Science.gov

Sample records for solar flare occurrence

  1. Universality in Solar Flare and Earthquake Occurrence

    SciTech Connect

    De Arcangelis, L.; Godano, C.; Lippiello, E.; Nicodemi, M.

    2006-02-10

    Earthquakes and solar flares are phenomena involving huge and rapid releases of energy characterized by complex temporal occurrence. By analyzing available experimental catalogs, we show that the stochastic processes underlying these apparently different phenomena have universal properties. Namely, both problems exhibit the same distributions of sizes, interoccurrence times, and the same temporal clustering: We find after flare sequences with power law temporal correlations as the Omori law for seismic sequences. The observed universality suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism.

  2. Universality in solar flare and earthquake occurrence.

    PubMed

    de Arcangelis, L; Godano, C; Lippiello, E; Nicodemi, M

    2006-02-10

    Earthquakes and solar flares are phenomena involving huge and rapid releases of energy characterized by complex temporal occurrence. By analyzing available experimental catalogs, we show that the stochastic processes underlying these apparently different phenomena have universal properties. Namely, both problems exhibit the same distributions of sizes, interoccurrence times, and the same temporal clustering: We find after flare sequences with power law temporal correlations as the Omori law for seismic sequences. The observed universality suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism.

  3. Asymmetric Statistical Properties of the Solar Cycle 23 Deduced from Sunspots, Plages and Flare Occurrences

    NASA Astrophysics Data System (ADS)

    Zharkova, Valentina; Zharkov, S.

    2006-06-01

    The statistical properties of sunspot, active regions (plages) and filament distributions obtained from the automated Solar Feature Catalogues (SFC, http://solar.inf.brad.ac.uk) and their relation to flare distributions are presented for 1996-2005. We present distributions of sunspot numbers with given areas for different phases and the whole solar cycle 23. Statistical sunspot and plage area distributions revealed a strong North-South asymmetry of about 0.2-0.6 for sunspots, plages and flare occurrences with two basic periods of about 9 and 2.5 years. The distributions of sunspot and flare occurrences at different latitudes and longitudes in Northern and Southern hemispheres and their magnetic tilts are compared with their total and excess magnetic fields during the whole period of observations. The application of these results to the solar dynamo models is discussed.

  4. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  5. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  6. Latitudinal And Longitudinal Distributions Of S unspots And Solar Flare Occurrence In The Cycle 23 From T he Solar Feature Catalogues

    NASA Astrophysics Data System (ADS)

    Zahrkova, V. V.; Zharkov, S. I.

    2007-01-01

    The statistical properties of sunspot and active regions (plages) distributions obtained from the automated Solar Feature Catalogues (SFC, http://solar.inf.brad.ac.uk) for 1996-2005 and their relation to Hα flare occurrences are presented. The average monthly flare occurrences during the cycle 23 correlate rather closely with but do not follow exacly the sunspot area variations. The temporal distribution of solar flare occurrences at different latitudes in the Northern and Southern hemispheres reveal strong asymmetry reflected in periodic domination either one or another hemisphere that follows closely those of the plage and sunspot areas. The latitudinal distribution of flare occurences in the whole period reveal a well defined maximum at 20° in the Northern hemisphere that is likely to be associated with the domination of the Northern hemisphere in the sunspot formation during the solar amximum years. The longitudinal distributions of flare occurrences in the cycle 23 averaged in latitudes over a year reveal a persistend longitude of 200° with small fluctuations about ±10° with the period of about 1-1.5 years. Possible implications on solar dynamo models of the detected latitudinal and logitudinal asymmetries in the sunspot, active region and flare occurrences are discussed.

  7. A 154-day periodicity in the occurrence of hard solar flares?

    NASA Technical Reports Server (NTRS)

    Rieger, E.; Kanbach, G.; Reppin, C.; Share, G. H.; Forrest, D. J.; Chupp, E. L.

    1984-01-01

    An analysis of the temporal distribution of 139 solar flares monitored by the Gamma Ray Spectrometer aboard the Solar Maximum Mission is reported. It is found that, instead of being randomly distributed in time, these events have a tendency to occur in groups with a mean spacing of about 154 days (75 nHz) over the observing interval. A larger sample of flares with an X-ray classification of M 2.5 or larger recorded by the GOES satellite showed a similar regularity.

  8. Intensity thresholds and the statistics of the temporal occurrence of solar flares.

    PubMed

    Baiesi, Marco; Paczuski, Maya; Stella, Attilio L

    2006-02-10

    Introducing thresholds to analyze time series of emission from the Sun enables a new and simple definition of solar flare events and their interoccurrence times. Rescaling time by the rate of events, the waiting and quiet time distributions both conform to scaling functions that are independent of the intensity threshold over a wide range. The scaling functions are well-described by a two-parameter function, with parameters that depend on the phase of the solar cycle. For flares identified according to the current, standard definition, similar behavior is found.

  9. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  10. Understanding Solar Flare Statistics

    NASA Astrophysics Data System (ADS)

    Wheatland, M. S.

    2005-12-01

    A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.

  11. Statistical aspects of solar flares

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1987-01-01

    A survey of the statistical properties of 850 H alpha solar flares during 1975 is presented. Comparison of the results found here with those reported elsewhere for different epochs is accomplished. Distributions of rise time, decay time, and duration are given, as are the mean, mode, median, and 90th percentile values. Proportions by selected groupings are also determined. For flares in general, mean values for rise time, decay time, and duration are 5.2 + or - 0.4 min, and 18.1 + or 1.1 min, respectively. Subflares, accounting for nearly 90 percent of the flares, had mean values lower than those found for flares of H alpha importance greater than 1, and the differences are statistically significant. Likewise, flares of bright and normal relative brightness have mean values of decay time and duration that are significantly longer than those computed for faint flares, and mass-motion related flares are significantly longer than non-mass-motion related flares. Seventy-three percent of the mass-motion related flares are categorized as being a two-ribbon flare and/or being accompanied by a high-speed dark filament. Slow rise time flares (rise time greater than 5 min) have a mean value for duration that is significantly longer than that computed for fast rise time flares, and long-lived duration flares (duration greater than 18 min) have a mean value for rise time that is significantly longer than that computed for short-lived duration flares, suggesting a positive linear relationship between rise time and duration for flares. Monthly occurrence rates for flares in general and by group are found to be linearly related in a positive sense to monthly sunspot number. Statistical testing reveals the association between sunspot number and numbers of flares to be significant at the 95 percent level of confidence, and the t statistic for slope is significant at greater than 99 percent level of confidence. Dependent upon the specific fit, between 58 percent and 94 percent of

  12. Solar flares. [plasma physics

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  13. Flare models: Chapter 9 of solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A. (Editor)

    1979-01-01

    By reviewing the properties of solar flares analyzed by each of the seven teams of the Skylab workshop, a set of primary and secondary requirements of flare models are derived. A number of flare models are described briefly and their properties compared with the primary requirements. It appears that, at this time, each flare model has some strong points and some weak points. It has not yet been demonstrated that any one flare model meets all the proposed requirements.

  14. Statistical properties of sunspot, active region distributions and flare occurrences in the cycle 23 as detected from the Solar Feature Catalogues

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Zharkov, S. I.

    2006-08-01

    The statistical properties of sunspot and active regions (plages) distributions and their relation to flare distributions are presented for 1996-2005 from the automated Solar Feature Catalogues from the SOHO and Meudon Observatories (SFC, http://solar.inf.brad.ac.uk). Cross-correlation analysis is carried out between flare sizes, locations, significance and active region/sunspot parameters including magnetic field extracted in SFC. Sunspot and plage area distributions reveals a strong North-South asymmetry of about 0.2 and the period of about 7-8 years for sunspots and of 0.5 and period of 9 years for plages with both asymmetries decreasing towards the next cycle minimum. The temporal distribution of solar flare occurrences in Northern and Southern hemispheres, at different latitudes and longitudes are compared with those of plage and sunspot areas and LOS magnetic fields. The application of these results to the solar activity forecast is discussed.

  15. Solar Flares: Magnetohydrodynamic Processes

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Magara, Tetsuya

    2011-12-01

    This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  16. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  17. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  18. Solar flares: an overview.

    PubMed

    Rust, D M

    1992-01-01

    This is a survey of solar phenomena and physical models that may be useful for improving forecasts of solar flares and proton storms in interplanetary space. Knowledge of the physical processes that accelerate protons has advanced because of gamma-ray and X-ray observations from the Solar Maximum Mission telescopes. Protons are accelerated at the onset of flares, but the duration of any subsequent proton storm at 1 AU depends on the structure of the interplanetary fields. X-ray images of the solar corona show possible fast proton escape paths. Magnetographs and high-resolution visible-band images show the magnetic field structure near the acceleration region and the heating effects of sunward-directed protons. Preflare magnetic field growth and shear may be the most important clues to the physical processes that generate high energy solar particles. Any dramatic improvement in flare forecasts will require high resolution solar telescopes in space. Several possibilities for improvements in the art of flare forecasting are presented, among them: the use of acoustic tomography to probe for subsurface magnetic fields; a satellite-borne solar magnetograph; and an X-ray telescope to monitor the corona for eruptions.

  19. Amplitude and phase changes on VLF/LF radio signals depending on solar zenith angle during occurrences of solar X-ray flares

    NASA Astrophysics Data System (ADS)

    Sulic, Desanka; Sreckovic, Vladimir; Mihajlov, A. A.

    2016-07-01

    The focus of this work is on the extraction of D-region electron density that is induced by the intensive X-ray flux under different solar zenith angle. The sensitivity of Very Low and Low Frequency (VLF and LF) propagation in the lower ionosphere makes it an ideal probe for remotely sensing the ambient state and localized perturbations of the ionosphere. The basis of this work is amplitude and phase data acquired by monitoring DHO/23.40 kHz and NSC/45.90 kHz radio signals during the period of ascending and maximum of the solar cycle 24. All the data were recorded at Belgrade station (44.85 ^{0} N, 20.38 ^{0} E) by AWESOME system. DHO-BEL and NSC-BEL are short paths with distances of 1300 and 953 km, respectively. These paths are in the same time zone. The diurnal amplitude and phase variations on VLF/LF radio signal against time vary in characteristic ways that are caused by solar zenith angles over path. Two amplitude minima are observed when sunrise and sunset terminators reach the middle of the propagation path. During daytime condition there are two amplitude minima (in morning and afternoon) developed under solar zenith angles χ ˜80 ^{0} over short path. In this study we considered amplitude and phase perturbations on VLF/LF radio signal induced by solar X-ray flares under solar zenith angles which are close with timings of amplitude minima during daytime under normal ionospheric condition. We expected and estimated differences in amplitude and phase perturbations on DHO/23.40 kHz and NSC/45.90 kHz radio signals induced by solar X-ray flares which occurrences are under solar zenith angles χ ≤ 80 ^{0}. The observations include solar flares with magnitudes in the range from C2 (I_{X} = 2 10^{-6} Wm^{-2} of X-ray flux in the band at 0.1 - 0.8 nm) to X2.1 (I_{X} = 2.1 10^{-4} Wm^{-2}) class. For example on 11 March 2015 occurred X2.1 class flare with maximum of intensity at 16:22 UT, when solar angle was χ = 81^{0} at Belgrade. One day before, under normal

  20. BATSE Solar Flare Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1998-01-01

    This final report describes the progress originally proposed: (1) the continued improvement of a software and database environment capable of supporting all users of BATSE solar data as well as providing scientific expertise and effort to the BATSE solar community; (2) the continued participation with the PI team and other guest investigators in the detailed analysis of the BATSE detectors' response at low energies; (3) using spectroscopic techniques to fully exploit the potential of electron time-of-flight studies; and, (4) a full search for flare gamma-ray line emission at 2.2 MeV from all GOES X-class flares observed with BATSE.

  1. Distribution characteristics of coronal electric current density as an indicator for the occurrence of a solar flare

    NASA Astrophysics Data System (ADS)

    Kang, Jihye; Magara, Tetsuya; Inoue, Satoshi; Kubo, Yuki; Nishizuka, Naoto

    2016-10-01

    In this paper we investigate the distribution characteristics of the coronal electric current density in a flare-producing active region (AR12158; SOL2014-09-10) by reconstructing nonlinear force-free (NLFF) fields from photospheric magnetic field data. A time series of NLFF fields shows the spatial distribution and its temporal development of coronal current density in this active region. A fractal dimensional analysis shows that a concentrated coronal current forms a structure of fractal spatiality. Furthermore, the distribution function of coronal current density is featured with a double power-law profile, and the value of electric current density at the breaking point of a double power-law fitting function shows a noticeable time variation toward the onset of an X-class flare. We discuss that this quantity will be a useful indicator for the occurrence of a flare.

  2. Electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Dennis, Brian R.; Benz, Arnold O.

    1994-01-01

    A list of publications resulting from this program includes 'The Timing of Electron Beam Signatures in Hard X-Ray and Radio: Solar Flare Observations by BATSE/Compton Gamma-Ray Observatory and PHOENIX'; 'Coherent-Phase or Random-Phase Acceleration of Electron Beams in Solar Flares'; 'Particle Acceleration in Flares'; 'Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares'; 'Sequences of Correlated Hard X-Ray and Type 3 Bursts During Solar Flares'; and 'Solar Electron Beams Detected in Hard X-Rays and Radiowaves.' Abstracts and reprints of each are attached to this report.

  3. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  4. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  5. The solar-flare induced earth's environment

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dryer, M.; Han, S. M.

    1985-01-01

    A composite numerical simulation model developed from a series of MHD models was used to compute the solar-flare-generated disturbances of physical parameters, such as density, temperature, velocity, and magnetic field from the solar surface (i.e., the photospheric level) to the earth's environment. It is shown that the disturbed earth's environment at high latitudes can be approximated by starting with the knowledge of the occurrence and the strength of a solar flare, then simulating the evolutionary consequences of the solar disturbance through interplanetary space up to and through the magnetosphere.

  6. Solar flare discovery

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.

    1987-01-01

    This paper considers the discoveries that have appreciably changed our understanding of the physics of solar flares. A total of 42 discoveries from all disciplines, ranging from Galileo's initial observation of faculae to the recent discovery of strong limb brightening in 10-MeV gamma-radiation, are identified. The rate of discovery increased dramatically over the past four decades as new observational tools became available. The assessment of significance suggests that recent discoveries -though more numerous - are individually less significant; perhaps this is because the minor early discoveries tend to be taken for granted.

  7. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    1998-01-01

    We have continued our previous efforts in studies of fourier imaging methods applied to hard X-ray flares. We have performed physical and theoretical analysis of rotating collimator grids submitted to GSFC(Goddard Space Flight Center) for the High Energy Solar Spectroscopic Imager (HESSI). We have produced simulation algorithms which are currently being used to test imaging software and hardware for HESSI. We have developed Maximum-Entropy, Maximum-Likelihood, and "CLEAN" methods for reconstructing HESSI images from count-rate profiles. This work is expected to continue through the launch of HESSI in July, 2000. Section 1 shows a poster presentation "Image Reconstruction from HESSI Photon Lists" at the Solar Physics Division Meeting, June 1998; Section 2 shows the text and viewgraphs prepared for "Imaging Simulations" at HESSI's Preliminary Design Review on July 30, 1998.

  8. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  9. 6Li from Solar Flares.

    PubMed

    Ramaty; Tatischeff; Thibaud; Kozlovsky; Mandzhavidze

    2000-05-10

    By introducing a hitherto ignored 6Li producing process, due to accelerated 3He reactions with 4He, we show that accelerated particle interactions in solar flares produce much more 6Li than 7Li. By normalizing our calculations to gamma-ray data, we demonstrate that the 6Li produced in solar flares, combined with photospheric 7Li, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare-produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.

  10. Transient particle acceleration associated with solar flares.

    PubMed

    Chupp, E L

    1990-10-12

    Understanding how individual charged particles can be accelerated to extreme energies (10(20) electron volts), remains a foremost problem in astrophysics. Within our solar system, the active sun is capable of producing, on a short time scale, ions with energies higher than 25 gigaelectron volts. Satellite and ground-based observation over the past 30 years have greatly increased our knowledge of the properties of transient bursts of energetic particles emitted from the sun in association with solar flares, but a real understanding of the solar flare particle acceleration process requires greatly refined experimental data. On the practical side, it is also imperative that this problem be solved if man is to venture, for long periods of time, beyond the protective umbrella of Earth's magnetic field, which excludes much of the biologically damaging solar energetic particles. It is only through an understanding of the basic acceleration problem that we can expect to be able to predict the occurrence of a solar flare with lethal solar radiations. For our knowledge of these effects to advance, a new space mission dedicated to studying the high-energy aspects of solar flares at high spatial and energy resolution will be required.

  11. Particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Forman, M. A.

    1987-01-01

    The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.

  12. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  13. Solar flare predictions and warnings

    NASA Technical Reports Server (NTRS)

    White, K. P., III

    1972-01-01

    The real-time solar monitoring information supplied to support SPARCS equipped rocket launches, the routine collection and analysis of 3.3-mm solar radio maps, short-term flare forecasts based on these maps, longer-term forecasts based on the recurrence of active regions, and an extension of the flare forecasting technique are summarized. Forecasts for expectation of a solar flare of class or = 2F are given and compared with observed flares. A total of 52 plage regions produced all the flares of class or = 1N during the study period. The following results are indicated: of the total of 21 positive forecasts, 3 were correct and 18 were incorrect; of the total of 31 negative forecasts, 3 were incorrect and 28 were correct; of a total of 6 plage regions producing large flares, 3 were correctly forecast and 3 were missed; and of 46 regions not producing any large flares, 18 were incorrectly forecast and 28 were correctly forecast.

  14. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  15. Fine Structure in Solar Flares.

    PubMed

    Warren

    2000-06-20

    We present observations of several large two-ribbon flares observed with both the Transition Region and Coronal Explorer (TRACE) and the soft X-ray telescope on Yohkoh. The high spatial resolution TRACE observations show that solar flare plasma is generally not confined to a single loop or even a few isolated loops but to a multitude of fine coronal structures. These observations also suggest that the high-temperature flare plasma generally appears diffuse while the cooler ( less, similar2 MK) postflare plasma is looplike. We conjecture that the diffuse appearance of the high-temperature flare emission seen with TRACE is due to a combination of the emission measure structure of these flares and the instrumental temperature response and does not reflect fundamental differences in plasma morphology at the different temperatures.

  16. Solar Flares and the Chromosphere

    NASA Astrophysics Data System (ADS)

    Fletcher, Lyndsay

    2015-08-01

    During a solar flare, the chromosphere emits across a large fraction of the electromagnetic spectrum, providing diagnostic information on heating, dynamics and flare energy transport by both thermal and non-thermal means. The evolution of chromospheric ribbons and footpoints also traces the progress of coronal reconnection, and links radiation output with magnetic evolution. Since the chromosphere emits the majority of a flare's radiation, the current emphasis on chromospheric observations by missions such as IRIS, and future large facilities such as the DKIST, is very beneficial to flare research. In this talk I will overview recent developments in observations and theory of flaring chromospheres and make some suggestions about profitable future avenues for research.

  17. Radiation hydrodynamics in solar flares

    SciTech Connect

    Fisher, G.H.

    1985-10-18

    Solar flares are rather violent and extremely complicated phenomena, and it should be made clear at the outset that a physically complete picture describing all aspects of flares does not exist. From the wealth of data which is available, it is apparent that many different types of physical processes are involved during flares: energetic particle acceleration, rapid magnetohydrodynamic motion of complex field structures, magnetic reconnection, violent mass motion along magnetic field lines, and the heating of plasma to tens of millions of degrees, to name a few. The goal of this paper is to explore just one aspect of solar flares, namely, the interaction of hydrodynamics and radiation processes in fluid being rapidly heated along closed magnetic field lines. The models discussed are therefore necessarily restrictive, and will address only a few of the observed or observable phenomena. 46 refs., 6 figs.

  18. SCATTERING POLARIZATION IN SOLAR FLARES

    SciTech Connect

    Štěpán, Jiří; Heinzel, Petr

    2013-11-20

    There is ongoing debate about the origin and even the very existence of a high degree of linear polarization of some chromospheric spectral lines observed in solar flares. The standard explanation of these measurements is in terms of the impact polarization caused by non-thermal proton and/or electron beams. In this work, we study the possible role of resonance line polarization due to radiation anisotropy in the inhomogeneous medium of the flare ribbons. We consider a simple two-dimensional model of the flaring chromosphere and we self-consistently solve the non-LTE problem taking into account the role of resonant scattering polarization and of the Hanle effect. Our calculations show that the horizontal plasma inhomogeneities at the boundary of the flare ribbons can lead to a significant radiation anisotropy in the line formation region and, consequently, to a fractional linear polarization of the emergent radiation of the order of several percent. Neglecting the effects of impact polarization, our model can provide a clue for resolving some of the common observational findings, namely: (1) why a high degree of polarization appears mainly at the edges of the flare ribbons; (2) why polarization can also be observed during the gradual phase of a flare; and (3) why polarization is mostly radial or tangential. We conclude that radiation transfer in realistic multi-dimensional models of solar flares needs to be considered as an essential ingredient for understanding the observed spectral line polarization.

  19. Rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1986-01-01

    Study of rapid fluctuations in the emission of radiation from solar flares provides a promising approach for probing the magneto-plasma structure and plasma processes that are responsible for a flare. It is proposed that elementary flare bursts in X-ray and microwave emission may be attributed to fine structure of the coronal magnetic field, related to the aggregation of photospheric magnetic field into magnetic knots. Fluctuations that occur on a subsecond time-scale may be due to magnetic islands that develop in current sheets during magnetic reconnection. The impulsive phase may sometimes represent the superposition of a large number of the elementary energy-release processes responsible for elementary flare bursts. If so, the challenge of trying to explain the properties of the impulsive phase in terms of the properties of the elementary processes must be faced. Magnetic field configurations that might produce solar flares are divided into a number of categories, depending on: whether or not there is a filament; whether there is no current sheet, a closed current sheet, or an open current sheet; and whether the filament erupts into the corona, or is ejected completely from the Sun's atmosphere. Analysis of the properties of these possible configurations is compared with different types of flares, and to Bai's subdivision of gamma-ray/proton events.

  20. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  1. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    View an animation from the Extreme ultraviolet Imaging Telescope (EIT). At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada. This recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Solar flares, among the solar system's mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. Solar ejections are often associated with flares and sometimes occur shortly after the flare explosion. Coronal mass ejections are clouds of electrified, magnetic gas weighing billions of tons ejected from the Sun and hurled into space with speeds ranging from 12 to 1,250 miles per second. Depending on the orientation of the magnetic fields carried by the ejection cloud, Earth-directed coronal mass ejections cause magnetic storms by interacting with the Earth's magnetic field, distorting its shape, and accelerating electrically charged particles (electrons and atomic nuclei) trapped within. Severe solar weather is often heralded by dramatic auroral displays, northern and southern lights, and magnetic storms that occasionally affect satellites, radio communications and power systems. The flare and solar ejection has also generated a storm of high-velocity particles, and the number of particles with ten million electron-volts of energy in the space near

  2. Interplanetary shock waves associated with solar flares

    NASA Technical Reports Server (NTRS)

    Chao, J. K.; Sakurai, K.

    1974-01-01

    The interaction of the earth's magnetic field with the solar wind is discussed with emphasis on the influence of solar flares. The geomagnetic storms are considerered to be the result of the arrival of shock wave generated by solar flares in interplanetary space. Basic processes in the solar atmosphere and interplanetary space, and hydromagnetic disturbances associated with the solar flares are discussed along with observational and theoretical problems of interplanetary shock waves. The origin of interplanetary shock waves is also discussed.

  3. Magnetic Reconnection in Solar Flares

    NASA Astrophysics Data System (ADS)

    Forbes, Terry G.

    2016-05-01

    Reconnection has at least three possible roles in solar flares: First, it may contribute to the build-up of magnetic energy in the solar corona prior to flare onset; second, it may directly trigger the onset of the flare; and third, it may allow the release of magnetic energy by relaxing the magnetic field configuration to a lower energy state. Although observational support for the first two roles is somewhat limited, there is now ample support for the third. Within the last few years EUV and X-ray instruments have directly observed the kind of plasma flows and heating indicative of reconnection. Continued improvements in instrumentation will greatly help to determine the detailed physics of the reconnection process in the solar atmosphere. Careful measurement of the reconnection outflows will be especially helpful in this regard. Current observations suggest that in some flares the jet outflows are accelerated within a short diffusion region that is more characteristic of Petschek-type reconnection than Sweet-Parker reconnection. Recent resistive MHD theoretical and numerical analyses predict that the length of the diffusion region should be just within the resolution range of current X-ray and EUV telescopes if the resistivity is uniform. On the other hand, if the resistivity is not uniform, the length of the diffusion region could be too short for the outflow acceleration region to be observable.

  4. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  5. Solar flares and energetic particles.

    PubMed

    Vilmer, Nicole

    2012-07-13

    Solar flares are now observed at all wavelengths from γ-rays to decametre radio waves. They are commonly associated with efficient production of energetic particles at all energies. These particles play a major role in the active Sun because they contain a large amount of the energy released during flares. Energetic electrons and ions interact with the solar atmosphere and produce high-energy X-rays and γ-rays. Energetic particles can also escape to the corona and interplanetary medium, produce radio emissions (electrons) and may eventually reach the Earth's orbit. I shall review here the available information on energetic particles provided by X-ray/γ-ray observations, with particular emphasis on the results obtained recently by the mission Reuven Ramaty High-Energy Solar Spectroscopic Imager. I shall also illustrate how radio observations contribute to our understanding of the electron acceleration sites and to our knowledge on the origin and propagation of energetic particles in the interplanetary medium. I shall finally briefly review some recent progress in the theories of particle acceleration in solar flares and comment on the still challenging issue of connecting particle acceleration processes to the topology of the complex magnetic structures present in the corona.

  6. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Carbone, Vincenzo; Lepreti, Fabio; Antonucci, Ester

    2016-03-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  7. Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Petrosian, V.

    Several new observations notably high spatial and spectral X-ray observations of impulsive phase of solar flares by YOHKOH and RHESSI, and Solar Energetic Particle (SEP) spectra by ACE have provided strong evidence in favor of stochastic acceleration of electrons, protons and other ions by plasma waves or turbulence. Theoretical arguments also favor such a model if the seed particles come from the background thermal plasma. I will describe these evidences and the theoretical framework for evaluation of the accelerated particle spectra, their transport and radiation. The predictions of the models will be compared with several features of the observations with specific emphasize on heating vs acceleration by turbulence, thermal vs nonthermal electron spectra, looptop vs footpoint emission fro flaring loops, electron vs proton acceleration rates and 3He vs 4He (and other ion) abundances in SEPs.

  8. Helium (3) Rich Solar Flares

    DOE R&D Accomplishments Database

    Colgate, S. A.; Audouze, J.; Fowler, W. A.

    1977-05-03

    The extreme enrichment of {sup 3} He {sup 4} He greater than or equal to 1 in some solar flares as due to spallation and the subsequent confinement of the products in a high temperature, kT approx. = 200 keV, high density, n{sub e} approx. = 3 x 10{sup 15} cm {sup -3} plasma associated with the magnetic instability producing the flare is interpreted. The pinch or filament is a current of high energy protons that creates the spallation and maintains the temperature that produces the high energy x-ray spectrum and depletes other isotopes D, Li, Be, and B as observed. Finally the high temperature plasma is a uniquely efficient spallation target that is powered by the interaction of stellar convection and self generated magnetic field.

  9. Prediction of M and X Solar flares by Using Machine Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Raboonik, Abbas; Safari, Hossein; Dadashi, Neda; Alipour, Nasibeh

    2016-07-01

    The study and prediction of the solar flares are very important due to their thorough impact on the Earth's climate, space weather, and telecommunications. Flares are abrupt magnetic explosions in the atmosphere of the Sun. The exact mechanism(s) for the energy release and occurrence of the flares is(are) still unknown. The only way for prediction of the solar flares is based on the probabilistic methods. Observations strongly suggest that their occurrence is highly dependent on the magnetic structures of the solar atmospheric features. The occurrence probabilities for M and X class flares are calculated up to 18 hours before the ignition of them using solar magnetic field data recorded by HMI/SDO. To achieve this goal, Zernike moments and "Support Vector Machine algorithm" are applied to analyze the data. Our calculations guarantee almost 94 percent accuracy in the prediction of solar flares.

  10. A statistic study of ionospheric solar flare activity indicator

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Ding, Feng; Ning, Baiqi; Wan, Weixing; Yu, You; Hu, Lianhuan

    According to the Chapman ionization theory, an ionospheric solar flare activity indicator (ISFAI) is given by the solar zenith angle and the variation rate of ionospheric vertical total electron content, which is measured from a global network of dual-frequency GPS receivers. The ISFAI is utilized to statistically analyze the ionospheric responses to 1439 M-class and 126 X-class solar flares during solar cycle 23 (1996-2008). The statistical results show that the occurrence of ISFAI peak increases obviously at 3.2 total electron content unit (TECU)/h (1 TECU = 1016 elm-2) and reaches the maximum at 10 TECU/h during M-class flares and 10 TECU/h and 40 TECU/h for X-class flares. ISFAI is closely correlated with the 26-34 nm extreme ultraviolet flux but poorly related to the 0.1-0.8 nm X-ray flux. The central meridian distance (CMD) of flare location is an important reason for depressing relationship between ISFAI and X-ray Flux. Through the CMD effect modification, the ISFAI has a significant dependence on the X-ray flux with a correlation coefficient of 0.76. The ISFAI sensitivity enables to detect the extreme X-class flares, as well as the variations of one order of magnitude or even smaller (such as for C-class flares). Meanwhile, ISFAI is helpful to the calibration of the X-ray flux at 0.1-0.8 nm observed by GOES during some flares. In addition, statistical results demonstrate that ISFAI can detect 80% of all M-class flares and 92% for all X-class ones during 1996-2008. Owing to the high sensitivity and temporal resolution, ISFAI can be utilized as a solar flare detection parameter to monitor space weather.

  11. THERMAL FRONTS IN SOLAR FLARES

    SciTech Connect

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  12. Thermal Fronts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  13. Electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Droge, Wolfgang; Meyer, Peter; Evenson, Paul; Moses, Dan

    1989-01-01

    For the period Spetember 1978 to December 1982, 55 solar flare particle events for which the instruments on board the ISEE-3 spacecraft detected electrons above 10 MeV. Combining data with those from the ULEWAT spectrometer electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (less than 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (more than 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.

  14. Particle acceleration in solar flares

    NASA Astrophysics Data System (ADS)

    Klecker, Berndt; Cliver, Ed; Kahler, Steve; Cane, Hilary

    Particle acceleration in solar flares was the topic of a workshop held at the University of Tasmania in Hobart, Australia, January 24-26, 1990. The workshop was held in conjunction with the 21st International Cosmic Ray Conference in Adelaide, South Australia, January 6-19, 1990. Forty-six scientists participated in the workshop, which was organized by Hilary Cane and John Humble of the University of Tasmania; Marc Duldig, Australian Antarctic Division, University of Tasmania; Ed Cliver, Geophysics Laboratory, U.S. Air Force Systems Command; and Steve Kahler, Boston College, Mass.

  15. Solar and Stellar Flares and Their Effects on Planets

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari

    2015-08-01

    Recent space observations of the Sun revealed that the solar atmosphere is full of explosions, such as flares and flare-like phenomena. These flares generate not only strong electromagnetic emissions but also nonthermal particles and bulk plasma ejections, which sometimes lead to geomagnetic storms and affect terrestrial environment and our civilization, damaging satellite, power-grids, radio communication etc. Solar flares are prototype of various explosions in our universe, and hence are important not only for geophysics and environmental science but also for astrophysics. The energy source of solar flares is now established to be magnetic energy stored near sunspots. There is now increasing observational evidence that solar flares are caused by magnetic reconnection, merging of anti-parallel magnetic field lines and associated magneto-plasma dynamics (Shibata and Magara 2011, Living Review). It has also been known that many stars show flares similar to solar flares, and often such stellar flares are much more energetic than solar flares. The total energy of a solar flare is typically 10^29 - 10^32 erg. On the other hand, there are much more energetic flares (10^33 - 10^38 erg) in stars, especially in young stars. These are called superflares. We argue that these superflares on stars can also be understood in a unified way based on the reconnection mechanism. Finally we show evidence of occurrence of superflares on Sun-like stars according to recent stellar observations (Maehara et al. 2012, Nature, Shibayama et al. 2013), which revealed that superflares with energy of 10^34 - 10^35 erg (100 - 1000 times of the largest solar flares) occur with frequency of once in 800 - 5000 years on Sun-like stars which are very similar to our Sun. Against the previous belief, these new observations as well as theory (Shibata et al. 2013) suggest that we cannot deny the possibility of superflares on the present Sun. Finally, we shall discuss possible impacts of these superflares

  16. Solar flare leaves sun quaking

    NASA Astrophysics Data System (ADS)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  17. Solar gamma rays. [in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1974-01-01

    The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.

  18. Millimeter emission of solar flares

    NASA Astrophysics Data System (ADS)

    Nagnibeda, V. G.; Smirnova, V. V.; Ryzhov, V. S.; Zhiltsov, A. V.

    2013-06-01

    We analyzed two unique radio observations of millimeter solar flares at 93 and 140 GHz with the THz component in these spectra. Data were obtained from ground-based radio-telescope RT-7.5 operated by Bauman Moscow State Technical University (BMSTU) with the spacial resolution of 2.5 and 1.5 arc-minutes. We analyzed temporal structure of observed radio-bursts and their dynamics in comparison with soft and hard X-ray light-curves obtained from GOES and RHESSI space-based observations. It was found the 140 GHz emission enhancement at the spectra that is new independent confirmation of the THz component existance. Also, we analyzed data of microwave solar flares with the emission enhanced at 35 GHz obtained from Nobeyama radioheliograph (NoRH) and radiopolarimeter (NoRP). It was found that the maximum of the flux density spectra was shifted toward high frequencies that didn't agree with the model spectrum obtained from microwave observations. We assumed, that such kind of spectra are associated with the gyro-synchrotron radiation of the significant number of high-energetic electrons emission with energies of about 500 keV. The emission mechanism at millimeter waves is the gyro-synchrotron radiation. However, if the energetic electrons are not enough the thermal emission mechanism could be dominant factor at millimeter radiation that could also explain the spectral maximum shift to high frequencies.

  19. Positron annihilation in solar flares

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Ramaty, R.; Werntz, C.

    1975-01-01

    The gamma ray line at 0.51 MeV originates from the annihilation of positrons. When a fraction of the positrons annihilate from bound states of positronium, the 0.51-MeV line is accompanied by a continuum of 3-gamma annihilation radiation at energies up to 0.51 MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar flare plasma are presented and positronium formation by charge exchange is discussed. The observability of the 3-gamma annihilation is increased by the inherent delay in the production and slowing down time of the positrons. It was concluded that such radiation could be detected at times late in solar gamma ray events when the continuum and prompt line emissions have essentially disappeared.

  20. Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

    NASA Astrophysics Data System (ADS)

    Wyse Jackson, T.; Kashyap, V.; McKillop, S.

    2015-12-01

    We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region's evolution. We fit power-laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results. This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO

  1. A statistic study of ionospheric solar flare activity indicator

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Wan, Weixing; Ning, Baiqi; Ding, Feng; Hu, Lianhuan; Yu, You

    2014-01-01

    According to the Chapman ionization theory, an ionospheric solar flare activity indicator (ISFAI) is given by the solar zenith angle and the variation rate of ionospheric vertical total electron content, which is measured from a global network of dual-frequency GPS receivers. The ISFAI is utilized to statistically analyze the ionospheric responses to 1439 M-class and 126 X-class solar flares during solar cycle 23 (1996-2008). The statistical results show that the occurrence of ISFAI peak increases obviously at 3.2 total electron content unit (TECU)/h (1 TECU = 1016 el m-2) and reaches the maximum at 10 TECU/h during M-class flares and 10 TECU/h and 40 TECU/h for X-class flares. ISFAI is closely correlated with the 26-34 nm extreme ultraviolet flux but poorly related to the 0.1-0.8 nm X-ray flux. The central meridian distance (CMD) of flare location is an important reason for depressing relationship between ISFAI and X-ray Flux. Through the CMD effect modification, the ISFAI has a significant dependence on the X-ray flux with a correlation coefficient of 0.76. The ISFAI sensitivity enables to detect the extreme X-class flares, as well as the variations of one order of magnitude or even smaller (such as for C-class flares). Meanwhile, ISFAI is helpful to the calibration of the X-ray flux at 0.1-0.8 nm observed by GOES during some flares. In addition, the statistical results demonstrate that ISFAI can detect 80% of all M-class flares and 92% for all X-class ones during 1996-2008.

  2. Explosive evaporation in solar flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1987-01-01

    This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

  3. Sun Releases X-class Solar Flare

    NASA Video Gallery

    This movie shows the July 6, 2012 X1.1 flare in the 171 Angstrom wavelength as captured by NASA’s Solar Dynamics Observatory (SDO). AR1515 was the source for this flare. AR1515 has been active ...

  4. SDO Sees Late Phase in Solar Flares

    NASA Video Gallery

    On May 5, 2010, shortly after the Solar Dynamics Observatory (SDO) began normal operation, the sun erupted with numerous coronal loops and flares. Many of these showed a previously unseen "late pha...

  5. C3-class Solar Flare Eruption

    NASA Video Gallery

    Just as sunspot 1105 was turning away from Earth on Sept. 8, the active region erupted, producing a C3-class solar flare (peak @ 2330 UT) and a fantastic prominence. This is a three color closeup o...

  6. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-11-20

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  7. Composition of energetic particles from solar flares.

    PubMed

    Garrard, T L; Stone, E C

    1994-10-01

    We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.

  8. Bayesian model comparison of solar flare spectra

    NASA Astrophysics Data System (ADS)

    Ireland, J.; Holman, G.

    2012-12-01

    The detailed understanding of solar flares requires an understanding of the physics of accelerated electrons, since electrons carry a large fraction of the total energy released in a flare. Hard X-ray energy flux spectral observations of solar flares can be fit with different parameterized models of the interaction of the flare-accelerated electrons with the solar plasma. Each model describes different possible physical effects that may occur in solar flares. Bayesian model comparison provides a technique for assessing which model best describes the data. The advantage of this technique over others is that it can fully account for the different number and type of parameters in each model. We demonstrate this using Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spectral data from the GOES (Geostationary Operational Environmental Satellite) X4.8 flare of 23-July-2002. We suggest that the observed spectrum can be reproduced using two different parameterized models of the flare electron content. The first model assumes that the flare-accelerated electron spectrum consisting of a single power law with a fixed low energy cutoff assumed to be below the range of fitted X-ray energies, interacting with a non-uniformly ionized target. The second model assumes that the flare-accelerated electron spectrum has a broken power law and a low energy cutoff, which interacts with a fully ionized target plasma. The low energy cutoff in this model is a parameter used in fitting the data. We will introduce and use Bayesian model comparison techniques to decide which model best explains the observed data. This work is funded by the NASA Solar and Heliospheric Physics program.

  9. Neutrons and Gamma Rays from Solar Flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Murphy, R. J.

    1983-01-01

    The theory of neutron and gamma-ray production in flares is reviewed and comparisons of the calculations with data are made. The principal conclusions pertain to the accelerated proton and electron numbers and spectra in flares and to the interaction site of these particles in the solar atmosphere. For the June 21, 1980 flare, from which high-energy neutrons and high-energy ( MeV) photons were seen, the electron-to-proton ratio is energy dependent and much smaller than unity at energies greater than 1 MeV. The interaction site of these particles appears to be the solar chromosphere.

  10. Measurements of Continuum Flux in Solar Flares

    NASA Astrophysics Data System (ADS)

    Kotrč, P.; Heinzel, P.; Procházka, O.

    2016-04-01

    A broad-band diagnostics of chromospheric flare plasma needs to analyze spectra covering many spectral lines and various continuum features. The flare spectra are well detected on the background of the solar disk, but the detection of flare line emission from the Sun-as-a-star in optical is much more difficult due to a strong background radiation. When the flare/background radiation contrast is strong enough to be detected, we need a device for measuring the flux from a selected part of the flaring region. Here we present technical demands for such an instrument and its brief description. This device denoted as Image Selector is a post-focus instrument installed at the horizontal solar telescope HSFA2 of the Ondřejov observatory, described by Kotrč (2009). Its core consists of a system of diaphragms, imaging Hα telescope and a fast spectrometer with dispersion of 3 px per Å but with cadency reaching up to 50 frames per second. The first solar flares observed recently by this novel technique provide quite interesting results. Our analysis of the data proves that the described device is sufficiently sensitive to detect variations in the Balmer continuum during solar flares.

  11. Solar Flares and their Effects on Planets

    NASA Astrophysics Data System (ADS)

    Guinan, Edward Francis; Engle, Scott G.

    2015-08-01

    The effects of flares from the Sun on Earth and other solar-system planets are discussed. The strong X-ray - UV radiation and high plasma fluxes from flares can strongly effect solar system planets even as far out as the Jovian planets and their moons. Data from our "Sun in Time" program are used to study the flare properties of the Sun and solar-type stars from youth to old age. These data imply that the young Sun had numerous, very powerful flares that may have played major roles in the development and evolution of the early atmospheres of Earth and other terrestiral planets. These strong X-UV fluxes from flares can greatly effect the photochemistry of planetary atmospheres as well as ionizing and possibly eroding their atmospheres. Some examples are given. Also briefly discussed are effects of large flares from the present Sun on the Earth. Even though strong solar flares are rarer and less powerful than from the youthful Sun, they can cause significant damage to our communication and satellite systems, electrical networks, and threaten the lives of astronauts in space.This research is supported by grants from NASA (HST and Chandra) and NSF. We gratefully acknowledge this support

  12. Energy release in solar flares

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Correia, Emilia; Farnik, Frantisek; Garcia, Howard; Henoux, Jean-Claude; La Rosa, Ted N.; Machado, Marcos E. (Compiler); Nakajima, Hiroshi; Priest, Eric R.

    1994-01-01

    Team 2 of the Ottawa Flares 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.

  13. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  14. Magnetic Variations Associated With Solar Flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe

    2005-01-01

    A report summarizes an investigation of helioseismic waves and magnetic variations associated with solar flares, involving analysis of data acquired by the Michelson Doppler Imager (MDI) aboard the Solar and Heliocentric Observatory (SOHO) spacecraft, the Yohkoh spacecraft, and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft. Reconstruction of x-ray flare images from RHESSI data and comparison of them with MDI magnetic maps were performed in an attempt to infer the changes in the geometry of the magnetic field. It was established that in most flares observed with MDI, downward propagating shocks were much weaker than was one observed in the July 9, 1996 flare, which caused a strong helioseismic response. It was concluded that most of the observed impulsive variations result from direct impact of high-energy particles. Computer codes were developed for further study of these phenomena.

  15. Soliton and strong Langmuir turbulence in solar flare processes

    NASA Technical Reports Server (NTRS)

    Song, M. T.; Wu, S. T.; Dryer, M.

    1989-01-01

    The occurrence of modulational instability in the current sheet of a solar flare is investigated. Special attention is given to the plasma microinstability in this sheet and its relation to the flare process. It is found that solitons or strong Langmuir turbulence are likely to occur in the diffusion region under solar flare conditions in which the electric resistivity could be enhanced by several orders of magnitude in the region, resulting in significant heating and stochastic acceleration of particles. A numerical example is used to demonstrate the transition of the magnetic field velocity and plasma density from the outer MHD region into the diffusive region and then back out again with the completion of the energy conversion process. This is all made possible by an increase in resistivity of four to five orders of magnitude over the classical value.

  16. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  17. Reverse Current in Solar Flares

    NASA Technical Reports Server (NTRS)

    Knight, J. W., III

    1978-01-01

    An idealized steady state model of a stream of energetic electrons neutralized by a reverse current in the pre-flare solar plasma was developed. These calculations indicate that, in some cases, a significant fraction of the beam energy may be dissipated by the reverse current. Joule heating by the reverse current is a more effective mechanism for heating the plasma than collisional losses from the energetic electrons because the Ohmic losses are caused by thermal electrons in the reverse current which have much shorter mean free paths than the energetic electrons. The heating due to reverse currents is calculated for two injected energetic electron fluxes. For the smaller injected flux, the temperature of the coronal plasma is raised by about a factor of two. The larger flux causes the reverse current drift velocity to exceed the critical velocity for the onset of ion cyclotron turbulence, producing anomalous resistivity and an order of magnitude increase in the temperature. The heating is so rapid that the lack of ionization equilibrium may produce a soft X-ray and EUV pulse from the corona.

  18. Energetic electrons generated during solar flares

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried

    2015-12-01

    > electrons are accelerated up to energies beyond 30 keV is one of the open questions in solar physics. A flare is considered as the manifestation of magnetic reconnection in the solar corona. Which mechanisms lead to the production of energetic electrons in the magnetic reconnection region is discussed in this paper. Two of them are described in more detail.

  19. The Solar Flare Myth in solar-terrestrial physics

    SciTech Connect

    Gosling, J.T.

    1993-07-01

    Early observations of associations between solar flares and large non- recurrent geomagnetic storms, large {open_quote}solar{close_quote} energetic particle events, and transient shock wave disturbances in the solar wind led to a paradigm of cause and effect that gave flares a central position in the chain of events leading from solar activity to major transient disturbances in the near-earth space environment. However, research in the last two decades shows that this emphasis on flares is misplaced. In this paper the author outlines briefly the rationale for a different paradigm of cause and effect in solar- terrestrial physics that removes solar flares from their central position as the {open_quote}cause{close_quote} of major disturbances in the near-earth space environment. Instead, this central role of {open_quote}cause{close_quote} is played by events now known as coronal mass ejections, or CMEs.

  20. Detecting Solar Neutrino Flares and Flavors

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2004-06-01

    Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989 and recent ones occurred on 28th October, on 2nd-4th and 13th November 2003 have been respectively recorded by Radio-X- and Cosmic Rays detectors. These flares took place most in the open or in the edge and in the hidden solar disk (as for the September 29th, 1989 beyond 105Wo and for last November 2003 flare events). The 4th November event was the most powerful X event in the highest known rank category X28. The observed and estimated total flare energy E = 1031-1033 erg should be a source also of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise later on the terrestrial atmosphere. These first earliest prompt solar neutrino burst might be already recorde, in a few neutrino clustered events, in largest neutrino underground detectors as Super-Kamiokande one, in time correlation with the sharp X-Radio flare onset. Our first estimate at the Super-Kamiokande II Laboratory is found to be a few (1-5) events. Their discover (or absence) should constrains the solar flare acceleration, energetic and its inner environment. Any large neutrino flare event might even verify the expected neutrino flavour mixing leading to comparable electron- muon event as well as a comparable energy fluence and spectra. Rare Tau appearence by neutrino muon into tau conversion might also arise.

  1. Carbon-poor solar flare events

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Gloeckler, G.; Hovestadt, D.

