bacterial transfer. Its short, 10 s drying time should encourage greater compliance with hand drying and thus help reduce the spread of infectious agents via hands. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society

  15. Dynamic models of the lignite transport in dryer of power plant boiler

    SciTech Connect

    Hrdlicka, F.; Slavik, P.

    1999-07-01

    An important part of a power plant is a coal dryer. There are many problems concerning the optimal coal transport in the dryer. Due to large complexity of these problems it would be rather difficult to perform extensive experiments with a real dryer. At CTU Prague two new simulation models have been developed that improve the design of flue gas gravitation coal dryer. These models allowed the authors to minimize the number of coal particle collisions with the inner surface of the dryer. In such a way the exploitation period of the dryer can be increased substantially.

  16. Learning Sustainability by Developing a Solar Dryer for Microalgae Retrieval

    ERIC Educational Resources Information Center

    Malheiro, Benedita; Ribeiro, Cristina; Silva, Manuel F.; Caetano, Nídia; Paulo Ferreira,; Guedes, Pedro

    2015-01-01

    The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather…

  17. Efficiency and temperature dependence of water removal by membrane dryers

    NASA Technical Reports Server (NTRS)

    Leckrone, K. J.; Hayes, J. M.

    1997-01-01

    The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.

  18. Noise impacts from professional dog grooming forced-air dryers.

    PubMed

    Scheifele, Peter M; Johnson, Michael T; Byrne, David C; Clark, John G; Vandlik, Ashley; Kretschmer, Laura W; Sonstrom, Kristine E

    2012-01-01

    This study was designed to measure the sound output of four commonly used brands of forced-air dryers used by dog groomers in the United States. Many dog groomers have questions about the effect of this exposure on their hearing, as well as on the hearing of the dogs that are being groomed. Readings taken from each dryer at 1 meter (the likely distance of the dryer from the groomer and the dog) showed average levels ranging from 105.5 to 108.3 dB SPL or 94.8 to 108.0 dBA. Using the 90 dBA criterion required by the US Occupational Safety and Health Administration, dog groomers/bathers are at risk if exposure to the lowest intensity dryer (94.8 dBA) exceeds 4 hours per day. If the more stringent 85 dBA criterion and 3 dB tradeoff is applied, less than one hour of exposure is permissible in an 8 hour day. Cautions are recommended for any persons exposed to noise from forced-air dryers.

  19. Toward a homogeneous and efficient batch-tray dryer

    SciTech Connect

    Khattab, N.M.

    1996-06-01

    In batch-tray dryers, with equal loading of trays, a nonhomogeneous drying of the product may result. This will degrade the quality of the dried product, as some of it will be either overdried or underdried. To obtain homogeneous drying, the trays must be loaded in accordance with the condition of the inlet air to each tray, i.e., as the air gets cooler and more saturated with moisture when moving upward, the tray loading should be reduced. The aim of the present work is to develop an analytical method for obtaining the best loading pattern in batch-tray dryers, that guarantees a homogeneous and efficient drying of the product. A mathematical model that describes the mass and heat transfer inside the dryer is proposed. Homogeneous drying is achieved by solving the model under constraints imposed by some proposed control functions, giving as a result the loading of different trays. An algorithm of the calculation procedures is given, and an application to study drying of apricots is demonstrated. In addition, the performance of the dryer, loaded so as to achieve homogeneous drying of the product, was studied under a wide range of inlet air conditions to determine the one that gives maximum productivity of the dryer. The final result of those calculations is to obtain the necessary condition for a product of good quality dried in the most efficient way.

  20. Long-term performance of atmospheric-detritiation dryers

    SciTech Connect

    Allsop, P.J.; Barfoot, C.C.

    1995-10-01

    Point Lepreau Generating Station uses nine desiccant dryers to control airborne heavy water and tritium. Ranging in size from 1,000 m{sup 3}/h to 6,800 m{sup 3}/h, the majority are single-bed, cocurrent-regenerated units filled with 13X or 4A molecular sieve. These dryers have operated almost continuously for 12 yrs without a significant breakdown. During the last thirteen years, their availability has exceeded 99% and they have routinely dried air to a dew-point temperature <= -60{degree}C. Tritium emissions from the dried areas in the reactor building remain a small fraction of the tritium releases into the reactor building. The keys to the success of this detriation system are the mechanical simplicity of the dryers, the versatility of the ventilation system, a comprehensive preventive-maintenance program, and an advanced control system unique to Point Lepreau. 2 refs., 7 figs., 3 tabs.

  1. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  2. Steroid Nanocrystals Prepared Using the Nano Spray Dryer B-90

    PubMed Central

    Baba, Koichi; Nishida, Kohji

    2013-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. In this study, the preparation of steroid nanocrystals using the Nano Spray Dryer B-90 was demonstrated. The particle size was controlled by selecting the mesh aperture size. Submicrometer steroid particles in powder form were successfully obtained. These nanoparticles were confirmed to have a crystal structure using powder X-ray diffraction pattern analysis. Since drug nanocrystals have recently been considered as a novel type of drug formulation for drug delivery systems, this study will be useful for nano-medical applications. PMID:24300400

  3. Integration of thickener underflow into thermal dryer circuit. Final report

    SciTech Connect

    McClaine, A.W.; Breault, R.W.

    1998-12-31

    A large number of coal preparation plants in the United States are troubled with coal fines and associated plant operation problems. As part of their process, these plants use thermal dryers for producing product coal, cyclones for first-stage recovery of coal fines, and wet scrubbers for the second-stage removal of coal fines carry-over from the dryer exhaust gas. The first challenge for these plants is to recover the clean ultra-fine coal captured in the scrubbers rather than to dispose of it in settling ponds. The second challenge is to mitigate the over-dry fine coal dusting problems in the dryer product. Prior to the completion of this program, the difficulties of the first challenge involving the recovery and use of fine clean coal from the thermal dryer scrubber effluent had not been solved. The second challenge, controlling fine coal dusting, was previously met by applying a solution of surfactants and process water to the over-dry coal fraction. As a result of the demonstration provided by the performance of this program, the implementation of a simple process improvement, involving the use of a thickener in combination with a belt press, simultaneously solved both challenges: the de-dusting and the dryer scrubber effluent recovery issues. The objective of this project was to: (1) Use a clean coal thickener with a squeeze belt press to recover the ultra-fine coal in dryer scrubber effluent; (2) Demonstrate that the coal-water mixture (CWM) produced from scrubber sludge of a thermal dryer can be used as a dust suppressant. The thickener/belt press system has increased the production of JWRI Mine Number 4 by approximately 0.7%. This production increase was accomplished by recovering and re-using 3 metric tons/hr (3.3 tons/hr) of coal fines that were previously sent to holding ponds, returning this as a 50% CWM to de-dust the 430 metric tons/hr (470 tons/hr) of existing dryer production.

  4. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Nishida, Kohji

    2012-08-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death `apoptosis' is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer's disease and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter.

  5. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operate a dry rotary dryer, you must demonstrate that your dryer processes furnish with an inlet moisture.... You must record the inlet furnish moisture content (dry basis) and inlet dryer operating temperature... highest recorded 24-hour average inlet furnish moisture content and the highest recorded 24-hour...

  6. Technical and economical evaluation of solar drying

    SciTech Connect

    Imre, L.

    1986-01-01

    Precondition of the successful application of solar drying is the economy mainly influenced by the savings and the costs. Components of savings and costs are related to the design of the solar dryer and the drying technology to be performed. Analysis of relations between the technical solutions and the economy is presented with regard to some often neglected or undervaluated effects, i.e. savings obtained by the absolute cleanness of solar energy, quality of the dried product and, the energy effectiveness of the drying process itself. Conclusions offer some contributions of principle to the selection of the system of solar dryer to be used, to design of solar dryers and, to direction of the drying technology.

  7. Polybrominated Diphenyl Ethers in Dryer Lint: An Advanced Analysis Laboratory

    ERIC Educational Resources Information Center

    Thompson, Robert Q.

    2008-01-01

    An advanced analytical chemistry laboratory experiment is described that involves environmental analysis and gas chromatography-mass spectrometry. Students analyze lint from clothes dryers for traces of flame retardant chemicals, polybrominated diphenylethers (PBDEs), compounds receiving much attention recently. In a typical experiment, ng/g…

  8. Comparison of residence time models for cascading rotary dryers

    SciTech Connect

    Cao, W.F.; Langrish, T.A.G.

    1999-04-01

    The predictions of the models of Matchett and Baker (1988), Saeman and Mitchell (1954) and Friedman and Marshall (1949) for the solids residence time in rotary dryers have been compared with both pilot-scale and industrial-scale data. A countercurrent pilot-scale dryer of 0.2m diameter and 2m long has been used with air velocities up to 1.5 m to measure the residence times of sorghum grain. The average discrepancy for the solids residence time between the predictions and the experiments that were carried out in the pilot-scale rotary dryer is {minus}10.4%. Compared with the models of Friedman and Marshall (1949) and Saeman and Mitchell (1954) for the pilot-scale data obtained here, the Matchett and Baker model is more satisfactory for predicting the solids residence time in this pilot-scale dryer. It has also been found that the model of Matchett and Baker describes the industrial data of Saeman and Mitchell (1954) than the correlation of Friedman and Marshall (1949).

  9. Smoke emissions in an ecologically sound dryer for coconut

    SciTech Connect

    Lozada, E.P.; Timmins, W.H.; Metcalfe, E.

    1997-12-31

    There are about a million smoke kilns in the world that are being used to dry coconuts produced from over 7,000,000 hectares. Smoke emissions from these kilns are known to contain large quantities of greenhouse and acid rain gases. To minimize the generation of these gases, kilns with better combustion characteristics and heat utilization efficiencies must be used. A possible alternative is a direct-fired, free convection dryer known as the Los Banos (Lozada) Multicrop Dryer. Developed at the University of the Philippines Los Banos, the multicrop dryer consists of a simple burner, a heat distributor and a drying bin. The burner burns coconut shell, corn cob and wood pieces with extremely high efficiency, thus, minimizing fuel consumption and dramatically reducing the release of airborne pollutants. The resulting copra (dried coconut kernel) is practically smoke-free with low levels of poly-aromatic hydrocarbons (PAH`s). Tests have also shown that the gas emissions from the dryer, when compared to that of the traditional smoke kiln, have lower concentrations of CO{sub 2} (1% vs 6%), of CO (50 ppm vs 2000-3000 ppm), of NO{sub x} (5 ppm vs 400 ppm) and SO{sub x} (5 ppm vs 400 ppm).

  10. 40 CFR 60.252 - Standards for thermal dryers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this section. (1) The owner or operator shall not cause to be discharged into the atmosphere from the... feet (gr/dscf)); and (2) The owner or operator shall not cause to be discharged into the atmosphere... atmosphere from the thermal dryer any gases that contain PM in excess of 0.023 g/dscm (0.010 grains per dry...

  11. 40 CFR 60.252 - Standards for thermal dryers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this section. (1) The owner or operator shall not cause to be discharged into the atmosphere from the... feet (gr/dscf)); and (2) The owner or operator shall not cause to be discharged into the atmosphere... atmosphere from the thermal dryer any gases that contain PM in excess of 0.023 g/dscm (0.010 grains per dry...

  12. 40 CFR 60.252 - Standards for thermal dryers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section. (1) The owner or operator shall not cause to be discharged into the atmosphere from the... feet (gr/dscf)); and (2) The owner or operator shall not cause to be discharged into the atmosphere... atmosphere from the thermal dryer any gases that contain PM in excess of 0.023 g/dscm (0.010 grains per dry...

  13. Reactivity of fly ashes in a spray dryer FGD process

    SciTech Connect

    Davis, W.T.; Reed, G.D.

    1983-05-01

    During the period 1981-1982, a study was performed to determine the ability of various fly ashes to retain sulfur dioxide in a pilot plant spray dryer/fabric filter flue gas desulfurization system. This knowledge would provide design engineers with the necessary data to determine whether the fly ash from a particular utility could be used as an effective supplement or substitute for slaked lime in a spray dryer system. The study commenced with the collection of 22 fly ashes from lignite, subbituminous, and bituminous eastern and western coals. The ashes were contacted with the flue gas entering the pilot plant by two different techniques. In the first, the ashes were slurried in water and injected into the spray dryer through a spinning disk atomizer. In the second, the ashes were injected as a dry additive into the flue gas upstream of the spray dryer. Analyses were conducted to determine the ability of each ash to retain sulfur dioxide in the system followed by statistical correlations of the sulfur retention with the physical/chemical properties of each ash. 17 references, 32 figures, 19 tables.

  14. 44. Communication equipment room, cable air dryer on left, motorola ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Communication equipment room, cable air dryer on left, motorola base station (vhf) in center, telephone repeater group at right, looking west - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  15. Polybrominated Diphenyl Ethers in Dryer Lint: An Advanced Analysis Laboratory

    ERIC Educational Resources Information Center

    Thompson, Robert Q.

    2008-01-01

    An advanced analytical chemistry laboratory experiment is described that involves environmental analysis and gas chromatography-mass spectrometry. Students analyze lint from clothes dryers for traces of flame retardant chemicals, polybrominated diphenylethers (PBDEs), compounds receiving much attention recently. In a typical experiment, ng/g…

  16. Energy recovery from textile dryer operations. Final report

    SciTech Connect

    McCrosson, F.J.; Jenkins, J.D.

    1982-01-01

    Data of the second phase of a project to improve energy utilization in textile dryer operations is documented. Results of tests of commercially available humidity controllers and air-to-air heat recovery devices at operating mills are reported. Performance and payback are evaluated. The findings are considered in preliminary.

  17. Food dehydration by solar energy.

    PubMed

    Bolin, H R; Salunkhe, D K

    1982-01-01

    Solar driers that are currently being investigated for drying of agricultural products can be divided into two major divisions, depending upon how they transfer the incident solar energy to the product to be dried. These two divisions are direct and indirect drying, with some work also being done on combination drying procedures. In direct solar driers, the product to be dried is usually either inside a tent, greenhouse, or a glass-topped box, where the product to be dried is heated by the direct rays from the sun and the moist air is removed by ambient wind movement. These dryers do accelerate moisture loss rate and the product is usually safe from inclement weather. These dryers usually do not require fans for forced air circulation. With indirect drying, the opposite is true, where most require powered fans for forced air circulation. With this type of dryer, both flatplate and inflated tube solar heat absorbers are used, with each offering certain advantages. Also, combination dryers have been built that utilize both direct and indirect principles. Product evaluation of solar dried foods indicate that in most cases the physical properties, flavor, and vitamin A and C retention were as good as, or better than, conventional dried foods. The economics of the solar systems indicate that most drying procedures are economically feasible for use in small-scale operations only, with the exception of grain drying.

  18. Solar and air lumber drying during winter in Virginia

    SciTech Connect

    de S. Oliveira, L.C.; Skaar, C.; Wengert, E.M.

    1982-01-01

    A greenhouse-type solar lumber dryer with a transparent south wall and transparent 45 degrees sloped roof was used to dry 4/4 oak lumber in the winter in Virginia. A pile of end-matched samples was also air-dried during the same time period. The solar-dried lumber reached 20 percent moisture content (MC) in 80 days and 6 percent MC in 125 days; the air-dried pile reached 20 percent MC in 105 days and 14 percent MC in 162 days. Solar-dried lumber at 6 percent MC was without end checks and free of casehardening stresses. In order to permit comparisons of this dryer with other dryers or after modification of the existing dryer, a method of calculating an efficiency factor using standard meteorological data is explained. (Refs. 17).

  19. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  20. The effect of dryer load on freeze drying process design.

    PubMed

    Patel, Sajal M; Jameel, Feroz; Pikal, Michael J

    2010-10-01

    Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).

  1. [DELTA T dryer/moisture control system]. Final technical report

    SciTech Connect

    Not Available

    1995-01-01

    Drying Technology, Inc. was awarded a grant for the purpose of extending DELTA T dryer/moisture control technology into additional industries. Ultimate purpose of the grant was to save energy and improve efficiency in the process industries. Results indicate that these objectives have been met and will continue as this new technology is duplicated in the present industries and also is extended into other industries as well.

  2. Product quality multi-objective optimization of fluidized bed dryers

    SciTech Connect

    Krokida, M.K.; Kiranoudis, C.T.

    2000-01-01

    Design of fluidized bed dryers constitutes a mathematical programming problem involving the evaluation of appropriate structural and operational process variables so that total annual plant cost involved is optimized. The increasing need for dehydrated products of the highest quality, imposes the development of new criteria that, together with cost, determine the design rules for drying processes. Quality of dehydrated products is a complex resultant of properties characterizing the final products, where the most important one is color. Color is determined as a three-parameter resultant, whose values for products undergone drying should deviate from the corresponding ones of natural products, as little as possible. In this case, product quality dryer design is a complex multi-objective optimization problem, involving the color deviation vector as an objective function and as constraints the ones deriving from the process mathematical model. The mathematical model of the dryer was developed and the fundamental color deterioration laws were determined for the drying process. Non-preference multi-criteria optimization methods were used and the Pareto-optimal set of efficient solutions was evaluated. An example covering the drying of sliced potato was included to demonstrate the performance of the design procedure, as well as the effectiveness of the proposed approach.

  3. Preliminary energy sector assessments of Jamaica. Volume III: renewable energy. Part II: solar energy - agricultural

    SciTech Connect

    Not Available

    1980-01-01

    The study is concerned with the use of solar heat for drying agricultural products (crops, timber, and fish). The study finds that Jamaica has an ideal climate for solar agricultural product drying with the following methods offering the greatest promise; sun drying using open barbeques; drying in transparent buildings (with or without attached collectors) for small operations; new drying systems using solar air heaters with forced air drying; preheating air for existing commercial fossil-fueled dryers; and fish drying via chemical dehydration with solar regeneration of the chemical. The primary needs are to develop and construct environmentally suitable solar dryers and to train engineers in solar system design and installation.

  4. Hand dryer noise in public restrooms exceeds 80 dBA at 10 ft (3 m)

    PubMed Central

    Berkowitz, Shari Salzhauer

    2015-01-01

    High airflow hand dryers are found in many public restrooms today. These dryers offer quick and clean hand drying, and are seen as being an environment-friendly alternative to paper towels. However, many new hand dryers are loud, exposing individuals using the facilities as well as those employees who clean the facilities to potentially dangerous noise. Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea, resulting in varying degrees of noise-induced hearing loss. This study examined the intensity (in dBA) of the noise produced by the air dryers in campus restrooms. Hand dryer peak and average noise was measured with a sound level meter at 2.5 ft, 5 ft, and 10 ft from the dryer. Noise measurements did not decrease as predicted by the inverse-square law, probably because of the reverberative surfaces found in the restrooms. The small sample of hand dryers tested was mostly found to be producing more noise than the manufacturer claimed they would; indeed, none of the dryers would be safe for an 8-h workday exposure. While hand dryers do reduce paper trash, they pose as a different sort of hazard to our environment and population. PMID:25774611

  5. Hand dryer noise in public restrooms exceeds 80 dBA at 10 ft (3 m).

    PubMed

    Berkowitz, Shari Salzhauer

    2015-01-01

    High airflow hand dryers are found in many public restrooms today. These dryers offer quick and clean hand drying, and are seen as being an environment-friendly alternative to paper towels. However, many new hand dryers are loud, exposing individuals using the facilities as well as those employees who clean the facilities to potentially dangerous noise. Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea, resulting in varying degrees of noise-induced hearing loss. This study examined the intensity (in dBA) of the noise produced by the air dryers in campus restrooms. Hand dryer peak and average noise was measured with a sound level meter at 2.5 ft, 5 ft, and 10 ft from the dryer. Noise measurements did not decrease as predicted by the inverse-square law, probably because of the reverberative surfaces found in the restrooms. The small sample of hand dryers tested was mostly found to be producing more noise than the manufacturer claimed they would; indeed, none of the dryers would be safe for an 8-h workday exposure. While hand dryers do reduce paper trash, they pose as a different sort of hazard to our environment and population.

  6. Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions

    SciTech Connect

    Sujit Banerjee

    2005-10-31

    Emission control devices on dryers and presses have been legislated into the industry, and are now an integral part of the drying system. These devices consume large quantities of natural gas and electricity and down-sizing or eliminating them will provide major energy savings. The principal strategy taken here focuses on developing process changes that should minimize (and in some cases eliminate) the need for controls. A second approach is to develop lower-cost control options. It has been shown in laboratory and full-scale work that Hazardous Air Pollutants (HAPs) emerge mainly at the end of the press cycle for particleboard, and, by extension, to other prod-ucts. Hence, only the air associated with this point of the cycle need be captured and treated. A model for estimating terpene emissions in the various zones of veneer dryers has been developed. This should allow the emissions to be concentrated in some zones and minimized in others, so that some of the air could be directly released without controls. Low-cost catalysts have been developed for controlling HAPs from dryers and presses. Catalysts conventionally used for regenerative catalytic oxidizers can be used at much lower temperatures for treating press emissions. Fluidized wood ash is an especially inexpensive mate-rial for efficiently reducing formaldehyde in dryer emissions. A heat transfer model for estimating pinene emissions from hot-pressing strand for the manufacture of flakeboard has been constructed from first principles and validated. The model shows that most of the emissions originate from the 1-mm layer of wood adjoining the platen surface. Hence, a simple control option is to surface a softwood mat with a layer of hardwood prior to pressing. Fines release a disproportionate large quantity of HAPs, and it has been shown both theo-retically and in full-scale work that particles smaller than 400 µm are principally responsible. Georgia-Pacific is considering green

  7. Kinetics of potato drying using fluidized bed dryer.

    PubMed

    Bakal, Sushant Balasaheb; Sharma, Gyanendra Prasad; Sonawane, Somnath P; Verma, Radhachran C

    2012-10-01

    The effect of air temperature and two different shapes (cuboidal and cylindrical) with 3 aspect ratio of each shape on the drying kinetics of potato (Solanum tuberosum) in fluidized bed dryer was investigated. Drying was carried out at 50, 60 and 70°C at 7 m/s air velocity. Drying data were analysed to obtain effective diffusivity of moisture transfer. During drying moisture transfer from potato were described by Fick's diffusion model. Two mathematical models were fitted to experimental data. The Page model gave better fit than simple exponential model. The Arrehnious activation energy value expresses the effect of temperature on diffusivity.

  8. Estimation of drying parameters in rotary dryers using differential evolution

    NASA Astrophysics Data System (ADS)

    Lobato, F. S.; Steffen, V., Jr.; Arruda, E. B.; Barrozo, M. A. S.

    2008-11-01

    Inverse problems arise from the necessity of obtaining parameters of theoretical models to simulate the behavior of the system for different operating conditions. Several heuristics that mimic different phenomena found in nature have been proposed for the solution of this kind of problem. In this work, the Differential Evolution Technique is used for the estimation of drying parameters in realistic rotary dryers, which is formulated as an optimization problem by using experimental data. Test case results demonstrate both the feasibility and the effectiveness of the proposed methodology.

  9. 76 FR 26656 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Part 430 RIN 1904-AA89 Energy Conservation Program: Energy Conservation Standards for Residential... adopted amended energy conservation standards for residential clothes dryers and room air conditioners. As... direct final rule for ] Energy Conservation Standards for Residential Clothes Dryers and Room Air...

  10. 75 FR 27504 - Substantial Product Hazard List: Hand-Held Hair Dryers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... serious injury or death to a consumer. An estimated 23 million units of hand-held hair dryers are sold... 104 deaths and 43 electric shock injuries due to hair dryer immersion/water contact from 1984 to 2004. Of the 104 electrocutions resulting in death, the most incidents (91) occurred during 1984-90...

  11. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and...

  12. 76 FR 37636 - Substantial Product Hazard List: Hand-Supported Hair Dryers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ....'' If the hair dryer should become wet or immersed in water, enough to cause electrical current to flow...). Underwriters Laboratories' (``UL'') Standard for Safety for Household Electric Personal Grooming Appliances, UL... appliances, including hand-supported hair dryers. The current immersion protection provisions have been...

  13. 75 FR 7987 - Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... phase electric current and which is an encased assembly designed as a unit for mounting in a window or.... Current Rulemaking Process i. Residential Clothes Dryers ii. Room Air Conditioners iii. Consent Decree III... defines ``electric clothes dryer'' under EPCA as ``a cabinet-like appliance designed to dry fabrics in...

  14. Consistent air quality and energy savings provided by heat of compression air dryer

    SciTech Connect

    Brown, F.; Hodel, A.E.