    1979-01-01

    Energetic particle flux enhancements over the period October 1973 - December 1977 were surveyed using ULET sensor on the IMP-8 spacecraft. During the four year period the most extreme periods of Fe enrichment compared to oxygen were during solar flare events in February 1974 and May 1974. In these same events, the carbon abundance with respect to oxygen was significantly depleted when compared with a value C:0 is approximately 0.45:1 for typical solar flares. These observations, taken together with previously reported He-3 enrichment in these events, give strong evidence for the importance of a wave-particle interaction in the pre-injection heating of the ambient matter.

  2. Neutral pion production in solar flares

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Rieger, E.; Cooper, J. F.; Share, G. H.

    1985-01-01

    The Gamma-Ray Spectrometer (GRS) on SMM has detected more than 130 flares with emission approx 300 keV. More than 10 of these flares were detected at photon energies 10 MeV. Although the majority of the emission at 10 MeV must be from electron bremsstrahlung, at least two of the flares have spectral properties 40 MeV that require gamma rays from the decay of neutral pions. It is found that pion production can occur early in the impulsive phase as defined by hard X-rays near 100 keV. It is also found in one of these flares that a significant portion of this high-energy emission is produced well after the impulsive phase. This extended production phase, most clearly observed at high energies, may be a signature of the acceleration process which produces solar energetic particles (SEP's) in space.

  3. Magnetic Fields in Limb Solar Flares

    NASA Astrophysics Data System (ADS)

    Lozitsky, V. G.; Lozitska, N. I.; Botygina, O. A.

    2013-02-01

    Two limb solar flares, of 14 July 2005 and 19 July 2012, of importance X1.2 and M7.7, are analyzed at present work. Magnetic field strength in named flares are investigated by Stokes I±V profiles of Hα and D3 HeI lines. There are direct evidences to the magnetic field inhomogeneity in flares, in particular, non-paralelism of bisectors in I+V and I-V profiles. In some flare places, the local maximums of bisectors splitting were found in both lines. If these bisector splittings are interpreted as Zeeman effect manifestation, the following magnetic field strengths reach up to 2200 G in Hα and 1300 G in D3. According to calculations, the observed peculiarities of line profiles may indicate the existence of optically thick emissive small-scale elements with strong magnetic fields and lowered temperature.

  4. Dependence of Sunspot Properties on Flare Occurrence and Flare-CME Association

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Hui

    2015-04-01

    Previous studies showed that the intense flares tend to erupt from the large sunspot region with complex magnetic configuration and strong magnetic field. However, note that not all the active regions (ARs) classified as βγδ would produce X-class flares. To clarify the significance of sunspot properties on solar explosive events, we reexamine the dependence of flare magnitude on sunspot size and magnetic type during 1996-2014 based on the report of NOAA Solar Region Summary and the measurements of GOES soft X-ray flux. In particular, we focus on the βγδ-type ARs to relate the flare productivity to the sunspot area and magnetic field strength by means of the line-of-sight magnetograms from SOHO/MDI and SDO/HMI. Two flare-productive ARs, 10486 and 12192, with βγδ magnetic configuration during most periods of their disk passages are further investigated to characterize the sunspots and flare-CME association.

  5. On Solar Flares and Cycle 23

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir; Le Mouël, Jean-Louis; Courtillot, Vincent

    2012-02-01

    The anomalous character of Solar Cycle 23, which ended in the Summer of 2009, has been pointed out by many authors. It has even been proposed that the solar dynamo is undergoing a transition from a state of “grand maximum” to one of “regular oscillations”. We analyze the temporal distribution of the number and energy of solar flares, and the duration of intervals between them, over Cycles 21 to 23. We consider 32 355 flares of class C2 and larger (C2+) from the GOES catalogue. Daily values of X-ray flux (wavelengths 1 to 8 Å) have been computed by summing the energy proxies of the events. The series of daily numbers of C2+ solar flares are strongly correlated with their daily energy flux. The long duration of Cycle 23 (12.8 years based on sunspots, 13.2 years based on flares) and the long interval with no C2+ flare between the end of Cycle 23, and the start of Cycle 24 (466 days) are remarkable compared to the two earlier cycles. The amplitudes of extreme flares increase when the mean flux decreases. We have calculated running averages of energy flux over intervals going from 7 to 365 days. The singular shape of Cycle 23 is increasingly striking with increasing interval: in the first ≈ 70% of the cycle (displayed on a logarithmic scale) we see linearly rising maxima, whereas minima are aligned along a descending slope for the latter part of the cycle. The energy flux oscillates between these and takes the shape of a bifurcation, starting near 2002 (a time when it is suggested that photospheric fields were abruptly reduced). Inter-event intervals between successive C2+ flares undergo quasi-periodic (≈ 11 years) oscillations between two distinct states, which we call “active” and “quiet”, with extremely sharp onset and termination. The ratio of time spent in the active vs. quiet states ranges from 1.8 to 1.4 for Cycles 21 to 23, Cycle 23 having the longest quiet period. It has been proposed that anomalous Cycle 23 resembles Cycle 4, which was

  6. A solar tornado triggered by flares?

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2013-01-01

    Context. Solar tornados are dynamical, conspicuously helical magnetic structures that are mainly observed as a prominence activity. Aims: We investigate and propose a triggering mechanism for the solar tornado observed in a prominence cavity by SDO/AIA on September 25, 2011. Methods: High-cadence EUV images from the SDO/AIA and the Ahead spacecraft of STEREO/EUVI are used to correlate three flares in the neighbouring active-region (NOAA 11303) and their EUV waves with the dynamical developments of the tornado. The timings of the flares and EUV waves observed on-disk in 195 Å are analysed in relation to the tornado activities observed at the limb in 171 Å. Results: Each of the three flares and its related EUV wave occurred within ten hours of the onset of the tornado. They have an observed causal relationship with the commencement of activity in the prominence where the tornado develops. Tornado-like rotations along the side of the prominence start after the second flare. The prominence cavity expands with the accelerating tornado motion after the third flare. Conclusions: Flares in the neighbouring active region may have affected the cavity prominence system and triggered the solar tornado. A plausible mechanism is that the active-region coronal field contracted by the "Hudson effect" through the loss of magnetic energy as flares. Subsequently, the cavity expanded by its magnetic pressure to fill the surrounding low corona. We suggest that the tornado is the dynamical response of the helical prominence field to the cavity expansion. Movies are available in electronic form at http://www.aanda.org

  7. A solar tornado caused by flares

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2014-01-01

    An enormous solar tornado was observed by SDO/AIA on 25 September 2011. It was mainly associated with a quiescent prominence with an overlying coronal cavity. We investigate the triggering mechanism of the solar tornado by using the data from two instruments: SDO/AIA and STEREO-A/EUVI, covering the Sun from two directions. The tornado appeared near to the active region NOAA 11303 that produced three flares. The flares directly influenced the prominence-cavity system. The release of free magnetic energy from the active region by flares resulted in the contraction of the active region field. The cavity, owing to its superior magnetic pressure, expanded to fill this vacated space in the corona. We propose that the tornado developed on the top of the prominence due to the expansion of the prominence-cavity system.

  8. Predicting large solar flares with data assimilation

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Charbonneau, Paul

    2015-08-01

    Solar and stellar flares are magnetically-driven, scale-invariant energy release events spanning over 8 orders of magnitude in energy. The prediction of the largest solar flares, of class X, is a particularly hard task due the scarcity of such events. The detailed 3D modelling of flaring active regions still requires today too much numerical resources to be routinely used for near real-time predictions. Alternative, empirical models hence have to be designed to perform such predictions. Among the models that adequately reproduce the power-law distribution in flare sizes, avalanche models have the advantage of being numerically cheap to operate. However, they usually rely on a stochastic driver, which can be expected to degrade their predictive capabilities. Building on the pioneering work of Lu and Hamilton, we develop a class of avalanche models which succeed in minimizing the built-in stochastic ingredients while retaining the solar flares power-law distribution. We show that the largest avalanches occurring in these models are robust with respect to the stochastic realization, which opens new perspectives for the prediction of the largest (and most dangerous) solar flares.We further combine data assimilation of the GOES X-ray flux with our avalanche models to carry out actual predictions. The GOES X-ray flux is transformed into a series of peaks that is fed to the model, which automatically finds an initial condition that is compatible with the observed series of events. We then test our prediction model against past GOES large events and discuss the possibility to use our data assimilation package in near real-time applications.

  9. Diagnostics of Solar Flare Energetic Particles

    NASA Astrophysics Data System (ADS)

    Mallik, Procheta; Brown, J. C.; MacKinnon, A. L.

    2009-05-01

    For work on my thesis dissertation, we have been studying some energetic processes in solar flares. On our work on Hard X-ray (HXR) emission from flares, we have shown that recombination emission can exceed the bremsstrahlung HXR flux for certain flare conditions. We will show some spectral features characteristic of non-thermal recombination HXR emission and will suggest how it plays a significant role in the flare HXR continuum, something that has been ignored in the past. It is important to note that these results could demand a reconsideration of the numbers of accelerated electrons since recombination can be much more efficient in producing HXR photons than bremsstrahlung. In related work on diagnosing particle acceleration in flares, we also have an interest in studying solar neutrons. To this end, we will present our work done with new-age neutron detectors developed by our colleagues at the University of New Hampshire. Using laboratory and simulated data from the detector to produce its response matrix, we then employ regularisation and deconvolution techniques to produce encouraging results for data inversion. As a corollary, we have also been reconsidering the role of inverse Compton (IC) scattering of photospheric photons. Gamma-ray observations clearly show the presence of 100 MeV electrons and positrons in the solar corona, by-products of GeV energy ions. Here we will present results of IC scattering of such photons taking proper account of radiation field geometry near the solar surface. If observed, such radiation would let us determine the number of secondary positrons produced in large flares, contributing to a full picture of ion acceleration and to predicting neutron fluxes to be encountered by future inner heliosphere space missions. This work is supported by a UK STFC Rolling Grant and a Dorothy Hodgkin's Scholarship (PM).

  10. Flare Hybrids

    NASA Astrophysics Data System (ADS)

    Tomczak, M.; Dubieniecki, P.

    2015-12-01

    On the basis of the Solar Maximum Mission observations, Švestka ( Solar Phys. 121, 399, 1989) introduced a new class of flares, the so-called flare hybrids. When they start, they look like typical compact flares (phase 1), but later on, they look like flares with arcades of magnetic loops (phase 2). We summarize the characteristic features of flare hybrids in soft and hard X-rays as well as in the extreme ultraviolet; these features allow us to distinguish flare hybrids from other flares. In this article, additional energy release or long plasma cooling timescales are suggested as possible causes of phase 2. We estimate the frequency of flare hybrids, and study the magnetic configurations favorable for flare hybrid occurrence. Flare hybrids appear to be quite frequent, and the difference between the lengths of magnetic loops in the two interacting loop systems seem to be a crucial parameter for determining their characteristics.

  11. The energy spectra of solar flare electrons

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.

    1985-01-01

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.

  12. On Solar Flares and Cycle 23

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.; Le Mouel, J.; Courtillot, V.

    2011-12-01

    The anomalous character of solar cycle 23 has been pointed out. It is proposed that the solar dynamo is undergoing a transition from a state of "grand maximum" to one of "regular oscillations". In this study, we analyze the time distribution of the number and energy of solar flares, and the duration of intervals between them, from cycle 21 to 23. We consider 32355 flares of class C2 and larger (C2+) from the GOES catalogue. Daily values of X-ray flux (wavelengths 1-8Å) have been computed by summing the energy proxies of the events. The series of daily numbers of C2+ solar flares are strongly correlated to their daily energy flux. The long duration of cycle 23 (~13 years), the long interval with no C2+ flare between the end of cycle 23 and the start of cycle 24 (466 days) are remarkable compared to the two earlier cycles. Amplitudes of extreme flares increase when mean flux decreases. We have calculated running averages of energy flux over intervals going from 7 to 365 days: the singular shape of cycle 23 is increasingly striking with increasing interval: the first ~70% of the cycle display (in logarithmic scale) linearly rising maxima, whereas minima are aligned along a descending slope for the latter part of the cycle. Energy flux oscillates between these and takes the shape of a bifurcation, starting near 2002. Durations of inter-event intervals between successive C2+ flares undergo quasi-periodic (~11yr) oscillations between two distinct states, which we call "active" and "quiet", with sharp onset and termination. The ratio of time spent in the active vs quiet states ranges from 1.8 to 1.4 for cycles 21 to 23, cycle 23 having the longest quiet period. It has been proposed that anomalous cycle 23 resembles cycle 4, which was followed by reduced cycles 5 and 6 at the time of the Dalton-minimum in solar activity, often associated with a cooler global climate. It will be interesting to monitor the evolution of solar flares in cycle 24, in order to further our

  13. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  14. Solar flare irradiation records in Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.

    1981-01-01

    The observation of tracks from solar flare heavy nuclei in Antarctic meteorite samples is reported. In an analysis of nuclear track densities in eight L and H chondrites of low metamorphic grade, it was found that two interior specimens of sample 77216, an L-3 chondrite, contain olivine grains with track densities much higher than the average track densities, indicating precompaction irradiation by solar flares in different shielding conditions. Preliminary data from mass spectroscopic analyses show a large excess of noble gases, with a Ne-20/Ne-22 ratio of greater than or equal to 10, indicating the presence of solar-type noble gas. Results of track density measurements in the other Antarctic meteorites range from 10,000 to 4,000,000/sq cm, which is within the range observed in non-Antarctic L-group meteorites

  15. Observations of particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1979-01-01

    Solar flares provide several examples of nonthermal particle acceleration. The paper reviews the information gained about these processes via X-ray and gamma-ray astronomy, which can presently distinguish among three separate particle-acceleration processes at the sun: an impulsive accelerator of more than 20 keV electrons, a gradual accelerator of more than 20 keV electrons, and a gradual accelerator of more than 10 MeV ions. The acceleration energy efficiency (total particle energy divided by total flare energy) of any of these mechanisms cannot be less than about 0.1%, although the gradual acceleration does not occur in every flare. The observational material suggests that both the impulsive and gradual accelerations take place preferentially in closed magnetic-field structures, but that the electrons decay in these traps before they can escape. The ions escape very efficiently.

  16. X-Class: A Guide to Solar Flares

    NASA Video Gallery

    Solar flares are classified according to their strength. The smallest ones are B-class, followed by C, M and X, the largest. A powerful X-class flare can create long lasting radiation storms, which...

  17. Short-term predictions of solar flares.

    NASA Astrophysics Data System (ADS)

    Burov, V. A.

    1990-02-01

    A review of present-day theoretical investigations of the problem of the accumulation and release of energy in solar flares permits advancing the opinion that only individual flare events are described by a concrete model and that a single model alone does not describe the entire diversity of flares. Consideration of the observational data does not permit claiming the existence of a single universal mechanism known today of flare events. It appears possible to treat the problem of prediction in terms of the algebra of logic (Boolean logic) and to compare the truth table with the often-used contingency table. The introduction of a number of very general assumptions permits forming a general approach to the development of predictive schemes and selection of the individual elements of the models and informative criteria. Experimental results are given on the testing of some prediction procedures. The author's procedure of routine short-term prediction of flares on the basis of the methods of instruction on pattern recognition implemented in the form of a set of programs is outlined. The results of the application of this procedure in 1986 - 1988 are presented.

  18. Characteristics of energetic solar flare electron spectra

    NASA Technical Reports Server (NTRS)

    Moses, Dan; Droege, Wolfgang; Meyer, Peter; Evenson, Paul

    1989-01-01

    A 55 event survey of energy spectra of 0.1-100 MeV interplanetary electrons originating from solar flares as measured by two spectrometers onboard the ISEE 3 (ICE) spacecraft for the years 1978-1982 has been completed. Spectra generated using the maximum flux of a given event in each energy channel were restricted to events with a well-defined flux rise time. Two broad groups of electron spectra are considered. In one group, the spectra are well represented by a single power law in rigidity with spectral index in the range 3-4.5. The spectra in the other group deviate from a power law in rigidity systematically in that they harden with increasing rigidity. Events with near power-law spectra are found to be correlated with long-duration soft X-ray events, whereas those with hardening spectra are correlated with short-duration events. The possible variation of acceleration and propagation processes with the properties of the flare site is discussed, using the duration of the soft X-ray flare emission as an indicator of the physical parameters of the flare site (flare volume, density, coronal height, and magnetic field geometry).

  19. Periodicity in the most violent solar eruptions: recent observations of coronal mass ejections and flares revisited

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin; Xie, Jing-Lan; Liang, Hong-Fei

    2012-03-01

    Using the Hilbert-Huang Transform method, we investigate the periodicity in the monthly occurrence numbers and monthly mean energy of coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph Experiment on board the Solar and Heliographic Observatory from 1999 March to 2009 December. We also investigate the periodicity in the monthly occurrence numbers of Hα flares and monthly mean flare indices from 1996 January to 2008 December. The results show the following. (1) The period of 5.66 yr is found to be statistically significant in the monthly occurrence numbers of CMEs; the period of 10.5 yr is found to be statistically significant in the monthly mean energy of CMEs. (2) The periods of 3.05 and 8.70yr are found to be statistically significant in the monthly occurrence numbers of Hα flares; the period of 9.14yr is found to be statistically significant in the monthly mean flare indices.

  20. MEASUREMENTS OF ABSOLUTE ABUNDANCES IN SOLAR FLARES

    SciTech Connect

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  1. PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION

    SciTech Connect

    Boucheron, Laura E.; Al-Ghraibah, Amani; McAteer, R. T. James

    2015-10-10

    We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a geostationary operational environmental satellite (GOES) class. When we additionally consider non-flaring regions, we find an increased average error of approximately three-fourths a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This is supported by our larger error rates of some 40 hr in the time-to-flare regression problem. The 38 magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem.

  2. A phenomenological model of solar flares

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1978-01-01

    The energy of solar flares is derived from the magnetic energy of fields convected to the sun's surface and subsequently converted to heat and energetic particles within the chromosphere. The circumstances of this conversion in most current models is magnetic flux annihilation at a neutral sheet. An analysis is conducted of the constraints of flux annihilation. It is shown that the present evidence of solar cosmic rays, X-rays, gamma-rays, and total energy suggests a choice of annihilation not at a neutral point, but by an enhanced dissipation of a field-aligned current. The field configuration is related both to its origin and to the extensive theory and laboratory experiments concerned with this configuration in magnetic fusion. The magnetic field model is applied to the August 4 flare. It is shown how the plasma heating in the annihilation region balanced by thermal conduction leads to a plasma temperature of about 20 million deg K.

  3. Carbon-poor solar flare events

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Gloeckler, G.; Hovestadt, D.

    1979-01-01

    A survey of energetic particle flux enhancements over the period from October 1973 to December 1977 has been performed by using the University of Maryland/Max-Planck-Institut ULET sensor on the IMP 8 spacecraft. During the four-year period of the study, it is found that the most extreme periods of Fe enrichment compared with oxygen were during solar flare events in February 1974 and May 1974. In these same events, the carbon abundance with respect to oxygen was significantly depleted when compared with a value C:O of about 0.45:1 for typical solar flares. These observations, taken together with previously reported He-3 enrichment in these events, give strong evidence for the importance of a wave-particle interaction in the preinjection heating of the ambient matter.

  4. Explosive plasma flows in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.

    1988-01-01

    Solar Maximum Mission soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflows, was observed in the coronal Ca XIX line during the soft X-ray rise phase. A red asymmetry, indicative of downflows, was observed simultaneously in chromospheric H-alpha emitted from bright flare kernels during the period of hard X-ray emission. Combining the velocity data with a measurement of coronal electron density, it is shown that the impulsive phase momentum of upflowing soft X-ray-emitting plasma equalled that of the downflowing H-alpha-emitting plasma to within one order of magnitude. In particular, the momentum of the upflowing plasma was 2 x 10 to the 21st g cm/s while that of the downflowing plasma was 7 x 10 to the 21st g cm/s, with a factor of 2 uncertainty on each value. This equality supports the explosive chromospheric evaporation model of solar flares, in which a sudden pressure increase at the footprint of a coronal loop produces oppositely directed flows in the heated plasma.

  5. Soft X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  6. TESTING AUTOMATED SOLAR FLARE FORECASTING WITH 13 YEARS OF MICHELSON DOPPLER IMAGER MAGNETOGRAMS

    SciTech Connect

    Mason, J. P.; Hoeksema, J. T. E-mail: JTHoeksema@sun.stanford.ed

    2010-11-01

    Flare occurrence is statistically associated with changes in several characteristics of the line-of-sight magnetic field in solar active regions (ARs). We calculated magnetic measures throughout the disk passage of 1075 ARs spanning solar cycle 23 to find a statistical relationship between the solar magnetic field and flares. This expansive study of over 71,000 magnetograms and 6000 flares uses superposed epoch (SPE) analysis to investigate changes in several magnetic measures surrounding flares and ARs completely lacking associated flares. The results were used to seek any flare associated signatures with the capability to recover weak systematic signals with SPE analysis. SPE analysis is a method of combining large sets of data series in a manner that yields concise information. This is achieved by aligning the temporal location of a specified flare in each time series, then calculating the statistical moments of the 'overlapping' data. The best-calculated parameter, the gradient-weighted inversion-line length (GWILL), combines the primary polarity inversion line (PIL) length and the gradient across it. Therefore, GWILL is sensitive to complex field structures via the length of the PIL and shearing via the gradient. GWILL shows an average 35% increase during the 40 hr prior to X-class flares, a 16% increase before M-class flares, and 17% increase prior to B-C-class flares. ARs not associated with flares tend to decrease in GWILL during their disk passage. Gilbert and Heidke skill scores are also calculated and show that even GWILL is not a reliable parameter for predicting solar flares in real time.

  7. Spectrometers for fast neutrons from solar flares.

    PubMed

    Slobodrian, R J; Potvin, L; Rioux, C

    1994-10-01

    Neutrons with energies exceeding 1 GeV are emitted in the course of solar flares. Suitable dedicated neutron spectrometers with directional characteristics are necessary for a systematic spectroscopy of solar neutrons. We report here a study of instruments based on the detection of proton recoils from hydrogenous media, with double scattering in order to provide directional information, and also a novel scheme based on the detection of radiation from the neutron magnetic dipole moment, permitting also directional detection of neutrons. Specific designs and detection systems are discussed.

  8. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  9. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-09-10

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  10. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  11. Acceleration of electrons during the flash phase of solar flares

    NASA Technical Reports Server (NTRS)

    Kane, S. R.

    1974-01-01

    The characteristics of the electron acceleration process operating during the flash phase of solar flares are deduced from the high time resolution observations of impulsive solar X rays greater than or equal to 10 keV and other flash phase emissions from small solar flares, and the implications of these findings are discussed.

  12. Solar Aurora and a White Light Flare

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2016-07-01

    A white light flare analyzed by Krucker et al. (2011) poses a severe challenge to the solar physicist because of the high energy fluxes implied by a hitherto not achieved spatial resolution of simultaneous observations with Hinode and RHESSI. A scenario based on the auroral acceleration mechanism applied to flare conditions, 'Solar Aurora', is able to reproduce the observations, but implies several far-reaching assumptions on the mechanism as well as on the environmental parameters. Unavoidable consequences exist with regard to the spatial and temporal scales. They are extremely short because of the high density of the corona and the need for an energy conversion process involving some kind of anomalous resistivity, i.e. extremely high electric current densities. A further postulate is that of spontaneous propagation of an energy conversion front (ENF), once established, in three dimensions. It is assumed that about one half of the converted energy appears in form of runaway electrons. Obliqueness of the ENFs prevents the existence of a return current problem for the emerging runaway electrons. The key flare parameters are formulated quantitatively in terms of the environmental properties. Transverse length scales turn out to be in the ten centimeter range, time-scales in the range of one millisecond. The energy conversion occurs in 10E3 -10E4 ENFs just above the transition region in a background field of the order of 2000 G. Observational consequences are being discussed.

  13. Synchronized Periodicities of Cosmic Rays, Solar Flares and Ground Level Enhancements

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Perez-Peraza, Jorge

    2016-07-01

    The behaviour changes in galactic cosmic rays before the occurrence of a ground level enhancement may be used as a predictor of ground level enhancements occurrence. In order to go deep into the determination of which is the agent for such connections we study in this work the common periodicities among them and the source of ground level enhancements, namely solar flares. To find the relationships among different indexes in time-frequency space, we use wavelet coherence analysis. Also we used the probability density function in galactic cosmic rays and solar flare, which allowed the finding of a binomial asymmetric distribution and a Beta distribution respectively.

  14. Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations

    NASA Astrophysics Data System (ADS)

    García-Rigo, Alberto; Núñez, Marlon; Qahwaji, Rami; Ashamari, Omar; Jiggens, Piers; Pérez, Gustau; Hernández-Pajares, Manuel; Hilgers, Alain

    2016-07-01

    A web-based prototype system for predicting solar energetic particle (SEP) events and solar flares for use by space launch operators is presented. The system has been developed as a result of the European Space Agency (ESA) project SEPsFLAREs (Solar Events Prediction system For space LAunch Risk Estimation). The system consists of several modules covering the prediction of solar flares and early SEP Warnings (labeled Warning tool), the prediction of SEP event occurrence and onset, and the prediction of SEP event peak and duration. In addition, the system acquires data for solar flare nowcasting from Global Navigation Satellite Systems (GNSS)-based techniques (GNSS Solar Flare Detector, GSFLAD and the Sunlit Ionosphere Sudden Total Electron Content Enhancement Detector, SISTED) as additional independent products that may also prove useful for space launch operators.

  15. Millimeter Observation of Solar Flares with Polarization

    NASA Astrophysics Data System (ADS)

    Silva, D. F.; Valio, A. B. M.

    2016-04-01

    We present the investigation of two solar flares on February 17 and May 13, 2013, studied in radio from 5 to 405 GHz (RSTN, POEMAS, SST), and in X-rays up to 300 keV (FERMI and RHESSI). The objective of this work is to study the evolution and energy distribution of the population of accelerated electrons and the magnetic field configuration. For this we constructed and fit the radio spectrum by a gyro synchrotron model. The optically thin spectral indices from radio observations were compared to that of the hard X-rays, showing that the radio spectral index is harder than the latter by 2. These flares also presented 10-15 % circular polarized emission at 45 and 90 GHz that suggests that the sources are located at different legs of an asymmetric loop.

  16. A slingshot model for solar flares

    NASA Technical Reports Server (NTRS)

    Benford, Gregory

    1991-01-01

    Recent observations of intense, impulsive gamma-ray and X-ray-emitting solar flares underline the suddenness of these events. The simultaneous emission of X-rays greater than 40 keV from electron bremsstrahlung and gamma-rays requiring several MeV protons shows that all particles must be accelerated in less than 5 s. This paper proposes a simple model to explain such events, using the energy stored in the stretched field lines of a coronal arch. When reconnection occurs at the top of the arch, field lines retract like stretched rubber bands, sweeping up plasma and acting like a piston or slingshot. When the slug of plasma caught in the magnetic fields strikes the photosphere, it deposits its considerable kinetic energy, heating and compressing the intruding slug. Ten slugs of 100 km radius striking the photosphere may account for the 10 to the 29th ergs radiation from loop flares.

  17. Influence of solar flares on the X-ray corona

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Batchelor, D. A.

    1986-01-01

    Sequences of X-ray images of solar flares, obtained with the Hard X-ray Imaging Spectrometer on the SMM spacecraft, reveal many dynamical phenomena. Movies of 20 flares recorded with 6-sec time resolution were examined. A preliminary analysis of the events as a group are presented, and some new aspects of the well-studied May 21, 1980 flare and a November 6, 1980 flare are discussed.

  18. Radio Emissions Precursors of Impulsive Phase of Solar Flares Recorded by CALLISTO-BR

    NASA Astrophysics Data System (ADS)

    Fernandes, Francisco; Cunha-Silva, Rafael; Galdino, Marcela; Sodré, Zuleika

    2016-07-01

    A solar flare consists in an eruptive process and involves a sudden release of energy generated by processes carried on from instabilities in the magnetic configuration at solar atmosphere, generating emissions at different wavelengths. Usually, the pre-flare phase presents an increasing of soft X-ray, ultraviolet and radio emissions. In this work, we present a survey of solar radio emission recorded in metric wavelengths (45 - 250 MHz) by CALLISTO-BR spectrograph, belong to the e-Callisto network, associated with pre-flare phase of solar X-rays flares. A sample of 281 radio emissions was analyzed, and 120 were identified as precursor emissions of X-rays flares. The main results of the statistics can be summarized as: (a) 55% of the precursor radio emissions start less than 60 minutes before the beginning of the associated X-ray flare and about 20% start less than 20 minutes before the X-ray emission; (b) 27% of flares with precursor emissions are classified as B class, 61% of C class, and less than 22% of M class. No precursors radio emissions were associated with X class flare; (c) about 42% of radio precursor emissions are of type III bursts and 33% have complex morphology, as drifting pulsating structures. Analysis of global emission trends recorded during the precursor phase of the C4.8 flare of February 15, 2011 (14:32-14:51 UT) is also presented. The occurrence of radio emission during the pre-impulsive phase of a solar flare suggests the presence of plasma turbulence in the active region, since during the impulsive phase, when the energy is released, occur the heating of the plasma and increasing of soft X-ray emission as identified in the event analyzed. The results are presented and discussed.

  19. Comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh; Haisch, Bernhard; Strong, Keith T.

    1995-01-01

    In a recent paper Gosling (1993) claims that solar flares are relatively unimportant for understanding the terrestrial consequences of solar activity, and argues that coronal mass ejections (CMEs) produce the most powerful terrestrial disturbances. This opinion conflicts with observation, as it is well known that CMEs and flares are closely associated, and we disagree with Gosling's insistence on a simplistic cause-and-effect description of the interrelated phenomena of a solar flare. In this brief response we present new Yohkoh data and review older results that demonstrate the close relationships among CMEs, flares, filament eruptions, and other forms of energy release such as particle acceleration.

  20. Space observations of comets during solar flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    Problems connected with mechanisms for comet outbursts as well as for gamma-ray bursts remain open. Meantime, calculations show that an irradiation of a certain class of cometary nuclei, having high specific electric resistance, by intense fluxes of energetic protons and posi-tively charged ions with kinetic energies more than 1 MeV/nucleon, ejected from the Sun during strong solar flares, can produce a macroscopic high-voltage electric double layer with positive charge in the subsurface region of the nucleus, during irradiation time of the order of 10-100 hours at heliocentric distances around 1-10 AU. The maximum electric energy accumulated in such layer will be restricted by discharge potential of the layer material. For the comet nuclei with the typical radius of the order of 1-10 km the accumulated energy of such natural electric capacitor is comparable to the energy of large comet outbursts that are estimated on the basis of ground-based optical observations of comets. The impulse X-ray radiation anticipated from the high-voltage electric discharge of the capacitor may serve as an indicator of realization of the processes above considered. Therefore, space observations of comets and pseudo-asteroids of cometary origin, having brightness correlation with solar activity, using space X-ray obser-vatories during strong solar flares are very interesting for the physics of comets as well as for high energy astrophysics.

  1. The flares of August 1972. [solar flare characteristics and spectra

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Tanaka, K.

    1973-01-01

    Observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra, are analyzed. The region (McMath 11976) showed inverted polarity from its inception on July 11; the great activity was due to extremely high shear and gradients in the magnetic field, as well as a constant invasion of one polarity into the opposite; observations in lambda 3835 show remarkable fast flashes in the impulsive flare of 18:38 UT on Aug. 2 with lifetimes of 5 sec, which may be due to dumping of particles in the lower chromosphere. Flare loops show evolutionary increases of their tilts to the neutral line in the flares of Aug. 4 and 7. Spectroscopic observations show red asymmetry and red shift of the H alpha emission in the flash phase of the Aug. 7 flare, as well as substantial velocity shear in the photosphere during the flare, somewhat like earthquake movement along a fault. Finally the total H alpha emission of the Aug. 7 flare could be measured accurately as about 2.5 x 10 to the 30th power erg, considerably less than coarser previous estimates for great flares.

  2. Study of the behaviour of the equatorial ionization anomaly (EIA) during solar flares

    NASA Astrophysics Data System (ADS)

    Aggarwal, Malini; Astafyeva, Elvira

    2014-05-01

    A solar flare occurring in the sun's chromosphere is observed in various wavebands (radio to x-rays). The response of the solar flare which causes sudden changes in the earth's ionosphere is not yet well understood though investigations suggested that its impact depends on the size and location of occurrence of solar flare on sun. Considering this, we have carried an investigation to study the response of two strong and gradual solar flares: 2 Apr 2001 (X20, limb) and 7 Feb 2010 (M6.4, disk) on the earth's equatorial-low latitude regions using multi-technique observations of satellite and ground-based instruments. We found a weakening of strength of equatorial ionization anomaly (EIA) in total electron content during both the flares as observed by TOPEX, JASON-1 and JASON-2 altimeter measurements. The H component of the geomagnetic field also shows a sudden change at equatorial and low latitude stations in the sunlit hemisphere during the flare. The observations of ionosonde at low-latitudes indicate a strong absorption of higher-frequency radio signals. The detail response of these flare on EIA of the earth's ionosphere will be presented and discussed.

  3. SDO's View of May 5, 2010 Solar Flare - With Timeline

    NASA Video Gallery

    This video shows a composite view of the solar flare on May 5, 2010, taken by the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) cameras in multiple wavelengths (211, 193, 17...

  4. SOHO Captures CME From X5.4 Solar Flare

    NASA Video Gallery

    The Solar Heliospheric Observatory (SOHO) captured this movie of the sun's coronal mass ejection (CME) associated with an X5.4 solar flare on the evening of March 6, 2012. The extremely fast and en...

  5. SECONDARY FLARE RIBBONS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zhang, Jun; Li, Ting; Yang, Shuhong E-mail: liting@nao.cas.cn

    2014-02-20

    Using the observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we statistically investigate the flare ribbons (FRs) of 19 X-class flares of the 24th solar cycle from 2010 June to 2013 August. Of these 19 flares, the source regions of 16 can be observed by AIA and the FRs of each flare are well detected, and 11 of the 16 display multiple ribbons. Based on the ribbon brightness and the relationship between the ribbons and post-flare loops, we divide the multiple ribbons into two types: normal FRs, which are connected by post-flare loops and have been extensively investigated, and secondary flare ribbons (SFRs), which are weaker than the FRs, not connected by post-flare loops, and always have a short lifetime. Of the 11 SFRs, 10 appear simultaneously with the FRs, and none of them have post-flare loops. The last one, on the other hand, appears 80 minutes later than the FR, lasts almost two hours, and also has no post-flare loops detected. We suggest that the magnetic reconnection associated with this SFR is triggered by the blast wave that results from the main flare. These observations imply that in some flare processes, more than two sets of magnetic loops or more than twice the number of magnetic reconnections are involved.

  6. The Origin of the Solar Flare Waiting-Time Distribution.

    PubMed

    Wheatland

    2000-06-20

    It was recently pointed out that the distribution of times between solar flares (the flare waiting-time distribution) follows a power law for long waiting times. Based on 25 years of soft X-ray flares observed by Geostationary Operational Environmental Satellite instruments, it is shown that (1) the waiting-time distribution of flares is consistent with a time-dependent Poisson process and (2) the fraction of time the Sun spends with different flaring rates approximately follows an exponential distribution. The second result is a new phenomenological law for flares. It is shown analytically how the observed power-law behavior of the waiting times originates in the exponential distribution of flaring rates. These results are argued to be consistent with a nonstationary avalanche model for flares.

  7. Ultrarelativistic electrons and solar flare gamma-radiation

    NASA Technical Reports Server (NTRS)

    Semukhin, P. E.; Kovaltsov, G. A.

    1985-01-01

    Ten solar flares with gamma radiation in excess of 10 MeV were observed. Almost all took place within a heliolatitude greater than 60 deg, close to the solar limb, an indication of the essential anisotropy of high-energy gamma radiation. This high-energy solar flare gamma radiation can be explained by the specific features of the bremsstrahlung of ultrarelativistic electrons trapped within the magnetic arc of the solar atmosphere, even if the acceleration of the electrons is anisotropic.

  8. PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS

    SciTech Connect

    Park, Sung-hong; Wang Haimin; Chae, Jongchul

    2010-07-20

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10{sup 22} Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10{sup 42} Mx{sup 2} during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

  9. Flares on A-type Stars: Evidence for Heating of Solar Corona by Nanoflares?

    NASA Astrophysics Data System (ADS)

    Švanda, Michal; Karlický, Marian

    2016-11-01

    We analyzed the occurrence rates of flares on stars of spectral types K, G, F, and A, observed by Kepler. We found that the histogram of occurrence frequencies of stellar flares is systematically shifted toward a high-energy tail for A-type stars compared to stars of cooler spectral types. We extrapolated the fitted power laws toward flares with smaller energies (nanoflares) and made estimates for total energy flux to stellar atmospheres by flares. We found that, for A-type stars, the total energy flux density was at least four-times smaller than for G stars. We speculate that this deficit in energy supply may explain the lack of hot coronae on A-type stars. Our results indicate the importance of nanoflares for heating and formation of the solar corona.

  10. Solar Flare Super-Events: When they Can Occur and the Energy Limits of their Realization

    NASA Astrophysics Data System (ADS)

    Ishkov, Vitaly N.

    2015-03-01

    For the successful development of terrestrial civilization it is necessary to estimate the space factors, including phenomena on Sun, which can ruin it or cause such catastrophic loss, that the restoration to the initial level can take unacceptably long time. Super-powerful solar flares are the only such phenomena. Therefore an attempt is undertaken to estimate the possibility of such super-event occurrence at this stage of our star evolution. Since solar flare events are the consequence of the newly emerging magnetic fluxes interacting with the already existing magnetic fields of active regions, are investigated the observed cases which lead to the realization of such super-events. From the observations of the maximal magnetic fluxes during the period of reliable solar observations, the conclusion is made that the super- extreme solar flares cannot significantly exceed the most powerful solar flares which have already been observed. On the statistics of the reliable solar cycles the sunspot groups, in which occurred the most powerful solar super-events (August- September 1859 - solar cycle 10; June 1991 - SC 22; October-November 2003 - SC 23) appeared in the periods of the solar magnetic field reorganization between the epochs of "increased" and "lowered" solar activity.

  11. The Characteristics of Solar X-Class Flares and CMEs: A Paradigm for Stellar Superflares and Eruptions?

    NASA Astrophysics Data System (ADS)

    Harra, Louise K.; Schrijver, Carolus J.; Janvier, Miho; Toriumi, Shin; Hudson, Hugh; Matthews, Sarah; Woods, Magnus M.; Hara, Hirohisa; Guedel, Manuel; Kowalski, Adam; Osten, Rachel; Kusano, Kanya; Lueftinger, Theresa

    2016-08-01

    This paper explores the characteristics of 42 solar X-class flares that were observed between February 2011 and November 2014, with data from the Solar Dynamics Observatory (SDO) and other sources. This flare list includes nine X-class flares that had no associated CMEs. In particular our aim was to determine whether a clear signature could be identified to differentiate powerful flares that have coronal mass ejections (CMEs) from those that do not. Part of the motivation for this study is the characterization of the solar paradigm for flare/CME occurrence as a possible guide to the stellar observations; hence we emphasize spectroscopic signatures. To do this we ask the following questions: Do all eruptive flares have long durations? Do CME-related flares stand out in terms of active-region size vs. flare duration? Do flare magnitudes correlate with sunspot areas, and, if so, are eruptive events distinguished? Is the occurrence of CMEs related to the fraction of the active-region area involved? Do X-class flares with no eruptions have weaker non-thermal signatures? Is the temperature dependence of evaporation different in eruptive and non-eruptive flares? Is EUV dimming only seen in eruptive flares? We find only one feature consistently associated with CME-related flares specifically: coronal dimming in lines characteristic of the quiet-Sun corona, i.e. 1 - 2 MK. We do not find a correlation between flare magnitude and sunspot areas. Although challenging, it will be of importance to model dimming for stellar cases and make suitable future plans for observations in the appropriate wavelength range in order to identify stellar CMEs consistently.

  12. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches are connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.

  13. Searching for Missing Pieces for Solar Flare Forecasting

    NASA Astrophysics Data System (ADS)

    Leka, K. D.

    2015-12-01

    Knowledge of the state of the solar photospheric magnetic field at a single instant in time does not appear sufficient to uniquely predict the size and timing of impending solar flares. Such knowledge may provide necessary conditions, such as estimates of the magnetic energy needed for a flare to occur. Given the necessary conditions, it is often assumed that the evolution of the field, possibly by only a small amount, may trigger the onset of a flare. We present the results of a study using time series of photospheric vector field data from the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO) to quantitatively parameterize both the state and evolution of solar active regions - their complexity, magnetic topology and energy - as related to solar flare events. We examine both extensive and intensive parameters and their short-term temporal behavior, in the context of predicting flares at various thresholds. Statistical tests based on nonparametric Discriminant Analysis are used to compare pre-flare epochs to a control group of flare-quiet epochs and active regions. Results regarding the type of photospheric signature examined and the efficacy of using the present state vs. temporal evolution to predict solar flares is quantified by standard skill scores. This work is made possible by contracts NASA NNH12CG10C and NOAA/SBIR WC-133R-13-CN-0079.

  14. The Conundrum of the Solar Pre-Flare Photospheric State.

    NASA Astrophysics Data System (ADS)

    Leka, KD; Barnes, Graham; Wagner, Eric

    2015-08-01

    Knowledge of the state of the solar photospheric magnetic field at a single instant in time does not appear sufficient to predict the size and timing of impending solar flares. Such knowledge may provide necessary conditions, such as the free magnetic energy needed for a flare to occur. Given the necessary conditions, it is often assumed that the evolution of the field, possibly by only a small amount, may trigger the onset of a flare. We present the results of a study using time series of photospheric vector field data from the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO) to quantitatively parameterize both the state and evolution of solar active regions - their complexity, magnetic topology and energy - as related to solar flare events. We examine both extensive and intensive parameters and their temporal behavior, in the context of both large and small flaring episodes. Statistical tests based on nonparametric Discriminant Analysis are used to compare pre-flare epochs to a control group of flare-quiet epochs and active regions. Results regarding the type of photospheric signature examined and the efficacy of using the present state vs. temporal evolution to predict solar flares is quantified by standard skill scores.This work is made possible by contracts NASA NNH12CG10C and NOAA/SBIR WC-133R-13-CN-0079.

  15. Flare heating and ionization of the low solar chromosphere. II - Observations of five solar flares

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Canfield, Richard C.; Saba, Julia L. R.

    1990-01-01

    Two neutral Mg spectral lines formed in the temperature-minimum region and the low chromosphere, at 4571 and 5173 A, are used to quantify the changes in the atmospheric structure as a function of time during five solar flares. Eight proposed flare heating and ionization mechanisms and predictions of the effects of each on the temperature minimum region are discussed. Two Mg spectral observations made at the National Solar Observatory (Sacramento Peak), along with observations of hard and soft X-rays from the SMM and GOES satellites, are compared to the predictions of the eight proposed mechanisms. The initial effects in all five flares are consistent with backwarming by enhanced Balmer- and Paschen-continuum radiation originating in the upper chromosphere. Extended heating observed in two of the flares is most likely due to UV irradiation. In all cases heating by the dissipation of nonreversed electric currents, collisions with an electron or proton beam, irradiation by soft X-rays, and dissipation of Alfven waves are eliminated.

  16. Testing Solar Flare Models with BATSE

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1995-01-01

    We propose to use high-sensitivity Burst and Transient Source Experiment (BATSE) hard X-ray observations to test the thick-target and electric field acceleration models of solar flares. We will compare the predictions made by these models with hard X-ray spectral observations obtained with BATSE and simultaneous soft X-ray Ca XIX emission observed with the Yohkoh Bragg Crystal Spectrometer (BCS). The increased sensitivities of the BATSE and BCS (relative to previous detectors) permits a renewed study of the relationship between heating and dynamical motions during the crucial rise phase of flares. With these observations, we will: (1) investigate the ability of the thick-target model to explain the temporal evolution of hard X-ray emission relative to the soft X-ray blueshift during the earliest stages of the impulsive phase; and (2) search for evidence of electric-field acceleration as implied by temporal correlations between hard X-ray spectral breaks and the Ca XIX blueshift. The proposed study will utilize hard X-ray lightcurve and spectral measurements in the 10-100 keV energy range obtained with the BATSE Large Area Detectors (LAD). The DISCLA and CONT data will be the primary data products used in this analysis.

  17. Stochastic particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Droege, W.; Schlickeiser, R.

    1985-01-01

    It is proposed that particles during the second phase of solar flares are accelerated by stochastic resonant scattering off hydromagnetic waves and first order Fermi acceleration in shock waves generated in the impulsive phase of the flare. Solutions allow arbitrary power law momentum dependences of the momentum diffusion coefficient as well as the momentum diffusion coefficient as well as the momentum loss time. The acceleration time scale to a characteristic energy approximately 100 keV for protons can be as short as 5s. The resulting electron spectra show a characteristic double power law with a transition around 200 keV and are correlated to the proton spectra evaluated under equal boundary conditions, indicating that electrons and protons are accelerated by the same mechanism. The correlation between the different spectral indices in the electron double power law and between electron and proton spectra are governed by the ratio of first to second order acceleration and therefore allow a determination of the Alfven Mach number of the shock wave.

  18. SPE in Solar Cycle 24 : Flare and CME characteristic

    NASA Astrophysics Data System (ADS)

    Neflia, Neflia

    SPE is one of the most severe hazards in the space environment. Such events, tend to occur during periods of intense solar activity, and can lead to high radiation doses in short time intervals. The proton enhancements produced by these solar events may last several days and are very hard to predict in advance and they also can cause harm to both satellite and human in space. The most significant sources of proton in the interplanetary medium are both solar flares and interplanetary shocks driven by coronal mass ejections (CMEs). In this study, I try to find the characteristic of Flare and CME that can cause the proton events in interplanetary medium. For my preliminary study, I will search flare characteristic such as class and position as an SPE causes. I also did the research with CME characteristic such as Angular Width (AW) and linier velocity. During solar cycle 24, the solar activity remain very low with several large flare and Halo CME. This low activity also occur on solar proton events in interplanetary medium. From January 2009 to May 2013, there are 25 SPEs with flux range from 12 - 6530 sfu (10 MeV). The solar flare during these events varies from C to X- class flare. From 27 X-class flare that occur during 2009 - May 2013, only 7 flares cause the SPE. Most of active region location are at solar Western Hemisphere (16/25). only 24 from 139 halo CME (AW=360) cause SPE. Although the probability of SPE from all flare and CME during this range of time is small but they have 3 common characteristics, ie, most of the SPE have active region position at Solar Western Hemisphere, the CME have AW=360 and they have a high linier velocity.

  19. Development of Daily Solar Maximum Flare Flux Forecast Models for Strong Flares

    NASA Astrophysics Data System (ADS)

    Shin, Seulki; Chu, Hyoungseok

    2015-08-01

    We have developed a set of daily solar maximum flare flux forecast models for strong flares using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) methods. We consider input parameters as solar activity data from January 1996 to December 2013 such as sunspot area, X-ray maximum flare flux and weighted total flux of the previous day, and mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classification. For a training data set, we use the same number of 61 events for each C-, M-, and X-class from Jan. 1996 to Dec. 2004, while other previous models use all flares. For a testing data set, we use all flares from Jan. 2005 to Nov. 2013. The statistical parameters from contingency tables show that the ANN models are better for maximum flare flux forecasting than the MLR models. A comparison between our maximum flare flux models and the previous ones based on Heidke Skill Score (HSS) shows that our all models for X-class flare are much better than the other models. According to the Hitting Fraction (HF), which is defined as a fraction of events satisfying that the absolute differences of predicted and observed flare flux in logarithm scale are less than equal to 0.5, our models successfully forecast the maximum flare flux of about two-third events for strong flares. Since all input parameters for our models are easily available, the models can be operated steadily and automatically on daily basis for space weather service.

  20. Electron precipitation in solar flares - Collisionless effects

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Rowland, H. L.

    1984-01-01

    A large fraction of the electrons which are accelerated during the impulsive phase of solar flares stream towards the chromosphere and are unstable to the growth of plasma waves. The linear and nonlinear evolution of plasma waves as a function of time is analyzed with a set of rate equations that follows, in time, the nonlinearly coupled system of plasma waves-ion fluctuations. As an outcome of the fast transfer of wave energy from the beam to the ambient plasma, nonthermal electron tails are formed which can stabilize the anomalous Doppler resonance instability responsible for the pitch angle scattering of the beam electrons. The non-collisional losses of the precipitating electrons are estimated, and the observational implication of these results are discussed.

  1. Ultraheavy element enrichment in impulsive solar flares

    SciTech Connect

    Eichler, David

    2014-10-10

    Particle acceleration by cascading Alfvén wave turbulence was suggested as being responsible for energetic particle populations in {sup 3}He-rich solar flares. In particular, it was noted that the damping of the turbulence by the tail of the particle distribution in rigidity naturally leads to the dramatic enhancement of a pre-accelerated species—as {sup 3}He is posited to be—and superheavy elements. The subsequent detection of large enrichment of ultraheavies, relative to iron, has apparently confirmed this prediction, lending support to the original idea. It is shown here that this picture could be somewhat sharpened by progress in understanding the three-dimensional geometrical details of cascading Alfvén turbulence. The mechanism may be relevant in other astrophysical environments where the source of turbulence is nonmagnetic, such as clusters of galaxies.

  2. Stochastic acceleration of solar flare protons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    The acceleration of solar flare protons is considered by cyclotron damping of intense Alfven wave turbulence in a magnetic trap. The energy diffusion coefficient is computed for a near-isotropic distribution of super-Alfvenic protons and a steady-state solution for the particle spectrum is found for both transit-time and diffusive losses out of the ends of the trap. The acceleration time to a characteristic energy approximately 20 Mev/nucl can be as short as 10 sec. On the basis of phenomenological arguments an omega/2 frequency dependence for the Alfven wave spectrum is inferred. The correlation time of the turbulence lies in the range .0005 less than tau/corr less than .05s.

  3. Solar flares, proton showers, and the space shuttle.

    PubMed

    Rust, D M

    1982-05-28

    The space shuttle era will focus renewed attention on the hazards of the space environment to human habitation. The chief unpredictable hazard for astronauts is energetic proton radiation from solar flares. In some orbits, there is no reasonable level of shielding material that will protect shuttle occupants from potentially lethal doses of radiation. The effects of a solar flare that occurred druing the first flight of the Columbia are discussed and current flare research reviewed. The emphasis is on progress made during the recent international Solar Maximum Year toward understanding the origins of proton showers.

  4. Electron acceleration in impulsive solar flares

    SciTech Connect

    Kane, S.R.; Benz, A.O.; Treumann, R.A.

    1982-12-01

    Simultaneous observations of the hard X-ray, microwave, and type III and DCIM (decimetric)radio bursts associated with the 1978 December 4 solar flare have been used to study the physical parameters relevant to the acceleration and propagation of energetic electrons during the impulsive phase of a solar flare. The hard X-ray observations were made with the X-ray spectrometer aboard the ISEE 3 spacecraft. The radio spectra in metric and decimetric bands were recorded with the radiospectrograph located at Durnten, near Zurich, Switzerland. The microwave observations were made at the Sagamore Hill and Bern observatories. The three metric type III bursts coincided with the three most prominent hard X-ray peaks. This is the fist time a clear one-to-one association between single type III bursts and hard X-ray peaks has been established. The average delay of the type III bursts with respect to the X-ray peaks was 0.5 s. The harder the X-ray spectrum, the higher was the drift rate of the associated type III burst. The characteristic electron energies inferred from the drift rate are of the order of 70 keV. The observed increase in the high-frequency cutoff of the metric type III bursts during the impulsive phase has been examined in terms of the decreasing altitude of the electron acceleration/injection region, the increasing hardness of the electron spectrum, and the decreasing acceleration time. A pulsating decimetric continuum (DCIM) was also found to be present during and before the impulsive phase. The DCIM source seems to coincide spatially with the electron acceleration region and the (projected) origin of the associated type II shock.ction region.

  5. Particle acceleration by a solar flare termination shock.

    PubMed

    Chen, Bin; Bastian, Timothy S; Shen, Chengcai; Gary, Dale E; Krucker, Säm; Glesener, Lindsay

    2015-12-01

    Solar flares--the most powerful explosions in the solar system--are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model of solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.

  6. Particle acceleration by a solar flare termination shock.

    PubMed

    Chen, Bin; Bastian, Timothy S; Shen, Chengcai; Gary, Dale E; Krucker, Säm; Glesener, Lindsay

    2015-12-01

    Solar flares--the most powerful explosions in the solar system--are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model of solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares. PMID:26785486

  7. Response of the Dip Equatorial Lower Thermosphere to Intense Solar Flares

    NASA Astrophysics Data System (ADS)

    Chandrasekharan Nair, Vineeth; Bhardwaj, Anil; Pant, Tarun

    2016-07-01

    The response of the Equatorial Electrojet (EEJ) induced geomagnetic field over a dip equatorial station to solar flares of varying strength occurred during different local times has been analyzed. It has been observed that, in general, the geomagnetic field response very rapidly to most of the intense flares, which occurred in different geomagnetic conditions. On an average 30-40 nT enhancement is observed in the geomagnetic field during the solar flares. However, there were extreme cases, which exhibit enhancements as high as ~100 nT. The response time of the magnetic field to the flares found to be varying between 4-50 minutes depending upon the class of the flares, their time of occurrence and the geomagnetic conditions. The extent of the field enhancement is found to be proportional to the intensity of the flare. During morning hours, an average time delay of ~10-15 minutes is observed during the morning flares and average time delay of 15-25 minutes is observed during the noon time. On the other hand, the time delay is found to be minimum during the evening hours (~5 minutes). This study discusses these aspects in detail.

  8. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  9. A common stochastic process in solar and stellar flares

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Fang, Cheng

    2015-08-01

    Solar flares, with energies of 1027 - 1032 ergs, are believed to be powered by sudden release of magnetic energy stored in the corona. Stellar flares, observationally 102 - 106 more intense than solar flares, are generally assumed to release energy through the same underlying mechanism: magnetic reconnection. It is thus expected similar statistical properties between two groups of flares. The selected candidates are 23400 solar flares observed over one solar cycle by GOES spacecraft and 3140 stellar flares from Kepler data adapted from the catalog of Balona (MNRAS, 447, 2714, 2015). We examine the flare frequency as a function of duration, energy, and waiting time. The distributions of flare duration and energy can be well understood in the context of the avalanche model of a self-organized criticality (SOC) system (Aschwanden, A&A, 539, 2, 2012). The waiting time distribution of the SOC system can be explained by a non-stationary Poisson process (Li et al. ApJ Letters, 792, 26, 2014).

  10. Nuclear processes and neutrino production in solar flares

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.; Murphy, R. J.; Kozlovsky, S.

    1985-01-01

    The determination of flare neutrino flux is approached from the standpoint of recent observations and theoretical results on the nuclear processes in solar flares. Attention is given to the energy spectra and total numbers of accelerated particles in flares, as well as their resulting production of beta(+)-emitting radionuclei and pions; these should be the primary sources of neutrinos. The observed 0.511 MeV line flux for the June 21, 1980 flare is compared with the expected from the number and spectrum of accelerated particles.

  11. Development of Daily Maximum Flare-Flux Forecast Models for Strong Solar Flares

    NASA Astrophysics Data System (ADS)

    Shin, Seulki; Lee, Jin-Yi; Moon, Yong-Jae; Chu, Hyoungseok; Park, Jongyeob

    2016-03-01

    We have developed a set of daily maximum flare-flux forecast models for strong flares (M- and X-class) using multiple linear regression (MLR) and artificial neural network (ANN) methods. Our input parameters are solar-activity data from January 1996 to December 2013 such as sunspot area, X-ray maximum, and weighted total flare flux of the previous day, as well as mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classifications. For a training dataset, we used 61 events each of C-, M-, and X-class from January 1996 to December 2004. For a testing dataset, we used all events from January 2005 to November 2013. A comparison between our maximum flare-flux models and NOAA model based on true skill statistics (TSS) shows that the MLR model for X-class and the average of all flares (M{+}X-class) are much better than the NOAA model. According to the hitting fraction (HF), which is defined as a fraction of events satisfying the condition that the absolute differences of predicted and observed flare flux on a logarithm scale are smaller than or equal to 0.5, our models successfully forecast the maximum flare flux of about two-thirds of the events for strong flares. Since all input parameters for our models are easily available, the models can be operated steadily and automatically on a daily basis for space-weather services.

  12. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    SciTech Connect

    Caspi, Amir; McTiernan, James M.; Warren, Harry P.

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ≲2 to ≳50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ∼2-25 MK thermal plasma emission, and RHESSI to ≳10 MK; together, the two instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ∼0.4-5 nm range, with important applications for geospace science.

  13. Solar flare count periodicities in different X-ray flare classes

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin; Xu, Jing-Chen

    2016-04-01

    Using the Morlet wavelet transform and the Hilbert-Huang transform (HHT), we investigate the periodic behaviours of C, M and X-class flare counts, respectively, recorded by the Geostationary Operational Environmental Satellites (GOES) from 1983 May to 2014 December, which cover the two complete solar cycles (SCs) 22 and 23 as well as the part of declining phase of SC 21 and rise and maximum phases of SC 24. Analyses show that the periodic behaviours of various class flare counts are different. (1) Not all periods of various class flare counts appear dominant during the cycle maxima. For C-class flares, during SC 23, periods appear dominant during the maximum phase, however, compared to those during SC 23, there are more periods during the declining phase of SC 22; for M-class flares, during SCs 22 and 23, periods appear dominant during the cycle maxima; for X-class flares, during SC 22, almost all periods appear during the maximum phase; however, during SC 23, there are more periods during the declining phase compared to those during SC 22. (2) For C-class flares, the appearance of periods do not follow the amplitude of C-class flare cycles; while, for M and X-class flares, the appearance of periods follows the amplitude of the investigated corresponding class flare cycles. (3) From the overall trends, the 10 yr and longer time-scale trends of the monthly numbers of M and X-class flares, we can infer that the maximum values of the monthly M and X-class flare numbers would increase during SC 25.

  14. TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS

    SciTech Connect

    Bloomfield, D. Shaun; Higgins, Paul A.; Gallagher, Peter T.; McAteer, R. T. James

    2012-03-10

    Solar flares occur in complex sunspot groups, but it remains unclear how the probability of producing a flare of a given magnitude relates to the characteristics of the sunspot group. Here, we use Geostationary Operational Environmental Satellite X-ray flares and McIntosh group classifications from solar cycles 21 and 22 to calculate average flare rates for each McIntosh class and use these to determine Poisson probabilities for different flare magnitudes. Forecast verification measures are studied to find optimum thresholds to convert Poisson flare probabilities into yes/no predictions of cycle 23 flares. A case is presented to adopt the true skill statistic (TSS) as a standard for forecast comparison over the commonly used Heidke skill score (HSS). In predicting flares over 24 hr, the maximum values of TSS achieved are 0.44 (C-class), 0.53 (M-class), 0.74 (X-class), 0.54 ({>=}M1.0), and 0.46 ({>=}C1.0). The maximum values of HSS are 0.38 (C-class), 0.27 (M-class), 0.14 (X-class), 0.28 ({>=}M1.0), and 0.41 ({>=}C1.0). These show that Poisson probabilities perform comparably to some more complex prediction systems, but the overall inaccuracy highlights the problem with using average values to represent flaring rate distributions.

  15. Energetic electrons in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Batchelor, D. A.

    1984-01-01

    A new analysis was made of a thermal flare model proposed by Brown, Melrose, and Spicer (1979) and Smith and Lilliequist (1979). They assumed the source of impulsive hard X-rays to be a plasma at a temperature of order 10 to the 8th power K, initially located at the apex of a coronal arch, and confined by ion-acoustic turbulence in a collisionless conduction front. Such a source would expand at approximately the ion-sound speed, C sub S = square root of (k T sub e/m sub i), until it filled the arch. Brown, Melrose, and Spicer and Smith and Brown (1980) argued that the source assumed in this model would not explain the simultaneous impulsive microwave emission. In contrast, the new results presented herein suggest that this model leads to the development of a quasi-Maxwellian distribution of electrons that explains both the hard X-ray and microwave emissions. This implies that the source sizes can be determined from observations of the optically-thick portions of microwave spectra and the temperatures obtained from associated hard X-ray observations. In this model, the burst emission would rise to a maximum in a time, t sub r, approximately equal to L/c sub s, where L is the half-length of the arch. New observations of these impulsive flare emissions were analyzed herein to test this prediction of the model. Observations made with the Solar Maximum Mission spacecraft and the Bern Radio Observatory are in good agreement with the model.

  16. EVIDENCE FOR HOT FAST FLOW ABOVE A SOLAR FLARE ARCADE

    SciTech Connect

    Imada, S.; Aoki, K.; Hara, H.; Watanabe, T.; Harra, L. K.; Shimizu, T.

    2013-10-10

    Solar flares are one of the main forces behind space weather events. However, the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona where hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows, but there have been no spectroscopic scanning observations to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 2012 January 27 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (∼30MK) fast (>500 km s{sup –1}) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop.

  17. The Efficiency of Solar Flares With Gamma-ray Emission of Solar Cosmic Rays Production.

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurt, V. G.; Mavromichalaki, H.

    A statistical analysis of solar flares with gamma-ray emission measured by SMM (W.T. Westrand, at al.,1999, Ap.J, Suppl. Series, 409) and proton events occurrence based on the proton events catalog (A.Belov, at al.2001, Proc. 27th ICRC 2001, Ham- burg, 3465) was performed. We obtained the probabilities of the appearence of pro- ton fluxes near the Earth from the different fluence values of gamma-line emission, bremsstrahlung emissions and soft X-ray emission of the parent flares. This statisti- cal approach allows us to obtain if not precise than at least proper quantitative ratios than relate the flares with obvious evidences for proton production with the escaped from the Sun viciniy. We than look at the available data of soft X-ray flares time behaviour and show the exact timing of proton acceleration and probably shock for- mation comparing the soft X-ray injection function. The shock wave influence on the proton escaping process is shortly discussed.

  18. Studying the thermal/non-thermal crossover in solar flares

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1994-01-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  19. The Carrington solar flares of 1859: consequences on life.

    PubMed

    Muller, C

    2014-09-01

    The beginning of September 1859 was the occasion of the first and unique observation of a giant solar white light flare, auroral displays were observed at low latitudes and geomagnetic observatories recorded exceptional storms. This paper reviews the impact of the event on the earth system with a special emphasis on living processes using the historical record and current scientific analysis. The data used includes reports from the telegraph operators, mortality and morbidity records, proxies as agricultural production. Comparisons with later solar flare events will be attempted on the basis of the record and the consequences of an event of comparable magnitude to the 1859 set of flares will be discussed.

  20. The Carrington Solar Flares of 1859: Consequences on Life

    NASA Astrophysics Data System (ADS)

    Muller, C.

    2014-09-01

    The beginning of September 1859 was the occasion of the first and unique observation of a giant solar white light flare, auroral displays were observed at low latitudes and geomagnetic observatories recorded exceptional storms. This paper reviews the impact of the event on the earth system with a special emphasis on living processes using the historical record and current scientific analysis. The data used includes reports from the telegraph operators, mortality and morbidity records, proxies as agricultural production. Comparisons with later solar flare events will be attempted on the basis of the record and the consequences of an event of comparable magnitude to the 1859 set of flares will be discussed.

  1. The Carrington solar flares of 1859: consequences on life.

    PubMed

    Muller, C

    2014-09-01

    The beginning of September 1859 was the occasion of the first and unique observation of a giant solar white light flare, auroral displays were observed at low latitudes and geomagnetic observatories recorded exceptional storms. This paper reviews the impact of the event on the earth system with a special emphasis on living processes using the historical record and current scientific analysis. The data used includes reports from the telegraph operators, mortality and morbidity records, proxies as agricultural production. Comparisons with later solar flare events will be attempted on the basis of the record and the consequences of an event of comparable magnitude to the 1859 set of flares will be discussed. PMID:25351684

  2. High-energy particles associated with solar flares

    NASA Technical Reports Server (NTRS)

    Sakurai, K.; Klimas, A. J.

    1974-01-01

    High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.

  3. Imaging X-Ray Polarimeter for Solar Flares (IXPS)

    NASA Technical Reports Server (NTRS)

    Hosack, Michael; Black, J. Kevin; Deines-Jones, Philip; Dennis, Brian R.; Hill, Joanne E.; Jahoda, Keith; Shih, Albert Y.; Urba, Christian E.; Emslie, A. Gordon

    2011-01-01

    We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IX PS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20-50 keV energy range during an M- or X class flare, and will provide imaging information at the approx.10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.

  4. Relativistic electron transport and bremsstrahlung production in solar flares

    NASA Astrophysics Data System (ADS)

    Miller, James A.; Ramaty, Reuven

    1989-09-01

    A Monte Carlo simulation of ultrarelativistic electron transport in solar flare magnetic loops has been developed. It includes Coulomb, synchrotron, and bremsstrahlung energy losses; pitch-angle scattering by Alfven and whistler turbulence in the coronal region of the loop; and magnetic mirroring in the converging magnetic flux tubes beneath the transition region. Depth distributions, time profiles, energy spectra, and angular distributions of the resulting bremsstrahlung emission are calculated. It is found that both the preferential detection of solar flares with greater than 10 MeV emission near the limb of the sun and the observation of ultrarelativistic electron bremsstrahlung from flares on the disk are consequences of the loop transport model. The declining portions of the observed time profiles of greater than 10 MeV emission from solar flares can also be accounted for, and it is proposed that these portions are determined by transport and not acceleration.

  5. Solar flares and avalanches in driven dissipative systems

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.; Mctiernan, J. M.; Bromund, Kenneth R.

    1993-01-01

    The contention of Lu and Hamilton (1991) that the energy release process in solar flares can be understood as avalanches of many small reconnection events is further developed. The dynamics of the complex magnetized plasma of solar active regions is modeled with a simple driven dissipative system, consisting of a vector field with local instabilities that cause rapid diffusion of the field. It is argued that the avalanches in this model are analogous to solar flares. The distributions of avalanches in this model are compared with the solar flare frequency distributions obtained from ISEE 3/ICE satellite observations. Quantitative agreement is found with the energy, peak luminosity, and duration distributions over four orders of magnitude in flare energy, from the largest flares down to the completeness limit of the observations. It is predicted that the power-law solar flare frequency distributions will be found to continue downward with the same logarithmic slopes to an energy of about 3 x 10 exp 25 ergs and duration of about 0.3 s, with deviations from power-law behavior below these values.

  6. Statistical characterization of Strong and Mid Solar Flares and Sun EUV rate monitoring with GNSS

    NASA Astrophysics Data System (ADS)

    Monte-Moreno, Enric; Hernandez-Pajares, Manuel; Garcia-Rigo, Alberto; Beniguel, Yannick; Orus-Perez, Raul; Prieto-Cerdeira, Roberto; Schlueter, Stefan

    2015-04-01

    The global network of permanent Global Navigation Satellite Systems (GNSS) receivers has become an useful and affordable way of monitoring the Solar EUV flux rate, especially -for the time being- in the context of Major and Mid geoeffective intensity Solar Flares (M. Hernandez-Pajares et al., Space Weather, doi:10.1029/2012SW000826, 2012). In fact the maturity of this technique (GNSS Solar FLAre Indicator, GSFLAI) has allowed to incorporate it in operational real-time (RT) conditions, thanks to the availability of global GNSS datastreams from the RT International GNSS Network (M. Caissy et al, GPS World, June 1, 2012), and performed in the context of the MONITOR and MONITOR2 ESA-funded projects (Y. Beniguel et al., NAVITEC Proc., 978-1-4673-2011-5 IEEE, 2012). The main goal of this presentation is to summarize a detailed recent study of the statistical properties of Solar Flares (E. Monte and M. Hernandez-Pajares, J. Geophys. Res., doi:10.1002/2014JA020206, 2014) by considering the GNSS proxy of EUV rate (GSFLAI parameter) computed independently each 30 seconds during the whole last solar cycle. An statistical model has been characterized that explains the empirical results such as (a) the persistence and presence of bursts of solar flares and (b) their long tail peak values of the solar flux variation, which can be characterized by: (1) A fractional Brownian model for the long-term dependence, and (2), a power law distribution for the time series extreme values. Finally, an update of the Solar Flares' occurrence during the recent months of Solar Activity, gathered in RT within MONITOR2 project, will close the paper.

  7. Hinode magnetic-field observations of solar flares for exploring the energy storage and trigger mechanisms

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshifumi; Inoue, Satoshi; Kawabata, Yusuke

    2015-08-01

    Solar flares abruptly release the free energy stored as a non-potential magnetic field in the corona and may be accompanied by eruptions of the coronal plasma. Magnetic reconnection is considered as a physical process in which the magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration, but the location of magnetic reconnection is difficult to identify directly because of low emission measure at the reconnection region. We are still lack of observational knowledge on the 3D magnetic configuration and physical conditions for leading to flare trigger. Accurate measurements of vector magnetic fields at the solar photosphere, provided by the Solar Optical Telescope onboard Hinode, help us in exploring how the free energy is stored in the solar atmosphere and how the release of the energy is triggered. This presentation will review the magnetic field configuration and possible candidates for flare trigger primarily based on Hinode observations of some large flare events, which may include X5.4/X1.3 flares on 7 March 2012, X1.2 flare on 7 January 2014 and two M-class flares on 2 February 2014. The 7 March 2012 events were observed in an active region with delta-type sunspots, showing a strong shear in the entire magnetic system. For the sheared magnetic structure, the inclusion of a small-scale trigger field was identified near the polarity inversion line with excitation of a high-speed material flow in the horizontally oriented magnetic field formed nearly in parallel to the polarity inversion line. The observations suggest that gas dynamics at the solar surface play a vital role of leading to the onset of flares. The 7 January 2014 event is an exceptional event which most scientists would not be able to predict its occurrence. The flare unexpectedly happened apart from the sheared magnetic field region. The M-class flares on 2 February 2014 were observed in the magnetic field configuration, in which four magnetic domains were

  8. Implications of RHESSI Observations for Solar Flare Models and Energetics

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2006-01-01

    Observations of solar flares in X-rays and gamma-rays provide the most direct information about the hottest plasma and energetic electrons and ions accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has observed over 18000 solar flares in X-rays and gamma-rays since its launch in February of 2002. RHESSI observes the full Sun at photon energies from as low as 3 keV to as high as 17 MeV with a spectral resolution on the order of 1 keV. It also provides images in arbitrary bands within this energy range with spatial resolution as good as 3 seconds of arc. Full images are typically produced every 4 seconds, although higher time resolution is possible. This unprecedented combination of spatial, spectral, and temporal resolution, spectral range and flexibility has led to fundamental advances in our understanding of flares. I will show RHESSI and coordinated observations that confirm coronal magnetic reconnection models for eruptive flares and coronal mass ejections, but also present new puzzles for these models. I will demonstrate how the analysis of RHESSI spectra has led to a better determination of the energy flux and total energy in accelerated electrons, and of the energy in the hot, thermal flare plasma. I will discuss how these energies compare with each other and with the energy contained in other flare-related phenomena such as interplanetary particles and coronal mass ejections.

  9. Origin of the Universal Correlation between the Flare Temperature and the Emission Measure for Solar and Stellar Flares.

    PubMed

    Shibata; Yokoyama

    1999-11-20

    We present a theory to explain the observed universal correlation between flare temperature T and emission measure EM=n2V for solar and stellar flares (including solar microflares observed by Yohkoh as well as protostellar flares observed by ASCA), where n is the electron density and V is the volume. The theory is based on a magnetic reconnection model with heat conduction and chromospheric evaporation, assuming that the gas pressure of a flare loop is comparable to the magnetic pressure. This theory predicts the relation EM~B-5T17/2, which explains well the observed correlation between EM and T in the range of 6x106 K < T<108 K and 1044solar microflares to protostellar flares, if the magnetic field strength B of a flare loop is nearly constant for solar and stellar flares.

  10. A COLD, TENUOUS SOLAR FLARE: ACCELERATION WITHOUT HEATING

    SciTech Connect

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E.; Kontar, Eduard P.

    2011-04-10

    We report the observation of an unusual cold, tenuous solar flare, which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (10{sup 35} electrons s{sup -1} above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. The implications of this finding for the flaring energy release and particle acceleration are discussed.

  11. MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES

    SciTech Connect

    Yang Xiao; Lin Ganghua; Zhang Hongqi; Mao Xinjie

    2013-09-10

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform well, however, they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of predicting large flares of magnitude {>=}M5.0 and {>=}X1.0.

  12. Statistics of Multi-Wavelength Solar Flare Observations

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.

    2016-05-01

    Our current fleet of space-based solar observatories offer us a wealth of opportunities to study solar flares over a range of wavelengths, and the greatest advances in our understanding of flare physics often come from coordinated observations between different instruments. However, despite considerable effort to try and coordinate this armada of instruments over the years (e.g. through the Max Millennium Program of Solar Flare Research), there are frustratingly few solar flares that have been well and truly observed by most or all instruments simultaneously. This is due to a range of factors such as instruments having a limited field of view, satellites in low-Earth orbit going into eclipse, and observing schedules being uploaded days in advance. I shall describe a new technique to retrospectively search archival databases for flares jointly observed by RHESSI, SDO/EVE, Hinode/EIS+SOT, and IRIS. I shall also present a summary of how many flares have been observed by different configurations of these instruments since the launch of SDO.

  13. Signatures of Accelerated Electrons in Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.

    2015-08-01

    Flares energize electrons (and ions) to supra-thermal energies. In most cases the final distribution in momentum or energy space is non-Maxwellian. The non-thermal part of the energy can be the source for various emissions, including hard X-rays, synchrotron radiation and coherent radio emission. Such non-thermal emissions may contain information on the acceleration process. Several acceleration scenarios have been proposed: electric DC field, stochastic, and shock acceleration. There is observational evidence for all three scenarios. The new data come from SDO, X-ray (RHESSI), radio observations (Nobeyama, VLA and e-Callisto). Solar energetic particles are an additional channel of information.Tiny solar microflares and huge stellar flares in binary systems (RS CVns) and dMe dwarfs differ by more than 10 orders of magnitude in released energy. Yet the relation between peak luminosity in thermal (soft) X-ray and non-thermal synchrotron (radio) emission is surprisingly constant. This observational fact indicates that flare acceleration scales with energy release over a large range. Electron acceleration in flares seems to be a universal process. The constraint on simultaneous thermal X-rays and non-thermal (radio) synchrotron emission seems to select on particular kind of flare. In this subset, there seems to be only one type of acceleration.Yet, small deviations are noted: Small solar flares are softer in hard X-rays. Solar nanoflares are relatively weak in synchrotron emission. The recently noted case of radio-poor preflares will also be presented. The deviations suggest that the acceleration is less efficient in small flares and in the early phase of flares. Larger deviations are reported occasionally for solar flares and more often from stellar flares, where either thermal or non-thermal emission seems to be missing completely.The location of the acceleration in solar flares remains disputed. Observations suggesting acceleration in the soft X-ray top-tops, above

  14. Ionospheric response to X-class solar flares in the ascending half of the subdued solar cycle 24

    NASA Astrophysics Data System (ADS)

    Hazarika, Rumajyoti; Kalita, Bitap Raj; Bhuyan, Pradip Kumar

    2016-08-01

    The signature of 11 X-class solar flares that occurred during the ascending half of the present subdued solar cycle 24 from 2009 to 2013 on the ionosphere over the low- and mid-latitude station, Dibrugarh (27.5∘N, 95∘E; magnetic latitude 17.6∘N), are examined. Total electron content (TEC) data derived from Global Positioning System satellite transmissions are used to study the effect of the flares on the ionosphere. A nonlinear significant correlation (R 2 = 0.86) has been observed between EUV enhancement (ΔEUV) and corresponding enhancement in TEC (ΔTEC). This nonlinearity is triggered by a rapid increase in ΔTEC beyond the threshold value ˜1.5 (×1010 ph cm-2 s-1) in ΔEUV. It is also found that this nonlinear relationship between TEC and EUV flux is driven by a similar nonlinear relationship between flare induced enhancement in X-ray and EUV fluxes. The local time of occurrence of the flares determines the magnitude of enhancement in TEC for flares originating from nearly similar longitudes on the solar disc, and hence proximity to the central meridian alone may not play the dominating role. Further, the X-ray peak flux, when corrected for the earth zenith angle effect, did not improve the correlation between ΔX-ray and ΔTEC.

  15. Ionospheric response to X-class solar flares in the ascending half of the subdued solar cycle 24

    NASA Astrophysics Data System (ADS)

    Hazarika, Rumajyoti; Kalita, Bitap Raj; Bhuyan, Pradip Kumar

    2016-08-01

    The signature of 11 X-class solar flares that occurred during the ascending half of the present subdued solar cycle 24 from 2009 to 2013 on the ionosphere over the low- and mid-latitude station, Dibrugarh (27.5∘N, 95∘E; magnetic latitude 17.6∘N), are examined. Total electron content (TEC) data derived from Global Positioning System satellite transmissions are used to study the effect of the flares on the ionosphere. A nonlinear significant correlation ( R 2 = 0.86) has been observed between EUV enhancement (ΔEUV) and corresponding enhancement in TEC (ΔTEC). This nonlinearity is triggered by a rapid increase in ΔTEC beyond the threshold value ˜1.5 (×1010 ph cm-2 s-1) in ΔEUV. It is also found that this nonlinear relationship between TEC and EUV flux is driven by a similar nonlinear relationship between flare induced enhancement in X-ray and EUV fluxes. The local time of occurrence of the flares determines the magnitude of enhancement in TEC for flares originating from nearly similar longitudes on the solar disc, and hence proximity to the central meridian alone may not play the dominating role. Further, the X-ray peak flux, when corrected for the earth zenith angle effect, did not improve the correlation between ΔX-ray and ΔTEC.

  16. Modelling the influence of photospheric turbulence on solar flare statistics.

    PubMed

    Mendoza, M; Kaydul, A; de Arcangelis, L; Andrade, J S; Herrmann, H J

    2014-09-23

    Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging.

  17. Solar flares, proton showers, and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1982-01-01

    Attention is given the hazards posed to Space Shuttle crews by energetic proton radiation from inherently unpredictable solar flares, such as that of April 10-13, 1981, which was experienced by the Space Shuttle Columbia. The most energetic protons from this flare reached the earth's atmosphere an hour after flare onset, and would have posed a potentially lethal threat to astronauts engaged in extravehicular activity in a polar or geosynchronous orbit rather than the low-latitude, low-altitude orbit of this mission. It is shown that proton-producing flares are associated with energization in shocks, many of which are driven by coronal mass ejections. Insights gained from the Solar Maximum Year programs allow reconsideration of proton shower forecasting, which will be essential in the prediction of the weather that Space Shuttle astronauts will encounter during extravehicular activities.

  18. Particle kinematics in solar flares: observations and theory

    NASA Astrophysics Data System (ADS)

    Battaglia, Marina

    2008-12-01

    This thesis is devoted to the study of particle acceleration and propagation processes in solar flares. Solar flares are amongst the most powerful and energetic activity phenomena our Sun exhibits. They release energy of the order of 10(32) erg in seconds to minutes. In the process, electrons and protons are accelerated to relativistic energies, making flares very efficient particle accelerators. The most compelling observational signatures of flares can be found in X-rays and extreme ultra-violet wavelengths. Due to atmospheric absorption, those wavelengths can only be studied from space. Since the beginning of the space age, countless flares have been observed by satellites. The present work is largely based on observations by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), an X-ray satellite which has been observing the Sun since February 2002. It is a NASA mission with substantial Swiss hardware and software contribution. Using RHESSI observations of flares of different intensity, a deeper understanding of the particle transport and energy transport processes in flare loops, as well as the acceleration site and acceleration mechanism is sought. The time evolution of images and spectra is studied along with the quantitative relations between X-ray sources observed in the corona (coronal sources) and from the chromosphere (footpoints). The spectral relations found between coronal sources and footpoints are compared to the so-called ``intermediate thin-thick target model'', which was based on observations by the satellite Yohkoh. We show that the spectral relations between coronal sources and footpoints observed with RHESSI cannot be explained by the intermediate thin-thick target model. In a next step, return currents in the flare loop were considered. With this extension to the existing model, the spectra of the coronal source and the footpoints, as well as the relations between them can be explained, indicating the importance of return currents in

  19. STATISTICAL ANALYSES ON THERMAL ASPECTS OF SOLAR FLARES

    SciTech Connect

    Li, Y. P.; Gan, W. Q.; Feng, L.

    2012-03-10

    The frequency distribution of flare energies provides a crucial diagnostic to calculate the overall energy residing in flares and to estimate the role of flares in coronal heating. It often takes a power law as its functional form. We have analyzed various variables, including the thermal energies E{sub th} of 1843 flares at their peak time. They were recorded by both Geostationary Operational Environmental Satellites and Reuven Ramaty High-Energy Solar Spectroscopic Imager during the time period from 2002 to 2009 and are classified as flares greater than C 1.0. The relationship between different flare parameters is investigated. It is found that fitting the frequency distribution of E{sub th} to a power law results in an index of -2.38. We also investigate the corrected thermal energy E{sub cth}, which represents the flare total thermal energy including the energy loss in the rising phase. Its corresponding power-law slope is -2.35. Compilation of the frequency distributions of the thermal energies from nanoflares, microflares, and flares in the present work and from other authors shows that power-law indices below -2.0 have covered the range from 10{sup 24} to 10{sup 32} erg. Whether this frequency distribution can provide sufficient energy to coronal heatings in active regions and the quiet Sun is discussed.

  20. Observations of solar flare gamma-rays and protons

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.

    1985-01-01

    Solar flare gamma-rays (4 to 7 MeV) and protons (8 to 500 MeV) were simultaneously observed from six flares on 1 Apr., 4 Apr., 27, Apr. 13, May 1981, 1 Feb. and 6 June 1982 by the Hinotori and GMS satellites. The relationship between 4 to 7 MeV gamma-ray fluences and peak 16 to 34 MeV proton fluxes for these flares are analyzed. It does not reveal an apparent correlation between these two parameters. The present result implies that the protons producing gamma-rays and the protons observed near the Earth do not always belong to the same population.

  1. Excitation of Resonant Helioseimic Modes by Solar Flares.

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric; Rabello Soares,, Maria Cristina

    2015-08-01

    Flares are known to excite propagating sound waves in the solar atmosphere, and Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, showed that they excite resonant p-modes as well. We confirm and extend here these results by:-applying the same analysis to other locations on the Sun at the time of the Halloween flare-analyzing other events also showing a signature of p-mode excitation-looking in detail at the results of the ring diagrams analysis in terms of noise fitting and the center-to-limb variation of ring-diagram power.

  2. Excitation of Resonant Helioseimic Modes by Solar Flares

    NASA Astrophysics Data System (ADS)

    Leibacher, John William; Baudin, Frédéric; Rabello Soares, Maria Cristina

    2015-04-01

    Flares are known to excite propagating sound waves in the solar atmosphere, and Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, showed that they excite resonant p-modes as well. We confirm and extend here these results by: applying the same analysis to other locations on the Sun at the time of the Halloween flare, analyzing other events also showing a signature of p-mode excitation, looking in detail at the results of the ring diagrams analysis in terms of noise fitting and the center-to-limb variation of ring-diagram power.

  3. Effect of a solar flare on a traveling atmospheric disturbance

    NASA Astrophysics Data System (ADS)

    Qian, Liying; Burns, Alan G.; Liu, Hanli; Chamberlin, Phillip C.

    2012-10-01

    It is known that the sudden injection of energy during geomagnetic storms can excite atmospheric gravity waves (AGWs) or traveling atmospheric disturbances (TADs). Together with large-scale circulation, these AGWs/TADs transport energy and momentum away from their sources. In this paper, we investigate possible involvement of AGWs/TADs during solar flares. Model simulations of an X17 flare that occurred on October 28, 2003 shows that AGWs/TADS contributed to flare energy transport from the sunlit South-Pole region to the nightside equatorial region in 3-4 h, resulting in ˜10% nightside equatorial neutral density enhancement in the upper thermosphere. These nightside AGWs/TADs have a phase speed on the order of ˜750 m/s and a horizontal wavelength on the order of 4000 km. Enhanced solar heating to the thermosphere through enhanced ionization during flares occurs on the entire dayside, with the spatial scale of the increased solar heating being too large to excite AGWs/TADs. Further analysis revealed that strong localized enhancement of Joule heating was produced during the October 28, 2003 flare. This sudden injection of the localized heating, together with preexisting AGWs/TADs excited by moderate geomagnetic activity prior to the flare, produced intensified AGWs/TADs, which propagated energy and momentum to the equatorial region. On the other hand, model simulations showed that, under assumed geomagnetically quiet conditions, strong localized enhancement of Joule heating and AGWs/TADs were not produced during the flare. This interplay between geomagnetic activity and solar flares can be a challenge to space weather monitoring, specification, and forecasting.

  4. Solar He-3: Information from nuclear reactions in flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.

    1974-01-01

    Information on solar He-3 from nuclear reactions in flares was considered. Consideration was also given to the development of models for these reactions as well as the abundance of He-3 in the photosphere. Data show that abundances may be explained by nuclear reactions of flare acceleration protons and alpha particles with the ambient atmosphere, provided that various assumptions are made on the directionality of the interacting beams and acceleration of the particles after production.

  5. Detecting Solar Neutrino Flare in Megaton and km3 detectors

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; di Giacomo, Paola

    2009-03-01

    To foresee a solar flare neutrino signal we infer its upper and lower bound. The upper bound was derived since a few years by general energy equipartition arguments on observed solar particle flare. The lower bound, the most compelling one for any guarantee neutrino signal, is derived by most recent records of hard Gamma bump due to solar flare on January 2005 (by neutral pion decay). Because neutral and charged pions (made by hadron scattering in the flare) are born on the same foot, their link is compelling: the observed gamma flux [Grechnev V.V. et al., arXiv:0806.4424, Solar Physics, Vol. 1, October, (2008), 252] reflects into a corresponding one for the neutrinos, almost one to one. Moreover while gamma photons might be absorbed (in deep corona) or at least reduced inside the flaring plasma, the secondaries neutrino are not. So pion neutrinos should be even more abundant than gamma ones. Tens-hundred MeV neutrinos may cross undisturbed the whole Sun, doubling at least their rate respect a unique solar-side for gamma flare. Therefore we obtain minimal bounds opening a windows for neutrino astronomy, already at the edge of present but quite within near future Megaton neutrino detectors. Such detectors are considered mostly to reveal cosmic supernova background or rare Local Group (few Mpc) Supernovas events [Matthew D. Kistler et al. 0810.1959v1]. However rarest (once a decade), brief (a few minutes) powerful solar neutrino “flare” may shine and they may overcome by two to three order of magnitude the corresponding steady atmospheric neutrino noise on the Earth, leading in largest Neutrino detector at least to one or to meaning-full few events clustered signals. The voice of such a solar anti-neutrino flare component at a few tens MeVs may induce an inverse beta decay over a vanishing anti-neutrino solar background. Megaton or even inner ten Megaton Ice Cube detector at ten GeV threshold may also reveal traces in hardest energy of solar flares. Icecube

  6. TRANSITION REGION EMISSION FROM SOLAR FLARES DURING THE IMPULSIVE PHASE

    SciTech Connect

    Johnson, H.; Raymond, J. C.; Murphy, N. A.; Suleiman, R.; Giordano, S.; Ko, Y.-K.; Ciaravella, A.

    2011-07-10

    There are relatively few observations of UV emission during the impulsive phases of solar flares, so the nature of that emission is poorly known. Photons produced by solar flares can resonantly scatter off atoms and ions in the corona. Based on off-limb measurements by the Solar and Heliospheric Observatory/Ultraviolet Coronagraph Spectrometer, we derive the O VI {lambda}1032 luminosities for 29 flares during the impulsive phase and the Ly{alpha} luminosities of 5 flares, and we compare them with X-ray luminosities from GOES measurements. The upper transition region and lower transition region luminosities of the events observed are comparable. They are also comparable to the luminosity of the X-ray emitting gas at the beginning of the flare, but after 10-15 minutes the X-ray luminosity usually dominates. In some cases, we can use Doppler dimming to estimate flow speeds of the O VI emitting gas, and five events show speeds in the 40-80 km s{sup -1} range. The O VI emission could originate in gas evaporating to fill the X-ray flare loops, in heated chromospheric gas at the footpoints, or in heated prominence material in the coronal mass ejection. All three sources may contribute in different events or even in a single event, and the relative timing of UV and X-ray brightness peaks, the flow speeds, and the total O VI luminosity favor each source in one or more events.

  7. Can we explain atypical solar flares?

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; Chandra, R.; Schmieder, B.; Aulanier, G.

    2015-02-01

    Context. We used multiwavelength high-resolution data from ARIES, THEMIS, and SDO instruments to analyze a non-standard, C3.3 class flare produced within the active region NOAA 11589 on 2012 October 16. Magnetic flux emergence and cancellation were continuously detected within the active region, the latter leading to the formation of two filaments. Aims: Our aim is to identify the origins of the flare taking the complex dynamics of its close surroundings into account. Methods: We analyzed the magnetic topology of the active region using a linear force-free field extrapolation to derive its 3D magnetic configuration and the location of quasi-separatrix layers (QSLs), which are preferred sites for flaring activity. Because the active region's magnetic field was nonlinear force-free, we completed a parametric study using different linear force-free field extrapolations to demonstrate the robustness of the derived QSLs. Results: The topological analysis shows that the active region presented a complex magnetic configuration comprising several QSLs. The considered data set suggests that an emerging flux episode played a key role in triggering the flare. The emerging flux probably activated the complex system of QSLs, leading to multiple coronal magnetic reconnections within the QSLs. This scenario accounts for the observed signatures: the two extended flare ribbons developed at locations matched by the photospheric footprints of the QSLs and were accompanied with flare loops that formed above the two filaments, which played no important role in the flare dynamics. Conclusions: This is a typical example of a complex flare that can a priori show standard flare signatures that are nevertheless impossible to interpret with any standard model of eruptive or confined flare. We find that a topological analysis, however, permitted us to unveil the development of such complex sets of flare signatures. Movies associated to Figs. 1, 3, and 9 are only available at the CDS via

  8. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  9. X1.6 Class Solar Flare on Sept. 10, 2014

    NASA Video Gallery

    An X1.6 class solar flare flashes in the middle of the sun on Sept. 10, 2014. These images were captured by NASA's Solar Dynamics Observatory. It first shows the flare in the 171 Angstrom wavelengt...

  10. Observations and modeling of plasma flows driven by solar flares

    NASA Astrophysics Data System (ADS)

    Brannon, Sean Robert

    One of the fundamental statements that can be made about the solar atmosphere is that it is structured. This structuring is generally believed to be the result of both the arrangement of the magnetic field in the corona and the distribution of plasma along magnetic loops. The standard model of solar flares involves plasma transported into coronal loops via a process known as chromospheric evaporation, and the resulting evolution of the flare loops is believed to be sensitive to the physical mechanism of energy input into the chromosphere by the flare. We present here the results of three investigations into chromospheric plasma flows driven by solar flare energy release and transport. First, we develop a 1-D hydrodynamic code to simulate the response of a simplified model chromosphere to energy input via thermal conduction from reconnection-driven shocks. We use the results from a set of simulations spanning a parameter space in both shock speed and chromospheric-to-coronal temperature ratio to infer power-law relationships between these quantities and observable evaporation properties. Second, we use imaging and spectral observations of a quasi-periodic oscillation of a flare ribbon to determine the phase relationship between Doppler shifts of the ribbon plasma and the oscillation. The phase difference we find leads us to suggest an origin in a current sheet instability. Finally, we use imaging and spectral data of an on-disk flare event and resulting flare loop plasma flows to generally validate the standard picture of flare loop evolution, including evaporation, cooling time, and draining downflows, and we use a simple free-fall model to produce the first direct comparison between observed and synthetic downflow spectra.

  11. Large solar flares and their ionospheric D region enhancements

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Rodger, Craig J.; Clilverd, Mark A.

    2005-06-01

    On 4 November 2003, the largest solar flare ever recorded saturated the GOES satellite X-ray detectors, making an assessment of its size difficult. However, VLF radio phase advances effectively recorded the lowering of the VLF reflection height and hence the lowest edge of the Earth's ionosphere. Previously, these phase advances were used to extrapolate the GOES 0.1-0.8 nm ("XL") fluxes from saturation at X17 to give a peak magnitude of X45 ± 5 for this great flare. Here it is shown that a similar extrapolation, but using the other GOES X-ray band, 0.05-0.4 nm ("XS"), is also consistent with a magnitude of X45. Also reported here are VLF phase measurements from two paths near dawn: "Omega Australia" to Dunedin, New Zealand (only just all sunlit) and NPM, Hawaii, to Ny Alesund, Svalbard (only partly sunlit), which also give remarkably good extrapolations of the flare flux, suggesting that VLF paths monitoring flares do not necessarily need to be in full daylight. D region electron densities are modeled as functions of X-ray flux up to the level of the great X45 flare by using flare-induced VLF amplitudes together with the VLF phase changes. During this great flare, the "Wait" reflection height, H', was found to have been lowered to ˜53 km or ˜17 km below the normal midday value of ˜70 km. Finally, XL/XS ratios are examined during some large flares, including the great flare. Plots of such ratios against XL can give quite good estimates of the great flare's size (X45) but without use of VLF measurements.