    1986-02-01

    The six-year-old compressed air dryers serving the plant and instrument air needs at Monsanto Company's W.G. Krummrich plant in Sauget, IL were no longer performing at peak efficiency. Dryer reliability had declined. Energy usage of the heat regenerated dryers was substantial. The 60 kw heaters used to regenerate the desiccant were operating 2 1/2 out of 4 hours on a timer controlled continuous cycle. Engineers decided to remove the old, inefficient air compression and drying equipment air compression and drying equipment at the W.G. Krummrich plant and replace it with a state-of-the-art system. The combination of a compressor and dryer package was specified to incorporate heat recovery/energy savings. Monsanto's engineers specified an air system that would operate on demand and use a heat of compression air dryer that was available commercially.

  15. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Exhaust duct system and provisions... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct...

  16. Hair Shaft Damage from Heat and Drying Time of Hair Dryer

    PubMed Central

    Lee, Yoonhee; Kim, Youn-Duk; Hyun, Hye-Jin; Pi, Long-quan; Jin, Xinghai

    2011-01-01

    Background Hair dryers are commonly used and can cause hair damage such as roughness, dryness and loss of hair color. It is important to understand the best way to dry hair without causing damage. Objective The study assessed changes in the ultra-structure, morphology, moisture content, and color of hair after repeated shampooing and drying with a hair dryer at a range of temperatures. Methods A standardized drying time was used to completely dry each hair tress, and each tress was treated a total of 30 times. Air flow was set on the hair dryer. The tresses were divided into the following five test groups: (a) no treatment, (b) drying without using a hair dryer (room temperature, 20℃), (c) drying with a hair dryer for 60 seconds at a distance of 15 cm (47℃), (d) drying with a hair dryer for 30 seconds at a distance of 10 cm (61℃), (e) drying with a hair dryer for 15 seconds at a distance of 5 cm (95℃). Scanning and transmission electron microscopy (TEM) and lipid TEM were performed. Water content was analyzed by a halogen moisture analyzer and hair color was measured with a spectrophotometer. Results Hair surfaces tended to become more damaged as the temperature increased. No cortex damage was ever noted, suggesting that the surface of hair might play a role as a barrier to prevent cortex damage. Cell membrane complex was damaged only in the naturally dried group without hair dryer. Moisture content decreased in all treated groups compared to the untreated control group. However, the differences in moisture content among the groups were not statistically significant. Drying under the ambient and 95℃ conditions appeared to change hair color, especially into lightness, after just 10 treatments. Conclusion Although using a hair dryer causes more surface damage than natural drying, using a hair dryer at a distance of 15 cm with continuous motion causes less damage than drying hair naturally. PMID:22148012

  17. Hair shaft damage from heat and drying time of hair dryer.

    PubMed

    Lee, Yoonhee; Kim, Youn-Duk; Hyun, Hye-Jin; Pi, Long-Quan; Jin, Xinghai; Lee, Won-Soo

    2011-11-01

    Hair dryers are commonly used and can cause hair damage such as roughness, dryness and loss of hair color. It is important to understand the best way to dry hair without causing damage. The study assessed changes in the ultra-structure, morphology, moisture content, and color of hair after repeated shampooing and drying with a hair dryer at a range of temperatures. A standardized drying time was used to completely dry each hair tress, and each tress was treated a total of 30 times. Air flow was set on the hair dryer. The tresses were divided into the following five test groups: (a) no treatment, (b) drying without using a hair dryer (room temperature, 20℃), (c) drying with a hair dryer for 60 seconds at a distance of 15 cm (47℃), (d) drying with a hair dryer for 30 seconds at a distance of 10 cm (61℃), (e) drying with a hair dryer for 15 seconds at a distance of 5 cm (95℃). Scanning and transmission electron microscopy (TEM) and lipid TEM were performed. Water content was analyzed by a halogen moisture analyzer and hair color was measured with a spectrophotometer. Hair surfaces tended to become more damaged as the temperature increased. No cortex damage was ever noted, suggesting that the surface of hair might play a role as a barrier to prevent cortex damage. Cell membrane complex was damaged only in the naturally dried group without hair dryer. Moisture content decreased in all treated groups compared to the untreated control group. However, the differences in moisture content among the groups were not statistically significant. Drying under the ambient and 95℃ conditions appeared to change hair color, especially into lightness, after just 10 treatments. Although using a hair dryer causes more surface damage than natural drying, using a hair dryer at a distance of 15 cm with continuous motion causes less damage than drying hair naturally.

  18. Steam generator with integral downdraft dryer. Final project report

    SciTech Connect

    Hochmuth, F.W.

    1992-02-01

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  19. Mathematical and computational modeling simulation of solar drying Systems

    USDA-ARS?s Scientific Manuscript database

    Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...

  20. Solar and energy-conserving food technologies: a training manual

    SciTech Connect

    Elliot, J.; Goldman, L.

    1985-01-01

    The report is designed to help plan and implement in-service trainings in solar and other energy-conserving food technologies. It focuses on design, construction, and use of solar dryers for fruits, vegetables, meat, fish and herbs, along with fireless cookery. It emphasizes integrating technical and nontechnical information.

  1. Assessment of the bacterial contamination of hand air dryer in washrooms.

    PubMed

    Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Chinnathambi, Arunachalam; Alharbi, Naiyf S; Zayed, M E; Al-Johny, Bassam O; Wainwright, Milton

    2016-03-01

    The present study was carried out, using standard techniques, to identify and count the bacterial contamination of hand air dryers, used in washrooms. Bacteria were isolated from the air flow, outlet nozzle of warm air dryers in fifteen air dryers used in these washrooms. Bacteria were found to be relatively numerous in the air flows. Bacterially contaminated air was found to be emitted whenever a warm air dryer was running, even when not being used for hand drying. Our investigation shows that Staphylococcus haemolyticus, Micrococcus luteus, Pseudomonas alcaligenes, Bacillus cereus and Brevundimonad diminuta/vesicularis were emitted from all of the dryers sampled, with 95% showing evidence of the presence of the potential pathogen S. haemolyticus. It is concluded that hot air dryers can deposit pathogenic bacteria onto the hands and body of users. Bacteria are distributed into the general environment whenever dryers are running and could be inhaled by users and none-users alike. The results provide an evidence base for the development and enhancement of hygienic hand drying practices.

  2. Assessment of the bacterial contamination of hand air dryer in washrooms

    PubMed Central

    Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Chinnathambi, Arunachalam; Alharbi, Naiyf S.; Zayed, M.E.; Al-Johny, Bassam O.; Wainwright, Milton

    2015-01-01

    The present study was carried out, using standard techniques, to identify and count the bacterial contamination of hand air dryers, used in washrooms. Bacteria were isolated from the air flow, outlet nozzle of warm air dryers in fifteen air dryers used in these washrooms. Bacteria were found to be relatively numerous in the air flows. Bacterially contaminated air was found to be emitted whenever a warm air dryer was running, even when not being used for hand drying. Our investigation shows that Staphylococcus haemolyticus, Micrococcus luteus, Pseudomonas alcaligenes, Bacillus cereus and Brevundimonad diminuta/vesicularis were emitted from all of the dryers sampled, with 95% showing evidence of the presence of the potential pathogen S. haemolyticus. It is concluded that hot air dryers can deposit pathogenic bacteria onto the hands and body of users. Bacteria are distributed into the general environment whenever dryers are running and could be inhaled by users and none-users alike. The results provide an evidence base for the development and enhancement of hygienic hand drying practices. PMID:26981009

  3. A novel method to determine air leakage in heat pump clothes dryers

    DOE PAGES

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    2016-01-06

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less

  4. A novel method to determine air leakage in heat pump clothes dryers

    SciTech Connect

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    2016-01-06

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage area in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.

  5. Development of a microwave clothes dryer: Interim report 4. Final report

    SciTech Connect

    Smith, R.; Lenz, R.

    1996-03-01

    The objective of the project is to investigate the microwave drying of clothes and to produce data that potential manufacturers can use in developing marketable microwave dryers. This is an interim report covering activities in 1994, the fifth year of the project. During 1994, three field test dryers were completed, two residential models and one commercial subscale model. All of these dryers operated at a microwave frequency of 2,450 MHz, which is the frequency of home microwave ovens and ovens used in fastfood outlets. Consequently, magnetron tubes for these high-production items are inexpensive. The residential dryers were tested according to the Department of Energy protocols and were 15% more efficient than a top-of-the-line conventional electric dryer. They were also 14% faster. Extensive testing was done to assure that the hazard-detection (sniffer) system would sense degradation of the lighter and shut down the dryer before a fire could occur. Numerous butane lighters were heated to destruction in a microwave oven to examine their failure modes. Lighters were placed in microwave dryers equipped with hazard-detection systems; these systems always detected incipient problems before any fire hazard could occur.

  6. Heat recovery and air preheating apparatus for textile dryer ovens

    SciTech Connect

    Hebrank, W.H.

    1982-07-06

    Heat recovery and replacement air preheating apparatus for use in textile heat treatment machinery is disclosed as including a pair of thermal recovery and storage units wherein each storage unit contains a plurality of thermal mass disks which operate as heat sponges to pick up heat from exhausts as it leaves the dryer and subsequently to put that heat into entering replacement air whereby the cost in elevating the replacement air is greatly reduced. A control valve connected between the two thermal storage units cycles the reverse exhaust and replacement air flows alternately through the thermal storage units in a manner that a substantial amount of the exhaust heat does not reach the ambient environment and the alternating replacement air flow maintains the thermal heat recovery and storage units and associated apparatus cool and clean of lint and the like residuals.

  7. A process to produce effervescent tablets: fluidized bed dryer melt granulation.

    PubMed

    Yanze, F M; Duru, C; Jacob, M

    2000-11-01

    The purpose of the present study was to apply melt granulation in a fluidized bed dryer (fluidized bed dryer melt granulation) to manufacture one-step effervescent granules composed of anhydrous citric acid and sodium bicarbonate to make tablets. This study permitted us to establish that such process parameters as concentrations of polyethylene glycol (PEG) 6000, residence times in the fluidized bed dryer, fineness of PEG6000, fineness of initial mixture effervescent systems, and efficiency of two lubricants markedly affect some granule and tablet characteristics. It is a dry process that is simple, rapid, effective, economical, reproducible, and particularly adapted to produce effervescent granules that are easily compressed into effervescent tablets.

  8. Machine & electrical double control air dryer for vehicle air braking system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  9. Solar fish drying in the Republic of Guinea

    SciTech Connect

    Cosby, R.M.; Govaer, D. ); Diallo, A.

    1990-09-01

    The use of a natural-flow solar dryer for drying fish in the Republic of Guinea was investigated. The construction of a simple, family-size, prototype solar dryer required only basic fabrication skills and materials readily available in Guinea. Drying experiments on whiting and catfish under simulated sunlight demonstrated an initial drying phase with a constant water-removal rate followed by a decreasing rate until drying ceased. Overall drying rates indicated that a residential-scale dryer could operate on a two-day cycle and provide a quality dried product. The utilization of the ubiquitous solar energy resource in a stand-alone, locally constructed, small-scale unit for the purpose of food preservation can have positive economic, environmental, and social impacts in Guinea. 2 refs., 3 figs.

  10. Press and Dryer Roll Surgaces and Web Transfer Systems for Ultra High Paper Maching Speeds

    SciTech Connect

    T. F. Patterson

    2004-03-15

    The objective of the project was to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders.

  11. INTERIOR VIEW OF FILTER/DRYERS USED TO FILTER OUT AND SEPARATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FILTER/DRYERS USED TO FILTER OUT AND SEPARATE BICARBONATE FROM AMMONIONATED BRINE. DISCHARGE FROM STRIPPER COLUMNS (SOLVAY COLUMNS). - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  12. 8. VIEW TO SOUTHEAST, DRYERS, GRINDING/ROD MILL, MECHANIC SHED, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW TO SOUTHEAST, DRYERS, GRINDING/ROD MILL, MECHANIC SHED, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  13. 3. VIEW TO NORTHEAST, MECHANIC SHED, DRYERS, GRINDING/ROD MILL, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW TO NORTHEAST, MECHANIC SHED, DRYERS, GRINDING/ROD MILL, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  14. 7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND MECHANIC SHED. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  15. Process of drying and pelletizing sludge in indirect dryer having recycled sweep air

    SciTech Connect

    Girovich, M.J.

    1993-06-01

    A process for treating liquid sludge obtained from a waste water treatment plant is described, comprising the steps of: dewatering the liquid sludge to obtain a dewatered sludge product, mixing a pellet forming nuclei substance into the dewatered sludge to produce a mixture, inputting the mixture into a dryer that performs indirect heat drying and simultaneous pelletizing of the mixture by coating the nuclei with the dewatered sludge during mixing and drying to build up the pellets layer by layer to a predetermined size; supplying sweep-air to the dryer for removing an air and water vapor mixture from the dryer; extracting a dried product and the air and water vapor mixture from the dryer separately from one another; cleaning and condensing the air and water vapor mixture to obtain a noncondensible gas; recycling the noncondensible gas to the dryer for use as said sweep air; classifying the product exiting the dryer into on-spec and fines fractions, wherein the fines fraction is smaller in size than the on-spec fraction; and recycling the fines fraction for use in said mixing step, wherein said pellet forming nuclei substance consists essentially of the fines fraction.

  16. Energy recovery from textile dryer operations. Phase I final report, June 1980-June 1981

    SciTech Connect

    McCrosson, F.J.; Jenkins, J.D.; Yngve, P.W.

    1981-08-01

    The technical and economic feasibility of implementing a two-step approach for improving use of natural gas in textile dryer operations is presented. The first step involves automatic control of the dryer dampers to minimize the flow of exhaust heat without diminishing dryer performance. The second step involves recovery and use of a portion of the remaining exhaust heat. These two steps have the potential for reducing natural gas consumption in the dryers by 45 to 65%. Exhaust flow rates are minimized by increasing dryer humidity to the maximum practical limit. This maximum humidity, which is about 0.1 lb water/lb dry air, is maintained by automated adjustments of the damper. Three commercially available devices for measuring the stack humidity and controlling the dampers are discussed and program for further evaluation presented. Several approaches for recovering some of the residual exhaust energy after the dampers have been adjusted are evaluated. Based on these evaluations, three commercially avaialable air-to-air heat exhcangers are identified as being particularly suitable for using the sensible exhaust heat to pre-heat dryer make-up air. A program to further evaluate these air-to-air heat exchangers at operating textile mills is presented.

  17. Feasibility study on pliant media drying using fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Zakaria, J. H.; Zaid, M. H. H. M.; Batcha, M. F. M.; Asmuin, N.

    2015-09-01

    The usage of pliant media for blasting in surface preparation has gained substantial interest in various industries, particularly oil and gas. Being a clean technology, this relatively new method of surface preparation has become an alternative to conventional abrasive blasting technique which lowers fugitive emissions from blasting process and hence lowering risk to workers in the industry. Despite proven to be effective and cost efficient, the usage of pliant media in tropical climate poses a new challenge due to the torrential rain in the monsoon season. During rainy and wet conditions, the pliant media was literally soaked and the recovery rate of the pliant media for a continuous blasting becomes retarded. A viable technique for drying of this pliant media has then become imperative. The present study proposes to dry water laden pliant media in a Swirling Fluidized Bed Dryer (SFBD). In this preliminary study, three bed loadings of 1.7, 2.0 and 2.3 kg of pliant media was dried in the SfBd at 80°C, 90°C and 100°C. The experimental works revealed that the SFBD has shown excellent potential to dry the pliant media with a relatively short drying time. The behaviour of moisture ratio and drying rate against time are discussed. The findings conclude that the SFBD is a feasible technique for wet pliant media drying and can be extended for continuous processing system.

  18. Drying wood waste with a pulse combustion dryer

    SciTech Connect

    Buchkowski, A.G.; Kitchen, J.A.

    1993-12-31

    There is a vast amount of wood waste available to be used as an alternate fuel if its moisture could be reduced efficiently. Tests have been conducted to assess an industrial dryer using pulse combustion as a heating source for drying wood waste; specifically sawdust and pulverized wet hog fuel. Pulse combustion offers the advantage of high heat transfer, efficient combustion, and low NO{sub x} emissions. The material is injected into the exhaust gases in the tailpipe of the combustor which uses natural gas or propane as a fuel. The turbulence created by the pulsations enhance the drying process by reducing the boundary layer thicknesses. The materials is further dried in a rotary drum. The material has been dried without scorching or burning in tests where the inlet moisture content has been as high as 60% on a wet basis. The outlet moisture contents achieved have typically been 10%. Analysis of the test data and cost estimates of the equipment indicate that the pulse combustion drying system is at least comparable to existing systems in terms of operating costs, and offers very significant savings in capital costs. Testing with various other materials such as wood pulp, sludges and peat is continuing to further assess the equipment`s performance.

  19. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    SciTech Connect

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  20. Proof of concept and performance optimization of high gravity batch-type centrifugal dryer for dewatering fine coal

    SciTech Connect

    Smith, L.B.; Durney, T.

    1991-01-01

    The primary objective of the project was to assemble, analyze and make use of those data that could help to clearly identify, optimize and confirm the technical and economic advantages that the new high gravity centrifugal dryer technology can provide to the coal industry and to end users. Other objectives were: to confirm the feasibility of the dryer for drying coals from a number of different seams; to use the data base for optimizing the dryer's systems, and: to produce projected technical and economic comparisons with thermal dryers as applied to an existing coal processing plant flow sheet. (JL)

  1. Size distribution of heavy metal aerosols in cooling and spray dryer system

    SciTech Connect

    Wey, M.Y.; Yang, J.T.; Peng, C.Y.; Chiang, B.C.

    1999-11-01

    The cooling process prior to treating flue gas and the spray dryer process that removes acid components in flue gas are believed to influence the mass and elemental size distributions of heavy metal in fly ash. The main objective of this study was to investigate the effects of operating parameters on the mass and elemental size distributions of heavy metals in fly ash produced from a fluidized bed incineration and a water cooling or spray dryer flue gas treatment system. The operating parameters investigated included (1) the controlling temperature in the gas cooling system; (2) the controlling temperature in the spray dryer system; (3) the addition of organic chlorides; and (4) the addition of inorganic chloride. The experimental results indicated that the water cooling process and spray dryer process increase the amount of coarse fly ash and increase the total concentration of metal in fly ash. The amounts of fine fly ash and the total concentration of metal in fine fly ash increase with decreasing temperature during the water cooling process. However, the amounts of fine fly ash and the total concentration of metal in fine fly ash decrease with decreasing temperature during the spray dryer process.

  2. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    SciTech Connect

    Meyers, Steve; Franco, Victor; Lekov, Alex; Thompson, Lisa; Sturges, Andy

    2010-05-14

    Heat pump clothes dryers (HPCDs) can be as much as 50percent more energy-efficient than conventional electric resistance clothes dryers, and therefore have the potential to save substantial amounts of electricity. While not currently available in the U.S., there are manufacturers in Europe and Japan that produce units for those markets. Drawing on analysis conducted for the U.S. Department of Energy's (DOE) current rulemaking on amended standards for clothes dryers, this paper evaluates the cost-effectiveness of HPCDs in American homes, as well as the national impact analysis for different market share scenarios. In order to get an accurate measurement of real energy savings potential, the paper offers a new energy use calculation methodology that takes into account the most current data on clothes washer cycles, clothes dryer usage frequency, remaining moisture content, and load weight per cycle, which is very different from current test procedure values. Using the above methodology along with product cost estimates developed by DOE, the paper presents the results of a life-cycle cost analysis of the adoption of HPCDs in a representative sample of American homes. The results show that HPCDs have positive economic benefits only for households with high clothes dryer usage or for households with high electricity prices and moderately high utilization.

  3. Droplet size measurements for spray dryer scale-up.

    PubMed

    Thybo, Pia; Hovgaard, Lars; Andersen, Sune Klint; Lindeløv, Jesper Saederup

    2008-01-01

    This study was dedicated to facilitate scale-up in spray drying from an atomization standpoint. The purpose was to investigate differences in operating conditions between a pilot and a production scale nozzle. The intension was to identify the operating ranges in which the two nozzles produced similar droplet size distributions. Furthermore, method optimization and validation were also covered. Externally mixing two-fluid nozzles of similar designs were used in this study. Both nozzles are typically used in commercially available spray dryers, and they have been characterized with respect to droplet size distributions as a function of liquid type, liquid flow rate, atomization gas flow rate, liquid orifice diameter, and atomization gas orifice diameter. All droplet size measurements were carried out by using the Malvern Spraytec with nozzle operating conditions corresponding to typical settings for spray drying. This gave droplets with Sauter Mean Diameters less than 40 microm and typically 5-20 microm. A model previously proposed by Mansour and Chigier was used to correlate the droplet size to the operating parameters. It was possible to make a correlation for water incorporating the droplet sizes for both the pilot scale and the production scale nozzle. However, a single correlation was not able to account properly for the physical properties of the liquid to be atomized. Therefore, the droplet size distributions of ethanol could not be adequately predicted on the basis of the water data. This study has shown that it was possible to scale up from a pilot to production scale nozzle in a systematic fashion. However, a prerequisite was that the nozzles were geometrically similar. When externally mixing two-fluid nozzles are used as atomizers, the results obtained from this study could be a useful guideline for selecting appropriate operating conditions when scaling up the spray-drying process.

  4. Distribution of arsenic and mercury in lime spray dryer ash

    SciTech Connect

    Panuwat Taerakul; Ping Sun; Danold W. Golightly; Harold W. Walker; Linda K. Weavers

    2006-08-15

    The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations of As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.

  5. Performance analysis of a double-deck conveyor dryer -- A computational approach

    SciTech Connect

    Khankari, K.K.; Patankar, S.V.

    1999-11-01

    This paper illustrates the use of numerical simulation models for evaluating the performance of a moving bed dryer. A finite-volume method is employed in developing a steady state, two-dimensional numerical model for a double-deck conveyor dryer. Using this numerical model, variations in the product moisture content and temperature along the length and across the height of the product beds are predicted. Similarly, the resulting variations in the temperature and relative humidity of the drying air are predicted in the entire two-dimensional domain of a dryer. Effect of air-to-product mass flow ratio and product residence time on the average moisture content of the outgoing product are also evaluated for three different drying air temperature.

  6. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits are on a dry basis. The D/F, HCl and THC limits for kilns are corrected to 7 percent oxygen except during periods of startup and shutdown. The raw material dryer THC limits are corrected to 19 percent...

  7. Injuries sustained by children inside clothes dryers: a report of a fatality and review of the literature.

    PubMed

    Saunders, Sarah; Coombes, Anthony; Rutty, Guy

    2012-05-01

    We report a case of a 4-year-old child found dead at his home inside a domestic clothes (tumble) dryer. The child had been reported missing in the morning by his mother and found a short time later inside the dryer with the door shut. The child was pronounced dead at the scene. A pre-autopsy computed tomography scan identified findings associated with aggressive resuscitation attempts. Post-mortem examination showed generalised blunt trauma to his head and limbs, a thin film subdural haemorrhage and burns from contact with hot components and hot air whilst being trapped alive inside the active dryer. A forensic examination of the dryer revealed that it was possible for the child to become trapped in the dryer by his own action and that the dryer could operate for sufficient time to allow for the causation of the injuries to the child. A review of the medical literature and media reports of deaths related to clothes dryer, injuries sustained to survivors and use of dryers as a body disposal site is presented.

  8. Development of solar drying model for selected Cambodian fish species.

    PubMed

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6 °C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg · h(-1). Based on coefficient of determination (R(2)), chi-square (χ(2)) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  9. Development of Solar Drying Model for Selected Cambodian Fish Species

    PubMed Central

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381

  10. Effect of different pretreatments on the quality of mushrooms during solar drying.

    PubMed

    Kumar, Ashok; Singh, Manpreet; Singh, Gurdeep

    2013-02-01

    Freshly harvested mushrooms are highly perishable because of high moisture content metabolism and susceptible to enzymatic browning. Mushroom is a fungal fruiting body which is cultivated throughout the world. Effect on quality of dried mushrooms was studied for various chemical pretreatments viz. 1.0% potassium metabisulphite, 0.5% citric acid, 0.5% potassium metabisulphite + 0.2% citric acid, control and low cost drying methods viz. domestic solar dryer, medium size solar dryer and open sun drying. It was observed that application of 1% potassium metabisulphite treatment prior to drying using medium size solar dryer gave best quality dried mushrooms with results in accordance with statistical analysis. The drying time and final moisture content was also comparatively less than the mushrooms dried under shading plates and open sun drying.

  11. Demonstration of energy conservation for multi-deck board dryers: Phase I. Final report

    SciTech Connect

    Not Available

    1980-02-01

    A study to determine the feasibility of recovering and reusing heat from a large multi-deck dryer used in the manufacture of roof insulation board is described. Pilot scale tests and analyses show that heat recovery designs utilizing several types of heat exchange equipment are feasible. These include: indirect contact air-to-air heat exchangers for preheating combustion air for the dryer furnaces; direct contact air-to-water heat exchangers using water sprays to heat process water; and indirect contact air-to-liquid heat exchangers to heat recirculating liquid in a plant building heating system. (MCW)

  12. Loading and unloading of freeze-dryers: airborne contamination risks for aseptically manufactured sterile drug products.