  12. Conduction-driven chromospheric evaporation in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Lemen, James R.

    1988-01-01

    Observations of gentle chromospheric evaporation during the cooling phase of a solar flare are presented. Line profiles of the low-temperature (T of about 6 x 10 to the 6th K) coronal Mg XI line, observed with the X-Ray Polychromator on the Solar Maximum Mission, show a blueshift that persisted for several minutes after the impulsive heating phase. This result represents the first detection of an evaporation signature in a soft X-ray line formed at this low temperature. By combining the Mg XI blueshift velocity data with simultaneous measurements of the flare temperature derived from Ca XIX observations, it is demonstrated that the upward flux of enthalpy transported by this gently evaporating plasma varies linearly with the downward flux of thermal energy conducted from the corona. This relationship is consistent with models of solar flares in which thermal conduction drives chromospheric evaporation during the early part of the cooling phase.

  13. Lunar surface cosmic ray experiment. [including solar flare studies

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1974-01-01

    The galactic cosmic ray and solar flare experiment on Apollo 16 is reported. The published papers presented describe the experiment, equipment, data processing techniques, and operational history. The principle findings include: (1) The composition of heavy ions in interplanetary space at energies between approximately 30 and 130 MeV/nucleon is the same, within experimental errors. (2) The ability of a Lexan stack to determine simultaneously the energy spectra of major elements from He up to Fe in the energy interval 0.2 to 30 MeV/nucleon revealed systematic changes in the composition of solar flare particles as a function of energy. (3) Heavy ions emitted in a solar flare appear to be completely stripped of electrons, and are not in charge equilibrium at the time of acceleration and releases from the sun.

  14. Common SphinX and RHESSI observations of solar flares

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  15. Microwave Type III Pair Bursts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Tan, Baolin; Mészárosová, Hana; Karlický, Marian; Huang, Guangli; Tan, Chengming

    2016-03-01

    A solar microwave type III pair burst is composed of normal and reverse-sloped (RS) burst branches with oppositely fast frequency drifts. It is the most sensitive signature of the primary energy release and electron accelerations in flares. This work reports 11 microwave type III pair events in 9 flares observed by radio spectrometers in China and the Czech Republic at a frequency of 0.80-7.60 GHz during 1994-2014. These type III pairs occurred in flare impulsive and postflare phases with separate frequencies in the range of 1.08-3.42 GHz and a frequency gap of 10-1700 MHz. The frequency drift increases with the separate frequency (fx), the lifetime of each burst is anti-correlated to fx, while the frequency gap is independent of fx. In most events, the normal branches are drifting obviously faster than the RS branches. The type III pairs occurring in flare impulsive phase have lower separate frequencies, longer lifetimes, wider frequency gaps, and slower frequency drifts than that occurring in postflare phase. Also, the latter always has strong circular polarization. Further analysis indicates that near the flare energy release sites the plasma density is about {10}10{--}{10}11 cm-3 and the temperature is higher than 107 K. These results provide new constraints to the acceleration mechanism in solar flares.

  16. Protons from the decay of solar flare neutrons

    NASA Technical Reports Server (NTRS)

    Evenson, P.; Meyer, P.; Pyle, K. R.

    1983-01-01

    Fluxes of energetic protons in interplanetary space are observed which are interpreted as the decay products of neutrons generated in a solar flare on 1982 June 3 at 11:42 UT. Because of the particular geometry of this event the spectrum of neutrons escaping from the sun can be constructed with great accuracy in the kinetic energy range 10-100 MeV. The resulting spectrum places stringent constraints on the free parameters used in previously published calculations of neutron production in solar flares. An estimate is made of the diffusion mean free path of charged particles in the interplanetary medium in a new way.

  17. Solar flares as cascades of reconnecting magnetic loops.

    PubMed

    Hughes, D; Paczuski, M; Dendy, R O; Helander, P; McClements, K G

    2003-04-01

    A model for the solar coronal magnetic field is proposed where multiple directed loops evolve in space and time. Loops injected at small scales are anchored by footpoints of opposite polarity moving randomly on a surface. Nearby footpoints of the same polarity aggregate, and loops can reconnect when they collide. This may trigger a cascade of further reconnection, representing a solar flare. Numerical simulations show that a power law distribution of flare energies emerges, associated with a scale-free network of loops, indicating self-organized criticality. PMID:12689272

  18. The acceleration and propagation of solar flare energetic particles

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Ramaty, R.; Zweibel, E. G.; Holzer, T. E. (Editor); Mihalas, D. (Editor); Sturrock, P. A. (Editor); Ulrich, R. K. (Editor)

    1982-01-01

    Observations and theories of particle acceleration in solar flares are reviewed. The most direct signatures of particle acceleration in flares are gamma rays, X-rays and radio emissions produced by the energetic particles in the solar atmosphere and energetic particles detected in interplanetary space and in the Earth's atmosphere. The implication of these observations are discussed. Stochastic and shock acceleration as well as acceleration in direct electric fields are considered. Interplanetary particle propagation is discussed and an overview of the highlights of both current and promising future research is presented.

  19. Solar flares as cascades of reconnecting magnetic loops.

    PubMed

    Hughes, D; Paczuski, M; Dendy, R O; Helander, P; McClements, K G

    2003-04-01

    A model for the solar coronal magnetic field is proposed where multiple directed loops evolve in space and time. Loops injected at small scales are anchored by footpoints of opposite polarity moving randomly on a surface. Nearby footpoints of the same polarity aggregate, and loops can reconnect when they collide. This may trigger a cascade of further reconnection, representing a solar flare. Numerical simulations show that a power law distribution of flare energies emerges, associated with a scale-free network of loops, indicating self-organized criticality.

  20. Solar flare intermittency and the earth's temperature anomalies.

    PubMed

    Scafetta, Nicola; West, Bruce J

    2003-06-20

    We argue that Earth's short-term temperature anomalies and the solar flare intermittency are linked. The analysis is based upon the study of the scaling of both the spreading and the entropy of the diffusion generated by the fluctuations of the temperature time series. The joint use of these two methods evidences the presence of a Lévy component in the temporal persistence of the temperature data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean monthly temperature data sets cover the period from 1856 to 2002. PMID:12857233

  1. A thermal/nonthermal approach to solar flares

    NASA Technical Reports Server (NTRS)

    Benka, Stephen G.

    1991-01-01

    An approach for modeling solar flare high-energy emissions is developed in which both thermal and nonthermal particles coexist and contribute to the radiation. The thermal/nonthermal distribution function is interpreted physically by postulating the existence of DC sheets in the flare region. The currents then provide both primary plasma heating through Joule dissipation, and runaway electron acceleration. The physics of runaway acceleration is discussed. Several methods are presented for obtaining approximations to the thermal/nonthermal distribution function, both within the current sheets and outside of them. Theoretical hard x ray spectra are calculated, allowing for thermal bremsstrahlung from the heated plasma electrons impinging on the chromosphere. A simple model for hard x ray images of two-ribbon flares is presented. Theoretical microwave gyrosynchrotron spectra are calculated and analyzed, uncovering important new effects caused by the interplay of thermal and nonthermal particles. The theoretical spectra are compared with observed high resolution spectra of solar flares, and excellent agreement is found, in both hard x rays and microwaves. The future detailed application of this approach to solar flares is discussed, as are possible refinements to this theory.

  2. Energetic Correlation Between Solar Flares and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Medlin, Drew A.; Haga, Leah; Schwartz, Richard a.; Tolbert, A. Kimberly

    2007-01-01

    We find a strong correlation between the kinetic energies (KEs) of the coronal mass ejections (CMEs) and the radiated energies of the associated solar flares for the events that occurred during the period of intense solar activity between 18 October and 08 November 2003. CME start times, speeds, mass and KEs were taken from Gopalswamy et al. (2005), who used SOHO/LASCO observations. The GOES observations of the associated flares were analyzed to find the peak soft X-ray (SXR) flux, the radiated energy in SXRs (L(sub sxR)), and the radiated energy from the emitting plasma across all wavelengths (L(sub hot)). RHESSI observations were also used to find the energy in non-thermal electrons, ions, and the plasma thermal energy for some events. For two events, SORCE/TIM observations of the total solar irradiance during a flare were also available to give the total radiated flare energy (L(sub total)).W e find that the total flare energies of the larger events are of the same order of magnitude as the CME KE with a stronger correlation than has been found in the past for other time intervals.

  3. Solar cosmic ray, solar wind, solar flare, and neutron albedo measurements, part C

    NASA Technical Reports Server (NTRS)

    Burnett, D.; Hohenberg, C.; Maurette, M.; Monnin, M.; Walker, R.; Wollum, D.

    1972-01-01

    All mineral detectors exposed on Apollo 16 had high surface track densities probably produced by a solar flare that occurred during the mission. The heavy ions followed a power law spectrum with exponent approximately 3 down to approximately 200 KeV/nucleon. The abundance of low-energy particle tracks observed in this flare may explain the high track densities observed in lunar dust grains. Pristine heavy-particle tracks in feldspar give long tracks. Shallow pits similar to those expected from extremely heavy solar wind ions were observed in about the expected number. Initial results give a low apparent value of neutron albedo relative to theory.

  4. Periodicities in the occurrence rate of solar proton events

    NASA Technical Reports Server (NTRS)

    Gabriel, S.; Evans, R.; Feynman, J.

    1990-01-01

    Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually, but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (Ps), the 10.7 cm radio flux (F10.7), and the sunspot number (Rz). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the sun. Periods around 50-52 days are also found in the combined data set and in the three individual cycles, in general agreement with the detection of this periodicity in major flares in cycle 19, and in Ps, F10.7, and Rz in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff (1974, 1983).

  5. Solar flare accelerated electron transport through the turbulent solar wind

    NASA Astrophysics Data System (ADS)

    Reid, Hamish; Kontar, Eduard

    Solar flare accelerated electron beams can become unstable during transport from the Sun to the Earth, producing plasma waves in the turbulent inner heliosphere. We simulate solar electron beam propagation to the Earth in the weak turbulent regime taking into account the self-consistent generation of plasma waves. Induced plasma waves interact with the density fluctuations from low frequency MHD turbulence present in the background plasma. These fluctuations act to suppress the generation of waves, most acutely when fluctuations have large amplitudes or small wavelengths. The reduction of plasma wave generation alters the wave distribution which changes electron beam transport. Assuming an observed 5/3 Kolmogorov-type power density spectra of fluctuations, we investigate the energy spectra of the electron beam near the Earth. We find the presence of turbulence in the background plasma alters the spectral index below the break energy of the double power-law formed at 1AU. From an initial single power-law electron distribution, we find a range of spectra below the break energy, with higher levels of turbulence corresponding to a higher spectral index.

  6. Solar and Stellar Flares over Time: Effects on Hosted Planets

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; DeWarf, Laurence E.; Engle, Scott G.; Gropp, Jeffrey

    2016-01-01

    The effects of flares from the Sun on Earth and other solar-system planets are presented. Also discussed are the flare properties of cooler, commonplace main-sequence K-M stars. Data from our "Sun in Time" program are used to study the flare properties of the Sun and solar-type stars from youth to old age. These studies are based on ground-based observations, UV and X-ray space missions (IUE & HST, ROSAT & Chandra) as well as a wealth of data from the Kepler Mission. The ultra-high precision photometry available from the Kepler Mission (and K2) has made it possible to study starspots, flare properties, and rotations of thousands of G, K, M stars. Superflares (defined as E > 10+33 ergs ~X-100 flares) on hundreds of mostly G and K stars have been found. (See e.g. Shibayama et al. 2013; Maehara et al. 2015; Notsu et al. 2013/15; Saar et al. 2015; Guinan et al. 2015). Using our Age-Rotation relations, we determine correlations of flares properties of the Sun and solar-type over a wide range of ages. We also compare these flare histories with the cooler, more common K- and M-type stars. The analysis of these datasets imply that the young Sun had numerous, very powerful flares that may have played major roles the evolution of the early atmospheres of Earth and other terrestrial planets. The strong X-UV fluxes and proton fluences from flares and associated plasmas from coronal mass ejection events can greatly affect the photochemistry of planetary atmospheres as well as ionizing and possibly eroding their atmospheres. Some examples are given. Also discussed are the effects of superflares from the present Sun on the Earth. Even though solar superflares are rarer (~1 per 300-500 yrs) than from the young Sun (> 1-2 per year), they could cause significant damage to our communication and satellite systems, electrical networks, and threaten the lives of astronauts in space..This research is supported by grants from NSF/RUI and NASA: NSF, AST 1009903; Chandra GO2-13020X, HST GO

  7. Slipping Magnetic Reconnections with Multiple Flare Ribbons during an X-class Solar Flare

    NASA Astrophysics Data System (ADS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    2016-06-01

    With the observations of the Solar Dynamics Observatory, we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.

  8. Terahertz Photometer to Observe Solar Flares in Continuum

    NASA Astrophysics Data System (ADS)

    Marcon, Rogerio; Kaufmann, Pierre; Fernandes, Luis Olavo T.; Godoy, Rodolfo; Marun, Adolfo; Bortolucci, Emilio C.; Zakia, Maria Beny; Diniz, José Alexandre; Kudaka, Amauri S.

    2012-02-01

    Solar observations at sub-THz frequencies detected a new flare spectral component peaking in the THz range, simultaneously with the well known microwaves component, bringing challenging constraints for interpretation. Higher THz frequencies observations are needed to understand the nature of the mechanisms occurring in flares. A THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. The telescope was designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions. A Golay cell detector is preceded by low-pass filters to suppress visible and near IR radiation, a band-pass filter, and a chopper. A prototype was assembled to demonstrate the new concept and the system performance. It can detect temperature variations smaller than 1 K for data sampled at a rate of 10/s, smoothed for intervals larger than 4 s. For a 76 mm aperture, this corresponds to small solar burst intensities at THz frequencies. A system with 3 and 7 THz photometers is being built for solar flare observations on board of stratospheric balloon missions.

  9. Sunspot 1520 Releases Strong (X1.4) Solar Flare

    NASA Video Gallery

    This movie shows the sun July 10-12, ending with the X1.4 class flare on July 12, 2012. It was captured by NASA’s Solar Dynamics Observatory in the 131 Angstrom wavelength - a wavelength that is...

  10. Statistical properties of super-hot solar flares

    SciTech Connect

    Caspi, Amir; Krucker, Säm; Lin, R. P.

    2014-01-20

    We use Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) high-resolution imaging and spectroscopy observations from ∼6 to 100 keV to determine the statistical relationships between measured parameters (temperature, emission measure, etc.) of hot, thermal plasma in 37 intense (GOES M- and X-class) solar flares. The RHESSI data, most sensitive to the hottest flare plasmas, reveal a strong correlation between the maximum achieved temperature and the flare GOES class, such that 'super-hot' temperatures >30 MK are achieved almost exclusively by X-class events; the observed correlation differs significantly from that of GOES-derived temperatures, and from previous studies. A nearly ubiquitous association with high emission measures, electron densities, and instantaneous thermal energies suggests that super-hot plasmas are physically distinct from cooler, ∼10-20 MK GOES plasmas, and that they require substantially greater energy input during the flare. High thermal energy densities suggest that super-hot flares require strong coronal magnetic fields, exceeding ∼100 G, and that both the plasma β and volume filling factor f cannot be much less than unity in the super-hot region.

  11. Max '91: Flare research at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Canfield, Richard; Bruner, Marilyn; Emslie, Gordon; Hildner, Ernest; Hudson, Hugh; Hurford, Gordon; Lin, Robert; Novick, Robert; Tarbell, Ted

    1988-01-01

    To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided.

  12. Theoretical studies on rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed.

  13. High-energy continuum emission from solar flares

    NASA Technical Reports Server (NTRS)

    Vestrand, W. Thomas

    1988-01-01

    The properties of solar flare continuum emission at energies of greater than 300 keV have been determined from observations obtained during the 21st solar maximum by gamma-ray detectors aboard the SMM and Hinotori satellites. The temporal structure of the high-energy continuum is modeled by two-step acceleration and particle trapping. The results suggest that the very high-energy emission noted must be a mixture of pion-decay radiation and primary electron bremsstrahlung.

  14. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    SciTech Connect

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-10-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  15. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  16. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1998-01-01

    The accomplishments of the participation in the Compton Gamma Ray Observatory Guest investigator program is summarized in this report. The work involved the study of Energetic Gamma Ray Experiment Telescope (EGRET)/Total Absorption Shower Counter(TASC) flare data. The specific accomplishments were the use of the accelerator neutron measurements obtained at the University of New Hampshire to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution, and to determine a high energy neutron contribution to the emissions from the 1991 June 11, solar flare. The next step in the analysis of this event was doing fits to the TASC energy-loss spectra as a function of time. A significant hardening of the solar proton spectrum over time was found for the flare. Further data was obtained from the Yohkoh HXT time histories and images for the 1991 October 27 flare. The results to date demonstrate that the TASC spectral analysis contributes crucial information on the particle spectrum interacting at the Sun. The report includes a paper accepted for publication, a draft of a paper to be delivered at the 26th International Cosmic Ray Conference and an abstract of a paper to be presented at the Meeting of the American Physical Society.

  17. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  18. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  19. Muon and Tau Neutrinos Spectra from Solar Flares

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; Moscato, Federica

    2003-12-01

    Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The 4th November event was the most powerful X event in the highest known rank category X28 just at horizons. The observed and estimated total flare energy (EFL ≃ 1031div 1033 erg) should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. These first earliest prompt solar neutrino burst might be observed, in a few neutrino clustered events, in present or future largest neutrino underground detectors as Super-Kamiokande one, in time correlation with the X-Radio flare. The onset in time correlation has great statistical significance. Our first estimate on the neutrino number events detection at the Super-Kamiokande II Laboratory for horizontal or hidden flare is found to be few events: NeV_bar{ν}_e≃ 0.63&etae ()/(35 MeV) ()/(1031 erg); and NeV_bar{ν}μ ≃ 3.58()/(200 MeV) ()/(1031erg) η,SUB>μ, where η≃ 1, Eνμ > 113 MeV. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with X, gamma, radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold Eν ≃ 113 MeV energy, or above the pion and Δ ° thresholds (Eν≃ 151 and 484 MeV). Any large neutrino flare event record might also verify the expected neutrino flavour mixing leading to a few as well as a comparable

  20. The development and cooling of a solar limb-flare

    NASA Technical Reports Server (NTRS)

    Veck, N. J.; Strong, K. T.; Jordan, C.; Simnett, G. M.; Cargill, P. J.; Priest, E. R.

    1984-01-01

    Observations of a flare that began in soft X-rays at 20:37 UT on April 12, 1980 at the west limb of the sun are discussed. The observations of the flare and postflare loops are first described, and the Solar Maximum Mission data are interpreted in terms of the temperature, density, and geometry of the emitting regions. The observed postflare cooling time is compared with that expected from radiation, conduction, and enthalpy flux. The loop model is discussed, and the observed events are compared with other proposed models.

  1. Effects of solar flares on the ionosphere of Mars.

    PubMed

    Mendillo, Michael; Withers, Paul; Hinson, David; Rishbeth, Henry; Reinisch, Bodo

    2006-02-24

    All planetary atmospheres respond to the enhanced x-rays and ultraviolet (UV) light emitted from the Sun during a flare. Yet only on Earth are observations so continuous that the consequences of these essentially unpredictable events can be measured reliably. Here, we report observations of solar flares, causing up to 200% enhancements to the ionosphere of Mars, as recorded by the Mars Global Surveyor in April 2001. Modeling the altitude dependence of these effects requires that relative enhancements in the soft x-ray fluxes far exceed those in the UV.

  2. Large Solar Flares and Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad

    2001-01-01

    This Comment gives additional information about the nature of flaring locations on the Sun described in the article "Sun unleashes Halloween storm", by R. E. Lopez, et al. What causes the large explosions from solar active regions that unleash huge magnetic storms and adverse space weather? It is now beyond doubt that the magnetic field in solar active regions harbors free energy that is released during these events. Direct measurements of the longitudinal and transverse components of active region magnetic fields with the vector magnetograph at NASA Marshall Space Flight Center (MSFC), taken on a regular basis for the last 30 years, have found key signatures of the locations of powerful flares. A vector magnetograph detects and measures the magnetic shear, which is the deviation of the observed transverse magnetic field direction from the potential field. The sheared locations possess abundant free magnetic energy for solar flares. In addition to active region NOAA 10486, the one that produced the largest flares last October, the NASA/MSFC vector magnetograph has observed several other such complex super active regions, including NOAA 6555 and 6659.

  3. Low-latitude Ionospheric Heating during Solar Flares

    NASA Astrophysics Data System (ADS)

    Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.

    2013-12-01

    The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.

  4. Observations and Modeling of Solar Flare Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  5. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare

    NASA Astrophysics Data System (ADS)

    Dudík, Jaroslav; Polito, Vanessa; Janvier, Miho; Mulay, Sargam M.; Karlický, Marian; Aulanier, Guillaume; Del Zanna, Giulio; Dzifčáková, Elena; Mason, Helen E.; Schmieder, Brigitte

    2016-05-01

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s‑1 are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset of apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.

  6. Measurements and modeling of total solar irradiance in X-class solar flares

    SciTech Connect

    Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-05-20

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  7. Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares

    NASA Technical Reports Server (NTRS)

    Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  8. Signatures of current loop coalescence in solar flares

    NASA Technical Reports Server (NTRS)

    Sakai, J.; Nakajima, H.; Zaidman, E.; Tajima, T.; Kosugi, T.; Brunel, F.

    1986-01-01

    The nonlinear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic emission as well as the characteristics of 2-D microwave images obtained during a solar flare. The physical characteristics of the explosive coalescence of currents are presented in detail through computer simulation and theory. Canonical characteristics of the explosive coalescence are: (1) a large amount of impulsive increase of kinetic energies of electrons and ions; (2) simultaneous heating and acceleration of electrons and ions in high and low energy spectra; (3) ensuing quasi-periodic amplitude oscillations in fields and particle quantities; and (4) the double peak (or triple peak) structure in these profiles, participate in the coalescence process, yielding varieties of phenomena.

  9. An extended superhot solar flare X-ray source

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Ohki, K. I.; Tsuneta, S.

    1985-01-01

    A superhot hard X-ray source in a solar flare occulted by the solar limb was identified. Its hard X-ray image was found to show great horizontal extent but little vertical extent. An H alpha brightening at the same limb position about an hour later suggests a multi-component loop prominence system, so that it appears that a superhot source can evolve in the same manner as a normal solar soft X-ray source. The assignment of plausiable values to physical parameters in the source suggests (from the simplest form of classical thermal-conduction theory) that either new physics will be required to suppress conduction, or else that gradual energy release well after the impulsive phase of the flare must occur. In this respect too, the superhot source appears to resemble ordinary soft X-ray sources, except of course that its temperature is higher.

  10. An extended superhot solar flare X-ray source

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.; Ohki, K. I.; Tsuneta, S.

    1985-08-01

    A superhot hard X-ray source in a solar flare occulted by the solar limb was identified. Its hard X-ray image was found to show great horizontal extent but little vertical extent. An H alpha brightening at the same limb position about an hour later suggests a multi-component loop prominence system, so that it appears that a superhot source can evolve in the same manner as a normal solar soft X-ray source. The assignment of plausiable values to physical parameters in the source suggests (from the simplest form of classical thermal-conduction theory) that either new physics will be required to suppress conduction, or else that gradual energy release well after the impulsive phase of the flare must occur. In this respect too, the superhot source appears to resemble ordinary soft X-ray sources, except of course that its temperature is higher.

  11. Automated Feature Detection and Solar Flare Prediction Using SDO Data

    NASA Astrophysics Data System (ADS)

    Qahwaji, Rami; Ahmed, Omar; Colak, Tufan

    The importance of real-time processing of solar data especially for space weather applica-tions is increasing continuously, especially with the launch of SDO which will provide sev-eral times more data compared to previous solar satellites. In this paper, we will show the initial results of applying our Automated Solar Activity Prediction (ASAP) system for the short-term prediction of significant solar flares to SDO data. This automated system is cur-rently working in real-time mode with SOHO/MDI images and its results are available online (http://spaceweather.inf.brad.ac.uk/) whenever a new solar image available. This system inte-grates image processing and machine learning to deliver these predictions. A machine learning-based system is designed to analyse years of sunspots and flares data to extract knowledge and to create associations that can be represented using computer-based learning rules. An imaging-based real time system that provides automated detection, grouping and then clas-sification of recent sunspots based on the McIntosh classification and integrated within this system. The results of current feature detections and flare predictions of ASAP using SOHO data will be compared to those results of ASAP using SDO data and will also be presented in this paper.

  12. Observational evidence for thermal wave fronts in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Simnett, G. M.; Smith, D. F.

    1985-01-01

    Images in 3.5-30 keV X-rays obtained during the first few minutes of seven solar flares show rapid motions. In each case X-ray emission first appeared at one end of a magnetic field structure, and then propagated along the field at a velocity between 800 and 1700 km/s. The observed X-ray structures were 45,000-230,000 km long. Simultaneous H-alpha images were available in three cases; they showed brightenings when the fast-moving fronts arrived at the chromosphere. The fast-moving fronts are interpreted as electron thermal conduction fronts since their velocities are consistent with conduction at the observed temperatures of 1-3 x 10 to the 7th K. The inferred conductive heat flux of up to 10-billion ergs/s sq cm accounts for most of the energy released in the flares, implying that the flares were primarily thermal phenomena.

  13. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, S.; Vilmer, N.; Bommier, V.

    2015-12-01

    Solar flares are among the most energetic events in the solar system. Magnetic energy previously stored in the coronal magnetic field is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur in coronal currents sheets associated with regions of strong gradient of magnetic connectivity. Coronal current sheets can be traced by their footprints at the surface on the Sun, in e.g. photospheric current ribbons. We aim to study the relationship between the current ribbons observed at the photospheric level which trace coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density are calculated from SDO/HMI spectropolarimetric data using the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra are reconstructed from RHESSI data. In a first case (the GOES X2.2 flare of February 15, 2011), a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons (Musset et al., 2015). Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets. Propagation of the reconnection sites to new structures during the flare results in new X-ray emission sites and local increase of the photospheric currents We will examine in this contribution whether similar results are obtained for other X-class flares.

  14. Temporal Variability of Ion Acceleration and Abundances in Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2011-01-01

    Solar flares accelerate both ions and electrons to high energies, and their X-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions greater than approximately 20 MeV and bremsstrahlung emission from relativistic accelerated electrons greater than 300 keV, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances. We also discuss possible explanations for changing abundances.

  15. Temporal Variability of Ion Acceleration and Abundances in Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2012-01-01

    solar flares accelerate both ions and electrons to high energies, and their x-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions > approx 20 MeV and bremsstrahlung emission from relativistic accelerated electrons >300 kev, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances. We also discuss possible explanations for changing abundances.

  16. A Unified Computational Model for Solar and Stellar Flares

    NASA Technical Reports Server (NTRS)

    Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats

    2015-01-01

    We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.

  17. Elemental abundances of flaring solar plasma - Enhanced neon and sulfur

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.

    1993-01-01

    Elemental abundances of two flares observed with the SMM Flat Crystal Spectrometer are compared and contrasted. The first had a gradual rise and a slow decay, while the second was much more impulsive. Simultaneous spectra of seven bright soft X-ray resonance lines provide information over a broad temperature range and are available throughout both flares, making these events unique in the SMM data base. For the first flare, the plasma seemed to be characterized by coronal abundances but, for the second, the plasma composition could not be coronal, photospheric, or a linear combination of both. A good differential emission measure fit required enhanced neon such that Ne/O = 0.32 +/- 0.02, a value which is inconsistent with the current models of coronal abundances based on the elemental first-ionization potential. Similar values of enhanced neon are found for flaring plasma observed by the SMM gamma-ray spectrometer, in (He-3)-rich solar energetic particle events, and in the decay phase of several long duration soft X-ray events. Sulfur is also enhanced in the impulsive flare, but not as dramatically as neon. These events are compared with two models which attempt to explain the enhanced values of neon and sulfur.

  18. A UNIFIED COMPUTATIONAL MODEL FOR SOLAR AND STELLAR FLARES

    SciTech Connect

    Allred, Joel C.; Carlsson, Mats

    2015-08-10

    We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker–Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.

  19. Solar Neutrino flare detection in Hyperkamiokande and SK

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The possible buid and near activity of a Megaton neutrino detection in HyperKamiokande and the older SK implementation by Gadolinium liqid might open to future detection of largest solar flare (pion trace at tens MeV) electron neutrino and antineutrino. The multiwave detection of X-gamma and neutrino event might offer a deep view of such solar acelleration and of neutrino flavor mix along its flight. The possoble near future discover of such events will open a third neutrino astronomy windows after rarest SN 1987A and persistent Solar nuclear signals.

  20. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1997-01-01

    UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.

  1. Particle acceleration and gamma-emission from solar flares

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Leonty; Gan, W. Q.; Troitskaia, E. V.

    Experiments on SMM, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics in flares and to the ambient abun-dance of the corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measure-ments (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays). A number of different plausible assump-tions are considered concerning the details of underlying physical processes during large flares: existence of a steeper distribution of surrounding medium density, enhanced content of the 3He isotope, formation of magnetic trap with specific properties etc. Possible implications of these results are briefly discussed. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and ener-getic particle observations during the same event. We especially note several promising lines for the further studies: 1) resonant acceleration of the 3He ions in the corona; 2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; 3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different acceleration sources/episodes during the same flare, contribution of energetic particles accelerated by the CME-driven shocks etc.); 4) modeling of self-consistent time scenario of the event. Keywords: Sun: atmosphere density, solar flares; Particle acceleration

  2. Further observations of protons resulting from the decay of neutrons ejected by solar flares

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Kroeger, R.; Meyer, P.

    1985-01-01

    The solar flare of 1984 April 24 produced a large gamma ray fluence with energy 2MeV. The time profile of the interplanetary flux from this flare indicates the presence of decaying solar neutrons. This makes a total of three neutron flares so far observed by this method. The three flares are used to place constraints on the fluence and spectra of neutrons emitted by the Sun.

  3. Energy-dependent timing of thermal emission in solar flares

    NASA Astrophysics Data System (ADS)

    Jain, Rajmal; Rajpurohit, Arvind; Awasthi, Arun; Aschwanden, Markus

    A study of thermal emission in solar flares using high-resolution X-ray spectra observed by the Si detector onboard "Solar X-ray Spectrometer" (SOXS) has been conducted. The SOXS onboard GSAT-2 Indian spacecraft was launched by GSLV-D2 rocket on 08 May 2003. With this we investigate the energy dependent timing of thermal emission in solar flares. Firstly we model the spectral-temporal evolution of the X-ray flux F(e,t) assuming multi-temperature plasma governed by thermal conduction cooling. This model is found in agreement with the temperature and emission measure derived from the fitting of the spectra observed by the Si detector. We investigate 10 M-class flares and found that the emission in the energy range e=6 -20 keV is dominated by temperatures T=15 -50 MK while the power-law index (gamma) of the thermal spectrum varies over 2.7 -4.3. The temperature-dependent cooling time varies between 22 and 310 s. The electron density (ne) obtained for the flares under investigation ranges between 0.03 and 5X1011 cm-3 suggests that conduction cooling of thermal X-ray plasma dominates over radiative cooling in the initial phase of the flare. The current study also provides an alternative method for separating thermal from non-thermal spectra, which enables us to measure the break-energy point to be varying between 17 and 220.7 keV.

  4. Modelling the influence of photospheric turbulence on solar flare statistics.

    PubMed

    Mendoza, M; Kaydul, A; de Arcangelis, L; Andrade, J S; Herrmann, H J

    2014-01-01

    Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging. PMID:25247788

  5. Nuclear gamma rays from solar flares. [analysis of theory of gamma ray line emission from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1973-01-01

    The theory of gamma-ray line emission from solar flares is reviewed and revised. It is shown that the line emissions at 0.5, 2.2, 4.4, and 6.1 MeV are due to positron annihilation, deuterium deexcitation following neutron capture on hydrogen, and the deexcitation of excited states in carbon and oxygen. From the observed relative line intensities it is possible to determine the spectrum of accelerated protons in the flare region. This spectrum is found to be very similar to that of charged particles from the flare observed near earth. The total number of protons at the sun is deduced from the observed absolute line intensities for various interaction models.

  6. THz photometers for solar flare observations from space

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Marcon, Rogério; Abrantes, André; Bortolucci, Emilio C.; T. Fernandes, Luis Olavo; Kropotov, Grigory I.; Kudaka, Amauri S.; Machado, Nelson; Marun, Adolfo; Nikolaev, Valery; Silva, Alexandre; da Silva, Claudemir S.; Timofeevsky, Alexander

    2014-11-01

    The search for the still unrevealed spectral shape of the mysterious THz solar flare emissions is one of the current most challenging research issues. The concept, fabrication and performance of a double THz photometer system, named SOLAR-T, is presented. Its innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. The detecting system was constructed to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. Tests have been conducted to confirm the entire system performance, on ambient and low pressure and temperature conditions. An artificial Sun setup was developed to simulate performance on actual observations. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016.

  7. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    SciTech Connect

    Ryan, Daniel F.; Gallagher, Peter T.; Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C.

    2012-10-15

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  8. Modern observations and models of Solar flares

    NASA Astrophysics Data System (ADS)

    Gritsyk, Pavel; Somov, Boris

    As well known, that fast particles propagating along flare loop generate bremsstrahlung hard x-ray emission and gyro-synchrotron microwave emission. We present the self-consistent kinetic description of propagation accelerated particles. The key point of this approach is taking into account the effect of reverse current. In our two-dimensional model the electric field of reverse current has the strong influence to the beam of accelerated particles. It decelerates part of the electrons in the beam and turns back other part of them without significant energy loss. The exact analytical solution for the appropriate kinetic equation with Landau collision integral was found. Using derived distribution function of electrons we’ve calculated evolution of their energy spectrum and plasma heating, coronal microwave emission and characteristics of hard x-ray emission in the corona and in the chromosphere. All results were compared with modern high precision space observations.

  9. High-Energy Aspects of Solar Flares: Observations and Models

    SciTech Connect

    Liu, Wei; Guo, Fan

    2015-07-21

    The paper begins by describing the structure of the Sun, with emphasis on the corona. The Sun is a unique plasma laboratory, which can be probed by Sun-grazing comets, and is the driver of space weather. Energization and particle acceleration mechanisms in solar flares is presented; magnetic reconnection is key is understanding stochastic acceleration mechanisms. Then coupling between kinetic and fluid aspects is taken up; the next step is feedback of atmospheric response to the acceleration process – rapid quenching of acceleration. Future challenges include applications of stochastic acceleration to solar energetic particles (SEPs), Fermi γ-rays observations, fast-mode magnetosonic wave trains in a funnel-shaped wave guide associated with flare pulsations, and the new SMEX mission IRIS (Interface Region Imaging Spectrograph),

  10. A STATISTICAL STUDY OF SPECTRAL HARDENING IN SOLAR FLARES AND RELATED SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Grayson, James A.; Krucker, Saem; Lin, R. P. E-mail: krucker@ssl.berkeley.ed

    2009-12-20

    Using hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we investigate the reliability of spectral hardening during solar flares as an indicator of related solar energetic particle (SEP) events at Earth. All RHESSI data are analyzed, from 2002 February through the end of Solar Cycle 23, thereby expanding upon recent work on a smaller sample of flares. Previous investigations have found very high success when associating soft-hard-harder (SHH) spectral behavior with energetic proton events, and confirmation of this link would suggest a correlation between electron acceleration in solar flares and SEPs seen in interplanetary space. In agreement with these past findings, we find that of 37 magnetically well-connected flares (W30-W90), 12 of 18 flares with SHH behavior produced SEP events and none of 19 flares without SHH behavior produced SEPs. This demonstrates a statistically significant dependence of SHH and SEP observations, a link that is unexplained in the standard scenario of SEP acceleration at the shock front of coronal mass ejections and encourages further investigation of the mechanisms which could be responsible.

  11. The origin and implications of gamma rays from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1975-01-01

    Solar flares studied in the gamma ray region provide essential information on accelerated nuclei that can be obtained in no other way. A multitude of physical processes, such as particle acceleration, nuclear reactions, positron and neutron physics, and kinematical line broadening, come into consideration at gamma ray energies. Gamma ray observations are complementary to hard X ray observations, since both provide information on accelerated particles. It appears that only in the gamma ray region do these particles produce distinct spectral lines.

  12. Implications of high-energy neutron observations from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Murphy, R. J.; Kozlovsky, B.; Lingenfelter, R. E.

    1983-01-01

    The time-dependent flux of high-energy neutrons discovered from the solar flare of 1980 June 21 provides a new technique for determining the total number and energy spectrum of accelerated protons and nuclei at the sun. The implications of these observations on gamma-ray emission, relativistic electron spectrum and number, proton and electron energy contents, and the location of the interaction region are also examined.

  13. Solar Flare Observations at Submm-waves

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Raulin, J.-P.; Correia, E.; Costa, J. E. R.; Guillermo, C.; de Castro, Giménez; Silva, A. V. R.; Levato, H.; Rovira, M.; Mandrini, C.; Fernández-Borda, R.; Bauer, O.

    We report on the recent installation of the new Solar Submillimeter Telescope(SST) at the El Leoncito site, located in the Argentinean Andes, and also show first observational results. The instrument consists of a radome-enclosed 1.5-m cassegrain reflector and a system of two radiometers at 405 GHz and four at 212 GHz. The SST observes the quiet Sun and solar bursts simultaneously at both submillimeter-wave frequencies with a sampling rate of 1 millisecond. Since SST has seen the "first light" in May 1999, nearly 45 hours of continuous tracking of solar active regions were collected during short campaigns which produced first evidence for solar activity. The project has been funded by the Brazilian agency FAPESP, receiving support from the Argentinean agency CONICET through their institutes CASLEO and IAFE and from IAP, University of Bern and the Swiss National Science Foundation.

  14. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, Sophie; Vilmer, Nicole; Bommier, Veronique

    2016-07-01

    It is currently admitted that solar flares are powered by magnetic energy previously stored in the coronal magnetic field. During magnetic reconnection processes, this energy is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur on coronal currents sheets along regions of strong gradient of magnetic connectivity. These coronal current sheets can be traced by their footprints at the surface on the Sun, i.e. by photospheric current ribbons. We aim to study the relation between these current ribbons observed at the photospheric level, tracing the coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density have been calculated from SDO/HMI spectropolarimetric data with the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra have been reconstructed from RHESSI data. In a first case, the GOES X2.2 flare of February 15, 2011, a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons. Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets, and propagation of the reconnection sites to new structures during the flare, leading to new X-ray emission and local increase of the photospheric currents (Musset et al., 2015). We shall discuss here similar results obtained for other X-class flares.

  15. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  16. DOES A SCALING LAW EXIST BETWEEN SOLAR ENERGETIC PARTICLE EVENTS AND SOLAR FLARES?

    SciTech Connect

    Kahler, S. W.

    2013-05-20

    Among many other natural processes, the size distributions of solar X-ray flares and solar energetic particle (SEP) events are scale-invariant power laws. The measured distributions of SEP events prove to be distinctly flatter, i.e., have smaller power-law slopes, than those of the flares. This has led to speculation that the two distributions are related through a scaling law, first suggested by Hudson, which implies a direct nonlinear physical connection between the processes producing the flares and those producing the SEP events. We present four arguments against this interpretation. First, a true scaling must relate SEP events to all flare X-ray events, and not to a small subset of the X-ray event population. We also show that the assumed scaling law is not mathematically valid and that although the flare X-ray and SEP event data are correlated, they are highly scattered and not necessarily related through an assumed scaling of the two phenomena. An interpretation of SEP events within the context of a recent model of fractal-diffusive self-organized criticality by Aschwanden provides a physical basis for why the SEP distributions should be flatter than those of solar flares. These arguments provide evidence against a close physical connection of flares with SEP production.

  17. Probable solar flare doses encountered on an interplanetary mission as calculated by the MCFLARE code

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.; Karp, I. M.

    1972-01-01

    The computer program, MCFLARE, uses Monte Carlo methods to simulate solar flare occurrences during an interplanetary space voyage. The total biological dose inside a shielded crew compartment due to the flares encountered during the voyage is determined. The computer program evaluates the doses obtained on a large number of trips having identical trajectories. From these results, a dose D sub p having a probability p of not being exceeded during the voyage can be determined as a function of p for any shield material configuration. To illustrate the use of the code, a trip to Mars and return is calculated, and estimated doses behind several thicknesses of aluminum shield and water shield are presented.

  18. Do Flares Contribute to Total Solar Irradiance Variability ?

    NASA Astrophysics Data System (ADS)

    Kretzschmar, M.; Dudok de Wit, T.

    2010-12-01

    The Total Solar Irradiance (TSI) varies on all time scales and a major fraction of its variability can be reproduced by considering the appearance and disappearance of features, such as sunspots and faculae, on the solar disk. Other effects (e.g. the so called network), however, are contributing to the variability of the TSI, as evidenced by its unusually low level during the last solar minimum. Here we show that flares of various amplitudes also have a significant impact on the TSI. In contrast to standard belief, the dominant contribution comes from the visible domain. We next estimate the probability distribution of flares versus their total radiative output; previous estimates were restricted to a specific spectral range only (e.g. in the soft X-ray or radio domain) whereas we consider the total energy. The obtained distribution follows a power law; we investigate the possibility of small flares to have a major contribution to the TSI variability. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SOTERIA (project n° 218816, www.soteria-space.eu)

  19. Solar Flares, Type III Radio Bursts, CMEs, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2004-01-01

    Despite the fact that it has been well known since the earliest observations that solar energetic particle events are well associated with solar flares it is often considered that the association is not physically significant. Instead, in large events, the particles are considered to be only accelerated at a shock driven by the coronal mass ejection (CME) that is also always present. If particles are accelerated in the associated flare, it is claimed that such particles do not find access to open field lines and therefore do not escape from the low corona. However recent work has established that long lasting type III radio bursts extending to low frequencies are associated with all prompt solar particle events. Such bursts establish the presence of open field lines. Furthermore, tracing the radio bursts to the lowest frequencies, generated near the observer, shows that the radio producing electrons gain access to a region of large angular extent. It is likely that the electrons undergo cross field transport and it seems reasonable that ions do also. Such observations indicate that particle propagation in the inner heliosphere is not yet fully understood. They also imply that the contribution of flare particles in major particle events needs to be properly addressed.

  20. Internal and External Reconnection Series Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  1. Geoeffectiveness of solar flares in magnetic crochet (sfe) production: II—Dependence on the detection method

    NASA Astrophysics Data System (ADS)

    Curto, Juan José; Gaya-Piqué, Luis R.

    2009-12-01

    During magnetic active periods, disturbances in the geomagnetic field can act as natural noise masking other magnetic variations of small amplitude. In this paper, the influence of these perturbations on the observation of the effects on Earth of solar flares (sfe) has been studied. The diurnal and monthly values of detected sfe have been obtained, as well as the temporal variation of the relative occurrence of events. These numbers show how the irregular distribution of the magnetic observatories is an important limitation in the efficiency of the detection method. Some considerations about the actual method used at the International Service on Rapid Magnetic Variations are finally presented.

  2. Location of Decimetric Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.; Battaglia, Marina; Vilmer, Nicole

    This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30 - 240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.

  3. Location of Decimetric Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.; Battaglia, Marina; Vilmer, Nicole

    2011-11-01

    This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30 - 240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.

  4. Imaging spectroscopy of solar microwave radiation. 1: Flaring emission

    NASA Technical Reports Server (NTRS)

    Lim, Jeremy; Gary, Dale E.; Hurford, Gordon J.; Lemen, James R.

    1994-01-01

    We present observations of an impulsive microwave burst on the Sun with both high spatial and spectral resolution, made with the Solar Array at the Owens Valley Radio Observatory (OVRO). We used the measured brightness temperature spectrum to infer the emission process responsible for each microwave source, and to derive physical conditions in the source region. We confimed our predictions using soft X-ray measurements from Geostationary Operational Environmental Satellite (GOES), soft X-ray images from Yohkoh, and H-alpha flare images together with sunspots and magnetogram images from the Big Bear Solar Observatory.

  5. Cosmic ray anisotropies late in a solar flare event

    NASA Technical Reports Server (NTRS)

    Allum, F. R.; Mccracken, K. G.; Rao, U. R.; Palmeira, R. A. R.; Fairfield, D. H.; Gleeson, L. J.

    1974-01-01

    The detailed relationship between the anisotropy characteristics observed during late times in the decay of a solar flare event and the interplanetary magnetic field parameters is investigated. The anisotropy always is from 45 deg east of the earth-sun line. This direction is approximately perpendicular to the nominal Archimedean spiral, independent of the particle energy. The amplitude of the anisotropy increases as the magnetic field azimuthal direction shows greater departure from the radial direction. These results are discussed in terms of current ideas about solar particle propagation in the interplanetary space.

  6. The isotopic composition of solar flare accelerated neon

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of neon in energetic solar-flare particles have been clearly resolved with a rms mass resolution of 0.20 amu. The ratios found are Ne-20/Ne-22 = 7.6 (+2.0, -1.8) and Ne-21/Ne-22 of no more than about 0.11 in the 11-26 MeV per nucleon interval. This isotopic composition is essentially the same as that of meteoritic planetary neon-A and is significantly different from that of the solar wind.

  7. Detection of the Acceleration Site in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.

    2011-05-01

    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  8. The impulsive hard X-rays from solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.

    1984-01-01

    A technique for determining the physical arrangement of a solar flare during the impulsive phase was developed based upon a nonthermal model interpretation of the emitted hard X-rays. Accurate values are obtained for the flare parameters, including those which describe the magnetic field structure and the beaming of the energetic electrons, parameters which have hitherto been mostly inaccessible. The X-ray intensity height structure can be described readily with a single expression based upon a semi-empirical fit to the results from many models. Results show that the degree of linear polarization of the X-rays from a flaring loop does not exceed 25 percent and can easily and naturally be as low as the polarization expected from a thermal model. This is a highly significant result in that it supersedes those based upon less thorough calculations of the electron beam dynamics and requires that a reevaluation of hopes of using polarization measurements to discriminate between categories of flare models.

  9. Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé

    2016-10-01

    Observations relating the characteristics of electrons seen near Earth (solar energetic particles [SEPs]) and those producing flare radiation show that in certain (prompt) events the origin of both populations appears to be the flare site, which shows strong correlation between the number and spectral index of SEP and hard X-ray radiating electrons, but in others (delayed), which are associated with fast coronal mass ejections (CMEs), this relation is complex and SEPs tend to be harder. Prompt event spectral relation disagrees with that expected in thick or thin target models. We show that using a more accurate treatment of the transport of the accelerated electrons to the footpoints and to Earth can account for this discrepancy. Our results are consistent with those found by Chen & Petrosian for two flares using nonparametric inversion methods, according to which we have weak diffusion conditions, and trapping mediated by magnetic field convergence. The weaker correlations and harder spectra of delayed events can come about by reacceleration of electrons in the CME shock environment. We describe under what conditions such a hardening can be achieved. Using this (acceleration at the flare and reacceleration in the CME) scenario, we show that we can describe the similar dichotomy that exists between the so-called impulsive, highly enriched (3He and heavy ions), and softer SEP events and stronger, more gradual SEP events with near-normal ionic abundances and harder spectra. These methods can be used to distinguish the acceleration mechanisms and to constrain their characteristics.

  10. Solar flare impulsive phase emission observed with SDO/EVE

    SciTech Connect

    Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.

    2013-12-10

    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.

  11. ANATOMY OF A SOLAR FLARE: MEASUREMENTS OF THE 2006 DECEMBER 14 X-CLASS FLARE WITH GONG, HINODE, AND RHESSI

    SciTech Connect

    Matthews, S. A.; Zharkov, S.; Zharkova, V. V.

    2011-10-01

    Some of the most challenging observations to explain in the context of existing flare models are those related to the lower atmosphere and below the solar surface. Such observations, including changes in the photospheric magnetic field and seismic emission, indicate the poorly understood connections between energy release in the corona and its impact in the photosphere and the solar interior. Using data from Hinode, TRACE, RHESSI, and GONG we study the temporal and spatial evolution of the 2006 December 14 X-class flare in the chromosphere, photosphere, and the solar interior. We investigate the connections between the emission at various atmospheric depths, including acoustic signatures obtained by time-distance and holography methods from the GONG data. We report the horizontal displacements observed in the photosphere linked to the timing and locations of the acoustic signatures we believe to be associated with this flare, their vertical and horizontal displacement velocities, and their potential implications for current models of flare dynamics.

  12. Detection and Analysis of Neutron Emissions from Solar Flares

    NASA Astrophysics Data System (ADS)

    Valdes-Galicia, J. F.

    2013-05-01

    The Sun provides unique opportunities to study particle acceleration at flares using data from detectors placed on the surface of the Earth and on board spacecrafts. Particles may gain high energies by several physical mechanisms. Differentiating between these possibilities is a fundamental problem of cosmic ray physics. In some of the most energetic events, neutrons produced in solar flares provide information that keeps the signatures of the acceleration site. A summary of some representative solar neutron events observed on the surface of the Earth, including associated X and gamma-ray observations from spacecrafts will be presented. The solar neutron event that occurred on September 7th 2005 and detected by several observatories at Earth is analyzed closely, since it produced evidence of acceleration of particles by the Sun to energies up to tens of GeV according to comparisons of data with detailed numerical simulations of a Solar Neutron Telescope. In addition, the progress in the plans to install a new Scintillator Solar Cosmic Ray Super Telescope (SciCRST) on the top of Mount Sierra Negra (4600m asl) in the east of Mexico will be discussed. Results obtained with a prototype of the SciCRST that operated in the mountain during 2010 and 2011 will be presented together with preliminary data of the SciCRST tests done in Puebla, Mexico (2200m asl).

  13. Solar Cycle Variations of the Occurrence of Coronal Type III Radio Bursts and a New Solar Activity Index

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Cairns, I. H.; Robinson, P. A.

    2011-12-01

    The results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts are presented. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System (ARBIS). Access to data from other RSTN sites will allow processing 24-hour radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  14. SOLAR CYCLE VARIATIONS OF THE OCCURRENCE OF CORONAL TYPE III RADIO BURSTS AND A NEW SOLAR ACTIVITY INDEX

    SciTech Connect

    Lobzin, Vasili; Cairns, Iver H.; Robinson, Peter A.

    2011-07-20

    This Letter presents the results of studies of solar cycle variations of the occurrence rate of coronal type III radio bursts. The radio spectra are provided by the Learmonth Solar Radio Observatory (Western Australia), part of the USAF Radio Solar Telescope Network (RSTN). It is found that the occurrence rate of type III bursts strongly correlates with solar activity. However, the profiles for the smoothed type III burst occurrence rate differ considerably from those for the sunspot number, 10.7 cm solar radio flux, and solar flare index. The type III burst occurrence rate (T3BOR) is proposed as a new index of solar activity. T3BOR provides complementary information about solar activity and should be useful in different studies including solar cycle predictions and searches for different periodicities in solar activity. This index can be estimated from daily results of the Automated Radio Burst Identification System. Access to data from other RSTN sites will allow processing 24 hr radio spectra in near-real time and estimating true daily values of this index. It is also shown that coronal type III bursts can even occur when there are no visible sunspots on the Sun. However, no evidence is found that the bursts are not associated with active regions. It is also concluded that the type III burst productivity of active regions exhibits solar cycle variations.

  15. Solar flare protection for manned lunar missions - Analysis of the October 1989 proton flare event

    SciTech Connect

    Simonsen, L.C.; Nealy, J.E.; Townsend, L.W.; Sauer, H.H. NOAA, Space Environment Laboratory, Boulder, CL )

    1991-07-01

    Several large solar proton events occurred in the latter half of 1989. For a moderately shielded spacecraft in free space, the potential exposure would have been greatest for the flare which occurred between October 19 to 27, 1989. The temporal variations of the proton energy spectra at approximately 1 AU were monitored by the GOES-7 satellite. These data, recorded and processed at the NOAA-Boulder Space Environment Laboratory, provide the opportunity to analyze dose rates and cumulative doses which might be incurred by astronauts in transit to, or on, the moon. Of particular importance in such an event is the time development of exposure in the early phases of the flare, for which dose rates may range over many orders of magnitude in the first few hours. The cumulative dose as a function of time for the entire event is also predicted. In addition to basic shield calculations, dose rate contours are constructed for flare shelters in free-space and on the lunar surface. 14 refs.

  16. Study on the triggering process of solar flares based on Hinode/SOT observations

    SciTech Connect

    Bamba, Y.; Kusano, K.; Yamamoto, T. T.; Okamoto, T. J.

    2013-11-20

    We investigated four major solar flare events that occurred in active regions NOAA 10930 (2006 December 13 and 14) and NOAA 11158 (2011 February 13 and 15) by using data observed by the Solar Optical Telescope on board the Hinode satellite. To reveal the trigger mechanism of solar flares, we analyzed the spatio-temporal correlation between the detailed magnetic field structure and the emission image of the Ca II H line at the central part of flaring regions for several hours prior to the onset of the flares. In all the flare events, we observed that the magnetic shear angle in the flaring regions exceeded 70°, as well as that characteristic magnetic disturbances developed at the centers of flaring regions in the pre-flare phase. These magnetic disturbances can be classified into two groups depending on the structure of their magnetic polarity inversion lines; the so-called opposite-polarity and reversed-shear magnetic field recently proposed by our group, although the magnetic disturbance in one event of the four samples is too subtle to clearly recognize the detailed structure. The result suggests that some major solar flares are triggered by rather small magnetic disturbances. We also show that the critical size of the flare-trigger field varies among flare events and briefly discuss how the flare-trigger process depends on the evolution of active regions.

  17. Frequency distributions and correlations of solar X-ray flare parameters

    NASA Technical Reports Server (NTRS)

    Crosby, Norma B.; Aschwanden, Markus J.; Dennis, Brian R.

    1993-01-01

    Frequency distributions of flare parameters are determined from over 12,000 solar flares. The flare duration, the peak counting rate, the peak hard X-ray flux, the total energy in electrons, and the peak energy flux in electrons are among the parameters studied. Linear regression fits, as well as the slopes of the frequency distributions, are used to determine the correlations between these parameters. The relationship between the variations of the frequency distributions and the solar activity cycle is also investigated. Theoretical models for the frequency distribution of flare parameters are dependent on the probability of flaring and the temporal evolution of the flare energy build-up. The results of this study are consistent with stochastic flaring and exponential energy build-up. The average build-up time constant is found to be 0.5 times the mean time between flares.

  18. A mechanism for deep chromospheric heating during solar flares

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Emslie, A. G.; Mauas, P. J.

    1986-01-01

    The role of the negative hydrogen ion, H(-), in the energy balance of the deep solar chromosphere is reexamined and it is found, in contrast with earlier authors, that H(-) is a source of heating at these levels. The response of this region to an ionizing flux of flare-associated UV radiation (1500 to 1900 A) is then addressed: it is found that the excess ionization of Si to Si(+) increases the local electron number density considerably, since most species are largely neutral at deep chromospheric levels. This in turn increases the electron-hydrogen atom association rate, the H(-) abundance, and the rate of absorption of photospheric radiation by this ion. It is found that the excess absorption by this process may lead to a substantial temperature enhancement at temperature minimum levels during flares.

  19. Complex Dynamic Flows in Solar Flare Sheet Structures

    NASA Technical Reports Server (NTRS)

    McKenzie, David E.; Reeves, Katharine K.; Savage, Sabrina

    2012-01-01

    Observations of high-energy emission from solar flares often reveal the presence of large sheet-like structures, sometimes extending over a space comparable to the Sun's radius. Given that these structures are found between a departing coronal mass ejection and the post-eruption flare arcade, it is natural to associate the structure with a current sheet; though the relationship is unclear. Moreover, recent high-resolution observations have begun to reveal that the motions in this region are highly complex, including reconnection outflows, oscillations, and apparent wakes and eddies. We present a detailed first look at the complicated dynamics within this supra-arcade plasma, and consider implications for the interrelationship between the plasma and its embedded magnetic field.

  20. GENERIC MODEL FOR MAGNETIC EXPLOSIONS APPLIED TO SOLAR FLARES

    SciTech Connect

    Melrose, D. B.

    2012-04-10

    An accepted model for magnetospheric substorms is proposed as the basis for a generic model for magnetic explosions and is applied to solar flares. The model involves widely separated energy-release and particle-acceleration regions, with energy transported Alfvenically between them. On a global scale, these regions are coupled by a large-scale current that is set up during the explosion by redirection of pre-existing current associated with the stored magnetic energy. The explosion-related current is driven by an electromotive force (EMF) due to the changing magnetic flux enclosed by this current. The current path and the EMF are identified for an idealized quadrupolar model for a flare.

  1. Continuum analysis of an avalanche model for solar flares.

    PubMed

    Liu, Han-Li; Charbonneau, Paul; Pouquet, Annick; Bogdan, Thomas; McIntosh, Scott

    2002-11-01

    We investigate the continuum limit of a class of self-organized critical lattice models for solar flares. Such models differ from the classical numerical sandpile model in their formulation of stability criteria in terms of the curvature of the nodal field, and are known to belong to a different universality class. A fourth-order nonlinear hyperdiffusion equation is reverse engineered from the discrete model's redistribution rule. A dynamical renormalization-group analysis of the equation yields scaling exponents that compare favorably with those measured in the discrete lattice model within the relevant spectral range dictated by the sizes of the domain and the lattice grid. We argue that the fourth-order nonlinear diffusion equation that models the behavior of the discrete model in the continuum limit is, in fact, compatible with magnetohydrodynamics (MHD) of the flaring phenomenon in the regime of strong magnetic field and the effective magnetic diffusivity characteristic of strong MHD turbulence.

  2. Measurements on a shock wave generated by a solar flare

    NASA Astrophysics Data System (ADS)

    Maxwell, A.; Dryer, M.

    1982-11-01

    Shock waves generated by intense solar flares may be driven by a large amount of ejected mass, about 5 x 10 to the 16th g, and the total energy involved may be of the order of 10 to the 32nd erg. The shocks may have initial velocities of the order of 2,000 km/s and, in their exodus through the corona, may be accompanied by fast-moving optical transients, the emission of highly characteristic radio signatures and the acceleration of particles to quasi-relativistic velocities. Here, a review is presented of data on a high-velocity shock generated by a flare on 18 August 1979, 1400 UT, and comments are provided on some previously deduced velocities for the shock. Attention is given to a model, based on current computer programs to account for the overall characteristics of the shock as it propagated through the corona and the interplanetary plasma.

  3. Measurements on a shock wave generated by a solar flare

    NASA Technical Reports Server (NTRS)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Shock waves generated by intense solar flares may be driven by a large amount of ejected mass, about 5 x 10 to the 16th g, and the total energy involved may be of the order of 10 to the 32nd erg. The shocks may have initial velocities of the order of 2,000 km/s and, in their exodus through the corona, may be accompanied by fast-moving optical transients, the emission of highly characteristic radio signatures and the acceleration of particles to quasi-relativistic velocities. Here, a review is presented of data on a high-velocity shock generated by a flare on 18 August 1979, 1400 UT, and comments are provided on some previously deduced velocities for the shock. Attention is given to a model, based on current computer programs to account for the overall characteristics of the shock as it propagated through the corona and the interplanetary plasma.

  4. SUB-THz RADIATION MECHANISMS IN SOLAR FLARES

    SciTech Connect

    Fleishman, Gregory D.; Kontar, Eduard P.

    2010-02-01

    Observations in the sub-THz range of large solar flares have revealed a mysterious spectral component increasing with frequency and hence distinct from the microwave component commonly accepted to be produced by gyrosynchrotron (GS) emission from accelerated electrons. Evidently, having a distinct sub-THz component requires either a distinct emission mechanism (compared to the GS one), or different properties of electrons and location, or both. We find, however, that the list of possible emission mechanisms is incomplete. This Letter proposes a more complete list of emission mechanisms, capable of producing a sub-THz component, both well known and new in this context, and calculates a representative set of their spectra produced by (1) free-free emission, (2) GS emission, (3) synchrotron emission from relativistic positrons/electrons, (4) diffusive radiation, and (5) Cherenkov emission. We discuss the possible role of the mechanisms in forming the sub-THz emission and emphasize their diagnostics potential for flares.

  5. Singly charged energetic helium emitted in solar flares

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Hoefner, H.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1981-01-01

    First direct charge state measurements of 0.41-1.05 MeV per nucleon helium accelerated at the sun reveal surprisingly large abundances of singly ionized helium, with typical He(+)/He(++) ratios between 0.04 and 0.21. This unexpected overabundance of He(+) was observed in each of the three large solar-flare particle events which occurred between 1978 August and 1979 October. The data were obtained with the Max-Planck-Institut/University of Maryland Experiment on board the ISEE-3 spacecraft. The observations suggest either strong coronal temperature inhomogeneities including cool regions of approximately 100,000 K or injection of 'cold' chromospheric/photospheric material into the flare acceleration region.

  6. SLOW MAGNETOACOUSTIC OSCILLATIONS IN THE MICROWAVE EMISSION OF SOLAR FLARES

    SciTech Connect

    Kim, S.; Shibasaki, K.

    2012-09-10

    Analysis of the microwave data, obtained in the 17 GHz channel of the Nobeyama Radioheliograph during the M1.6 flare on 2010 November 4, revealed the presence of 12.6 minute oscillations of the emitting plasma density. The oscillations decayed with the characteristic time of about 15 minutes. Similar oscillations with the period of about 13.8 minutes and the decay time of 25 minutes are also detected in the variation of EUV emission intensity measured in the 335 A channel of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed properties of the oscillations are consistent with the oscillations of hot loops observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) in the EUV spectra in the form of periodic Doppler shift. Our analysis presents the first direct observations of the slow magnetoacoustic oscillations in the microwave emission of a solar flare, complementing accepted interpretations of SUMER hot loop oscillations as standing slow magnetoacoustic waves.

  7. A model solar flares and their homologous behavior

    SciTech Connect

    Choe, G.S.; Cheng, C.Z.

    2000-01-27

    A model describing physical processes of solar flares and their homologous behavior is presented based on resistive MHD simulations of magnetic arcade evolution subject to continuous shear-increasing footpoint motions. It is proposed in the model that the individual flaring process encompasses magnetic reconnection of arcade field lines, generation of magnetic islands in the magnetic arcade, and coalescence of magnetic islands. When a magnetic arcade is sheared, a current sheet is formed and magnetic reconnection can take place to form a magnetic island. A continuing increase of magnetic shear can trigger a new reconnection process and create another island in the underlying arcade below the magnetic island. The newborn island rises faster than the preceding island and merges with it to form one island. Before merging with the upper island is completed, the newborn island exhibits two different phases of rising motion: the first phase with a slower rising speed and the second phase wit h a faster rising speed. This is consistent with the Yohkoh observation by Ohyama and Shibata (1998) of X-ray plasma ejecta motion. The first phase, in which reconnection of line-tied field in the underlying arcade is important, can be regarded to be related with the preflare phase. In the second phase, the island coalescence takes place, which creates an elongated current sheet below and enhances the reconnection rate of the line-tied arcade field. This phase is interpreted as the impulsive phase or the flash phase of flares. The obtained reconnection electric field is large enough to accelerate electrons to an energy level higher than 10 keV, which is necessary for observed X-ray emissions. After merging of the islands is completed, magnetic reconnection continues in the current sheet under the integrated island for rather a long period, which can be considered as the main phase of flares. The sequence of all these processes is repeated with some time interval while a shear

  8. Max 1991: Flare Research at the Next Solar Maximum. Workshop 1: Scientific Objectives

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Dennis, Brian R.

    1988-01-01

    The purpose of the Max 1991 program is to gather coordinated sets of solar flare and active region data and to perform interpretive and theoretical research aimed at understanding flare energy storage and release, particle acceleration, flare energy transport, and the propagation of flare effects to Earth. The workshop was divided into four areas of concern: energy storage, energy release, particle acceleration, and energy transport.

  9. Observations of solar flares with IRIS and SDO

    NASA Astrophysics Data System (ADS)

    Li, D.; Innes, D. E.; Ning, Z. J.

    2016-03-01

    Flare kernels brighten simultaneously in all Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) channels making it difficult to determine their temperature structure. The Interface Region Imaging Spectrograph (IRIS) is able to spectrally resolve Fe xxi emission from cold chromospheric brightenings, so it can be used to infer the amount of Fe xxi emission in the 131 Å AIA channel. We use observations of two small solar flares seen by IRIS and SDO to compare the emission measures (EMs) deduced from the IRIS Fe xxi line and the AIA 131 Å channel to determine the fraction of Fe xxi emission in flare kernels in the 131 Å channel of AIA. Cotemporal and cospatial pseudo-raster AIA images are compared with the IRIS results. We use multi-Gaussian line fitting to separate the blending chromospheric emission so as to derive Fe xxi intensities and Doppler shifts in IRIS spectra. We define loop and kernel regions based on the brightness of the 131 Å and 1600 Å intensities. In the loop regions the Fe xxi EMs are typically 80% of the 131 Å values, and range from 67% to 92%. Much of the scatter is due to small misalignments, but the largest site with low Fe xxi contributions was probably affected by a recent injection of cool plasma into the loop. In flare kernels the contribution of Fe xxi increases from less than 10% at the low-intensity 131 Å sites to 40-80% in the brighter kernels. Here the Fe xxi is superimposed on bright chromospheric emission and the Fe xxi line shows blueshifts, sometimes extending up to the edge of the spectral window, 200 km s-1. The AIA 131 Å emission in flare loops is due to Fe xxi emission with a 10-20% contribution from continuum, Fe xxiii, and cooler background plasma emission. In bright flare kernels up to 52% of the 131 Å is from cooler plasma. The wide range seen in the kernels is caused by significant structure in the kernels, which is seen as sharp gradients in Fe xxi EM at sites of molecular and transition region

  10. Numerical simulations of impulsively heated solar flares

    NASA Astrophysics Data System (ADS)

    Mariska, John T.; Emslie, A. Gordon; Li, Peng

    1989-06-01

    The response of a model solar atmosphere to heating by an electron beam has been studied for electron beam flux spectra which are power laws with low-energy 'knees' (rising linearly with time to a peak at 30 s and then falling linearly to 0 at 60 s) ranging from 10 to 20 keV. The results indicate that high peak electron beam fluxes, low-energy knees, and larger spectral indices all move the atmospheric response toward greater enhancements of the parameters in the coronal regions of the atmosphere. Coronal responses can thus be used as a diagnostic of the parameters of the electron beam.

  11. The Soft X-Ray/Microwave Ratio of Solar and Stellar Flares and Coronae

    NASA Technical Reports Server (NTRS)

    Benz, A. O.; Guedel, M.

    1994-01-01

    We have carried out plasma diagnostics of solar flares using soft X-ray (SXR) and simultaneous microwave observations and have compared the ratio of X-ray to microwave luminosities of solar flares with various active late-type stars available in the published literature. Both the SXR low-level ('quiescent') emission from stellar coronae and the flaring emission from the Sun and stars are generally interpreted as thermal radiations of coronal plasmas. On the other hand, the microwave emission of stars and solar flares is generally attributed to an extremely hot or nonthermal population of electrons. Solar flare SXR are conventionally measured in a narrower and harder passband than the stellar sources. Observations of the GOES-2 satellite in two energy channels have been used to estimate the luminosity of solar flares as it would appear in the ROSAT satellite passband. The solar and stellar flare luminosities fit well at the lower end of the active stellar coronae. The flare SXR/microwave ratio is similar to the ratio for stellar coronae. The average ratio follows a power-law relation L(sub X) varies as L(sub R)(sup 0.73 +/- 0.03) over 10 orders of magnitude from solar microflares to RS CVn and FK Com-type coronae. Dwarf Me and Ke stars, and RS CVn stars are also compatible with a linear SXR/microwave relation, but the ratio is slightly different for each type of star. Considering the differences between solar flares, stellar flares and the various active stellar coronae, the similarity of the SXR/microwave ratios is surprising. It suggests that the energetic electrons in low-level stellar coronae observed in microwaves are related in a similar way to the coronal thermal plasma as flare electrons to the flare thermal plasma, and, consequently, that the heating mechanism of active stellar coronae is a flare-like process.

  12. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; Tobiska, W. Kent; Schrijver, Carolus J.; Webb, David F.; Warren, Harry

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  13. Data Set of Flare-Ribbon Reconnected Magnetic Fluxes: A Critical Tool for Understanding Solar Flares and Eruptions

    NASA Astrophysics Data System (ADS)

    Kazachenko, M.; Lynch, B. J.; Welsch, B. T.

    2015-12-01

    Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 141 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from January 2013 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes and reconnection flux rates, with the properties from theoretical models.

  14. Preliminary analyses of solar flare effects on geomagnetic H component at equatorial and low latitudes

    NASA Astrophysics Data System (ADS)

    Ugonabo, Obiageli Josephine; Ugwu, Ernest Benjamin Ikechukwu; Nneka Okeke, Francisca

    The study of solar flare effect (SFE) on geomagnetic H component at mid latitudes was carried out using data from INTERMAGNET website. M and X solar flare effects on three stations, Addis Ababa (AAE), Bangui (BNG), and Tamanrasset (TAM) were investigated. It was found that the ratio is greater than zero for all the three stations used, hence SFE enhances geomagnetic field in the equatorial and low latitudes. It was equally noted that the SFE on geomagnetic field is not just a simple augmentation at the pre-flare ionospheric currents over these stations. It is concluded that both pre-flare and solar flare amplitude variations of H are high in low and equatorial stations. Keywords: Solar flare, geomagnetic component, latitudes.

  15. Ionosphere Transient Response To Solar Flares: Hf Radio Monitoring Observations

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Telljohann, U.; Witasse, O.; Sanderson, T. R.

    We use a simple and low cost method to monitor the ionospheric reflection of commer- cial HF radio transmissions. It only requires a standard HF radio receiver with Single Side Band capability, a computer with a sound card, and appropriate audio signal spectral analysis software. We tune the radio receiver such that the carrier frequency of the transmission appears as a ~ 1kHz tone at the output of the radio receiver. The output signal of the radio receiver is processed with appropriate software that allows real time recording of high frequency resolution dynamic spectrograms of the audio spectrum in the 0-5 kHz range. Voice modulation is also present in the audio spectrum and appears as both upper and lower side bands but it is not considered in this study. HF radio signals reach the receiving station after being reflected by ionospheric layers. Any change in the ionospheric layers that affects HF wave reflection is detectable. In this paper, we particularly discuss our observations related to the transient response of the ionosphere to solar flare ionizing radiation. Enhanced ionization due to EUV and soft X-rays may produce a transient perturbation of the ionosphere which lasts typically one to few minutes. The signature of the transient response depends upon local time, solar flare intensity and the rise time of the solar flare ionizing radiation. We discuss both a few typical examples and a preliminary analysis of our 1-year sta- tistical analysis of observed events at 17.640 MHz. The method is easily accessible to amateur scientists. Possible use of the method for spaceweather-related research and outreach and educational activities is discussed.

  16. Measuring and Modeling Solar Flares with SDO EVE

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Wilson, Anne; Lindholm, Chris

    2010-01-01

    The Flare Irradiance Spectral Model (FISM) currently provides estimations of the solar Vacuum Ultra-Violet (VUV; 0.1-190 nm) irradiance from 1947 to present at 1 nm bins and 60 second temporal resolution. The accuracy of FISM is limited to 1nm because the TIMED SEE Level 3 and Level 3A measurement, for which the FISM relationships were based on, were at Inm. With the launch of the Solar Dynamics Observatory (SDO) in Feb 2010, the EUV Variability Experiment (EVE) will provide more accurate, increased spectral resolution (0.1 nm) measurements from 6 nm to 106 nm every 10-seconds and almost 100% duty cycle. EVE also observes additional broadband measurements for 0.1-7 nm, some EUV bands from 16 nm to 40 nm, and Hydrogen Lyman alpha at 121.6 nm. Along with the better spectral resolution of EVE leading to similar spectral resolution improvements in FISM, other significant improvements provide by SDO/EVE measurements will be multi-thermal gradual phase decay, impulsive phase center-to-limb variation characterization, non-flare sub-daily variations, and multi-thermal proxies. SDO/EVE observations of various solar flares with different characteristics will be presented, with the discussion theme focused on how EVE observations will help improve the accuracy of the FISM in the future. The final topic will present the updated FISM website that now has easier access to the FISM results and produce real-time updates that are useful for Space Weather studies.

  17. First Gamma-Ray Images of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Hurford, G. J.; Schwartz, R. A.; Krucker, S.; Lin, R. P.; Smith, D. M.; Vilmer, N.

    2003-10-01

    Imaging of gamma-ray lines, produced by nuclear collisions of energetic ions with the solar atmosphere, provides the only direct indication of the spatial properties of accelerated ions near the Sun. We present the first gamma-ray images of a solar flare, obtained with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) for the X4.8 flare of 2002 July 23. Two rotating modulation collimators (with 35" and 183" resolution) were used to obtain images for the same time interval in four energy bands: the narrow deuterium line at 2.223 MeV formed by the thermalization and capture of neutrons produced in the collisions; the 3.25-6.5 MeV band that includes the prompt de-excitation lines of C and O; and the 0.3-0.5 and 0.7-1.4 MeV bands that are dominated by electron bremsstrahlung. The centroid of the 2.223 MeV image was found to be displaced by 20''+/-6'' from that of the 0.3-0.5 MeV image, implying a difference in acceleration and/or propagation between the accelerated electron and ion populations near the Sun.

  18. Reconnection in substorms and solar flares: analogies and differences

    SciTech Connect

    Birn, Joachim

    2008-01-01

    Magnetic reconnection is the crucial process in the release of magnetic energy associated with magnetospheric substorms and with solar flares. On the basis of three-dimensional resistive MHD simulations we investigate similarities and differences between the two scenarios. We address in particular mechanisms that lead to the onset of reconnection and on energy release, transport, and conversion mechanisms. Analogous processes might exist in the motion of field line footpoints on the sun and in magnetic flux addition to the magnetotail. In both cases such processes might lead to a loss of neighboring equilibrium, characterized by the formation of very thin embedded current sheet, which acts as trigger for reconnection. We find that Joule (or ohmic) dissipation plays only a minor role in the overall energy transfer associated with reconnection. The dominant transfer of released magnetic energy occurs to electromagnetic energy (Poynting) flux and to thermal energy transport as enthalpy flux. The former dominates in low-beta, specifically initially force-free current sheets expected for the solar corona, while the latter dominates in high-beta current sheets, such as the magnetotail. In both cases the outflow from the reconnection site becomes bursty, i.e. spatially and temporally localized, yet carrying most of the outflow energy. Hence an analogy might exist between bursty bulk flows (BBFs) in the magnetotail and pulses of Poynting flux in solar flares.

  19. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    NASA Astrophysics Data System (ADS)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-03-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  20. Space radiation dose analysis for solar flare of August 1989

    SciTech Connect

    Nealy, J.E.; Simonsen, L.C.; Sauer, H.H.; Wilson, J.W.; Townsend, L.W.

    1990-12-01

    Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed.

  1. The mean ionic charge of silicon in 3HE-rich solar flares

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Klecker, B.; Hovestadt, E.; Moebius, E.

    1985-01-01

    Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares.

  2. The reason for magnetospheric substorms and solar flares

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1983-01-01

    It has been proposed that magnetospheric substorms and solar flares are a result of the same mechanism. It is suggested that this mechanism is connected with the escape, or attempted escape, of energized plasma from a region of closed magnetic field lines bounded by a magnetic bottle. In the case of the earth, it must be plasma that is able to maintain a discrete auroral arc, and it is proposed that the cross-tail current connected to the arc is filamentary in nature to provide the field-aligned current sheet above the arc.

  3. Stochastic three-wave interaction in flaring solar loops

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Sharma, R. R.; Papadopoulos, K.

    1983-01-01

    A model is proposed for the dynamic structure of high-frequency microwave bursts. The dynamic component is attributed to beams of precipitating electrons which generate electrostatic waves in the upper hybrid branch. Coherent upconversion of the electrostatic waves to electromagnetic waves produces an intrinsically stochastic emission component which is superposed on the gyrosynchrotron continuum generated by stably trapped electron fluxes. The role of the density and temperature of the ambient plasma in the wave growth and the transition of the three wave upconversion to stochastic, despite the stationarity of the energy source, are discussed in detail. The model appears to reproduce the observational features for reasonable parameters of the solar flare plasma.

  4. Global energetics of solar flares. I. Magnetic energies

    SciTech Connect

    Aschwanden, Markus J.; Xu, Yan; Jing, Ju E-mail: yan.xu@njit.edu

    2014-12-10

    We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E{sub p} ), the nonpotential (E {sub np}) or free energies (E {sub free} = E {sub np} – E{sub p} ), and the flare-dissipated magnetic energies (E {sub diss}). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B{sub z} from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of ≲ 3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E{sub np}∝E{sub p}{sup 1.02}, for the free energy, E{sub free}∝E{sub p}{sup 1.7} and E{sub free}∝B{sub φ}{sup 1.0}L{sup 1.5}, for the dissipated energy, E{sub diss}∝E{sub p}{sup 1.6} and E{sub diss}∝E{sub free}{sup 0.9}, and the energy dissipation volume, V∝E{sub diss}{sup 1.2}. The potential energies vary in the range of E{sub p} = 1 × 10{sup 31}-4 × 10{sup 33} erg, while the free energy has a ratio of E {sub free}/E{sub p} ≈ 1%-25%. The Poynting flux amounts to F {sub flare} ≈ 5 × 10{sup 8}-10{sup 10} erg cm{sup –2} s{sup –1} during flares, which averages to F {sub AR} ≈ 6 × 10{sup 6} erg cm{sup –2} s{sup –1} during the entire observation

  5. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  6. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  7. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  8. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-13

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  9. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  10. Gamma-ray emission and electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe; Mctiernan, James M.; Marschhauser, Holger

    1994-01-01

    Recent observations have extended the spectra of the impulsive phase of flares to the GeV range. Such high-energy photons can be produced either by electron bremsstrahlung or by decay of pions produced by accelerated protons. In this paper we investigate the effects of processes which become important at high energies. We examine the effects of synchrotron losses during the transport of electrons as they travel from the acceleration region in the corona to the gamma-ray emission sites deep in the chromosphere and photosphere, and the effects of scattering and absorption of gamma rays on their way from the photosphere to space instruments. These results are compared with the spectra from so-called electron-dominated flares, observed by GRS on the Solar Maximum Mission, which show negligible or no detectable contribution from accelerated protons. The spectra of these flares show a distinct steepening at energies below 100 keV and a rapid falloff at energies above 50 MeV. Following our earlier results based on lower energy gamma-ray flare emission we have modeled these spectra. We show that neither the radiative transfer effects, which are expected to become important at higher energies, nor the transport effects (Coulomb collisions, synchrotron losses, or magnetic field convergence) can explain such sharp spectral deviations from a simple power law. These spectral deviations from a power law are therefore attributed to the acceleration process. In a stochastic acceleration model the low-energy steepening can be attributed to Coulomb collision and the rapid high-energy steepening can result from synchrotron losses during the acceleration process.

  11. 01.22.12: SDO's View of M8.7 Solar Flare

    NASA Video Gallery

    Solar Dynamics Observatory captured the flare, shown here in teal as that is the color typically used to show light in the 131 Angstrom wavelength, a wavelength in which it is easy to view solar fl...

  12. Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares (Invited Review)

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.

    2015-12-01

    The extreme ultra-violet (EUV) portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature- and density-sensitive line ratios, Doppler-shifted emission lines, nonthermal broadening, abundance measurements, differential emission measure profiles, continuum temperatures and energetics, among others. In this article I review some of the recent advances that have been made using these techniques to infer physical properties of heated plasma at footpoint and ribbon locations during the initial stages of solar flares. I primarily focus on studies that have utilised spectroscopic EUV data from Hinode/EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory/EUV Variability Experiment (SDO/EVE), and I also provide some historical background and a summary of future spectroscopic instrumentation.

  13. Multi-wavelength Solar Flare Observations with Ground- and Space-based Observatories

    NASA Astrophysics Data System (ADS)

    Kleint, Lucia

    2016-07-01

    Solar flares affect a wide range of atmospheric heights from the corona to the photosphere. Solar instruments are generally designed for high-resolution observations in limited spectral windows and therefore only capture part of the flare. To obtain a more complete flare picture from coronal reconnection to the atmospheric response of the chromosphere and photosphere, it is necessary to combine data from multiple instruments. I will review multi-wavelength flare observations with ground- and space-based observatories. By taking the X1 flare on March 29, 2014 as an example, which was observed with an unprecedented number of telescopes, I will demonstrate how to investigate the origin of the flare by looking at a filament eruption, the chromospheric evaporation by means of spectroscopy, the flare heating by analyzing continuum emission, and the changes of chromospheric magnetic fields using polarimetric data.

  14. MAGNETIC STRUCTURE PRODUCING X- AND M-CLASS SOLAR FLARES IN SOLAR ACTIVE REGION 11158

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Shiota, D.

    2013-06-10

    We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13-16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

  15. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  16. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1992-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1-100 MeV region is reported. Most of the events studied are dominated by He and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. Spectra of H, He-3, O, and Fe have spectral indices that are consistent with a value of about 3.5 above about 2 MeV/amu. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. Alternative interpretations are that trapping in the acceleration region directly causes a peak in the resulting ion spectrum or that low-energy particles encounter significant additional scattering during transport from the flare.

  17. Multispacecraft Observations of Solar Flare Particles in the Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Wibberenz, G.; Cane, H. V.

    2007-01-01

    For a number of impulsive solar particle events we examine variations of maximum intensities and times to maximum intensity as a function of longitude, using observations from the two Helios spacecraft and near the Earth. We find that electrons in the MeV range can be detected more than 80 deg. from the flare longitude, corresponding to a considerably wider "well connected" region than that (approx. 20 deg. half width) reported for He-3-rich impulsive solar events. This wide range and the decrease of peak intensities with increasing connection angle revive the concept of some propagation process in the low corona that has a diffusive nature. Delays to the intensity maximum are not systematically correlated with connection angles. We argue that interplanetary scattering parallel to the average interplanetary magnetic field, that varies with position in space, plays an important role in flare particle events. In a specific case variations of the time profiles with radial distance and with particle rigidity are used to quantitatively confirm spatial diffusion. For a few cases near the edges of the well connected region the very long times to maximum intensity might result from interplanetary lateral transport.

  18. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1991-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1 to 100 MeV region is reported with data from the combined observations of experiments on the ISEE 3 and IMP 8 spacecraft. Most of the events studied are dominated by He, and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. An alternative interpretation is that trapping in the acceleration region directly causes a peak in the spectrum.

  19. Evidence for a relationship between emerging magnetic fields, electric currents, and solar flares observed on May 10, 2012

    NASA Astrophysics Data System (ADS)

    Livshits, M. A.; Grigoryeva, I. Yu.; Myshyakov, I. I.; Rudenko, G. V.

    2016-10-01

    Multi-wavelength observations and magnetic-field data for the solar flare of May 10, 2012 (04: 18 UT) are analyzed. A sign change in the line-of-sight magnetic field in the umbra of a small spot has been detected. This is at least partly associated with the emergence of a new magnetic field. A hard X-ray flare was recorded at almost the same time, and a "sunquake" was generated by the impact of the disturbance in the range of energy release on the photosphere. A sigmoid flare was recorded at the beginning of the event, but did not spread, as it usually does, along the polarity inversion (neutral) line. SDO/HMI full vectormagnetic-fieldmeasurements are used to extrapolate the magnetic field of AR 11476 into the corona, and to derive the distribution of vertical currents jz in the photosphere. The relationship between the distribution of currents in the active region and the occurrence of flares is quite complex. The expected "ideal" behavior of the current system before and after the flare (e.g., described by Sharykin and Kosovichev) is observed only in the sigmoid region. The results obtained are compared with observations of two other flares recorded in this active region on the same day, one similar to the discussed flare and the other different. The results confirm that the formation and eruption of large-scale magnetic flux ropes in sigmoid flares is associated with shear motions in the photosphere, the emergence of twisted magnetic tubes, and the subsequent development of the torus instability.

  20. Magnetic Reconnection of Solar Flare Detected by Solar Radio Burst Type III

    NASA Astrophysics Data System (ADS)

    Hamidi, Z. S.; Shariff, N. N. M.; Ibrahim, Z. A.; Monstein, C.; Zulkifli, W. N. A. Wan; Ibrahim, M. B.; Arifin, N. S.; Amran, N. A.

    2014-10-01

    The Sun is an ideal object of a blackbody with a large and complex magnetic field. In solar activity specifically solar flare phenomenon, the magnetic reconnection is one of the most significant factors of the Sun that can simplify a better understanding of our nearest star. This factor is due to the motion of the plasma and other particles through the convection mechanism inside the Sun. In our work, we will highlight one of the solar burst events that associated with solar flares. This event occurred on 13th November 2012 from 2:00:03 UT till 2:00:06 UT. It peaked with M2.0 solar flare at 2.04 UT. Within short time intervals of about l02 ~ 103s, large quantities of energy of 1022 ~ 1026J are emancipated. The changing magnetic field converts magnetic potential energy into kinetic energy by accelerating plasmas in the solar corona. It is believed that the plasma is channelled by the magnetic field up and away from the Sun. It is also accelerated back down along the magnetic field into the chromosphere. In conclusion, we showed that the structure of the solar radio burst type III is an indicator of a starting point of magnetic reconnection.

  1. Changing photospheric vector magnetic fields associated with a B4.2-class solar flare

    NASA Astrophysics Data System (ADS)

    Su, Jiangtao; Liu, Yu; Shen, Yuandeng

    2013-07-01

    Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with large (X- or M-class) solar flares. However, few observations have been reported about small flares. In this paper we find the observational evidence of changing photospheric vector magnetic fields associated with a B4.2-class flare obtained with the Solar Magnetic Field Telescope (SMFT) installed at Huairou Solar Observing Station (HSOS) of Nation Astronomical Observatories of Chinese Academy of Sciences.

  2. The Role of Flares Cme's and CME Shocks in the Generation of Solar Energetic Proton Events

    NASA Astrophysics Data System (ADS)

    Pérez Enríquez, R.; Mendoza, B.

    1995-09-01

    We examined solar energetic proton (SEP) events associated with intense Hα flares. We located these flares on the solar disk and obtained their distribution in heliographic longitude as well as their angular distance distribution with respect to the neutral lines corresponding to the heliospheric current sheet at 2.5R⊙. We found that the SEP-associated Hα flares tend to occur in active regions at the feet of those helmet streamers which form the heliomagnetic equator and are related to coronal mass ejections (CMEs) and CME shocks. We discuss the possible role of flares, CMEs and CME shocks in generating SEPs.

  3. Pre-flare Activity and Magnetic Reconnection during the Evolutionary Stages of Energy Release in a Solar Eruptive Flare

    NASA Astrophysics Data System (ADS)

    Joshi, Bhuwan; Veronig, Astrid M.; Lee, Jeongwoo; Bong, Su-Chan; Tiwari, Sanjiv Kumar; Cho, Kyung-Suk

    2011-12-01

    In this paper, we present a multi-wavelength analysis of an eruptive white-light M3.2 flare that occurred in active region NOAA 10486 on 2003 November 1. The excellent set of high-resolution observations made by RHESSI and the TRACE provides clear evidence of significant pre-flare activities for ~9 minutes in the form of an initiation phase observed at EUV/UV wavelengths followed by an X-ray precursor phase. During the initiation phase, we observed localized brightenings in the highly sheared core region close to the filament and interactions among short EUV loops overlying the filament, which led to the opening of magnetic field lines. The X-ray precursor phase is manifested in RHESSI measurements below ~30 keV and coincided with the beginning of flux emergence at the flaring location along with early signatures of the eruption. The RHESSI observations reveal that both plasma heating and electron acceleration occurred during the precursor phase. The main flare is consistent with the standard flare model. However, after the impulsive phase, an intense hard X-ray (HXR) looptop source was observed without significant footpoint emission. More intriguingly, for a brief period, the looptop source exhibited strong HXR emission with energies up to ~50-100 keV and significant non-thermal characteristics. The present study indicates a causal relation between the activities in the pre-flare and the main flare. We also conclude that pre-flare activities, occurring in the form of subtle magnetic reorganization along with localized magnetic reconnection, played a crucial role in destabilizing the active region filament, leading to a solar eruptive flare and associated large-scale phenomena.

  4. Predictions of reconnected flux, energy and helicity in eruptive solar flares

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria Dmitiyevna

    2010-12-01

    In order to better understand the solar genesis of interplanetary magnetic clouds, I model the magnetic and topological properties of several large eruptive solar flares and relate them to observations. My main hypothesis is that the flux ropes ejected during eruptive solar flares are the result of a sequence of magnetic reconnections. To test this hypothesis, I use the three-dimensional Minimum Current Corona model of flare energy storage (Longcope, 1996) together with pre-flare photospheric magnetic field and flare ribbon observations to predict the basic flare properties: reconnected magnetic flux, free energy, and flux rope helicity. Initially, the MCC model was able to quantify the properties of the flares that occur in active regions with only photospheric shearing motions. Since rotating motions may also play a key role in the flare energetics, I develop a method for including both shearing and rotating motions into the MCC model. I use this modified method to predict the model flare properties and then compare them to the observed quantities. Firstly, for two flares in active regions with fast rotating sunspots, I find that the relative importance of shearing and rotation to those flares depends critically on their location within the parent active region topology. Secondly, for four flares analyzed with the MCC model (three flares described here and one flare described in Longcope et al. (2007)), I find that the modeled flare properties agree with the observed properties within the uncertainties of the methods used. This agreement compels me to believe that the magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption as modeled by the MCC model, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. I note that since all four flares occurred in active regions without significant pre-flare flux emergence

  5. Wavelength Dependence of Solar Flare Irradiation and its Influence on the Thermosphere

    NASA Technical Reports Server (NTRS)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Qian, L.; Solomon, S.; Chamberlin, P.

    2012-01-01

    The wavelength dependence of solar flare enhancement is one of the important factors determining how the Thermosphere-Ionosphere (T-I) system response to flares. To investigate the wavelength dependence of solar flare, the Flare Irradiance Spectral Model (FISM) has been run for 34 X-class flares. The results show that the percentage increases of solar irradiance at flare peak comparing to pre-flare condition have a clear wavelength dependence. In the wavelength range between 0 - 195 nm, it can vary from 1% to 10000%. The solar irradiance enhancement is largest ( 1000%) in the XUV range (0 - 25 nm), and is about 100% in EUV range (25 - 120 nm). The influence of different wavebands on the T-I system during the October 28th, 2003 flare (X17.2-class) has also been examined using the latest version of National Center for Atmospheric Research (NCAR) Thermosphere- Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). While the globally integrated solar energy deposition is largest in the 0 - 14 nm waveband, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for 25 - 105 nm waveband. The effect of 122 - 195 nm is small in magnitude, but it decays slowly.

  6. An upper limit on the hardness of the nonthermal electron spectra produced during the flash phase of solar flares.

    NASA Technical Reports Server (NTRS)

    Kane, S. R.

    1971-01-01

    The observations of impulsive solar-flare X-rays above 10 keV made with OGO-5 satellite have been analyzed in order to study the variation of the nonthermal electron spectrum from one flare to another. The X-ray spectrum at the maxima of 129 impulsive X-ray bursts is represented by KE to the minus-gamma power photons per sq cm per sec per keV, and the frequency of occurrence of bursts with different values of gamma is studied. It is found that for gamma less than 4.0 the frequency of bursts rapidly decreases with the decrease in the value of gamma. The probability of occurrence of a burst with gamma less than 2.3 is extremely small.

  7. Large solar flare radiation shielding requirements for manned interplanetary missions.

    PubMed

    Townsend, L W; Nealy, J E; Wilson, J W; Atwell, W

    1989-01-01

    As the 21st century approaches, there is an ever-increasing interest in launching manned missions to Mars. A major concern to mission planners is exposure of the flight crews to highly penetrating and damaging space radiations. Beyond the protective covering of the Earth's magnetosphere, the two main sources of these radiations are galactic cosmic rays and solar particle events. Preliminary analyses of potential exposures from galactic cosmic rays (GCR's) were presented elsewhere. In this Note, estimates of shielding thicknesses required to protect astronauts on interplanetary missions from the effects of large solar flare events are presented. The calculations use integral proton fluences for the February 1956, November 1960, and August 1972 solar particle events as inputs into the NASA Langley Research Center nucleon transport code BRYNTRN. This deterministic computer code transports primary protons and secondary protons and neutrons through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus breakup (fragmentation) and recoil are also included. The results for each flare are presented as estimates of dose equivalent [in units of roentgen equivalent man (rem)] to the skin, eye, and bloodforming organs (BFO) behind various thicknesses of aluminum shielding. These results indicate that the February 1956 event was the most penetrating; however, the August 1972 event, the largest ever recorded, could have been mission- or life-threatening for thinly shielded (< or = 5 g/cm2) spacecraft. Also presented are estimates of the thicknesses of water shielding required to reduce the BFO dose equivalent to currently recommended astronaut exposure limits. These latter results suggest that organic polymers, similar to water, appear to be a much more desirable shielding material than aluminum. PMID:11537157

  8. Solar wind heavy ions from flare-heated coronal plasma

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Fenimore, E. E.; Gosling, J. T.

    1979-01-01

    Information concerning the coronal expansion is carried by solar-wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy-ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to originate from coronal holes. Although the sources of the IS plasma are uncertain, the heavy-ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at a temperature of approximately 1.6 million K, while that of Fe is frozen in farther out at about 1.5 million K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe(16+) ions, not usually found in IS flows, and the derived coronal freezing-in temperatures are significantly higher. The coronal sources of some of these ionizationally hot flows are identified as solar flares.