    PubMed

    Ljungqvist, Bengt; Reinmüller, Berit

    2007-01-01

    In pharmaceutical manufacturing, freeze-drying processes can be adversely affected by temperature differences relative to the surrounding air. Loading and unloading of freeze-dryers are performed either without or with temperature differences between the cleanroom and the chamber of the freeze-dryer. This operation can cause a flow of room air through the opening, creating a contamination risk, especially when manual handling of material is performed in this area. To minimize this risk, a high-efficiency particulate air (HEPA) filter unit should be installed above the opening to provide clean air and protect the opening. Here the theoretical relationships are discussed and design criteria are presented.

  13. Proof of concept and performance optimization of high gravity batch-type centrifugal dryer for dewatering fine coal. Final report, September 20, 1989--September 21, 1991

    SciTech Connect

    Smith, L.B.; Durney, T.

    1991-12-31

    The primary objective of the project was to assemble, analyze and make use of those data that could help to clearly identify, optimize and confirm the technical and economic advantages that the new high gravity centrifugal dryer technology can provide to the coal industry and to end users. Other objectives were: to confirm the feasibility of the dryer for drying coals from a number of different seams; to use the data base for optimizing the dryer`s systems, and: to produce projected technical and economic comparisons with thermal dryers as applied to an existing coal processing plant flow sheet. (JL)

  14. 40 CFR 63.1346 - Standards for new or reconstructed raw material dryers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THC in excess of 20 ppmv, on a dry basis as propane corrected to 7 percent oxygen if the source... demonstrate a 98 percent reduction in THC emissions from the exit of the raw materials dryer to discharge to... the THC limit is 50 ppmv, on a dry basis corrected to 7 percent oxygen. (b) New or reconstructed raw...

  15. Demonstration of energy conservation for multi-deck board dryers. Phase I. Final report

    SciTech Connect

    Not Available

    1980-02-08

    A study was made to determine the feasibility of recover and reuse of low level heat from the exhausts of multi-deck dryers used to dry boards in the building materials industry. There are approximately 1000 dryers of this type in the USA, with no heat recovery equipment. These dryers are used in the manufacture of: roof insulation board, ceiling tile and panel stock, wood fiber sheathing, gypsum board, and veneer plywood. Pilot scale tests and analyses show that heat recovery designs utilizing several types of heat exchange equipment are feasible. These include the following: indirect contact air-to-air heat exchangers for preheating combustion air for the dryer furnaces; direct contact air-to-water heat exchangers using water sprays to heat process water; and indirect contact air-to-liquid heat exchangers to heat recirculating liquid in a plant building heating system. The systems recommended for design and installation at the Rockdale plant include all three of the types of heat exchangers. The preliminary estimate for the installed cost for these systems at the Rockdale plant is $565,000 (1979 dllars). Annual heat recovery of 186,000 million Btu is projected with a value of $545,000 using gas costs of $3.00 per million Btu. Payback based on a discounted cash flow analysis using ten year depreciation is about two years.

  16. 7 CFR 58.246 - Cleaning of dryers, collectors, conveyors, ducts, sifters and storage bins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cleaning of dryers, collectors, conveyors, ducts, sifters and storage bins. 58.246 Section 58.246 Agriculture Regulations of the Department of Agriculture..., conveyors, ducts, sifters and storage bins. This equipment shall be cleaned as often as is necessary...

  17. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    PubMed

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  18. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial compliance demonstration for a dry rotary dryer. 63.2263 Section 63.2263 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood...

  19. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial compliance demonstration for a dry rotary dryer. 63.2263 Section 63.2263 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  20. 40 CFR 63.2265 - Initial compliance demonstration for a softwood veneer dryer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial compliance demonstration for a softwood veneer dryer. 63.2265 Section 63.2265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  1. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial compliance demonstration for a hardwood veneer dryer. 63.2264 Section 63.2264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  2. 40 CFR 63.2265 - Initial compliance demonstration for a softwood veneer dryer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial compliance demonstration for a softwood veneer dryer. 63.2265 Section 63.2265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood...

  3. 40 CFR 63.2265 - Initial compliance demonstration for a softwood veneer dryer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial compliance demonstration for a softwood veneer dryer. 63.2265 Section 63.2265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  4. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial compliance demonstration for a dry rotary dryer. 63.2263 Section 63.2263 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  5. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial compliance demonstration for a hardwood veneer dryer. 63.2264 Section 63.2264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  6. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial compliance demonstration for a hardwood veneer dryer. 63.2264 Section 63.2264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood...

  7. 7 CFR 58.246 - Cleaning of dryers, collectors, conveyors, ducts, sifters and storage bins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cleaning of dryers, collectors, conveyors, ducts, sifters and storage bins. 58.246 Section 58.246 Agriculture Regulations of the Department of Agriculture..., conveyors, ducts, sifters and storage bins. This equipment shall be cleaned as often as is necessary...

  8. 7 CFR 58.246 - Cleaning of dryers, collectors, conveyors, ducts, sifters and storage bins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cleaning of dryers, collectors, conveyors, ducts... PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for...

  9. 7 CFR 58.246 - Cleaning of dryers, collectors, conveyors, ducts, sifters and storage bins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cleaning of dryers, collectors, conveyors, ducts... PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for...

  10. 7 CFR 58.246 - Cleaning of dryers, collectors, conveyors, ducts, sifters and storage bins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cleaning of dryers, collectors, conveyors, ducts... PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for...

  11. 76 FR 50145 - Energy Conservation Program: Test Procedures for Residential Clothes Dryers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...) 586-2945. Please submit one signed original paper copy. Hand Delivery/Courier: Ms. Brenda Edwards, U.S.... Please submit one signed original paper copy. Docket: For access to the docket to read background... sheets, towels, and pillowcases. As noted in the January TP final rule, DOE believes that clothes dryers...

  12. Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577

    SciTech Connect

    Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M.

    2013-07-01

    Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

  13. Continuous stand-alone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2013-02-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry cloud droplets (maximum diameter approximately 25 μm, highly charged, up to 5 × 102 charges). One criterion is to minimise losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry, closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to be 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory (temperature 294 K) and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was >94% during these five months.

  14. Continuous standalone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2012-08-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry highly charged cloud droplets (maximum diameter approximately 25 μm) with minimum losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was > 94% during these five months.

  15. Design of Solar Heat Sheet for Air Heaters

    NASA Astrophysics Data System (ADS)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  16. Efficiency and design analysis of a solar thermal powered flat plate dryer (abstract)

    USDA-ARS?s Scientific Manuscript database

    Specialty crop fruit and vegetable pomaces are a common byproduct of the food processing and juicing industries. These pomaces can have high nutritional value, but are currently underutilized or treated as waste. Drum drying is one method that could be adopted to dry and stabilize fruit and vegetabl...

  17. Development of a Mini-Freeze Dryer for Material-Sparing Laboratory Processing with Representative Product Temperature History.

    PubMed

    Obeidat, Wasfy M; Sahni, Ekneet; Kessler, William; Pikal, Michael

    2017-09-13

    The goal of the work described in this publication was to evaluate a new, small, material-sparing freeze dryer, denoted as the "mini-freeze dryer or mini-FD", capable of reproducing the product temperature history of larger freeze dryers, thereby facilitating scale-up. The mini-FD wall temperatures can be controlled to mimic loading procedures and dryer process characteristics of larger dryers. The mini-FD is equipped with a tunable diode laser absorption spectroscopy (TDLAS) water vapor mass flow monitor and with other advanced process analytical technology (PAT) sensors. Drying experiments were performed to demonstrate scalability to larger freeze dryers, including the determination of vial heat transfer coefficients, K v . Product temperature histories during K v runs were evaluated and compared with those obtained with a commercial laboratory-scale freeze dryer (LyoStar II) for sucrose and mannitol product formulations. When the mini-FD wall temperature was set at the LyoStar II band temperature (- 20°C) to mimic lab dryer edge vials, edge vial drying in the mini-FD possessed an average K v within 5% of those obtained during drying in the LyoStar II. When the wall temperature of the mini-FD was set equal to the central vial product temperature, edge vials behaved as center vials, possessing a K v value within 5% of those measured in the LyoStar II. During both K v runs and complete product freeze drying runs, the temperature-time profiles for the average edge vials and central vial in the mini-FD agreed well with the average edge and average central vials of the LyoStar II.

  18. Drying of medicinal plants with solar energy utilization

    SciTech Connect

    Wisniewski, G.

    1997-10-01

    In the paper, a potential of solar energy for drying of medicinal plants in Polish conditions is estimated and development of solar drying technologies is presented. The results of economic assessment of flat-plate solar collectors applied for drying of medicinal plants on a farm are promising. In some specific conditions, e.g. drying of wild grown medicinal plants in remote areas, even application of photovoltaic modules for driving of a fan of a solar dryer is a profitable option and enables easy control of the drying air temperature.

  19. 76 FR 22453 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ...The Energy Policy and Conservation Act (EPCA) prescribes energy conservation standards for various consumer products and commercial and industrial equipment, including residential clothes dryers and room air conditioners. EPCA also requires the U.S. Department of Energy (DOE) to determine if amended standards for these products are technologically feasible and economically justified, and would save a significant amount of energy. In this direct final rule, DOE adopts amended energy conservation standards for residential clothes dryers and room air conditioners. A notice of proposed rulemaking that proposes identical energy efficiency standards is published elsewhere in today's Federal Register. If DOE receives adverse comment and determines that such comment may provide a reasonable basis for withdrawing the direct final rule, this final rule will be withdrawn and DOE will proceed with the proposed rule.

  20. Polychlorinated biphenyls removal from contaminated soils using a transportable indirect thermal dryer unit: implications for emissions.

    PubMed

    Yang, Bing; Xue, Nandong; Ding, Qiong; Vogt, Rolf David; Zhou, Lingli; Li, Fasheng; Wu, Guanglong; Zhang, Shilei; Zhou, Dandan; Liu, Bo; Yan, Yunzhong

    2014-11-01

    An assessment in China of the application of a transportable indirect thermal dryer unit for the remediation of soils contaminated with polychlorinated biphenyls (PCBs) demonstrated that it is well suited to remove PCBs from soils. A remarkable reduction of total PCBs in soils from 163-770 μg g(-1) to 0.08-0.15 μg g(-1) was achieved. This represented removal efficiencies of greater than 99.9% and an approximate 100% removal of the toxic equivalent of the PCBs. Furthermore, the emissions to the atmosphere from the unit were in compliance with current PCBs regulations. In conclusion, remediation of PCBs-contaminated soils based on a transportable indirect thermal dryer unit appears to be a highly efficient and environmentally sound treatment technology that has huge implications for cleaning thousands of regionally dispersed sites of PCBs contamination in China.

  1. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOEpatents

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  2. Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Suherman, Trisnaningtyas, Rona

    2015-12-01

    This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.

  3. Solar energy in food processing-a critical appraisal.

    PubMed

    Eswara, Amruta R; Ramakrishnarao, M

    2013-04-01

    Increasing population and high cost of fuels have created opportunities for using alternate energies for post-harvest processing of foods. Solar food processing is an emerging technology that provides good quality foods at low or no additional fuel costs. A number of solar dryers, collectors and concentrators are currently being used for various steps in food processing and value addition. Society for Energy, Environment and Development (SEED) developed Solar Cabinet Dryer with forced circulation which has been used for dehydration and development of value added products from locally grown fruits, vegetables, leafy greens and forest produce. Drying under simulated shade conditions using UV-reducing Blue filter helps retain nutrients better. Its simple design and ease of handling makes SEED Solar Dryer an ideal choice for application of food processing in rural settings, closer to where the harvest is produced, eliminating the need for expensive transportation or storage of fresh produce. It also creates employment opportunities among the rural population, especially women. Other gadgets based on solar collectors and concentrators currently being used at various steps of food processing are reviewed.

  4. Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer.

    PubMed

    El-Mesery, Hany S; Mwithiga, Gikuru

    2015-05-01

    A conveyor-belt dryer was developed using a combined infrared and hot air heating system that can be used in the drying of fruits and vegetables. The drying system having two chambers was fitted with infrared radiation heaters and through-flow hot air was provided from a convective heating system. The system was designed to operate under either infrared radiation and cold air (IR-CA) settings of 2000 W/m(2) with forced ambient air at 30 °C and air flow of 0.6 m/s or combined infrared and hot air convection (IR-HA) dryer setting with infrared intensity set at 2000 W/m(2) and hot at 60 °C being blown through the dryer at a velocity of 0.6 m/s or hot air convection (HA) at an air temperature of 60 °C and air flow velocity 0.6 m/s but without infrared heating. Apple slices dried under the different dryer settings were evaluated for quality and energy requirements. It was found that drying of apple (Golden Delicious) slices took place in the falling rate drying period and no constant rate period of drying was observed under any of the test conditions. The IR-HA setting was 57.5 and 39.1 % faster than IR-CA and HA setting, respectively. Specific energy consumption was lower and thermal efficiency was higher for the IR-HA setting when compared to both IR-CA and HA settings. The rehydration ratio, shrinkage and colour properties of apples dried under IR-HA conditions were better than for either IR-CA or HA.

  5. Further trials of roll-feed, high-temperature dryers for 8/4 southern pine

    Treesearch

    P. Koch

    1975-01-01

    Studs cut from veneer cores and dried by four configurations of roll-feeding mechaniams (for a continuous kiln like a roll-feed veneer dryer) were compared to conventionally stickered studs. Roll-dried studs averaged leas crook (0.14 in.), bow (0.17), and twist (0.16) than those conventionally suckered (0.22, 0.26, and 0.34 inch, respectively). The data seemed to favor...

  6. Study of Asphaltic Concrete Produced in Dryer Drum Mixers for Airport Pavements.

    DTIC Science & Technology

    1976-10-01

    STWDARDS-163- w S 4 -- , ,a, i I Report No-c FAA-RD-76-165 STUDY OF ASPHALTIC CONCRETE PRODUCED IN DRYER DRUM MIXERS FOR AIRPORT PAVEMENTS 0 E. T...PREFACE This study was supported by the Systems Research and Development Service of the Federal Aviation Administration. This is a final report presenting...the asphaltic concrete . In September, 1976 the Alaskan Region of FAA reported that the runway pavement had transverse thermal cracks approximately 200

  7. Molten film high-intensity paper dryer. Final report, August 16, 1996--February 15, 1997

    SciTech Connect

    Not Available

    1998-02-24

    The work focuses on the development of an innovative high-intensity paper dryer that utilizes molten metals as a direct contact heat transfer fluid. The overall commercialization plan for this technology involves a progression of technical steps leading to the construction of a commercial prototype. Extensive testing was completed at the working model and engineering development unit (EDU) scales. The main conclusions from the testing effort are: (1) the molten fluid dryer (MFD) technology achieves extremely high drying rates during the early stages of drying (greater than 50 lb steam/ft{sup 2}-hr); (2) a simple two-parameter model adequately describes the dryer performance over a wide range of conditions and paper grades; (3) the MFD can achieve speeds of 1,000 fpm without the use of a restraining felt when the initial moisture content of the wet web is less than about 50 wt.%; (4) due to wet strength limitations of the raw web, the MFD will require use of a restraining felt at speeds above 500 fpm when processing high moisture (60 wt.%) raw webs, the restraining felt serves to support the wet web and drive the bath immersion rollers thereby relieving tension on the wet web; and (5)when the MFD is exposed to ambient air, some discoloration of the dried paper occurs due to oxidation of the molten metal. Oxidation problems were shown to be avoided by enclosing the dryer in a hood and stripping entrained air from the surface of the paper as it enters the bath using a steam knife.

  8. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer.

    PubMed

    Faal, Saeed; Tavakoli, Teymor; Ghobadian, Barat

    2015-05-01

    In this study thermal energy of an engine was used to dry apricot. For this purpose, experiments were conducted on thin layer drying apricot with combined heat and power dryer, in a laboratory dryer. The drying experiments were carried out for four levels of engine output power (25 %, 50 %, 75 % and full load), producing temperatures of 50, 60, 70, and 80 ° C in drying chamber respectively. The air velocity in drying chamber was about 0.5 ± 0.05 m/s. Different mathematical models were evaluated to predict the behavior of apricot drying in a combined heat and power dryer. Conventional statistical equations namely modeling efficiency (EF), Root mean square error (RMSE) and chi-square (χ2) were also used to determine the most suitable model. Assessments indicated that the Logarithmic model considering the values of EF = 0.998746, χ 2 = 0.000120 and RMSE = 0.004772, shows the best treatment of drying apricot with combined heat and power dryer among eleven models were used in this study. The average values of effective diffusivity ranged 1.6260 × 10(-9) to 4.3612 × 10(-9) m2/s for drying apricot at air temperatures between 50 and 80 °C and at the air flow rate of 0.5 ± 0.05 m/s; the values of Deff increased with the increase of drying temperature the effective diffusivities in the second falling rate period were about eight times greater than that in the first falling rate period.

  9. Development of a supervisory control strategy for the optimal operation of grain dryers

    SciTech Connect

    Vasconcelos, L.G.S.; Filho, R.M.

    1998-10-01

    In spite of the importance and especially high energy demands of grain dryers, relatively few studies have been carried out to discover the optimal conditions for their operation. High performance operation can only be achieved if an adequate operating strategy is developed. For its implementation, a reliable control structure is required, and some of the limitations of the conventional control strategies normally used in dryers are observed. These strategies are SISO; the control normally used presents low performance and the disturbance is characterized by several amplitudes and frequencies. A possible way to minimize this difficulty consists of defining the multilevel structure such that each level acts at a given amplitude and frequency. In order to implement this multilevel structure, an optimization problem was developed to function as a supervisory control and a predictive algorithm (DMC) was used for servo or regulatory control. The proposed DMC algorithm presented satisfactory results for the load rejection and set-point variation, only when a small disturbance was applied. For a larger disturbance an optimization procedure was necessary. The routine efficiently maintained the optimal operational conditions of the dryer and could be used in the supervisory control of the system.

  10. Investigations of the formation of explosive mixtures in dryers for coatings.

    PubMed

    Stolpe, F; Förster, H

    2004-08-30

    In the following we will discuss a specific problem of explosion protection in dryers for coatings. It is mainly encountered in chamber dryers as these pose specific problems as regards occupational safety and health. During the drying process of most coatings, solvent vapours are released most of which can form explosive mixtures when a specific concentration, the lower explosion limit, is reached. The European Standard EN1539:2000 requires explosion venting areas for most of these dryers without adequate explosion protection measures such as appropriate limitation of the solvent input being taken into account. Different aspects of the model underlying the calculations are evaluated, and it will be shown that this model is still reliable in most applications. The investigations consisted of three parts. At first there have been made investigations of the operating conditions in different enterprises aimed to get information about specific parameters, problems and failures. Laboratory experiments have been made to investigate in detail the major influencing parameters. Attempts to set up a simple but basic physical model for the experimental data have also been made. Evaporation and diffusion have been examined. The numerical models have been kept as simple as possible to be a potential tool for designers/manufacturers and users.

  11. Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report

    SciTech Connect

    1995-01-01

    The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

  12. A dedicated on-line detecting system for auto air dryers

    NASA Astrophysics Data System (ADS)

    Shi, Chao-yu; Luo, Zai

    2013-10-01

    According to the correlative automobile industry standard and the requirements of manufacturer, this dedicated on-line detecting system is designed against the shortage of low degree automatic efficiency and detection precision of auto air dryer in the domestic. Fast automatic detection is achieved by combining the technology of computer control, mechatronics and pneumatics. This system can detect the speciality performance of pressure regulating valve and sealability of auto air dryer, in which online analytical processing of test data is available, at the same time, saving and inquiring data is achieved. Through some experimental analysis, it is indicated that efficient and accurate detection of the performance of auto air dryer is realized, and the test errors are less than 3%. Moreover, we carry out the type A evaluation of uncertainty in test data based on Bayesian theory, and the results show that the test uncertainties of all performance parameters are less than 0.5kPa, which can meet the requirements of operating industrial site absolutely.

  13. A comparative life cycle assessment of conventional hand dryer and roll paper towel as hand drying methods.

    PubMed

    Joseph, Tijo; Baah, Kelly; Jahanfar, Ali; Dubey, Brajesh

    2015-05-15

    A comparative life cycle assessment, under a cradle to gate scope, was carried out between two hand drying methods namely conventional hand dryer use and dispenser issued roll paper towel use. The inventory analysis for this study was aided by the deconstruction of a hand dryer and dispenser unit besides additional data provided by the Physical Resources department, from the product system manufacturers and information from literature. The LCA software SimaPro, supported by the ecoinvent and US-EI databases, was used towards establishing the environmental impacts associated with the lifecycle stages of both the compared product systems. The Impact 2002+ method was used for classification and characterization of these environmental impacts. An uncertainty analysis addressing key input data and assumptions made, a sensitivity analysis covering the use intensity of the product systems and a scenario analysis looking at a US based use phase for the hand dryer were also conducted. Per functional unit, which is to achieve a pair of dried hands, the dispenser product system has a greater life cycle impact than the dryer product system across three of four endpoint impact categories. The use group of lifecycle stages for the dispenser product system, which represents the cradle to gate lifecycle stages associated with the paper towels, constitutes the major portion of this impact. For the dryer product system, the use group of lifecycle stages, which essentially covers the electricity consumption during dryer operation, constitutes the major stake in the impact categories. It is evident from the results of this study that per dry, for a use phase supplied by Ontario's grid (2010 grid mix scenario) and a United States based manufacturing scenario, the use of a conventional hand dryer (rated at 1800 W and under a 30s use intensity) has a lesser environmental impact than with using two paper towels (100% recycled content, unbleached and weighing 4 g) issued from a roll

  14. Consumer product safety: Risk assessment of exposure to asbestos emissions from hand-held hair dryers

    NASA Astrophysics Data System (ADS)

    Hallenbeck, William H.

    1981-01-01

    The United States Consumer Product Safety Commission (CPSC) is concerned that consumer exposure to asbestos from consumer products may present an unreasonable risk of injury. Recently, CPSC has obtained agreement by industry to cease production and distribution of hair dryers containing asbestos heat insulation. CPSC intends to broaden its investigation by selecting consumer products containing asbestos for “priority attention.” The Commission does not intend to make quantitative estimates of cancer risks posed by exposure to asbestos fibers in making regulatory decisions. This position may lead to a serious waste of resources for the Commission, industry, and society. The Commission should focus its initial attention on those products for which the release of asbestos is significant enough to cause an unreasonable health risk. To make a risk assessment for a particular use of asbestos, CPSC must acquire or request data on asbestos emissions and define “unreasonable risk to health.” In an attempt to give some meaning to the phrase “risk assessment,” the primary goal of this paper is to present a detailed risk assessment of exposure to asbestos from hand-held hair dryers. Several scenarios of use are presented using various assumptions regarding time of operation, mixing of fibers in a small room, rate of fiber emission, and time of exposure. The worst case analysis of the health risk of exposure to hair dryer emissions is based on several conservative assumptions and shows that the increased number of deaths per year due to respiratory cancer is 4 for the entire United States population. A more representative case analysis shows the increased number of deaths to be on the order of 0.15 per year.

  15. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  16. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  17. Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer

    SciTech Connect

    Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

  18. Laboratory Development of A High Capacity Gas-Fired paper Dryer

    SciTech Connect

    Chudnovsky, Yaroslav; Kozlov, Aleksandr; Sherrow, Lester

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

  19. Evaluation of solar sludge drying alternatives by costs and area requirements.

    PubMed

    Kurt, Mayıs; Aksoy, Ayşegül; Sanin, F Dilek

    2015-10-01

    Thermal drying is a common method to reach above 90% dry solids content (DS) in sludge. However, thermal drying requires high amount of energy and can be expensive. A greenhouse solar dryer (GSD) can be a cost-effective substitute if the drying performance, which is typically 70% DS, can be increased by additional heat. In this study feasibility of GSD supported with solar panels is evaluated as an alternative to thermal dryers to reach 90% DS. Evaluations are based on capital and O&M costs as well as area requirements for 37 wastewater treatment plants (WWTPs) with various sludge production rates. Costs for the supported GSD system are compared to that of conventional and co-generation thermal dryers. To calculate the optimal costs associated with the drying system, an optimization model was developed in which area limitation was a constraint. Results showed that total cost was minimum when the DS in the GSD (DS(m,i)) was equal to the maximum attainable value (70% DS). On average, 58% of the total cost and 38% of total required area were associated with the GSD. Variations in costs for 37 WWTPs were due to differences in initial DS (DS(i,i)) and sludge production rates, indicating the importance of dewatering to lower drying costs. For large plants, GSD supported with solar panels provided savings in total costs especially in long term when compared to conventional and co-generation thermal dryers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mathematical simulation of acoustic and gas-dynamical processes in the channel of an acoustoconvective dryer

    NASA Astrophysics Data System (ADS)

    Fedorchenko, I. A.; Fedorov, A. V.

    2013-07-01

    This paper presents and analyzes the data of numerical simulation of nonstationary flow in the channel of an acoustoconvective dryer in which the acoustic field is produced by a Hartmann generator. The gas-dynamical flow field and frequency characteristics of the problem are calculated in axisymmetric and three-dimensional formulations. The jet outflowing from the generator nozzle with change in the resonator length and in the jet pressure ratio was investigated parametrically. The results of numerical calculations are compared with experimental data.

  1. Burn injuries caused by a hair-dryer--an unusual case of child abuse.

    PubMed

    Darok, M; Reischle, S

    2001-01-01

    About 1.4-26% burn injuries in children appear to be abusive in origin. A 2.5-year-old girl was referred to our institute because of suspected child abuse. Clinical examination and later interrogation of the mother revealed non-recent deep second degree burn injuries on both gluteal regions, caused by the partner of the mother by pressing a hand-held hair-dryer against the skin. The authors present the findings of this unusual method of child abuse.

  2. The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer

    NASA Astrophysics Data System (ADS)

    Sadin, Rasool; Chegini, Gholam-Reza; Sadin, Hassan

    2014-04-01

    In this study thin layer drying of tomato slices were investigated in the infrared dryer. Drying rate increased with increasing temperature and reduction thickness and thus reduced the drying time. The effective diffusivity increased with increasing temperature and with increasing thickness of the samples. The effective diffusivity values changed from 1.094 × 10-9 to 4.468 × 10-9 m2/s and for activation energy varied from 110 to 120 kJ/mol. The best model for drying process of tomato slices was Midilli model.

  3. Use of inorganic dryer-salts in the determination of organic contaminants in air

    SciTech Connect

    Simonov, V.A.

    1985-09-01

    This paper presents results of a study of the adsorptive activity of a number of inorganic salts relative to water vapor and to organic vapors in air under the dynamic conditions which are uses in the indicator tube method. Data are also given on the properties of dryer salts having a surface modified with glycerin. It is shown that lithium chloride on porcelain and potassium carbonate having a surface modified with glycerin can be used to dry air in determining contaminants of nonpolar and polar organic substances in it. Anhydrone on porcelain, calcium chloride, and potassium carbonate absorb some substances which are being determined and therefore are less suitable.

  4. Drying characteristics of garlic ( Allium sativum L) slices in a convective hot air dryer

    NASA Astrophysics Data System (ADS)

    Demiray, Engin; Tulek, Yahya

    2014-06-01

    The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10-10 to 2.221 × 10-10 m2 s-1 over the temperature range studied, and activation energy was 30.582 kJ mol-1.

  5. Solar thermal drying of apricots: Effect of spectrally-selective cabinet materials on drying rate and quality metrics (abstract)

    USDA-ARS?s Scientific Manuscript database

    Solar thermal (ST) drying is currently not in widespread commercial use due to concerns about slow drying rates and poor product quality. ST dryer cabinets could be constructed from spectrally-selective materials (materials which transmit only certain sunlight wavelength bands), but these types of ...

  6. Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation.

    PubMed

    Tripathy, P P

    2015-03-01

    Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.

  7. Making large, flowable particles of protein or disaccharide in a mini-scale spray dryer.

    PubMed

    Schaefer, Joachim; Lee, Geoffrey

    2016-11-01

    A mini-scale spray dryer, the ProCept 4M8, with a 1.4 m or 2.1 m drying chamber length has been used to prepare large, flowable particles of catalase, trehalose or lactose. A 25 kHz ultrasonic nozzle or a Rayleigh breakup mono-disperse droplet generator was used for atomization. The ultrasonic nozzle produced dried particles of average diameter ≥30 µm that show incipient flow behavior when measured with the vibrating spatula method. A high solute concentration of 69% w/w in the liquid feed was required, which is readily achievable with trehalose but not with the viscous catalase solution. At lower solute concentrations, e.g. 20% w/w, the mono-disperse droplet generator was able to produce well flowable particles of approximately 50 µm diameter, although with a low yield. This is a result of collisions between the droplets falling through the drying chamber when then coalesce. It is possible to produce dried, flowable particles in milligram quantities on a mini-scale spray dryer such as the ProCept using the 25 kHz ultrasonic nozzle. With the mono-disperse droplet generator the long drying chamber ensures a residence time of a number of seconds, but this also allows droplet coalescence at fall heights >40 cm.

  8. Formulation and evaluation of albumin microspheres and its enteric coating using a spray-dryer.

    PubMed

    Bejugam, Naveen K; Uddin, Akm N; Gayakwad, Sanjay G; D'Souza, Martin J

    2008-12-01

    This study optimized and evaluated the conditions for surface coating of microspheres using a spray-dryer. Four formulations of Bromophenol blue (BPB)-loaded albumin microspheres were prepared using a spray-dryer, cross-linked at different concentrations and time periods. One of the optimized formulations with the desired characteristics was selected for enteric coating with Eudragit L100-55. The procedure involved suspending BPB microspheres in polymer solution and spray-drying it. Four enteric coated formulations were prepared with different concentrations of microspheres in suspension (0.25 and 0.5%w/v) and polymer concentrations (0.25 and 0.5%w/v). Change in the mean particle size after coating was determined using a Laser Particle Counter. The surface coating technique employed did not significantly increase the particle size. Enteric coating efficiency was determined in simulated gastric fluid. Compared to the uncoated microspheres the cumulative amount of drug released from coated microspheres was significantly lower for 3 h, implying efficient surface coating.

  9. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    PubMed

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time.

  10. Development of solar energy in Peru

    SciTech Connect

    Pierson, H.O.; Nahui, A.

    1981-06-01

    Peru receives a high degree of solar radiation, except for part of its coastal area, and has almost an ideal climate for the development of solar energy. However, only recently has a concerted effort been made in Peru to take advantage of these conditions. Work focuses on the development of low-temperature applications, including the design of passive solar-heated buildings for the high Andes, the design and evaluation of various types of solar water heaters and crop dryers for both household and industrial uses (based on flat-plate collectors), and the construction of a desalinization prototype plant. Photovoltaic systems are being investigated for suitable applications and have an excellent potential, especially in telecommunications.

  11. Investigation of membrane dryers and evaluation of a new ozone scrubbing material for the sampling of organosulphur compounds in air.

    PubMed

    Haberhauer-Troyer, C; Rosenberg, E; Grasserbauer, M

    1999-08-13

    The applicability of two different types of Nafion membrane dryers (based on counter-current flow and desiccant drying) and of a new ozone scrubbing material, polyphenylene sulphide wool (noXon-S), to adsorptive sampling of selected volatile sulphur compounds (methanethiol, dimethyl sulphide, isopropanethiol and isobutanethiol) is investigated at the low ppb (v/v) level (1-5 ppb). No analyte losses occur with either type of dryer at relative humidities (RH) of < or = 50%, while at higher RH values particularly the thiols tend to be lost (between 6 and 32%) even after conditioning. The actual losses depend more on the state of the individual permeation membrane rather than on the type of dryer. NoXon-S is a highly suitable ozone scrubber material for sulphur compounds since it efficiently removes ozone without retainment of the analytes and without the formation of blanks or artefacts from the scrubber material. The combined use of a Nafion membrane dryer and a noXon-S ozone scrubber is thus recommended for artifact-free sampling of sulphur compounds.

  12. A new methodology for measurement of sludge residence time distribution in a paddle dryer using X-ray fluorescence analysis.

    PubMed

    Charlou, Christophe; Milhé, Mathieu; Sauceau, Martial; Arlabosse, Patricia

    2015-02-01

    Drying is a necessary step before sewage sludge energetic valorization. Paddle dryers allow working with such a complex material. However, little is known about sludge flow in this kind of processes. This study intends to set up an original methodology for sludge residence time distribution (RTD) measurement in a continuous paddle dryer, based on the detection of mineral tracers by X-ray fluorescence. This accurate analytical technique offers a linear response to tracer concentration in dry sludge; the protocol leads to a good repeatability of RTD measurements. Its equivalence to RTD measurement by NaCl conductivity in sludge leachates is assessed. Moreover, it is shown that tracer solubility has no influence on RTD: liquid and solid phases have the same flow pattern. The application of this technique on sludge with different storage duration at 4 °C emphasizes the influence of this parameter on sludge RTD, and thus on paddle dryer performances: the mean residence time in a paddle dryer is almost doubled between 24 and 48 h of storage for identical operating conditions.

  13. 10 CFR Appendix D1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Clothes Dryers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... standards for clothes dryers at 10 CFR 430.32(h) is required, at which time manufacturers must use appendix... where the mode may persist for an indefinite time. An indicator that only shows the user that the... the following user-oriented or protective functions which may persist for an indefinite time: (a) To...

  14. 10 CFR Appendix D2 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Clothes Dryers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conservation standards for clothes dryers at this time. Manufacturers may elect to use the amended appendix D2... active or standby mode function, and where the mode may persist for an indefinite time. An indicator that... persist for an indefinite time: (a) To facilitate the activation of other modes (including activation or...

  15. Drug-polymer miscibility across a spray dryer: a case study of naproxen and miconazole solid dispersions.

    PubMed

    Worku, Zelalem Ayenew; Aarts, Jolie; Singh, Abhishek; Van den Mooter, Guy

    2014-04-07

    The structural and physical stability of solid dispersions have not been adequately explored during spray drying manufacturing processes. In this study a wide range of compositions of naproxen/PVP-VA 64 (poly(1-vinylpyrrolidone-co-vinyl acetate)) and miconazole/PVP-VA 64 solid dispersions prepared by different laboratory spray dryers were collected from various selected locations and used to investigate the drug-polymer mixing across spray dryers. Spray-dried dispersions with 30% (w/w) naproxen collected from the transport tube of the Pro-C-epT Microspray dryer showed the narrowest glass transition width, which apparently indicates the highest degree of drug-polymer mixing compared to the other locations. The intensity of the naproxen-PVP-VA 64 interaction peak at 1654 cm(-1) of IR spectra differs for solid dispersions (SDs) from the collector and transport tube of Pro-C-epT Microspray dryer with a higher intensity for the latter. Samples with 50% (w/w) naproxen loading collected from the cyclone and the cyclone steel part of the Buchi mini spray dryer showed a melting endotherm (Tm at 112.2 ± 0.8 °C and ΔHf between 0.7 and 1.8 J/g), whereas samples from the cyclone tube to the drying chamber were devoid of crystalline material. The variations in drug-polymer mixing extend to miconazole/PVP-VA solid dispersions where 20% drug loading showed location-dependent drug-polymer mixing. This study clearly showed that the variation in drug-polymer miscibility and solid form of the drug in solid dispersions can occur across spray dryer in small-scale manufacturing processes. The optimization of formulation parameters and spray drying process parameters is imperative to diminish these variations to enhance homogeneity of solid dispersions in laboratory scale spray dryers. The same problem can occur in geometrically large spray drying manufacturing equipment, and the robustness of the processes should be carefully assessed.

  16. Molten film high-intensity paper dryer. Final report for reporting period August 16, 1996 through February 15, 1997

    SciTech Connect

    Not Available

    1998-02-24

    This work, covering the period from August 16, 1996 through February 15, 1998, focuses on the development of an innovative high-intensity paper dryer that utilized molten metals as a direct contact heat transfer fluid. The overall commercialization plan for this technology involves a progression of technical steps leading to the construction of a commercial prototype. These steps are feasibility testing at the working model scale (20 to 30 lb/h evaporation), testing of an engineering development unit (1000 lb/h), and field demonstration testing (10,000 to 20,000 lb/h). Extensive testing was completed at the working model and engineering development unit (EDU) scales. The main conclusions from the testing effort are as follows: (1)The molten fluid dryer (MFD) technology achieves extremely high drying rates during the early stages of drying; the MFD can reduce the dryer section size by about 50% for light-grade paper. (2)A simple two-parameter model adequately describes the dryer performance over a wide range of conditions and paper grades. (3)The MFD can achieve speeds of 1000 fpm without the use of a restraining felt when the initial moisture content of the wet web is less than about 50 wt. %. (4)Due to wet strength limitations of the raw web, the MFD will require use of a restraining felt at speeds above 500 fpm when processing high moisture (60 wt.%) raw webs. (5)When the MFD is exposed to ambient air, some discoloration of the dried paper occurs due to oxidation of the molten metal; oxidation problems could be avoided by enclosing the dryer in a hood and stripping entrained air from the surface of the paper as it enters the bath by use of a steam knife. Future technical work will focus on development of a restrained drying configuration for the MFD/EDU.

  17. Matrix structure selection in the microparticles of essential oil oregano produced by spray dryer.

    PubMed

    da Costa, Joyce Maria Gomes; Borges, Soraia Vilela; Hijo, Ariel Antonio Campos Toledo; Silva, Eric Keven; Marques, Gerson Reginaldo; Cirillo, Marcelo Ângelo; de Azevedo, Viviane Machado

    2013-01-01

    The goal of this work was to select the best combination of encapsulants for the microencapsulation of oregano essential oil by spray dryer with the addition of Arabic gum (AG), modified starch (MS) and maltodextrin (MA). The simplex-centroid method was used to obtain an optimal objective function with three variables. Analytical methods for carvacrol quantification, water activity, moisture content, wettability, solubility, encapsulation efficiency (ME) and oil retention (RT) were used to evaluate the best combination of encapsulants. The use of AG as a single wall material increased ME up to 93%. Carvacrol is the major phenolic compound existent in the oregano essential oil. Carvacrol exhibits a maximum concentration of 57.8% in the microparticle with the use of 62.5% AG and 37.5% MA. A greater RT (77.39%) was obtained when 74.5% AG; MS 12.7% and 12.7% MA were applied, and ME (93%) was improved with 100% of gum.

  18. The Development of a Spray Dryer based on a Food Industrial Viewpoint

    NASA Astrophysics Data System (ADS)

    Katoh, Fumio

    The spray dryer, which will satisfy the future demands, is developed through the engineering approach in accordance to 3A- Sanitary Standards in the food industry. The main points are as follows. 1) A High Discharge-Single Swirl Atomizer is adapted for practical use; which can mix effectively with single hot air jet. 2) An optimum jet distributer eliminates swirling components in the jet. 3) Secondary air from the periphery of the jet controls the diffusion and Coanda effect of the jet. 4) The drying chamber's wall is controlled at a temperature below the "Sticky Point" of products. 5) An optimum cooler is included in the bottom of the drying chamber. The above devices prevent undried particles from adhering to the drying chamber's wall, improve the fluidity of products as powder particles, and bring about high efficiency, stable and high quality long lasting productivity.

  19. Development of controlled release captopril granules coated with ethylcellulose and methylcellulose by fluid bed dryer.

    PubMed

    Stulzer, Hellen Karine; Silva, Marcos Antonio Segatto; Fernandes, Daniel; Assreuy, Jamil

    2008-01-01

    Captopril granules of controlled release with different polymers as ethylcellulose, ethyl/methylcellulose, and immediate release with polyvinylpyrrolidone (PVP) were developed by fluid bed dryer technique. The formulations were analyzed by scanning electron microscopy, X-ray powder diffraction, and dissolution profiles. To compare the formulations an in vivo setting rat blood pressure assay was performed, using angiotensin I as a vasoconstrictor agent. The scanning electron microscopy of granules showed differences in morphology, and X-ray powder diffraction technique presented some modification in crystalline structure of captopril in granules coated with PVP and ethyl/methylcellulose. The dissolution profile of granules coated with ethylcellulose showed a median time release of 4 hr whereas for granules coated with ethyl/methylcellulose, this time was 3.5 hr. The blockage of angiotensin I-induced hypertensive effect lasted 8 hr in granules coated with PVP and of more than 12 hr in the granules coated with ethylcellulose and ethyl/methylcellulose.

  20. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.

    PubMed

    Rambhatla, S; Tchessalov, S; Pikal, Michael J

    2006-04-21

    The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. "Hot" and "cold" spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of -25 degrees C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scale-up issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.

  1. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    PubMed

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.

  2. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  3. Study of dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer using CFD simulations

    NASA Astrophysics Data System (ADS)

    Kriaa, Wassim; Bejaoui, Salma; Mhiri, Hatem; Le Palec, Georges; Bournot, Philippe

    2014-02-01

    In this study, we developed a two-dimensional Computational Fluid Dynamics (CFD) model to simulate dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer (EVA 702). The carrier's motion imposed the choice of a dynamic mesh based on two methods: "spring based smoothing" and "local remeshing". The dryer airflow is considered as turbulent ( Re = 1.09 × 105 at the dryer inlet), therefore the Re-Normalization Group model with Enhanced Wall Treatment was used as a turbulence model. The resolution of the governing equation was performed with Fluent 6.3 whose capacities do not allow the direct resolution of drying problems. Thus, a user defined scalar equation was inserted in the CFD code to model moisture content diffusion into tiles. User-defined functions were implemented to define carriers' motion, thermo-physical properties… etc. We adopted also a "two-step" simulation method: in the first step, we follow the heat transfer coefficient evolution (Hc). In the second step, we determine the mass transfer coefficient (Hm) and the features fields of drying air and ceramic tiles. The found results in mixed convection mode (Fr = 5.39 at the dryer inlet) were used to describe dynamic and thermal fields of airflow and heat and mass transfer close to the ceramic tiles. The response of ceramic tiles to heat and mass transfer was studied based on Biot numbers. The evolutions of averages temperature and moisture content of ceramic tiles were analyzed. Lastly, comparison between experimental and numerical results showed a good agreement.

  4. Sorbent utilization studies using a mini-pilot spray dryer. Final report, 1 September 1992--31 August 1993

    SciTech Connect

    Keener, T.C.; Khang, S.J.; Wang, J.; Sanders, J.F.

    1993-09-30

    The main body of the report consists of four parts: 1. additives to change process chemistry for SO{sub 2} absorption by Ca(OH){sub 2} slurry; 2. recycle tests and hydration of fly ash with Ca(OH){sub 2} to increase reactivity; 3. limestone as an alternative sorbent and additive effects; 4. physical and chemical model developments for some of the additive effects and spray dryer mathematical model application. As the concentration of SO{sub 2} in the flue gases increases, the SO{sub 2} removal efficiency will go down. Additives such as delinquent salts (NaOH, NaCl, and NaHCO{sub 3}) have been shown to improve SO{sub 2} uptake, and these additive tests have indicated that SO{sub 2} uptake may be increased by as much as 60% over baseline conditions. Other additives such as H{sub 2}O{sub 2}, sugar, and some organic acids which can change the chemical reaction processes are suggested and tested, and some promising results have been obtained. Recycle has been shown to increase sorbent utilization by allowing partially reacted sorbent to react further with the SO{sub 2} in the flue gases. Two types of Ohio coal fly ashes have been extensively studied, and improvement of utilization in spray dryer flue gas desulfurization has been demonstrated. Limestone represents an area where significant cost savings can be realized. The spray dryer tests were designed to provide some results for understanding the magnitude of the limestone performance in the spray dryer system and the additive effects. The additive effects on increasing SO{sub 2} absorption by Ca(OH){sub 2} slurry were investigated, and the chemical and physical properties of these tested additives were studied. Some models have been formed to explain the additive phenomena.

  5. Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams

    SciTech Connect

    Dunder, T.A.; Leighty, D.A.

    1997-12-31

    Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

  6. Advanced technology, gas-fired commercial clothes dryer concept evaluation report. Final report, April 1985-February 1986

    SciTech Connect

    Alling, G.C.

    1986-02-01

    The report presents an evaluation of eleven design options for improving the performance of commercial clothes dryers. Performance is viewed in terms of fuel efficiency, drying time, and impact on fabric life. Options studied include heat recovery, burner modifications, variable air flow desiccant-based and indirect fired systems. Predictions of cycle efficiency ranged from 41 percent (baseline) to 75 percent. Drying time was reduced by as much as 50 percent. No significant degradation in fabric life was predicted.

  7. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.

    PubMed

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2005-04-01

    To develop a procedure based on manometric temperature measurement (MTM) and an expert system for good practices in freeze drying that will allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment. Freeze drying was performed with a FTS Dura-Stop/Dura-Top freeze dryer with the manometric temperature measurement software installed. Five percent solutions of glycine, sucrose, or mannitol with 2 ml to 4 ml fill in 5 ml vials were used, with all vials loaded on one shelf. Details of freezing, optimization of chamber pressure, target product temperature, and some aspects of secondary drying are determined by the expert system algorithms. MTM measurements were used to select the optimum shelf temperature, to determine drying end points, and to evaluate residual moisture content in real-time. MTM measurements were made at 1 hour or half-hour intervals during primary drying and secondary drying, with a data collection frequency of 4 points per second. The improved MTM equations were fit to pressure-time data generated by the MTM procedure using Microcal Origin software to obtain product temperature and dry layer resistance. Using heat and mass transfer theory, the MTM results were used to evaluate mass and heat transfer rates and to estimate the shelf temperature required to maintain the target product temperature. MTM product dry layer resistance is accurate until about two-thirds of total primary drying time is over, and the MTM product temperature is normally accurate almost to the end of primary drying provided that effective thermal shielding is used in the freeze-drying process. The primary drying times can be accurately estimated from mass transfer rates calculated very early in the run, and we find the target product temperature can be achieved and maintained with only a few adjustments of shelf temperature. The freeze-dryer overload conditions can be estimated by calculation of heat/mass flow at the target product

  8. Preparation and evaluation of Ibuprofen solid dispersion systems with kollidon particles using a pulse combustion dryer system.

    PubMed

    Xu, Lu; Li, San Ming; Sunada, Hisakazu

    2007-11-01

    Solid dispersions (SDs) of ibuprofen (IBU) were prepared with four carriers: Kollidon 25, Kollidon 30, Kollidon VA64, and Kollidon CL, using a newly developed pulse combustion dryer system, HYPULCON. Physicochemical properties of the SDs obtained were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and Fourier transformation IR spectroscopy (FT-IR). Powder X-ray diffraction (PXRD) showed that the crystal diffraction peaks of IBU in SDs disappeared completely, and in differential scanning calorimetry (DSC) curves, the endothermic peaks of IBU in SDs were not observed. Fourier transformation IR spectroscopy (FT-IR) proved that interactions between the drug and carrier existed. These findings demonstrated that IBU changed to an amorphous form in the SDs with the four carriers using the pulse combustion dryer system. The dissolution property of IBU in the SDs was markedly enhanced. The dissolution test showed that after 5 min of dissolution, the concentrations of IBU in the SDs with Kollidon CL as the carrier was 43.81 mug/ml, corresponding to 13.0 times that of pure IBU. So, it is demonstrated that the pulse combustion dryer system is very useful for preparing SDs of IBU with Kollidon of different grades as carriers.

  9. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle.

    PubMed

    Gieseler, Henning; Kramer, Tony; Pikal, Michael J

    2007-12-01

    This report provides, for the first time, a summary of experiments using SMART Freeze Dryer technology during a 9 month testing period. A minimum ice sublimation area of about 300 cm(2) for the laboratory freeze dryer, with a chamber volume 107.5 L, was found consistent with data obtained during previous experiments with a smaller freeze dryer (52 L). Good reproducibility was found for cycle design with different type of excipients, formulations, and vials used. SMART primary drying end point estimates were accurate in the majority of the experiments, but showed an over prediction of primary cycle time when the product did not fully achieve steady state conditions before the first MTM measurement was performed. Product resistance data for 5% sucrose mixtures at varying fill depths were very reproducible. Product temperature determined by SMART was typically in good agreement with thermocouple data through about 50% of primary drying time, with significant deviations occurring near the end of primary drying, as expected, but showing a bias much earlier in primary drying for high solid content formulations (16.6% Pfizer product) and polyvinylpyrrolidone (40 kDa) likely due to water "re-adsorption" by the amorphous product during the MTM test. (c) 2007 Wiley-Liss, Inc.