  9. A Helioseismic Survey to Investigate Relationships between Subsurface Flows beneath Large Active Regions and Solar Flares

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Leka, K D.; Barnes, Graham

    2014-06-01

    A survey of the subsurface flow properties of about 120 of the largest active regions, determined from the application of helioseismic holography to Dopplergrams obtained with the HMI instrument onboard the Solar Dynamics Observatory, is being carried out. The overriding goal is to characterize differences in the subsurface flows between active regions associated with eruptive flares and the flows observed in relatively quiescent regions. Applications to flare forecasting comprise only one part of this investigation, since the potential response of the subsurface environment to eruptive events during and after their occurrence is also of scientific interest. Other priorities include understanding the limitations of the helioseismic methods, identifying and correcting systematic effects, and validating the reliability of the measurements using artificial data. While inversions to determine the variation with depth of subsurface flows are planned, preliminary results will be discussed which make use of proxies for near-surface depth-integrated properties, including the horizontal component of the flow divergence and the vertical component of the flow vorticity.This work is supported by the Solar Terrestrial Program of the National Science Foundation, through grant AGS-1127327, and by the National Oceanic and Atmospheric Administration SBIR program.

  10. Statistics and classification of the microwave zebra patterns associated with solar flares

    SciTech Connect

    Tan, Baolin; Tan, Chengming; Zhang, Yin; Mészárosová, H.; Karlický, M.

    2014-01-10

    The microwave zebra pattern (ZP) is the most interesting, intriguing, and complex spectral structure frequently observed in solar flares. A comprehensive statistical study will certainly help us to understand the formation mechanism, which is not exactly clear now. This work presents a comprehensive statistical analysis of a big sample with 202 ZP events collected from observations at the Chinese Solar Broadband Radio Spectrometer at Huairou and the Ondŕejov Radiospectrograph in the Czech Republic at frequencies of 1.00-7.60 GHz from 2000 to 2013. After investigating the parameter properties of ZPs, such as the occurrence in flare phase, frequency range, polarization degree, duration, etc., we find that the variation of zebra stripe frequency separation with respect to frequency is the best indicator for a physical classification of ZPs. Microwave ZPs can be classified into three types: equidistant ZPs, variable-distant ZPs, and growing-distant ZPs, possibly corresponding to mechanisms of the Bernstein wave model, whistler wave model, and double plasma resonance model, respectively. This statistical classification may help us to clarify the controversies between the existing various theoretical models and understand the physical processes in the source regions.

  11. On the Generation of Hydrodynamic Shocks by Mixed Beams and Occurrence of Sunquakes in Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, Valentina; Zharkov, Sergei

    2015-11-01

    Observations of solar flares with sunquakes by space- and ground-based instruments reveal essentially different dynamics of seismic events in different flares. Some sunquakes are found to be closely associated with the locations of hard X-ray (HXR) and white-light (WL) emission, while others are located outside either of them. In this article we investigate possible sources causing a seismic response in a form of hydrodynamic shocks produced by the injection of mixed (electron plus proton) beams, discuss the velocities of these shocks, and the depths where they deposit the bulk of their energy and momentum. The simulation of hydrodynamic shocks in flaring atmospheres induced by electron-rich and proton-rich beams reveals that the linear depth of the shock termination is shifted beneath the level of the quiet solar photosphere on a distance from 200 to 5000 km. The parameters of these atmospheric hydrodynamic shocks are used as initial condition for another hydrodynamic model developed for acoustic-wave propagation in the solar interior (Zharkov, Mon. Not. Roy. Astron. Soc. 431, 3414, 2013). The model reveals that the depth of energy and momentum deposition by the atmospheric shocks strongly affects the propagation velocity of the acoustic-wave packet in the interior. The locations of the first bounces from the photosphere of acoustic waves generated in the vicinity of a flare are seen as ripples on the solar surface, or sunquakes. Mixed proton-dominated beams are found to produce a strong supersonic shock at depths 200 - 300 km under the level of the quiet-Sun photosphere and in this way produce well-observable acoustic waves, while electron-dominated beams create a slightly supersonic shock propagating down to 5000 km under the photosphere. This shock can only generate acoustic waves at the top layers beneath the photosphere since the shock velocity very quickly drops below the local sound speed. The distance Δ of the first bounce of the generated acoustic waves

  12. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  13. RETURN CURRENTS AND ENERGY TRANSPORT IN THE SOLAR FLARING ATMOSPHERE

    SciTech Connect

    Codispoti, Anna; Torre, Gabriele; Piana, Michele; Pinamonti, Nicola

    2013-08-20

    According to the standard Ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated with these local currents has an Ohmic nature and significantly shortens the accelerated electron path. In the present paper, we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. We show that this new formula for the energy loss rate provides a better fit of the experimental data with respect to the model based on the effects of standard Ohmic return currents.

  14. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  15. Time extended production of neutrons during a solar flare

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Vestrand, W. T.; Dubrunner, H.; Flueckiger, E. O.; Cooper, J. F.; Kanbach, G.; Reppin, C.; Share, G. H.

    1985-01-01

    The most energetic neutral emissions expected from solar flares are gamma rays (10 MeV) from relativistic primary and secondary electron bremsstrahlung,from approx 0 meson decay, and from neutrons ( 50 MeV). Bremsstrahlung photon energies extend to that of the highest energy electron present, but the shape of the pi sup 0 gamma ray spectrum, peaking at 69 MeV, does not depend strongly on the proton spectrum above threshold, which is approx. 292 MeV for meson production on protons. The highest energy neutrons observed indicate directly the highest energy ions which interact at the Sun, and the presence or absence of anergy cutoff in the acceleration process. The high-energy proton spectrum shape can be determined from the neutron spectrum.

  16. Observations and Modelling of Helium Lines in Solar Flares

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Fletcher, L.; Labrosse, N.; Kerr, G. S.

    2016-04-01

    We explore the response of the He II 304 Å and He I 584 Å line intensities to electron beam heating in solar flares using radiative hydrodynamic simulations. Comparing different electron beams parameters, we found that the intensities of both He lines are very sensitive to the energy flux deposited in the chromosphere, or more specifically to the heating rate, with He II 304 Å being more sensitive to the heating than He I 584 Å. Therefore, the He line ratio increases for larger heating rates in the chromosphere. A similar trend is found in observations, using SDO/EVE He irradiance ratios and estimates of the electron beam energy rate obtained from hard X-ray data. From the simulations, we also found that spectral index of the electrons can affect the He ratio but a similar effect was not found in the observations.

  17. Coronal mass ejections and major solar flares: The great active center of March 1989

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Hundhausen, Arthur J.

    1994-01-01

    The solar flare and coronal mass ejection (CME) events associated with the large and complex March 1989 active region are discussed. This active region gave us a chance to study the relation of CME with truly major solar flares. The work concentrates on questions of the relation of CMEs and flares to one another and to other types of activity on the Sun. As expected, some major (X-3B class) flares had associated CMEs. However, an unexpected finding is that others did not. In fact, there is strong evidence that the X4-4B flare of March 9th had no CME. This lack of a CME for such an outstanding flare event has important implications to theories of CME causation.Apparently, not all major flares cause CMEs or are caused by CMEs. The relations between CMEs and other types of solar activity are also discussed. No filament disappearances are reported for major CMEs studied here. Comparing these results with other studies, CMEs occur in association with flares and with erupting prominences, but neither are required for a CME. The relation between solar structures showing flaring without filament eruptions and structures showing filament eruptions without flares becomes important. The evolutionary relation between an active flaring sunspot region and extensive filaments without sunspots is reviewed, and the concept of an 'evolving magnetic structure' (EMS) is introduced. It is suggested that all CMEs arise in EMSs and that CMEs provide a major path through which azimuthal magnetic fields escape form the Sun during the solar cycle.

  18. MAGNETIC AND DYNAMICAL PHOTOSPHERIC DISTURBANCES OBSERVED DURING AN M3.2 SOLAR FLARE

    SciTech Connect

    Kuckein, C.; Collados, M.; Sainz, R. Manso

    2015-02-01

    This Letter reports on a set of full-Stokes spectropolarimetric observations in the near-infrared He i 10830 Å spectral region covering the pre-flare, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He i 10830 Å emission in the flare. The red component of the He i triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He i Stokes V is substantially larger and appears reversed compared to the usually larger Si i Stokes V profile. The photospheric Si i inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare, the magnetic field recovers its pre-flare configuration in a short time (i.e., 30 minutes after the flare). (2) In the photosphere, the line of sight velocities show a regular granular up- and downflow pattern before the flare erupts. During the flare, upflows (blueshifts) dominate the area where the flare is produced. Evaporation rates of ∼10{sup −3} and ∼10{sup −4} g cm{sup −2} s{sup −1} have been derived in the deep and high photosphere, respectively, capable of increasing the chromospheric density by a factor of two in about 400 s.

  19. Numerical modeling of the energy storage and release in solar flares

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Weng, F. S.

    1993-01-01

    This paper reports on investigation of the photospheric magnetic field-line footpoint motion (usually referred to as shear motion) and magnetic flux emerging from below the surface in relation to energy storage in a solar flare. These causality relationships are demonstrated by using numerical magnetohydrodynamic simulations. From these results, one may conclude that the energy stored in solar flares is in the form of currents. The dynamic process through which these currents reach a critical value is discussed as well as how these currents lead to energy release, such as the explosive events of solar flares.

  20. A Model of Solar Flares Based on Arcade Field Reconnection and Merging of Magnetic Islands

    SciTech Connect

    G.S. Choe; C.Z. Cheng

    2001-12-12

    Solar flares are intense, abrupt releases of energy in the solar corona. In the impulsive phase of a flare, the intensity of hard X-ray emission reaches a sharp peak indicating the highest reconnection rate. It is often observed that an X-ray emitting plasma ejecta (plasmoid) is launched before the impulsive phase and accelerated throughout the phase. Thus, the plasmoid ejection may not be an effect of fast magnetic reconnection as conventionally assumed, but a cause of fast reconnection. Based on resistive magnetohydrodynamic simulations, a solar flare model is presented, which can explain these observational characteristics of flares. In the model, merging of a newly generated magnetic island and a pre-existing island results in stretching and thinning of a current sheet, in which fast magnetic reconnection is induced. Recurrence of homologous flares naturally arises in this model. Mechanisms of magnetic island formation are also discussed.

  1. Particle densities within the acceleration region of a solar flare

    SciTech Connect

    Krucker, Säm; Battaglia, Marina

    2014-01-01

    The limb flare SOL2012-07-19T05:58 (M7.7) provides the best example of a non-thermal above-the-loop-top hard X-ray source with simultaneous observations by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. By combining the two sets of observations, we present the first direct measurement of the thermal proton density and non-thermal electron density within the above-the-loop-top source where particle acceleration occurs. We find that both densities are of the same order of magnitude of a few times 10{sup 9} cm{sup –3}, about 30 times lower than the density in the underlying thermal flare loops. The equal densities indicate that the entire electron population within the above-the-loop-top source is energized. While the derived densities depend on the unknown source depth and filling factor, the ratio of these two densities does not. Within the uncertainties, the ratio is one for a low energy cutoff of the non-thermal electron spectrum between 10 and 15 keV. RHESSI observations only constrain the cutoff energy to below ∼15 keV, leaving the spectral shape of the electrons within the above-the-loop-top source at lower energies unknown. Nevertheless, these robust results strongly corroborate earlier findings that the above-the-loop-top source is the acceleration region where a bulk energization process acts on all electrons.

  2. DETERMINATION OF STOCHASTIC ACCELERATION MODEL CHARACTERISTICS IN SOLAR FLARES

    SciTech Connect

    Chen, Qingrong; Petrosian, Vahé

    2013-11-01

    Following our recent paper, we have developed an inversion method to determine the basic characteristics of the particle acceleration mechanism directly and non-parametrically from observations under the leaky box framework. Earlier, we demonstrated this method for obtaining the energy dependences of the escape time and pitch angle scattering time. Here, by converting the Fokker-Planck equation to its integral form, we derive the energy dependences of the energy diffusion coefficient and direct acceleration rate for stochastic acceleration in terms of the accelerated and escaping particle spectra. Combining the regularized inversion method of Piana et al. and our procedure, we relate the acceleration characteristics in solar flares directly to the count visibility data from RHESSI. We determine the timescales for electron escape, pitch angle scattering, energy diffusion, and direct acceleration at the loop top acceleration region for two intense solar flares based on the regularized electron flux spectral images. The X3.9 class event shows dramatically different energy dependences for the acceleration and scattering timescales, while the M2.1 class event shows a milder difference. The discrepancy between the M2.1 class event and the stochastic acceleration model could be alleviated by a turbulence spectrum that is much steeper than the Kolmogorov-type spectrum. A likely explanation of the X3.9 class event could be that the escape of electrons from the acceleration region is not governed by a random walk process, but instead is affected by magnetic mirroring, in which the scattering time is proportional to the escape time and has an energy dependence similar to the energy diffusion time.

  3. An investigation of solar flares and associated solar radio bursts on ionospheric total electron content

    NASA Astrophysics Data System (ADS)

    Uwamahoro, Jean

    2016-07-01

    Solar transients events such as Coronal Mass Ejections (CMEs) and solar flares represent are the cause of various aspects of space weather and can impact the modern man made technological system. Such solar transients are often associated with solar radio bursts (SRBs), particularly of type II and III that , at ground level can be detected by the CALLISTO (Compact Astronomical Low-frequency Low-cost Instrument for Spectroscopy and Transportable Observatories) solar spectrometer. The present study aims at investigating solar flares and associated SRBs impact on the ionospheric total electron content (TEC). SRBs data used are dynamic spectra covering the 2014-2015 period and detected by the CALLISTO instrument that is installed at the university of Rwanda, Kigali. To investigate ionospheric impact, we use TEC data from IGS stations located at almost the same universal time zone, and correlate the observed TEC changes to the corresponding observed solar bursts events. Preliminary observations resulting from this study indicate a slight enhancement in TEC during the burst event days. The observed TEC enhancement on the burst day can be associated to increased UV and X-rays radiations and particle acceleration that are associated with SRBs events. This work is a contribution to more understanding of the geo-space impact of solar transients phenomena for modeling and prediction.

  4. An investigation of solar flares and associated solar radio bursts impact on ionospheric total electron content

    NASA Astrophysics Data System (ADS)

    Tuyizere, Sarathiel

    2016-07-01

    Solar transients events such as Coronal Mass Ejections (CMEs) and solar flares represent the cause of various aspects of space weather and can impact the modern man made technological system. Such solar transients are often associated with solar radio bursts (SRBs), particularly of type II and III that , at ground level can be detected by the CALLISTO (Compact Astronomical Low-frequency Low-cost Instrument for Spectroscopy and Transportable Observatories) solar spectrometer. The present study aims at investigating solar flares and associated SRBs impact on the ionospheric total electron content (TEC). SRBs data used are dynamic spectra covering the 2014-2015 period and detected by the CALLISTO instrument that is installed at the university of Rwanda, Kigali. To investigate ionospheric impact, we use TEC data from IGS stations located at almost the same universal time zone, and correlate the observed TEC changes to the corresponding observed solar bursts events. Preliminary observations resulting from this study indicate a slight enhancement in TEC during the burst event days. The observed TEC enhancement on the burst day can be associated to increased UV and X-rays radiations and particle acceleration that are associated with SRBs events. This work is a contribution to more understanding of the geo-space impact of solar transients phenomena for modeling and prediction.

  5. Thermal Structure of Supra-Arcade Plasma in Two Solar Flares

    NASA Technical Reports Server (NTRS)

    Reeves, Katharine K.; Savage, Sabrina; McKenzie, David E.; Weber, Mark A.

    2012-01-01

    In this work, we use Hinode/XRT and SDO/AIA data to determine the thermal structure of supra-arcade plasma in two solar flares. The first flare is a Ml.2 flare that occurred on November 5, 2010 on the east limb. This flare was one of a series of flares from AR 11121, published in Reeves & Golub (2011). The second flare is an XI.7 flare that occurred on January 27, 2012 on the west limb. This flare exhibits visible supra-arcade downflows (SADs), where the November 2010 flare does not. For these two flares we combine XRT and AlA data to calculate DEMs of each pixel in the supra-arcade plasma, giving insight into the temperature and density structures in the fan of plasma above the post-flare arcade. We find in each case that the supra-arcade plasma is around 10 MK, and there is a marked decrease in the emission measure in the SADs. We also compare the DEMs calculated with the combined AIA/XRT dataset to those calculated using AIA alone.

  6. The isotopic composition of solar flare noble gases

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1983-01-01

    The relative elemental and isotopic abundances of noble gases provide insights into a number of topics related to the solar system. Neon is in many ways the most diagnostic of the noble gases. The diagnostic character is mainly related to the variation in the relative abundance of the two most abundant neon isotopes, Ne-20 and Ne-22. The available evidence suggests that trapped neon found in meteorites and in lunar samples consists of as many as five isotopically distinct components, including neon A, B, C, D, and E. Neon B has been shown to be due to solar wind neon which has been directly implanted into the material found in a meteorite. It appears that neon E is extrasolar in origin. There exist ambiguities regarding the origins of the remaining three components. The present investigation is concerned with a reexamination of the existing data in an effort to eliminate or at least clarify these ambiguities. It is found that neon C is apparently due to directly implanted, low-energy solar flare neon nuclei.

  7. Reply. [to comment on 'The solar flare myth' by J. T. Gosling

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1995-01-01

    In replying to a comment by Hudson et. al. (1995) in regards to Gosling (1993), Gosling (1995) holds that solar flares do not play a major role in geomagnetic storms. According to Gosling, Hudson et. al. has done nothing to demonstrate that flares either produce coronal mass ejections (CMEs) or cause major disturbances in the near-Earth space environment.

  8. Solar Relativistic Proton Fluxes in the Solar Flare of 14 July 2000

    NASA Astrophysics Data System (ADS)

    Wang, Ruiguang; Wang, Jingxiu

    We studied the solar proton differential energy spectra with energy range of 1 ˜500 MeV at several time intervals during the 2000 July 14 solar flare. The results showed that before flare the spectra could be described by a power law function and after flare the power law spectra still existed above 30 MeV although spectra became softer with time. There was a spectral "knee" occurring at ˜30 MeV. We constructed a solar proton differential spectrum from 30 MeV to 3 GeV at peak flux time 10:30 UT and fitted it in the same manner. On the basis of a supposition of having the same power law spectrum in higher energy, we calculated the solar proton integrated fluxes in energy range of from 500 MeV to 20 GeV and compared them with other results obtained from experimental, modeling and theoretical calculations in other big historic SEP events.

  9. Dynamical structure of solar radio burst type III as evidence of energy of solar flares

    NASA Astrophysics Data System (ADS)

    Hamidi, Zety Sharizat Binti

    2013-11-01

    Observations of low frequency solar type III radio bursts associated with the ejection of plasma oscillations localized disturbance is due to excitation atoms in the plasma frequency incoherent radiations play a dominant role at the meter and decimeter wavelengths. Here, we report the results of the dynamical structure of solar flare type III that occurred on 9th March 2012 at National Space Centre, Sg Lang, Selangor, Malaysia by using the CALLISTO system. These bursts are associated with solar flare type M6 which suddenly ejected in the active region AR 1429 starting at 03:32 UT and ending at 05:00 UT with the peak at 04:12 UT. The observation showed an initial strong burst occurred due to strong signal at the beginning of the phase. We also found that both solar burst and flares tend to be a numerous on the same day and probability of chance coincidence is high. It is clearly seen that an impulsive lace burst was detected at 4:24 UT and it is more plausible that the energies are confined to the top of the loop when we compared with X-ray results. Associated with this event was type II with velocities 1285 km/s and type IV radio sweeps along with a full halo Coronal Mass Ejections (CMEs) first seen in SOHO/LASCO C2 imagery at 09/0426 Z. We concluded that the significance of study solar burst type III lies in the fact that the emission at decimetric wavelength comes from the role of magnetic field in active region that may provide the key to the energy release mechanism in a flare.

  10. Observations of interplanetary energetic charged particles from gamma-ray line solar flares

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Klecker, B.; Gloeckler, G.; Hovestadt, D.

    1981-01-01

    Observations of interplanetary energetic ions from the 7 June, 21 June and 1 July 1980 gamma ray line solar flares are presented. The observations are from the Max-Planck-Institut/University of Maryland Ultra Low Energy Wide Angle Telescope aboard the ISEE-3 spacecraft. Both June flares produced relatively low intensity proton events at earth with peak intensities at 10-20 MeV approximately 5 x .01 protons square cm sec sr MeV)-1. Neither flare showed evidence of being enriched in either 3He or Fe at approximately 1 MeV/nucleon. The 1 July flare produced no observable ion or electron enhancements.

  11. The H-alpha/H-beta ratio in solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Liggett, M.; Patterson, A.

    1982-01-01

    The present investigation involves the study of an extensive body of data accumulated of simultaneous H-alpha and H-beta cinematography of flares. The data were obtained with two telescopes simultaneously photographing flares in H-alpha and H-beta. The results of measurements in a number of flares are presented in a table. The flares were selected purely by optical quality of the data. That the measured ratios are not too different from those in stellar flares is suggested by the last two columns of the table. These columns show that a variety of possible line width ratios could give an integrated intensity ratio of less than unity.

  12. Confined Flares in Solar Active Region 12192 from 2014 October 18 to 29

    NASA Astrophysics Data System (ADS)

    Chen, Huadong; Zhang, Jun; Ma, Suli; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin

    2015-07-01

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40-105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  13. MULTI-WAVELENGTH OBSERVATIONS OF SOLAR FLARES WITH A CONSTRAINED PEAK X-RAY FLUX

    SciTech Connect

    Bowen, Trevor A.; Testa, Paola; Reeves, Katharine K.

    2013-06-20

    We present an analysis of soft X-ray (SXR) and extreme-ultraviolet (EUV) observations of solar flares with an approximate C8 Geostationary Operational Environmental Satellite (GOES) class. Our constraint on peak GOES SXR flux allows for the investigation of correlations between various flare parameters. We show that the duration of the decay phase of a flare is proportional to the duration of its rise phase. Additionally, we show significant correlations between the radiation emitted in the flare rise and decay phases. These results suggest that the total radiated energy of a given flare is proportional to the energy radiated during the rise phase alone. This partitioning of radiated energy between the rise and decay phases is observed in both SXR and EUV wavelengths. Though observations from the EUV Variability Experiment show significant variation in the behavior of individual EUV spectral lines during different C8 events, this work suggests that broadband EUV emission is well constrained. Furthermore, GOES and Atmospheric Imaging Assembly data allow us to determine several thermal parameters (e.g., temperature, volume, density, and emission measure) for the flares within our sample. Analysis of these parameters demonstrate that, within this constrained GOES class, the longer duration solar flares are cooler events with larger volumes capable of emitting vast amounts of radiation. The shortest C8 flares are typically the hottest events, smaller in physical size, and have lower associated total energies. These relationships are directly comparable with several scaling laws and flare loop models.

  14. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    SciTech Connect

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin; Ma, Suli

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  15. SDO Captures Release of X1.2 Class Solar Flare

    NASA Video Gallery

    This movie shows imagery from NASA's Solar Dynamics Observatory as the sun emitted an X-class flare on Jan. 7, 2014. The movie shows light in the 1600 Angstrom wavelength showing both sunspots visi...

  16. Multiple Views of X1.4 Solar Flare on July 12, 2012

    NASA Video Gallery

    This video shows the July 12, 2012 X1.4 class solar flare in a variety of wavelength; 131- Teal colored, 335 - blue colored, 171 - yellow colored and finally a combined wavelength view. All video w...

  17. Solar flare X-ray polarimeter utilizing a large area thin beryllium scattering disk

    NASA Technical Reports Server (NTRS)

    Gotthelf, E.; Hamilton, T.; Novick, R.; Chanan, G.; Emslie, A.; Weisskopf, M.

    1989-01-01

    A model of a solar flare X-ray polarimeter utilizing a large-area thin beryllium scattering disk was developed using Monte Carlo techniques for several classes of solar flares. The solar-flare polarimeter consists of a 30-cm-diam Be disk of about 1/3 of a scattering length thickness, which is surrounded by a cylindrical detector composed of six segmented panels of NaI scintillators, each coupled to 15 photomultiplier tubes. The instrument is sensitive to X-rays from 10 to 100 keV. For a class-M-2 solar flare observed for 10 sec from a balloon at an altitude of 150,000 ft, the minimum detectable polarization at the 99 percent statistical confidence level was found to be 1-6 percent over the energy range 20-100 keV.

  18. A mechanism for the abundance enhancements of heavy nuclei in solar flare particle events

    NASA Technical Reports Server (NTRS)

    Cartwright, B. G.; Mogro-Campero, A.

    1973-01-01

    A mechanism is proposed to account for the recently reported abundance enhancements of heavy nuclei in solar flares. The mechanism requires two acceleration stages for its operation: First, fully stripped ions are accelerated to suprathermal energies, and subsequently, a fraction of these ions are Fermi accelerated to higher energies. It is shown that because injection into Fermi acceleration is rigidity dependent and the ions may pick up electrons during transport to the Fermi acceleration region, an enhancement of the abundances of heavy nuclei can occur. The degree of the enhancement depends on a number of factors particular to each flare, so that the degree of enhancement may be variable from flare to flare, or may be a function of time within a given flare. In some flares, conditions may be such that no enhancement would be expected.

  19. Flares and Antiflares on Young Solar Analog EK Draconis

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2015-01-01

    EK Draconis (HD129333: G1.5 V) is a well-known young (50 Myr) solar analog. In 2012, Hubble Space Telescope returned to EK Dra to follow up a far-UV SNAPshot visit by HST's Cosmic Origins Spectrograph two years earlier. The brief SNAP pointing had found surprisingly redshifted subcoronal Si IV (T~ 8x104 K), which also displayed impulsive variability, curiously uncorrelated with species at lower temperatures (C II: 2x104K) or higher (Fe XXI: 1x107K). Serendipitously, the follow-on program witnessed one of the largest FUV flares ever recorded on a sun-like star, which nevertheless displayed even stronger redshifts (downflows) than had been seen earlier, contrary to the violent blueshifts expected from such explosive events. At the same time, a velocity cross-calibration by Space Telescope Imaging Spectrograph (STIS) uncovered systematic deviations in the wavelength scales of COS, that were partly, but not entirely, responsible for the previously reported SNAP redshifts. However, the (now smaller, but still about 10 km s-1) Si IV redshifts did not vary with rotational phase, so are not likely caused by "Doppler imaging' effects. Instead, the downflows might be signatures of catastrophic coronal cooling events (`"antiflares'). All in all, the new COS/STIS program documents a complex, energetic, dynamic outer atmosphere of the young solar analog.

  20. Vector Magnetograph Observations by the Solar Flare Telescope at Boao

    NASA Astrophysics Data System (ADS)

    Park, Y. D.; Moon, Y.-J.

    We report that the vector magnetograph(VMG) observations of the solar photosphere are being carried out by the Solar Flare Telescope(SOFT) in BOAO(Bohyunsan Optical Astronomical Observatory) of Korea Astronomy Observatory. The VMG uses a narrow band Lyot filter (FWHM = 0.125A) for observations of Stokes parameters(I,Q,U,V) to obtain longitudinal and transversal fields. The Stokes images are acquired by Sony XC -77 video CCD cameras which are digitized in 8-bit by an image processor, MVC 150/40 manufactured by ITI(Image Technology Incorporate). The digitized images are saved in 16 bit after integration (up to 256 frames) or in 8-bit multiple frames for analysis. Since the transmission wavelength of Lyot filter is very sensitive to environmental temperature (0.35A/deg), it requires a careful temperature control of the filter interior. For this, we have made a continuous effort to maintain the temperature stability within the accuracy of less than 0.05 deg. with NAIRC (Nanjing Astronomical Instrument Research Center) team. We have obtained clean line profiles of FeI 6302.5 from our VMG by scanning the individual profiles by changing the central wavelength of the Lyot filter. We present some of our observed VMG observations, which are compared with those made with similar vector magnetographs at other observatories.

  1. Molecular models need to be tested: the case of a solar flares discoidal HDL model.

    PubMed

    Shih, Amy Y; Sligar, Stephen G; Schulten, Klaus

    2008-06-01

    In the absence of atomic structures of high-density lipoproteins in their lipid-bound states, many molecular models have been produced based on experimental data. Using molecular dynamics, we show that a recently proposed "solar-flares" model of discoidal high-density lipoprotein is implausible. Our simulations show a collapse of the protruding solar-flare loops and a notable protein rearrangement due to an energetically unfavorable orientation of the hydrophobic protein surface toward the aqueous solvent.

  2. Spectral Analysis on Solar Flares with an Emission > 300 keV

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Connaughton, V.

    2013-12-01

    The continuum gamma-ray emission from solar flares is caused when a population of electrons is accelerated to relativistic speeds and interacts with the solar plasma. However, it has been theorized that the gamma-ray emission from some brighter flares comes from two populations of electrons. Using the Gamma-Ray Burst Monitor (GBM), we studied the gamma-ray emission spectra of solar flares and paid special attention to the solar flares that showed emission above 300 keV. We found that the emission above 300 keV was better fit with a broken power-law than a single power-law, evidence that the gamma-ray emission from certain solar flares involved two populations of electrons. Specifically, our best model involved a broken power law that had a steeper slope before the break in energy than after. We studied the spectral parameters as a function of time during the period of the high-energy emission. We also found that solar flares with emission above 300 keV form a small subset (~4%) of flares that trigger GBM above 20 keV. One of the flares with an emission greater than 300 keV was fitted with a Broken Power Law model. Only data from the BGO detector was used in making the plots. Various parameters of the fit have been plotted vs. time with the top two graphs representing the light curves of the flare from different detectors (BGO-0 and NaI-4). A spectral fit for bn100612038 for the time interval of [45s-50s] using only the BGO (0) detector file. Data from this fit was used in creating the other plots.

  3. Gamma-ray and microwave evidence for two phases of acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1976-01-01

    Relativistic electrons in large solar flares produce gamma ray continuum by bremsstrahlung and microwave emission by gyrosynchrotron radiation. Using observations of the 1972, August 4 flare, the electron spectrum and the physical properties of the common emitting region of these radiations were evaluated. Information was also obtained on energetic protons in this flare by using gamma ray lines. From the electron spectrum, the proton-to-electron ratio, and the time dependences of the microwave emission, the 2.2 MeV line and the gamma ray continuum, it was concluded that in large solar flares relativistic electrons and energetic nuclei are accelerated by a mechanism which is different from the mechanism which accelerates approximately less than 100 keV electrons in flares.

  4. Seismic Emissions from a Highly Impulsive M6.7 Solar Flare

    NASA Astrophysics Data System (ADS)

    Martínez-Oliveros, J. C.; Moradi, H.; Donea, A.-C.

    2008-09-01

    On 10 March 2001 the active region NOAA 9368 produced an unusually impulsive solar flare in close proximity to the solar limb. This flare has previously been studied in great detail, with observations classifying it as a type 1 white-light flare with a very hard spectrum in hard X-rays. The flare was also associated with a type II radio burst and coronal mass ejection. The flare emission characteristics appeared to closely correspond to previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic signatures produced by the flare that, to date, is the least energetic (in soft X-rays) of the flares known to have generated a detectable acoustic transient. Holographic analysis of the flare shows a compact acoustic source strongly correlated with the impulsive hard X-rays, visible continuum, and radio emission. Time distance diagrams of the seismic waves emanating from the flare region also show faint signatures, mainly in the eastern sector of the active region. The strong spatial coincidence between the seismic source and the impulsive visible continuum emission reinforces the theory that a substantial component of the seismic emission seen is a result of sudden heating of the low photosphere associated with the observed visible continuum emission. Furthermore, the low-altitude magnetic loop structure inferred from potential-field extrapolations in the flaring region suggests that there is a significant anti-correlation between the seismicity of a flare and the height of the magnetic loops that conduct the particle beams from the corona.

  5. Stereoscopic observations of hard x ray sources in solar flares made with GRO and other spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Hurley, K.; Mctiernan, J. M.; Laros, J. G.

    1992-01-01

    Since the launch of the Gamma Ray Observatory (GRO) in Apr. 1991, the Burst and Transient Source Experiment (BATSE) instrument on GRO has recorded a large number of solar flares. Some of these flares have also been observed by the Gamma-Ray Burst Detector on the Pioneer Venus Orbiter (PVO) and/or by the Solar X-Ray/Cosmic Gamma-Ray Burst Experiment on the Ulysses spacecraft. A preliminary list of common flares observed during the period May-Jun. 1991 is presented and the possible joint studies are indicated.

  6. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Shibata, Kazunari

    2016-06-01

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.

  7. Recent Progress in Understanding Energy Transfer in Solar Flares Resulting from Coordinated IRIS, SDO, and Hinode Observations

    NASA Astrophysics Data System (ADS)

    Reeves, K.

    2015-12-01

    Flares are the most energetic events that take place on the Sun, and studying them results in a wealth of information about the energy transfer between the solar corona and lower layers of the atmosphere. Prior to a flare, magnetic fields in the photosphere and chromosphere are stressed until a trigger causes energy release in the corona. Manifestations of this energy release are accelerated electrons high in the corona, increased intensity in post-flare arcades and chromospheric footpoint brightenings. Chromospheric evaporation at flare footpoints gives insight into the particular energy release mechanisms during solar flares. Progress in understanding the energy storage, release and deposition of energy during solar flares has come thanks to coordinated observations between IRIS, SDO and Hinode. In this talk, I will review recent results from these coordinated efforts, including observations of reconnection outflows, chromospheric evaporation, turbulence in flare loop tops, and flare triggering.

  8. Models and Comparisons of Long Duration and Impulsive Solar Flare Events from SDO

    NASA Astrophysics Data System (ADS)

    Bowen, Trevor; Testa, P.; Reeves, K.

    2012-01-01

    We compare observational signatures of two GOES C8-class solar flares through instrumentation on Solar Dynamics Observatory (SDO). Data from the Atmospheric Imaging Assembly (AIA) and the Extreme Ultraviolet Variability Experiment (EVE) provide a unique look at the sun through global scale, fast cadence, high-resolution photometric and spectral measurements; this data is ideal for analyzing the temporal evolution of flare properties. The two flares studied differ in both time scale and morphology, one may be classified as a long duration event (LDE), while the other is highly impulsive. Differences are noted in behavior in the AIA EUV bands as well as several spectral lines. Furthermore, we apply both zero and one dimensional multi-threaded hydrodynamic loop models to synthesize light curves and spectra for each flare. Funding provided by NSF REU solar physics program at CfA, grant number ATM-0851866 and Marlboro College.

  9. Implications of X-Ray Observations for Electron Acceleration and Propagation in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Aschwanden, M. J.; Aurass, H.; Battaglia, M.; Grigis, P. C.; Kontar, E. P.; Liu, W.; Saint-Hilaire, P.; Zharkova, V. V.

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.

  10. SIMULATING THE EFFECTS OF INITIAL PITCH-ANGLE DISTRIBUTIONS ON SOLAR FLARES

    SciTech Connect

    Winter, Henry D.; Reeves, Katharine K.; Martens, Petrus

    2011-07-10

    In this work, we model both the thermal and non-thermal components of solar flares. The model we use, HYLOOP, combines a hydrodynamic equation solver with a non-thermal particle tracking code to simulate the thermal and non-thermal dynamics and emission of solar flares. In order to test the effects of pitch-angle distribution on flare dynamics and emission, a series of flares is simulated with non-thermal electron beams injected at the loop apex. The pitch-angle distribution of each beam is described by a single parameter and allowed to vary from flare to flare. We use the results of these simulations to generate synthetic hard and soft X-ray emissions (HXR and SXR). The light curves of the flares in Hinode's X-ray Telescope passbands show a distinct signal that is highly dependent on pitch-angle distribution. The simulated HXR emission in the 3-6 keV bandpass shows the formation and evolution of emission sources that correspond well to the observations of pre-impulsive flares. This ability to test theoretical models of thermal and non-thermal flare dynamics directly with observations allows for the investigation of a wide range of physical processes governing the evolution of solar flares. We find that the initial pitch-angle distribution of non-thermal particle populations has a profound effect on loop top HXR and SXR emission and that apparent motion of HXR is a natural consequence of non-thermal particle evolution in a magnetic trap.

  11. Solar flare accelerated isotopes of hydrogen and helium. [observed by IMP-4 and IMP-5

    NASA Technical Reports Server (NTRS)

    Anglin, J. D.; Dietrich, W. F.; Simpson, J. A.

    1973-01-01

    Measurements of solar flare hydrogen, deuterium, tritium, helium-3, and helium-4 in the energy range approximately 10 to 50 MeV per nucleon obtained with instrumentation on the IMP-4 and IMP-5 satellites are reported and studies based on these results which place several constraints on theories of solar flare particle acceleration are discussed. A brief review of previous work and the difficulties in studying the rare isotopes of hydrogen and helium is also included. Particular emphasis is placed on the fact that the information to be obtained from the solar flare products of high energy interactions is not available through either solar wind observations where both the acceleration mechanism and the coronal source of the nuclear species are different, or optical measurements of solar active regions.

  12. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh K.; Singh, A. K.; Singh, Rajesh; Singh, R. P.

    2014-03-01

    The results of very low frequency (VLF) wave amplitude measurements carried out at the low latitude station Varanasi (geom. lat. 14∘55'N, long. 154∘E), India during solar flares are presented for the first time. The VLF waves (19.8 kHz) transmitted from the NWC-transmitter, Australia propagated in the Earth-ionosphere waveguide to long distances and were recorded at Varanasi. Data are analyzed and the reflection height H' and the sharpness factor β are evaluated. It is found that the reflection height decreases whereas sharpness factor increases with the increase of solar flare power. The H' is found to be higher and β smaller at low latitudes than the corresponding values at mid and high latitudes. The sunspot numbers were low during the considered period 2011-2012, being the rising phase of solar cycle 24 and as a result cosmic rays may impact the D-region ionosphere. The increased ionization from the flare lowers the effective reflecting height, H', of the D-region roughly in proportion to the logarithm of the X-ray flare intensity from a typical mid-day unperturbed value of about 71-72 km down to about 65 km for an X class flare. The sharpness ( β) of the lower edge of the D-region is also significantly increased by the flare but reaches a clear saturation value of about 0.48 km-1 for flares of magnitude greater than about X1 class.

  13. Thermal Evolution and Radiative Output of Solar Flares Observed by the EUV Variability Experiment (EVE)

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.; Milligan, R. O.; Woods, T. N.

    2012-01-01

    This paper describes the methods used to obtain the thermal evolution and radiative output during solar flares as observed by the Extreme u ltraviolet Variability Experiment (EVE) onboard the Solar Dynamics Ob servatory (SDO). Presented and discussed in detail are how EVE measur ements, due to its temporal cadence, spectral resolution and spectral range, can be used to determine how the thermal plasma radiates at v arious temperatures throughout the impulsive and gradual phase of fla res. EVE can very accurately determine the radiative output of flares due to pre- and in-flight calibrations. Events are presented that sh ow the total radiated output of flares depends more on the flare duration than the typical GOES X-ray peak magnitude classification. With S DO observing every flare throughout its entire duration and over a la rge temperature range, new insights into flare heating and cooling as well as the radiative energy release in EUV wavelengths support exis ting research into understanding the evolution of solar flares.

  14. Trigger of a Blowout Jet in a Solar Coronal Mass Ejection Associated with a Flare

    NASA Astrophysics Data System (ADS)

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong; Li, Ting; Zhang, Jun

    2015-11-01

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to the CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.

  15. TRIGGER OF A BLOWOUT JET IN A SOLAR CORONAL MASS EJECTION ASSOCIATED WITH A FLARE

    SciTech Connect

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong; Li, Ting; Zhang, Jun

    2015-11-20

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to the CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.

  16. Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Zimovets, I. V.; Morgachev, A. S.; Struminsky, A. B.

    2016-09-01

    We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 - 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks P ≈8 - 270 s are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares ( 55~%) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares ( 45~%) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 ( 88~%) group 1 flares and 11 ( 85~%) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the

  17. Magnetic shielding of interplanetary spacecraft against solar flare radiation

    NASA Technical Reports Server (NTRS)

    Cocks, Franklin H.; Watkins, Seth

    1993-01-01

    The ultimate objective of this work is to design, build, and fly a dual-purpose, piggyback payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field (1) to protect spacecraft against solar flare protons, (2) to produce a thrust of sufficient magnitude to stabilize low satellite orbits against orbital decay from atmospheric drag, and (3) to test the magsail concept. These all appear to be capable of being tested using the same deployed high temperature superconducting coil. In certain orbits, high temperature superconducting wire, which has now been developed to the point where silver-sheathed high T sub c wires one mm in diameter are commercially available, can be used to produce the magnetic moments required for shielding without requiring any mechanical cooling system. The potential benefits of this concept apply directly to both earth-orbital and interplanetary missions. The usefulness of a protective shield for manned missions needs scarcely to be emphasized. Similarly, the usefulness of increasing orbit perigee without expenditure of propellant is obvious. This payload would be a first step in assessing the true potential of large volume magnetic fields in the US space program. The objective of this design research is to develop an innovative, prototype deployed high temperature superconducting coil (DHTSC) system.

  18. OPTIMAL ELECTRON ENERGIES FOR DRIVING CHROMOSPHERIC EVAPORATION IN SOLAR FLARES

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Alexander, D. E-mail: stephen.bradshaw@rice.edu

    2015-08-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher et al., who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Further, at low electron energies, a much weaker beam flux is required to drive explosive evaporation.

  19. MHD discontinuities in solar flares: Continuous transitions and plasma heating

    NASA Astrophysics Data System (ADS)

    Ledentsov, L. S.; Somov, B. V.

    2015-12-01

    The boundary conditions for the ideal MHD equations on a plane discontinuity surface are investigated. It is shown that, for a given mass flux through a discontinuity, its type depends only on the relation between inclination angles of a magnetic field. Moreover, the conservation laws on a surface of discontinuity allow changing a discontinuity type with gradual (continuous) changes in the conditions of plasma flow. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of the complete system of boundary conditions for the MHD equations. We also found the expression describing a jump of internal energy of the plasma flowing through the discontinuity. Firstly, this allows constructing a generalized scheme of possible continuous transitions between MHD discontinuities. Secondly, it enables the examination of the dependence of plasma heating by plasma density and configuration of the magnetic field near the discontinuity surface, i.e., by the type of the MHD discontinuity. It is shown that the best conditions for heating are carried out in the vicinity of a reconnecting current layer near the areas of reverse currents. The result can be helpful in explaining the temperature distributions inside the active regions in the solar corona during flares observed by modern space observatories in soft and hard X-rays.

  20. Search for evidence of low energy protons in solar flares

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Wuelser, Jean-Pierre; Canfield, Richard C.; Hudson, Hugh S.

    1992-01-01

    We searched for linear polarization in the H alpha line using the Stokes Polarimeter at Mees Solar Observatory and present observations of a flare from NOAA active region 6659 which began at 01:30 UT on 14 Jun. 1991. Our dataset also includes H alpha spectra from the Mees charge coupled device (MCCD) imaging spectrograph as well as hard x ray observations from the Burst and Transient Source Experiment (BATSE) instrument on board the Gamma Ray Observatory (GRO). The polarimeter scanned a 40 x 40 inch field of view using 16 raster points in a 4 x 4 grid. Each scan took about 30 seconds with 2 seconds at each raster point. The polarimeter stopped 8.5 inches between raster points and each point covered a 6 inch region. This sparse sampling increased the total field of view without reducing the temporal cadence. At each raster point, an H alpha spectrum with 20 mA spectral sampling is obtained covering 2.6 A centered on H alpha line center. The preliminary conclusions from the research are presented.

  1. CORONAL ELECTRON DISTRIBUTION IN SOLAR FLARES: DRIFT-KINETIC MODEL

    SciTech Connect

    Minoshima, Takashi; Kusano, Kanya; Masuda, Satoshi; Miyoshi, Yoshizumi

    2011-05-10

    Using a model of particle acceleration and transport in solar flares, we investigate the height distribution of coronal electrons by focusing on the energy-dependent pitch-angle scattering. When pitch-angle scattering is not included, the peak heights of loop-top electrons are constant, regardless of their energy, owing to the continuous acceleration and compression of the electrons via shrinkage of magnetic loops. On the other hand, under pitch-angle scattering, the electron heights are energy-dependent: intermediate-energy electrons are at a higher altitude, whereas lower and higher energy electrons are at lower altitudes. This implies that the intermediate-energy electrons are inhibited from following the shrinking field lines to lower altitudes because pitch-angle scattering causes efficient precipitation of these electrons into the footpoint and their subsequent loss from the loop. This result is qualitatively consistent with the position of the above-the-loop-top hard X-ray (HXR) source that is located above coronal HXR loops emitted by lower energy electrons and microwaves emitted by higher energy electrons. Quantitative agreement with observations might be achieved by considering primary acceleration before the onset of loop shrinkage and additional pitch-angle scattering via wave-particle interactions.

  2. Solar Flare Abundances of Potassium, Argon, and Sulphur

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Technical Monitor); Phillips, K. J. H.; Sylwester, J.; Sylwester, B.; Landi, E.

    2003-01-01

    The absolute coronal abundances of potassium has been determined for the first time from X-ray solar flare line and continuous spectra together with absolute and relative abundances of Ar and S. Potassium is of importance in the continuing debate concerning the nature of the coronal/photospheric element abundance ratios which are widely considered to depend on first ionization potential since it has the lowest FIP of any common element in the Sun. The measurements were obtained with the RESIK crystal spectrometer on the Coronas-F spacecraft. A differential emission measure DEM = const. x exp (-(beta)T(sub e) was found to be the most consistent with the data out of three models considered. We find that the coronal ratio [K/H] = 3.7 x 10(exp - 7), a factor 3 times photospheric, in agreement with other observations using line-to-line ratios. Our measured value for the coronal ratio [Ar/H] = 1.5 x 10(exp -6) is significantly less than photospheric, indicating that there is a slight depletion of this high-FIP element in the corona. For S (an intermediate-FIP element) we obtained [S/H] = 2.2 x 10(exp - 5), approximately the same as in previous work.

  3. A CLASSIFICATION SCHEME FOR TURBULENT ACCELERATION PROCESSES IN SOLAR FLARES

    SciTech Connect

    Bian, Nicolas; Kontar, Eduard P.; Emslie, A. Gordon E-mail: eduard@astro.gla.ac.uk

    2012-08-01

    We establish a classification scheme for stochastic acceleration models involving low-frequency plasma turbulence in a strongly magnetized plasma. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the transport of charged particles in the acceleration region. We group the acceleration processes as either resonant, non-resonant, or resonant-broadened, depending on whether the particle motion is free-streaming along the magnetic field, diffusive, or a combination of the two. Stochastic acceleration by moving magnetic mirrors and adiabatic compressions are addressed as illustrative examples. We obtain expressions for the momentum-dependent diffusion coefficient D(p), both for general forms of the accelerating force and for the situation when the electromagnetic force is wave-like, with a specified dispersion relation {omega} = {omega}(k). Finally, for models considered, we calculate the energy-dependent acceleration time, a quantity that can be directly compared with observations of the time profile of the radiation field produced by the accelerated particles, such as those occuring during solar flares.