  10. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer

    NASA Astrophysics Data System (ADS)

    Coşkun, Salih; Doymaz, İbrahim; Tunçkal, Cüneyt; Erdoğan, Seçil

    2017-06-01

    In this study, tomato slices were dried at three different drying air temperatures (35, 40 and 45 °C) and at 1 m/s air velocities by using a closed loop heat pump dryer (HPD). To explain the drying characteristics of tomato slices, ten thin-layer drying models were applied. The drying of tomato slices at each temperature occurred in falling-rate period; no constant-rate period of drying was observed. The drying rate was significantly influenced by drying temperature. The effective moisture diffusivity varied between 8.28 × 10-11 and 1.41 × 10-10 m2/s, the activation energy was found to be 43.12 kJ/mol. Besides, at the end of drying process, the highest mean specific moisture extraction ratio and coefficient of performance of HPD system were obtained as 0.324 kg/kWh and 2.71, respectively, at the highest drying air temperature (45 °C).

  11. Method for Evaluating Energy Use of Dishwashers, Clothes Washers, and Clothes Dryers: Preprint

    SciTech Connect

    Eastment, M.; Hendron, R.

    2006-08-01

    Building America teams are researching opportunities to improve energy efficiency for some of the more challenging end-uses, such as lighting (both fixed and occupant-provided), appliances (clothes washer, dishwasher, clothes dryer, refrigerator, and range), and miscellaneous electric loads, which are all heavily dependent on occupant behavior and product choices. These end-uses have grown to be a much more significant fraction of total household energy use (as much as 50% for very efficient homes) as energy efficient homes have become more commonplace through programs such as ENERGY STAR and Building America. As modern appliances become more sophisticated the residential energy analyst is faced with a daunting task in trying to calculate the energy savings of high efficiency appliances. Unfortunately, most whole-building simulation tools do not allow the input of detailed appliance specifications. Using DOE test procedures the method outlined in this paper presents a reasonable way to generate inputs for whole-building energy-simulation tools. The information necessary to generate these inputs is available on Energy-Guide labels, the ENERGY-STAR website, California Energy Commission's Appliance website and manufacturer's literature. Building America has developed a standard method for analyzing the effect of high efficiency appliances on whole-building energy consumption when compared to the Building America's Research Benchmark building.

  12. Drying of chilli in a combined infrared and hot air rotary dryer.

    PubMed

    Mihindukulasuriya, Suramya D F; Jayasuriya, Hemantha P W

    2015-08-01

    The investigation of an economical and efficient drying method for chilli is beneficial because it could provide a means of overcoming the drawbacks of traditional drying methods: high operating power and long drying time, which result in a decrease in the quality of the chilli. This study involved the design and development of a combined infrared and hot air laboratory-scale rotary dryer, which consists of three operating modes: hot air, infrared, and combined infrared and hot air. Drying experiments were conducted at five different temperatures (50, 55, 60, 65, and 70 °C). The drying behavior produced with the three operating modes was evaluated. The best mode was determined based on the parameters for evaluating the quality of chilli, the power consumption, and the retention time. The results indicate that the optimal overall drying performance for chilli was achieved at 70, 65, 50 °C drying temperatures in hot air, combined, and IR mode, respectively. A positive correlation was observed between retention time and power consumption with the hot air and the combined modes, while a negative correlation was identified in the IR mode.

  13. Thin layer modeling of tom yum herbs in vacuum heat pump dryer.

    PubMed

    Artnaseaw, A; Theerakulpisut, S; Benjapiyaporn, C

    2010-04-01

    Thin layer vacuum heat pump drying experiments were conducted to determine drying models for Tom Yum herbs (chili, lemon grass, kaffir lime leaf and galangal slice). The drying experiments were conducted in a vacuum heat pump dryer at a constant drying pressure of 0.2 bars and drying temperatures ranging from 50 °C to 65 °C. The experimental results were fitted to a number of well-known thin layer drying models and it was found, for the range of drying temperature tested, that the Midilli model is the best model for all Tom Yum herbs. To account for the influence of drying temperature, the constants and coefficients of model were formulated as functions of the drying temperature. Statistical tests of agreement between the model and experimental results were performed by determining the coefficient of determination (R²) , reduced chi-square (χ²) and root mean square error (RMSE). It was found that the model is in very good agreement with the experimental results.

  14. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  15. Experimental studies on oil palm frond drying using swirling fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Hamdan, Muhammad; Sabudin, Sulastri; Faizal, Mohd; Raghavan, Vijay R.

    2012-06-01

    Fluidized bed drying has become one of the preferred techniques in drying of agricultural products due to its thorough mixing ability and almost uniform moisture transfer from the product. This paper reports experimental studies on drying characteristics of chopped oil palm frond (OPF) when dried in a swirling fluidized bed dryer (SFBD). Unlike conventional fluidized beds, the SFBD is capable of fluidizing agricultural products which are fibrous and irregular in size and geometry, such as chopped OPF. Experiments were conducted to study the effect of hot air temperature ranging from 50°C to 80°C at a flowrate of 450 m3/hour, for two bed loadings. The OPF which consists of leaves and petiole (petiole) has different initial moisture contents of 57% and 70% respectively and dried to a final moisture content of 15%. Although higher temperatures of hot air result in rapid initial migration of moisture from the chopped OPF, the surface hardening due to shrinkage also becomes faster and hence limits further moisture removal prom the product. The OPF leaves and petiole exhibited different drying curves, suggesting the need for drying them separately unlike the current industrial practice for optimizing the drying process.

  16. Numerical simulation of an industrial microwave assisted filter dryer: criticality assessment and optimization.

    PubMed

    Leonelli, Cristina; Veronesi, Paolo; Grisoni, Fabio

    2007-01-01

    Industrial-scale filter dryers, equipped with one or more microwave input ports, have been modelled with the aim of detecting existing criticalities, proposing possible solutions and optimizing the overall system efficiency and treatment homogeneity. Three different loading conditions have been simulated, namely the empty applicator, the applicator partially loaded by both a high-loss and low loss load whose dielectric properties correspond to the one measured on real products. Modeling results allowed for the implementation of improvements to the original design such as the insertion of a wave guide transition and a properly designed pressure window, modification of the microwave inlet's position and orientation, alteration of the nozzles' geometry and distribution, and changing of the cleaning metallic torus dimensions and position. Experimental testing on representative loads, as well as in production sites, allowed for the confirmation of the validity of the implemented improvements, thus showing how numerical simulation can assist the designer in removing critical features and improving equipment performances when moving from conventional heating to hybrid microwave-assisted processing.

  17. Controlling in situ crystallization of pharmaceutical particles within the spray dryer.

    PubMed

    Woo, Meng Wai; Lee, May Ginn; Shakiba, Soroush; Mansouri, Shahnaz

    2017-11-01

    Simultaneous solidification and in situ crystallization (or partial crystallization) of droplets within the drying chamber are commonly encountered in the spray drying of pharmaceuticals. The crystallinity developed will determine the functionality of the powder and its stability during storage. This review discusses strategies that can be used to control the in situ crystallization process. Areas covered: The premise of the strategies discussed focuses on the manipulation of the droplet drying rate relative to the timescale of crystallization. This can be undertaken by the control of the spray drying operation, by the use of volatile materials and by the inclusion of additives. Several predictive approaches for in situ crystallization control and new spray dryer configuration strategies are further discussed. Expert opinion: Most reports, hitherto, have focused on the crystallinity of the spray dried material or the development of crystallinity during storage. More mechanistic understanding of the in situ crystallization process during spray drying is required to guide product formulation trials. The key challenge will be in adapting the mechanistic approach to the myriad possible formulations in the pharmaceutical industry.

  18. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer

    NASA Astrophysics Data System (ADS)

    Coşkun, Salih; Doymaz, İbrahim; Tunçkal, Cüneyt; Erdoğan, Seçil

    2016-11-01

    In this study, tomato slices were dried at three different drying air temperatures (35, 40 and 45 °C) and at 1 m/s air velocities by using a closed loop heat pump dryer (HPD). To explain the drying characteristics of tomato slices, ten thin-layer drying models were applied. The drying of tomato slices at each temperature occurred in falling-rate period; no constant-rate period of drying was observed. The drying rate was significantly influenced by drying temperature. The effective moisture diffusivity varied between 8.28 × 10-11 and 1.41 × 10-10 m2/s, the activation energy was found to be 43.12 kJ/mol. Besides, at the end of drying process, the highest mean specific moisture extraction ratio and coefficient of performance of HPD system were obtained as 0.324 kg/kWh and 2.71, respectively, at the highest drying air temperature (45 °C).

  19. Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein-maltodextrin microcapsule preparation.

    PubMed

    Can Karaca, Asli; Low, Nicholas; Nickerson, Michael

    2013-05-29

    Flaxseed oil was microencapsulated employing a wall material matrix of either chickpea (CPI) or lentil protein isolate (LPI) and maltodextrin using a benchtop spray dryer. Effects of emulsion formulation (oil, protein and maltodextrin levels) and protein source (CPI vs LPI) on the physicochemical characteristics, oxidative stability, and release properties of the resulting capsules were investigated. Microcapsule formulations containing higher oil levels (20% oil, 20% protein, 60% maltodextrin) were found to have higher surface oil and lower encapsulation efficiencies. Overall, LPI-maltodextrin capsules gave higher flaxseed oil encapsulation efficiencies (∼88.0%) relative to CPI-maltodextrin matrices (∼86.3%). However, both designs were found to provide encapsulated flaxseed oil protection against oxidation over a 25 d room temperature storage study relative to free oil. Overall, ∼37.6% of encapsulated flaxseed oil was released after 2 h under simulated gastric fluid, followed by the release of an additional ∼46.6% over a 3 h period under simulated intestinal fluid conditions.

  20. Solar drying of whole mint plant under natural and forced convection

    PubMed Central

    Sallam, Y.I.; Aly, M.H.; Nassar, A.F.; Mohamed, E.A.

    2013-01-01

    Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s−1. The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10−11 and 1.33 × 10−11 m2 s−1. PMID:25750751

  1. Solar drying of whole mint plant under natural and forced convection.

    PubMed

    Sallam, Y I; Aly, M H; Nassar, A F; Mohamed, E A

    2015-03-01

    Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s(-1). The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10(-11) and 1.33 × 10(-11) m(2) s(-1).

  2. Solar-thermic sewage sludge treatment in extreme alpine environments.

    PubMed

    Becker, W; Schoen, M A; Wett, B

    2007-01-01

    In the framework of a program for environmental protection conducted by the German mountaineers' club (DAV) problems emerging from residual solids accumulating in on-site wastewater treatment plants of mountain refuges were investigated. To handle these problems in an ecologically and economically reasonable way two devices for solar-supported treatment of sludge and bio-solids have been developed. These units support gravity-filtration and evaporation of liquid sludge as well as thermal acceleration of composting processes. Two solar sludge dryers were installed and operated without external energy supply at alpine refuges treating primary and secondary sludge, respectively. Batch-filling during the season could increase load capacity and a total solids concentration of up to 40% could be achieved before discharge at the beginning of the next season. The promising results from the solar sludge dryer encouraged for the development of a solar composter. The period of temperature levels suitable for composting biosolids in mountain areas can be extended considerably by application of this technology--measured temperature distribution indicated no freezing at all.

  3. Solar drying of mangoes: preservation of an important source of vitamin A in French-speaking West Africa.

    PubMed

    Rankins, Jenice; Sathe, Shridhar K; Spicer, Maria T

    2008-06-01

    Vitamin A deficiency, which is especially widespread among children younger than age 5 years, is a major barrier to reducing child mortality rates in French-speaking West Africa. A large amount of an indigenous plant source of provitamin A carotenoids are lost to postharvest waste. For example, the postharvest loss of mangoes in the region exceeds an annual total of 100,000 metric tons. In our study, 3.75 metric tons of fresh mangoes were dried using a solar dryer to a final moisture content of 10% to 12%, yielding a total of 360 kg dried mango. The product analysis revealed 4,000+/-500 microg beta carotene/100 g and 3,680+/-150 microg beta carotene/100 g after 2 and 6 months of storage, respectively. Thus, one greenhouse solar dryer is capable of reducing postharvest mango waste by 3.75 tons providing up to 1.15 million retinol activity equivalents of dietary vitamin A. The use of this technology that requires solar energy and manpower has the potential of increasing dietary vitamin A supply by up to 27,000-fold, compared to the currently available vitamin A in the region. Moreover, mango is a fruit that is well-liked by the population in this geographic area increasing the likelihood of its ready acceptance. Reducing postharvest loss of mangoes by using greenhouse model solar dryers is a promising strategy to help combat vitamin A deficiency in French-speaking West Africa.

  4. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  5. Mass transfer characteristics of eggplant slices during length of continuous band dryer

    NASA Astrophysics Data System (ADS)

    Kaveh, Mohammad; Amiri Chayjan, Reza; Nikbakht, Ali Mohammad

    2017-06-01

    This study presents a mathematical modeling of eggplant slice drying process in a continuous band dryer. The experiments for drying of eggplant slices were conducted at three air temperature levels of 45, 60, and 75 °C, inlet air velocities of 1, 1.5, and 2 m/s, and belt linear speeds of 2.5, 6.5, and 10.5 mm/s. To estimate the drying kinetics of eggplant slices, different mathematical models were utilized to fit the empirical data of thin layer drying. The models were compared based on their coefficients of determination ( R 2), reduced Chi squares ( χ 2) and root mean square errors ( RMSE) between the experimental and predicted moisture ratios ( MR). A feed and cascade forward with back-propagation algorithm was employed to predict the moisture ratio ( MR) and drying rate ( DR). The effective moisture diffusivity varied from 3.40 × 10-9 to 1.13 × 10-8 m2/s. The activation energy varied from 14.18 to 25.09 kJ/mol. The obtained results show that the feed forward back-propagation network with training algorithm of Levenberg-Marquardt, 4-5-5-2 topology, threshold functions of tansig-tansig-tansig can able to predict the moisture content and drying rate with R2 values of 0.9992 and 0.9726, respectively. Comparison of ANN results with mathematical models revealed that mathematical modeling yields better accuracy to predict the moisture content and drying rate of eggplant.

  6. Mass transfer characteristics of eggplant slices during length of continuous band dryer

    NASA Astrophysics Data System (ADS)

    Kaveh, Mohammad; Amiri Chayjan, Reza; Nikbakht, Ali Mohammad

    2016-12-01

    This study presents a mathematical modeling of eggplant slice drying process in a continuous band dryer. The experiments for drying of eggplant slices were conducted at three air temperature levels of 45, 60, and 75 °C, inlet air velocities of 1, 1.5, and 2 m/s, and belt linear speeds of 2.5, 6.5, and 10.5 mm/s. To estimate the drying kinetics of eggplant slices, different mathematical models were utilized to fit the empirical data of thin layer drying. The models were compared based on their coefficients of determination (R 2), reduced Chi squares (χ 2) and root mean square errors (RMSE) between the experimental and predicted moisture ratios (MR). A feed and cascade forward with back-propagation algorithm was employed to predict the moisture ratio (MR) and drying rate (DR). The effective moisture diffusivity varied from 3.40 × 10-9 to 1.13 × 10-8 m2/s. The activation energy varied from 14.18 to 25.09 kJ/mol. The obtained results show that the feed forward back-propagation network with training algorithm of Levenberg-Marquardt, 4-5-5-2 topology, threshold functions of tansig-tansig-tansig can able to predict the moisture content and drying rate with R2 values of 0.9992 and 0.9726, respectively. Comparison of ANN results with mathematical models revealed that mathematical modeling yields better accuracy to predict the moisture content and drying rate of eggplant.

  7. Assessment of the environmental microbiological cross contamination following hand drying with paper hand towels or an air blade dryer.

    PubMed

    Margas, E; Maguire, E; Berland, C R; Welander, F; Holah, J T

    2013-08-01

    This study compared the potential for cross contamination of the surrounding environment resulting from two different hand-drying methods: paper towels and the use of an air blade dryer. One hundred volunteers for each method washed their hands and dried them using one of the two methods. Bacterial contamination of the surrounding environment was measured using settle plates placed on the floor in a grid pattern, air sampling and surface swabs. Both drying methods produced ballistic droplets in the immediate vicinity of the hand-drying process. The air blade dryer produced a larger number of droplets which were dispersed over a larger area. Settle plates showed increased microbial contamination in the grid squares which were affected by ballistic droplets. Using the settle plates counts, it was estimated that approx. 1.7 × 10(5) cfu more micro-organisms were left on the laboratory floor (total area approx. 17.15 m(2)) after 100 volunteers used an air blade dryer compared to when paper towels were used. The two drying methods led to different patterns of ballistic droplets and levels of microbial contamination under heavy use conditions. Whilst the increase in microbial levels in the environment is not significant if only nonpathogenic micro-organisms are spread, it may increase the risk of pathogen contamination of the environment when pathogens are occasionally present on people's hands. The study suggests that the risk of cross contamination from the washroom users to the environment and subsequent users should be considered when choosing a hand-drying method. The data could potentially give guidance following the selection of drying methods on implementing measures to minimise the risk of cross contamination. © 2013 The Society for Applied Microbiology.

  8. Thin-layer drying of tomato ( Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer

    NASA Astrophysics Data System (ADS)

    Demiray, Engin; Tulek, Yahya

    2012-05-01

    The effects of different drying temperatures on the drying kinetics of tomato slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 1.015 × 10-9 to 2.650 × 10-9 m2 s-1over the temperature range studied, and activation energy was 22.981 kJ mol-1.

  9. Solar urticaria. Determinations of action and inhibition spectra.

    PubMed

    Hasei, K; Ichihashi, M

    1982-05-01

    A 42-year-old woman acquired solar urticaria approximately ten minutes after exposure to sunlight. Urticaria developed from visible light emitted from a projector lamp after a similar time lag. Monochromatic rays between 400 and 500 nm induced immediate urticaria by irradiation, with four times the minimal urticarial dose. Urticaria that was induced by monochromatic rays of the projector lamp was completely inhibited by immediate reirradiation of test sites with light waves longer that 530 nm. Radiant heat exposure from an electric hair dryer at 50 degrees C had no suppressive effects on the development of urticarial lesions.

  10. Solar thermal energy for supplemental heat to process tea in Sri Lanka

    SciTech Connect

    Ariyaratne, A.R.

    1987-01-01

    In tea processing, the subprocesses of withering and drying require thermal energy for dehydration of tea leaves. At present, the Sri Lankan tea industry depends mostly on imported fossil fuels for its thermal energy needs. The economic pressure has forced the industry to investigate energy alternatives. In this study solar thermal energy, heat recovery from fluidized-bed dryers, and a combination of solar system with heat recovery were analyzed. The /phi/, f-chart general design method was used to design solar systems to match thermal energy needs in tea processing. The analysis was extended to the f-chart economic analysis to select economically optimum systems. On the basis of highest life-cycle savings, flat-plate solar-collector area and storage tank were sized. Results showed that solar thermal systems require a high investment,but can provide 42, 52, and 63% of the energy needs for high, mid and low tea growing regions, respectively. Combination of solar thermal systems with heat recovery from a fluidized-bed dryer decreases the amount of energy required by another 7 to 12% yet requires only a small increase in investment.

  11. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  12. Reduction of Blister Formation Time in Suction Blister Epidermal Grafting in Vitiligo Patients Using a Household Hair Dryer

    PubMed Central

    Arora, Shweta; Kar, Bikash Ranjan

    2016-01-01

    Background: Suction blister epidermal grafting (SBEG) is a simple and effective way of surgical repigmentation in vitiligo. The major problem faced is the time taken for the formation of blisters. Temperature at the suction site is one of the factors affecting the blister formation time. Aims and Objectives: To reduce the blister formation time in SBEG by increasing the surface temperature to 44°C. Materials and Methods: This is a left-right comparison study. Total seven patients with lip vitiligo involving both the angles of lips were enrolled. Suction syringes were applied on both the thighs of all the patients. On the right thigh, blisters were raised as per the procedure standardised by Gupta et al. On the left thigh, similar procedure was used, but a hair dryer was used additionally to increase the surface temperature of the skin to 44°C. The time taken for the formation of well-formed, dome-shaped, unilocular blister was noted. Results: The mean time taken for the formation of blister on the right thigh was 121.1 ± 6.2 min and on the left thigh was 69.6 ± 5.4 min. All the seven patients were started on PUVASOL after SBEG. There was complete repigmentation of the grafted sites in all the patients after 2 months. Conclusion: Hair dryer is easily available, affordable and simple to use and the time saved during the procedure is quite significant. PMID:28163453

  13. Synthesis and optimization of a new starch-based adsorbent for dehumidification of air in a pressure-swing dryer

    SciTech Connect

    Anderson, L.E.; Gulati, M.; Westgate, P.J.; Kvam, E.P.; Bowman, K.; Ladisch, M.R.

    1996-04-01

    Corn grits selectivity adsorb water from many types of organic vapors and are used commercially to dry 2.8 billion L of fuel-grade fermentation ethanol annually. Evaluation of grits in a pressure-swing dryer at 308 kPa, combined with analyses of their physical properties, showed that the specific surface of the grits (0.5 m{sup 2}/g) limited steady-state drying of air to a dewpoint of {minus}20 C. By selectivity taking advantage of the best features of the natural material, a new class of natural adsorbents with a higher affinity for water was then synthesized using materials derived from corn: starch and cob flour. The chemical composition of the synthesized adsorbent was determined, as well as specific physical properties. Scanning electron microscopy showed the synthesized adsorbent surface had a large number of macropores (10--25 {mu}m in diameter) unlike corn grits which have limited porosity. This material gave reasonable and reproducible results similar to those obtained with molecular sieves using a commercially available pressure-swing air dryer. After 70 h of operation at 30 psi, the new adsorbent provided air at a dewpoint of {minus}63 C. The methods for preparing this material and an explanation of its performance in terms of macroscopic and microscopic structural characteristics are described.

  14. Reduction of Blister Formation Time in Suction Blister Epidermal Grafting in Vitiligo Patients Using a Household Hair Dryer.

    PubMed

    Arora, Shweta; Kar, Bikash Ranjan

    2016-01-01

    Suction blister epidermal grafting (SBEG) is a simple and effective way of surgical repigmentation in vitiligo. The major problem faced is the time taken for the formation of blisters. Temperature at the suction site is one of the factors affecting the blister formation time. To reduce the blister formation time in SBEG by increasing the surface temperature to 44°C. This is a left-right comparison study. Total seven patients with lip vitiligo involving both the angles of lips were enrolled. Suction syringes were applied on both the thighs of all the patients. On the right thigh, blisters were raised as per the procedure standardised by Gupta et al. On the left thigh, similar procedure was used, but a hair dryer was used additionally to increase the surface temperature of the skin to 44°C. The time taken for the formation of well-formed, dome-shaped, unilocular blister was noted. The mean time taken for the formation of blister on the right thigh was 121.1 ± 6.2 min and on the left thigh was 69.6 ± 5.4 min. All the seven patients were started on PUVASOL after SBEG. There was complete repigmentation of the grafted sites in all the patients after 2 months. Hair dryer is easily available, affordable and simple to use and the time saved during the procedure is quite significant.

  15. Simulations of Solar Wind Turbulence

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, A. V.; Roberts, D. A.

    2008-01-01

    Recently we have restructured our approach to simulating magnetohydrodynamic (MHD) turbulence in the solar wind. Previously, we had defined a 'virtual' heliosphere that contained, for example, a tilted rotating current sheet, microstreams, quasi-two-dimensional fluctuations as well as Alfven waves. In this new version of the code, we use the global, time-stationary, WKB Alfven wave-driven solar wind model developed by Usmanov and described in Usmanov and Goldstein [2003] to define the initial state of the system. Consequently, current sheets, and fast and slow streams are computed self-consistently from an inner, photospheric, boundary. To this steady-state configuration, we add fluctuations close to, but above, the surface where the flow become super-Alfvenic. The time-dependent MHD equations are then solved using a semi-discrete third-order Central Weighted Essentially Non-Oscillatory (CWENO) numerical scheme. The computational domain now includes the entire sphere; the geometrical singularity at the poles is removed using the multiple grid approach described in Usmanov [1996]. Wave packets are introduced at the inner boundary such as to satisfy Faraday's Law [Yeh and Dryer, 1985] and their nonlinear evolution are followed in time.

  16. Effect of freeze-dryer design on drying rate of an amorphous protein-formulation determined with a gravimetric technique.

    PubMed

    Gieseler, Henning; Lee, Geoffrey

    2008-01-01

    A freeze-drying balance was used to determine momentary drying-rate, m(t), of a sucrose/BSA formulation contained in a vial with varying shelf packing density, Ø2. A comparison between two different laboratory-scale freeze-dryers was made. The effects of Ø2 on m(t) differed between the two units, attributed to drying chamber design and its effects on heat transfer. At high Ø2 the differences are annulled because of the shielding effects of surrounding vials. Parallel effects of Ø2 were also found on product temperature, Tb, measured in the balance vial. Tb was used to calculate vial heat transfer coefficient, Kv. Kv was strongly reduced with increasing Ø2, but reached a plateau value at high Ø2.

  17. Effect excess air as an oxidizer in the flame assisted spray dryer using computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Nurtono, Tantular; Winardi, Sugeng

    2016-02-01

    The size distribution of silica particles as a model material from colloidal silica solution precursor in the flame assisted spray dryer method were studied numerically using Computational Fluid Dynamics (CFD). CFD has ability to solve the momentum, energy and mass transfer equation well. k-ɛ model was used to describe the turbulence model and non-premixed combustion model was used to combustion model. Collision and break-up model were also considered to predict the final particles size distribution. For validation, LPG with flow rate of 0.5 L/minute LPG and 200% excess air were used as energy sources. At this condition, numerical solution agreed well to the experimental work resulting in polydisperse size distribution. Therefore, others excess air, 100% and 150% were also observed using CFD and evaluated their contribution to their particles size distribution. Monodisperse particles size distribution were obtained when the combustion used 150% excess air.

  18. Solar Cookers.

    ERIC Educational Resources Information Center

    King, Richard C.

    1981-01-01

    Describes the use of solar cookers in the science classroom. Includes instructions for construction of a solar cooker, an explanation of how solar cookers work, and a number of suggested activities. (DS)

  19. Use of biogas for cogeneration of heat and electricity for local application: performance evaluation of an engine power generator and a sludge thermal dryer.

    PubMed

    Lobato, L C S; Chernicharo, C A L; Pujatti, F J P; Martins, O M; Melo, G C B; Recio, A A R

    2013-01-01

    A small unit of cogeneration of energy and heat was tested at the Centre for Research and Training on Sanitation UFMG/COPASA - CePTS, located at the Arrudas Sewage Treatment Plant, in Belo Horizonte, Minas Gerais, Brazil. The unit consisted of an engine power generator adapted to run on biogas, a thermal dryer prototype and other peripherals (compressor, biogas storage tank, air blower, etc.). The heat from engine power generator exhaust gases was directed towards the thermal dryer prototype to dry the sludge and disinfect it. The results showed that the experimental apparatus is self-sufficient in electricity, even producing a surplus, available for other uses. The tests of drying and disinfection of sludge lasted 7 h, leading to an increase in solids content from 4 to 8% (50% reduction in sludge volume). Although the drying of sludge was not possible (only thickening was achieved), the disinfection process proved very effective, enabling the complete inactivation of helminth eggs.

  20. Spray dryer/electron beam removal of SO/sub 2/ and NO/sub x/ from flue gas. Technical progress report, October 1, 1983-October 1, 1984

    SciTech Connect

    Helfritch, D.J.

    1984-11-01

    The objective of this project is the pilot scale evaluation of SO/sub 2/ and NO/sub x/ removal from flue gas by means of a lime slurry spray dryer followed by electron beam treatment. Capital and operating costs of this technique have been determined and shown to be cost effective. The pilot scale work will serve to verify the cost study assumptions and provide design guidelines for commercial applications. The pilot scale system, consisting of a spray dryer, electron beam and fabric filter, treats a flue gas slipstream from a 150 MW coal fired boiler. Parameters such as lime reactant rate and electon beam dosage are varied, and SO/sub 2/ and NO/sub x/ removal are monitored. It is expected that better that 90% removal of SO/sub 2/ and NO/sub x/ will be achieved with reasonable operating costs, and early test results verify this expectation. 2 references, 21 figures.

  1. Spray dryer/electron beam removal of SO/sub 2/ and NO/sub x/ from flue gas. Technical progress report, October 1, 1982-October 1, 1983

    SciTech Connect

    Helfritch, D.J.

    1983-11-01

    The objective of this project is the pilot scale evaluation of SO/sub 2/ and NO/sub x/ removal from flue gas by means of a lime slurry spray dryer followed by electron beam treatment. Capital and operating costs of this technique have been determined and been shown to be cost effective. The pilot scale work will serve to verify the cost study assumptions and to provide design guidelines for commercial applications. The pilot scale system, consisting of a spray dryer, electron beam and fabric filter, will treat a flue gas slipstream from a 150 MW coal fired boiler. Parameters such as lime reactant rate and electron beam dosage will be varied, and SO/sub 2/ and NO/sub x/ removal will be monitored. It is expected that better than 90% removal of SO/sub 2/ and NO/sub x/ will be achieved with reasonable operating costs. 2 references, 10 figures, 1 table.

  2. Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto

    2016-02-01

    Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.

  3. Press and dryer roll surfaces and web transfer systems for ultra high paper machine speeds. Quarterly report {number_sign}1

    SciTech Connect

    Orloff, D.I.

    1999-05-10

    The objective of the project is to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls to dryer cylinders. A brief summary is given for the progress made on each of the following research tasks: Task 1--identify composition of contaminants and topology of press and dryer roll surfaces at commercial mills; Task 2--develop facilities to simulate contaminant deposition process under controlled experimental conditions; Task 3--develop facilities to simulate web transfer from contaminant surfaces and measure work of adhesion; Task 4--develop models to predict contaminant deposition and work of adhesion; Task 5--develop and verify model to predict web transfer at ultra high paper machine speeds; and Task 6--develop and demonstrate new roll surface conditioning technologies.

  4. Development of a high-temperature heat pump grain dryer: Volume II. Appendices. Final report, September 6, 1979-September 30, 1981

    SciTech Connect

    Hogan, M.R.; Ayers, D.L.; Foster, G.H.

    1981-01-01

    Appendices are presented to a program designated to design, fabricate, and test a high-temperature, continuous-flow, electrically-driven heat pump grain dryer as an alternative to conventional LPG-fueled units. Detailed information in the appendices include: heat pump design computer program related data; data reduction program listing; drying system specifications and performance information pertinent to the economic analysis; and equipment specification and cost. (MCW)

  5. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  6. Solar Geometry

    Atmospheric Science Data Center

    2014-09-25

    Solar Noon (GMT time) The time when the sun is due south in the ... and sunset.   Daylight average of hourly cosine solar zenith angles (dimensionless) The average cosine of the angle ... overhead during daylight hours.   Cosine solar zenith angle at mid-time between sunrise and solar noon ...

  7. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  8. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  9. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    PubMed

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Improving the Sun Drying of Apricots (Prunus armeniaca) with Photo-Selective Dryer Cabinet Materials.

    PubMed

    Milczarek, Rebecca R; Avena-Mascareno, Roberto; Alonzo, Jérôme; Fichot, Mélissa I

    2016-10-01

    Photo-selective materials have been studied for their effects on the preharvest quality of horticultural crops, but little work has been done on potential postharvest processing effects. The aim of this work was to characterize the effects of 5 different photo-selective acrylic materials (used as the lid to a single-layer sun drying cabinet) on the drying rate and quality of apricots (Prunus armeniaca). Photo-selective cabinet materials that transmit light in the visible portion of the solar spectrum accelerate the apricots' drying rate in both the early period of drying and the course of drying as a whole. These materials do not significantly affect the measured quality metrics during the first day of sun drying. However, when drying is taken to completion, some minor but significant quality differences are observed. Infrared-blocking material produces dried apricot with lower red color, compared to clear, opaque black, and ultraviolet-blocking materials. Clear material produced dried apricot with significantly lower antioxidant activity, compared to black and infrared-blocking materials. Using appropriate photo-selective drying cabinet materials can reduce the required sun drying time for apricots by 1 to 2 d, compared with fully shaded drying. Ultraviolet-blocking material is recommended to maximize drying rate and minimize quality degradation. © 2016 Institute of Food Technologists®.

  11. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  12. Solarized textile drying at Westpoint Pepperell. Phase III. Final report, December 1978-June 1979

    SciTech Connect

    Not Available

    1981-03-01

    This program has resulted in the installation of a solar energy collection system for providing process heat to a textile drying process. The solar collection subsystem uses 700 square meters (7500 square feet) of parabolic trough, single-axis tracking, concentrating collectors to heat water in a high temperature water (HTW) loop. The solar collectors nominally generate 193/sup 0/C (380/sup 0/F) water with the HTW loop at 1.9 x 10/sup 6/ Pa (275 psi). A steam generator is fueled with the HTW and produces 450 kg/hour (1000 pounds per hour) of process steam at the nominal design point conditions. The solar-generated process steam is at 0.5 x 10/sup 6/ Pa (75 psi) and 160/sup 0/C (321/sup 0/F). It is predicted that the solar energy system will provide 1.2 x 10/sup 6/ MJ/year (1.1 x 10/sup 9/ Btu/year) to the process. This is 46% of the direct insolation available to the collector field during the operational hours (300 days per year) of the Fairfax mill. The process being solarized is textile drying using can dryers. The can dryers are part of a slashing operation in a WestPoint Pepperell mill in Fairfax, Alabama. Operation of the system over the first six months after start-up demonstrated improving reliability as the system was initially operated under manual supervision (for three months), then generated low pressure steam under automatic operation. Poor performance of the shadow bar suntrackers limited the range of efficient system operation.

  13. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  14. Solar holography

    NASA Astrophysics Data System (ADS)

    Ludman, Jacques E.; Riccobono, Juanita R.; Caulfield, H. John; Upton, Timothy D.

    2002-07-01

    A solar photovoltaic energy collection system using a reflection hologram is described herein. The system uses a single-axis tracking system in conjunction with a spectral- splitting holographic element. The hologram accurately focuses the desired regions of the solar spectrum to match the bandgaps of two ro more different solar cells, while diverting unused IR wavelengths away. Other applications for solar holography include daylighting and greenhouses.

  15. Solar reflector

    SciTech Connect

    Stone, D. C.

    1981-02-17

    A solar reflector having a flexible triangular reflective sheet or membrane for receiving and reflecting solar energy therefrom. The reflector is characterized by the triangular reflective sheet which is placed under tension thereby defining a smooth planar surface eliminating surface deflection which heretofore has reduced the efficiency of reflectors or heliostats used in combination for receiving and transmitting solar energy to an absorber tower.

  16. Solar Equipment

    NASA Astrophysics Data System (ADS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  17. Buying Solar.

    ERIC Educational Resources Information Center

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  18. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  19. CRITIQUE—Consumer product safety: Risk assessment of exposure to asbestos emissions from hand-held hair dryers

    NASA Astrophysics Data System (ADS)

    Cohn, Murray S.; White, Paul D.; Preuss, Peter W.

    1981-01-01

    The paper by Dr. William Hallenbeck of the University of Illinois on pp. 23 32 of this issue of Environmental Management contains an estimate of the risk of respiratory cancer resulting from exposure to asbestos fibers emitted from asbestos-containing hairdryers. The study, which is described as a worst case analysis, concludes that the use of these hairdryers would result in a maximum of 0.15 deaths from respiratory cancer per year in the United States, based on a median case estimate of asbestos fiber emission from hair-dryers. This estimate of risk was developed using data from one epidemiologic study. In this critique, we suggest that the use of other epidemiologic studies and the inclusion of other minor, reasonable changes to the basic assumptions made by Hallenbeck could significantly change the estimate in the direction of greater risk. Indeed, the use of other epidemiologic studies in the risk estimate results in an increase in the predicted risk of up to 3 orders of magnitude. Inclusion of changes both in the epidemiologic study used and in certain model assumptions results in an increased risk prediction of over 4 orders of magnitude in the extreme. Since there is no definitive basis on which to include or exclude certain assumptions or relevant studies, the risk estimate at best must be represented as a range of values. Such a range demonstrates the inherent uncertainties associated with estimating the risk to humans from known carcinogens. The size of the range developed in this analysis may actually be underestimated since no attempt has been made to evaluate the uncertainty associated with the choice of the dose-response model.

  20. Solar Meter

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The instrument pictured is an inexpensive solar meter which is finding wide acceptance among architects, engineers and others engaged in construction of solar energy facilities. It detects the amount of solar energy available at a building site, information necessary to design the most efficient type of solar system for a particular location. Incorporating technology developed by NASA's Lewis Research Center, the device is based upon the solar cell, which provides power for spacecraft by converting the sun's energy to electricity. The meter is produced by Dodge Products, Inc., Houston, Texas, a company formed to bring the technology to the commercial marketplace.

  1. Solar flair.

    PubMed Central

    Manuel, John S

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  2. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  3. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  4. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  5. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  6. Upper Sand Mountain Parish Solar Construction Workshops. Final performance report

    SciTech Connect

    Not Available

    1983-02-01

    The Upper Sand Mountain Parish continues to employ its initial strategy for involving high school vocational students with the pre cutting and instructional assembly aid to area families. The parish project works with high school vocational classes in pre fabbing solar devices into kit form. Then, students are employed to serve as instructors for Saturday construction workshops at the local electric cooperative. Trained teams of older and unemployed adults work with youth in building solar greenhouses for those able to pay labor. Over three years, the project has assisted and built 50 to 60 attached solar greenhouses with construction teams realizing in excess of $26,000 in labor for newly developed skills. The project continues to assist owners in monitoring and developing horticulturally as well as energy producing greenhouses. During the spring of 1982, the parish assisted greenhouse owners in marketing over 60,000 bedding plants worth over $3000. Monthly Greenhouse Owner Fellowship meetings have been a helpful setting for sharing of ideas and exchange of insights. A low interest solar loan fund, offering 5% loans for three years, has assisted over 30 families in going solar. The principle for this revolving fund has almost reached the $15,000 mark. The track record for loan repayments has been exceptional. Through workshops and tours we have aquainted hundreds of people across the southeast with low cost/low technology solar projects and a workable strategy for involving community groups and students in them. With church involvement, we have provided over $25,000 in grants to over 200 area families. Workshop information and plans are available to those interested for bread box solar water heaters, food dryers, window box collectors, insulation panels, and greenhouses.

  7. Solar Simulator

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  8. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  9. Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Wu, S. T.; Han, S. M.

    1986-01-01

    A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.

  10. Use of a double condenser in a dehumidifier with a spray dryer for vitamin A extraction in tomato as a heat-sensitive material

    NASA Astrophysics Data System (ADS)

    Kosasih, E. A.; Warjito, H., Imansyah I.; Ruhyat, N.

    2017-06-01

    Spray dryers are commonly operated at a high temperature (>100 °C), which becomes an obstacle for heat-sensitive materials. In this study, a refrigeration system that uses evaporator as dehumidifier and that recovers the heat released from the first condenser to preheat the drying air was utilised to reduce the drying temperature. Results showed that the degradation of vitamin A (measured with the high performance liquid chromatography method) in tomato increased significantly when the drying air temperature increased from 90 °C to 120 °C, and it cannot be controlled at a temperature higher than 120 °C. At an air flow rate of 450 lpm, the drying capacity at a drying air temperature of 60 °C (with refrigeration, humidity ratio of 0.005 [kg H2O / kg dry air]) is equal to the drying capacity at a drying air temperature of 120 °C (without refrigeration, humidity ratio of 0.021 [kg H2O / kg dry air]). The drying capacity at a drying air temperature of 90 °C (with refrigeration) even becomes 1.5 times the drying capacity at a drying air temperature of 120 °C (without refrigeration). The combination of a spray dryer system with a refrigeration system (double condenser) is therefore beneficial for drying heat-sensitive materials, such as vitamin A.

  11. Heat and fluid flow characteristics of an oval fin-and-tube heat exchanger with large diameters for textile machine dryer

    NASA Astrophysics Data System (ADS)

    Bae, Kyung Jin; Cha, Dong An; Kwon, Oh Kyung

    2016-11-01

    The objectives of this paper are to develop correlations between heat transfer and pressure drop for oval finned-tube heat exchanger with large diameters (larger than 20 mm) used in a textile machine dryer. Numerical tests using ANSYS CFX are performed for four different parameters; tube size, fin pitch, transverse tube pitch and longitudinal tube pitch. The numerical results showed that the Nusselt number and the friction factor are in a range of -16.2 ~ +3.1 to -7.7 ~ +3.9 %, respectively, compared with experimental results. It was found that the Nusselt number linearly increased with increasing Reynolds number, but the friction factor slightly decreased with increasing Reynolds number. It was also found that the variation of longitudinal tube pitch has little effect on the Nusselt number and friction factor than other parameters (below 2.0 and 2.5 %, respectively). This study proposed a new Nusselt number and friction factor correlation of the oval finned-tube heat exchanger with large diameters for textile machine dryer.

  12. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image On June 10, 2002 the Moon obscured the central portion of the solar disk in a phenomenon known as an ... in which 99.6 percent of the solar disk was shadowed by the Moon, was situated in the central Pacific Ocean. Since there are no populated ...

  13. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... a solar eclipse where an observer on Earth can watch the Moon's shadow obscure more than 90% the Sun's disk, the Multiangle Imaging ... total solar eclipse of November 23, 2003. The path of the Moon's umbral shadow began in the Indian Ocean in the far Southern Hemisphere, ...

  14. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  15. Solar Technologies

    ERIC Educational Resources Information Center

    von Hippel, Frank; Williams, Robert H.

    1975-01-01

    As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…

  16. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  17. Solar cooking

    USDA-ARS?s Scientific Manuscript database

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  18. Solar Technologies

    ERIC Educational Resources Information Center

    von Hippel, Frank; Williams, Robert H.

    1975-01-01

    As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…

  19. Dehumidification Grain Dryer

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1998-05-13

    A new technique developed during this project dries grain with mildly heated, dehumidified air in a closed-loop process. This proposed technique uses about one-tenth the energy and dries grain at a lower temperature, producing less damage to the kernels.Approximately 250 million automotive and truck tires are discarded each year in the U.S. The very properties that ensure a safe ride and long service life make the disposal of these scrap tires difficult. In spite of this, scrap tire recycling/reuse has rapidly grown from 10% in 1985 to over 90% today. The majority of scrap tires that are recycled/reused are burned for fuel in power plants and cement kilns. Since tires have somewhat higher heating value than coal, this would at first seem to be an acceptable option. But burning scrap tires recovers only 25% of the energy originally used to manufacture the rubber. An alternative is to use the scrap tires in the form of crumb rubber, by which 98% of the original energy is recovered. This project sought to explore potential formulations of crumb rubber with various thermoplastic binders, with one goal being developing a material for a low-cost, high-performance roofing composition. What was the state-of-the-art of the product/process prior to initiation of the project? Why was the project needed (e.g., performance, quality, cost, time to market)? Describe the strengths and interests of each party and how they are complementary with respect to the project. What KCP expertise was needed and how did it complement the partner's capabilities?

  20. Solar sail

    SciTech Connect

    Drexler, K.E.

    1986-09-30

    This patent describes a solar sail propulsion system comprising: solar sail means for intercepting light pressure to produce thrust, the solar sail means being a thin metal film; tension truss means having two ends attached at one end to the solar sail means for transferring the thrust from the solar sail and for preventing gross deformation of the solar sail under light pressure, the solar sail means being a plurality of separate generally two-dimensional pieces joined by springs to the tension truss means; a payload attached to the other end of the tension truss means, the tension truss means comprising a plurality of attachment means for attaching shroud lines to the top of the tension truss means and a plurality of the shroud lines attached to the attachment means at one of their ends and the payload at the other; a plurality of reel means attached to the shroud lines for controllably varying the length of the lines; and a plurality of reflective panel means attached to the sail means for controlling the orientation of the system.

  1. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    This report first describes the different types of solar ponds including the nonconvecting salt gradient pond and various saltless pond designs. It then discusses the availability and cost of salts for salt gradient ponds, and compares the economics of salty and saltless ponds as a function of salt cost. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirements is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  2. Solar pruritus.

    PubMed

    Bech-Thomsen, N; Thomsen, K

    1995-11-01

    A case of solar pruritus is reported. Severe pruritus of the back, shoulders and upper lateral aspects of the arms, without any eruption, developed in a 28-year-old outdoor worker during 4 to 6 weeks of intensive solar exposure. The pruritus was intense and described as a burning sensation deep in the skin. Only a few excoriations and slight xerosis were found. Solar pruritus or brachioradial pruritus is a condition primarily seen in Caucasian people living in the tropics or subtropics. Previously the disease has only been reported once outside these areas.

  3. Solar Two

    SciTech Connect

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  4. Solar chulha

    NASA Astrophysics Data System (ADS)

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-01

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  5. Solar chulha

    SciTech Connect

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-06

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  6. Solar Nexus.

    ERIC Educational Resources Information Center

    Murphy, Jim

    1980-01-01

    The design team for the Solar Energy Research Institute (SERI) has pushed the state of the energy art to its current limits for the initial phase, with provisions for foreseeable and even speculative future applications. (Author/MLF)

  7. Solar fuels

    NASA Astrophysics Data System (ADS)

    Viitanen, M.

    1990-12-01

    The aim of this paper is to give a review concerning the storage of solar energy by converting it to chemical energy. This is based on several articles published during the last fifteen years. The methods to convert solar energy to chemical energy, e.g., to produce hydrogen, can be divided into three different methods. The most common one is probably the usage of solar cells; thus the solar energy is first converted into electrical energy and further the water is split electrochemically to produce hydrogen. It could be also done in a photoelectrochemical cell, or simply photochemically. A photobiological system can also be considered as a photochemical system, although it is discussed separately from the photochemical systems. These three last mentioned methods will be discussed in this paper.

  8. Solar Triumvirate

    NASA Image and Video Library

    2016-02-09

    The magnetic field lines of three active regions in close proximity to one another interacted with each other over two and a half days Feb. 8-10, 2016. This image is from NASA Solar Dynamics Observatory.

  9. Solar Pump

    NASA Technical Reports Server (NTRS)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  10. Solar Cells

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Heat Exchanger Method (HEM) produces high efficiency crystal ingots in an automated well-insulated furnace offering low equipment, labor and energy costs. The "grown" silicon crystals are used to make solar cells, or photovoltaic cells which convert sunlight directly into electricity. The HEM method is used by Crystal Systems, Inc. and was developed under a NASA/Jet Propulsion Laboratory contract. The square wafers which are the result of the process are sold to companies manufacturing solar panels.

  11. Evaluation of Type I cement sorbent slurries in the U.C. pilot spray dryer facility. Final report, November 1, 1994--February 28, 1996

    SciTech Connect

    Keener, T.C.; Khang, S.J.

    1996-07-31

    This research was focused on evaluating hydrated cement sorbents in the U. C. pilot spray dryer. The main goal of this work was to determine the hydration conditions resulting in reactive hydrated cement sorbents. Hydration of cement was achieved by stirring or by grinding in a ball mill at either room temperature or elevated temperatures. Also, the effects of several additives were studied. Additives investigated include calcium chloride, natural diatomite, calcined diatomaceous earth, and fumed silica. The performance of these sorbents was compared with conventional slaked lime. Further, the specific surface area and pore volume of the dried SDA sorbents were measured and compared to reactivity. Bench-scale tests were performed to obtain a more detailed picture of the development of the aforementioned physical properties as a function of hydration time.

  12. Solar Schematic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  13. Simple Non-regenerative Deceleration Control of Permanent Magnetic Synchronous Motor for Vibration Control in Drum-type Washer/Dryer

    NASA Astrophysics Data System (ADS)

    Tomigashi, Yoshio; Okonogi, Akira; Kishimoto, Keiji

    Drum-type washer/dryers are becoming more common in Japan, but the vibration created by unequally distributed clothes is a significant problem in this type of machine. We have developed a vibration control that prevents this imbalance by re-arranging the balancer fluid on the opposite side of the heavier distribution when there is unequal distribution. The drum, which has a large inertia, must be decelerated rapidly to enable the balancer fluid to shift. When a permanent magnetic synchronous motor is decelerated using an inverter, the machine's energy is converted into electrical energy, which regenerates the power supply. A control method has been developed that adjusts the input power of the motor to zero, thereby eliminating the need for a discharge circuit. However, it is not easy to achieve this method with an inexpensive microcomputer. In this paper, a practical braking method in which energy does not regenerate the power supply is examined. First, a simple method in which non-regenerative braking is possible with low input power is proposed, even though the input power is not zero. The effectiveness of this non-regenerative deceleration control is verified by theoretical numerical analysis and by an experiment. The borderline of the voltage vector for the non-generative braking is affected by dead time, and the experimental results differ from the theoretically calculated results. However, it is experimentally confirmed that the proposed non-regenerative deceleration control can be achieved by correcting the impressed voltage vector based on experimental results. Finally, this control is applied to the vibration control of the drum-type washer/dryer, and it is confirmed that the balancer fluid moves as designed.

  14. Solar ponds

    NASA Astrophysics Data System (ADS)

    Tabor, H.