  4. High-sensitivity observations of solar flare decimeter radiation

    NASA Astrophysics Data System (ADS)

    Benz, A. O.; Messmer, P.; Monstein, C.

    2001-01-01

    A new acousto-optic radio spectrometer has observed the 1-2 GHz radio emission of solar flares with unprecedented sensitivity. The number of detected decimeter type III bursts is greatly enhanced compared to observations by conventional spectrometers observing only one frequency at the time. The observations indicate a large number of electron beams propagating in dense plasmas. For the first time, we report weak, reversed drifting type III bursts at frequencies above simultaneous narrowband decimeter spikes. The type III bursts are reliable signatures of electron beams propagating downward in the corona, apparently away from the source of the spikes. The observations contradict the most popular spike model that places the spike sources at the footpoints of loops. Conspicuous also was an apparent bidirectional type U burst forming a fish-like pattern. It occurs simultaneously with an intense U-burst at 600-370 MHz observed in Tremsdorf. We suggest that it intermodulated with strong terrestrial interference(cellular phones) causing a spurious symmetric pattern in the spectrogram at 1.4 GHz. Symmetric features in the 1-2 GHz range, some already reported in the literature, therefore must be considered with utmost caution.

  5. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    SciTech Connect

    Dudík, J.; Del Zanna, G.; Mason, H. E.; Janvier, M.; Aulanier, G.; Schmieder, B.; Karlický, M. E-mail: mjanvier@maths.dundee.ac.uk

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.

  6. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  7. A CRITICAL EXAMINATION OF THE FUNDAMENTAL ASSUMPTIONS OF SOLAR FLARE AND CORONAL MASS EJECTION MODELS

    SciTech Connect

    Spicer, D. S.; Bingham, R.; Harrison, R.

    2013-05-01

    The fundamental assumptions of conventional solar flare and coronal mass ejection (CME) theory are re-examined. In particular, the common theoretical assumption that magnetic energy that drives flares and CMEs can be stored in situ in the corona with sufficient energy density is found wanting. In addition, the observational constraint that flares and CMEs produce non-thermal electrons with fluxes of order 10{sup 34}-10{sup 36} electrons s{sup -1}, with energies of order 10-20 keV, must also be explained. This constraint when imposed on the ''standard model'' for flares and CMEs is found to miss the mark by many orders of magnitude. We suggest, in conclusion, there are really only two possible ways to explain the requirements of observations and theory: flares and CMEs are caused by mass-loaded prominences or driven directly by emerging magnetized flux.

  8. PLASMA HEATING IN THE VERY EARLY AND DECAY PHASES OF SOLAR FLARES

    SciTech Connect

    Falewicz, R.; Rudawy, P.; Siarkowski, M. E-mail: rudawy@astro.uni.wroc.pl

    2011-05-20

    In this paper, we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 September 20 and 2002 March 17, respectively. For both investigated flares we derived the energy fluxes contained in NTE beams from the RHESSI observational data constrained by observed GOES light curves. We showed that energy delivered by NTEs was fully sufficient to fulfill the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad hoc heating mechanisms other than heating by NTEs.

  9. A method to search for solar flares jointly observed by multiple instruments.

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan

    2016-07-01

    Our current fleet of space-based solar observatories offer us a wealth of opportunities to study solar flares over a range of wavelengths, and the greatest advances in our understanding of flare physics often come from coordinated observations between different instruments. However, despite considerable effort to try and coordinate this armada of instruments over the years (e.g. through the Max Millennium Program of Solar Flare Research), there are frustratingly few solar flares that have been well and truly observed by most or all instruments simultaneously. This is due to a range of factors such as instruments having a limited field of view, satellites in low-Earth orbit going into eclipse, and observing schedules being uploaded days in advance. I shall describe a new technique to retrospectively search archival databases for flares jointly observed by RHESSI, SDO/EVE, Hinode/EIS+SOT, and IRIS. I shall also present a summary of how many flares have been observed by different configurations of these instruments since the launch of SDO.

  10. The heliolongitudinal distribution of solar flares associated with solar proton events.

    PubMed

    Smart, D F; Shea, M A

    1996-01-01

    We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian. PMID:11540356

  11. The heliolongitudinal distribution of solar flares associated with solar proton events.

    PubMed

    Smart, D F; Shea, M A

    1996-01-01

    We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian.

  12. Skylab ATM/S-056 X-ray event analyzer observations versus solar flare activity: An event compilation. [tables (data)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1977-01-01

    An event compilation is presented which correlates ATM/S-056 X-ray event analyzer solar observations with solar flare activity. Approximately 1,070 h of pulse height analyzed X-ray proportional counter data were obtained with the X-ray event analyzer during Skylab. During its operation, 449 flares (including 343 flare peaks) were observed. Seventy events of peak X-ray emission or = Cl were simultaneously observed by ground based telescopes, SOLRAD 9 and/or Vela, and the X-ray event analyzer. These events were observed from preflare through flare rise to peak and through flare decline.

  13. Estimates of the neutron emission during large solar flares in the rising and maximum period of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Lopez, D.; Matsubara, Y.; Muraki, Y.; Sako, T.; Valdés-Galicia, J. F.

    2016-03-01

    We searched for solar neutrons using the data collected by six detectors from the International Network of Solar Neutron Telescopes and one Neutron Monitor between January 2010 and December 2014. We considered the peak time of the X-ray intensity of thirty five ≥ X1.0 class flares detected by GOES satellite as the most probable production time of solar neutrons. We prepared a light-curve of the solar neutron telescopes and the neutron monitor for each flare, spanning ± 3 h from the peak time of GOES. Based on these light curves, we performed a statistical analysis for each flare. Setting a significance level at greater than 3σ, we report that no statistically significant signals due to solar neutrons were found. Therefore, upper limits are determined by the background level and solar angle of these thirty five solar flares. Our calculation assumed a power-law neutron energy spectrum and an impulsive emission profile at the Sun. The estimated upper limits of the neutron emission are consistent within the order of magnitude of the successful detections of solar neutrons made in solar cycle 23.

  14. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    NASA Technical Reports Server (NTRS)

    Nautiyal, C. M.; Rao, M. N.

    1986-01-01

    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed.

  15. Statistical study of free magnetic energy and flare productivity of solar active regions

    SciTech Connect

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M.; Wiegelmann, T.

    2014-06-20

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  16. Electron impact polarization expected in solar EUV lines from flaring chromospheres/transition regions

    NASA Technical Reports Server (NTRS)

    Fineschi, S.; Fontenla, Juan M.; Macneice, P.; Ljepojevic, N. N.

    1991-01-01

    We have evaluated lower bounds on the degree of impact Extreme Ultraviolet/Ultraviolet (EUV/UV) line polarization expected during solar flares. This polarization arises from collisional excitation by energetic electrons with non-Maxwellian velocity distributions. Linear polarization was observed in the S I 1437 A line by the Ultraviolet Spectrometer and Polarimeter/Solar Maximum Mission (UVSP/SMM) during a flare on 15 July 1980. An early interpretation suggested that impact excitation by electrons propagating through the steep temperature gradient of the flaring transition region/high chromosphere produced this polarization. Our calculations show that the observed polarization in this UV line cannot be due to this effect. We find instead that, in some flare models, the energetic electrons can produce an impact polarization of a few percent in EUV neutral helium lines (i.e., lambda lambda 522, 537, and 584 A).

  17. Geometrical properties of avalanches in self-organized critical models of solar flares.

    PubMed

    McIntosh, Scott W; Charbonneau, Paul; Bogdan, Thomas J; Liu, Han-Li; Norman, James P

    2002-04-01

    We investigate the geometrical properties of avalanches in self-organized critical models of solar flares. Traditionally, such models differ from the classical sandpile model in their formulation of stability criteria in terms of the curvature of the nodal field, and belong to a distinct universality class. With a view toward comparing these properties to those inferred from spatially and temporally resolved flare observations, we consider the properties of avalanche peak snapshots, time-integrated avalanches in two and three dimensions, and the two-dimensional projections of the latter. The nature of the relationship between the avalanching volume and its projected area is an issue of particular interest in the solar flare context. Using our simulation results we investigate this relationship, and demonstrate that proper accounting of the fractal nature of avalanches can bring into agreement hitherto discrepant results of observational analyses based on simple, nonfractal geometries for the flaring volume.

  18. High energy neutron and gamma-radiation generated during the solar flares

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Mandzhavidze, N. Z.

    1985-01-01

    The problem of high energy neutrons and gamma rays generation in the solar conditions is considered. It is shown that due to a peculiarity of generation and propagation of neutrons corresponding solar flares should be localized at high helio-longitudes.

  19. Spectral response of the solar atmosphere to an X-class flare event

    NASA Astrophysics Data System (ADS)

    Lacatus, Daniela Adriana; Donea, Alina

    2016-05-01

    The only X-class flare of 2015 observed by IRIS occurred at 16:22 UT on 11 March 2015, in AR 12297. This flare generated significant seismic transients in the photosphere at the eastern location of the flare. IRIS observations of the chromosphere and transition region help us understand the physics of the sunquake. In this work we will analyse this event using data from IRIS, SDO, and RHESSI. The IRIS rasters scanned the area between the main footpoints of the solar flare, and a wealth of chromospheric information has been inferred about the dynamics of the event. The main X-ray emission dominates the eastern flare footpoint, being missed by the IRIS slit. Significant enhancements in the chromospheric and TR lines intensities were identified. The forbidden line of Fe XXI 1354.1 Å is detected after the flare peak revealing the coronal responses to the flare. Plasma downflows of up to 300 km/s were identified in the majority of the observed lines, consistent with magnetic field local reconfiguration. We have also analysed an erupting filament developing at an earlier time, which moved rapidly towards the eastern part of the active region. We discuss the possibility that this filament might have pre-conditioned the chromosphere for the flare process.

  20. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  1. Solar Flare Predictions Using Time Series of SDO/HMI Observations and Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Ilonidis, Stathis; Bobra, Monica; Couvidat, Sebastien

    2015-08-01

    Solar active regions are dynamic systems that can rapidly evolve in time and produce flare eruptions. The temporal evolution of an active region can provide important information about its potential to produce major flares. In this study, we build a flare forecasting model using supervised machine learning methods and time series of SDO/HMI data for all the flaring regions with magnitude M1.0 or higher that have been observed with HMI and several thousand non-flaring regions. We define and compute hundreds of features that characterize the temporal evolution of physical properties related to the size, non-potentiality, and complexity of the active region, as well as its flaring history, for several days before the flare eruption. Using these features, we implement and test the performance of several machine learning algorithms, including support vector machines, neural networks, decision trees, discriminant analysis, and others. We also apply feature selection algorithms that aim to discard features with low predictive power and improve the performance of the machine learning methods. Our results show that support vector machines provide the best forecasts for the next 24 hours, achieving a True Skill Statistic of 0.923, an accuracy of 0.985, and a Heidke skill score of 0.861, which improve the scores obtained by Bobra and Couvidat (2015). The results of this study contribute to the development of a more reliable and fully automated data-driven flare forecasting system.

  2. SOLAR-T: terahertz photometers to observe solar flare emission on stratospheric balloon flights

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Abrantes, A.; Bortolucci, E. C.; Correia, E.; Diniz, J. A.; Fernandez, G.; Fernandes, L. O. T.; Giménez de Castro, C. G.; Godoy, R.; Hurford, G.; Kudaka, A. S.; Lebedev, M.; Lin, R. P.; Machado, N.; Makhmutov, V. S.; Marcon, R.; Marun, A.; Nicolaev, V. A.; Pereyra, P.; Raulin, J.-P.; da Silva, C. M.; Shih, A.; Stozhkov, Y. I.; Swart, J. W.; Timofeevsky, A. V.; Valio, A.; Villela, T.; Zakia, M. B.

    2012-09-01

    A new solar flare spectral component has been found with intensities increasing for larger sub-THz frequencies, spectrally separated from the well known microwaves component, bringing challenging constraints for interpretation. Higher THz frequencies observations are needed to understand the nature of the mechanisms occurring in flares. A twofrequency THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. 76 mm diameter telescopes were designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions at 3 and 7 THz. Golay cell detectors are preceded by low-pass filters to suppress visible and near IR radiation, band-pass filters, and choppers. It can detect temperature variations smaller than 1 K with time resolution of a fraction of a second, corresponding to small burst intensities. The telescopes are being assembled in a thermal controlled box to which a data conditioning and acquisition unit is coupled. While all observations are stored on board, a telemetry system will forward solar activity compact data to the ground station. The experiment is planned to fly on board of long-duration stratospheric balloon flights some time in 2013-2015. One will be coupled to the GRIPS gamma-ray experiment in cooperation with University of California, Berkeley, USA. One engineering flight will be flown in the USA, and a 2 weeks flight is planned over Antarctica in southern hemisphere summer. Another long duration stratospheric balloon flight over Russia (one week) is planned in cooperation with the Lebedev Physics Institute, Moscow, in northern hemisphere summer.

  3. Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares

    NASA Astrophysics Data System (ADS)

    Mostafa, Md. Golam; Haralambous, Haris

    2015-06-01

    In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.

  4. Spectral lines observed in solar flares between 171 and 630 angstroms

    NASA Technical Reports Server (NTRS)

    Dere, K. P.

    1978-01-01

    Several hundred spectral lines emitted in solar flares between 171 and 630 A have been recorded by the Naval Research Laboratory spectroheliograph aboard Skylab. The wavelengths, identifications, and intensity estimates of these lines are presented, based on measurements of all of the suitable flare plates. Nearly 100 new and unidentified lines have been observed. Identifications of three Fe XXI and two Fe XVII lines are suggested.

  5. A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES

    SciTech Connect

    Masson, S.; Antiochos, S. K.; DeVore, C. R.

    2013-07-10

    We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

  6. Energetics and dynamics of simple impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Starr, R.; Heindl, W. A.; Crannell, C. J.; Thomas, R. J.; Batchelor, D. A.; Magun, A.

    1987-01-01

    Flare energetics and dynamics were studied using observations of simple impulsive spike bursts. A large, homogeneous set of events was selected to enable the most definite tests possible of competing flare models, in the absence of spatially resolved observations. The emission mechanisms and specific flare models that were considered in this investigation are described, and the derivations of the parameters that were tested are presented. Results of the correlation analysis between soft and hard X-ray energetics are also presented. The ion conduction front model and tests of that model with the well-observed spike bursts are described. Finally, conclusions drawn from this investigation and suggestions for future studies are discussed.

  7. Solar Flare and IMF Sector Structure Effects in the Lower Ionosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L = 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (= magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  8. Solar flare and IMF sector structure effects in the lower ionosphere

    SciTech Connect

    Lastovicka, J.

    1984-05-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  9. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the <5 MeV particles were due to energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  10. Solar modulation of cosmic ray intensity and solar flare events inferred from (14)C contents in dated tree rings

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.

    1985-01-01

    The delta 14C values in 42 rings of a white spruce grown in Mackenzie Delta was measured as a continuing effort of tracing the history of solar modulation of cosmic ray intensity. The delta 14C values in six rings were measured, in search of a 14C increase due to two large solar flares that occurred in 1942. The results are presented.

  11. The fading behavior of the propagating VLF signal during the recovery time of solar flares.

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Tribeche, Mouloud; Nait Amor, Samir

    2016-07-01

    The VLF radio signal propagating in the waveguide delimited by the Earth's surface and the D-layer of the ionosphere undergoes important modifications due to solar flares. In this work we focus on the NRK (37.5 kHz) VLF transmitter signal that propagates along the medium path to Algiers receiver (distance=3495 km). The signal analysis of two different flare classes shows that the perturbation due to a week flare of C2.1 (I _{max}=2.1 x 10 ^{-6} W/m ^{2}) class are less important than the medium one of M3.2 (I _{max}=3.2 x 10 ^{-5} W/m ^{2}) class. This leads to the fast recovery to the normal ionospheric condition after the weak solar flare while the medium solar flare takes more time. Additionally, the study of the signal amplitude behaviors by means of the LWPC code shows that the fading displacement toward the transmitter is more significant in the case of M3.2 flare than C2.1 class.

  12. A very small and super strong zebra pattern burst at the beginning of a solar flare

    SciTech Connect

    Tan, Baolin; Tan, Chengming; Zhang, Yin; Huang, Jing; Yan, Yihua; Mészárosová, Hana; Karlický, Marian

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that of the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.

  13. Acceleration of solar cosmic rays in a flare current sheet and their propagation in interplanetary space

    NASA Astrophysics Data System (ADS)

    Podgorny, A. I.; Podgorny, I. M.

    2015-09-01

    Analyses of GOES spacecraft data show that the prompt component of high-energy protons arrive at the Earth after a time corresponding to their generation in flares in the western part of the solar disk, while the delayed component is detected several hours later. All protons in flares are accelerated by a single mechanism. The particles of the prompt component propagate along magnetic lines of the Archimedean spiral connectng the flare with the Earth. The prompt component generated by flares in the eastern part of the solar disk is not observed at the Earth, since particles accelerated by these flares do not intersect magnetic-field lines connecting the flare with the Earth. These particles arrive at the Earth via their motion across the interplanetary magnetic field. These particles are trapped by the magnetic field and transported by the solar wind, since the interplanetary magnetic field is frozen in the wind plasma, and these particles also diffuse across the field. The duration of the delay reaches several days.

  14. Correlated observations of impulsive UV and hard X-ray bursts in solar flares from the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Cheng, C.-C.; Tandberg-Hanssen, E.; Orwig, L. E.

    1984-01-01

    An investigation is conducted of the temporal and spatial structures of UV and hard X-ray bursts in a disk and a limb flare observed with instruments on the Solar Maximum Mission satellite. Attention is given to the transient UV brightening before the flare, the impulsive enhancement of UV continuum emission, the relationship between emission source region and particle acceleration region, and large scale excitations. The most active part of the active region appears to be the most flare-productive region. These regions exhibit high UV activities with numerous UV transient bursts occurring in many small kernels.

  15. Gamma-ray lines and neutrons from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Murphy, R. J.; Kozlovsky, B.; Lingenfelter, R. E.

    1983-01-01

    The energy spectrum of accelerated protons and nuclei at the site of a limb flare was derived by a technique, using observations of the time dependent flux of high energy neutrons at the earth. This energy spectrum is very similar to the energy spectra of 7 disk flares for which the accelerated particle spectra was previously derived using observations of 4 to 7 MeV to 2.223 MeV fluence ratios. The implied spectra for all of these flares are too steep to produce any significant amount of radiation from pi meson decay. It is suggested that the observed 10 MeV gamma rays from the flare are bremsstrahlung of relativistic electrons. Previously announced in STAR as N83-19695

  16. Gamma-ray lines and neutrons from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Murphy, R. J.; Kozlovsky, B.; Lingenfelter, R. E.

    1983-01-01

    The energy spectrum of accelerated protons and nuclei at the site of a limb flare was derived by a technique, using observations of the time dependent flux of high energy neutrons at the Earth. This energy spectrum is very similar to the energy spectra of 7 disk flares for which the accelerated particle spectra was previously derived using observations of 4 to 7 MeV to 2.223 MeV fluence ratios. The implied spectra for all of these flares are too steep to produce any significant amount of radiation from pi meson decay. It is suggested that the observed 10 MeV gamma rays from the flare are bremsstrahlung of relativistic electrons.

  17. Solar wind disturbances in th outer heliosphere caused by successive solar flares from the same active region

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.; Hakamada, K.

    1983-01-01

    Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.

  18. Thermal Evolution of Solar Flares During the First Year of SDO as Seen by the EVE Instrument

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.

    2011-01-01

    It is very evident during the first year of the Solar Dynamics Observatory (SDO) that the Sun awoke from its prolonged minimum and is well into solar cycle 24. There has been tens of moderate M-class flares and a large X-class event (as of abstract submission), with more surely to come as the solar cycle activity increases. With SDO's 24/7 observations, every single flare has been observed through their entire evolution, providing new insights in the thermal evolution of every flare. It is evident that this evolution is extremely different for many of the flares, even for flares with similar X-ray magnitude classifications. Presented and discussed will be these different flares with their varying thermal evolution profiles as observed by the Extreme ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO).

  19. Investigation of Solar Flares Using Spectrally, Spatially, and Temporally Resolved Observations in Gamma Rays, Hard X Rays, and Microwaves

    NASA Technical Reports Server (NTRS)

    Crannell, Carol Jo; Oegerle, William (Technical Monitor)

    2003-01-01

    The high-energy components of solar flares radiate at a wide range of wavelengths. We are using spatially, spectrally, and temporally resolved hard X-ray, gamma-ray, and microwave observations of solar flares to investigate flare models and to understand the flare acceleration process. The hard X-ray and gamma-ray observations are obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) spacecraft that was launched on February 5, 2002. The microwave observations are obtained with the Owens Valley Radio Observatory (OVRO), which has been dedicated to daily observations of solar flares in microwaves with a five-element interferometer since June 1992. These studies are expected to yield exciting new insights into the fundamental physics of the flare acceleration processes.

  20. Are Resonant Helioseimic Modes Excited by Solar Flares?

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric; Rabello Soares, Maria Cristina

    2016-05-01

    We critically examine reports that flares have been observed to excite resonant p-modes by:-looking in detail at the results of the ring-diagram analysis in terms of duty cycle and center-to-limb variation of ring-diagram power.-applying the same analysis to the Halloween flare using GONG and MDI data.-assessing the stability in terms of oscillation power of both instruments.

  1. New Observations of Balmer Continuum Flux in Solar Flares. Instrument Description and First Results

    NASA Astrophysics Data System (ADS)

    Kotrč, P.; Procházka, O.; Heinzel, P.

    2016-03-01

    Increase in the Balmer continuum radiation during solar flares was predicted by various authors, but has never been firmly confirmed observationally using ground-based slit spectrographs. Here we describe a new post-focal instrument, the image selector, with which the Balmer continuum flux can be measured from the whole flare area, in analogy to successful detections of flaring dMe stars. The system was developed and put into operation at the horizontal solar telescope HSFA2 of the Ondřejov Observatory. We measure the total flux by a fast spectrometer from a limited but well-defined region on the solar disk. Using a system of diaphragms, the disturbing contribution of a bright solar disk can be eliminated as much as possible. Light curves of the measured flux in the spectral range 350 - 440 nm are processed, together with the Hα images of the flaring area delimited by the appropriate diaphragm. The spectral flux data are flat-fielded, calibrated, and processed to be compared with model predictions. Our analysis of the data proves that the described device is sufficiently sensitive to detect variations in the Balmer continuum during solar flares. Assuming that the Balmer-continuum kernels have at least a similar size as those visible in Hα, we find the flux increase in the Balmer continuum to reach 230 - 550 % of the quiet continuum during the observed X-class flare. We also found temporal changes in the Balmer continuum flux starting well before the onset of the flare in Hα.

  2. Solar Energy-An Everyday Occurrence

    ERIC Educational Resources Information Center

    Keister, Carole; Cornell, Lu Beth

    1978-01-01

    Describes a solar energy research project sponsored by the Energy Research and Development Administration and conducted at Timonium School in Maryland. Elementary student involvement in solar energy studies resulting from the project is noted. (MDR)

  3. Characteristics of the photospheric magnetic field associated with solar flare initiation

    SciTech Connect

    Yang, Ya-Hui; Chen, P. F.; Hsieh, Min-Shiu; Wu, S. T.; He, Han; Tsai, Tsung-Che E-mail: chenpf@nju.edu.cn E-mail: wus@uah.edu E-mail: tctsai@narlabs.org.tw

    2014-05-01

    The physical environment governing the solar flare initiation is not fully understood, although there are significant efforts to address the relationship between magnetic non-potential parameters and early flare signatures. In this study, we attempt to characterize the flare initiation based on the processed Helioseismic and Magnetic Imager vector magnetograms, Atmospheric Imaging Assembly 1600 Å, and RHESSI hard X-ray observations. Three flare events, the M6.6 flare on 2011 February 13, the X2.2 flare on 2011 February 15, and the X2.1 flare on 2011 September 6, in two active regions AR 11158 and AR 11283 are investigated. We analyze the source field strength in the photosphere, which is defined as the magnitude of the observed magnetic field deviation from the potential field. It is found that one of the strong source field regions above the magnetic polarity inversion line well connects the initial bright kernels of two conjugate ribbons. The results imply that the distribution of the photospheric source field strength can be used to locate the initiation site of flaring loops regardless of the configuration of pre-flare magnetic fields or the evolution of active regions. Moreover, the field configuration in the strong source field regions tends to become more inclined after flares, which is consistent with the coronal implosion scenario. We also employ a fast method to derive the total current density from the photospheric vector magnetogram in the framework of force-free field. This method can provide fast estimation of photospheric current density within a reasonable accuracy without appealing for the more accurate calculation from a model extrapolation.

  4. Stochastic acceleration and charge change of helium ions in the solar flare plasma.

    NASA Astrophysics Data System (ADS)

    Kartavykh, Yu. Yu.; Ostryakov, V. M.; Stepanov, I. Yu.; Yoshimori, M.

    1998-10-01

    In order to explain the energy spectra and abundances of the He+ and He++ solar flare ions measured in some works, the authors calculated the behavior of these ions in solar plasma, taking into account both their stochastic acceleration by Alfvén waves and the possibility of charge exchange with the surrounding plasma. The results agree with the experiments if the plasma in the regions where acceleration takes place has a concentration and temperature on the order of N = 2×107 cm-3 and T = 6.31×104K, respectively. Recent observations of solar flares onboard the Yohkoh satellite have demonstrated that it is apparently impractical to expect the existence of such rarefied and low-temperature plasma in the flare loops. The calculations indicate that the high abundance of He+ is most likely due to its nonsolar origin. Some possibilities of enrichment of energetic particle fluxes by He+ ions are briefly discussed.

  5. Table-top solar flares produced with laser driven magnetic reconnections

    NASA Astrophysics Data System (ADS)

    Zhong, J. Y.; Li, Y. T.; Wang, X. G.; Wang, J. Q.; Dong, Q. L.; Liu, X.; Lin, X. X.; Yuan, D. W.; Du, F.; Wang, S. J.; Zhang, L.; An, L.; Xiao, C. J.; Wei, H. G.; Zhang, K.; Wang, F. L.; Jiang, S. E.; Ding, Y. K.; Cao, Z. R.; Yuan, Z.; Zhang, H. Y.; Yang, Z. W.; Zhu, J. Q.; He, X. T.; Cai, H. B.; Zhao, G.; Zhang, J.

    2013-11-01

    The American Nuclear Society (ANS) has presented the prestigious Edward Teller award to Dr. Bruce A. Remington during the 2011 IFSA conference due to his "pioneering scientific work in the fields of inertial confinement fusion (ICF), and especially developing an international effort in high energy density laboratory astrophysics" [1,2]. This is a great acknowledgement to the subject of high energy density laboratory astrophysics. In this context, we report here one experiment conducted to model solar flares in the laboratory with intense lasers [3]. The mega-gauss -scale magnetic fields produced by laser produced plasmas can be used to make magnetic reconnection topology. We have produced one table-top solar flare in our laboratory experiment with the same geometric setup as associated with solar flares.

  6. Energy supply processes for magnetospheric substorms and solar flares - Tippy bucket model or pitcher model?

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1985-01-01

    In the past, both magnetospheric substorms and solar flares have almost exclusively been discussed in terms of explosive magnetic reconnection. Such a model may conceptually be illustrated by the so-called 'tippy-bucket model', which causes sudden unloading processes, namely a sudden (catastrophic, stochastic, and unpredictable) conversion of stored magnetic energy. However, recent observations indicate that magnetospheric substorms can be understood as a result of a directly driven process which can conceptually be illustrated by the 'pitcher model' in which the output rate varies in harmony with the input rate. It is also possible that solar flare phenomena are directly driven by a photospheric dynamo. Thus, explosive magnetic reconnection may simply be an unworkable hypothesis and may not be a puzzle to be solved as the primary energy supply process for magnetospheric substorms and solar flares.

  7. X-class Flares at the Maximum of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Fisher, Richard R.; Rock, Kristine A.

    2015-04-01

    17 instruments on 7 spacecraft were used to examine NOAA GOES X-class solar flares. This data set has unique spatial and temporal coverage of solar activity occurring from 15 February 2011 to 10 September 2014 and includes 32 X-class flare events.In 32 of 32 cases EUV running difference sequences of Fe XII disk images show the initiation of an LCPF (Nitta et al., 2013) at or near the time of flare onset. These features are generally seen moving upward and away from the X-flare site. In 28 of 32 cases the SWAVES instruments on the STEREO A & B spacecraft detected Type III radio bursts coincident in time with the flare initiation. The four flares that are exceptions are characterized as brief peaks in integrated X-ray flux.In 31 of 32 of the X-class flare events Cor1 imagers (1.04-4.0 Ro) initially show a rising arch followed by a cavity. In 27of 32 cases at increased heights from three vantage points STEREO and SOHO time sequences follow the development of the outward expansion of structure from 4.0-20 Ro.It is concluded from the imagery that the LCPF is a shock front (likely MHD fast mode) that surrounds CME and prominence material as structures rise and expand. Using measurements from the CME on 20110307, X5.4, mach number estimates of the shock strength range from 1.7-3.2 over the combined fields of view.For 25 of 32 events the CMEs detected were either characterized as halo events or demonstrated latitudinal and longitudinal expansion characteristics that would have created a halo for an observer located along the axis between the flare and the nose of the expanding shock. This configuration of a CME can be characterized as a bubble. It is concluded that bubble CMEs were associated with 78% of X-class flares during the maximum of solar cycle 24.In 6 of 32 cases all NASA proton detectors located at 1 AU distance from the sun were impacted by flare generated protons.Nitta, N. V., C. J. Schrijver, A. M. Title, W. Liu (2013) Large-scale Coronal Propagating Fronts in

  8. The mechanism of temperature and pressure changes in the Earth's atmosphere during solar flares

    NASA Technical Reports Server (NTRS)

    Reshetov, V. D.

    1979-01-01

    The effect of solar flares on the weather on Earth is examined. It is concluded that the processes which arise in the atmosphere are so intricate that a single calculation of solar activity is insufficient for long-range forecasting. However, combined consideration of processes dependent upon the dynamic instability of the atmosphere and the effect of solar activity will contribute to the improvement of long-range forecasts.

  9. Ionospheric and magnetospheric effects of solar flares monitored by ground-based riometer and magnetometers

    NASA Astrophysics Data System (ADS)

    Ronan Coelho Stekel, Tardelli; Schuch, Nelson Jorge; Echer, Ezequiel; Guarnieri, Fernando; Makita, Kazuo; Espindola Antunes, Cassio; Moro, Juliano; Machado Paulo, Claudio

    The solar flare incidence follows a behavior similar to the solar cycle activity, which results in periodic disturbances on the Earth's ionosphere and magnetosphere. The correlation of this phenomenon can provide important information about the magnetosphere, the Sun/Earth interaction, as well as events occurring in the ionosphere which can, for instance, generate disturbances in telecommunications, small satellites or even in the space weather. Riometer and magnetometers data analysis can provide useful way for measuring and understanding the effects of solar flare radiation in the ionosphere and magnetosphere. The Solar Flare effect (SFE) is associated with the sudden change of ionospheric currents caused by the extra ionization produced by soft X-ray (0.1 to 9.0 nm) and EUV (9.0 to 100.0 nm) radiation from the solar flare. The objective of this work is to present the correlation of the ionospheric and magnetospheric (H, D, Z) sudden disturbances due to high-intensity solar flares (M and X class), that can emit up to 1032 ergs of energy. For this purpose, analysis were performed for the riometer and magnetometers dedicated to study the Solar-Earth interactions at the Southern Space Observatory (SSO/CRS/INPE -MCT), (29.4° S, 53.8° W, 480m a.s.l), São Martinho da a Serra, RS, Brazil. To identify and investigate the sudden radiation increase caused by the solar flare, the X-ray data (0.1 to 0.8 nm) from GOES Satellites and the EUV data (26.0 to 34.0 nm and 0.1 to 50.0 nm) from the Solar EUV Monitor (SEM) on the SOHO spacecraft are correlated. With the analysis of these ground-based instruments and spacecrafts data, the correlation of the solar activity and the magnetospheric and ionospheric disturbances were performed, as for the Sudden Ionospheric Disturbance (SID) and Magnetic Crochet about 60% D-component variation during a large solar flare was observed.

  10. A Double Candle-Flame-Shaped Solar Flare Observed by SDO and STEREO

    NASA Astrophysics Data System (ADS)

    Gou, T.; Liu, R.; Wang, Y.; Liu, K.; Zhuang, B.; Zhang, Q.; Liu, J.

    2015-12-01

    We investigate an M1.4 flare occurring on 2011 January 28 near the northwest solar limb. The flare loop system exhibits a double candle-flame configuration in SDO/AIA's hot passbands, sharing a much larger cusp-shaped structure. The results of DEM analysis show that each candle flame has a similar temperature distribution as the famous Tsuneta flare. STEREO-A provides us a view from directly above the flare, and in SECCHI/EUVI 195 Å the post-flare loops are observed to propagate eastward. We performed a 3D reconstruction of the pos-flare loops with AIA and EUVI data. With the aid of the squashing factor Q based on a potential extrapolation of the photospheric field, we recognized that the footpoints of the post-flare loops were slipping along high-Q lines on the photosphere, and the reconstructed loops share similarity with the filed lines that are traced starting from the high-Q lines. The heights of the loops increase as they slip horizontally eastward, giving the loop-top a velocity of about 10 km/s. An extremely large EUV late phase in Fe XVI 33.5 nm observed by SDO/EVE is suggested to be related to the slipping magnetic reconnection occurring in the quasi-separatrix layers (QSLs) whose photosheric footprints are featured by the high-Q lines.

  11. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  12. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES

    SciTech Connect

    Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J.

    2012-11-20

    We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lag the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.

  13. Quasi-periodic Pulsations in Solar and Stellar Flares: An Overview of Recent Results (Invited Review)

    NASA Astrophysics Data System (ADS)

    Van Doorsselaere, Tom; Kupriyanova, Elena G.; Yuan, Ding

    2016-09-01

    Quasi-periodic pulsations (or QPPs) are periodic intensity variations in the flare emission that occur across all wavelength bands. In this article, we review the observational and modelling achievements since the previous review on this topic by Nakariakov and Melnikov (Space Sci. Rev. 149, 119, 2009). In recent years, it has become clear that QPPs are an inherent feature of solar flares because almost all flares exhibit QPPs. Moreover, it is now firmly established that QPPs often show multiple periods. We also review possible mechanisms for generating QPPs. Up to now, it has not been possible to conclusively identify the triggering mechanism or cause of QPPs. The lack of this identification currently hampers possible seismological inferences of flare plasma parameters. QPPs in stellar flares have been detected for a long time, and the high-quality data of the Kepler mission allows studying the QPP more systematically. However, it has not been conclusively shown whether the timescales of stellar QPPs are different or the same as those in solar flares.

  14. Dark Post-flare Loops Observed by the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Song, Qiao; Wang, Jing-Song; Feng, Xueshang; Zhang, Xiaoxin

    2016-04-01

    Solar post-flare loops (PFLs) are arcade-like loop systems that appear during the gradual phases of eruptive flares. The extreme ultraviolet (EUV) observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) allow us to investigate the fine structures in PFLs. In this work, we focus on studying the dark post-flare loops (DPFLs) during X-class flares, which are more evident in SDO/AIA data than in previous EUV data. We identify and analyze the DPFLs observed by SDO and find that: (1) the DPFLs of an X5.4 flare have an average lifetime of 10.0 ± 5.5 minutes, an average width of 1022 ± 339 km, and an average maximum length of 33 ± 10 Mm, (2) blob-like falling features with a size close to the resolution of SDO/AIA are identified in the DPFLs and have an average velocity of 76 ± 19 km s‑1, and (3) the average widths of the DPFLs slightly increase with the characteristic temperatures in the AIA 304, 171, 193, and 211 Å channels. Our investigation shows that DPFLs are found in all of the 20 cases within this study, which suggests that they are a common phenomenon in X-class flares and are probably produced by the same mechanism that creates coronal rain.

  15. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    SciTech Connect

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego; Oliveros, Juan Carlos Martinez; Hudson, Hugh S.

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  16. How Did a Major Confined Flare Occur in Super Solar Active Region 12192?

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Wu, S. T.; Yurchyshyn, Vasyl; Wang, Haiming; Feng, Xueshang; Hu, Qiang

    2016-09-01

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution, which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The current layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully “reproduced” the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption—the consequence of the reconnection is a shared arcade instead of a newly formed flux rope. We also found a much weaker magnetic implosion effect compared to many other X-class flares.

  17. Magnetic-island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-03-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  18. About 3He Ions Predominant Acceleration During the January 20, 2005 Solar Flare

    NASA Astrophysics Data System (ADS)

    Troitskaya, E. V.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.

    We have studied some properties of the powerful solar flare of January 20, 2005 by methods of nuclear lines analysis. The results of temporal profiles investigation in corresponding to neutron capture energy bands allow the supposition about predominant acceleration of 3He ions in the corona, their subsequent propagation to the low chromosphere and the photosphere where the area of 2.223 MeV γ-line effective productions is located. The characteristics of accelerated 3He ions propagation processes and the basic explanation of observable properties of this solar flare due to the variations of 3He content are discussed in the presented article.

  19. Solar gamma-ray lines as probes of accelerated particle directionalities in flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Crannell, C. J.

    1975-01-01

    Anisotropies of charged particles accelerated in solar flares were studied by observing Doppler shifts of selected gamma-ray lines. The spectral shape was calculated of the 6.1-MeV line of O-16. If the accelerated particles are isotropic, the line remains centered at e sub 0 = 6129.4 keV, and its width (FWHM) is about 100 keV. For particle anisotropies that may be produced in solar flares, the line is shifted to lower energies by about 30 to 40 keV.

  20. Comparison of Damped Oscillations in Solar and Stellar X-Ray flares

    NASA Astrophysics Data System (ADS)

    Cho, I.-H.; Cho, K.-S.; Nakariakov, V. M.; Kim, S.; Kumar, P.

    2016-10-01

    We explore the similarity and difference of the quasi-periodic pulsations (QPPs) observed in the decay phase of solar and stellar flares at X-rays. We identified 42 solar flares with pronounced QPPs, observed with RHESSI, and 36 stellar flares with QPPs, observed with XMM-Newton. The empirical mode decomposition (EMD) method and least-squares fit by a damped sine function were applied to obtain the periods (P) and damping times (τ) of the QPPs. We found that (1) the periods and damping times of the stellar QPPs are 16.21 ± 15.86 minutes and 27.21 ± 28.73 minutes, while those of the solar QPPs are 0.90 ± 0.56 and 1.53 ± 1.10 minutes, respectively; (2) the ratios of the damping times to the periods (τ /P) observed in the stellar QPPs (1.69 ± 0.56) are statistically identical to those of solar QPPs (1.74 ± 0.77) and (3) the scalings of the QPP damping time with the period are well described by the power law in both solar and stellar cases. The power indices of the solar and stellar QPPs are 0.96 ± 0.10 and 0.98+/- 0.05, respectively. This scaling is consistent with the scalings found for standing slow magnetoacoustic and kink modes in solar coronal loops. Thus, we propose that the underlying mechanism responsible for the stellar QPPs is the natural magnetohydrodynamic oscillation in the flaring or adjacent coronal loops, as in the case of solar flares.

  1. Transient behavior of a flare-associated solar wind. I. Gas dynamics in a radial open field region

    SciTech Connect

    Nagai, F.

    1984-02-01

    A main purpose of this paper is to investigate by numerical calculations how a model solar wind, initially in a steady state and in energy balance, is disturbed and deformed and how it acquires a high speed when heat liberation corresponding to energy release in solar flares of importance approx.1 occurs around the lower corona in a radial open field region. This transient behavior of the flare-associated solar wind is modeled between 1 and 8 solar radii.

  2. The relationship between energetic particles and flare properties for impulsive solar flares

    SciTech Connect

    Cane, H.V.; Reames, D.V.

    1990-06-01

    The impulsive mode of particle acceleration is studied by searching for 0.2-2 MeV electron increases associated with intense type III/V bursts. It is found that the presence of a type III/V burst in association with a relatively intense flare event indicates the acceleration and escape of greater than 100 KeV electrons. A list of type III/V electron events is compiled, showing that the majority included greater than 10 MeV proton increases, although they were not followed by a type II burst. The results suggest that there are two different modes of proton acceleration with the second mode becoming significant only for larger, gradual flares. 19 refs.

  3. Prompt particle acceleration around moving X-point magnetic field during impulsive phase of solar flares

    NASA Technical Reports Server (NTRS)

    Sakai, Jun-Ichi

    1992-01-01

    We present a model for high-energy solar flares to explain prompt proton and electron acceleration, which occurs around moving X-point magnetic field during the implosion phase of the current sheet. We derive the electromagnetic fields during the strong implosion phase of the current sheets, which is driven by the converging flow derived from the magnetohydrodynamic equations. It is shown that both protons and electrons can be promptly (within 1 second) accelerated to approximately 70 MeV and approximately 200 MeV, respectively. This acceleration mechanism can be applicable for the impulsive phase of the gradual gamma ray and proton flares (gradual GR/P flare), which have been called two-ribbon flares.

  4. Gamma rays from pion decay - Evidence for long-term trapping of particles in solar flares

    NASA Technical Reports Server (NTRS)

    Mandzhavidze, Natalie; Ramaty, Reuven

    1992-01-01

    The energy spectrum and time dependence of the 50 MeV to 2 GeV gamma rays observed from the 1991 June 11 solar flare are analyzed. It is shown that the emission detected at the late phase of this flare with EGRET on the Compton Gamma-Ray Observatory can be explained by a model in which the bulk of the particles were accelerated during the impulsive phase and subsequently trapped in coronal magnetic loops. The observed spectrum was fit with a combination of pion decay radiation and primary electron bremsstrahlung. The 1991 June 11 data are compared with data for the 1982 June 3 and 1991 June 15 flares from which pion decay emission was also observed. The fact that the fluxes from these three flares are ordered in time in accordance with the predicted time dependence of emission produced by trapped particles provides support for the model.

  5. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  6. Combined Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe

    2016-07-01

    I will review some observations of the characteristics of accelerated electrons seen near Earth (as SEPs) and those producing flare radiation in the low corona and chromosphere. The similarities and differences between the numbers, spectral distribution, etc. of the two population can shed light on the mechanism and sites of the acceleration. I will show that in some events the origin of both population appears to be the flare site while in others, with harder SEP spectra, in addition to acceleration at the flare site, there appears to be a need for a second stage re-acceleration in the associated fast Coronal Mass Ejection (CME) environment. This scenario can also describe a similar dichotomy that exists between the so called impulsive, highly enriched (3He and heavy ions) and softer SEP ion events, and stronger more gradual SEP events with near normal ionic abundances and harder spectra. I will also describe under what conditions such hardening can be achieved.

  7. Two types of electron events in solar flares

    NASA Technical Reports Server (NTRS)

    Daibog, E. I.; Kurt, V. G.; Logachev, Y. I.; Stolpovsky, V. G.

    1985-01-01

    The fluxes and spectra of the flare electrons measured on board Venera-I3 and I4 space probes are compared with the parameters of the hard (E sub x approximately 55 keV) and thermal X-ray bursts. The electron flux amplitude has been found to correlate with flare importance in the thermal X-ray range (r approximately 0.8). The following two types of flare events have been found in the electron component of SCR. The electron flux increase is accompanied by a hard X-ray burst and the electron spectrum index in the approximately 25 to 200 keV energy range is gamma approximately 2 to 3. The electron flux increase is not accompanied by a hard X-ray burst and the electron spectrum is softer (Delta gamma approximately 0.7 to 1.0).

  8. Observations of solar flare photon energy spectra from 20 keV to 7 MeV

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.; Nitta, N.

    1985-01-01

    Solar flare photon energy spectra in the 20 keV to 7 MeV range are derived from the Apr. 1, Apr. 4, apr. 27 and May 13, 1981 flares. The flares were observed with a hard X-ray and a gamma-ray spectrometers on board the Hinotori satellite. The results show that the spectral shape varies from flare to flare and the spectra harden in energies above about 400 keV. Effects of nuclear line emission on the continuum and of higher energy electron bremsstrahlung are considered to explain the spectral hardening.

  9. EVIDENCE OF SOLAR FLARE TRIGGERING DUE TO LOOP-LOOP INTERACTION CAUSED BY FOOTPOINT SHEAR MOTION

    SciTech Connect

    Kumar, Pankaj; Srivastava, A. K.; Uddin, Wahab; Somov, B. V.; Manoharan, P. K.; Erdelyi, R. E-mail: aks@aries.res.i

    2010-11-10

    We analyze multi-wavelength data of an M7.9/1N class solar flare which occurred on 2006 April 27 in AR NOAA 10875. GOES soft X-ray images provide the most likely signature of two interacting loops and their reconnection, which triggers the solar flare. TRACE 195 A images also reveal the loop-loop interaction and the formation of 'X' points with converging motion ({approx}30 km s{sup -1}) at the reconnection site in between this interacting loop system. This provides evidence of progressive reconnection and flare maximization at the interaction site in the active region. The absence of type III radio bursts during this time period indicates no opening of magnetic field lines during the flare energy release, which implies that the change of field line connectivity/orientation occurred only during the loop-loop interaction and reconnection process. The Ondrejov dynamic radio spectrum shows an intense decimetric (DCIM) radio burst (2.5-4.5 GHz, duration {approx}3 minutes) during the flare initiation, which reveals the signature of particle acceleration from the reconnection site during loop-loop interaction. The double-peak structures at 4.9 and 8.8 GHz provide the most likely confirmatory signature of the loop-loop interaction at the flare site in the active region. RHESSI hard X-ray images also show the loop-top and footpoint sources of the corresponding two-loop system, which act like current-carrying flux tubes with resultant opposite magnetic fields and net force of attraction, and their coalescence during the flare maximum. We also suggest that the shear motion/rotation of the footpoint of the smaller loop, which is anchored in the opposite polarity spot, may be responsible for the flare energy buildup and its eventual release due to the loop-loop interaction.

  10. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    SciTech Connect

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B. E-mail: lyndsay.fletcher@glasgow.ac.uk E-mail: hhudson@ssl.berkeley.edu

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  11. The structure, stability and flaring of solar coronal loops

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.

    1982-01-01

    A review is given of recent progress in the theory of the magnetohydrodynamic behavior of coronal loops, beginning with a brief characterization of thy observations. The equilibrium magnetic field is described, along with the consequences of the empirical requirement for short-term, or infinite-conductivity, stability which is shown to be dominated by the end-effect influence of thy quasi-rigid photosphere. A new loop-flare model is then developed, which takes account of the finite loop length. The primary resistive-sausage-mode instability exhibits the necessary threshold behavior, and produces a number of spatially and energetically distinct flare-release manifestations.