    1981-01-01

    The history and current status of salt-gradient non-convecting solar ponds are presented. These ponds are large-area collectors, capable of providing low-cost thermal, mechanical, or electrical energy using low-temperature turbo-generators. The basic theory of salt-gradient solar ponds is sketched; the effects of wind, leakage, and fouling and their constraints on location selection for solar ponds are discussed. The methods of building and filling the ponds, as well as extracting heat from them are explained in detail. Practical operating temperatures of 90 C can be obtained with collection efficiencies between 15% and 25%, demonstrating the practical use of the ponds for heating and cooling purposes, power production, and desalination. A condensed account of solar pond experience in several countries is given. This includes the 150 kW solar pond power station (SPPS) operating in Israel since December, 1979 and a 5000 kW unit currently under development. A study of the economics involved in using the ponds is presented: despite a low conversion efficiency, the SPPS is shown to have applications in many countries.

  15. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  16. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  17. Solar Minimum

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Mathews, John; Manross, Kevin

    1995-12-01

    Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.

  18. Solar retinitis.

    PubMed

    SHIRLEY, S Y

    1963-07-20

    Retinal burns can be produced by direct gazing at the sun. This lesion is caused by the thermal effects of the visible and near infrared rays focused on the pigment structure behind the retina. It is rarely seen, as the normal eye will tolerate only fleeting glances at the sun, but is fairly common during a solar eclipse. A case of solar retinitis is presented in which treatment with corticosteroids lessened the retinal edema but the patient suffered a bilateral central scotoma and vision reduced to the 20/40 level. In viewing a solar eclipse a No. 4 density filter is recommended; as a rough test this filter will abolish the readability of print on a 60-watt incandescent frosted electric light bulb.

  19. Solar Retinitis

    PubMed Central

    Shirley, S. Y.

    1963-01-01

    Retinal burns can be produced by direct gazing at the sun. This lesion is caused by the thermal effects of the visible and near infrared rays focused on the pigment structure behind the retina. It is rarely seen, as the normal eye will tolerate only fleeting glances at the sun, but is fairly common during a solar eclipse. A case of solar retinitis is presented in which treatment with corticosteroids lessened the retinal edema but the patient suffered a bilateral central scotoma and vision reduced to the 20/40 level. In viewing a solar eclipse a No. 4 density filter is recommended; as a rough test this filter will abolish the readability of print on a 60-watt incandescent frosted electric light bulb. ImagesFig. 1Fig. 2 PMID:13977409

  20. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  1. Solar panel

    SciTech Connect

    Bayles, B.R.

    1981-09-29

    A solar panel includes a base within which are mounted transversely extending conduits. A heat collector plate in the base is in heat conductive relationship with the conduits for the heating of a fluid medium. The base additionally supports a transparent cover outwardly spaced from the heat collector plate to provide a protective insulative air space over the plate. A manifold communicates one series of panels with those of an adjacent series. A modified base dispenses with a collector plate and is formed so as to define integral lengthwise extending passageways for the solar heated medium. Inserted nipples interconnect the passageways of adjacent panels.

  2. Solar trap

    SciTech Connect

    Lew, H.S.

    1988-02-09

    A solar trap for collecting solar energy at a concentrated level is described comprising: (a) a compound light funnel including a pair of light reflecting substantially planar members arranged into a trough having a substantially V-shaped cross section; (b) a two dimensional Fresnel lens cover covering the opening of the compound light funnel, the opening being the open diverging end of the substantially V-shaped cross section of the compound light funnel; (c) at least one conduit for carrying a heat transfer fluid disposed substantially adjacent and substantially parallel to the apex line of the compound light funnel.

  3. Solar Energy and You.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  4. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  5. Solar maximum: solar array degradation

    SciTech Connect

    Miller, T.

    1985-08-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  6. Numerical simulations of high-speed solar wind streams within 1 AU and their signatures at 1 AU

    NASA Technical Reports Server (NTRS)

    Smith, Z.; Dryer, M.

    1991-01-01

    A parametric study of the evolution within, and signatures at, 1 AU of high-speed streams is performed with the use of a MHD two-and-a-half-dimensional time-dependent model. This study is an extension of an earlier one by Smith and Dryer (1990) who examined the ecliptic plane consequences of relatively short-duration, energetic solar disturbances. The present study examines both the erupting and corotating parts of long-duration, high-speed streams characteristic of coronal hole flows. By examining the variation of the simulated plasma velocity, density, temperature, and magnetic field at 1 AU, as well as the location of the solar coronal hole sources relative to the observer at 1 AU, it was possible to provide some insight into the identification of the solar sources of interplanetary disturbances. Two definitions for angle locating the solar source of interplanetary disturbances at 1 AU are presented and discussed. The results are applied to the suggestion by Hewish (1988) that low-latitude coronal holes are suitably positioned to be the sources of major geomagnetic storms when the holes are in the eastern half of the solar hemisphere at the time of the commencement of the storm. The results indicate that, for these cases, the streams emanating from within the hole must be very fast, greater than 1000 km/s, or very wide, greater than 60 deg, at the inner boundary of 18 solar radii.

  7. Numerical simulations of high-speed solar wind streams within 1 AU and their signatures at 1 AU

    NASA Technical Reports Server (NTRS)

    Smith, Z.; Dryer, M.

    1991-01-01

    A parametric study of the evolution within, and signatures at, 1 AU of high-speed streams is performed with the use of a MHD two-and-a-half-dimensional time-dependent model. This study is an extension of an earlier one by Smith and Dryer (1990) who examined the ecliptic plane consequences of relatively short-duration, energetic solar disturbances. The present study examines both the erupting and corotating parts of long-duration, high-speed streams characteristic of coronal hole flows. By examining the variation of the simulated plasma velocity, density, temperature, and magnetic field at 1 AU, as well as the location of the solar coronal hole sources relative to the observer at 1 AU, it was possible to provide some insight into the identification of the solar sources of interplanetary disturbances. Two definitions for angle locating the solar source of interplanetary disturbances at 1 AU are presented and discussed. The results are applied to the suggestion by Hewish (1988) that low-latitude coronal holes are suitably positioned to be the sources of major geomagnetic storms when the holes are in the eastern half of the solar hemisphere at the time of the commencement of the storm. The results indicate that, for these cases, the streams emanating from within the hole must be very fast, greater than 1000 km/s, or very wide, greater than 60 deg, at the inner boundary of 18 solar radii.

  8. Solar cooker

    SciTech Connect

    Long, J. B.; Ware, R. R.

    1985-12-31

    A solar cooking device made of a flat array of concentric mirrors tilted to focus at a small area, the array being movable mounted on a stand to be movable around a ball joint and with a carrier for a cooking vessel held by a double crank to be at the focal area of the mirrors.

  9. Solar Power

    ERIC Educational Resources Information Center

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  10. Solar Power

    ERIC Educational Resources Information Center

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  11. Solar Directory.

    ERIC Educational Resources Information Center

    Pesko, Carolyn, Ed.

    This directory is designed to help the researcher and developer, the manufacturer and distributor, and the general public communicate together on a mutually beneficial basis. Its content covers the wide scope of solar energy activity in the United States primarily, but also in other countries, at the academic, governmental, and industrial levels.…

  12. Solar heating

    SciTech Connect

    Resnick, M.; Startevant, R.C.

    1985-01-22

    A solar heater has an outlet conduit above an inlet conduit intercoupling a solar heating chamber with the inside of a building through a window opening. In one form the solar collecting chamber is outside the building below the window and the outlet conduit and inlet conduit are contiguous and pass through the window opening between the windowsill and the lower sash. In another form of the invention the solar collecting chambers are located beside each side of the window and joined at the top by the outlet conduit that passes through an opening between the upper window sash and the top of the window frame and at the bottom by an inlet conduit that passes through an opening between the lower sash and the windowsill. The outlet conduit carries photoelectric cells that provide electrical energy for driving a squirrel-cage fan in the outlet conduit through a mercury switch seated on a damper actuated by a bimetallic coil that closes the damper when the temperature in the outlet conduit goes below a predetermined temperature.

  13. Solar activity

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    1983-03-01

    The increased data base and scope of the theoretical models for solar flares are reviewed. Data have been gathered from the Skylab instrumentation, the Solar Maximum Mission, and the Very Large Array. Skylab X ray images revealed regularly spaced bright spots on the solar surface. Studies have also been performed on the emergence of magnetic fields, the coronal structures defined by magnetic fields above active regions, and the behavior and composition of post-flare loops. It has been found that coronal transients are associated with eruptive prominences with and without flares up to 70 pct of the time. Two classes of solar flares have been identified, i.e., small volume, low altitude with a short rise time, and long decay events with a larger coronal loop structure. Evidence for thermal and nonthermal causes for the electron velocity distribution in the flares is discussed. Finally, SMM data has shown chromospheric reactions to magnetic field variations in the photosphere and the response of the interplanetary medium to coronal transients.

  14. Solar Directory.

    ERIC Educational Resources Information Center

    Pesko, Carolyn, Ed.

    This directory is designed to help the researcher and developer, the manufacturer and distributor, and the general public communicate together on a mutually beneficial basis. Its content covers the wide scope of solar energy activity in the United States primarily, but also in other countries, at the academic, governmental, and industrial levels.…

  15. Spray dryer/electron beam removal of SO/sub 2/ and NO/sub x/ from flue gas. First technical progress report, 1 October 1981-1 October 1982

    SciTech Connect

    Helfritch, D.J.

    1982-11-01

    The objective of this project is the pilot scale evaluation of SO/sub 2/ and NO/sub x/ removal from flue gas by means of a lime slurry spray dryer followed by electron beam treatment. Capital and operating costs of this technique have been determined and it has been shown to be cost effective. The pilot scale work will serve to verify the cost study assumptions and to provide design guidelines for commercial applications. The pilot scale system, consisting of a spray dryer, electron beam and fabric filter, will treat a flue gas slipstream from a 150 MW coal fired boiler. Parameters such as lime reactant rate and electron beam dosage will be varied, and SO/sub 2/ and NO/sub x/ removal will be monitored. It is expected that better than 90% removal of SO/sub 2/ and NO/sub x/ will be achieved with reasonable operating costs.

  16. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  17. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2016-07-12

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  18. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  19. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  20. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  1. Concentrated solar power generation using solar receivers

    DOEpatents

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  2. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  3. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  4. Solar Arches

    NASA Image and Video Library

    2017-09-28

    The magnetic field lines between a pair of active regions formed a beautiful set of swaying arches, seen in this footage captured by NASA’s Solar Dynamics Observatory on April 24-26, 2017. The arches are traced out by charged particles spinning along the magnetic field lines. These arches, which form a connection between regions of opposite magnetic polarity, are visible in exquisite detail in this wavelength of extreme ultraviolet light. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold. Read more: go.nasa.gov/2pGgYZt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Solar collectors

    SciTech Connect

    Uroshevich, M.

    1981-09-22

    The disclosure illustrates a solar collector of the focusing type comprising a trough like element with an interior reflective surface that faces a main reflector of the collector. A tubular receiver providing a passage for heat transfer fluid is positioned in the trough like element generally along the focal line of the main reflector. A flat glass plate covers the trough along a perimeter seal so that subatmospheric conditions may be maintained within the trough like element to minimize convection heat losses.

  6. Solar retinopathy.

    PubMed

    Galainena, M L

    1976-03-01

    Two cases of solar retinopathy following prolonged sun gazing are presented. Both patients were seen within an interval of 11 months, both with the diagnosis of schizophrenia paranoid type. These patients gave a history of sun gazing while praying to God, resulting in pigmentary disturbances of the macula, characterized by central and parafoveal depigmentation with perifoveal hyperpigmentation, as well as permanent impairment of vision in both eyes.

  7. Solar Interior

    NASA Astrophysics Data System (ADS)

    Zahn, J.; Murdin, P.

    2000-11-01

    The interior of the Sun is hidden from our sight, because it is opaque to electromagnetic waves: the radiation we receive from it on Earth is emitted in the outermost layers. Our knowledge of the solar interior is based solely on theoretical models which are built with some assumptions about the physical conditions and processes that are likely to prevail there, and on helioseismology, a very pow...

  8. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  9. Solar chameleons

    SciTech Connect

    Brax, Philippe

    2010-08-15

    We analyze the creation of chameleons deep inside the Sun (R{approx}0.7R{sub sun}) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  10. SOLAR - ASTRONOMY

    NASA Image and Video Library

    1973-09-09

    S73-33788 (10 June 1973) --- The solar eruption of June 10, 1973, is seen in this spectroheliogram obtained during the first manned Skylab mission (Skylab 2), with the SO82A experiment, an Apollo Telescope Mount (ATM) component covering the wavelength region from 150 to 650 angstroms (EUV). The solid disk in the center was produced from 304 angstrom ultraviolet light from He + ions. At the top of this image a great eruption is visible extending more than one-third of a solar radius from the sun's surface. This eruption preceded the formation of an enormous coronal bubble which extended a distance of several radii from the sun's surface, and which was observed with the coronagraph aboard Skylab. In contrast, the Fe XV image at 285 angstrom just to the right of the 304 angstrom image does not show this event. Instead, it shows the bright emission from a magnetic region in the lower corona. In this picture, solar north is to the right, and east is up. The wavelength scale increases to the left. The U.S. Naval Research Laboratory is principal investigator in charge of the SO82 experiment. Photo credit: NASA

  11. Solar Tomography

    NASA Astrophysics Data System (ADS)

    Davila, J. M.

    1993-12-01

    Images obtained by observing the solar corona from a single spacecraft typically measure the line-of-sight integral of the volumetric emissivity through the source. The resulting two-dimensional observations have an unavoidable ambiguity along the line of sight that can be removed only by making assumptions about the three dimensional nature of the emission. These ambiguities can be removed by observing the Sun from different vantage points, at the same time, i.e. solar tomography. The basic concept of tomographic is fairly simple. For an optically thin emission source, like the solar corona, each pixel in an image represents the line of sight integration of the volumetric emissivity of the plasma at the wavelength of observation. By obtaining several of these observations, from various angles, the underlying three dimensional structure of the emission can be deduced. This principle has been used extensively in the Medical community for the imaging of internal structure of the body with such techniques as Computer Aided Tomography (CAT) scanners and Magnetic Resonance Imaging (MRI). The purpose of this paper is to take an intial look at the following two questions: (1) Is tomography feasible with a few spacecraft?; and (2) What scientific objectives can be addressed?

  12. Solar cooker

    SciTech Connect

    Zwach, D.M.

    1987-09-29

    A solar unit is described comprising a solar oven having an open end. A generally concave parabolic main reflector is joined to the oven to move therewith and reflect solar radiation away from the oven. The main reflector has a central opening to the oven open end, a generally parabolic convex secondary reflector for reflecting the radiation from the main reflector through the central opening to the open end of the oven, means for mounting the secondary reflector on the main reflector for movement, a frame, and means for mounting the oven on the frame for adjustable movement relative to the frame. This permits adjusting the angular position relative to the earth. The last mentioned means includes means for supporting the oven including first and second pairs of pivot members that respectively have a fist pivot axis and a second pivot axis that extends perpendicular to the first pivot axis. The oven extends between each of the first pivot members and each of the second pivot members.

  13. Solar physics at APL.

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    1999-12-01

    Solar reserach at APL aims to understand the fundamental physics that govern solar activity. The tools are telescopes, models, and interplanetary sampling of solar ejecta. The work is relevant to APL's mission because solar energetic protons disable satellites and endanger astronauts. Solar activity also causes geomagnetic storms, which can lead to communications disruptions, electric power network problems, satellite orbit shifts and, sometimes, satellite failure. Predicting storm conditions requires understanding solar magnetism and its fluctuations. APL scientists have made major contributions to solar activity research and have taken the lead in developing a variety of new solar research tools. They are now starting work on the Solar Terrestrial Relations Observatory, a major space mission.

  14. Nanostructured Solar Cells

    PubMed Central

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  15. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  16. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  17. Solar Sails

    NASA Technical Reports Server (NTRS)

    Young, Roy

    2006-01-01

    The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control

  18. Updated seismic solar model

    NASA Astrophysics Data System (ADS)

    Dziembowski, W. A.; Goode, Philip R.; Pamyatnykh, A. A.; Sienkiewicz, R.

    1995-05-01

    Recently released low-l solar oscillation data from the BISON network are combined with BBSO data to obtain an updated solar seismic model of the Sun's interior. For the core, the solar seismic model from the new data is more consistent with the current standard solar models than our earlier seismic model. An astrophysical solution to the solar neutrino problem fades away.

  19. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  20. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2016-07-12

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  1. Solar Innovator | Alta Devices

    SciTech Connect

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  2. Solar Flare Forecasting

    NASA Astrophysics Data System (ADS)

    Bai, T.; Murdin, P.

    2000-11-01

    Like weather forecasting, solar flare forecasting (or forecasting solar activity in general) is motivated by pragmatic needs. Solar flares, coronal mass ejections, solar winds and other solar activity intimately influence the near-Earth space environment. All kinds of spacecraft including weather and communication satellites are orbiting Earth, and their performance and lifetimes are greatly infl...

  3. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  4. High solar intensity radiometer

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Spisz, E. W.

    1972-01-01

    Silicon solar cells are used to measure visible radiant energy and radiation intensities to 20 solar constants. Future investigations are planned for up to 100 solar constants. Radiometer is small, rugged, accurate and inexpensive.

  5. Solar Electricity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  6. Solar Generator

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Vanguard I dish-Stirling module program, initiated in 1982, produced the Vanguard I module, a commercial prototype erected by the Advanco Corporation. The module, which automatically tracks the sun, combines JPL mirrored concentrator technology, an advanced Stirling Solar II engine/generator, a low cost microprocessor-controlled parabolic dish. Vanguard I has a 28% sunlight to electricity conversion efficiency. If tests continue to prove the system effective, Advanco will construct a generating plant to sell electricity to local utilities. An agreement has also been signed with McDonnell Douglas to manufacture a similar module.

  7. Solar greenhouses in Minnesota

    SciTech Connect

    Polich, M.

    1981-12-01

    After a discussion of solar greenhouse phenomena and the potential for heat collection and food production, design recommendations are provided for attached heat collecting solar sunspaces and for attached food producing solar greenhouses. Also, design of a single solar structure to maximize heat collection and food production is considered. A method of predicting the performance for attached heat collecting solar sunspaces is given in which the solar savings fraction is calculated. (LEW)

  8. Solar Heating and Cooling

    ERIC Educational Resources Information Center

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  9. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  10. Solar Heating and Cooling

    ERIC Educational Resources Information Center

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  11. Solar radiation resource assessment

    SciTech Connect

    Not Available

    1990-11-01

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  12. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  13. Solar skylight

    DOEpatents

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  14. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  15. Solar Energy: Solar and the Weather.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  16. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    SciTech Connect

    Not Available

    1990-12-01

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  17. Modulating protein release profiles by incorporating hyaluronic acid into PLGA microparticles Via a spray dryer equipped with a 3-fluid nozzle.

    PubMed

    Wan, Feng; Maltesen, Morten Jonas; Andersen, Sune Klint; Bjerregaard, Simon; Baldursdottir, Stefania G; Foged, Camilla; Rantanen, Jukka; Yang, Mingshi

    2014-11-01

    The purpose of this study was to modulate the release profiles of the model protein drug from spray dried poly(DL-lactic-co-glycolic acid) (PLGA) microparticles by incorporating hyaluronic acid (HA) in the formulation. Bovine serum albumin (BSA)-loaded PLGA microparticles with or without HA were prepared using a spray dryer equipped with a 3-fluid nozzle. The effects of HA on the surface tension and the rheological behavior of the inner feed solution were investigated. The physicochemical properties of the resulting microparticles were characterized using scanning electron microscopy (SEM), laser diffraction (LD), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). Circular dischoism (CD) was used to characterize conformational integrity of BSA released from the microparticles. Spherical microparticles with D50 of 5-10 μm were obtained. Addition of HA in inner feed solutions increased the feed viscosity, but with no influence on the surface tension. All inner feed solutions showed non-Newtonian shear thinning behavior and the rheological properties were not time dependent. The CLSM and XPS analyses suggested a core-shell like structure of the microparticles when HA was incorporated. The release profiles of BSA were extended and the initial burst releases were suppressed with an increase in HA in the microparticle formulations. In addition, HA seemed to protect BSA from degradation upon the spray-drying process. The present work demonstrates the potential of HA to modulate protein release profile from PLGA microparticle formulations produced via spray drying using 3-fluid nozzle.

  18. Evaluation of Pathogen Removal in a Solar Sludge Drying Facility Using Microbial Indicators

    PubMed Central

    Shanahan, Emily F.; Roiko, Anne; Tindale, Neil W.; Thomas, Michael P.; Walpole, Ronald; Kurtböke, D. İpek

    2010-01-01

    South East Queensland is one of the fastest growing regions in Australia with a correspondingly rapid increase in sewage production. In response, local councils are investing in more effective and sustainable options for the treatment and reuse of domestic and industrial effluents. A novel, evaporative solar dryer system has been installed on the Sunshine Coast to convert sewage sludge into a drier, usable form of biosolids through solar radiation exposure resulting in decreased moisture concentration and pathogen reduction. Solar-dried biosolids were analyzed for selected pathogenic microbial, metal and organic contaminants at the end of different drying cycles in a collaborative study conducted with the Regional Council. Although fecal coliforms were found to be present, enteroviruses, parasites, E. coli, and Salmonella sp. were not detected in the final product. However, elevated levels of zinc and copper were still present which restricted public use of the biosolids. Dilution of the dried biosolids with green waste as well as composting of the biosolids is likely to lead to the production of an environmentally safe, Class A end-product. PMID:20616991

  19. Wood chip drying in connection with combined heat and power or solar energy in Finland

    NASA Astrophysics Data System (ADS)

    Rinne, Samuli; Holmberg, Henrik; Myllymaa, Tiina; Kontu, Kaisa; Syri, Sanna

    2014-12-01

    20% of the Finnish district heating (DH) power plant fuels are wood-based and the share is increasing. The wood fuel demand probably exceeds the potential supply in the future. The wood fuel drying with waste heat is one profitable opportunity to gain more wood fuel. If the drying energy can be produced with lower primary energy use than combusting the fuel directly, the drying potentially improves the system efficiency. In this study, the drying feasibility in the connection of a combined heat and power (CHP) system, possibly with solar collectors, is calculated. The wood fuel heating can be increased profitably by 6%, using the heat from CHP for drying only when the marginal cost of the heat is low enough, i.e. the electricity price is high enough and there is free capacity after the DH demand. Although the drying is profitable, a larger heat storage can also increase the annual result similarly. The best investment choice depends on the plant properties. Here the optimal system enables 20% DH production cost savings. Solar heat may be profitable, when the solar heat has a 2-3% share of the annual heat demand. However, the dryer or larger storage tank are more profitable investments.

  20. Evaluation of pathogen removal in a solar sludge drying facility using microbial indicators.

    PubMed

    Shanahan, Emily F; Roiko, Anne; Tindale, Neil W; Thomas, Michael P; Walpole, Ronald; Kurtböke, D Ipek

    2010-02-01

    South East Queensland is one of the fastest growing regions in Australia with a correspondingly rapid increase in sewage production. In response, local councils are investing in more effective and sustainable options for the treatment and reuse of domestic and industrial effluents. A novel, evaporative solar dryer system has been installed on the Sunshine Coast to convert sewage sludge into a drier, usable form of biosolids through solar radiation exposure resulting in decreased moisture concentration and pathogen reduction. Solar-dried biosolids were analyzed for selected pathogenic microbial, metal and organic contaminants at the end of different drying cycles in a collaborative study conducted with the Regional Council. Although fecal coliforms were found to be present, enteroviruses, parasites, E. coli, and Salmonella sp. were not detected in the final product. However, elevated levels of zinc and copper were still present which restricted public use of the biosolids. Dilution of the dried biosolids with green waste as well as composting of the biosolids is likely to lead to the production of an environmentally safe, Class A end-product.

  1. EDITORIAL Solar harvest Solar harvest

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  2. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  3. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  4. Solar collector

    SciTech Connect

    Miller, R.L.

    1983-05-31

    A solar energy water heating unit is provided which heats water from a swimming pool by passing the water through a series of spiral hoses mounted on a supporting surface. The supporting surface is mounted on a platform raised from the ground and is cone-shaped to allow for at least a portion of each hose line to be exposed to the sun at all times of the day. The spiral hose lines are mounted in spiral grooves provided on the supporting surface. A pump pumps the water from the swimming pool to the inlet of the hose lines, which inlet is adjacent the lowermost edge of the supporting surface so that the water is always pumped upwardly to the outlet end of the hose lines adjacent the apex of the supporting surface.

  5. Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2011-01-01

    Solar flares accelerate both ions and electrons to high energies, and their X-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions > approx.20 MeV and bremsstrahlung emission from relativistic accelerated electrons >300 keV, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances.

  6. Solar neutrinos.

    NASA Astrophysics Data System (ADS)

    Cremonesi, O.

    1993-12-01

    The main purpose of this paper is to review the progress made in the field of solar-neutrino physics with the results of the last-generation experiments together with the new perspectives suggested by the future projects. An elementary introduction to energy production mechanisms and stellar models is given. Neutrino properties and oscillations are discussed with particular interest in matter effects. Present experiments and future projects are reviewed. Particular attention is devoted to the compelling background and low-statistics problems. Finally, presently available results from running experiments are discussed, in the framework of the SNP. Some conclusions on the possibilities of the new proposed projects to actually slove the problem are also given.

  7. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  8. Solar Heating Equipment

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  9. Solar heating and you

    NASA Astrophysics Data System (ADS)

    1994-08-01

    This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

  10. The solar neutrino problem.

    NASA Astrophysics Data System (ADS)

    Xu, Renxin; Luo, Xianhan

    1995-12-01

    The solar neutrino problem (SNP) is reviewed on the bases of neutrino physics, solar neutrino detection and standard solar model. It is interesting that the detected neutrino flux values of different solar neutrino detectors are lower than the values calculated by SMM in different degree. The studies on SNP in particle physics and in astrophysics are also discussed respectively.

  11. Toward a Solar Civilization

    ERIC Educational Resources Information Center

    Hippel, Frank von; Williams, Robert H.

    1977-01-01

    The future of solar energy is examined environmentally, socially, and economically. Coal and nuclear fission are discussed as long-range energy alternatives and U. S. regional strategies are suggested. Discussed in detail are low temperature solar heat, solar electricity, and chemical fuels from solar energy. (MA)

  12. A Solar Energy Bibliography.

    ERIC Educational Resources Information Center

    Guthrie, David L.; Riley, Robert A.

    This document contains 5,000 references to literature through 1976 dealing with various aspects of solar energy. Categories are established according to area of solar research. These categories include: (1) overview; (2) measurement; (3) low-range solar energy collection (below 120 degrees C); (4) intermediate-range solar energy collection (120…

  13. Toward a Solar Civilization

    ERIC Educational Resources Information Center

    Hippel, Frank von; Williams, Robert H.

    1977-01-01

    The future of solar energy is examined environmentally, socially, and economically. Coal and nuclear fission are discussed as long-range energy alternatives and U. S. regional strategies are suggested. Discussed in detail are low temperature solar heat, solar electricity, and chemical fuels from solar energy. (MA)

  14. Solar cycle variations in the solar wind

    NASA Technical Reports Server (NTRS)

    Freeman, John W.; Lopez, Ramon E.

    1986-01-01

    The solar cycle variations of various solar wind parameters are reviewed. It is shown that there is a gradual decrease in the duration of high-speed streams from the declining phase of solar cycle 20 through the ascending phase of cycle 21 and a corresponding decrease in the annual average of the proton speed toward solar maximum. Beta, the ratio of the proton thermal pressure to magnetic pressure, undergoes a significant solar cycle variation, as expected from the variation in the IMF. Individual hourly averages of beta often exceed unity with 20 cases exceeding 10 and one case as high as 25. The Alfven Mach number shows a solar cycle variation similar to beta, lower aboard solar maximum. High-speed streams can be seen clearly in epsilon and the y component of the interplanetary magnetic field.

  15. Solar mass loss, solar lithium, and solar oscillations

    NASA Astrophysics Data System (ADS)

    Cox, A. N.; Guzik, J. A.

    Swenson and Faulkner, and Boothroyd et al. investigated the possibility that early main-sequence mass loss via a stronger early solar wind could be responsible for the observed solar lithium and beryllium depletion. This depletion requires a total mass loss of approx. 0.1, nearly independent of the mass loss timescale. The authors have calculated the evolution and oscillation frequencies of solar models including helium and heavier element diffusion, and such early solar mass loss. For models with gradual early mass loss (during approx. 1 Gyr), the early mass loss phase decreases the total amount of helium and heavier elements diffused from the convection zone, and the extent of the diffusion-produced composition gradient just below the convection zone, deteriorating the agreement with observed frequencies for intermediate (ell) modes. The mass loss phase must be confined to approx. 0.2 Gyr or less to solve simultaneously the solar Li/Be problem and avoid discrepancies with solar oscillation frequencies.

  16. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  17. Development of Solar Research

    NASA Astrophysics Data System (ADS)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  18. Solar collector array

    DOEpatents

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  19. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  20. Solar trap

    SciTech Connect

    Lew, H.S.

    1990-01-09

    This patent describes a solar energy collecting apparatus. It comprises: a light funneling trough including two flat light reflecting surfaces disposed in a face-to-face arrangement having an oblique angle therebetween; a two dimensional Fresnel lens covering the opening of the light funneling trough at the diverging extremity thereof; a photovoltaic panel facing the two dimensional Fresnel lens disposed adjacent to the converging extremity of the light funneling trough; and at least one dual-sided light reflecting planar member disposed radially intermediate the two light reflecting surfaces. The dual-sided light reflecting planar member extending from the converging extremity of the light funneling trough towards the diverging extremity thereof and terminated at a substantial distance away from the plane including the opening of the light funneling trough. Wherein the sunlight entering the light funneling trough through the two-dimensional Fresnel lens is refracted by the two dimensional Fresnel lens and funneled by the light funneling trough towards the converging extremity of the light funneling trough and irradiates the photovoltaic panel.

  1. Solar oven

    SciTech Connect

    Burns, T.J.; Burns, C.L.

    1989-07-18

    This patent describes a solar oven. It comprises: an oven chamber having an open end and defining an interior cooking chamber; means providing a flat-back interior surface on the cooking chamber for absorbing sunlight and converting the absorbed sunlight into heat; an oven door hingedly mounted over the open end and movable between open and closed positions relative to the open end; means for pivotably supporting the oven chamber about a first substantially horizontal pivot axis; user-actuable latch means for selectively retaining the oven chamber in selected positions around the first horizontal axis, the user-actuable latch means including a user releasable ratchet mechanism including a plurality of ratchet teeth formed on the oven chamber and ratchet pawl pivoted to the support means in a position to engage selective ones of the ratchet teeth to retain the over chamber in selected orientations around the horizontal axis, the latch means further including means for pivoting the pawl into and out of the path of movement of the ratchet teeth to thereby achieve the selective positioning; a tray disposed within the interior cooking chamber for supporting foodstuffs during coking; pivot means for pivotally mounting the tray within the interior cooking chamber for movement around a second substantially horizontal pivot axis such that the tray can be positioned so as to maintain the foodstuffs in a substantially level position independently of the position of the oven chamber around the first pivot axis.

  2. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  3. Amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Konagai, M.

    The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided.

  4. Solar Design Workbook

    SciTech Connect

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  5. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

  6. SOLARES - A new hope for solar energy

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of reducing the diurnal variation and enhancing the average intensity of sunlight with a space system of minimum mass and complexity. The key impact that such a system makes on the economic viability of solar farming and other solar applications is demonstrated. The system is compatible with incremental implementation and continual expansion to meet the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even competitive with conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation. Development of the terrestrial solar conversion technique, optimized for this new artificial source of solar radiation, yet remains.

  7. Advances in Continuous Mass Measurement Technology: TEOM Mass Monitor at 30° C with a Nafion Dryer at Rural and Urban New York State Locations.

    NASA Astrophysics Data System (ADS)

    Schwab, J. J.; Felton, H. D.; Ambs, J.; Spicer, J.; Demerjian, K. L.

    2002-12-01

    The National Ambient Air Quality Standards (NAAQS) for particulate matter (both PM10 and PM2.5) are expressed in terms of mass concentrations in micrograms per cubic meter of air. While there is tremendous interest in measuring chemically speciated concentrations of PM, bulk mass concentration will clearly be the regulated quantity for the foreseeable future. With this in mind, it is critically important to establish the quality of data collected under current promulgated PM2.5 mass measurement techniques; to identify any significant sources of error associated with the techniques; as well as to evaluate newer technologies that are capable of measuring PM continuously and in real time. The well-known problems inherent in the measurement of ambient particulate matter include evaporation (and condensation) of semi-volatile compounds from (or onto) the collection medium; and the condensation and adsorption of reactive gases from the atmosphere. Recent work quantifying the sources of artifact errors for the Federal Reference Method (Pang, et al., 2002a; 2002b) showed significant evaporative losses from FRM filters. Similar losses are observed for the TEOM mass monitor, where evaporation of material from the filter head occurs at the default sensor temperature setting of 50° C. The TEOM SES (Sample Equilibration System) was developed to reduce the transient measurement errors reported by the TEOM instrument due to water vapor, the most abundant condensable gas in the atmosphere; and to allow instrument operation at temperatures lower than 50° C. The SES TEOM has been operated at a site in rural SW New York State (Addison, NY) for more than two years and at a site in Queens, New York City for more than a year. Each site also has a co-located standard TEOM (operated at 50° C without a Nafion dryer) and an FRM filter sampler. For these sites, the summer data from all three instruments agrees quite well, typically to better than 10%. Significant differences, on the order

  8. Spectropolarimetry of Solar Corona during Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Qu, Zhongquan

    2017-08-01

    We present the results from spectropolarimetry of solar corona. These observations were conducted during solar eclipses in 2008 China, 2013 Gabon, and probably 2017 United States of America respectively. From the former two observations, it is shown that the patterns of linear polarization of radiation from the solar corona are very abundant, and the abundance may be related to the complexity of mass motions and magnetic configuration in the corona. And the spectropolarimetry during solar eclipses may open a new window to probe precisely the physical features of the local corona, especially its magnetic configuration.

  9. Solar prominences

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Aulanier, Guillaume; Török, Tibor

    2009-03-01

    Solar filaments (or prominences) are magnetic structures in the corona. They can be represented by twisted flux ropes in a bipolar magnetic environment. In such models, the dipped field lines of the flux rope carry the filament material and parasitic polarities in the filament channel are responsible for the existence of the lateral feet of prominences. Very simple laws do exist for the chirality of filaments, the so-called “filament chirality rules”: commonly dextral/sinistral filaments corresponding to left- (resp. right) hand magnetic twists are in the North/South hemisphere. Combining these rules with 3D weakly twisted flux tube models, the sign of the magnetic helicity in several filaments were identified. These rules were also applied to the 180° disambiguation of the direction of the photospheric transverse magnetic field around filaments using THEMIS vector magnetograph data (López Ariste et al. 2006). Consequently, an unprecedented evidence of horizontal magnetic support in filament feet has been observed, as predicted by former magnetostatic and recent MHD models. The second part of this review concerns the role of emerging flux in the vicinity of filament channels. It has been suggested that magnetic reconnection between the emerging flux and the pre-existing coronal field can trigger filament eruptions and CMEs. For a particular event, observed with Hinode/XRT, we observe signatures of such a reconnection, but no eruption of the filament. We present a 3D numerical simulation of emerging flux in the vicinity of a flux rope which was performed to reproduce this event and we briefly discuss, based on the simulation results, why the filament did not erupt.

  10. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  11. Solar synthetic fuel production

    NASA Astrophysics Data System (ADS)

    Bilgen, E.; Bilgen, C.

    In this paper, a thermodynamic study is presented on solar hydrogen production using concentrated solar energy. In the first part, the direct decomposition process has been studied. The temperature requirements at various partial pressures of H2O, H2 and H yields, thermal efficiency and separation of products are discussed. In the second part, using consistent costing bases, the cost of hydrogen is estimated for solar-direct decomposition process and solar-electrolysis process. It has been found that the solar-direct decomposition process concept provides hydrogen costs in the range of $22/GJ which are lower by $15-$26 than those provided by a solar electrolysis process.

  12. Solar assisted cooker

    SciTech Connect

    Sofrata, H.

    1992-12-31

    This paper introduces a new idea which overcomes most of the problems and contradictions encountered in solar cookers. The idea is to turn from a solar stand alone system to a solar assisted wood fired cooker (SAWOFIC). This concept solves four major problems with solar cookers; heat storage and indoor-, year round-, and locally-available techniques. To increase the effectiveness of solar cookers a simple solar pressurized cooking pot has been designed. This pot prevents the steam leakage that produces energy losses. An overview of the design and performance of the cooker is presented.

  13. Solarization of heliostat glasses

    NASA Astrophysics Data System (ADS)

    Vitko, J., Jr.; Shelby, J. E.

    1980-09-01

    A solar-induced decrease in Fe(2+) absorption was observed in heliostat glasses from the solar furnace at Odeillo, France. This decrease occurs throughout the sample and is of sufficient magnitude to result in an increase of 2.5% in solar transmittance in a period of nine years. Optical and ESR studies did not detect a corresponding increase in Fe(3+) concentration. The effect of these results on a microscopic model for the observed solarization is discussed. Solar simulation studies produced changes of magnitude and sign similar to those observed in the field exposed samples, and offer attractive means for screening samples for solarization tendencies.

  14. The Effect of Operating Conditions on Drying Characteristics and Quality of Ginger (Zingiber Officinale Roscoe) Using Combination of Solar Energy-Molecular Sieve Drying System

    NASA Astrophysics Data System (ADS)

    Hasibuan, R.; Zamzami, M. A.

    2017-03-01

    Ginger (Zingiber officinale Roscoe) is an agricultural product that can be used as beverages and snacks, and especially for traditional medicines. One of the important stages in the processing of ginger is drying. The drying process intended to reduce the water content of 85-90% to 8-10%, making it safe from the influence of fungi or insecticide. During the drying takes place, the main ingredient contained in ginger is homologous ketone phenolic known as gingerol are chemically unstable at high temperatures, for the drying technology is an important factor in maintaining the active ingredient (gingerol) which is in ginger. The combination of solar energy and molecular sieve dryer that are used in the research is capable of operating 24 hours. The purpose of this research is to study the effect of operating conditions (in this case the air velocity) toward the drying characteristics and the quality of dried ginger using the combination of solar energy and molecular sieve dryer. Drying system consist of three main parts which is: desiccator, solar collector, and the drying chamber. To record data changes in the mass of the sample, a load cell mounted in the drying chamber, and then connected to the automated data recording system using a USB data cable. All data of temperature and RH inside the dryer box and the change of samples mass recorded during the drying process takes place and the result is stored in the form of Microsoft Excel. The results obtained, shows that the air velocity is influencing the moisture content and ginger drying rate, where the moisture content equilibrium of ginger for the air velocity of 1.3 m/s was obtained on drying time of 360 minutes and moisture content of 2.8%, at 1.0 m/s was obtained on drying time of 300 minutes and moisture content of 1.4%, at 0, 8 m/s was obtained at 420 minutes drying time and the moisture content is 2.0%. The drying characteristics shows that there are two drying periods, which is: the increasing drying rate

  15. Simplified Calculation Of Solar Fluxes In Solar Receivers

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    1990-01-01

    Simplified Calculation of Solar Flux Distribution on Side Wall of Cylindrical Cavity Solar Receivers computer program employs simple solar-flux-calculation algorithm for cylindrical-cavity-type solar receiver. Results compare favorably with those of more complicated programs. Applications include study of solar energy and transfer of heat, and space power/solar-dynamics engineering. Written in FORTRAN 77.

  16. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  17. Solar Control design package

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the evaluation of design of Solar Control's solar heating and cooling system controller and the Solarstat is given. Some of the information includes system performance specifications, design data brochures, and detailed design drawings.

  18. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  19. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  20. Solar Resource Assessment

    SciTech Connect

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  1. The global solar dynamo

    NASA Astrophysics Data System (ADS)

    Cameron, Robert

    2016-07-01

    I will review our understanding of the solar dynamo, concentrating on how observations constrain the theoretical possibilities. Possibilities for future progress, including understanding the Sun in the solar-stellar context will be outlined.

  2. Solar Wind Five

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor)

    1983-01-01

    Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.

  3. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  4. Solar-Heated Gasifier

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1985-01-01

    Catalytic coal and biomass gasifer system heated by solar energy. Sunlight from solar concentrator focused through quartz window onto ceramic-honeycomb absorber surface, which raises temperature of reactant steam, fluidizing gas, and reactor walls.

  5. Solar Neutral Particles

    NASA Image and Video Library

    This animation shows a neutral solar particle's path leaving the sun, following the magnetic field lines out to the heliosheath. The solar particle hits a hydrogen atom, stealing its electron, and ...

  6. Glory Solar Array Deployment

    NASA Image and Video Library

    The Glory spacecraft uses Orbital Sciences Corporation Space Systems Group's LEOStar-1 bus design, with deployable, four-panel solar arrays. This conceptual animation reveals Glory's unique solar a...

  7. Solar cooking in China

    SciTech Connect

    Wang Xiping

    1992-12-31

    In the past 20 years, solar cooking has developed rapidly in China. Its popularity is easy to understand since China is a nation with a rural population of 800 million, 30% to 40% of which lack firewood. In recent years a number of scientists and engineers have researched solar cooking and tested solar cookers. The Solar Energy Laboratory has worked on the application of solar energy, especially solar cookers, and has made a number of significant achievements in the following areas: solar cooker theory; methods of designing solar cookers, testing characteristics of thermal efficiency; materials for cooker construction, and technological processes for producing cookers. This paper discusses their achievements and plans for future research.

  8. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  9. Durable solar mirror films

    DOEpatents

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  10. Solar Activity and TECHNOSPHERE

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2017-05-01

    A review of solar activity factors impacting on the near-Earth space and technosphere are given. Solar activity in the form of enhanced fluxes of hard electromagnetic and corpuscular radiation, solar wind streams and mass ejections is considered as a principal source of space weather creating the dangerous for the astronauts, satellites, International Space Station and for the ground technical systems. The examples of effects of solar activity on the space and ground technosphere are given.

  11. Solar Energy Technician/Installer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  12. Solar Energy Technician/Installer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  13. Grain dryer temperature field analysis

    NASA Astrophysics Data System (ADS)

    Li, Shizhuang; Cao, Shukun; Meng, Wenjing; Ma, Lingran

    2017-09-01

    Taking into account the drying process in the hot air temperature on the grain temperature has a great impact, and grain temperature and determines the quality of food after baking, so in order to ensure that the grain drying temperature in the safe range, the use of ANSYS FLUENT module of grain The temperature field was simulated in the drying process. The horizontal spacing of the angle box was 200mm and the vertical spacing was 240mm. At this time, the grain temperature distribution was more uniform and the drying was more adequate.

  14. Solar Coronal Magneto- Seismology With Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Verth, G.; Erdéyi, R.

    2007-01-01

    MHD waves in solar coronal loops, which were previously only predicted by theory have now actually been detected with instruments such as TRACE and SUMER on-board SOHO. These observations have given the solar community an important and novel tool to measure fundamental parameters in the magnetically embedded solar corona. Theory has been developed to derive detailed diagnostic information, e.g., density, magnetic field look structure, geometry, and stratifications. In this paper we demonstrate through examples of case studies how the EUV imager on Solar Orbiter can be used for solar atmospheric (coronal) magneto-seismology. Possible methods will be discussed to determine (i) if magnetic field divergence or plasma density stratification is the dominating factor in transversal loop oscillations (ii) important parameters such as the density scale heigh and magnetic dipole depth of a loop.

  15. Alternatives in solar energy

    NASA Technical Reports Server (NTRS)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  16. Inexpensive Photovoltaic Solar Radiometer.

    ERIC Educational Resources Information Center

    Kissner, Fritz

    1981-01-01

    Describes a low-cost instrument using a solar cell as a sensor to measure both instantaneous and integrated value of solar flux. Constructing and calibrating such an instrument constitutes an undergraduate experimental project, affording students an opportunity to examine a variety of aspects associated with solar energy measurements. (Author/SK)

  17. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  18. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  19. Inexpensive Photovoltaic Solar Radiometer.

    ERIC Educational Resources Information Center

    Kissner, Fritz

    1981-01-01

    Describes a low-cost instrument using a solar cell as a sensor to measure both instantaneous and integrated value of solar flux. Constructing and calibrating such an instrument constitutes an undergraduate experimental project, affording students an opportunity to examine a variety of aspects associated with solar energy measurements. (Author/SK)

  20. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2016-07-12

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  1. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  2. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  3. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  4. Solar Energy Usage.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with solar energy use. Its objective is for the student to be able to discuss the broad aspects of solar energy use and to explain the general operation of solar systems. Some topics covered are availability and economics of solar…

  5. Build a Solar Greenhouse.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Attached solar greenhouses are relatively inexpensive and easy to build; they can provide additional heat to homes all winter as well as fresh vegetables and flowers. This bulletin: (1) describes the characteristics of a solar greenhouse; (2) provides a checklist of five items to consider before building a solar greenhouse; (3) describes the four…

  6. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  7. Offset paraboloidal solar concentrator

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.

    1981-01-01

    Section of conventional paraboloid, offset from its major axis, is used as reflector in solar concentrator. Design increases solar gathering efficiency by 3 to 4 percent by eliminating shadowing and blocking of solar rays. In addition, reflector can be folded toward receiver, reducing wind-loading and making maintenance easier.

  8. Solar disk sextant

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Minott, P.; Endal, A. S.

    1984-01-01

    This paper presents the conceptual design of an instrument, called the solar disk sextant, to be used in space to measure the shape and the size of the sun and their variations. The instrumental parameters required to produce sufficient sensitivity to address the problems of solar oblateness, solar pulsations, and global size changes of climatic importance are given.

  9. Solar Job Related Training.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Dallas, TX.

    This book contains comprehensive instruction in design, installation, and service procedures for typical solar space heat and domestic hot water systems. The book is comprised of five major sections. Solar Systems: Past and Present presents a brief look at how far solar technology has advanced. Included in this section are descriptions of over…

  10. Solar Job Related Training.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Dallas, TX.

    This book contains comprehensive instruction in design, installation, and service procedures for typical solar space heat and domestic hot water systems. The book is comprised of five major sections. Solar Systems: Past and Present presents a brief look at how far solar technology has advanced. Included in this section are descriptions of over…

  11. Solar Proton Events in Six Solar Cycles

    NASA Astrophysics Data System (ADS)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  12. Solar power station

    SciTech Connect

    Wenzel, J.

    1982-11-30

    Solar power station with semiconductor solar cells for generating electric power is described, wherein the semiconductor solar cells are provided on a member such as a balloon or a kite which carries the solar cells into the air. The function of the balloon or kite can also be fulfilled by a glider or airship. The solar power station can be operated by allowing the system to ascend at sunrise and descend at sunset or when the wind is going to be too strong in order to avoid any demage.

  13. Solar-terrestrial interactions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The effects of solar radiation on man's environment are discussed. It is solar radiation that is the basic energy source driving the circulations of the earth's atmosphere and oceans. Solar radiation is responsible for the ionization of the earth's upper atmosphere to form the ionosphere, which is important to our understanding of the magnetosphere and its interaction with the solar wind. The solar wind, which is the continuous (but not steady) flow of the sun's coronal plasma and magnetic field into interplanetary space, plays both an active and passive role in its interaction with the earth's environment.

  14. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Chipman, E. G.

    1981-03-01

    The Solar Maximum Mission spacecraft, launched on 1980 February 14, carries seven instruments for the study of solar flares and other aspects of solar activity. These instruments observe in spectral ranges from gamma-rays through the visible, using imaging, spectroscopy, and high-time-resolution light curves to study flare phenomena. In addition, one instrument incorporates an active cavity radiometer for accurate measurement of the total solar radiant output. This paper reviews some of the most important current observational and theoretical questions of solar flare physics and indicates the ways in which the experiments on SMM will be able to attack these questions. The SMM observing program is described.

  15. The Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Chipman, E. G.

    1981-01-01

    The Solar Maximum Mission spacecraft, launched on 1980 February 14, carries seven instruments for the study of solar flares and other aspects of solar activity. These instruments observe in spectral ranges from gamma-rays through the visible, using imaging, spectroscopy, and high-time-resolution light curves to study flare phenomena. In addition, one instrument incorporates an active cavity radiometer for accurate measurement of the total solar radiant output. This paper reviews some of the most important current observational and theoretical questions of solar flare physics and indicates the ways in which the experiments on SMM will be able to attack these questions. The SMM observing program is described.

  16. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  17. Experiences with solar power

    NASA Astrophysics Data System (ADS)

    Kesselring, P.

    1985-11-01

    Experience with solar thermal plants is reviewed. The component and subsystems development of the last decade and particularly the receiver, collector and heliostat field development is a technical success. Solar specific problems on the system and component level arose, when off the shelf solutions of fossile fired plants were transferred uncritically. It is shown that concentrated solar radiation is a relatively cheap high quality fuel. Other uses than electricity generation are high temperature processes and the production of solar fuels and chemicals. A technical and economic comparison of solar thermal and photovoltaic electricity generation is made.

  18. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Pesnell, W. Dean

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes

  19. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean; Schatten, Kenneth

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun s polar field plays a major role in forecasting the next cycle s activity based upon the Babcock- Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130+ 30 (2 4, in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (-7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun s open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears

  20. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.