  12. New RHESSI Results on Particle Acceleration and Energy Release in Solar Flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    2003-01-01

    The primary scientific objective of NASA RHESSI mission (launched February 2002) is to investigate the physics of particle acceleration and energy release in solar flares, through imaging and spectroscopy of X-ray gamma-ray continuum and gamma-ray lines emitted by accelerated electrons and ions, respectively. Here I summarize the new solar observations, including the first hard X-ray imaging spectroscopy, the first high resolution spectroscopy of solar gamma ray lines, the first imaging of solar gamma ray lines and continuum, and the highest sensitivity hard X-ray observations of microflares and type III solar radio bursts.

  13. About the source of He-3 ions in the process of January 20, 2005 solar flare.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Evgenia; Gan, Weiqun; Arkhangelskaja, Irene

    2016-07-01

    In the previous works we have found some characteristics of January 20, 2005 solar flare by means of observable 2.223 MeV neutron gamma-line temporal profile with invoke to instantaneous de-excitation lines with energies of 4.438 MeV and 6.129 MeV. Particularly, we revealed the increased abundance of ^{3}He ions and its variations in the period of January 20, 2005 solar flare. In the present work we suppose, that the issue of the enlarged ^{3}He abundance is the region of acceleration. We calculate the Coulomb losses of ^{3}He ions on their movement from acceleration region down to the low chromosphere or photosphere, in dependence on initial energy. We also analyze some calculated properties of ^{3}He flows during the solar flare. In the result, it is shown that our supposition is true and ^{3}He ions could be accelerated in this flare region of acceleration. The increased content of ^{3}He in this flare is confirmed by registration of ^{3}He flows in space. Possible registration of some feeble gamma lines, caused by this isotope, is also discussed.

  14. OBSERVATIONAL EVIDENCE OF CHANGING PHOTOSPHERIC VECTOR MAGNETIC FIELDS ASSOCIATED WITH SOLAR FLARES

    SciTech Connect

    Su, J. T.; Jing, J.; Wang, H. M.; Mao, X. J.; Wang, X. F.; Zhang, H. Q.; Deng, Y. Y.; Guo, J.; Wang, G. P.

    2011-06-01

    Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with major flares. As a result, the Lorentz force (LF) acting on the solar photosphere and solar interior could be perturbed, and the change of LF is always nearly in the downward direction. However, these rapid and permanent changes have not been systematically investigated, yet, using vector magnetograms. In this paper, we analyze photospheric vector magnetograms covering five flares to study the evolution of photospheric magnetic fields. In particular, we investigate two-dimensional spatial distributions of the changing LF. Around the major flaring polarity inversion line, the net change of the LF is directed downward in an area of {approx}10{sup 19} cm{sup 2} for X-class flares. For all events, the white-light observations show that sunspots darken in this location after flares, and magnetic fields become more inclined, which is consistent with the ideas put forward by Hudson et al. and Fisher et al., and observations.

  15. Energetic Electrons in Solar Flares - As Viewed in X-Rays

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2004-01-01

    Hard X-ray observations provide the most direct diagnostic we have of the suprathermal electrons and the hottest thermal plasma present in solar flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is obtaining the most comprehensive observations of individual solar flares ever available in hard X-rays. For the first time, high-resolution spectra are available for a large number of flares that accurately display the spectral shape and its evolution and, in many cases, allow us to identify the transition from the bremsstrahlung X-rays produced by suprathermal electrons to the bremsstrahlung at lower energies emitted by thermal plasma. Also, for the first time, images can be produced in arbitrary energy bands above 3 keV, and spectra of distinct imaged components can be obtained. I will review what we have learned from RHESSI observations about flare suprathermal electron distributions and their evolution Next, I will present computations of the energy deposited by these suprathermal electrons in individual flares and compare this with the energy contained in the hot thermal plasma. I will point out unsolved problems in deducing both suprathermal electron distributions and the energy content of the thermal plasma, and discuss possible solutions. Finally, I will present evidence that electron acceleration is associated with magnetic reconnection in the corona.

  16. Evaluation the effect of energetic particles in solar flares on satellite's life time

    NASA Astrophysics Data System (ADS)

    Bagheri, Z.; Davoudifar, P.

    2016-09-01

    As the satellites have a multiple role in the humans' life, their damages and therefore logical failures of their segment causes problems and lots of expenses. So evaluating different types of failures in their segments has a crustal role. Solar particles are one of the most important reasons of segment damages (hard and soft) during a solar event or in usual times. During a solar event these particle may cause extensive damages which are even permanent (hard errors). To avoid these effects and design shielding mediums, we need to know SEP (solar energetic particles) flux and MTTF (mean time between two failures) of segments. In the present work, we calculated SEP flux witch collide the satellite in common times, in different altitudes. OMERE software was used to determine the coordinates and specifications of a satellite which in simulations has been launched to space. Then we considered a common electronic computer part and calculated MTTF for it. In the same way the SEP fluxes were calculated during different solar flares of different solar cycles and MTFFs were evaluated during occurring of solar flares. Thus a relation between solar flare energy and life time of the satellite electronic part (hours) was obtained.

  17. Fields and Flares: Understanding the Complex Magnetic Topologies of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Murray, Sophie A.

    2013-01-01

    Sunspots are regions of decreased brightness on the visible surface of the Sun (photosphere) that are associated with strong magnetic fields. They have been found to be locations associated with solar flares, which occur when energy stored in sunspot magnetic fields is suddenly released. The processes involved in flaring and the link between sunspot magnetic fields and flares is still not fully understood, and this thesis aims to gain a better understanding of these topics. The magnetic field evolution of a number of sunspot regions is examined using high spatial resolution data from the Hinode spacecraft. The research presented in this thesis gives insight into both photospheric and coronal magnetic field evolution of flaring regions. Significant increases in vertical field strength, current density, and field inclination angle towards the vertical are observed in the photosphere just hours before a flare occurs, which is on much shorter timescales than previously studied. First observations of spatial changes in field inclination across a magnetic neutral line (generally believed to be a typical source region of flares) are also discovered. 3D magnetic field extrapolation methods are used to study the coronal magnetic field, using the photospheric magnetic field data as a boundary condition. Magnetic energy and free magnetic energy are observed to increase significantly a few hours before a flare, and decrease afterwards, which is a similar trend to the photospheric field parameter changes observed. Evidence of partial Taylor relaxation is also detected after a flare, as predicted by several previous studies. The results outlined in this thesis show that this particular field of research is vital in furthering our understanding of the magnetic nature of sunspots and its link to flare processes.

  18. STUDY OF TWO SUCCESSIVE THREE-RIBBON SOLAR FLARES ON 2012 JULY 6

    SciTech Connect

    Wang, Haimin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Zeng, Zhicheng; Cao, Wenda

    2014-01-20

    This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.''1 resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing ''fish-bone-like'' morphology evidenced by both Hα images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Hα apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.

  19. Modeling solar flare hard X-ray images and spectra observed with RHESSI

    NASA Astrophysics Data System (ADS)

    Sui, Linhui

    2004-12-01

    Observations obtained with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of a flare on February 20, 2002 indicate a hard X-ray (HXR) coronal source at or near the top of a flare loop (called a HXR looptop source). The existence of the HXR looptop source suggests that magnetic reconnection, which is believed to power flares, occurs above the loop. In order to explain this HXR looptop source, I created a steady-state particle transport model, in which high-energy electrons are continuously injected at the top of a semicircular flare loop. Based on the simulation results, I find that the model predictions are consistent with the RHESSI observations in many respects, but the spectrum of the looptop source obtained from the model is steeper than that from the RHESSI data. This suggests that, instead of being accelerated above the loop as generally believed, the particles might be accelerated in the looptop itself. RHESSI observations of three other homologous flares that occurred between April 14 and 16, 2002, provide strong evidence for the presence of a large- scale current sheet above a flare loop, which is the basis of standard flare models. The most convincing finding is the presence of the temperature distribution of a separate coronal source above the flare loops: the hotter part of the coronal source was located lower in altitude than the cooler part. Together with the fact that the hotter flare loops are higher than the cooler loops, the observations support the existence of a large-scale current sheet between the top of the flare loops and the coronal source above. Blob-like sources along a line above the loop in the decay phase of the April 15, 2002, flare, which are suggestive of magnetic islands initiated by the tearing-mode instability, and the observation of a cusp structure in microwaves, further support the presence of the current sheet. The observations of the three homologous flares reveal two other features which are beyond the

  20. Stereoscopic Observation of Slipping Reconnection in a Double Candle-flame-shaped Solar Flare

    NASA Astrophysics Data System (ADS)

    Gou, Tingyu; Liu, Rui; Wang, Yuming; Liu, Kai; Zhuang, Bin; Chen, Jun; Zhang, Quanhao; Liu, Jiajia

    2016-04-01

    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory. The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ˜10 MK temperatures, hotter than the arch-shaped loops underneath. The “Ahead” satellite of the Solar Terrestrial Relations Observatory provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performing stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems and that the reconstructed loops share similarity with the magnetic field lines that are traced starting from the same HFT footprint, where the field lines are relatively flexible. These results argue strongly in favor of slipping magnetic reconnection at the HFT. The slipping reconnection was likely triggered by the flare and manifested as propagative dimmings before the loop slippage is observed. It may contribute to the late-phase peak in Fe xvi 33.5 nm, which is even higher than its main-phase counterpart, and may also play a role in the density and temperature asymmetry observed in the northern loop system through heat conduction.

  1. PROPERTIES OF CHROMOSPHERIC EVAPORATION AND PLASMA DYNAMICS OF A SOLAR FLARE FROM IRIS OBSERVATIONS

    SciTech Connect

    Sadykov, Viacheslav M.; Dominguez, Santiago Vargas; Kosovichev, Alexander G.; Sharykin, Ivan N.; Struminsky, Alexei B.; Zimovets, Ivan

    2015-06-01

    The dynamics of hot chromospheric plasma of solar flares is a key to understanding the mechanisms of flare energy release and particle acceleration. A moderate M1.0 class flare of 2014 June 12, (SOL2014-06-12T21:12) was simultaneously observed by NASA's Interface Region Imaging Spectrograph (IRIS) and other spacecraft, and also by the New Solar Telescope at the BBSO. This paper presents the first part of our investigation focused on analysis of the IRIS data. Our analysis of the IRIS data in different spectral lines reveals a strong redshifted jet-like flow with a speed of ∼100 km s{sup −1} of the chromospheric material before the flare. Strong nonthermal emission of the C ii k 1334.5 Å line, formed in the chromosphere–corona transition region, is observed at the beginning of the impulsive phase in several small (with a size of ∼1″) points. It is also found that the C ii k line is redshifted across the flaring region before, during, and after the impulsive phase. A peak of integrated emission of the hot (1.1 · 10{sup 7} K) plasma in the Fe xxi 1354.1 Å line is detected approximately five minutes after the integrated emission peak of the lower temperature C ii k. A strong blueshift of the Fe xxi line across the flaring region corresponds to evaporation flows of the hot chromospheric plasma with a speed of 50 km s{sup −1}. Additional analysis of the RHESSI data supports the idea that the upper chromospheric dynamics observed by IRIS has features of “gentle” evaporation driven by heating of the solar chromosphere by accelerated electrons and by a heat flux from the flare energy release site.

  2. QUASI-PERIODIC PULSATIONS IN SOLAR AND STELLAR FLARES: RE-EVALUATING THEIR NATURE IN THE CONTEXT OF POWER-LAW FLARE FOURIER SPECTRA

    SciTech Connect

    Inglis, A. R.; Ireland, J.; Dominique, M.

    2015-01-10

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  3. Ionization effects due to solar flare on terrestrial ionosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Tan, A.

    1976-01-01

    Sudden frequency deviation ionospheric disturbances related to the flares of May 18 and 19, 1973 were observed from the NASA/MSFC high frequency Doppler sounder array system in Huntsville, Alabama. The results are compared with those observed at Table Mountain near Boulder, Colorado and at the University of Hawaii.

  4. Observations with the SMM gamma-ray spectrometer - The impulsive solar flares of 1980 March 29

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Forrest, D. J.; Chupp, E. L.; Cherry, M. L.; Reppin, C.; Rieger, E.; Pinkau, K.; Kanbach, G.; Share, G. H.; Kinzer, R. L.

    1981-01-01

    Gamma-ray continuum emission from 0.3 to 1 MeV was observed with the gamma-ray spectrometer on the Solar Maximum Mission satellite during two impulsive solar flares on 1980 March 29, from active region 2363 at 0918 UT and from active region 2357 at 0955 UT. Evidence is presented for a hardening of the spectrum during the impulsive phase of the flares. The photon intensity greater than 100 keV appears to decay at a slower rate than that at lower energies. Time-integrated photon spectra for both flares are incompatible with a single-temperature thermal-bremsstrahlung model. Upper limits for prompt and delayed gamma-ray lines are presented.

  5. The properties of flare kernels observed by the Dunn Solar Telescope

    NASA Astrophysics Data System (ADS)

    Fletcher, Lyndsay; Kowalski, A.; Cauzzi, G.; Hawley, S. L.; Hudson, H. S.

    2013-07-01

    We report on a campaign at the Dunn Solar Telescope which resulted in successful imaging and spectroscopic observations of a C1.1 solar flare on 18th August 2011. This flare exhibited ribbons with complicated fine structure at the resolution of the DST/IBIS instrument, and a number of bright kernels with sizes comparable to the smallest scales sampled by IBIS, around 2-4 pixels (0."3-0."6) FWHM. We focus on these bright kernels, describing their spatial characteristics in the core and wing of H alpha and Ca II 8542, and in the UV and EUV with SDO. We also show preliminary broad-band spectroscopy of the kernels which may demonstrate the presence of an optical continuum in this small flare.

  6. Implantation in interplanetary dust of rare-gas ions from solar flares.

    PubMed

    Tilles, D

    1966-08-26

    Measurements of excess Ar(36) + Ar(38) ( released mainly at 1200 degrees C) in magnetic concentrates of Pacific sediments and in a dense concentrate of Greenland dust agree within an order of magnitude with expected concentrations implanted by solar-flare ion streams of energy less than 10 Mev per atomic-mass unit. The agreement implies that more than 10 percent of each concentrate may be extraterrestrial, depending on size distribution and flare spectra. Rare-gas measurements on fine-grained dust can provide data on: solar-flare "paleo-ion" fluxes, energy spectra, and isotopic abundances; identification, mineralogy, and chemistry of interplanetary dust; influx rates to Earth and sedimentation rates of oceanic cores; and lunar-surface residence and mixing times.

  7. Interrelation of soft and hard X-ray emissions during solar flares. I - Observations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.

    1991-01-01

    The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.

  8. Spectral Atlas of X-ray Lines Emitted During Solar Flares Based on CHIANTI

    NASA Technical Reports Server (NTRS)

    Landi, E.; Phillips, K. J. H.

    2005-01-01

    A spectral atlas of X-ray lines in the wavelength range 7.47-18.97 Angstroms is presented, based on high-resolution spectra obtained during two M-class solar flares (on 1980 August 25 and 1985 July 2) with the Flat Crystal Spectrometer on board the Solar Maximum Mission. The physical properties of the flaring plasmas are derived as a function of time using strong, isolated lines. From these properties predicted spectra using the CHIANTI database have been obtained which were then compared with wavelengths and fluxes of lines in the observed spectra to establish line identifications. identifications for nearly all the observed lines in the resulting atlas are given, with some significant corrections to previous analysis of these flare spectra.

  9. RELAXATION OF MAGNETIC FIELD RELATIVE TO PLASMA DENSITY REVEALED FROM MICROWAVE ZEBRA PATTERNS ASSOCIATED WITH SOLAR FLARES

    SciTech Connect

    Yu Sijie; Yan Yihua; Tan Baolin E-mail: yyh@nao.cas.cn

    2012-12-20

    It is generally considered that the emission of microwave zebra pattern (ZP) structures requires high density and high temperature, which is similar to the situation of the flaring region where primary energy is released. Therefore, a parameter analysis of ZPs may reveal the physical conditions of the flaring source region. This work investigates the variations of 74 microwave ZP structures observed by the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou) at 2.6-3.8 GHz in nine solar flares, and we find that the ratio between the plasma density scale height L{sub N} and the magnetic field scale height L{sub B} in emission sources displays a tendency to decrease during the flaring processes. The ratio L{sub N} /L{sub B} is about 3-5 before the maximum of flares. It decreases to about 2 after the maximum. The detailed analysis of three typical X-class flares implies that the variation of L{sub N} /L{sub B} during the flaring process is most likely due to topological changes of the magnetic field in the flaring source region, and the stepwise decrease of L{sub N} /L{sub B} possibly reflects the magnetic field relaxation relative to the plasma density when the flaring energy is released. This result may also constrain solar flare modeling to some extent.

  10. Plasma Heating in Solar Flares and their Soft and Hard X-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Falewicz, R.

    2014-07-01

    In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities' fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5-4 Å GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV, and 50-100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is

  11. Plasma heating in solar flares and their soft and hard X-ray emissions

    SciTech Connect

    Falewicz, R.

    2014-07-01

    In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities' fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5-4 Å GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV, and 50-100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is

  12. Extreme Ultraviolet Late-Phase Flares: Before and During the Solar Dynamics Observatory Mission

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.

    2014-09-01

    The solar extreme-ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) have revealed interesting characteristics of warm coronal emissions, such as Fe xvi 335 Å emission, which peak soon after the hot coronal X-ray emissions peak during a flare and then sometimes peak for a second time hours after the X-ray flare peak. This flare type, with two warm coronal emission peaks but only one X-ray peak, has been named the EUV late phase (Woods et al., Astrophys. J. 739, 59, 2011). These flares have the distinct properties of i) having a complex magnetic-field structure with two initial sets of coronal loops, with one upper set overlaying a lower set, ii) having an eruptive flare initiated in the lower set and disturbing both loop sets, iii) having the hot coronal emissions emitted only from the lower set in conjunction with the X-ray peak, and iv) having the first peak of the warm coronal emissions associated with the lower set and its second peak emitted from the upper set many minutes to hours after the first peak and without a second X-ray enhancement. The disturbance of the coronal loops by the eruption is at about the same time, but the relaxation and cooling down of the heated coronal loops during the post-flare reconnections have different time scales with the longer, upper loops being significantly delayed from the lower loops. The difference in these cooling time scales is related to the difference between the two peak times of the warm coronal emission and is also apparent in the decay profile of the X-ray emissions having two distinct decays, with the first decay slope being steeper (faster) and the delayed decay slope being smaller (slower) during the time of the warm-coronal-emission second peak. The frequency and relationship of the EUV late-phase decay times between the Fe xvi 335 Å two flare peaks and X-ray decay slopes are examined using three years of SDO/ EUV Variability Experiment (EVE) data, and the X-ray dual-decay character is

  13. THE RELATIONSHIP BETWEEN EXTREME ULTRAVIOLET NON-THERMAL LINE BROADENING AND HIGH-ENERGY PARTICLES DURING SOLAR FLARES

    SciTech Connect

    Kawate, T.; Imada, S.

    2013-10-01

    We have studied the relationship between the location of EUV non-thermal broadening and high-energy particles during large flares using the EUV Imaging Spectrometer on board Hinode, the Nobeyama Radio Polarimeter, the Nobeyama Radioheliograph, and the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. We have analyzed five large flare events that contain thermal-rich, intermediate, and thermal-poor flares classified by the definition discussed in the paper. We found that, in the case of thermal-rich flares, the non-thermal broadening of Fe XXIV occurred at the top of the flaring loop at the beginning of the flares. The source of 17 GHz microwaves is located at the footpoint of the flare loop. On the other hand, in the case of intermediate/thermal-poor flares, the non-thermal broadening of Fe XXIV occurred at the footpoint of the flare loop at the beginning of the flares. The source of 17 GHz microwaves is located at the top of the flaring loop. We discussed the difference between thermal-rich and intermediate/thermal-poor flares based on the spatial information of non-thermal broadening, which may provide clues that the presence of turbulence plays an important role in the pitch angle scattering of high-energy electrons.

  14. Electron acceleration at slow-mode shocks in the magnetic reconnection region in solar flares

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried; Aurass, Henry; Önel, Hakan; Warmuth, Alexander

    2016-04-01

    A solar flare appears as an sudden enhancement of the emission of electromagnetic radiation of the Sun covering a broad range of the spectrum from the radio up to the gamma-ray range. That indicates the generation of energetic electrons during flares, which are considered as the manifestation of magnetic reconnection in the solar corona. Spacecraft observations in the Earth's magnetosphere, as for instance by NASA's MMS mission, have shown that electrons can efficiently accelerated at the slow-mode shocks occuring in the magnetic reconnection region. This mechanism is applied to solar flares. The electrons are accelerated by the cross-shock potential at slow-mode shocks resulting in magnetic field aligned beams of energetic electrons in the downstream region. The interaction of this electron beam with the plasma leads to the excitation of whistler waves and, subsequently, to a strong heating of the electrons in the downstream region. Considering this process under coronal circumstances, enough electrons with energies >30keV are generated in the magnetic reconnection region as required for the hard X-ray radiation during solar flares as observed by NASA's RHESSI mission.

  15. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    NASA Astrophysics Data System (ADS)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  16. SolarSoft Desat Package for the Recovery of Saturated AIA Flare Images

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard Alan; Torre, Gabriele; Piana, Michele; Massone, AnnaMaria

    2015-04-01

    The dynamic range of EUV images has been limited by the problem of CCD saturation as seen countless times in movies of solare flares made using the Solar Dynamics Observatory’s Atmospheric Imaging Assembly (SDO AIA). Concurrent with the saturation are the eight rays emanating from the saturation locus which are the result of diffraction off the wire meshes that support the EUV passband filters. This is the problem and its solution in a nutshell. By utilizing techniques similar to those used for making images from the rotating modulation collimators on the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) we have developed a software package that can be used to make images of the EUV flare kernels in a highly automated way as described in Schwartz et al. (2014). Starting from cutouts centered around a flaring region, the software uses the point-spread-function (PSF) of the diffraction pattern to identify and reconstruct the region of the primary saturation. The software also uses the best information available to reconstruct the general scene obscured from overflow saturation and subtracts away the diffraction fringes. It is not a total correction for the PSF but is meant to provide the flare images above all. The software is freely available and distributed within the DESAT package of Solar Software.(Schwartz, R. A., Torre, G., & Piana, M. (2014), Astrophysical Journal Letters, 793, LL23 )

  17. X-ray Solar Flare Induced Ionospheric Perturbations Observed by VLF Sferics

    NASA Astrophysics Data System (ADS)

    McCormick, J.; Cohen, M.

    2015-12-01

    VLF waves are a useful diagnostic for D-region ionospheric disturbances due to their efficient global propagation. The D-region is too high for balloons, too low for satellites, and not ionized enough for radar reflections. Traditionally, ionosphere disturbances have been sensed using dedicated VLF transmitters allowing for only single propagation path analysis since there are only a handful of transmitters. A lightning stroke, however, releases an intense amount of VLF radio energy known as a Radio Atmospheric, or 'sferic' which propagates through the Earth-ionosphere waveguide. Lightning is globally spread and very frequent, so a sferic is therefore also a useful diagnostic of the D-region when ionized by solar flare x-ray bursts. We present observations of lightning-generated sferics during strong solar flares. The advantage to using sferics is that many individual thunderstorms effectively act as separate VLF transmitting sources. During the solar flare there is a significant change in magnitude and frequency content of sferics. This disturbance varies with distance from the source. The difference in magnitude and arrival time of these sferics have local maximums and minimums, and appears to oscillate with distance. We investigate the effect of solar x-ray flares on the observed sferics as a function of angle of arrival to the receiver. We utilize modeling of the Earth-ionosphere system to compare to the experimental data.

  18. Radioactivity induced in apollo 11 lunar surface material by solar flare protons.

    PubMed

    Heydegger, H R; Turkevich, A

    1970-05-01

    Comparison of values of the specific radioactivities reported for lunar surface material from the Apollo 11 mission with analogous data for stone meteorites suggests that energetic particles from the solar flare of 12 April 1969 may have produced most of the cobalt-56 observed.

  19. Muon excess at sea level from solar flares in association with the Fermi GBM spacecraft detector

    NASA Astrophysics Data System (ADS)

    Augusto, C. R. A.; Navia, C. E.; Shigueoka, H.; Tsui, K. H.; Fauth, A. C.

    2011-08-01

    This paper presents results of an ongoing survey on the association between muon excesses at ground level, registered by the Tupi telescopes, and transient solar events, whose gamma-ray and x-ray emissions were reported by the Fermi Gamma Burst Monitor and the Geostationary Operational Environmental Satellite 14, respectively. We show that solar flares of small scale, those with prompt x-ray emission classified by the Geostationary Operational Environmental Satellite as C-Class with power 10-6 to 10-5Wattsm-2 at 1 AU, may give rise to muon excess probably associated with solar protons and ions emitted by the flare and arriving at the Earth as a coherent particle pulse. The Tupi telescopes are within the central region of the South Atlantic Anomaly, where the geomagnetic field intensity is the lowest on the Earth. Here we argue for the possibility of a “scale-free” power-law energy spectrum of particles accelerated by solar flares. For energies around and exceeding the pion production, large and small scale flares have the same power-law energy spectrum. The difference is only in the intensity. The Tupi events give support to this conjecture.

  20. SDO Captures X1.4 Solar Flare on July 12, 2012

    NASA Video Gallery

    This movie shows the sun July 11-12, ending with the X1.4 class flare on July 12, 2012. It was captured by NASA’s Solar Dynamics Observatory in the 304 Angstrom wavelength - a wavelength coloriz...

  1. Solar flares observed simultaneously with SphinX, GOES and RHESSI

    NASA Astrophysics Data System (ADS)

    Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena

    2013-07-01

    In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

  2. The isotopic and elemental abundances of neon nuclei accelerated in solar flares

    NASA Technical Reports Server (NTRS)

    Dietrich, W. F.; Simpson, J. A.

    1979-01-01

    The relative isotopic abundances of Ne-20 and Ne-22 in seven solar flares were determined from measurements of the satellite IMP 8, yielding the ratio Ne-20/Ne-22 = 7.7 (+2.3, -1.5) for solar chromospheric matter. This value is in agreement with the ratio for the component neon-A (the 'primordial' component) found in carbonaceous chondrites. An elemental abundance ratio Ne/O = 0.14 + or - 0.01 also has been obtained which agrees closely with earlier reported measurements. It is shown that the effects of preferential acceleration relative to solar-system abundances with increasing charge number observed for some solar flares - though biasing the elemental ratio - does not appear to influence the neon isotopic abundances.

  3. The isotropic condition of energetic particles emitted from a large solar flare. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Spalding, J.

    1983-01-01

    Isotope abundance ratios for 5 to 50 MeV/nuc nuclei from a large solar flare were measured. The measurements were made by the heavy isotope spectrometer telescope (HIST) on the ISEE-3 satellite orbiting the Sun near an Earth-Sun liberation point approximately one million miles sunward of the Earth. Finite values for the isotope abundance ratios C-13/C-12, N-15/N-14, O-18/O-16, Ne-22/Ne-20, Mg-25/Mg-24, and Mg-26/Mg-24, and upper limits for the isotope abundance ratios He-3/He-4, C-14/C-12, O-17/O-16 and Ne-21/Ne-20 were reported. Element abundances and spectra were measured to compare the flare with other reported flares. The flare is a typical large flare with low Fe/O abundance or = to 0.1). For C-13/C-12, N-15/N-14, O-18/O-16, Mg-25/Mg-24 and Mg-26/Mg-24 isotope abundance ratios agree with the solar system abundance ratios. Measurement for Ne-22/Ne-20 agree with the isotopic composition of the meteoritic component neon-A.

  4. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Glesener, Lindsay; Bain, Hazel M.; Krucker, Säm; Lin, Robert P.

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  5. Enabling Solar Flare Forecasting at an Unprecedented Level: the FLARECAST Project

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Pariat, Etienne; Massone, Anna Maria; Vilmer, Nicole; Jackson, David; Buchlin, Eric; Csillaghy, Andre; Bommier, Veronique; Kontogiannis, Ioannis; Gallagher, Peter; Gontikakis, Costis; Guennou, Chloé; Murray, Sophie; Bloomfield, D. Shaun; Alingery, Pablo; Baudin, Frederic; Benvenuto, Federico; Bruggisser, Florian; Florios, Konstantinos; Guerra, Jordan; Park, Sung-Hong; Perasso, Annalisa; Piana, Michele; Sathiapal, Hanna; Soldati, Marco; Von Stachelski, Samuel; Argoudelis, Vangelis; Caminade, Stephane

    2016-07-01

    We attempt a brief but informative description of the Flare Likelihood And Region Eruption Forecasting (FLARECAST) project, European Commission's first large-scale investment to explore the limits of reliability and accuracy for the forecasting of major solar flares. The consortium, objectives, and first results of the project - featuring an openly accessible, interactive flare forecasting facility by the end of 2017 - will be outlined. In addition, we will refer to the so-called "explorative research" element of project, aiming to connect solar flares with coronal mass ejections (CMEs) and possibly pave the way for CME, or eruptive flare, prediction. We will also emphasize the FLARECAST modus operandi, namely the diversity of expertise within the consortium that independently aims to science, infrastructure development and dissemination, both to stakeholders and to the general public. Concluding, we will underline that the FLARECAST project responds squarely to the joint COSPAR - ILWS Global Roadmap to shield society from the adversities of space weather, addressing its primary goal and, in particular, its Research Recommendations 1, 2 and 4, Teaming Recommendations II and III, and Collaboration Recommendations A, B, and D. The FLARECAST project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 640216.

  6. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    SciTech Connect

    Kawate, T.; Nishizuka, N.; Oi, A.; Ohyama, M.; Nakajima, H.

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  7. The evolution of energetic particles and the emitted radiation in solar flares. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Edward Tsang

    1989-01-01

    The evolution of accelerated particle distributions in a magnetized plasma and the resulting radiation are calculated, and the results are applied to solar flares. To study the radiation on timescales of order the particle lifetimes, the evolution of the particle distribution is determined by the use of the Fokker-Planck equation including Coulomb collisions and magnetic mirroring. Analytic solution to the equations are obtained for limiting cases such as homogeneous injection in a homogeneous plasma, and for small pitch angle. These analytic solutions are then used to place constraints on flare parameters such as density, loop length, and the injection timescale for very short implusive solar flares. For general particle distributions in arbitrary magnetic field and background density, the equation is solved numerically. The relative timing of microwaves and X-rays during individual flares is investigated. A number of possible sources for excessive microwave flux are discussed including a flattening in the electron spectrum above hard X-ray energies, thermal synchrotron emission, and trapping of electron by converging magnetic fields. Over shorter timescales, the Fokker-Planck equation is solved numerically to calculate the temporal evolution of microwaves and X-rays from nonthermal thick target models. It is shown that magnetic trapping will not account for the observed correlation of microwaves of approximately 0.15 seconds behind X-rays in flares with rapid time variation, and thus higher energy electrons must be accelerated later than lower energy electrons.

  8. Understanding the formation of the Mg II h&k lines during solar flares

    NASA Astrophysics Data System (ADS)

    Rubio Da Costa, Fatima; Kleint, Lucia; Petrosian, Vahe'; Liu, Wei; Allred, Joel C.

    2016-05-01

    The Mg II h&k lines are useful diagnostics for physical processes in the solar chromosphere. Understanding the line formation is crucial for the correct interpretation of spectral observations and characteristics such as line asymmetries or how their central reversals in the line cores disappear and turn into emission during flares are manifestations of various physical processes.Focusing on the well-observed X1.0 flare on 2014 March 29, we carried out a joint observational and modeling study to analyze the Mg II h&k spectra observed by IRIS. We constructed a multi-threaded flare loop model and used the time-dependent electron flux inferred from the RHESSI hard X-ray data as the input to the radiative hydrodynamic code RADYN to simulate the atmospheric response. Using the RH code we conducted a detailed modeling on line shape and evolution to derive how different atmospheric parameters may affect the MgII line emission.We successfully simulated the single-peaked Mg II h&k line profiles by increasing electron density in the upper chromosphere within a narrow height range of ≈ 800 km below the transition region. To our knowledge, this is the first successful attempt in reproducing such line-profile shapes under flaring conditions. We will discuss the implications of this result for diagnosing atmospheric dynamics and energy transport in solar flares.

  9. Oblique Bernstein Mode Generation Near the Upper-hybrid Frequency in Solar Pre-flare Plasmas

    NASA Astrophysics Data System (ADS)

    Kryshtal, A.; Fedun, V.; Gerasimenko, S.; Voitsekhovska, A.

    2015-11-01

    We study analytically the generation process of the first harmonics of the pure electron weakly oblique Bernstein modes. This mode can appear as a result of the rise and development of a corresponding instability in a solar active region. We assume that this wave mode is modified by the influence of pair Coulomb collisions and a weak large-scale sub-Dreicer electric field in the pre-flare chromosphere near the footpoints of a flare loop. To describe the pre-flare plasma we used the model of the solar atmosphere developed by Fontenla, Avrett, and Loeser ( Astrophys. J. 406, 319, 1993). We show that the generated first harmonic is close to the upper-hybrid frequency. This generation process begins at the very low threshold values of the sub-Dreicer electric field and well before the beginning of the preheating phase of a flare. We investigate the necessary conditions for the existence of non-damped first harmonics of oblique Bernstein waves with small amplitudes in the flare area.

  10. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    SciTech Connect

    Murphy, R. J.; Kozlovsky, B.; Share, G. H. E-mail: benz@wise.tau.ac.il

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup –1}) to a GeV nucleon{sup –1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  11. CONTINUUM CONTRIBUTIONS TO THE SDO/AIA PASSBANDS DURING SOLAR FLARES

    SciTech Connect

    Milligan, Ryan O.; McElroy, Sarah A.

    2013-11-01

    Data from the Multiple EUV Grating Spectrograph component of the Extreme-ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) were used to quantify the contribution of continuum emission to each of the extreme ultraviolet (EUV) channels of the Atmospheric Imaging Assembly (AIA), also on SDO, during an X-class solar flare that occurred on 2011 February 15. Both the pre-flare-subtracted EVE spectra and fits to the associated free-free continuum were convolved with the AIA response functions of the seven EUV passbands at 10 s cadence throughout the course of the flare. It was found that 10%-25% of the total emission in the 94 Å, 131 Å, 193 Å, and 335 Å passbands throughout the main phase of the flare was due to free-free emission. Reliable measurements could not be made for the 171 Å channel, while the continuum contribution to the 304 Å channel was negligible due to the presence of the strong He II emission line. Up to 50% of the emission in the 211 Å channel was found to be due to free-free emission around the peak of the flare, while an additional 20% was due to the recombination continuum of He II. The analysis was extended to a number of M- and X-class flares and it was found that the level of free-free emission contributing to both the 171 Å and 211 Å passbands increased with increasing GOES class. These results suggest that the amount of continuum emission that contributes to AIA observations during flares is more significant than stated in previous studies which used synthetic, rather than observed, spectra. These findings highlight the importance of spectroscopic observations carried out in conjunction with those from imaging instruments so that the data are interpreted correctly.

  12. ON THE ORIGIN OF THE EXTREME-ULTRAVIOLET LATE PHASE OF SOLAR FLARES

    SciTech Connect

    Liu Kai; Wang Yuming; Zhang Jie; Cheng Xin

    2013-05-10

    Solar flares typically have an impulsive phase that is followed by a gradual phase as best seen in soft X-ray emissions. A recent discovery based on the EUV Variability Experiment observations on board the Solar Dynamics Observatory (SDO) reveals that some flares exhibit a second large peak separated from the first main phase peak by tens of minutes to hours, which is coined as the flare's EUV late phase. In this paper, we address the origin of the EUV late phase by analyzing in detail two late phase flares, an M2.9 flare on 2010 October 16 and an M1.4 flare on 2011 February 18, using multi-passband imaging observations from the Atmospheric Imaging Assembly on board SDO. We find that (1) the late phase emission originates from a different magnetic loop system, which is much larger and higher than the main phase loop system. (2) The two loop systems have different thermal evolution. While the late phase loop arcade reaches its peak brightness progressively at a later time spanning for more than one hour from high to low temperatures, the main phase loop arcade reaches its peak brightness at almost the same time (within several minutes) in all temperatures. (3) Nevertheless, the two loop systems seem to be connected magnetically, forming an asymmetric magnetic quadruple configuration. (4) Further, the footpoint brightenings in UV wavelengths show a systematic delay of about one minute from the main flare region to the remote footpoint of the late phase arcade system. We argue that the EUV late phase is the result of a long-lasting cooling process in the larger magnetic arcade system.

  13. The wall of reconnection-driven magnetohydrodynamic turbulence in a large solar flare

    NASA Astrophysics Data System (ADS)

    Moore, R. L.; Larosa, T. N.; Orwig, L. E.

    1995-01-01

    LaRosa and Moore (1993) recently proposed that the bulk dissipation of magnetic field that is required for the electron energization in the explosive phase of solar flares occurs in a 'fat current sheet', a wall of cascading magnetohydrodynamic (MHD) turbulence sustained by highly disordered driven reconnection of opposing magnetic fields impacting at a turbulent boundary layer. Here, we use the well-observed great two-ribbon eruptive flare of 1984 April 24/25 to assess the feasibility of both (1) the standard model for the overall three-dimensional form and action of the magnetic field and (2) the turbulent reconnection wall within it. We find (1) that the morphology of this flare closely matched that of the standard model; (2) the preflare sheared core field had enough nonpotential magnetic energy to power the flare; (3) the model turbulent wall required to achieve the flare's peak dissipative power easily fit within the overall span of the flaring magnetic field; (4) this wall was thick enough to have turbulent eddies large enough (diameters approximately 108 cm to produce the approximately ergs energy release fragments typically observed in the explosive phase of flares; (5) the aspect ratio (thickness/vertical extent) of the turbulent reconnection wall was in the 0.1-1 range expected by (Parker 1973). We therefore conclude that the viability of our version of the standard model (i.e., having the magnetic field dissipation occur in our turbulent reconnection wall) is well confirmed by this typical great two-ribbon eruptive flare.

  14. High energetic solar proton flares at 26 and 28 October 2003

    NASA Astrophysics Data System (ADS)

    Mosalam Shaltout, M. A.; Hadey, A. A.

    During the period from 19 October to 4 November 2003, there are a sudden and high activity for the sun, where the sunspot area increased from 1110 10E-6 Hemisphere at 19 October to 5690 10E-6 Hemisphere at 30 October, then decreased to 1110 10 E-6 Hemisphere at 4 November 2003. Also, the radio flux on 10.7 cm increased from 120 sfu at 19 October to 298 sfu at 26 October, then decrease to 168 sfu at 4 November 2003. There are two eruptive solar proton flares released at 26 and 28 October 2003, where the last one is the most eruptive flare recorded since 1976 with importance X17/4B. The proton event affecting the earth environment with energy >10 MeV is 29.500 particle flux units at 29 October 2003 as recorded by spacecraft SOHO, due to the solar flares of 28 October. The coronal mass ejection which reach to the top of the earth's atmosphere from the mid of 29 to the mid of 31 October 2003 recorded high velocity of 950 km/sec. The peak of the solar cycle 21 was at 1979 but high energetic solar flares occurred at the declining phase at 1981, 1982, and 1984 before the solar activity minimum at 1986. Also, the peak of the solar cycle 22 was at 1989 but high energetic solar flares occurred at the declining phase at 1991, 1992, and 1994 before the solar activity minimum at 1996. The peak of the solar cycle 23 was at 2001. The secondary peak is 2 to 3 years after the first peak, as deduced from the last five solar cycles. We conclude the period of 19 October to 4 November 2003 is the second peak of the solar cycle 23. There are many terrestrial influences, due to the solar activity during October - November 2003. These influences are studded in details, specially the geomagnetic storms and their effects on humankind daily activity.

  15. Fine structural features of radio-frequency radiation of the solar flare of February 12, 2010

    NASA Astrophysics Data System (ADS)

    Chernov, G. P.; Fomichev, V. V.; Gorgutsa, R. V.; Markeev, A. K.; Sobolev, D. E.; Hillaris, A.; Alissandrakis, K.

    2014-07-01

    Solar radio emission records received at the IZMIRAN spectrograph (25-270 MHz) during the solar flare event of February 12, 2010 are analyzed. Different fine structures were observed in three large groups of type III bursts against a low continuum. According to data from the Nancay radioheliograph, sources of all three groups of bursts were located in one active region, 11046, and their emissions were accompanied by soft X-ray bursts (GOES satellite): C7.9 at 0721 UT, B9.6 at 0940 UT, and M8.3 at 1125 UT. After the first group of bursts, classical fiber bursts were observed in combination with reverse-drift fiber bursts with unusual arc drift. After the third (the most powerful) group, stable second-length pulsations and slow-drift fiber bursts were observed, the instantaneous frequency bands of which were an order of magnitude larger than the frequency band of classical fiber bursts, and the frequency drift was several times lower. More complex fiber bursts were observed in the weakest group in the time range 0940:39-0942:00 UT. They were narrow-band (˜0.5 MHz) fiber bursts, periodically recurring in a narrow frequency band (5-6 MHz) during several seconds. The presence of many chaotically drifting ensembles of fibers, crossing and superimposing on one another, is a feature of this event. It is assumed that occurrence of these structures can be connected with the existence of many small shock fronts behind the leading edge of a coronal mass ejection.

  16. Element Abundances in High-temperature Solar Flare Plasma from MESSENGER SAX Observations

    NASA Astrophysics Data System (ADS)

    Dennis, Brian R.; Nittler, Larry R.; Phillips, Kenneth; Schwartz, Richard A.; Starr, Richard D.; Tolbert, Anne K

    2014-06-01

    X-ray spectral measurements of many solar flares made with the MESSENGER SAX instrument have been used to determine the abundances of Fe, Ca, Ar, S, and Si in the high temperature plasma. All available data from launch in 2004 to date have been used to obtain spectral fits to the SAX data from 2.3 to 8.5 keV for all time intervals with a detectable count rate in the Fe-line complex at 6.7 keV. For each time interval, OSPEX, our object-oriented IDL spectral analysis program, is used to obtain values of the emission measure, temperature distribution, and abundances that give the best-fit of the corresponding CHIANTI photon spectrum folded through the instrument response matrix to the measured count-rate spectrum above background. Distributions will be presented of element abundances for each flare and for all flares detected during each year of observations. Variations in measured abundances will be discussed as to whether they reflect real differences from the mean or differences due to statistical and/or systematic uncertainties. Comparisons will be made with abundance measurements made from other data sets, in particular by Phillips and Dennis (2012) using data from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and by Warren et al. (2013) using data from the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO).Phillips, K. J. H. and Dennis, B. R., “The Solar Flare Iron Abundance,” 2012, ApJ, 748, 52.Warren, H. “Measurements of Absolute Abundances in Solar Flares,” 2013, arXiv, 2013arXiv1310.4765W

  17. Relationship Between Chromospheric Evaporation and Magnetic Field Topology in an M-Class Solar Flare

    NASA Astrophysics Data System (ADS)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.; Sharykin, Ivan N.; Zimovets, Ivan V.; Vargas Dominguez, Santiago

    2016-09-01

    Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays a key role in the dynamics and energetics of solar flares; however, its mechanism is still unknown. In this paper, we present a detailed analysis of spatially resolved multi-wavelength observations of chromospheric evaporation during an M 1.0-class solar flare (SOL2014-06-12T21:12) using data from NASA’s Interface Region Imaging Spectrograph and HMI/SDO (the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory), and high-resolution observations from VIS/NST (the Visible Imaging Spectrometer at the New Solar Telescope). The results show that the averaged over the flare region Fe xxi blueshift of the hot (107 K) evaporating plasma is delayed relative to the C ii redshift of the relatively cold (104 K) chromospheric plasma by about one minute. The spatial distribution of the delays is not uniform across the region and can be as long as two minutes in several zones. Using vector magnetograms from HMI, we reconstruct the magnetic field topology and the quasi-separatrix layer, and find that the blueshift delay regions as well as the Hα flare ribbons are connected to the region of the magnetic polarity inversion line (PIL) and an expanding flux rope via a system of low-lying loop arcades with a height of ≲4.5 Mm. As a result, the chromospheric evaporation may be driven by the energy release in the vicinity of PIL, and has the observed properties due to a local magnetic field topology.

  18. Relationship Between Chromospheric Evaporation and Magnetic Field Topology in an M-Class Solar Flare

    NASA Astrophysics Data System (ADS)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.; Sharykin, Ivan N.; Zimovets, Ivan V.; Vargas Dominguez, Santiago

    2016-09-01

    Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays a key role in the dynamics and energetics of solar flares; however, its mechanism is still unknown. In this paper, we present a detailed analysis of spatially resolved multi-wavelength observations of chromospheric evaporation during an M 1.0-class solar flare (SOL2014-06-12T21:12) using data from NASA’s Interface Region Imaging Spectrograph and HMI/SDO (the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory), and high-resolution observations from VIS/NST (the Visible Imaging Spectrometer at the New Solar Telescope). The results show that the averaged over the flare region Fe xxi blueshift of the hot (107 K) evaporating plasma is delayed relative to the C ii redshift of the relatively cold (104 K) chromospheric plasma by about one minute. The spatial distribution of the delays is not uniform across the region and can be as long as two minutes in several zones. Using vector magnetograms from HMI, we reconstruct the magnetic field topology and the quasi-separatrix layer, and find that the blueshift delay regions as well as the Hα flare ribbons are connected to the region of the magnetic polarity inversion line (PIL) and an expanding flux rope via a system of low-lying loop arcades with a height of ≲4.5 Mm. As a result, the chromospheric evaporation may be driven by the energy release in the vicinity of PIL, and has the observed properties due to a local magnetic field topology.

  19. Spectral analysis and modeling of solar flares chromospheric condensation

    NASA Astrophysics Data System (ADS)

    Cauzzi, Gianna; Graham, David; Kowalski, Adam; Zangrilli, Luca; Simoes, Paulo; Allred, Joel C.

    2016-05-01

    We follow up on our recent analysis of the X1.1 flare SOL2014-09-10T17:45, where we studied the impulsive phase dynamics of tens of individual flaring "kernels", in both coronal (Fe XXI) and chromospheric (MgII) lines observed at high cadence with IRIS.We concentrate here on the chromospheric aspect of the phenomenon, extending the analysis to multiple spectral lines of Mg II, Fe II, Si I, C II. We show that many flaring kernels display high velocity downflows in the spectra of all these chromospheric lines, exhibiting distinct, transient and strongly redshifted spectral components.From modeling using RADYN with the thick-target interpretation, the presence of two spectral components appears to be consistent with a high flux beam of accelerated electrons, characterized by a hard spectrum. In particular the highest energy electrons heat the denser, lower layers of the atmosphere, while the bulk of the beam energy, deposited higher in the atmosphere, is sufficient to produce chromospheric evaporation with a corresponding condensation.

  20. The Contribution of Microbunching Instability to Solar Flare Emission in the GHz to THz Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Klopf, J. Michael; Kaufmann, Pierre; Raulin, Jean-Pierre; Szpigel, Sérgio

    2014-08-01

    Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed "double spectra." Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving rise to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible.