Sample records for solar minimum year

  1. Statistical Comparison of Anomalous Cosmic Rays and Galactic Cosmic Rays during the Recently Consecutive Unusual Solar Cycles

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhang, H.

    2014-12-01

    Anomalous cosmic rays (ACRs) carry crucial information on the coupling between solar wind and interstellar medium, as well as cosmic ray modulation within the heliosphere. Due to the distinct origins and modulation processes, the spectra and abundance of ACRs are significantly different from that of galactic cosmic rays (GCRs). Since the launch of NASA's ACE spacecraft in 1997, its CRIS and SIS instruments have continuously recorded GCR and ACR intensities of several elemental heavy-ions, spanning the whole cycle 23 and the cycle 24 maximum. Here we present a statistical comparison of ACR and GCR observed by ACE spacecraft and their possible relation to solar activity. While the differential flux of ACR also exhibits apparent anti-correlation with solar activity level, the flux of the latest prolonged solar minimum (year 2009) is approximately 5% lower than its previous solar minimum (year 1997). And the minimal level of ACR flux appears in year 2004, instead of year 2001 with the strongest solar activities. The negative indexes of the power law spectra within the energy range from 5 to 30 MeV/nuc also vary with time. The spectra get harder during the solar minimum but softer during the solar maximum. The approaching solar minimum of cycle 24 is believed to resemble the Dalton or Gleissberg Minimum with extremely low solar activity (Zolotova and Ponyavin, 2014). Therefore, the different characteristics of ACRs between the coming solar minimum and the previous minimum are also of great interest. Finally, we will also discuss the possible solar-modulation processes which is responsible for different modulation of ACR and GCR, especially the roles played by diffusion and drifts. The comparative analysis will provide valuable insights into the physical modulation process within the heliosphere under opposite solar polarity and variable solar activity levels.

  2. Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

    NASA Astrophysics Data System (ADS)

    Oh, Suyeon; Kim, Bogyeong

    2013-06-01

    The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

  3. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  4. How unprecedented a solar minimum was it?

    PubMed

    Russell, C T; Jian, L K; Luhmann, J G

    2013-05-01

    The end of the last solar cycle was at least 3 years late, and to date, the new solar cycle has seen mainly weaker activity since the onset of the rising phase toward the new solar maximum. The newspapers now even report when auroras are seen in Norway. This paper is an update of our review paper written during the deepest part of the last solar minimum [1]. We update the records of solar activity and its consequent effects on the interplanetary fields and solar wind density. The arrival of solar minimum allows us to use two techniques that predict sunspot maximum from readings obtained at solar minimum. It is clear that the Sun is still behaving strangely compared to the last few solar minima even though we are well beyond the minimum phase of the cycle 23-24 transition.

  5. Comparative Study of foF2 Measurements with IRI-2007 Model Predictions During Extended Solar Minimum

    NASA Technical Reports Server (NTRS)

    Zakharenkova, I. E.; Krankowski, A.; Bilitza, D.; Cherniak, Iu.V.; Shagimuratov, I.I.; Sieradzki, R.

    2013-01-01

    The unusually deep and extended solar minimum of cycle 2324 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements.Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRIprovides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activityare used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum.One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly.Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum.

  6. Reinforcement of double dynamo waves as a source of solar activity and its prediction on millennium timescale

    NASA Astrophysics Data System (ADS)

    Popova, E.; Zharkova, V. V.; Shepherd, S. J.; Zharkov, S.

    2016-12-01

    Using the principal components of solar magnetic field variations derived from the synoptic maps for solar cycles 21-24 with Principal Components Analysis (PCA) (Zharkova et al, 2015) we confirm our previous prediction of the upcoming Maunder minimum to occur in cycles 25-27, or in 2020-2055. We also use a summary curve of the two eigen vectors of solar magnetic field oscillations (or two dynamo waves) to extrapolate solar activity backwards to the three millennia and to compare it with relevant historic and Holocene data. Extrapolation of the summary curve confirms the eight grand cycles of 350-400-years superimposed on 22 year-cycles caused by beating effect of the two dynamo waves generated in the two (deep and shallow) layers of the solar interior. The grand cycles in different periods comprise a different number of individual 22-year cycles; the longer the grand cycles the larger number of 22 year cycles and the smaller their amplitudes. We also report the super-grand cycle of about 2000 years often found in solas activity with spectral analysis. Furthermore, the summary curve reproduces a remarkable resemblance to the sunspot and terrestrial activity reported in the past: the recent Maunder Minimum (1645-1715), Dalton minimum (1790-1815), Wolf minimum (1200), Homeric minimum (800-900 BC), the Medieval Warmth Period (900-1200), the Roman Warmth Period (400-10BC) and so on. Temporal variations of these dynamo waves are modelled with the two layer mean dynamo model with meridional circulation revealing a remarkable resemblance of the butterfly diagram to the one derived for the last Maunder minimum in 17 century and predicting the one for the upcoming Maunder minimum in 2020-2055.

  7. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  8. Recent Studies of the Behavior of the Sun's White-Light Corona Over Time

    NASA Technical Reports Server (NTRS)

    SaintCyr, O. C.; Young, D. E.; Pesnell, W. D.; Lecinski, A.; Eddy, J.

    2008-01-01

    Predictions of upcoming solar cycles are often related to the nature and dynamics of the Sun's polar magnetic field and its influence on the corona. For the past 30 years we have a more-or-less continuous record of the Sun's white-light corona from groundbased and spacebased coronagraphs. Over that interval, the large scale features of the corona have varied in what we now consider a 'predictable' fashion--complex, showing multiple streamers at all latitudes during solar activity maximum; and a simple dipolar shape aligned with the rotational pole during solar minimum. Over the past three decades the white-light corona appears to be a better indicator of 'true' solar minimum than sunspot number since sunspots disappear for months (even years) at solar minimum. Since almost all predictions of the timing of the next solar maximum depend on the timing of solar minimum, the white-light corona is a potentially important observational discriminator for future predictors. In this contribution we describe recent work quantifying the large-scale appearance of the Sun's corona to correlate it with the sunspot record, especially around solar minimum. These three decades can be expanded with the HAO archive of eclipse photographs which, although sparse compared to the coronagraphic coverage, extends back to 1869. A more extensive understanding of this proxy would give researchers confidence in using the white-light corona as an indicator of solar minimum conditions.

  9. The effects of low solar activity upon the cosmic radiation and the interplanetary magnetic field over the past 10,000 years, and implications for the future. (Invited)

    NASA Astrophysics Data System (ADS)

    McCracken, K. G.; McDonald, F. B.; Beer, J.; Abreu, J.; Steinhilber, F.

    2009-12-01

    The paleo-cosmic ray records based on the radionuclides 10Be and 14 C show that the Sun has experienced twenty two extended periods of low activity (similar to, or longer than the Maunder Minimum) in the past 10,000 years, and many more periods of reduced activity for 2 or more solar cycles similar to the period 1880-1910. The 10,000 yr record shows that solar activity has exhibited three persistent periodicities that modulate the amplitude of the Hale (11/22 year) cycle. They are the Gleissberg (~85 yr); the de Vries (~208 yr); and the Hallstatt (~2200 yr) periodicities. It is possible that the Sun is entering a somewhat delayed Gleissberg repetition of the 1880-1910 period of reduced activity or a de Vries repetition of the Dalton Minimum of 1800-1820; or a combination of both. The historic record shows that the cosmic ray intensity at sunspot minimum increases substantially during periods of reduced solar activity- during the Dalton minimum it was twice the present-day sunspot minimum intensity at 2GeV/nucleon ; and 10 times greater at 100 MeV/nucleon. The Hale cycle of solar activity continued throughout the Spoerer (1420-1540) and Maunder Minima, and it appears possible that the local interstellar cosmic ray spectrum was occasionally incident on Earth. Using the cosmic ray transport equation to invert the paleo-cosmic ray record shows that the magnetic field was <1nT at Hale minima during the Spoerer Minimum and late in the Maunder Minimum. The Sun was at a minimum of the Hallstatt (2200yr) cycle of activity in the 15th century, and is now on a steadily rising plane of activity. Paleo-cosmic ray evidence suggests that there was a greater production of impulsive solar energetic particle events in the solar cycles of reduced solar activity 1880-1910. Based on these observations, three scenarios for the next several decades will be outlined- (a) a single, deep sunspot minimum followed by an active sun; (b) several cycles of reduced solar activity similar to 1880-1910; and (c) a “Grand Minimum” with one or more 11 year cycles of very low activity similar to the Dalton Minimum.

  10. Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, M.; Kakinuma, T.

    1987-07-01

    The solar cycle evolution of solar wind speed structure was studied for the years from 1973 to 1985 on a basis of interplanetary scintillation observations using a new method for mapping solar wind speed to the source surface. The major minimum-speed regions are distributed along a neutral line through the whole period of a solar cycle: when solar activity is low, they are distributed on the wavy neutral line along the solar equator; in the active phase they also tend to be distributed along the neutral line, which has a large latitudinal amplitude. The minimum-speed regions tend to be distributedmore » not only along the neutral line but also at low magnetic intensity regions and/or coronal bright regions which do not correspond to the neutral line. As the polar high-speed regions extend equatorward around the minimum phase, the latitudinal gradient of speed increases at the boundaries of the low-speed region, and the width of the low-speed region decreases. One or two years before the minimum of solar activity, two localized minimum-speed regions appear on the neutral line, and their locations are longitudinally separated by 180. copyright American Geophysical Union 1987« less

  11. Sunspot variation and selected associated phenomena: A look at solar cycle 21 and beyond

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1982-01-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated.

  12. Geomagnetism during solar cycle 23: Characteristics.

    PubMed

    Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric

    2013-05-01

    On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996-2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  13. ({The) Solar System Large Planets influence on a new Maunder Miniμm}

    NASA Astrophysics Data System (ADS)

    Yndestad, Harald; Solheim, Jan-Erik

    2016-04-01

    In 1890´s G. Spörer and E. W. Maunder (1890) reported that the solar activity stopped in a period of 70 years from 1645 to 1715. Later a reconstruction of the solar activity confirms the grand minima Maunder (1640-1720), Spörer (1390-1550), Wolf (1270-1340), and the minima Oort (1010-1070) and Dalton (1785-1810) since the year 1000 A.D. (Usoskin et al. 2007). These minimum periods have been associated with less irradiation from the Sun and cold climate periods on Earth. An identification of a three grand Maunder type periods and two Dalton type periods in a period thousand years, indicates that sooner or later there will be a colder climate on Earth from a new Maunder- or Dalton- type period. The cause of these minimum periods, are not well understood. An expected new Maunder-type period is based on the properties of solar variability. If the solar variability has a deterministic element, we can estimate better a new Maunder grand minimum. A random solar variability can only explain the past. This investigation is based on the simple idea that if the solar variability has a deterministic property, it must have a deterministic source, as a first cause. If this deterministic source is known, we can compute better estimates the next expected Maunder grand minimum period. The study is based on a TSI ACRIM data series from 1700, a TSI ACRIM data series from 1000 A.D., sunspot data series from 1611 and a Solar Barycenter orbit data series from 1000. The analysis method is based on a wavelet spectrum analysis, to identify stationary periods, coincidence periods and their phase relations. The result shows that the TSI variability and the sunspots variability have deterministic oscillations, controlled by the large planets Jupiter, Uranus and Neptune, as the first cause. A deterministic model of TSI variability and sunspot variability confirms the known minimum and grand minimum periods since 1000. From this deterministic model we may expect a new Maunder type sunspot minimum period from about 2018 to 2055. The deterministic model of a TSI ACRIM data series from 1700 computes a new Maunder type grand minimum period from 2015 to 2071. A model of the longer TSI ACRIM data series from 1000 computes a new Dalton to Maunder type minimum irradiation period from 2047 to 2068.

  14. Changes in the relationship NAO-Northern Hemisphere Temperature due to solar activity

    NASA Astrophysics Data System (ADS)

    de La Torre, L.; Gimeno, L.; Añel, J. A.; Nieto, R.; Tesouro, M.; Ribera, P.; García, R.; Hernández, E.

    2003-04-01

    The influence of the North Atlantic Oscillation (NAO) on wintertime Northern Hemisphere Temperature (NHT) is investigated. To check the hypothesis that the solar cycle is modulating this relationship, the sample was divided into two groups, one included the years corresponding to the three consecutive lowest values of sunspots number for every 11-years cycle (43 years) and the other the ones corresponding to the three consecutive highest numbers (39 years) for every 11-years cycle. If the data of each year were independent, the correlation coefficients between NAO index and NHT for 43 (39) years would be 0.30 (0.32) at 95% confidence level. Correlation index corresponding to the solar minimum phases was -0.17 and to the solar maximum phases was 0.35. The second result is statistically significant and indicates that there are periods when a positive phase of the NAO is related to positive anomalies of NHT- result that supports our current idea of the influence of the NAO on temperature- but there are other periods when NAO and NHT are not correlated. So, results suggest that this relationship has different sign according to the phase of the solar cycle. For solar maximum phases NAO and NHT are positively correlated -result assumed up to the moment- but for solar minimum phases correlations are not significant or even negative. This result is in agreement with the different extension of the NAO for solar cycle phases [1] - almost hemispheric for maximum phases and confined to the eastern Atlantic for minimum phases-.

  15. Potential impacts of a future Grand Solar Minimum on decadal regional climate change and interannual hemispherical climate variability

    NASA Astrophysics Data System (ADS)

    Spiegl, Tobias; Langematz, Ulrike

    2016-04-01

    The political, technical and socio-economic developments of the next decades will determine the magnitude of 21st century climate change, since they are inextricably linked to future anthropogenic greenhouse gas emissions. To assess the range of uncertainty that is related to these developments, it is common to assume different emission scenarios for 21st climate projections. While the uncertainties associated with the anthropogenic greenhouse gas forcing have been studied intensely, the contribution of natural climate drivers (particularly solar variability) to recent and future climate change are subject of intense debate. The past 1,000 years featured at least 5 excursions (lasting 60-100 years) of exceptionally low solar activity, induced by a weak magnetic field of the Sun, so called Grand Solar Minima. While the global temperature response to such a decrease in solar activity is assumed to be rather small, nonlinear mechanisms in the climate system might amplify the regional temperature signal. This hypothesis is supported by the last Grand Solar Minimum (the Maunder Minimum, 1645-1715) which coincides with the Little Ice Age, an epoch which is characterized by severe cold and hardship over Europe, North America and Asia. The long-lasting minimum of Solar Cycle 23 as well as the overall weak maximum of Cycle 24 reveal the possibility for a return to Grand Solar Minimum conditions within the next decades. The quantification of the implications of such a projected decrease in solar forcing is of ultimate importance, given the on-going public discussion of the role of carbon dioxide emissions for global warming, and the possible role a cooling due to decreasing solar activity could be ascribed to. Since there is still no clear consensus about the actual strength of the Maunder Minimum, we used 3 acknowledged solar reconstruction datasets that show significant differences in both, total solar irradiance (TSI) and spectral irradiance (SSI) to simulate a future Grand Solar Minimum under RCP6.0 conditions. The results obtained were compared to a RCP6.0 simulation that was carried out using the CCMI recommendations for a 21st century solar forcing. We used the ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry-climate model that incorporates interactive ozone chemistry, a high-resolution shortwave radiation scheme, a high model top (0.01 hPa) and is coupled to a 3D ocean general circulation model. We focused on the regional responses to a future Grand Solar Minimum and interannual variability patterns (i.e. the Northern and Southern Annular Mode (NAM/SAM)).

  16. The asymmetrical features in electron density during extreme solar minimum

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemin; Shen, Xuhui; Liu, Jing; Yao, Lu; Yuan, Guiping; Huang, Jianping

    2014-12-01

    The variations of plasma density in topside ionosphere during 23rd/24th solar cycle minimum attract more attentions in recently years. In this analysis, we use the data of electron density (Ne) from DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) satellite at the altitude of 660-710 km to investigate the solstitial and equinoctial asymmetry under geomagnetic coordinate system at LT (local time) 1030 and 2230 during 2005-2010, especially in solar minimum years of 2008-2009. The results reveal that ΔNe (December-June) is always positive over Southern Hemisphere and negative over northern part whatever at LT 1030 or 2230, only at 0-10°N the winter anomaly occurs with ΔNe (December-June) > 0, and its amplitude becomes smaller with the declining of solar flux from 2005 to 2009. The ΔNe between September and March is completely negative during 2005-2008, but in 2009, it turns to be positive at latitudes of 20°S-40°N at LT 1030 and 10°S-20°N at LT 2230. Furthermore, the solstitial and equinoctial asymmetry index (AI) are calculated and studied respectively, which all depends on local time, latitude and longitude. The notable differences occur at higher latitudes in solar minimum year of 2009 with those in 2005-2008. The equinoctial AI at LT 2230 is quite consistent with the variational trend of solar flux with the lowest absolute AI occurring in 2009, the extreme solar minimum, but the solstitial AI exhibits abnormal enhancement during 2008 and 2009 with bigger AI than those in 2005-2007. Compared with the neutral compositions at 500 km altitude, it illustrates that [O/N2] and [O] play some roles in daytime and nighttime asymmetry of Ne at topside ionosphere.

  17. Geomagnetism during solar cycle 23: Characteristics

    PubMed Central

    Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric

    2012-01-01

    On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum. PMID:25685427

  18. A physical mechanism for the prediction of the sunspot number during solar cycle 21. [graphs (charts)

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the sun's polar field strength near a solar minimum is closely related to the following cycle's solar activity. Four methods of estimating the sun's polar magnetic field strength near solar minimum are employed to provide an estimate of cycle 21's yearly mean sunspot number at solar maximum of 140 plus or minus 20. This estimate is considered to be a first order attempt to predict the cycle's activity using one parameter of physical importance.

  19. Manifestations of Influence of Solar Activity and Cosmic Ray Intensity on the Wheat Price in the Medieval England (1259-1703 Years)

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev A.; Dorman, L. I.; Yom Din, G.

    2003-07-01

    The database of Professor Rogers, with wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray variations. The main object of the statistical analysis is investigation of bursts of prices. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations in cosmic rays, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. Statistical properties of these two samples are similar both in averaged/median values of intervals and in standard deviation of this values. We show that histogram of intervals distribution for price bursts and solar minimums are coincidence with high confidence level. We analyzed direct links between wheat prices and solar activity in the th 17 Century, for which wheat prices and solar activity data as well as cosmic ray intensity (from 10 Be isotop e) are available. We show that for all seven solar activity minimums the observed prices were higher than prices for the nine intervals of maximal solar activity proceed preceding to the minimums. This result, combined with the conclusion on similarity of statistical properties of the price bursts and solar activity extremes we consider as direct evidence of a causal connection between wheat prices bursts and solar activity.

  20. Quasi-Biennial Oscillation and Solar Cycle Influences over the Winter Arctic Simulated by the WACCM4 Model

    NASA Astrophysics Data System (ADS)

    Li, K. F.; Limpasuvan, T. L.; Limpasuvan, V.; Tung, K. K.; Yung, Y. L.

    2017-12-01

    Observations show that the quasi-biennial oscillation (QBO) and the 11-year solar cycle perturb the polar vortex via planetary wave convergence at high latitudes, a mechanism first proposed by Holton and Tan in 1980. Their perturbations lead to increases of stratospheric sudden warming events, and hence observable increases in temperature and ozone abundance in the polar vortex, during the easterly phase of QBO and the solar maximum. Here we simulate the changes in the polar atmosphere using the Whole Atmosphere Community Climate Model 4 (WACCM4) with the prescribed QBO and 11-year solar cycle forcing. The simulation is diagnosed in four groups: westerly QBO phase and solar minimum, westerly QBO phase and solar maximum, easterly QBO phase and solar minimum, and easterly QBO phase and solar maximum. The simulated changes in temperature and ozone are compared with satellite observations.

  1. Solar induced long- and short-term variations of the cosmic ray intensity in the past, and predictions and opportunities for the future

    NASA Astrophysics Data System (ADS)

    McCracken, K. G.; McDonald, F. B.; Beer, J.

    2009-12-01

    The cosmogenic radionuclide data from the past 10,000 years, and the instrumental cosmic ray data since 1936 provide detailed information on the possible consequences of the present long and deep solar minimum. Furthermore, the cosmic ray transport equation has been used to estimate the strength of the interplanetary magnetic field (IMF) throughout the past 10,000 years. This paper presents a series of figures that document the behavior of both the cosmic radiation and the IMF at Earth in the past. In particular, the 11-year cycles in both quantities for the past 600 years are displayed; and estimates given of the cosmic ray spectrum at Earth for situations that history tells us may occur in the near future. Over the longer term, a minimum of the Hallstatt cycle (2200 yr periodicity) of solar activity occurred ~500 years ago and the Sun is now on a steadily rising plane of activity. The historic record shows that the cosmic ray intensity has decreased extremely rapidly after earlier prolonged deep minima and this suggests rapid and large changes in the heliospheric conditions that we may see replicated. The paper will also display data from the deep, isolated solar minimum of 1956 that exhibited unusual low energy cosmic ray fluxes, and a highly anomalous cosmic ray gradient in the inner heliosphere. Paleo-cosmic ray evidence will also be displayed of an episode of intense solar energetic particle (SEP) events in the interval of reduced solar activity, 1892-1900, that may possibly be repeated. If the present long, deep solar minimum is a precursor to a “Grand Minimum” such as the Dalton minimum, it will provide a much improved insight into the spectrum of the cosmic radiation in interstellar space, and to the cosmic ray modulation process in the heliosphere. With this in mind, the paper suggests key measurements, and speculates on experimental conditions that may be markedly different from those encountered in the instrumental era.

  2. Global solar wind variations over the last four centuries.

    PubMed

    Owens, M J; Lockwood, M; Riley, P

    2017-01-31

    The most recent "grand minimum" of solar activity, the Maunder minimum (MM, 1650-1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth's magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima.

  3. Morphology of equatorial plasma bubbles during low and high solar activity years over Indian sector

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay

    2017-05-01

    In the present study, slant total electron content (STEC) data computed from ground based GPS measurements over Hyderabad (Geog. Lat. 17.41° N, geog. long. 78.55° E, mag. lat. 08.81° N) and two close stations at Bangalore (Geog. Lat. 13.02°/13.03° N, geog. long. 77.57°/77.51° E, mag. lat. 04.53°/04.55° N) in Indian region during 2007-2012, have been used to study the occurrences and characteristics of equatorial plasma bubbles (EPBs). The analysis found maximum EPB occurrences during the equinoctial months and minimum during the December solstice throughout 2007-2012 except during the solar minimum years in 2007-2009. During 2007-2009, the maximum EPB occurrences were observed in June solstice which could not be predicted by the model proposed by Tsunoda (J. Geophys. Res., 90:447-456, 1985). The equinox maximum in EPB occurrences for high solar activity years could be caused by the vertical F-layer drift due to pre-reversal electric field (PRE), and expected to be maximum when day-night terminator aligns with the magnetic meridian i.e. during the equinox months whereas maximum occurrences during the solstice months of solar minimum could be caused by the seed perturbation in plasma density induced by gravity waves from tropospheric origins. Generally EPB occurrences are found to be more prominent during nighttime hours (2000-2400 hours) than the daytime hours. Peak in EPB occurrences is in early night for high solar activity years whereas same is late night for low solar activity. The day and nighttime EPB occurrences have been analyzed and found to vary in accordance with solar activity with an annual correlation coefficient (R) of ˜0.99 with F_{10.7} cm solar Flux. Additionally, solar activity influence on EPB occurrences is seasonal dependent with a maximum influence during the equinox season (R=0.88) and a minimum during winter season (R =0.73). The solar activity influences on EPB occurrences are found in agreement with the previous works reported in the Brazilian, African-Asian and Pacific longitudes sector but different than that in Atlantic sector.

  4. Implications of Extended Solar Minima

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Davis, J. M.

    2009-01-01

    Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.

  5. The radial distribution of cosmic rays in the heliosphere at solar maximum

    NASA Astrophysics Data System (ADS)

    McDonald, F. B.; Fujii, Z.; Heikkila, B.; Lal, N.

    2003-08-01

    To obtain a more detailed profile of the radial distribution of galactic (GCRs) and anomalous (ACRs) cosmic rays, a unique time in the 11-year solar activity cycle has been selected - that of solar maximum. At this time of minimum cosmic ray intensity a simple, straight-forward normalization technique has been found that allows the cosmic ray data from IMP 8, Pioneer 10 (P-10) and Voyagers 1 and 2 (V1, V2) to be combined for the solar maxima of cycles 21, 22 and 23. This combined distribution reveals a functional form of the radial gradient that varies as G 0/r with G 0 being constant and relatively small in the inner heliosphere. After a transition region between ˜10 and 20 AU, G 0 increases to a much larger value that remains constant between ˜25 and 82 AU. This implies that at solar maximum the changes that produce the 11-year modulation cycle are mainly occurring in the outer heliosphere between ˜15 AU and the termination shock. These observations are not inconsistent with the concept that Global Merged Interaction. regions (GMIRs) are the principal agent of modulation between solar minimum and solar maximum. There does not appear to be a significant change in the amount of heliosheath modulation occurring between the 1997 solar minimum and the cycle 23 solar maximum.

  6. foF2 vs solar indices for the Rome station: Looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Perna, L.; Pezzopane, M.

    2016-10-01

    Analyses of the dependence of the F2layer critical frequency, foF2, on five widely used solar activity indices (F10.7, Lym-α, MgII, R and EUV0.1-50)are carried out considering noon values manually validated at the ionospheric station of Rome (41.8°N, 12.5°E, Italy) between January 1976 and December 2013, a period of time covering the last three solar cycles and including the prolonged and anomalous minimum of solar cycle 23/24 (years 2008-2009). After applying a 1-year running mean to both foF2 and solar activity indices time series, a second order polynomial fitting proves to perform better than a linear one, and this is specifically due to the very low solar activity of the last solar minimum and to the remaining saturation effect characterizing the high solar activity. A comparison between observed and synthetic foF2 values, the latter calculated by using the analytical relations found for every index, and some considerations made on the R parameter introduced by Solomon et al. (2013), suggest that MgII is the best index to describe the dependence of foF2 on the solar activity. Three main reasons justify this result: (1) the good sensibility of MgII to the variations of foF2 for low solar activity; (2) the reduced saturation effect characterizing MgII at high solar activity; (3) the poor influence of the hysteresis effect characterizing MgII at medium solar activity. On the other hand, the F10.7 index, widely used as input parameter for numerous ionospheric models, does not represent properly the last minimum; specifically, it is not able to describe the variations of foF2 under a solar activity level of F10.7=82·10-22 [J Hz-1 s-1 m-2].

  7. Anomalous and Galactic Cosmic Ray Intensities at 1 AU During the Approach to the Cycle 24/25 Solar Minimum and Throughout the Last 20 Years

    NASA Astrophysics Data System (ADS)

    Leske, R. A.; Cummings, A. C.; Mewaldt, R. A.; Cohen, C.; Stone, E. C.; Wiedenbeck, M. E.

    2017-12-01

    Anomalous cosmic ray (ACR) intensities at 1 AU generally track galactic cosmic ray (GCR) intensities, but with differences between solar polarity cycles: at high rigidities, GCRs reach higher peak intensities during A<0 cycles, while ACRs have been higher at A>0 solar minima. At present, during the approach to an A>0 solar minimum, ACR oxygen above 8 MeV/nucleon as measured by the Advanced Composition Explorer (ACE) has already reached the peak intensities seen during the 2009 A<0 solar minimum, but is still 40% below the levels seen in 1997 during the last A>0 minimum. The GCR iron intensity at 300 MeV/nucleon, on the other hand, is presently comparable to that in 1997 but remains 10% below its record-setting 2009 value. Drift effects play an important role in the modulation of both ACRs and GCRs. Positively charged ions drift inward along the heliospheric current sheet (HCS) during A<0 cycles and their intensities are thus sensitive to the HCS tilt angle, which remained high for much of the last solar cycle. We have previously shown that both ACR and GCR intensities were significantly higher for a given HCS tilt angle during the 2000-2012 A<0 cycle than they were during the prior (1980-1990) A<0 cycle, and this trend appears to be continuing into the new A>0 cycle. But while GCR intensities in 2009 reached the highest levels recorded during the last 50 years, ACR intensities were only similar to those in the 1980s A<0 minimum. Factors such as a weaker interplanetary magnetic field, perhaps with a reduction in the ACR source strength or greater sensitivity of ACRs than GCRs to the HCS tilt angle, may account for the difference in their modulation behavior.We present 20 years of ACR and GCR intensity data acquired by ACE throughout two solar cycles, with emphasis on recent observations, and discuss possible reasons for the differences in the relative behavior of ACRs and GCRs in the different solar cycles.

  8. Variability of fractal dimension of solar radio flux

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  9. Radiation Risks From A Weak Field in the Coming Years

    NASA Astrophysics Data System (ADS)

    Rahmanifard, F.; Schwadron, N.; Smith, C. W.; Joyce, C. J.; Townsend, L.

    2017-12-01

    Recent solar conditions, including a prolonged solar minimum (2005-2009) and the recent small solar maximum, indicate that we are entering an era of lower solar activity than observed at other times during the space age- possibly similar to the past solar grand minima. During such periods of extremely low activity, the fluxes of galactic cosmic rays (GCRs) increase dramatically and limit the allowable days for human space missions. We use data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) to examine the correlation between the heliospheric magnetic field at 1AU and the modulation potential of the GCRs. We apply past grand solar minima conditions, including the Maunder minimum (1645-1715) and the Dalton minimum (1790-1830), to predict the modulation potential and the dose rates of the GCRs throughout the next solar cycle. The heliospheric magnetic field can drop to 4.21 (3.72) nT, leading to a modulation potential of 448.51 (235.96) MV and dose rates as high as 11.72 (16.68) cGy/yr for the case of conditions similar to the Dalton minimum (Maunder minimum). We use these results to predict the most conservative estimations of the time to 3% risk of exposure-induced death (REID) and the allowable mission durations in interplanetary space.

  10. Properties of the suprathermal heavy ion population near 1 AU during solar cycles 23 and 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayeh, Maher A., E-mail: maldayeh@swri.edu; Ebert, Robert W.; Desai, Mihir I.

    2016-03-25

    Using measurements from the Advanced Composition Explorer/Ultra-Low Energy Isotope Spectrometer (ACE/ULEIS) near 1 AU, we surveyed the composition and spectra of heavy ions (He-through-Fe) during interplanetary quiet times from 1998 January 1 to 2014 December 31 at suprathermal energies between ∼0.11 and ∼1.28 MeV nucleon{sup −1}. The selected time period covers the maxima of solar cycles 23 and 24 and the extended solar minimum in between. We find the following: (1) The number of quiet-hours in each year correlates well with the sunspot number, year 2009 was the quietest for about 90% of the time; (2) The composition of the quiet-timemore » suprathermal heavy ion population ({sup 3}He, C-through-O, and Fe) correlates well with the level of solar activity, exhibiting SEP-like composition signatures during solar maximum, and CIR- or solar wind-like composition during solar minimum; (3) The heavy ion spectra at ∼0.11-0.32 MeV nucleon{sup −1} exhibit suprathermal tails with power-law spectral indices ranging from 1.4 to 2.7. (4) Fe spectral indices get softer (steeper) from solar minimum of cycle 23 to solar cycle 24 maximum. These results imply that during IP quiet times and at energies above ∼0.1 MeV nucleon{sup −1}, the IP medium is dominated by material from prior solar and interplanetary events.« less

  11. Fluctuations in Tree Ring Cellulose d18O during the Little Ice Age Correlate with Solar Activity

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y. T.; Yokoyama, Y.; Miyahara, H.; Nakatsuka, T.

    2008-12-01

    The Maunder Minimum (AD1645-1715), when sunspots became exceedingly rare, is known to coincide with the coldest period during the Little Ice Age. This is a useful period to investigate possible linkage between solar activity and climate because variation in solar activity was different from that of today. The solar cycle length was longer (14 and 28 years) than that of today (11 and 22 years) hence any climate archives that have similar periodic changes could be separated from other internal climate forcing. We have reported that Greenland temperature variations coincided with decadal-scale variability in solar activity during the Maunder Minimum (Miyahara et al. 2008). Here we report interannual and intra-annual relative humidity (RH) variations in central Japan during that period, using tree ring cellulose d18O in a 382-year-old Japanese cedar tree (Cryptomeria japonica). The isotopic composition of tree rings can be a powerful tool to study the relationship between solar activity and climate, because we can directly compare solar activity (D14C) and climate (d18O) with little dating error. The climate proxy obtained using tree ring cellulose d18O is correlated both negatively and positively with RH and d18O in precipitation, respectively. Since d18O in precipitation is negatively correlated with the amount of precipitation in the monsoon area, tree ring cellulose d18O can be a reliable proxy for past RH and/or amount of precipitation in the area of the interest. Tree ring cellulose d18O of the cedar tree during AD1938-1998 in fact correlates significantly with the mean RH in June in central Japan. Tree ring d18O inferred RH variability during the Maunder Minimum shows distinct high RH spikes with an approximate 14-year quasiperiodicity. All nine solar minima during AD1640-1756 deduced from tree ring D14C coincided with high RH spikes, and seven of which coincided within 1-year. Interannual RH variations also coincided with Greenland temperature during this period. These results suggest that weakening of solar activity at solar minima caused distinct hemispheric scale climate change during the Maunder Minimum. We discuss the mechanism in which the solar activity variation caused the climate change, based on intra-annual RH variability and further data analysis of interannual RH variability. H. Miyahara et al., Earth Planet. Sci. Lett. 272, 1-2, 290-295 (2008).

  12. SuperDARN observations of an unusually contracted ionospheric convection pattern during the recent deep solar minimum

    NASA Astrophysics Data System (ADS)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2012-04-01

    We present a long term study, from 1995 - 2011, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection. We find that the average latitude of the HMB at midnight is 61° magnetic latitude during the solar maximum of 2003, but it moves significantly poleward during solar minimum, averaging 64° latitude during 1996, and 68° during 2010. This poleward motion is observed despite the increasing number of low latitude radars built in recent years as part of the StormDARN network, and so is not an artefact of data coverage. We believe that the recent extreme solar minimum lead to an average HMB location that was further poleward than previous solar cycles. We also calculated the open-closed field line boundary (OCB) from auroral images during the years 2000-2002 and find that on average the HMB is located equatorward of the OCB by ~6°. We suggest that the HMB may be a useful proxy for the OCB when global auroral images are not available.

  13. If We Can't Predict Solar Cycle 24, What About Solar Cycle 34?

    NASA Technical Reports Server (NTRS)

    Pesnell. William Dean

    2008-01-01

    Predictions of solar activity in Solar Cycle 24 range from 50% larger than SC 23 to the onset of a Grand Minimum. Because low levels of solar activity are associated with global cooling in paleoclimate and isotopic records, anticipating these extremes is required in any longterm extrapolation of climate variability. Climate models often look forward 100 or more years, which would mean 10 solar cycles into the future. Predictions of solar activity are derived from a number of methods, most of which, such as climatology and physics-based models, will be familiar to atmospheric scientists. More than 50 predictions of the maximum amplitude of SC 24 published before solar minimum will be discussed. Descriptions of several methods that result in the extreme predictions and some anticipation of even longer term predictions will be presented.

  14. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  15. H-alpha synoptic charts of solar activity during the first year of solar cycle 20, October 1964 - August 1965. [Skylab program

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1975-01-01

    Solar activity during the period October 28, 1964 through August 27, 1965 is presented in the form of charts for each solar rotation constructed from observations made with the chromospheric H-alpha spectra line. These H-alpha synoptic charts are identical in format and method of construction to those published for the period of Skylab observations. The sunspot minimum marking the start of Solar Cycle 20 occurred in October, 1964; therefore, charts represent solar activity during the first year of this solar cycle.

  16. Improvement of solar-cycle prediction: Plateau of solar axial dipole moment

    NASA Astrophysics Data System (ADS)

    Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.

    2017-11-01

    Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.

  17. Spotless

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Everything runs in cycles and what goes up must come down. We hear that a lot these days. The topic of conversation is of course the sun. The solar cycle takes 11 years to go from sunspot minimum to maximum and back to minimum. The cycle is driven by changes in the Sun's magnetic field, and is actually a 22-year cycle: during the second 11 years the magnetic polarity of the solar field is reversed. The Solar and Heliospheric Observatory satellite (or SOHO for short), a joint ESA and NASA mission, has been watching the sun since 1995. Rarely is the sun as quiet as it was on September 27, 2008 - as shown in the visible-light image above left, there were absolutely no sunspots to be seen. If the activity stays this low, this might be the most inactive the Sun has been since the dawn of the space age. This still pales in comparison to the 17th century when for a period of 70 years (called the Maunder Minimum) there were no reported sunspots. Some scientists believe the Maunder Minimum responsible for a 'Little Ice Age' and the sound of some violins. The image on the right, taken 3 days later in extreme UV light, shows the formation of two active regions (in the circles) but both faded away before becoming full-fledged spots. So how low will it go? Only time will tell.

  18. Spotless Sun

    NASA Image and Video Library

    2017-03-20

    NASA Solar Dynamics Observatory sees the sun has been virtually spotless, as in no sunspots, a 11-day spotless stretch not seen since the last solar minimum many years ago. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21582

  19. Space weather influence on the agriculture technology and wheat prices in the medieval England (1259-1703) through cosmic ray/solar activity cycle variations

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.; Yom Din, G.

    2003-04-01

    The database of Professor Rogers (1887), which includes wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray intensity variations. The main object of our statistical analysis is investigation of bursts of prices. Our study shows that bursts and troughs of wheat prices take place at extreme states (maximums or minimums) of solar activity cycles. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by cosmic ray intensity solar cycle variations, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. The medians of both samples have the values of 11.00 and 10.7 years; standard deviations are 1.44 and 1.53 years for prices and for solar activity, respectively. The hypothesis that the frequency distributions are the same for both of the samples have significance level >95%. In the next step we analyzed direct links between wheat prices and cosmic ray cycle variations in the 17th Century, for which both wheat prices and cosmic ray intensity (derived from Be-10 isotope data) are available. We show that for all seven solar activity minimums (cosmic ray intensity maximums) the observed prices were higher than prices for the seven intervals of maximal solar activity (100% sign correlation). This result, combined with the conclusion of similarity of statistical properties of the price and solar activity extremes can be considered as direct evidence of a causal connection between wheat prices bursts and solar activity/cosmic ray intensity extremes.

  20. Reconstruction of solar spectral irradiance since the Maunder minimum

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Vieira, L. E. A.; Solanki, S. K.

    2010-12-01

    Solar irradiance is the main external driver of the Earth's climate. Whereas the total solar irradiance is the main source of energy input into the climate system, solar UV irradiance exerts control over chemical and physical processes in the Earth's upper atmosphere. The time series of accurate irradiance measurements are, however, relatively short and limit the assessment of the solar contribution to the climate change. Here we reconstruct solar total and spectral irradiance in the range 115-160,000 nm since 1610. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is appraised from the historical record of the sunspot number using a simple but consistent physical model. The model predicts an increase of 1.25 W/m2, or about 0.09%, in the 11-year averaged solar total irradiance since the Maunder minimum. Also, irradiance in individual spectral intervals has generally increased during the past four centuries, the magnitude of the trend being higher toward shorter wavelengths. In particular, the 11-year averaged Ly-α irradiance has increased by almost 50%. An exception is the spectral interval between about 1500 and 2500 nm, where irradiance has slightly decreased (by about 0.02%).

  1. Solar Drivers of 11-yr and Long-Term Cosmic Ray Modulation

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Richardson, I. G.; Ling, A. G.

    2011-01-01

    In the current paradigm for the modulation of galactic cosmic rays (GCRs), diffusion is taken to be the dominant process during solar maxima while drift dominates at minima. Observations during the recent solar minimum challenge the pre-eminence of drift: at such times. In 2009, the approx.2 GV GCR intensity measured by the Newark neutron monitor increased by approx.5% relative to its maximum value two cycles earlier even though the average tilt angle in 2009 was slightly larger than that in 1986 (approx.20deg vs. approx.14deg), while solar wind B was significantly lower (approx.3.9 nT vs. approx.5.4 nT). A decomposition of the solar wind into high-speed streams, slow solar wind, and coronal mass ejections (CMEs; including postshock flows) reveals that the Sun transmits its message of changing magnetic field (diffusion coefficient) to the heliosphere primarily through CMEs at solar maximum and high-speed streams at solar minimum. Long-term reconstructions of solar wind B are in general agreement for the approx. 1900-present interval and can be used to reliably estimate GCR intensity over this period. For earlier epochs, however, a recent Be-10-based reconstruction covering the past approx. 10(exp 4) years shows nine abrupt and relatively short-lived drops of B to < or approx.= 0 nT, with the first of these corresponding to the Sporer minimum. Such dips are at variance with the recent suggestion that B has a minimum or floor value of approx.2.8 nT. A floor in solar wind B implies a ceiling in the GCR intensity (a permanent modulation of the local interstellar spectrum) at a given energy/rigidity. The 30-40% increase in the intensity of 2.5 GV electrons observed by Ulysses during the recent solar minimum raises an interesting paradox that will need to be resolved.

  2. QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum

    NASA Astrophysics Data System (ADS)

    Hood, Lon L.

    2017-04-01

    The Madden-Julian oscillation (MJO), also known as the 30-60 day oscillation, is the strongest of the intraseasonal climate oscillations in the tropics and has significant derivative effects on extratropical circulation and intraseasonal climate. It has recently been shown that the stratospheric quasi-biennial oscillation (QBO) modulates the amplitude of the boreal winter MJO such that MJO amplitudes are larger on average during the easterly phase (QBOE) than during the westerly phase (QBOW). A major possible mechanism is the decrease in static stability in the lowermost stratosphere under QBOE conditions resulting from relative upwelling associated with the QBO-induced meridional circulation. Here evidence is presented that tropical upwelling changes related to the 11 year solar cycle also modulate the boreal winter MJO. Based on 37.3 years of MJO amplitude data, the largest amplitudes and occurrence rates, and the weakest static stabilities in the tropical lower stratosphere, occur during the QBOE phase under solar minimum (SMIN) conditions while the smallest amplitudes and strongest static stabilities occur during the QBOW phase under solar maximum (SMAX) conditions. Conversely, when the QBO and solar forcings are opposed (QBOW/SMIN and QBOE/SMAX), the difference in occurrence rates becomes statistically insignificant. During the coming solar minimum, at least one additional winter in the QBOE/SMIN category should occur (possibly as early as 2017/2018) during which especially large MJO amplitudes are expected and an initial test of these results will be possible.

  3. LASCO Observations Of The K-Corona From Solar Minimum To Solar Maximum And Beyond

    NASA Astrophysics Data System (ADS)

    Andrews, Michael D.; Howard, Russell A.

    2003-09-01

    The LASCO C2 and C3 coronagraphs on SOHO have been recording a regular series of images of the corona since May 1996. This sequence of data covers the period of solar minimum, the increase to solar maximum, and the beginning of the decline toward the next solar minimum. The images have been analyzed to determine the brightness of the K-corona (solar photons Thomson scattered from free electrons). The total brightness of the K-corona is approximately constant from May 1996 through May 1997. The brightness is then seen to increase steadily until early in the year 2000. The structure of the K-corona changes dramatically with solar cycle. The shape as seen in C2 becomes almost circular at solar maximum while the C3 images continue to show equatorial streamers. The magnitude of the solar cycle variation decreases as the height increases. We present data animations (movies) to show the large-scale structure. We have inverted 28-day averages of the white light images to determine radial profiles of electron density. We present these electron profiles, show how they vary as a function of both latitude and time, and compare our observed profiles with other models and observations.

  4. A Change in the Solar He II EUV Global Network Structure as an Indicator of the Geo-Effectiveness of Solar Minima

    NASA Technical Reports Server (NTRS)

    Didkovsky, L.; Gurman, J. B.

    2013-01-01

    Solar activity during 2007 - 2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He II spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15 +/- 6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008 - 2011.We interpret this higher concentration of spatial power in the transition region's global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He II EUV irradiance in addition to the estimations based on its absolute levels.

  5. Implications of potential future grand solar minimum for ozone layer and climate

    NASA Astrophysics Data System (ADS)

    Arsenovic, Pavle; Rozanov, Eugene; Anet, Julien; Stenke, Andrea; Schmutz, Werner; Peter, Thomas

    2018-03-01

    Continued anthropogenic greenhouse gas (GHG) emissions are expected to cause further global warming throughout the 21st century. Understanding the role of natural forcings and their influence on global warming is thus of great interest. Here we investigate the impact of a recently proposed 21st century grand solar minimum on atmospheric chemistry and climate using the SOCOL3-MPIOM chemistry-climate model with an interactive ocean element. We examine five model simulations for the period 2000-2199, following the greenhouse gas concentration scenario RCP4.5 and a range of different solar forcings. The reference simulation is forced by perpetual repetition of solar cycle 23 until the year 2199. This reference is compared with grand solar minimum simulations, assuming a strong decline in solar activity of 3.5 and 6.5 W m-2, respectively, that last either until 2199 or recover in the 22nd century. Decreased solar activity by 6.5 W m-2 is found to yield up to a doubling of the GHG-induced stratospheric and mesospheric cooling. Under the grand solar minimum scenario, tropospheric temperatures are also projected to decrease compared to the reference. On the global scale a reduced solar forcing compensates for at most 15 % of the expected greenhouse warming at the end of the 21st and around 25 % at the end of the 22nd century. The regional effects are predicted to be significant, in particular in northern high-latitude winter. In the stratosphere, the reduction of around 15 % of incoming ultraviolet radiation leads to a decrease in ozone production by up to 8 %, which overcompensates for the anticipated ozone increase due to reduced stratospheric temperatures and an acceleration of the Brewer-Dobson circulation. This, in turn, leads to a delay in total ozone column recovery from anthropogenic halogen-induced depletion, with a global ozone recovery to the pre-ozone hole values happening only upon completion of the grand solar minimum.

  6. Almost Spotless

    NASA Image and Video Library

    2016-11-30

    This week the sun was hitting its lowest level of solar activity since 2011 (Nov. 14-18, 2016) as it gradually marches toward solar minimum. This activity is usually measured by sunspot count and over the past several days the sun has been almost spotless. The sun has a pendulum-like pattern of solar cycle of activity that extends over about an 11-year period. The last peak of activity was in early 2014. At this point in time, the sunspot numbers seem to be sliding downwards faster than expected, though the solar minimum level should not occur until 2021. No doubt more and larger sunspots will inevitably appear, but we'll just have to wait and see. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21207

  7. Spotless Sun

    NASA Image and Video Library

    2017-03-22

    The sun has been virtually spotless, as in no sunspots, over the past 11 days, a spotless stretch that we have not seen since the last solar minimum many years ago. The videos shows the past four days (Mar. 14-17, 2017) with a combination of an extreme ultraviolet image blended with just the filtered sun. If we just showed the filtered sun with no spots for reference points, any viewer would have a hard time telling that the sun was even rotating. The sun is trending again towards the solar minimum period of its 11 year cycle, which is predicted to be around 2020. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21569

  8. AFT: Extending Solar Cycle Prediction with Data Assimilation

    NASA Astrophysics Data System (ADS)

    Upton, L.; Hathaway, D. H.

    2017-12-01

    The Advective Flux Transport (AFT) model is an innovative surface flux transport model that simulates the evolution of the radial magnetic field on the surface of the Sun. AFT was designed to be as realistic as possible by 1: incorporating the observed surface flows (meridional flow, differential rotation, and an explicit evolving convective pattern) and by 2: using data assimilation to incorporate the observed magnetic fields directly from line-of-sight (LOS) magnetograms. AFT has proven to be successful in simulating the evolution of the surface magnetic fields on both short time scales (days-weeks) as well as for long time scales (years). In particular, AFT has been shown to accurately predict the evolution of the Sun's dipolar magnetic field 3-5 years in advance. Since the Sun's polar magnetic field strength at solar cycle minimum is the best indicator of the amplitude of the next cycle, this has in turn extended our ability to make solar cycle predictions to 3-5 years before solar minimum occurs. Here, we will discuss some of the challenges of implementing data assimilation into AFT. We will also discuss the role of data assimilation in advancing solar cycle predictive capability.

  9. Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.

    1992-01-01

    The Langley heavy-ion/nucleon transport code, HZETRN, and the high-energy nucleon transport code, BRYNTRN, are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the Aug., Sep., and Oct. 1989 solar proton events. These results extend previously calculated surface estimates for GCR's at solar minimum conditions and the Feb. 1956, Nov. 1960, and Aug. 1972 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle.

  10. Solar Energetic Particle Composition over Two Solar Cycles as Observed by the Ulysses/HISCALE and ACE/EPAM Pulse Height Analyzers.

    NASA Astrophysics Data System (ADS)

    Patterson, J. D.; Madanian, H.; Manweiler, J. W.; Lanzerotti, L. J.

    2017-12-01

    We present the compositional variation in the Solar Energetic Particle (SEP) population in the inner heliosphere over two solar cycles using data from the Ulysses Heliospheric Instrument for Spectra, Composition, and Anisotropy at Low Energies (HISCALE) and Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM). The Ulysses mission was active from late 1990 to mid-2009 in a heliopolar orbit inclined by 80° with a perihelion of 1.3 AU and an aphelion of 5.4 AU. The ACE mission has been active since its launch in late 1997 and is in a halo orbit about L1. These two missions provide a total of 27 years of continuous observation in the inner heliosphere with twelve years of simultaneous observation. HISCALE and EPAM data provide species-resolved differential flux and density of SEP between 0.5-5 MeV/nuc. Several ion species (He, C, O, Ne, Si, Fe) are identified using the Pulse Height Analyzer (PHA) system of the Composition Aperture for both instruments. The He density shows a noticeable increase at high solar activity followed by a moderate drop at the quiet time of the solar minimum between cycles 23 and 24. The density of heavier ions (i.e. O and Fe) change minimally with respect to the F10.7 index variations however, certain energy-specific count rates decrease during solar minimum. With Ulysses and ACE observing in different regions of the inner heliosphere, there are significant latitudinal differences in how the O/He ratios vary with the solar cycle. At solar minimum, there is reasonable agreement between the observations from both instruments. At solar max 23, the differences in composition over the course of the solar cycle, and as observed at different heliospheric locations can provide insight to the origins of and acceleration processes differentially affecting solar energetic ions.

  11. Minimum and start of the eleven-year solar cycle, Earth's ionosphere and radioamateurs

    NASA Astrophysics Data System (ADS)

    Janda, F. K.

    2010-12-01

    During the last long and deep minimum of solar activity, particularly in the years 2008 and 2009, we could read a whole bunch of unfulfilled predictions, and inaccurate and confusing messages whose authors were apparently surprised , or at least showed up a surprised face. Usually, their common feature was focusing on only a small number of solar activity parameters, often neglecting results of historical observations. Recall "It has all been here already, and yet it will all happen again" (Wieslaw Brudzinski). At the same time, we have, so to say, "at our hands" a medium which simultaneously responds in a flexible and accurate way to most manifestations of the solar activity and which can be traced with just a radio receiver - and, of course, somewhat trained ear, for example of an amateur radio operator. Ionospheric probes are, however, much better for our purposes, and things that can be done with their current generation only very recently belonged to the world of dreams.

  12. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  13. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    ERIC Educational Resources Information Center

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  14. Elemental GCR Observations during the 2009-2010 Solar Minimum Period

    NASA Technical Reports Server (NTRS)

    Lave, K. A.; Israel, M. H.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2013-01-01

    Using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer (ACE), we present new measurements of the galactic cosmic ray (GCR) elemental composition and energy spectra for the species B through Ni in the energy range approx. 50-550 MeV/nucleon during the record setting 2009-2010 solar minimum period. These data are compared with our observations from the 1997-1998 solar minimum period, when solar modulation in the heliosphere was somewhat higher. For these species, we find that the intensities during the 2009-2010 solar minimum were approx. 20% higher than those in the previous solar minimum, and in fact were the highest GCR intensities recorded during the space age. Relative abundances for these species during the two solar minimum periods differed by small but statistically significant amounts, which are attributed to the combination of spectral shape differences between primary and secondary GCRs in the interstellar medium and differences between the levels of solar modulation in the two solar minima. We also present the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe for both solar minimum periods, and demonstrate that these ratios are reasonably well fit by a simple "leaky-box" galactic transport model that is combined with a spherically symmetric solar modulation model.

  15. Periodicities observed on solar flux index (F10.7) during geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Adhikari, B.; Narayan, C.; Chhatkuli, D. N.

    2017-12-01

    Solar activities change within the period of 11 years. Sometimes the greatest event occurs in the period of solar maxima and the lowest activity occurs in the period of solar minimum. During the time period of solar activity sunspots number will vary. A 10.7 cm solar flux measurement is a determination of the strength of solar radio emission. The solar flux index is more often used for the prediction and monitoring of the solar activity. This study mainly focused on the variation on solar flux index and amount of electromagnetic wave in the atmosphere. Both seasonal and yearly variation on solar F10.7 index. We also analyzed the dataset obatained from riometer.Both instruments show seasonal and yearly variations. We also observed the solar cycle dependence on solar flux index and found a strong dependence on solar activity. Results also show that solar intensities higher during the rising phase of solar cycle. We also observed periodicities on solar flux index using wavelet analysis. Through this analysis, it was found that the power intensities of solar flux index show a high spectral variability.

  16. The ancient Egyptian civilization: maximum and minimum in coincidence with solar activity

    NASA Astrophysics Data System (ADS)

    Shaltout, M.

    It is proved from the last 22 years observations of the total solar irradiance (TSI) from space by artificial satellites, that TSI shows negative correlation with the solar activity (sunspots, flares, and 10.7cm Radio emissions) from day to day, but shows positive correlations with the same activity from year to year (on the base of the annual average for each of them). Also, the solar constant, which estimated fromth ground stations for beam solar radiations observations during the 20 century indicate coincidence with the phases of the 11- year cycles. It is known from sunspot observations (250 years) , and from C14 analysis, that there are another long-term cycles for the solar activity larger than 11-year cycle. The variability of the total solar irradiance affecting on the climate, and the Nile flooding, where there is a periodicities in the Nile flooding similar to that of solar activity, from the analysis of about 1300 years of the Nile level observations atth Cairo. The secular variations of the Nile levels, regularly measured from the 7 toth 15 century A.D., clearly correlate with the solar variations, which suggests evidence for solar influence on the climatic changes in the East African tropics The civilization of the ancient Egyptian was highly correlated with the Nile flooding , where the river Nile was and still yet, the source of the life in the Valley and Delta inside high dry desert area. The study depends on long -time historical data for Carbon 14 (more than five thousands years), and chronical scanning for all the elements of the ancient Egyptian civilization starting from the firs t dynasty to the twenty six dynasty. The result shows coincidence between the ancient Egyptian civilization and solar activity. For example, the period of pyramids building, which is one of the Brilliant periods, is corresponding to maximum solar activity, where the periods of occupation of Egypt by Foreign Peoples corresponding to minimum solar activity. The decline of the Kingdoms in ancient Egypt and occurrence of the intermediate periods are generally explained by very low Nile floods and prolonged droughts followed by severe famines and the destruction of the political structure. The study declear the role of solar activity on the climatic change, and the humankind history.

  17. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  18. Understanding Sun-Climate Connection by Analysis of Historical Sunspot, Auroral and Weather Records

    NASA Astrophysics Data System (ADS)

    Pang, K. D.; Yau, K. K.

    2005-12-01

    Fifty years of galactic cosmic ray data show changes with the solar cycle. Deflection of the highly energetic particles from exploding supernovae by the solar wind and associated magnetic field also modulates cosmogenic radioisotope production high in the atmosphere. The same trends are seen in carbon-14 and beryllium-10 abundances from long-lived trees and polar ice cores, respectively. Total solar irradiances measured by satellite radiometers show a 0.1% variance over the last two solar cycles, with only a small effect on global temperatures. A longer view is obviously needed. During the Maunder Minimum (1645-1715) sunspots were rarely seen. Total solar irradiances, reconstructed from historical sunspot data, were 0.24% lower, correlating nicely with an estimated 0.5-degree drop in Northern Hemisphere surface temperatures during the Little Ice Age [Lean and Rind, J. Clim. 11, 3069, 1998]. A longer time series has been reconstructed from even earlier records. From the frequencies of sunspot and auroral sightings in East Asian and European chronicles, C-14 and Be-10 abundances we have reconstructed the recent history of a variable Sun. In the past 1800 years the Sun has gone through nine cycles of brightness change. Although these long-term changes were <1% they have clearly affected the climate [Pang and Yau, Eos 83, No. 43, 481, 2002]. We have also analyzed Chinese historical weather records for comparison. Reports of unseasonable cold are classified by their degree of severity: (1) Late (April-June) or early (July-Sept.) killing frosts; (2) Bitter cold/heavy snowfall; and (3) Heavy sustained snowfall, bitter cold with frozen wells, lakes, rivers and icebound seas. The latter cases were often widespread and multi-year. All categories occurred most often during Maunder Minimum. The Category 3 episodes were in 1652-54, 1656, 1664, 1670-72, 1676-77, 1683, 1688-91, 1716 and 1718-19. The coldest time 1670-1697 coincides with lows in aurora sightings and numerical model simulated temperatures, and highs in radioisotope production. There was only one Category 3 episode between the Maunder and Dalton Minima-in 1761 (due to a big eruption); and two in the Dalton Minimum (1795-1825)-in 1796 and 1814-17. The 1815 Tambora eruption, with the reduced solar luminosity, seem to have been responsible for the "year without summer" and long-cold spell. The Sun has brightened since the Dalton Minimum, but the climate of China stayed cold through the 19th century. However there were only two Category 3 episodes: in 1841 and 1877. The onset of global warming reduced that to just once in the 20th century: 1955. The climate of China seems to have been warm during the Late 14th-Century Maximum (1350-1410). We have found only one Category 1 episode: in 1393. It then turned cold during the Sporer Minimum (1410-1590). Category 3 episodes occurred in 1453-54, 1493, 1513, 1569, and 1577-78. The early 1453 great Kuwae eruption apparently deepened and prolonged the first [Pang, Eos 74, No. 43, 106, 1993; Simarski, Aramco World 47, No.6, 8, 1996]. We conclude that the climate of China in the past 650 years generally follows world trend. The major forcing seems to have been changing solar luminosity, as all but four severe weather episodes coincide with solar minimum. The exact mechanism remains unknown, but could have been increased cloudiness.

  19. Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind

    NASA Astrophysics Data System (ADS)

    Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.

    2007-08-01

    We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.

  20. Predictions of Sunspot Cycle 24: A Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Bhatt, N. J.; Jain, R.

    2017-12-01

    The space weather is largely affected due to explosions on the Sun viz. solar flares and CMEs, which, however, in turn depend upon the magnitude of the solar activity i e. number of sunspots and their magnetic configuration. Owing to these space weather effects, predictions of sunspot cycle are important. Precursor techniques, particularly employing geomagnetic indices, are often used in the prediction of the maximum amplitude of a sunspot cycle. Based on the average geomagnetic activity index aa (since 1868 onwards) for the year of the sunspot minimum and the preceding four years, Bhatt et al. (2009) made two predictions for sunspot cycle 24 considering 2008 as the year of sunspot minimum: (i) The annual maximum amplitude would be 92.8±19.6 (1-sigma accuracy) indicating a somewhat weaker cycle 24 as compared to cycles 21-23, and (ii) smoothed monthly mean sunspot number maximum would be in October 2012±4 months (1-sigma accuracy). However, observations reveal that the sunspot minima extended up to 2009, and the maximum amplitude attained is 79, with a monthly mean sunspot number maximum of 102.3 in February 2014. In view of the observations and particularly owing to the extended solar minimum in 2009, we re-examined our prediction model and revised the prediction results. We find that (i) The annual maximum amplitude of cycle 24 = 71.2 ± 19.6 and (ii) A smoothed monthly mean sunspot number maximum in January 2014±4 months. We discuss our failure and success aspects and present improved predictions for the maximum amplitude as well as for the timing, which are now in good agreement with the observations. Also, we present the limitations of our forecasting in the view of long term predictions. We show if year of sunspot minimum activity and magnitude of geomagnetic activity during sunspot minimum are taken correctly then our prediction method appears to be a reliable indicator to forecast the sunspot amplitude of the following solar cycle. References:Bhatt, N.J., Jain, R. & Aggarwal, M.: 2009, Sol. Phys. 260, 225

  1. The Unusual Minimum of Cycle 23: Observations and Interpretation

    NASA Astrophysics Data System (ADS)

    Martens, Petrus C.; Nandy, D.; Munoz-Jaramillo, A.

    2009-05-01

    The current minimum of cycle 23 is unusual in its long duration, the very low level to which Total Solar Irradiance (TSI) has fallen, and the small flux of the open polar fields. The deep minimum of TSI seems to be related to an unprecedented dearth of polar faculae, and hence to the small amount of open flux. Based upon surface flux transport models it has been suggested that the causes of these phenomena may be an unusually vigorous meridional flow, or even a deviation from Joy's law resulting in smaller Joy angles than usual for emerging flux in cycle 23. There is also the possibility of a connection with the recently inferred emergence in polar regions of bipoles that systematically defy Hale's law. Much speculation has been going on as to the consequences of this exceptional minimum: are we entering another global minimum, is this the end of the 80 year period of exceptionally high solar activity, or is this just a statistical hiccup? Dynamo simulations are underway that may help answer this question. As an aside it must be mentioned that the current minimum of TSI puts an upper limit in the TSI input for global climate simulations during the Maunder minimum, and that a possible decrease in future solar activity will result in a very small but not insignificant reduction in the pace of global warming.

  2. Physical Processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D.; Galley, R.; Barber, D. G.; Rysgaard, S.

    2016-12-01

    During the record September 2012 sea ice minimum the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 year-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 year-1. Overall through preconditioning towards a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  3. Autumn-winter minimum temperature changes in the southern Sikhote-Alin mountain range of northeastern Asia since 1529 AD

    NASA Astrophysics Data System (ADS)

    Ukhvatkina, Olga N.; Omelko, Alexander M.; Zhmerenetsky, Alexander A.; Petrenko, Tatyana Y.

    2018-01-01

    The aim of our research was to reconstruct climatic parameters (for the first time for the Sikhote-Alin mountain range) and to compare them with global climate fluctuations. As a result, we have found that one of the most important limiting factors for the study area is the minimum temperatures of the previous autumn-winter season (August-December), and this finding perfectly conforms to that in other territories. We reconstructed the previous August-December minimum temperature for 485 years, from 1529 to 2014. We found 12 cold periods (1535-1540, 1550-1555, 1643-1649, 1659-1667, 1675-1689, 1722-1735, 1791-1803, 1807-1818, 1822-1827, 1836-1852, 1868-1887, 1911-1925) and seven warm periods (1560-1585, 1600-1610, 1614-1618, 1738-1743, 1756-1759, 1776-1781, 1944-2014). These periods correlate well with reconstructed data for the Northern Hemisphere and the neighboring territories of China and Japan. Our reconstruction has 3-, 9-, 20-, and 200-year periods, which may be in line with high-frequency fluctuations in El Niño-Southern Oscillation (ENSO), the short-term solar cycle, Pacific Decadal Oscillation (PDO) fluctuations, and the 200-year solar activity cycle, respectively. We suppose that the temperature of the North Pacific, expressed by the PDO may make a major contribution to regional climate variations. We also assume that the regional climatic response to solar activity becomes apparent in the temperature changes in the northern part of Pacific Ocean and corresponds to cold periods during the solar minimum. These comparisons show that our climatic reconstruction based on tree ring chronology for this area may potentially provide a proxy record for long-term, large-scale past temperature patterns for northeastern Asia. The reconstruction reflects the global traits and local variations in the climatic processes of the southern territory of the Russian Far East for more than the past 450 years.

  4. Characteristics of spacecraft charging in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip C.

    2012-07-01

    It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.

  5. On dependence of seismic activity on 11 year variations in solar activity and/or cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhantayev, Zhumabek; Khachikyan, Galina; Breusov, Nikolay

    2014-05-01

    It is found in the last decades that seismic activity of the Earth has a tendency to increase with decreasing solar activity (increasing cosmic rays). A good example of this effect may be the growing number of catastrophic earthquakes in the recent rather long solar minimum. Such results support idea on existence a solar-lithosphere relationship which, no doubts, is a part of total pattern of solar-terrestrial relationships. The physical mechanism of solar-terrestrial relationships is not developed yet. It is believed at present that one of the main contenders for such mechanism may be the global electric circuit (GEC) - vertical current loops, piercing and electrodynamically coupling all geospheres. It is also believed, that the upper boundary of the GEC is located at the magnetopause, where magnetic field of the solar wind reconnects with the geomagnetic field, that results in penetrating solar wind energy into the earth's environment. The effectiveness of the GEC operation depends on intensity of cosmic rays (CR), which ionize the air in the middle atmosphere and provide its conductivity. In connection with the foregoing, it can be expected: i) quantitatively, an increasing seismic activity from solar maximum to solar minimum may be in the same range as increasing CR flux; and ii) in those regions of the globe, where the crust is shipped by the magnetic field lines with number L= ~ 2.0, which are populated by anomalous cosmic rays (ACR), the relationship of seismic activity with variations in solar activity will be manifested most clearly, since there is a pronounced dependence of ACR on solar activity variations. Checking an assumption (i) with data of the global seismological catalog of the NEIC, USGS for 1973-2010, it was found that yearly number of earthquake with magnitude M≥4.5 varies into the 11 year solar cycle in a quantitative range of about 7-8% increasing to solar minimum, that qualitatively and quantitatively as well is in agreement with the variations of CR in the 11 year solar cycle. Checking an assumptions (ii), it is found that during the period from 1973 to 2010, the twenty earthquakes with magnitude M≥7.0 occurred in the seismic areas, where geomagnetic force lines L=2.0 -2.2 are loaned into the earth's crust. Surprisingly, all of these strong earthquakes occurred only at declining phase of the 11 year solar cycle, while were absent at ascending phase. This result proves an expectation (ii) and can be taken into account for forecasting strong earthquake occurrence in the seismic areas where the crust is riddled with geomagnetic field lines L= ~ 2.0. In conclusion: the results support a modern idea that earthquake occurrence is related to operation of global electric circuit, but more research are required to study this problem in more details.

  6. Heartbeat of the Sun from Principal Component Analysis and prediction of solar activity on a millenium timescale

    PubMed Central

    Zharkova, V. V.; Shepherd, S. J.; Popova, E.; Zharkov, S. I.

    2015-01-01

    We derive two principal components (PCs) of temporal magnetic field variations over the solar cycles 21–24 from full disk magnetograms covering about 39% of data variance, with σ = 0.67. These PCs are attributed to two main magnetic waves travelling from the opposite hemispheres with close frequencies and increasing phase shift. Using symbolic regeression analysis we also derive mathematical formulae for these waves and calculate their summary curve which we show is linked to solar activity index. Extrapolation of the PCs backward for 800 years reveals the two 350-year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past including the Maunder and Dalton minimum. The summary curve calculated for the next millennium predicts further three grand cycles with the closest grand minimum occurring in the forthcoming cycles 26–27 with the two magnetic field waves separating into the opposite hemispheres leading to strongly reduced solar activity. These grand cycle variations are probed by α − Ω dynamo model with meridional circulation. Dynamo waves are found generated with close frequencies whose interaction leads to beating effects responsible for the grand cycles (350–400 years) superimposed on a standard 22 year cycle. This approach opens a new era in investigation and confident prediction of solar activity on a millenium timescale. PMID:26511513

  7. Impacts of Stratospheric Dynamics on Atmospheric Behavior from the Ground to Space Solar Minimum and Solar Maximum

    DTIC Science & Technology

    2015-12-15

    from the ground to space solar minimum and solar maximum 5a. CONTRACT NUMBER BAA-76-11-01 5b. GRANT NUMBER N00173-12-1G010 5c. PROGRAM ELEMENT...atmospheric behavior from the ground to space under solar minimum and solar maximum conditions (Contract No.: N00173-12-1-G010 NRL) Project Summary...Dynamical response to solar radiative forcing is a crucial and poorly understood mechanisms. We propose to study the impacts of large dynamical events

  8. Changes in atmospheric circulation between solar maximum and minimum conditions in winter and summer

    NASA Astrophysics Data System (ADS)

    Lee, Jae Nyung

    2008-10-01

    Statistically significant climate responses to the solar variability are found in Northern Annular Mode (NAM) and in the tropical circulation. This study is based on the statistical analysis of numerical simulations with ModelE version of the chemistry coupled Goddard Institute for Space Studies (GISS) general circulation model (GCM) and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The low frequency large scale variability of the winter and summer circulation is described by the NAM, the leading Empirical Orthogonal Function (EOF) of geopotential heights. The newly defined seasonal annular modes and its dynamical significance in the stratosphere and troposphere in the GISS ModelE is shown and compared with those in the NCEP/NCAR reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both the model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum variability over the Asian monsoon region. The corresponding EOF in ModelE has a qualitatively similar structure but with less variability in the Asian monsoon region which is displaced eastward of its observed position. In both the NCEP/NCAR reanalysis and the GISS GCM, the negative anomalies associated with the NAM in the Euro-Atlantic and Aleutian island regions are enhanced in the solar minimum conditions, though the results are not statistically significant. The difference of the downward propagation of NAM between solar maximum and solar minimum is shown with the NCEP/NCAR reanalysis. For the winter NAM, a much greater fraction of stratospheric circulation perturbations penetrate to the surface in solar maximum conditions than in minimum conditions. This difference is more striking when the zonal wind direction in the tropics is from the west: when equatorial 50 hPa winds are from the west, no stratospheric signals reach the surface under solar minimum conditions, while over 50 percent reach the surface under solar maximum conditions. This work also studies the response of the tropical circulation to the solar forcing in combination with different atmospheric compositions and with different ocean modules. Four model experiments have been designed to investigate the role of solar forcing in the tropical circulation: one with the present day (PD) greenhouse gases and aerosol conditions, one with the preindustrial (PI) conditions, one with the doubled minimum solar forcing, and finally one with the hybrid-isopycnic ocean model (HYCOM). The response patterns in the tropical humidity and in the vertical motion due to solar forcing are season dependent and spatially heterogeneous. The tropical humidity response from the model experiments are compared with the corresponding differences obtained from the NCEP/NCAR reanalysis with all years and with non-ENSO years. Both the model and the reanalysis consistently show that the specific humidity is significantly greater in the convective region in solar maximum compared to solar minimum for January and July. The column integrated humidity in all the model experiments with different composition, different solar forcing, and different ocean module, increased with solar forcing in the tropical band over the Atlantic sector in both seasons. The model's humidity response pattern is generally consistent with the paleoclimate records indicating increased precipitation near the equator that decreases at subtropical to middle latitudes with increased solar output. The differences in the zonally averaged vertical velocities indicate that the ascending branch of the Hadley cell is enhanced and shifted northward, and that the descending branch is weakened and shifted northward in the solar MAX simulation in January. The downward branch of the Hadley cell is strengthened in MAX in July. A possible link of climate response in midlatitudes to solar forcing is also presented by showing changes in zonal mean wind, changes in temperature gradient, and changes in E-P flux.

  9. Forecasting the peak of the present solar activity cycle 24

    NASA Astrophysics Data System (ADS)

    Hamid, R. H.; Marzouk, B. A.

    2018-06-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aamin. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between maximum of solar cycles (RM) and spotless event around the preceding minimum gives R24t = 88.4 with rise time Tr = 4.6 years. For the even cycles R24E = 77.9 with rise time Tr = 4.5 y's. Based on the average aamin. index for cycles (12-23), we estimate the expected amplitude for cycle 24 to be Raamin = 99.4 and 98.1 with time rise of Traamin = 4.04 & 4.3 years for both the total and even cycles in consecutive. The application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 126 with rise time Tr107 = 3.7 years, which are over estimation. Our result indicating to somewhat weaker of cycle 24 as compared to cycles 21-23.

  10. Simulation of the outdoor energy efficiency of an autonomous solar kit based on meteorological data for a site in Central Europa

    NASA Astrophysics Data System (ADS)

    Bouzaki, Mohammed Moustafa; Chadel, Meriem; Benyoucef, Boumediene; Petit, Pierre; Aillerie, Michel

    2016-07-01

    This contribution analyzes the energy provided by a solar kit dedicated to autonomous usage and installed in Central Europa (Longitude 6.10°; Latitude 49.21° and Altitude 160 m) by using the simulation software PVSYST. We focused the analysis on the effect of temperature and solar irradiation on the I-V characteristic of a commercial PV panel. We also consider in this study the influence of charging and discharging the battery on the generator efficiency. Meteorological data are integrated into the simulation software. As expected, the solar kit provides an energy varying all along the year with a minimum in December. In the proposed approach, we consider this minimum as the lowest acceptable energy level to satisfy the use. Thus for the other months, a lost in the available renewable energy exists if no storage system is associated.

  11. Characteristics of low-latitude TEC during solar cycles 23 and 24 using global ionospheric maps (GIMs) over Indian sector

    NASA Astrophysics Data System (ADS)

    Dashora, N.; Suresh, Sunanda

    2015-06-01

    The characteristics of quiet time equatorial and low-latitude total electron content over the Indian sector using global ionospheric map (GIM) data (1998-2014) are obtained filtering out the solar flare and storm effects. The results are examined and interpreted in the context of large number of previous studies. The newly found features from this study are as follows. Marked difference in nature of equinoctial asymmetry is noted between solar cycles 23 and 24. Long absence of winter anomaly both during low and high solar activity (HSA) in LL (low-latitude) regions is found. Climatology of the diurnal cycle is provided in four categories using new criteria for demarcation of solar activity levels. Highest correlation (~77%) between GIM ionospheric electron content (IEC) and PI (solar EUV proxy index) is noted over equator in contrast to previous studies. The minimum positive contribution of PI in variation of IEC requires minimum of 2 years of data, and if more than 7-8 years of data are used, it saturates. Root-mean-square width of PI can be used to define the HSA. Strong QBO (quasi-biennial oscillations) in IEC is noted in tune with the one in PI over both LL locations but QBO remains surprisingly subdued over equator. The semiannual oscillations in GIM-IEC are found to be stronger at all locations during high solar activity and weaker between 2005 and 2011, whereas the annual oscillations are found to be substantially stronger only during HSA-23 and weakest over southern LL location throughout 17 years.

  12. The magnetic field of the earth - Performance considerations for space-based observing systems

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.

    1985-01-01

    Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.

  13. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  14. The one hundredth year of Rudolf Wolf's death: Do we have the correct reconstruction of solar activity?

    NASA Technical Reports Server (NTRS)

    Hoyt, Douglas V.; Schatten, Kenneth H.; Nesmes-Ribes, Elizabeth

    1994-01-01

    In the one hundred years since Wolf died, little effort has gone into research to see if improved reconstructions of sunspot numbers can be made. We have gathered more than 349,000 observations of daily sunspot group counts from more than 350 observers active from 1610 to 1993. Based upon group counts alone, it is possible to make an objective and homogeneous reconstruction of sunspot numbers. From our study, it appears that the Sun has steadily increased in activity since 1700 with the exception of a brief decrease in the Dalton Minimum (1795-1823). The significant results here are the greater depth of the Dalton Minimum, the generally lower activity throughout the 1700's, and the gradual rise in activity from the Maunder Minimum to the present day. This solar activity reconstruction is quite similar to those Wolf published before 1868 rather than the revised Wolf reconstructions after 1873 which used geomagnetic fluctuations.

  15. Ten Years of Solar Change as Monitored by SBUV and SBUV/2

    NASA Technical Reports Server (NTRS)

    Schlesinger, B. M.; Cebula, R. P.; Heath, D. F.; Deland, M. T.; Hudson, R. D.

    1990-01-01

    Observations of the Sun by the Solar Backscatter Ultraviolet (SBUV) instrument aboard Nimbus 7 and the SBUV/2 instrument aboard NOAA-9 reveal variations in the solar irradiance from 1978, to 1988. The maximum to minimum solar change estimated from the Heath and Schlesinger Mg index and wavelength scaling factors is about 4 percent from 210 to 260 nm and 8 percent for 180 to 210 nm; direct measurements of the solar change give values of 1 to 3 percent and 5 to 7 percent, respectively, for the same wavelength range. Solar irradiances were high from the start of observations, late in 1978, until 1983, declined until early 1985, remained approximately constant until mid-1987, and then began to rise. Peak-to-peak 27-day rotational modulation amplitudes were as large as 6 percent at solar maximum and 1 to 2 percent at solar minimum. During occasional intervals of the 1979 to 1983 maximum and again during 1988, the dominant rotational modulation period was 13.5 days. Measurements near 200 to 205 nm show the same rotational modulation behavior but cannot be used to track long-term changes in the Sun because of uncertainties in the characterization of long-term instrument sensitivity changes.

  16. A Possible Cause of the Diminished Solar Wind During the Solar Cycle 23 - 24 Minimum

    NASA Astrophysics Data System (ADS)

    Liou, Kan; Wu, Chin-Chun

    2016-12-01

    Interplanetary magnetic field and solar wind plasma density observed at 1 AU during Solar Cycle 23 - 24 (SC-23/24) minimum were significantly smaller than those during its previous solar cycle (SC-22/23) minimum. Because the Earth's orbit is embedded in the slow wind during solar minimum, changes in the geometry and/or content of the slow wind region (SWR) can have a direct influence on the solar wind parameters near the Earth. In this study, we analyze solar wind plasma and magnetic field data of hourly values acquired by Ulysses. It is found that the solar wind, when averaging over the first (1995.6 - 1995.8) and third (2006.9 - 2008.2) Ulysses' perihelion ({˜} 1.4 AU) crossings, was about the same speed, but significantly less dense ({˜} 34 %) and cooler ({˜} 20 %), and the total magnetic field was {˜} 30 % weaker during the third compared to the first crossing. It is also found that the SWR was {˜} 50 % wider in the third ({˜} 68.5^deg; in heliographic latitude) than in the first ({˜} 44.8°) solar orbit. The observed latitudinal increase in the SWR is sufficient to explain the excessive decline in the near-Earth solar wind density during the recent solar minimum without speculating that the total solar output may have been decreasing. The observed SWR inflation is also consistent with a cooler solar wind in the SC-23/24 than in the SC-22/23 minimum. Furthermore, the ratio of the high-to-low latitude photospheric magnetic field (or equatorward magnetic pressure force), as observed by the Mountain Wilson Observatory, is smaller during the third than the first Ulysses' perihelion orbit. These findings suggest that the smaller equatorward magnetic pressure at the Sun may have led to the latitudinally-wider SRW observed by Ulysses in SC-23/24 minimum.

  17. Radiation measurements on the Mir Orbital Station.

    PubMed

    Badhwar, G D; Atwell, W; Reitz, G; Beaujean, R; Heinrich, W

    2002-10-01

    Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources. c2002 Elsevier Science Ltd. All rights reserved.

  18. Radio Imaging Observations of Solar Activity Cycle and Its Anomaly

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2011-12-01

    The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.

  19. The investigation of solar activity signals by analyzing of tree ring chronological scales

    NASA Astrophysics Data System (ADS)

    Nickiforov, M. G.

    2017-07-01

    The present study examines the ability of detecting short-cycles and global minima of solar activity by analyzing dendrochronologies. Starting with the study of Douglass, which was devoted to the question of climatic cycles and the growth of trees, it is believed that the analysis of dendrochronologies allows to detect the cycle of Wolf-Schwabe. According to his results, the cycle was absent during Maunder's minimum and appeared after its completion. Having checked Douglass's conclusions by using 10 dendrochronologies of yellow pines from Arizona, which cover the time period from 1600 to 1900, we have come to the opposite results. The verification shows that: a) none of the considered dendroscale allows to detect an 11-year cycle; 2) the behaviour of a short peroid-signal does not undergo significant changes before, during or after Maunder's minimum. A similar attempt to detect global minima of solar activity by using five dendrochronologies from different areas has not led to positive results. On the one hand, the signal of global extremum is not always recorded in dendrochronology, on the other hand, the deep depression of annual rings allows to suppose the existence of a global minimum of solar activity, which is actually absent.

  20. Study of magnetic notions in the solar photosphere and their implications for heating the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.

    1995-01-01

    This progress report covers the first year of NASA Grant NAGw-2545, a study of magnetic structure in the solar photosphere and chromosphere. We have made significant progress in three areas: (1) analysis of vorticity in photospheric convection, which probably affects solar atmospheric heating through the stresses it imposes on photospheric magnetic fields; (2) modelling of the horizontal motions of magnetic footpoints in the solar photosphere using an assumed relation between brightness and vertical motion as well as continuity of flow; and (3) observations and analysis of infrared CO lines formed near the solar temperature minimum, whose structure and dynamics also yield important clues to the nature of heating of the upper atmosphere. Each of these areas are summarized in this report, with copies of those papers prepared or published this year included.

  1. An early solar dynamo prediction: Cycle 23 is approximately cycle 22

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.; Pesnell, W. Dean

    1993-01-01

    In this paper, we briefly review the 'dynamo' and 'geomagnetic precursor' methods of long-term solar activity forecasting. These methods depend upon the most basic aspect of dynamo theory to predict future activity, future magnetic field arises directly from the magnification of pre-existing magnetic field. We then generalize the dynamo technique, allowing the method to be used at any phase of the solar cycle, through the development of the 'Solar Dynamo Amplitude' (SODA) index. This index is sensitive to the magnetic flux trapped within the Sun's convection zone but insensitive to the phase of the solar cycle. Since magnetic fields inside the Sun can become buoyant, one may think of the acronym SODA as describing the amount of buoyant flux. Using the present value of the SODA index, we estimate that the next cycle's smoothed peak activity will be about 210 +/- 30 solar flux units for the 10.7 cm radio flux and a sunspot number of 170 +/- 25. This suggests that solar cycle #23 will be large, comparable to cycle #22. The estimated peak is expected to occur near 1999.7 +/- 1 year. Since the current approach is novel (using data prior to solar minimum), these estimates may improve when the upcoming solar minimum is reached.

  2. The sunspots and the auroral displays of the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    Rek, Radosław

    2016-06-01

    The period in years 1645-1715 (or 1717 what can be concluded from an earlier text by tet{Maunder1894} stays in opinion of a part of scientists as an example of very low level of solar activity in the past. A new findings of archival reports appear to confirm that the level of solar activity was in fact higher.

  3. Temporal variations in the position of the heliospheric equator

    NASA Astrophysics Data System (ADS)

    Obridko, V. N.; Shelting, B. D.

    2008-08-01

    It is shown that the centroid of the heliospheric equator undergoes quasi-periodic oscillations. During the minimum of the 11-year cycle, the centroid shifts southwards (the so-called bashful-ballerina effect). The direction of the shift reverses during the solar maximum. The solar quadrupole is responsible for this effect. The shift is compared with the tilt of the heliospheric current sheet.

  4. Status of Cycle 23 Forecasts

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2000-01-01

    A number of techniques for predicting solar activity on a solar cycle time scale are identified, described, and tested with historical data. Some techniques, e.g,, regression and curve-fitting, work well as solar activity approaches maximum and provide a month- by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but provide an estimate only of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides the most accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This precursor method gave a smoothed sunspot number maximum of 154+21 for cycle 23. A mathematical function dependent upon the time of cycle initiation and the cycle amplitude then describes the level of solar activity for the complete cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between recent activity levels and this function. This Combined Solar Cycle Activity Forecast now gives a smoothed sunspot maximum of 140+20 for cycle 23. The success of the geomagnetic precursors in predicting future solar activity suggests that solar magnetic phenomena at latitudes above the sunspot activity belts are linked to solar activity, which occurs many years later in the lower latitudes.

  5. A solar cycle dependence of nonlinearity in magnetospheric activity

    NASA Astrophysics Data System (ADS)

    Johnson, Jay R.; Wing, Simon

    2005-04-01

    The nonlinear dependencies inherent to the historical Kp data stream (1932-2003) are examined using mutual information and cumulant-based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original Kp data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maxima. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to 1 week. Because the solar wind driver variables, VBs, and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics, suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  6. Physical processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D. G.; Galley, R. J.; Barber, D. G.; Rysgaard, S.

    2016-01-01

    During the record September 2012 sea ice minimum, the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July, and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling, and riverine inputs, but was ultimately made possible through years of preconditioning toward a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency toward earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 yr-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 yr-1. Overall through preconditioning toward a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  7. Synchronizing Greenland ice-core records and the Meerfelder maar sediment record via the global cosmogenic radionuclide signature and insights on climate around 11,230 years BP

    NASA Astrophysics Data System (ADS)

    Mekhaldi, F.; Czymzik, M.; Brauer, A.; Martin-Puertas, C.; Aldahan, A.; Possnert, G.; Muscheler, R.

    2017-12-01

    The causal investigation of multiple paleoclimate records relies on the accuracy of their respective chronostratigraphy. To achieve relative synchronization, cosmogenic radionuclides are an excellent tool because their common signature is global and can be retrieved and measured in different paleoclimate archives. For instance, 10Be can be measured in both ice cores and lake sediments (Berggren et al., 2013; Czymzik et al., 2016) which allows for both archives to be anchored onto radiocarbon timescales by synchronizing 10Be with 14C. We investigate the period 11,500-11,000 years BP when a short cold climate spell is known, from ice-core proxy records, to have occurred in Greenland shortly after the onset of the Holocene - the Preboreal Oscillation (PBO). This period also coincides with one of the largest and longest-lived increase in 14C production rate during the Holocene, which most likely corresponds to a grand solar minimum (around 11,230-11,000 years BP). In consequence, this period ideally illustrates the potential of using a known and clear signal in the production rate of cosmogenic radionuclides as a synchronizing tool, such as caused by large variations in solar activity. Here we measure 10Be in Meerfelder Maar (a well-dated and widely used sediment record from Germany) around 11,230 years BP which allows us to align the 10Be signal in both the Meerfelder Maar (MFM) sediment record and the GRIP ice core to IntCal13. Doing so, we report that i) the structure of the grand solar minimum is well-preserved in the 10Be signal of MFM sediments, ii) the PBO in Greenland occurs during high levels of solar activity and is not clearly observed in MFM, and iii) the PBO in Greenland ends precisely at the onset of the grand solar minimum at 11,230 years BP which also corresponds to a depositional change in MFM sediments (Martin-Puertas et al., 2017). These results thus suggest that changes in solar activity could have been a forcing at play eventually resulting in the PBO in Greenland, and subsequently in the depositional change recorded in MFM sediments.

  8. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed bymore » the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.« less

  9. The Plasma Environment Associated With Equatorial Ionospheric Irregularities

    NASA Astrophysics Data System (ADS)

    Smith, Jonathon M.; Heelis, R. A.

    2018-02-01

    We examine the density structure of equatorial depletions referred to here as equatorial plasma bubbles (EPBs). Data recorded by the Ion Velocity Meter as part of the Coupled Ion Neutral Dynamics Investigation (CINDI) aboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite are used to study EPBs from 1600 to 0600 h local time at altitudes from 350 to 850 km. The data are taken during the 7 years from 2008 to 2014, more than one half of a magnetic solar cycle, that include solar minimum and a moderate solar maximum. Using a rolling ball algorithm, EPBs are identified by profiles in the plasma density, each having a depth measured as the percent change between the background and minimum density (ΔN/N). During solar moderate activity bubbles observed in the topside postsunset sector are more likely to have large depths compared to those observed in the topside postmidnight sector. Large bubble depths can be observed near 350 km in the bottomside F region in the postsunset period. Conversely at solar minimum the distribution of depths is similar in the postsunset and postmidnight sectors in all longitude sectors. Deep bubbles are rarely observed in the topside postsunset sector and never in the bottomside above 400 km in altitude. We suggest that these features result from the vertical drift of the plasma for these two solar activity levels. These drift conditions affect both the background density in which bubbles are embedded and the growth rate of perturbations in the bottomside where bubbles originate.

  10. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.; Levi, J. R.

    2016-11-01

    We performed a study of the systolic (SBP) and diastolic (DBP) arterial blood pressure behavior under natural variables such as the atmospheric pressure (AtmP) and the horizontal geomagnetic field component (H). We worked with a sample of 304 healthy normotense volunteers, 152 men and 152 women, with ages between 18 and 84 years in Mexico City during the period 2008-2014, corresponding to the minimum, ascending and maximum phases of the solar cycle 24. The data was divided by gender, age and day/night cycle. We studied the time series using three methods: Correlations, bivariate and superposed epochs (within a window of three days around the day of occurrence of a geomagnetic storm) analysis, between the SBP and DBP and the natural variables (AtmP and H). The correlation analysis indicated correlation between the SBP and DBP and AtmP and H, being the largest during the night. Furthermore, the correlation and bivariate analysis showed that the largest correlations are between the SBP and DBP and the AtmP. The superposed epoch analysis found that the largest number of significant SBP and DBP changes occurred for women. Finally, the blood pressure changes are larger during the solar minimum and ascending solar cycle phases than during the solar maximum; the storms of the minimum were more intense than those of the maximum and this could be the reason of behavior of the blood pressure changes along the solar cycle.

  11. Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard

    2005-01-01

    NASA Grant NAG5-12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: 1) Where in the streamer structure does the solar wind originate, and 2) What coronal conditions are responsible for the variability of the slow speed wind. To answer the first question, we examined the mostly closed magnetic field regions in streamer cores to search for evidence of outflow. Preliminary results from the OVI Doppler dimming ratios indicates that most of the flow originates from the edges of coronal streamers but this idea should be confirmed by a comparison of the coronal plasma properties with in situ solar wind data. To answer the second question, the work performed thus far suggests that solar minimum streamers have larger perpendicular velocity distributions than do solar maximum streamers. If it can be shown that solar minimum streamers also produce higher solar wind speeds then this would suggest that streamers and coronal holes have similar solar wind acceleration mechanisms. The key to both questions lie in the analysis of the in situ solar wind data sets. This work was not able to be completed during the period of performance and therefore the grant was formally extended for an additional year at no cost to NASA. We hope to have final results and a publication by the end of the calendar year 2004. The SAO personnel involved in the research are Leonard Strachan (PI), Mari Paz Miralles, Alexander Panasyuk, and a Southern University student Michael Baham.

  12. A comparison of solar wind streams and coronal structure near solar minimum

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzaki, Mohammed Moustafa, E-mail: bouzaki-physique1@yahoo.fr; Chadel, Meriem; Université de Lorraine, LMOPS, EA 4423, 57070 Metz

    This contribution analyzes the energy provided by a solar kit dedicated to autonomous usage and installed in Central Europe (Longitude 6.10°; Latitude 49.21° and Altitude 160 m) by using the simulation software PVSYST. We focused the analysis on the effect of temperature and solar irradiation on the I-V characteristic of a commercial PV panel. We also consider in this study the influence of charging and discharging the battery on the generator efficiency. Meteorological data are integrated into the simulation software. As expected, the solar kit provides an energy varying all along the year with a minimum in December. In themore » proposed approach, we consider this minimum as the lowest acceptable energy level to satisfy the use. Thus for the other months, a lost in the available renewable energy exists if no storage system is associated.« less

  14. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  15. Project for Solar-Terrestrial Environment Prediction (PSTEP): Towards Predicting Next Solar Cycle

    NASA Astrophysics Data System (ADS)

    Imada, S.; Iijima, H.; Hotta, H.; Shiota, D.; Kanou, O.; Fujiyama, M.; Kusano, K.

    2016-10-01

    It is believed that the longer-term variations of the solar activity can affect the Earth's climate. Therefore, predicting the next solar cycle is crucial for the forecast of the "solar-terrestrial environment". To build prediction schemes for the activity level of the next solar cycle is a key for the long-term space weather study. Although three-years prediction can be almost achieved, the prediction of next solar cycle is very limited, so far. We are developing a five-years prediction scheme by combining the Surface Flux Transport (SFT) model and the most accurate measurements of solar magnetic fields as a part of the PSTEP (Project for Solar-Terrestrial Environment Prediction),. We estimate the meridional flow, differential rotation, and turbulent diffusivity from recent modern observations (Hinode and Solar Dynamics Observatory). These parameters are used in the SFT models to predict the polar magnetic fields strength at the solar minimum. In this presentation, we will explain the outline of our strategy to predict the next solar cycle. We also report the present status and the future perspective of our project.

  16. Cosmic Ray Modulation and Radiation Dose of Aircrews During Possible Grand Minimum

    NASA Astrophysics Data System (ADS)

    Miyake, S.; Kataoka, R.; Sato, T.; Imada, S.; Miyahara, H.; Shiota, D.; Matsumoto, T.; Ueno, H.

    2017-12-01

    The Sun is exhibiting low solar activity levels since the descending phase of the last solar cycle, and it is likely to be continued as well as in the case of the past grand solar minima. The cosmic-ray modulation, which is the variation of the galactic cosmic ray (GCR) spectrum caused by the heliospheric environmental change, is basically anti-correlated with the solar activity. In the recent weak solar cycle, we thus expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude, we have developed the time-dependent and three-dimensional model of the cosmic-ray modulation. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind speed, the strength of the heliospheric magnetic field (HMF), and its tilt angle. We solve the gradient-curvature drift motion of GCRs in the HMF, and therefore reproduce the 22-year variation of the cosmic-ray modulation. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In our previous study [1], we calculated the radiation dose at a flight altitude during the coming solar cycle by assuming the variation of the solar wind speed and the strength of the HMF expressed by sinusoidal curve, and obtained that an annual radiation dose of aircrews in 5 years around the next solar minimum will be up to 19% higher than that at the last cycle. In this study, we predict the new model of the heliospheric environmental change on the basis of a prediction model for the sunspot number. The quantitative predictions of the cosmic-ray modulation and the radiation dose at a flight altitude during possible Grand Minimum considering the new model for the heliospheric environmental change will be presented at the meeting. [1] S. Miyake, R. Kataoka, and T. Sato, Space Weather, 15, 589-605, 2017.

  17. Algoritmi per il calcolo dell'epatta della Luna

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2016-05-01

    On the sides of the chair of St. Hyppolitus in the Vatican Libray there is a series of 112 epacts, used for calculating the date of Christian Easter valid for 112 years from 222 AD. The algorithm of octaëteris or 8 civil (julian) years=99 lunar months and a correction of three days each 16 years or one day each 5, 5, 6 years are discussed. Four complete solar cycles (28 years), after which the sequence of the day of the week are repeating, are included in 112 years as well as 7 groups of 16 years; 112 is the minimum common multiple between the double octaëteris (16 years) and the solar cycle (28).

  18. Adverse Space Weather at the Solar Cycle Minimum

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Kanekal, S. G.; McCollough, J. P.; Singer, H. J.; Chappell, S. P.; Allen, J. H.

    2008-05-01

    It is commonly understood that many types of adverse space weather (solar flares, coronal mass ejections, geomagnetic storms) occur most commonly around the maximum of the 11-year sunspot activity cycle. Other types of well-known space weather such as relativistic electron events in the Earth's outer magnetosphere (that produce deep dielectric charging in spacecraft systems) are usually associated with the period just after sunspot maximum. At the present time, we are in the very lowest activity phase of the sunspot cycle (solar minimum). As such we would not expect much in the way of adverse space weather events. However, in early to mid-February of 2008 quite prominent solar coronal holes produced two high-speed streams that in turn stimulated very large, long-duration relativistic electron enhancements in Earth's magnetosphere. These seem to have been associated with several spacecraft operational anomalies at various spacecraft orbital locations. We describe these recent space weather events and assess their operational significance in this presentation. These results show that substantial space weather events can and do occur even during the quietest parts of the solar cycle.

  19. The Formation of CIRs at Stream-Stream Interfaces and Resultant Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.

    2005-01-01

    Corotating interaction regions (CIRs) are regions of compressed plasma formed at the leading edges of corotating high-speed solar wind streams originating in coronal holes as they interact with the preceding slow solar wind. Although particularly prominent features of the solar wind during the declining and minimum phases of the 11-year solar cycle, they may also be present at times of higher solar activity. We describe how CIRs are formed, and their geomagnetic effects, which principally result from brief southward interplanetary magnetic field excursions associated with Alfven waves. Seasonal and long-term variations in these effects are briefly discussed.

  20. Comment on "The Predicted Size of Cycle 23 Based on the Inferred three-cycle Quasiperiodicity of the Planetary Index Ap"

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    1999-01-01

    Recently, Ahluwalia reviewed the solar and geomagnetic data for the last 6 decades and remarked that these data "indicate the existence of a three-solar-activity-cycle quasiperiodicity in them." Furthermore, on the basis of this inferred quasiperiodicity, he asserted that cycle 23 represents the initial cycle in a new three-cycle string, implying that it "will be more modest (a la cycle 17) with an annual mean sunspot number count of 119.3 +/- 30 at the maximum", a prediction that is considerably below the consensus prediction of 160 +/- 30 by Joselin et al. and of similar predictions by others based on a variety of predictive techniques. Several major sticking points of Ahluwalia's presentation, however, must be readdressed, and these issues form the basis of this comment. First, Ahluwalia appears to have based his analysis on a data set of Ap index values that is erroneous. For example, he depicts for the interval of 1932-1997 the variation of the Ap index in terms of annual averages, contrasting them against annual averages of sunspot number (SSN), and he lists for cycles 17-23 the minimum and maximum value of each, as well as the years in which they occur and a quantity which he calls "Amplitude" (defined as the numeric difference between the maximum and minimum values). In particular, he identifies the minimum Ap index (i.e., the minimum value of the Ap index in the vicinity of sunspot cycle minimum, which usually occurs in the year following sunspot minimum and which will be called hereafter, simply, Ap min) and the year in which it occur for cycles 17 - 23 respectively.

  1. Solar cosmic ray hazard to interplanetary and earth-orbital space travel

    NASA Technical Reports Server (NTRS)

    Yucker, W. R.

    1972-01-01

    A statistical treatment of the radiation hazards to astronauts due to solar cosmic ray protons is reported to determine shielding requirements for solar proton events. More recent data are incorporated into the present analysis in order to improve the accuracy of the predicted mission fluence and dose. The effects of the finite data sample are discussed. Mission fluence and dose versus shield thickness data are presented for mission lengths up to 3 years during periods of maximum and minimum solar activity; these correspond to various levels of confidence that the predicted hazard will not be exceeded.

  2. QBO of temperature in mesopause and lower thermosphere caused by solar activity variations

    NASA Astrophysics Data System (ADS)

    Shefov, N. N.; Semenov, A. I.

    2003-04-01

    On the basis of the data of the emission (hydroxyl, sodium and atomic oxygen 557.7 nm) and radiophysical (87-107 km) measurements some regularities of quasi-biennial oscillation (QBO) of the atmospheric temperature at heights of the mesopause and lower thermosphere are investigated. It is shown, that they are closely connected with quasi-biennial variations of solar activity and form within the limits of a cycle of solar activity the fading wave train of oscillations. Such behaviour of the wave train can be adequately described by the Airy function. As a result of the analysis of characteristics of QBO of solar activity during 17-23rd cycles it is shown, that to each 11-years cycle correspond its wave train of QBO. Amplitudes and periods of this wave train decrease during a cycle, i.e. it represents Not harmonious oscillation but it is a cyclic aperiodic oscillation (CAO). Therefore usual methods of Fourier analysis used earlier did not result in the same values of the period. The wave train of the current cycle begins at the end of previous and some time together with the subsequent cycle proceeds. Thus, the time sequence of activity during solar cycle represents superposition of three wave trains. Period of CAO in the beginning of a cycle has ~ 38 months and decreases to the end of a cycle up to ~ 21 months. The first wide negative minimum of Airy function describing of the wave train of CAO corresponds to solar activity minimum in the 11-year cycle. The time scale of the wave train varies from one cycle to another. Full duration of individual wave train is ~ 22 years. Owing to a mutual interference of the consecutive wave trains in the 11-year cycles the observable variations of solar activity are not identical. Structure of CAO obviously displays magnetohydrodynamic processes inside the Sun. This work was supported by the Grant No. 2274 of ISTC.

  3. Measurements of the radiation quality factor Q at aviation altitudes during solar minimum (2006-2008)

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M.; Hubiak, Melina

    2010-05-01

    In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.

  4. Little or no solar wind enters Venus' atmosphere at solar minimum.

    PubMed

    Zhang, T L; Delva, M; Baumjohann, W; Auster, H-U; Carr, C; Russell, C T; Barabash, S; Balikhin, M; Kudela, K; Berghofer, G; Biernat, H K; Lammer, H; Lichtenegger, H; Magnes, W; Nakamura, R; Schwingenschuh, K; Volwerk, M; Vörös, Z; Zambelli, W; Fornacon, K-H; Glassmeier, K-H; Richter, I; Balogh, A; Schwarzl, H; Pope, S A; Shi, J K; Wang, C; Motschmann, U; Lebreton, J-P

    2007-11-29

    Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.

  5. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-05-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun movedmore » from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a {approx}50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.« less

  6. C-14 and temperature variation around and after AD 775 - after the Dark Age Grand Minimum

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Ralph; Neuhäuser, Dagmar L.

    2016-04-01

    We have compiled an extensive catalog of aurora observations from the Far and Near East as well as Europe for the time from AD 550 to 845. From historic observations of aurorae and sunspots as well as the C-14 and Be-10 data, we can date the end of the Dark Age grand minimum to about AD 690; we see strong activity after this period. We can fix the solar activity Schwabe cycle maxima and minima in the 7th and 8th centuries.. The strong 14-C increase in data with 1-yr time resolution in the AD 770s (e.g. Miyake et al. 2012) is still a matter of debate, e.g. a solar super-flare. In the last three millennia, there were two more strong rapid rises in 14-C - around BC 671 and AD 1795. All three 14-C variations are embedded in similar evolution of solar activity, as we can show with various solar activity proxies; secular evolution of solar wind plays an important role. The rises of 14-C - within a few years each - can be explained by a sudden strong decrease in solar modulation potential leading to increased radioisotope production. The strong rises around AD 775 and 1795 are due to three effects: (i) very strong activity in the previous cycles (i.e. very low 14-C level), (ii) the declining phase of a very strong Schwabe cycle, and (iii) a phase of very weak activity after the strong 14-C rise - very short and/or weak cycle(s) like the suddenly starting Dalton minimum. In addition to arXiv:1503.01581 and arXiv:1508.06745, we also discuss the temperature depression and new quasi-annual 10-Be data. If a temperature depression right after AD 775 for a few decades can be confirmed, this would be fully consistent with our suggestion: reduced solar activity since AD 775 (for a few decades like in the Dalton minimum). Otherwise, one would not expect such a temperature depression after a solar super-flare.

  7. Bashful ballerina: The asymmetric Sun viewed from the heliosphere

    NASA Astrophysics Data System (ADS)

    Mursula, K.

    Long-term observations of the heliospheric magnetic field (HMF) at 1 AU have depicted interesting systematic hemispheric and longitudinal asymmetries that have far-reaching implications for the understanding of solar magnetism. It has recently been found that the HMF sector that is prevalent in the northern solar hemisphere dominates the observed HMF sector occurrence for a few years in the late declining to minimum phase of the solar cycle. This leads to a persistent southward shift or coning of the heliospheric current sheet (HCS) at these times, which has been described by the concept of the bashful ballerina. This result was later verified by direct measurements of the solar magnetic field which showed that the average field intensity was smaller and the corresponding area larger in the northern (heliographic) hemisphere than in the southern hemisphere during roughly 3 years in the late declining to minimum phase of the cycle. During these years when the HCS was shifted southwards, the solar quadrupole moment was found to be systematically non-zero and oppositely oriented with respect to the dipole moment. Long-term observations of the geomagnetic field can yield information on the HMF sector structure in the pre-satellite era, showing that the ballerina was bashful since 1930s. In addition to the hemispheric asymmetries, the Sun is systematically asymmetric in longitude. It has been shown that the global HMF has persistent active longitudes whose dominance depicts an oscillation with a period of about 3.2 years. Accordingly, the bashful ballerina takes three such steps per activity cycle, thus dancing in waltz tempo. Stellar observations show that this is a general pattern for sun-like cool stars. We describe these phenomena and discuss their implications.

  8. The State of the Thermosphere in 2017 as Observed by SABER

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.; Mlynczak, M. G.; Marshall, B. T.; Russell, J. M., III

    2017-12-01

    Infrared radiative cooling of the thermosphere by carbon dioxide (CO2, 15 μm) and by nitric oxide (NO, 5.3 μm) has been observed for nearly 16 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. SABER has documented dramatic variability in the radiative cooling on timescales ranging from days to the nominal 11-year solar cycle, providing important information about the radiation budget in the upper atmosphere. The effects of Solar Cycle 24 are clearly evident in the infrared radiative cooling of the thermosphere as observed by SABER. The peak NO cooling in SC24 is about one-third less than the maximum seen in SC23 since the beginning of the SABER record in January 2002, while the SC24 CO2 peak is nearly 95% of that in SC23. SC24 has been weakening throughout all of 2017 as measured by the F10.7 index and the sunspot number. Despite this, the radiative cooling by NO and CO2 has not yet reached the low levels of the prior minimum in 2008-2009. This is due to continuing elevated levels of geomagnetic activity as clearly shown by the Ap index. During the years preceding the prior solar minimum, harmonics of the solar rotation period were evident in time series of the NO and CO2 power, and were associated with high speed solar wind streams emanating from coronal holes roughly evenly spaced in solar longitude. Despite a number of large, Earth-facing coronal holes in 2017, periodic features have not yet been observed in spectral/Fourier analysis of the SABER radiative cooling time series. Additional comparisons between solar cycles and with other solar and geomagnetic indicators will also be shown.

  9. Minimal Magnetic States of the Sun and the Solar Wind: Implications for the Origin of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; von Steiger, R.

    2017-09-01

    During the last decade it has been proposed that both the Sun and the solar wind have minimum magnetic states, lowest order levels of magnetism that underlie the 11-yr cycle as well as longer-term variability. Here we review the literature on basal magnetic states at the Sun and in the heliosphere and draw a connection between the two based on the recent deep 2008-2009 minimum between cycles 23 and 24. In particular, we consider the implications of the low solar activity during the recent minimum for the origin of the slow solar wind.

  10. Changes in solar quiet magnetic variations since the Maunder Minimum: A comparison of historical observations and model simulations

    NASA Astrophysics Data System (ADS)

    Cnossen, Ingrid; Matzka, Jürgen

    2016-10-01

    Magnetic measurements going back to the eighteenth century offer a unique opportunity to study multicentennial changes in the upper atmosphere. We analyzed measurements from Rome and Mannheim from May 1782 to May 1783 and measurements from Greenwich, St. Helena, Cape of Good Hope, and Singapore from May 1841 to May 1842. A comparison of the daily magnetic variations in these historical data with modern-day observations from 2010 at nearby stations (where available) showed notable differences in the amplitude and/or phase of the X and Y components. Model simulations indicated that these can be explained at least to some extent by changes in the Earth's main magnetic field. Changes in the main field strength and the northwestward movement of the magnetic equator, in particular in the region of the South Atlantic Anomaly, have caused changes in the positioning, shape, and strength of the equivalent current vortices in the ionosphere that result in the magnetic perturbations on the ground. Differences in solar activity between the historical and modern epochs, which were all near solar minima, were too small to have a notable effect on the ground magnetic perturbations. However, in regions where main magnetic field changes have been relatively small for the last 400 years, e.g., in Singapore, the effects of a long-term increase in solar activity from Maunder Minimum conditions to normal solar minimum conditions (an increase in F10.7 of 35 solar flux units) were comparable to the effects of geomagnetic main field changes.

  11. Maunder, E W (1851-1928) and Maunder, Mrs A S D

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Solar astronomers. Maunder became assistant for spectroscopic and solar observations at the Royal Observatory, Greenwich under GEORGE AIRY, aided by his wife. In 1890, while studying the numbers of sunspots over a 300 year time-span he noticed the scarcity of spots in the period 1645-1715. This so-called Maunder minimum was confirmed by Jack Eddy (1976) to be a real effect rather than simply a...

  12. Solar particle event predictions for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Heckman, Gary

    1986-01-01

    Manned space missions to Mars require consideration of the effects of high radiation doses produced by solar particle events (SPE). Without some provision for protection, the radiation doses from such events can exceed standards for maximum exposure and may be life threatening. Several alternative ways of providing protection require a capability for predicting SPE in time to take some protective actions. The SPE may occur at any time during the eleven year solar cycle so that two year missions cannot be scheduled to insure avoiding them although they are less likely to occur at solar minimum. The present forecasts are sufficiently accurate to use for setting alert modes but are not accurate enough to make yes/no decisions that have major mission operational impacts. Forecasts made for one to two year periods can only be done as probabilistic forecasts where there is a chance of SPE occurring. These are current capabilities but are not likely to change significantly by the year 2000 with the exception of some improvement in the one to ten day forecasts. The effects of SPE are concentrated in solar longitudes near where their parent solar flares occur, which will require a manned Mars mission to carry its own small solar telescope to monitor the development of potentially dangerous solar activity. The preferred telescope complement includes a solar X-ray imager, a hydrogen-alpha scanner, and a solar magnetograph.

  13. Global solar wind variations over the last four centuries

    PubMed Central

    Owens, M. J.; Lockwood, M.; Riley, P.

    2017-01-01

    The most recent “grand minimum” of solar activity, the Maunder minimum (MM, 1650–1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth’s magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima. PMID:28139769

  14. Solar Surface Velocity in the Large Scale estimated by Magnetic Element Tracking Method

    NASA Astrophysics Data System (ADS)

    Fujiyama, M.; Imada, S.; Iijima, H.; Machida, S.

    2017-12-01

    The 11years variation in the solar activity is one of the important sources of decadal variation in the solar-terrestrial environment. Therefore, predicting the solar cycle activity is crucial for the space weather. To build the prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar cycle activity is intensively discussed. Nowadays, many people believe that the polar magnetic field at the solar minimum is one of the best predictor for the next solar cycle. To estimate polar magnetic field, Surface Flux Transport (SFT) model have been often used. On the other hand, SFT model needs several parameters, for example Meridional circulation, differential rotation, turbulent diffusion etc.. So far, those parameters have not been fully understood, and their uncertainties may affect the accuracy of the prediction. In this study, we try to discuss the parameters which are used in SFT model. We focus on two kinds of the solar surface motions, Differential rotation and Meridional circulation. First, we have developed Magnetic Element Tracking (MET) module, which is able to obtain the surface velocity by using the magnetic field data. We have used SOHO/MDI and SDO/HMI for the magnetic field data. By using MET, we study the solar surface motion over 2 cycle (nearly 24 years), and we found that the velocity variation is related to the active region belt. This result is consistent with [Hathaway et al., 2011]. Further, we apply our module to the Hinode/SOT data which spatial resolution is high. Because of its high resolution, we can discuss the surface motion close to the pole which has not been discussed enough. Further, we discuss the relationship between the surface motion and the magnetic field strength and the location of longitude.

  15. Study the gradient characteristics of the ionosphere at equatorial latitude during the latest cycle of solar activity

    NASA Astrophysics Data System (ADS)

    Nguyen Thai, Chinh; Temitope Seun, Oluwadare; Le Thi, Nhung; Schuh, Harald

    2017-04-01

    The sun has its own seasons with an average duration of about 11 years. In this time, the sun enters a period of increased activity called the solar maximum and a period of decreased activity called the solar minimum. Cycles span from one minimum to the next. The current solar cycle is 24, which began on January 4, 2008 and is expected to be ended in 2019. During this period, the ionosphere changes its thickness and its characteristics as well. The change is most complicated and unpredictable at the equatorial latitudes in a band around 150 northward and 150 southward from the equator. Thailand is located in these regions is known as one of the countries most affected by the ionosphere change. Ionospheric information such as the vertical total electron content (VTEC) and scintillation indices can be extracted from the measurements of GNSS dual-frequency receivers. In this study, a Matlab tool is programmed to calculate some ionosphere parameters from the normal RINEX observation file including VTEC value, amplitude scintillation S4 index and others. The value of VTEC at one IGS station in Thailand (13.740N, 100.530E) is computed for almost one full solar cycle, that is 8 years, from 2009 to 2016. From these results, we are able to derive the rules of TEC variation over time and its dependence on solar activity in the equatorial regions. The change of VTEC is estimated in diurnal, seasonal and annual variation for the latest solar cycle. The solar cycle can be represented in several ways, in this paper we use the sunspot number and the F10.7 cm radio flux to describe the solar activity. The correlation coefficients between these solar indices and the monthly maximum of VTEC value are around 0.87, this indicates a high dependence of the ionosphere on solar activity. Besides, a scintillation map derived from GNSS data is displayed to indicate the intensity of scintillation activity.

  16. Wind Observations of Anomalous Cosmic Rays from Solar Minimum to Maximum

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; McDonald, F. B.

    2003-01-01

    We report the first observation near Earth of the time behavior of anomalous cosmic-ray N, O, and Ne ions through the period surrounding the maximum of the solar cycle. These observations were made by the Wind spacecraft during the 1995-2002 period spanning times from solar minimum through solar maximum. Comparison of anomalous and galactic cosmic rays provides a powerful tool for the study of the physics of solar modulation throughout the solar cycle.

  17. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solarmore » minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.« less

  18. Long dance of the bashful ballerina

    NASA Astrophysics Data System (ADS)

    Hiltula, T.; Mursula, K.

    2006-02-01

    In this letter we extend our earlier analysis of the north-south asymmetry of the heliospheric current sheet (HCS) using a recent data set of heliospheric magnetic field (HMF) sector polarities extracted from ground-based magnetic observations. We find that the heliospheric current sheet is similarly southward coned or shifted during the late declining to minimum phase of the solar cycle in the early part of the studied data interval (1926-1955), as earlier found for the more recent solar cycles. Accordingly, the HCS has been southward shifted; that is, the solar ballerina has been bashful at least during the last 80 years. We also discuss solar cycle 19 which presents a period of a very curious behaviour for the HCS with an exceptionally large HMF toward sector dominance in 1957, the year of cycle 19 maximum, and an equally strong HMF away sector dominance in 1960, the time of final solar polarity reversal.

  19. Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Harris, B.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.; hide

    2012-01-01

    We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 - 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A.We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfven Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions.We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3+/-0.9 mV/m and a CPCP of 37.3+/-20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey.We use the same numerical approach as in Fairfield's empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R(sub E) and 14.35 R(sub E), respectively. When comparing with Fairfield's classic result, we find that the subsolar magnetosheath is thinner by approx. 1 R(sub E). This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield's model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.

  20. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  1. Planetary resonances, bi-stable oscillation modes, and solar activity cycles

    NASA Technical Reports Server (NTRS)

    Sleeper, H. P., Jr.

    1972-01-01

    The natural resonance structure of the planets in the solar system yields resonance periods of 11.08 and 180 years. The 11.08 year period is due to resonance of the sidereal periods of the three inner planets. The 180-year period is due to synodic resonances of the four major planets. These periods are also observed in the sunspot time series. The 11-year sunspot cycles from 1 to 19 are separated into categories of positive and negative cycles, Mode 1 and Mode 2 cycles, and typical and anomalous cycles. Each category has a characteristic shape, magnitude, or duration, so that statistical prediction techniques are improved when a cycle can be classified in a given category. These categories provide evidence for bistable modes of solar oscillation. The next minimum is expected in 1977 and the next maximum in 1981 or later. These epoch values are 2.5 years later than those based on typical cycle characteristics.

  2. Solar-Iss a New Solar Reference Spectrum Covering the Far UV to the Infrared (165 to 3088 Nm) Based on Reanalyzed Solar/solspec Cycle 24 Observations

    NASA Astrophysics Data System (ADS)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.

    2017-12-01

    Since April 5, 2008 and until February 15, 2017, the SOLSPEC (SOLar SPECtrometer) spectro-radiometer of the SOLAR facility on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements, unique by their large spectral coverage and long time range, are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry), noticeably through the "top-down" mechanism amplifying ultraviolet (UV) solar forcing effects on the climate (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and troposphere regions). SOLAR/SOLSPEC, with almost 9 years of observations covering the essential of the unusual solar cycle 24 from minimum in 2008 to maximum, allowed to establish new reference solar spectra from UV to IR (165 to 3088 nm) at minimum (beginning of mission) and maximum of activity. The complete reanalysis was possible thanks to revised engineering corrections, improved calibrations and advanced procedures to account for thermal, aging and pointing corrections. The high quality and sensitivity of SOLSPEC data allow to follow temporal variability in UV but also in visible along the cycle. Uncertainties on these measurements are evaluated and results, absolute reference spectra and variability, are compared with other measurements (WHI, ATLAS-3, SCIAMACHY, SORCE/SOLSTICE, SORCE/SIM) and models (SATIRE-S, NRLSSI, NESSY)

  3. Design, fabrication, testing, and delivery of a solar energy collector system for residential heating and cooling

    NASA Technical Reports Server (NTRS)

    Holland, T. H.; Borzoni, J. T.

    1976-01-01

    A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.

  4. Solar Spectral Irradiance Variations in 240 - 1600 nm During the Recent Solar Cycles 21 - 23

    NASA Astrophysics Data System (ADS)

    Pagaran, J.; Weber, M.; Deland, M. T.; Floyd, L. E.; Burrows, J. P.

    2011-08-01

    Regular solar spectral irradiance (SSI) observations from space that simultaneously cover the UV, visible (vis), and the near-IR (NIR) spectral region began with SCIAMACHY aboard ENVISAT in August 2002. Up to now, these direct observations cover less than a decade. In order for these SSI measurements to be useful in assessing the role of the Sun in climate change, records covering more than an eleven-year solar cycle are required. By using our recently developed empirical SCIA proxy model, we reconstruct daily SSI values over several decades by using solar proxies scaled to short-term SCIAMACHY solar irradiance observations to describe decadal irradiance changes. These calculations are compared to existing solar data: the UV data from SUSIM/UARS, from the DeLand & Cebula satellite composite, and the SIP model (S2K+VUV2002); and UV-vis-IR data from the NRLSSI and SATIRE models, and SIM/SORCE measurements. The mean SSI of the latter models show good agreement (less than 5%) in the vis regions over three decades while larger disagreements (10 - 20%) are found in the UV and IR regions. Between minima and maxima of Solar Cycles 21, 22, and 23, the inferred SSI variability from the SCIA proxy is intermediate between SATIRE and NRLSSI in the UV. While the DeLand & Cebula composite provide the highest variability between solar minimum and maximum, the SIP/Solar2000 and NRLSSI models show minimum variability, which may be due to the use of a single proxy in the modeling of the irradiances. In the vis-IR spectral region, the SCIA proxy model reports lower values in the changes from solar maximum to minimum, which may be attributed to overestimations of the sunspot proxy used in modeling the SCIAMACHY irradiances. The fairly short timeseries of SIM/SORCE shows a steeper decreasing (increasing) trend in the UV (vis) than the other data during the descending phase of Solar Cycle 23. Though considered to be only provisional, the opposite trend seen in the visible SIM data challenges the validity of proxy-based linear extrapolation commonly used in reconstructing past irradiances.

  5. The cosmogenic Berryllium, solar activity and climate

    NASA Astrophysics Data System (ADS)

    Komitov, B.; Nedev, P.; Minev, P.

    2003-04-01

    An analysis of 10Be production rate (Δ10Be) series in Dye-3 ice probe /Greenland/ has been made. By using of T-R periodogramm analysis a cycles of 8-14, 18-24, 40-44, 52, 66-70, 115-120, 190 and 360 years are detected. The correlation analysis of Δ10Be and group sunspot numbers index /Rg/ for the period 1610-1985 point, that there is a phase shifting between the both series of 6-6.5 years. It correspond of the "cosmogenic" origin of 10Be in stratosphere by the galactic cosmic rays, wich maximal production rate is in periods of solar activity minimums and very short "resident time" of this isotope /˜1 year/. By T-R analysus of the Rg-series powerful cycles of 10-11 /Schwabe-Wolf/, 118 and 193 years has been obtained. There are weak spures of cyclity at 29-31, 38, 52 and 66-70 years too. However the magnitudes of quasy 11 and 20-22 years oscilations in Δ10Be are low. The fine structure of T-R spectra in regions 8-14 and 18-24 years is very complicate /multipletic/. In other hand there is a evidence that weack quasy 10 years cycle in Δ10Be exist during the Maunder minimum in 17th century. The fine structure of the Schwabe-Wolf cycle in Rg series is too complicate. Except the main local peak in the T-R spectra at T=11 years, there is a secondary strong maximum at T=10 years and weaker peaks at 8.5, 11.75 and 12.25 years. The relative powerful 52 year cycle in Δ10Be series have an analog in sunspot index of assymetry series, wich is derived on the base of Zurich series after 1871 AD. It correspond of increasing and decreasing of the sunspot activity in the northen hemisphere of the Sun by the same cycle. The main T-R spectra features of Δ10Be series in region of the low frecuences /powerful subcenturial and centurial cycles/ are similar to the same in large number of tree rings data series in Northern hemisphere during 15th -20th centuries /published in the International Tree Rings Data Base/. This is indirect evidence that the Δ10Be data are rather an indicator for the climate and the solar - climatic relatiaons in the past. On the base of the T-R spectra a model of Δ10Be series has been made. Its extrapolation for the next 200 years predict a significant increasing of 10Be production rate during the 21th century. It can be interpreted as a forcomming of new supercenturial solar minimum, similar to the Dalton minimum at the beginning of the 19th century and for a possible climate cooling during the next few decades too.

  6. Influence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014.

    PubMed

    Mlynczak, Martin G; Hunt, Linda A; Mertens, Christopher J; Thomas Marshall, B; Russell, James M; Woods, Thomas; Earl Thompson, R; Gordley, Larry L

    2014-04-16

    Infrared radiative cooling of the thermosphere by carbon dioxide (CO 2 , 15 µm) and by nitric oxide (NO, 5.3 µm) has been observed for 12 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite. For the first time we present a record of the two most important thermospheric infrared cooling agents over a complete solar cycle. SABER has documented dramatic variability in the radiative cooling on time scales ranging from days to the 11 year solar cycle. Deep minima in global mean vertical profiles of radiative cooling are observed in 2008-2009. Current solar maximum conditions, evidenced in the rates of radiative cooling, are substantially weaker than prior maximum conditions in 2002-2003. The observed changes in thermospheric cooling correlate well with changes in solar ultraviolet irradiance and geomagnetic activity during the prior maximum conditions. NO and CO 2 combine to emit 7 × 10 18 more Joules annually at solar maximum than at solar minimum. First record of thermospheric IR cooling rates over a complete solar cycleIR cooling in current solar maximum conditions much weaker than prior maximumVariability in thermospheric IR cooling observed on scale of days to 11 years.

  7. Nonlinear Behavior of the Geomagnetic Fluctuations Recorded in Different Geomagnetic Latitudes

    NASA Astrophysics Data System (ADS)

    Kovacs, P.; Heilig, B.; Koppan, A.; Vadasz, G.; Echim, M.

    2014-12-01

    The paper concerns with the nonlinear properties of geomagnetic variations recorded in different geomagnetic latitudes, in the years of solar maximum and minimum. For the study, we use the geomagnetic time-series recorded by some of the stations of the EMMA quasi-meridional magnetometer network, established for pulsation study, in September 2001. The stations are located approx. along the magnetic meridian of 100 degree, and the sampling frequency of the series is 1 Hz. It is argued that the geomagnetic field exhibits nonlinear intermittent fluctuations in certain temporal scale range. For quantitatively investigating the scaling ranges and the variation of intermittent properties with latitude and time, we analyse the higher order moments of the time records (probability density function or structure function analyses). The multifractal or self-similar scaling of the fluctuations is investigated via the fitting of the P model to structure function scaling exponents. We also study the power-law behaviour of the power-spectral density functions of the series in order to evaluate the possible inertial frequency (and temporal) range of the geomagnetic field and compare them with the scaling ranges of structure functions. The range where intermittent geomagnetic variation is found falls typically between 100 and 20.000 s, i.e. covers the temporal range of the main phases of geomagnetic storms. It is shown that the intensity of intermittent fluctuations increases from solar minimum to solar maximum. The expected increase in the level of intermittency with the geomagnetic latitude can be evidenced only in the years of solar minimum. The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n° 313038/STORM.

  8. Toward the Probabilistic Forecasting of High-latitude GPS Phase Scintillation

    NASA Technical Reports Server (NTRS)

    Prikryl, P.; Jayachandran, P.T.; Mushini, S. C.; Richardson, I. G.

    2012-01-01

    The phase scintillation index was obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN) during years of extended solar minimum 2008-2010. Phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. We set forth a probabilistic forecast method of phase scintillation in the cusp based on the arrival time of either solar wind corotating interaction regions (CIRs) or interplanetary coronal mass ejections (ICMEs). CIRs on the leading edge of high-speed streams (HSS) from coronal holes are known to cause recurrent geomagnetic and ionospheric disturbances that can be forecast one or several solar rotations in advance. Superposed epoch analysis of phase scintillation occurrence showed a sharp increase in scintillation occurrence just after the arrival of high-speed solar wind and a peak associated with weak to moderate CMEs during the solar minimum. Cumulative probability distribution functions for the phase scintillation occurrence in the cusp are obtained from statistical data for days before and after CIR and ICME arrivals. The probability curves are also specified for low and high (below and above median) values of various solar wind plasma parameters. The initial results are used to demonstrate a forecasting technique on two example periods of CIRs and ICMEs.

  9. An analysis of interplanetary space radiation exposure for various solar cycles

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.; Wilson, J. W. (Principal Investigator)

    1994-01-01

    The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1976-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected.

  10. A Topside Equatorial Ionospheric Density and Composition Climatology During and After Extreme Solar Minimum

    NASA Technical Reports Server (NTRS)

    Klenzing, J. H.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R. F.; Rowland, D. E.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth's ionosphere and thermosphere when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Climatological altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the C/NOFS satellite to characterize the shape of the top side ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. [2009], here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  11. Topside Equatorial Ionospheric Density and Composition During and After Extreme Solar Minimum

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R.; Rowland, D.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth s ionosphere-thermosphere system when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the Communication/Navigation Outage Forecast System (C/NOFS) satellite to characterize the shape of the topside ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. (2009), here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  12. Uranus and Neptune orbiter missions via solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Brandenburg, R. K.

    1971-01-01

    The characteristics and capabilities of solar electric propulsion for performing orbiter missions at the planets Uranus and Neptune are described. An assessment of the scientific objectives and instrumentation requirements, their relation to orbit size selection, and parametric analysis of solar electric propulsion trajectory/payload performance are included. Utilizing the Titan 3D/Centaur launch vehicle, minimum flight times of about 3400 days to Uranus and 5300 days to Neptune are required to place the TOPS spacecraft into the nominal orbits. It has been shown that solar electric propulsion can be used effectively to accomplish elliptical orbiter missions at Uranus and Neptune. However, because of the very long flight time required, these mission profiles are not too attractive. Previous studies have shown that nuclear electric propulsion, if developed, would allow much faster trips; 5 years to Uranus and 8 years to Neptune.

  13. Solar Minimum

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Mathews, John; Manross, Kevin

    1995-12-01

    Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.

  14. Solar-Cycle Variability of Magnetosheath Fluctuations at Earth and Venus

    NASA Astrophysics Data System (ADS)

    Dwivedi, N. K.; Narita, Y.; Kovacs, P.

    2014-12-01

    The magnetosheath is a region between the bow-shock and magnetopause and the magnetosheath plasma is mostly in the turbulent state. In the present investigation we put an effort to closely examine the magnetosheath fluctuations dependency on the solar-cycles (solar-maximum and solar minimum) at the magnetized planetary body (Earth) and their comparison with the un-magnetized planetary body (Venus) for the solar minimum. We use the CLUSTER FGM data for the solar-maximum (2001-2002), solar-minimum (2006-2008) and Venus fluxgate magnetometer data for the solar-minimum (2006-2008) to perform a comparative statistical study on the energy spectra and probability density function (PDF) and asses the spectral features of the magnetic fluctuations of the both planetary bodies. In the comparison we study the relation between the inertial ranges of the spectra and the temporal scales of non-Gaussian magnetic fluctuations derived from PDF analyses. The first can refer to turbulent cascade dynamics, while the latter may indicate intermittency. We first transformed the magnetic field data into mean field aligned coordinate system with respect to the large-scale magnetic field direction and then after we compute the power spectral density with the help of Welch algorithm. The computed energy spectra of Earth's magnetosheath show a moderate variability with the solar-cycles and have a broader inertial range. However the estimated energy spectra for the solar-minimum at Venus give the clear evidence of the existence of the break point in the vicinity of the ion gyroradius. After the break-point the energy spectra become steeper and show a distinctive spectral scales which is interpreted as the realization of the begging of the energy cascade. We also briefly address the influence of turbulence on the plasma transport and wave dynamics responsible for the spectral break and predict spectral features of the energy spectra for the solar-maximum at Venus based on the results obtained for the solar-minimum. The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement number 313038/STORM.

  15. Prediction of the total cycle 24 of solar activity by several autoregressive methods and by the precursor method

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.; Breus, T. K.; Obridko, V. N.

    2012-12-01

    As follows from the statement of the Third Official Solar Cycle 24 Prediction Panel created by the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the International Space Environment Service (ISES) based on the results of an analysis of many solar cycle 24 predictions, there has been no consensus on the amplitude and time of the maximum. There are two different scenarios: 90 units and August 2012 or 140 units and October 2011. The aim of our study is to revise the solar cycle 24 predictions by a comparative analysis of data obtained by three different methods: the singular spectral method, the nonlinear neural-based method, and the precursor method. As a precursor for solar cycle 24, we used the dynamics of the solar magnetic fields forming solar spots with Wolf numbers Rz. According to the prediction on the basis of the neural-based approach, it was established that the maximum of solar cycle 24 is expected to be 70. The precursor method predicted 50 units for the amplitude and April of 2012 for the time of the maximum. In view of the fact that the data used in the precursor method were averaged over 4.4 years, the amplitude of the maximum can be 20-30% larger (i.e., around 60-70 units), which is close to the values predicted by the neural-based method. The protracted minimum of solar cycle 23 and predicted low values of the maximum of solar cycle 24 are reminiscent of the historical Dalton minimum.

  16. Equatorial Ionospheric Anomaly (EIA) and comparison with IRI model during descending phase of solar activity (2005-2009)

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Singh, A. K.; Lee, Jiyun

    2014-03-01

    The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005-2009 only except during the deep solar minimum year 2007-2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.

  17. HEOS-A2: Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.; Kukowski, J.

    1972-01-01

    The characteristics of the HEOS-A2 satellite and its assigned mission are discussed. The spacecraft carries seven experiments to investigate the strength and direction of the magnetic fields encountered, the energy distribution of protons and electrons, the nature of the solar winds, detection of micrometeorites, and low frequency solar observations. The highly elliptical polar orbit required for this mission will have an apogee of 38 earth radii. The lifetime of the satellite is expected to be one year minimum.

  18. Calculation of The Ti Activity In 44 Chondrites Which Fell In The Last Two Centuries and Comparison With Measurements

    NASA Astrophysics Data System (ADS)

    Bonino, G.; Cane, D.; Cini Castagnoli, G.; Taricco, C.; Bhandari, N.

    The cosmogenic radioisotopes in meteorites, produced by nuclear interactions of the galactic cosmic rays (GCR) with the meteoroids in the interplanetary space are good proxies of both the GCR flux and the solar activity. Different cosmogenic radionu- clides with different half-lives give information over different time scales. Recently we have inferred the GCR annual mean spectra for the last 300 years [1]. The most prominent result concerns the cosmic ray flux during prolonged solar quiet periods. We deduced that during the Maunder minimum of solar acivity (1700), the Dal- ton minimum (1800) and the Modern minimum (1900) the GCR flux was much higher (2 times) respect to the flux observed in the last decades. Utilizing these GCR spectra we have calculated the 44 Ti (T1/2 = 59.2 y) activity in meteorites taking into account its exitation function for production from the main target element Fe, Ni and Ti [2]. Furthermore, in the last years we have measured the very low activity of the cosmogenic 44Ti in different fell chondrites and now our data cover the interval 1810 to present. The calculated 44Ti profile is in close agreement with the observed mea- surements. This result demonstrates that our inference of the GCR flux in the past 300 years is reliable. The cosmogenic 44Ti in meteorites is a unique tool, free from ter- restrial influences, for validation of both the GCR flux and the heliospheric behaviour over century time scale. [1] G. Bonino, G. Cini Castagnoli, D. Cane, C. Taricco and N. Bhandari, Proc. XXVII Intern. Cosmic Ray Conf. (Hamburg, 2001) 3769-3772. [2] R. Michel and S. Neumann (1998) Proc. Indian Acad. Sci. Earth Planet. Sci. , 107, 441-457.

  19. Common SphinX and RHESSI observations of solar flares

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  20. Influence of System Operation Method on CO2 Emissions of PV/Solar Heat/Cogeneration System

    NASA Astrophysics Data System (ADS)

    Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki

    A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation and heat demand following operation. Of these five operations, the former two are virtual operations that are operated with the dynamic programming method, and the latter three are actual operations. Computer simulation is implemented using hourly data of solar radiation intensity, atmospheric temperature, electric, cooling, heating and hot water supply demands for one year, and the life-cycle CO2 emission and the total cost are calculated for every operations. The calculation results show that the virtual two and the actual three operations reduce the life-cycle CO2 emission by 21% and 13% compared with the conventional system, respectively. In regard to both the CO2 emission and the cost, there is no significant difference between the virtual two operation methods or among actual three operation methods.

  1. Cosmic Ray Hits in the Central Nervous System at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Kim, M.-H. Y.

    1997-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of some interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus (100 mm2 area) are that the probability of any given cell nucleus being hit decreases from 10 percent at solar minimum to 6 percent at solar maximum for particles with z greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. We conclude that this modest decrease in hit frequency (less than a factor of two) is not a compelling reason to avoid solar minimum for a manned mission to Mars.

  2. A Snapshot of the Sun Near Solar Minimum: The Whole Heliosphere Interval

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Gibson, Sarah E.; Schroeder, Peter C.; Webb, David F.; Arge, Charles N.; Bisi, Mario M.; de Toma, Giuliana; Emery, Barbara A.; Galvin, Antoinette B.; Haber, Deborah A.; hide

    2011-01-01

    We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar heliospheric planetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March 16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth's mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.

  3. Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.

    1990-01-01

    Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.

  4. Sunspot Observations During the Maunder Minimum from the Correspondence of John Flamsteed

    NASA Astrophysics Data System (ADS)

    Carrasco, V. M. S.; Vaquero, J. M.

    2016-11-01

    We compile and analyze the sunspot observations made by John Flamsteed for the period 1672 - 1703, which corresponds to the second part of the Maunder Minimum. They appear in the correspondence of the famous astronomer. We include in an appendix the original texts of the sunspot records kept by Flamsteed. We compute an estimate of the level of solar activity using these records, and compare the results with the latest reconstructions of solar activity during the Maunder Minimum, obtaining values characteristic of a grand solar minimum. Finally, we discuss a phenomenon observed and described by Stephen Gray in 1705 that has been interpreted as a white-light flare.

  5. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    NASA Astrophysics Data System (ADS)

    Wen, Guoyong; Cahalan, Robert F.; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Wu, Dong L.; Krivova, Natalie A.

    2017-03-01

    We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor) based, the other the SATIRE (Spectral And Total Irradiance REconstruction) modeled, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm) and total solar irradiance (TSI). From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of 0.1 °C to SATIRE solar forcing compared to 0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  6. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  7. Solar cycle variation of the electron density in the topside ionosphere at local nighttime observed by DEMETER during 2006-2008

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemin; Qian, Jiadong; Shen, Xuhui

    2014-05-01

    The solar cycle variations of electron density (Ne) in the topside ionosphere are presented by observations around local time 22:30 from Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite during 2006-2008 in the low solar activity, in which the revisited orbits are selected to construct Ne time sequences at different points. The results show that electron density (Ne) reduced 50-100% since 2006 to 2008 at equatorial area and middle latitudes, with much bigger maximal Ne in 2006 but even no yearly peak in 2007 and 2008 around 30° latitude. The seasonal asymmetry is revealed by the yearly maxima of Ne in December over Southern Hemisphere always being larger than those in June over Northern Hemisphere. Furthermore, the equinoctial asymmetry is found around the magnetic equator and high northern latitudes under the low solar activity, and the latter one has not been revealed in other research. Ne from IRI2012 is close to the actual observation by DEMETER in 2008, even better than those in 2006 and 2007, indicating the great improvement of this empirical ionospheric model in this extremely low solar minimum. After comparison with the fitted results by indices of F10.7 and EUV combined with the first five periods in Ne, EUV is a little better to describe the variations in Ne during this solar minimum. By discussing the relationship among nighttime Ne and molecules in upper atmosphere, the [O/N2] density ratio is the key factor at high latitude, while [O] density plays a certain role to electron density around the equator.

  8. Ion-neutral Coupling During Deep Solar Minimum

    NASA Technical Reports Server (NTRS)

    Huang, Cheryl Y.; Roddy, Patrick A.; Sutton, Eric K.; Stoneback, Russell; Pfaff, Robert F.; Gentile, Louise C.; Delay, Susan H.

    2013-01-01

    The equatorial ionosphere under conditions of deep solar minimum exhibits structuring due to tidal forces. Data from instruments carried by the Communication Navigation Outage Forecasting System (CNOFS) which was launched in April 2008 have been analyzed for the first 2 years following launch. The Planar Langmuir Probe (PLP), Ion Velocity Meter (IVM) and Vector Electric Field Investigation (VEFI) all detect periodic structures during the 20082010 period which appear to be tides. However when the tidal features detected by these instruments are compared, there are distinctive and significant differences between the observations. Tides in neutral densities measured by the Gravity Recovery and Climate Experiment (GRACE) satellite were also observed during June 2008. In addition, Broad Plasma Decreases (BPDs) appear as a deep absolute minimum in the plasma and neutral density tidal pattern. These are co-located with regions of large downward-directed ion meridional velocities and minima in the zonal drifts, all on the nightside. The region in which BPDs occur coincides with a peak in occurrence rate of dawn depletions in plasma density observed on the Defense Meterological Satellite Program (DMSP) spacecraft, as well as a minimum in radiance detected by UV imagers on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) and IMAGE satellites

  9. Quiet-Time Suprathermal ( 0.1-1.5 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, L.; Tao, J.; Zong, Q.; Li, G.; Salem, C. S.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C.; Bale, S. D.

    2016-12-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND/3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  10. Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  11. Origin and Properties of Quiet-time 0.11–1.28 MeV Nucleon{sup −1} Heavy-ion Population Near 1 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayeh, M. A.; Desai, M. I.; Ebert, R. W.

    Using measurements from the Advanced Composition Explorer /Ultra-Low Energy Isotope Spectrometer near 1 au, we surveyed the composition and spectra of heavy ions (He-through-Fe) during quiet times from 1998 January 1 to 2015 December 31 at suprathermal energies between ∼0.11 and ∼1.28 MeV nucleon{sup −1}. The selected time period covers the maxima of solar cycles 23 and 24 and the extended solar minimum in between. We find the following. (1) The number of quiet hours in each year correlates well with the sunspot number, year 2009 was the quietest for about 82% of the time. (2) The composition of themore » quiet-time suprathermal heavy-ion population ({sup 3}He, C-through-Fe) correlates well with the level of solar activity, exhibiting SEP-like composition signatures during solar maximum, and CIR- or solar wind-like composition during solar minimum. (3) The heavy-ion (C–Fe) spectra exhibit suprathermal tails at energies of 0.11–0.32 MeV nucleon{sup −1} with power-law spectral indices ranging from 1.40 to 2.97. Fe spectra soften (steepen, i.e., spectral index increases) smoothly with increasing energies compared with Fe, indicating a rollover behavior of Fe at higher energies (0.45–1.28 MeV nucleon{sup −1}). (4) Spectral indices of Fe and O do not appear to exhibit clear solar cycle dependence. (2) and (3) imply that during IP quiet times and at energies above ∼0.1 MeV nucleon{sup −1}, the IP medium is dominated by material from prior solar and interplanetary events. We discuss the implications of these extended observations in the context of the current understanding of the suprathermal ion population near 1 au.« less

  12. Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1984-01-01

    Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.

  13. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    NASA Technical Reports Server (NTRS)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods, showing that processes in the magnetosphere act as a low-pass filter between the solar wind and the radiation belt. The A(sub p)/K(sub p) magnetic currents observed at subauroral latitudes are sensitive to proton auroral precipitation, especially for 9-day and shorter periods, while the A(sub p)/K(sub p) currents are governed by electron auroral precipitation for 13.5- and 27-day periodicities.

  14. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  15. Solar activity as driver for the Dark Age Grand Solar Minimum

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Ralph; Neuhäuser, Dagmar

    2017-04-01

    We will discuss the role of solar activity for the temperature variability from AD 550 to 840, roughly the last three centuries of the Dark Ages. This time range includes the so-called Dark Age Grand Solar Minimum, whose deep part is dated to about AD 650 to 700, which is seen in increased radiocarbon, but decreased aurora observations (and a lack of naked-eye sunspot sightings). We present historical reports on aurorae from all human cultures with written reports including East Asia, Near East (Arabia), and Europe. To classify such reports correctly, clear criteria are needed, which are also discussed. We compare our catalog of historical aurorae (and sunspots) as well as C-14 data, i.e. solar activity proxies, with temperature reconstructions (PAGES). After increased solar activity until around AD 600, we see a dearth of aurorae and increased radiocarbon production in particular in the second half of the 7th century, i.e. a typical Grand Solar Minimum. Then, after about AD 690 (the maximum in radiocarbon, the end of the Dark Age Grand Minimum), we see increased auroral activity, decreasing radiocarbon, and increasing temperature until about AD 775. At around AD 775, we see the well-known strong C-14 variability (solar activity drop), then immediately another dearth of aurorae plus high C-14, indicating another solar activity minimum. This is consistent with a temperature depression from about AD 775 on into the beginning of the 9th century. Very high solar activity is then seen in the first four decades with four aurora clusters and three simultaneous sunspot clusters, and low C-14, again also increasing temperature. The period of increasing solar activity marks the end of the so-called Dark Ages: While auroral activity increases since about AD 793, temperature starts to increase quite exactly at AD 800. We can reconstruct the Schwabe cycles with aurorae and C-14 data. In summary, we can see a clear correspondence of the variability of solar activity proxies and surface temperature reconstructions. This indicates that solar activity is an important climate driver.

  16. Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.

  17. Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23

    NASA Astrophysics Data System (ADS)

    Sierra-Porta, D.

    2018-07-01

    In the present paper a systematic study is carried out to validate the similarity or co-variability between daily terrestrial cosmic-ray intensity and three parameters of the solar corona evolution, i.e., the number of sunspots and flare index observed in the solar corona and the Ap index for regular magnetic field variations caused by regular solar radiation changes. The study is made for a period including three solar cycles starting with cycle 21 (year 1976) and ending on cycle 23 (year 2008). A cross-correlation analysis was used to establish patterns and dependence of the variables. This study focused on the time lag calculation for these variables and found a maximum of negative correlation over CC1≈ 0.85, CC2≈ 0.75 and CC3≈ 0.63 with an estimation of 181, 156 and 2 days of deviation between maximum/minimum of peaks for the intensity of cosmic rays related with sunspot number, flare index and Ap index regression, respectively.

  18. Parameterized study of the ionospheric modification associated with sun-aligned polar cap arcs

    NASA Technical Reports Server (NTRS)

    Crain, D. J.; Sojka, J. J.; Schunk, R. W.; Zhu, L.

    1993-01-01

    The local ionospheric modification that is due to a generalized steady state solar aligned (SA) arc structure is addressed. For a representative set of SA arc parameters which includes both convection and precipitation, emphasis is placed on the modification by SA polar cap arcs upon the F region electron density and the height integrated conductivity. At low fluxes and low characteristic energies, SA polar cap arcs have the most pronounced relative effect at F region altitudes in darkness for winter solar minimum conditions. The absolute enhancement in summer solar minimum and winter solar maximum is equivalent to that of winter solar minimum, but the higher ambient densities make the relative enhancement less. The TEC enhancement associated with an SA arc may be used to indicate the degree of plasma cross flow across the arc.

  19. Long-term solar activity explored with wavelet methods

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.; Liszka, L.; Lundin, R.; Muscheler, R.

    2006-03-01

    Long-term solar activity has been studied with a set of wavelet methods. The following indicators of long-term solar activity were used; the group sunspot number, the sunspot number, and the 14C production rate. Scalograms showed the very long-term scales of 2300 years (Hallstat cycle), 900-1000 years, 400-500 years, and 200 years (de Vries cycle). Scalograms of a newly-constructed 14C production rate showed interesting solar modulation during the Maunder minimum. Multi-Resolution Analysis (MRA) revealed the modulation in detail, as well as peaks of solar activity not seen in the sunspot number. In both the group sunspot number scalogram and the 14C production rate scalogram, a process appeared, starting or ending in late 1700. This process has not been discussed before. Its solar origin is unclear.

    The group sunspot number ampligram and the sunspot number ampligram showed the Maunder and the Dalton minima, and the period of high solar activity, which already started about 1900 and then decreased again after mid 1990. The decrease starts earlier for weaker components. Also, weak semiperiodic activity was found.

    Time Scale Spectra (TSS) showed both deterministic and stochastic processes behind the variability of the long-term solar activity. TSS of the 14C production rate, group sunspot number and Mt. Wilson sunspot index and plage index were compared in an attempt to interpret the features and processes behind the long-term variability.

  20. A second chance for Solar Max

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Woodgate, B. E.

    1984-01-01

    Using NASA's Tracking and Data Relay Satellite as a communications link, astronomers are able to receive scans from the Solar Maximum Mission (SMM) satellite immediately and regularly at the Goddard Space Flight Center. This major operational improvement permits the examination of SMM imagery and spectra as they arrive, as well as the formulation of future observational sequences on the basis of the solar activity in progress. Attention is given to aspects of the sun that change in the course of the 11-year sunspot cycle's movement from maximum to minimum. Proof has been obtained by means of SMM for the near-simultaneity of X-ray and UV bursts at flare onset.

  1. Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.

    2018-02-01

    Precise measurements of the time-dependent intensity of the low-energy (<50 GeV) galactic cosmic rays (GCRs) are fundamental to test and improve the models that describe their propagation inside the heliosphere. In particular, data spanning different solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.

  2. Survey of the spectral properties of turbulence in the solar wind, the magnetospheres of Venus and Earth, at solar minimum and maximum

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2014-05-01

    In the framework of the European FP7 project STORM ("Solar system plasma Turbulence: Observations, inteRmittency and Multifractals") we analyze the properties of turbulence in various regions of the solar system, for the minimum and respectively maximum of the solar activity. The main scientific objective of STORM is to advance the understanding of the turbulent energy transfer, intermittency and multifractals in space plasmas. Specific analysis methods are applied on magnetic field and plasma data provided by Ulysses, Venus Express and Cluster, as well as other solar system missions (e.g. Giotto, Cassini). In this paper we provide an overview of the spectral properties of turbulence derived from Power Spectral Densities (PSD) computed in the solar wind (from Ulysses, Cluster, Venus Express) and at the interface of planetary magnetospheres with the solar wind (from Venus Express, Cluster). Ulysses provides data in the solar wind between 1992 and 2008, out of the ecliptic, at radial distances ranging between 1.3 and 5.4 AU. We selected only those Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We analyzed Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We investigated Cluster data in the solar wind (for time intervals not affected by planetary ions effects), the magnetosheath and few crossings of other key magnetospheric regions (cusp, plasma sheet). We organize our PSD results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PSD obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PSD obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the properties of turbulence for the minimum and maximum of the solar cycle we also analyze the spectral similarities and differences between fast and slow wind turbulence. We emphasize the importance of our data survey and analysis in the context of understanding the solar wind turbulence, the exploitation of data bases and as a first step towards developing a (virtual) laboratory for studying solar system plasma turbulence. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.

  3. QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang

    2016-03-20

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl andmore » halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)« less

  4. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, and radiant exposure for both sun tracking and fixed solar arrays. The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian northern spring and fall seasons and no eclipses during the Martian northern summer and winter seasons; solar radiation intensity is close to minimum in late spring and close to maximum in late fall; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  5. Amplification of the solar signal in the summer monsoon rainband in China by synergistic actions of different dynamical responses

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Wang, Jingsong; Liu, Haiwen; Xiao, Ziniu

    2017-02-01

    A rainband meridional shift index (RMSI) is defined and used to statistically prove that the East Asian summer monsoon rainband is usually significantly more northward in the early summer of solar maximum years than that of solar minimum years. By applying continuous wavelet transform, cross wavelet transform, and wavelet coherence, it is found that throughout most of the 20th century, the significant decadal oscillations of sunspot number (SSN) and the RMSI are phase-locked and since the 1960s, the SSN has led the RMSI slightly by approximately 1.4 yr. Wind and Eliassen-Palm (EP) flux analysis shows that the decadal meridional oscillation of the June rainband likely results from both a stronger or earlier onset of the tropical monsoon and poleward shift of the subtropical westerly jet in high-solar months of May and June. The dynamical responses of the lower tropical monsoon and the upper subtropical westerly jet to the 11-yr solar cycle transmit bottom-up and top-down solar signals, respectively, and the synergistic actions between the monsoon and the jet likely amplify the solar signal at the northern boundary of the monsoon to some extent.

  6. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, D.; Espenak, F.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Jennings, D. E.

    1986-01-01

    The Sun-as-a-star was monitored using the McMath Fourier transform spectometer (FTS) on Kitt Peak in 1983. In 1985 the first measurement was made using the laser heterodyne technique. The FTS measurements now extend for three years, with errors of order 3 meters/sec at a given epoch. Over this 3 year period, a 33 meter/sec change was measured in the apparent velocity of integrated sunlight. The sense of the effect is that a greater blueshift is seen near solar minimum, which is consistent with expectations based on considering the changing morphology of solar granular convection. Presuming this effect is solar-cycle-related, it will mimic the Doppler reflex produced by a planetary companion of approximately two Jupiter masses, with an 11 year orbital period. Thus, Jupiter itself is below the threshold for detection by spectroscopic means, without an additional technique for discrimination. However, for planetary companions in shorter period orbits (P approx. 3 years) the threshold for unambiguous detection is well below one Jupiter mass.

  7. Hydroclimate of the northeastern United States is highly sensitive to solar forcing

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan E.; Huang, Yongsong

    2012-02-01

    Dramatic hydrological fluctuations strongly impact human society, but the driving mechanisms for these changes are unclear. One suggested driver is solar variability, but supporting paleoclimate evidence is lacking. Therefore, long, continuous, high-resolution records from strategic locations are crucial for resolving the scientific debate regarding sensitivity of climate to solar forcing. We present a 6800-year, decadally-resolved biomarker and multidecadally-resolved hydrogen isotope record of hydroclimate from a coastal Maine peatland, The Great Heath (TGH). Regional moisture balance responds strongly and consistently to solar forcing at centennial to millennial timescales, with solar minima concurrent with wet conditions. We propose that the Arctic/North Atlantic Oscillation (AO/NAO) can amplify small solar fluctuations, producing the reconstructed hydrological variations. The Sun may be entering a weak phase, analogous to the Maunder minimum, which could lead to more frequent flooding in the northeastern US at this multidecadal timescale.

  8. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  9. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Carbone, Vincenzo; Lepreti, Fabio; Antonucci, Ester

    2016-03-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are at work at the same time leading to an even more complex picture. This work represents a first step for further investigations.

  10. L-band nighttime scintillations at the northern edge of the EIA along 95°E during the ascending half of the solar cycle 24

    NASA Astrophysics Data System (ADS)

    Dutta, Barsha; Kalita, Bitap Raj; Bhuyan, Pradip Kumar

    2018-04-01

    The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT ∼ 17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (∼75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4 ≥ 0.4) increases with increase in solar activity. Strong (S4 ≥ 0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.

  11. Shuttle radiation dose measurements in the International Space Station orbits

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2002-01-01

    The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.

  12. Systematically Asymmetric Heliospheric Magnetic Field: Evidence for a Quadrupole Mode and Non-Axisymmetry with Polarity Flip-Flops

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    2004-10-01

    Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since the 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2∘ tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a “flip-flop” type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.

  13. UNUSUAL TRENDS IN SOLAR P-MODE FREQUENCIES DURING THE CURRENT EXTENDED MINIMUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathy, S. C.; Jain, K.; Hill, F.

    2010-03-10

    We investigate the behavior of the intermediate-degree mode frequencies of the Sun during the current extended minimum phase to explore the time-varying conditions in the solar interior. Using contemporaneous helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI), we find that the changes in resonant mode frequencies during the activity minimum period are significantly greater than the changes in solar activity as measured by different proxies. We detect a seismic minimum in MDI p-mode frequency shifts during 2008 July-August but no such signature is seen in mean shifts computed from GONG frequencies. We alsomore » analyze the frequencies of individual oscillation modes from GONG data as a function of latitude and observe a signature of the onset of the solar cycle 24 in early 2009. Thus, the intermediate-degree modes do not confirm the onset of the cycle 24 during late 2007 as reported from the analysis of the low-degree Global Oscillations at Low Frequency frequencies. Further, both the GONG and MDI frequencies show a surprising anti-correlation between frequencies and activity proxies during the current minimum, in contrast to the behavior during the minimum between cycles 22 and 23.« less

  14. Flow downstream of the heliospheric terminal shock: Magnetic field line topology and solar cycle imprint

    NASA Technical Reports Server (NTRS)

    Nerney, Steven; Suess, S. T.; Schmahl, E. J.

    1995-01-01

    The topology of the magnetic field in the heliosheath is illustrated using plots of the field lines. It is shown that the Archimedean spiral inside the terminal shock is rotated back in the heliosheath into nested spirals that are advected in the direction of the interstellar wind. The 22-year solar magnetic cycle is imprinted onto these field lines in the form of unipolar magnetic envelopes surrounded by volumes of strongly mixed polarity. Each envelope is defined by the changing tilt of the heliospheric current sheet, which is in turn defined by the boundary of unipolar high-latitude regions on the Sun that shrink to the pole at solar maximum and expand to the equator at solar minimum. The detailed shape of the envelopes is regulated by the solar wind velocity structure in the heliosheath.

  15. An Analysis of Historical Records of Solar Variability, Volcanic Eruptions, and Climate Change in the Last Millennium

    NASA Astrophysics Data System (ADS)

    Pang, K. D.

    2003-12-01

    Studying past climate changes can help us better understand present natural variations and predict future trends. However, various reconstructions of the climate of the last 1000 years have given only broad similarities [Briffa, JGR 106, 2929, 2001]. The variances are partly due to uncertainties in the past radiative and aerosol forcing, and gaps in regional coverage. Another outstanding question is whether we are in a time similar to the Medieval Warm Period. From the frequencies of sunspot and aurora sightings, abundance of carbon-14 in the rings of long-lived trees, and beryllium-10 in the annual layers of polar ice cores, we have reconstructed the recent history of a variable Sun. In the past 1800 years the Sun has gone through nine cycles of changes in brightness. While these long-term changes account for less than 1% of the total irradiance, there is clear evidence that they affect the climate [Pang and Yau, Eos, 83, No. 43, 481, 2002]. We have analyzed Chinese historical weather records to fill the data void in this region. Reports of unseasonable cold are classified by the degree of severity: (1) Late (April-June) or early (July-Sept) killing frosts; (2) Bitter cold/heavy snowfall; and (3) heavy sustained snowfall, bitter cold with frozen wells, lakes, rivers, and icebound seas. The latter cases were often widespread and multi-year. All categories occurred most frequently during the coldest part of the Little Ice Age, with the coldest episodes in 1652-54, 1656, 1664, 1670-72, 1676-77, 1683, 1688-91, 1716 and 1718-19. They thus coincide with Maunder Minimum (1645-1715), when very few sunspots were seen-about one in ten years from China or Europe-indicative of a weakened Sun. There was only one Category 3 episode between the Maunder and Dalton Minima-in 1761, and two in the Dalton Minimum (1795-1825)-in 1796 and 1814-7. Analysis of proxy data has shown that the 1810's were among the coldest years in Europe [Briffa and Jones, in ``The Year Without a Summer,'' C.R. Harrignton, ed., 1992]. Large eruptions, of an unknown volcano in 1809 [Dai, JGR 96, 17361, 1991], at Mayon in 1814, and at Tambora in 1815, with the reduced solar luminosity seem to have been responsible. The Sun has slowly brightened since the Dalton Minimum. However, the climate of China remained cold through the 19th century, consistent with world climate trend [Bradley and Jones, Holocene 3, 367, 1993], possibly due to increased volcanic aerosol loading of the atmosphere [Sato, JGR 98, 22987, 1993]. In the 200 years prior to the Maunder Minimum, there was at least one other major planetwide volcanically forced cold episode-in 1453-54. The climate of China appears to have been warm during the Late 14th-Century Solar Maximum (1350-1410). We have found only one report of early killing frost-in May, 1993. It then turned cold during the Sporer Minimum (140-1590) [Pang and Yau, op. cit.]. Category 3 cold episodes occurred in 1453-54, 1513, 1569, and 1577-78. Lesser ones were also more common. The coldest was in 1453-54, due to a Tamboran class eruption that broke a big island in New Hebrides Arc in two, separated by a 12X6X1 km submarine caldera Kuwae. The volcanic chill was felt worldwide, with extensive reporting in China [Pang, Eos 74, No. 43, 196, 1993]. Reduced solar luminosity may have also contributed to the cold climate of that decade, as was the case in the 1810's. We conclude that the climate of China in the past 650 years generally follows world trend. The major forcing seems to have been changing solar luminosity, perturbed by frequent volcanic eruptions.

  16. The sun since the Bronze Age

    NASA Technical Reports Server (NTRS)

    Eddy, J. A.

    1976-01-01

    An investigation is conducted concerning the behavior of the sun during the last 7000 years. The C-14 content in carbonaceous fossil material can be used as an indicator regarding the level of solar activity at the time when the carbon was assimilated in the process of photosynthesis. Living trees, such as the bristlecone pine, provide a solar activity record to about 3000 B.C. The record can be extended with the aid of well-preserved dead wood to beyond 5000 B.C. The results of an analysis of solar activity levels as a function of time on the basis of C-14 contents are presented in a graph. Attention is given to the Maunder Minimum, a history of the sun in the last 5000 years, an interpretation of the major C-14 excursions, and the sun and climate history.

  17. Solar cycle variations in polar cap area measured by the superDARN radars

    NASA Astrophysics Data System (ADS)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-10-01

    present a long-term study, from January 1996 to August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere Super Dual Auroral Radar Network (SuperDARN). The HMB represents the equatorward extent of ionospheric convection and is used in this study as a measure of the global magnetospheric dynamics. We find that the yearly distribution of HMB latitudes is single peaked at 64° magnetic latitude for the majority of the 17 year interval. During 2003, the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17 year interval. In contrast, during the period 2008-2011, HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first long-term study of the polar cap area and the results demonstrate that there is a close relationship between the solar activity cycle and the area of the polar cap on a large-scale, statistical basis.

  18. NEW EVIDENCE FOR CHARGE-SIGN-DEPENDENT MODULATION DURING THE SOLAR MINIMUM OF 2006 TO 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Felice, V.; Munini, R.; Vos, E. E.

    The PAMELA space experiment, in orbit since 2006, has measured cosmic rays (CRs) through the most recent period of minimum solar activity with the magnetic field polarity as A  < 0. During this entire time, galactic electrons and protons have been detected down to 70 MV and 400 MV, respectively, and their differential variation in intensity with time has been monitored with unprecedented accuracy. These observations are used to show how differently electrons and protons responded to the quiet modulation conditions that prevailed from 2006 to 2009. It is well known that particle drifts, as one of four major mechanisms for the solarmore » modulation of CRs, cause charge-sign-dependent solar modulation. Periods of minimum solar activity provide optimal conditions in which to study these drift effects. The observed behavior is compared to the solutions of a three-dimensional model for CRs in the heliosphere, including drifts. The numerical results confirm that the difference in the evolution of electron and proton spectra during the last prolonged solar minimum is attributed to a large extent to particle drifts. We therefore present new evidence of charge-sign-dependent solar modulation, with a perspective on its peculiarities for the observed period from 2006 to 2009.« less

  19. Analysis of Solar Spectral Irradiance Measurements from the SBUV/2-Series and the SSBUV Instruments

    NASA Technical Reports Server (NTRS)

    Cebula, Richard P.; DeLand, Matthew T.; Hilsenrath, Ernest

    1997-01-01

    The NOAA-9 SBEV/2 instrument has made the first regular measurements ot solar UV activity over a complete solar cycle, beginning in March 1985 and continuing as of this writing. The NOAA-9 solar irradiance data set includes the minimum between Cycles 21-22 and the current minimum at the end of Cycle 22. Although overall solar activity is low during these periods, 27-day rotational modulation is frequently present. The episode of 13-day periodicity observed during September 1994 - March 1995 shows that phenomena previously associated with high levels of solar activity can occur at any point in the solar cycle. The 205 nm irradiance and Mg II index measured by NOAA-9 showed very similar behavior during the Cycle 21-22 minimum in 1985-1986, when 27-day periodicity dominated short-term solar variations, but behaved differently in 1994-1995 during the episode of 13-day periodicity. We plan further investigations into the physical causes of this result, since it affects the extent to which the Mg II index is an accurate proxy for 205 nm irradiance variations during such episodes. The NOAA-9 Mg II data are available.

  20. Grand minima of solar activity and sociodynamics of culture

    NASA Astrophysics Data System (ADS)

    Vladimirsky, B. M.

    2012-12-01

    Indices of creative productivity introduced by C. Murrey were used to verify S. Ertel's conclusion about a global increase in creative productivity during the prolonged minimum of solar activity in 1640-1710. It was found that these indices for mathematicians, philosophers, and scientists increase in the Maunder era by factor of 1.6 in comparison with intervals of the same length before and after the minimum. A similar effect was obtained for mathematicians and philosophers for five earlier equitype minima in total (an increase by a factor of 1.9). The regularity that is revealed is confirmed by the fact that the most important achievements of high-ranking mathematicians and philosophers during the whole time period (2300 years) considered in this study fall on epochs of reduced levels of solar activity. The rise in the probability of the generation of rational ideas during grand minima is reflected also in the fact that they precede the appearance of written language and farming. Ultra-low-frequency electromagnetic fields appear to serve as a physical agent stimulating the activity of the brain's left hemisphere during the epochs of minima.

  1. Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method

    NASA Technical Reports Server (NTRS)

    Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.

    2014-01-01

    We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.

  2. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    NASA Astrophysics Data System (ADS)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  3. Solar causes of strong geomagnetic disturbances during the period 1996—2013

    NASA Astrophysics Data System (ADS)

    Hejda, Pavel; Bochníček, Josef; Valach, Fridrich; Revallo, Miloš

    2017-04-01

    The purpose of this research is to assess the contribution of CMEs and CIRs to geomagnetic activity during the period 1996—2013, covering the 23rd solar cycle, the solar minimum between the 23rd and the 24th solar cycles as well as the ascending part of the current 24th solar cycle. Both CMEs and CIRs are capable of driving significant space weather effects on the Earth. Current study is not primarily aimed at construction of prediction models but can contribute to this topic by answering two principal questions: (1) what is the contribution of CME and CIR type solar events to various levels of geomagnetic disturbances and how it varies during the solar cycle (2) how does the successive emergence of CME and CIR events influence the geomagnetic response. Sometimes it can be difficult to assign the response to a particular event properly, especially in the case of several successive events. We noticed that the CIRs appeared to play important role also in years when strongly geoeffective CMEs occurred. An interesting finding, which we have revealed on this subject, concerned the year 2009; then the extremely low geomagnetic activity was probably caused by very slow solar wind from coronal holes along with the rare occurrences of CIRs.

  4. Air solar collectors in building use - A review

    NASA Astrophysics Data System (ADS)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  5. Solar Activity Heading for a Maunder Minimum?

    NASA Astrophysics Data System (ADS)

    Schatten, K. H.; Tobiska, W. K.

    2003-05-01

    Long-range (few years to decades) solar activity prediction techniques vary greatly in their methods. They range from examining planetary orbits, to spectral analyses (e.g. Fourier, wavelet and spectral analyses), to artificial intelligence methods, to simply using general statistical techniques. Rather than concentrate on statistical/mathematical/numerical methods, we discuss a class of methods which appears to have a "physical basis." Not only does it have a physical basis, but this basis is rooted in both "basic" physics (dynamo theory), but also solar physics (Babcock dynamo theory). The class we discuss is referred to as "precursor methods," originally developed by Ohl, Brown and Williams and others, using geomagnetic observations. My colleagues and I have developed some understanding for how these methods work and have expanded the prediction methods using "solar dynamo precursor" methods, notably a "SODA" index (SOlar Dynamo Amplitude). These methods are now based upon an understanding of the Sun's dynamo processes- to explain a connection between how the Sun's fields are generated and how the Sun broadcasts its future activity levels to Earth. This has led to better monitoring of the Sun's dynamo fields and is leading to more accurate prediction techniques. Related to the Sun's polar and toroidal magnetic fields, we explain how these methods work, past predictions, the current cycle, and predictions of future of solar activity levels for the next few solar cycles. The surprising result of these long-range predictions is a rapid decline in solar activity, starting with cycle #24. If this trend continues, we may see the Sun heading towards a "Maunder" type of solar activity minimum - an extensive period of reduced levels of solar activity. For the solar physicists, who enjoy studying solar activity, we hope this isn't so, but for NASA, which must place and maintain satellites in low earth orbit (LEO), it may help with reboost problems. Space debris, and other aspects of objects in LEO will also be affected. This research is supported by the NSF and NASA.

  6. Evaluation of long term solar activity effects on GPS derived TEC

    NASA Astrophysics Data System (ADS)

    Mansoori, Azad A.; Khan, Parvaiz A.; Ahmad, Rafi; Atulkar, Roshni; M, Aslam A.; Bhardwaj, Shivangi; Malvi, Bhupendra; Purohit, P. K.; Gwal, A. K.

    2016-10-01

    The solar activity hence the solar radiance follows a long term periodic variability with eleven years periodicity, known as solar cycle. This drives the long term variability of the ionosphere. In the present problem we investigate the long term behaviour of the ionosphere with the eleven year cyclic solar activity. Under the present study we characterize the ionospheric variability by Total Electron Content (TEC) using measurements made by Global Positioning System (GPS) and solar cycle variability by various solar activity indices. We make use of five solar activity indices viz. sunspot number (Rz), solar radio Flux (F10.7 cm), EUV Flux (26-34 nm), flare index and CME occurrences. The long term variability of these solar activity indices were then compared and correlated with the variability of ionospheric TEC, at a mid latitude station, Usuda (36.13N, 138.36E), of Japan, during the solar cycle 23 and ascending phase of cycle 24. From our study, we found that long term changes in the ionospheric TEC vary synchronously with corresponding changes in the solar activity indices. The correlation analysis shows that all the solar activity indices exhibit a very strong correlation with TEC (R =0.76 -0.99). Moreover the correlation between the two is stronger in the descending phase of the solar cycle. The correlation is found to be remarkably strongest during the deep minimum of the solar cycle 24 i.e. between 2007- 2009. Also we noticed a hysteresis effect exists with solar radio flux (F10.7 cm) and solar EUV flux (26-34 nm). This effect is absent with other parameters.

  7. Mexican forest fires and their decadal variations

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Graciela

    2016-11-01

    A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.

  8. A seven-month solar cycle observed with the Langmuir probe on Pioneer Venus Orbiter

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Wolff, C. L.

    1989-01-01

    Data collected by the Langmuir probe aboard the Pioneer Venus orbiter (PVO) over the years 1979 though 1987 were normalized to remove the long-period 11-year solar maximum to minimum trend and were analyzed for periodicity. Results yield evidence for the existence of an approximately 7-month solar cycle, which was also observed from SME Lyman alpha and 2800-MHz radio flux measurements carried out from an earth-based platform. This coincidence suggests that the cycle is an intrinsic periodicity in the solar output. The cycle has a frequency independent of the orbital frequency of the PVO and is distinct from a 'rotating beacon' cycle whose period depends on the orbital motion of the PVO about the sun. The second most dominant cycle discovered was a 5-month period. Results of an oscillation model of solar periodicity indicate that the 7-month and 5-month cycles are caused by long-lived flux enhancements from nonlinear interactions of global oscillation modes in the sun's convective envelope (r modes) and radiative interior (g modes).

  9. An estimation of Canadian population exposure to cosmic rays.

    PubMed

    Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko

    2009-08-01

    The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.

  10. Transient climate simulation from the Maunder Minimum to present day using prescribed changes in GHG, total/spectral solar irradiance and ozone

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Cubasch, Ulrich; Schimanke, Semjon

    A fully coupled AO-GCM including representation of the middle atmosphere is used for tran-sient simulation of climate from 1630 to 2000 AD. For better representation of changes in the UV/visible part of the solar spectrum an improved short-wave radiation scheme is implemented. The model is driven by changes in GHG concentrations, solar activity and volcanic eruptions. Solar variability is introduced via changes in total/spectral solar irradiance (TSI/SSI) and pre-scribed changes in stratospheric ozone. The secular trend in TSI is in the range of 0.1 percent increase from Maunder Minimum to present-day. Volcanic eruptions are represented via abrupt reduction in TSI. With the applied forcings the model does not simulate a clear reduction of the annual Northern Hemisphere (NH) mean near surface temperature during Maunder Minimum. By contrast the Dalton Minimum is characterized by distinct cooling and there is a significant raise of NH mean near surface temperature until the end of the 20th century. Focusing on the North Atlantic/European region the winter mean near surface temperature change pat-tern from Late Maunder Minimum (1675-1715) to present-day (1960-1990) reveals maximum warming over north-eastern Europe and cooling over the western North Atlantic with maxi-mum cooling west of Greenland. These changes can partly be explained by a shift of the NAO towards a more positive phase. The simulated changes in tropospheric circulation are discussed with special emphasize on the role of the solar forcing. Besides the stratospheric solar forcing which may affect NAO variability via downward propagation of the solar signal from the strato-sphere to the troposphere the magnitude of the secular trend in TSI might play a role. For the period from Maunder Minimum to present-day the simulation shows less near surface temper-ature increase especially over arctic regions when compared to simulations performed with the same model including the standard radiation scheme but applying larger TSI variations. The associated changes in lower tropospheric baroclinicity are more favourable for synoptic scale wave activity over the North Atlantic and might thereby contribute to strengthening of the NAO.

  11. Results from the first five years of radiation exposure monitoring aboard the ISS

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Semones, E.; Shelfer, T.; Johnson, S.; Zapp, N.; Weyland, M.

    NASA uses a variety of radiation monitoring devices aboard the International Space Station as part of its space flight radiation health program. This operational monitoring system consists of passive dosimeters, internal and external charged particle telescopes, and a tissue equivalent proportional counter (TEPC). Sixteen passive dosimeters, each consisting of TLD-100, TLD-300, TLD-600, and TLD-700 chips in a small acrylic holder, are placed throughout the habitable volume of the ISS. The TEPC and internal charged particle telescopes are portable and can be relocated to multiple locations in the Lab Module or Service Module. The external charged particle telescopes are mounted to a fixed boom attached to the starboard truss. Passive dosimeters were used in eleven monitoring periods over the period 20 May 1999 to 04 May 2003. Over this period exposure rates from TLD-100 measurements ranged from 0.120-0.300 mGy/d. Exposure rates inside the habitable volume are non-uniform: exposures vary by a factor of ˜ 1.7 from minimum to maximum, with the greatest non-uniformity occurring in the Lab Module. Highest daily exposure rates are near the window in the Lab Module, inside the Joint Airlock, and the sleep stations inside the Service Module, while the lowest rates occur inside the polyethylene-lined Temporary Sleep Station in the Lab Module, adjacent to the port ``arm'' of Node 1, and the aft end of the Service Module. The minimum exposure rates as measured by the passive dosimeters occurred in the spring of 2002, very close to the solar F10.7 emission maximum (Feb 2002), and two years after the sunspot maximum (Apr 2000). Exposure rates have since gradually increased as the sun's activity transitions towards solar minimum conditions. Since 01 Jun 2002, dose rates measured by the IV-CPDS, estimated from the count rate in first detector of the telescope's stack, ranged from ˜ 0.170-0.390 mGy/d. The maximum measured dose rate occurred 28 Oct 2003 during the ``Halloween'' space weather event. Interestingly, the minimum dose rate occurred 31 Oct 2003, near the end of the same remarkable space weather event, when the Earth was experiencing a significant Forbush decrease. The average IV-CPDS-measured dose rate increased from 0.194 to 0.234 mGy/d since 01 Jun 2002--an increase of ˜ 21% and a further indication that the low-Earth radiation environment is transitioning from solar maximum conditions towards solar minimum.

  12. Changes in the relationship NAO-Northern hemisphere temperature due to solar activity

    NASA Astrophysics Data System (ADS)

    Gimeno, Luis; de la Torre, Laura; Nieto, Raquel; García, Ricardo; Hernández, Emiliano; Ribera, Pedro

    2003-01-01

    The influence of the North Atlantic Oscillation (NAO) on wintertime Northern Hemisphere Temperature (NHT) is investigated. The results suggest that this relationship has different sign according to the phase of the solar cycle. For solar maximum phases NAO and NHT are positively correlated - a result assumed up to the moment - but for solar minimum phases correlations are not significant or even negative. This result is in agreement with the different extension of the NAO for solar cycle phases [Kodera, Geophys. Res. Lett. 29 (2002) 14557-14560] - almost hemispheric for maximum phases and confined to the eastern Atlantic for minimum phases.

  13. Ozone minimum concentrations, 1979-2013

    NASA Image and Video Library

    2014-09-10

    This is a visualizations of ozone concentrations over the southern hemisphere. Minimum concentration of ozone in the southern hemisphere for each year from 1979-2013 (there is no data from 1995). Each image is the day of the year with the lowest concentration of ozone. A graph of the lowest ozone amount for each year is shown. Read more/download file: svs.gsfc.nasa.gov/vis/a010000/a011600/a011648/ NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Weight optimization of ultra large space structures

    NASA Technical Reports Server (NTRS)

    Reinert, R. P.

    1979-01-01

    The paper describes the optimization of a solar power satellite structure for minimum mass and system cost. The solar power satellite is an ultra large low frequency and lightly damped space structure; derivation of its structural design requirements required accommodation of gravity gradient torques which impose primary loads, life up to 100 years in the rigorous geosynchronous orbit radiation environment, and prevention of continuous wave motion in a solar array blanket suspended from a huge, lightly damped structure subject to periodic excitations. The satellite structural design required a parametric study of structural configurations and consideration of the fabrication and assembly techniques, which resulted in a final structure which met all requirements at a structural mass fraction of 10%.

  15. The Solar Cycle.

    PubMed

    Hathaway, David H

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24. Supplementary material is available for this article at 10.1007/lrsp-2015-4.

  16. Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle

    NASA Technical Reports Server (NTRS)

    Kasper, J. C.; Stenens, M. L.; Stevens, M. L.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, Keith W.

    2006-01-01

    We present a study of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind speed and heliographic latitude over the previous solar cycle. The average values of A(sub He), the ratio of helium to hydrogen number densities, are calculated in 25 speed intervals over 27-day Carrington rotations using Faraday Cup observations from the Wind spacecraft between 1995 and 2005. The higher speed and time resolution of this study compared to an earlier work with the Wind observations has led to the discovery of three new aspects of A(sub He), modulation during solar minimum from mid-1995 to mid-1997. First, we find that for solar wind speeds between 350 and 415 km/s, A(sub He), varies with a clear six-month periodicity, with a minimum value at the heliographic equatorial plane and a typical gradient of 0.01 per degree in latitude. For the slow wind this is a 30% effect. We suggest that the latitudinal gradient may be due to an additional dependence of coronal proton flux on coronal field strength or the stability of coronal loops. Second, once the gradient is subtracted, we find that A(sub He), is a remarkably linear function of solar wind speed. Finally, we identify a vanishing speed, at which A(sub He), is zero, is 259 km/s and note that this speed corresponds to the minimum solar wind speed observed at one AU. The vanishing speed may be related to previous theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux. During solar maximum the A(sub He), dependences on speed and latitude disappear, and we interpret this as evidence of two source regions for slow solar wind in the ecliptic plane, one being the solar minimum streamer belt and the other likely being active regions.

  17. Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep-Space Exploration

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Rahmanifard, F.; Wilson, J.; Jordan, A. P.; Spence, H. E.; Joyce, C. J.; Blake, J. B.; Case, A. W.; de Wet, W.; Farrell, W. M.; Kasper, J. C.; Looper, M. D.; Lugaz, N.; Mays, L.; Mazur, J. E.; Niehof, J.; Petro, N.; Smith, C. W.; Townsend, L. W.; Winslow, R.; Zeitlin, C.

    2018-03-01

    Over the last decade, the solar wind has exhibited low densities and magnetic field strengths, representing anomalous states that have never been observed during the space age. As discussed by Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084), the cycle 23-24 solar activity led to the longest solar minimum in more than 80 years and continued into the "mini" solar maximum of cycle 24. During this weak activity, we observed galactic cosmic ray fluxes that exceeded theERobserved small solar energetic particle events. Here we provide an update to the Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter. The Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) study examined the evolution of the interplanetary magnetic field and utilized a previously published study by Goelzer et al. (2013, https://doi.org/10.1002/2013JA019404) projecting out the interplanetary magnetic field strength based on the evolution of sunspots as a proxy for the rate that the Sun releases coronal mass ejections. This led to a projection of dose rates from galactic cosmic rays on the lunar surface, which suggested a ˜20% increase of dose rates from one solar minimum to the next and indicated that the radiation environment in space may be a worsening factor important for consideration in future planning of human space exploration. We compare the predictions of Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) with the actual dose rates observed by CRaTER in the last 4 years. The observed dose rates exceed the predictions by ˜10%, showing that the radiation environment is worsening more rapidly than previously estimated. Much of this increase is attributable to relatively low-energy ions, which can be effectively shielded. Despite the continued paucity of solar activity, one of the hardest solar events in almost a decade occurred in September 2017 after more than a year of all-clear periods. These particle radiation conditions present important issues that must be carefully studied and accounted for in the planning and design of future missions (to the Moon, Mars, asteroids, and beyond).

  18. Optimal heliocentric trajectories for solar sail with minimum area

    NASA Astrophysics Data System (ADS)

    Petukhov, Vyacheslav G.

    2018-05-01

    The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Jason Lee, E-mail: jasoncurtis.astro@gmail.com

    The solar analogs of M67 let us glimpse the probable behavior of the Sun on timescales surpassing the duration of human civilization. M67 can serve as a solar proxy because its stars share a similar age and composition with the Sun. Previous surveys of M67 observed that 15% of its Sun-like stars exhibited chromospheric activity levels below solar minimum, which suggest that these stars might be in activity-minimum states analogous to the Maunder Minimum. The activity diagnostic used, the HK index (relative intensities of the Ca ii H and K lines integrated over 1 Å bandpasses), was measured from low-resolution spectramore » ( R ≈ 5000), as is traditional and suitable for nearby, bright stars. However, for stars beyond the Local Bubble, the interstellar medium (ISM) imprints absorption lines in spectra at Ca ii H and K, which negatively bias activity measurements when these lines fall within the HK index bandpass. I model the ISM clouds in the M67 foreground with high-resolution spectra of blue stragglers and solar analogs. I demonstrate that ISM absorption varies across the cluster and must be accounted for on a star-by-star basis. I then apply the ISM model to a solar spectrum and broaden it to the lower spectral resolution employed by prior surveys. Comparing HK indices measured from ISM-free and ISM-contaminated spectra, I find that all stars observed below solar minimum can be explained by this ISM bias. I conclude that there is no compelling evidence for Maunder Minimum candidates in M67 at this time.« less

  20. An Investigation into III-V Compounds to Reach 20% Efficiency with Minimum Cell Thickness in Ultrathin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Haque, K. A. S. M. Ehteshamul; Galib, Md. Mehedi Hassan

    2013-10-01

    III-V single-junction solar cells have already achieved very high efficiency levels. However, their use in terrestrial applications is limited by the high fabrication cost. High-efficiency, ultrathin-film solar cells can effectively solve this problem, as their material requirement is minimum. This work presents a comparison among several III-V compounds that have high optical absorption capability as well as optimum bandgap (around 1.4 eV) for use as solar cell absorbers. The aim is to observe and compare the ability of these materials to reach a target efficiency level of 20% with minimum possible cell thickness. The solar cell considered has an n-type ZnSe window layer, an n-type Al0.1Ga0.9As emitter layer, and a p-type Ga0.5In0.5P back surface field (BSF) layer. Ge is used as the substrate. In the initial design, a p-type InP base was sandwiched between the emitter and the BSF layer, and the design parameters for the device were optimized by analyzing the simulation outcomes with ADEPT/F, a one-dimensional (1D) simulation tool. Then, the minimum cell thickness that achieves 20% efficiency was determined by observing the efficiency variation with cell thickness. Afterwards, the base material was changed to a few other selected III-V compounds, and for each case, the minimum cell thickness was determined in a similar manner. Finally, these cell thickness values were compared and analyzed to identify more effective base layer materials for III-V single-junction solar cells.

  1. A Solar Cycle Prediction Puzzle's PossibleExplanation?

    NASA Astrophysics Data System (ADS)

    Luhmann, Janet

    2007-05-01

    A long-standing and intriguing puzzle of the last few decades has been Joan Feynman's (1982) discovery that the solar cycle (sunspot number) maximum trends follow the level of geomagnetic activity during the prior minimum phase. Recently Hathaway (GRL 33, 2006) used this relationship to make a prediction of the size of the next solar maximum. But the physical reason why this should work at all remains a matter of speculation. Although it has been suggested that geomagnetic activity around solar minimum is determined by the terrestrial magnetosphere's response to high speed solar wind streams which seem to often characterize the declining phase of the cycle, why should the occurrence of these streams portend the new solar maximum? Our improving understanding of solar wind sources may hold the key, and also tell us something useful about the solar dynamo.

  2. Solar wind velocity and temperature in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1994-01-01

    At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.

  3. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  4. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    NASA Technical Reports Server (NTRS)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 <= Z <= 28 in the energy range approx. 50-550 MeV / nucleon. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  5. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark

    2013-03-10

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have hadmore » a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior-hemispheric asymmetry is the normal state-the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the system continue to dwindle we anticipate new radiative and particulate lows coupled with increased cosmic-ray fluxes heading into the next solar minimum.« less

  6. Synchronized Northern Hemisphere climate change and solar magnetic cycles during the Maunder Minimum.

    PubMed

    Yamaguchi, Yasuhiko T; Yokoyama, Yusuke; Miyahara, Hiroko; Sho, Kenjiro; Nakatsuka, Takeshi

    2010-11-30

    The Maunder Minimum (A.D. 1645-1715) is a useful period to investigate possible sun-climate linkages as sunspots became exceedingly rare and the characteristics of solar cycles were different from those of today. Here, we report annual variations in the oxygen isotopic composition (δ(18)O) of tree-ring cellulose in central Japan during the Maunder Minimum. We were able to explore possible sun-climate connections through high-temporal resolution solar activity (radiocarbon contents; Δ(14)C) and climate (δ(18)O) isotope records derived from annual tree rings. The tree-ring δ(18)O record in Japan shows distinct negative δ(18)O spikes (wetter rainy seasons) coinciding with rapid cooling in Greenland and with decreases in Northern Hemisphere mean temperature at around minima of decadal solar cycles. We have determined that the climate signals in all three records strongly correlate with changes in the polarity of solar dipole magnetic field, suggesting a causal link to galactic cosmic rays (GCRs). These findings are further supported by a comparison between the interannual patterns of tree-ring δ(18)O record and the GCR flux reconstructed by an ice-core (10)Be record. Therefore, the variation of GCR flux associated with the multidecadal cycles of solar magnetic field seem to be causally related to the significant and widespread climate changes at least during the Maunder Minimum.

  7. Synchronized Northern Hemisphere climate change and solar magnetic cycles during the Maunder Minimum

    PubMed Central

    Yamaguchi, Yasuhiko T.; Yokoyama, Yusuke; Miyahara, Hiroko; Sho, Kenjiro; Nakatsuka, Takeshi

    2010-01-01

    The Maunder Minimum (A.D. 1645–1715) is a useful period to investigate possible sun–climate linkages as sunspots became exceedingly rare and the characteristics of solar cycles were different from those of today. Here, we report annual variations in the oxygen isotopic composition (δ18O) of tree-ring cellulose in central Japan during the Maunder Minimum. We were able to explore possible sun–climate connections through high-temporal resolution solar activity (radiocarbon contents; Δ14C) and climate (δ18O) isotope records derived from annual tree rings. The tree-ring δ18O record in Japan shows distinct negative δ18O spikes (wetter rainy seasons) coinciding with rapid cooling in Greenland and with decreases in Northern Hemisphere mean temperature at around minima of decadal solar cycles. We have determined that the climate signals in all three records strongly correlate with changes in the polarity of solar dipole magnetic field, suggesting a causal link to galactic cosmic rays (GCRs). These findings are further supported by a comparison between the interannual patterns of tree-ring δ18O record and the GCR flux reconstructed by an ice-core 10Be record. Therefore, the variation of GCR flux associated with the multidecadal cycles of solar magnetic field seem to be causally related to the significant and widespread climate changes at least during the Maunder Minimum. PMID:21076031

  8. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model

    NASA Astrophysics Data System (ADS)

    Ball, W. T.; Unruh, Y. C.; Krivova, N. A.; Solanki, S.; Harder, J. W.

    2011-06-01

    Aims: We investigate how well modeled solar irradiances agree with measurements from the SORCE satellite, both for total solar irradiance and broken down into spectral regions on timescales of several years. Methods: We use the SATIRE model and compare modeled total solar irradiance (TSI) with TSI measurements over the period 25 February 2003 to 1 November 2009. Spectral solar irradiance over 200-1630 nm is compared with the SIM instrument on SORCE over the period 21 April 2004 to 1 November 2009. We discuss the overall change in flux and the rotational and long-term trends during this period of decline from moderate activity to the recent solar minimum in ~10 nm bands and for three spectral regions of significant interest: the UV integrated over 200-300 nm, the visible over 400-691 nm and the IR between 972-1630 nm. Results: The model captures 97% of the observed TSI variation. This is on the order at which TSI detectors agree with each other during the period considered. In the spectral comparison, rotational variability is well reproduced, especially between 400 and 1200 nm. The magnitude of change in the long-term trends is many times larger in SIM at almost all wavelengths while trends in SIM oppose SATIRE in the visible between 500 and 700 nm and again between 1000 and 1200 nm. We discuss the remaining issues with both SIM data and the identified limits of the model, particularly with the way facular contributions are dealt with, the limit of flux identification in MDI magnetograms during solar minimum and the model atmospheres in the IR employed by SATIRE. However, it is unlikely that improvements in these areas will significantly enhance the agreement in the long-term trends. This disagreement implies that some mechanism other than surface magnetism is causing SSI variations, in particular between 2004 and 2006, if the SIM data are correct. Since SATIRE was able to reproduce UV irradiance between 1991 and 2002 from UARS, either the solar mechanism for SSI variation fundamentally changed around the peak of cycle 23, or there is an inconsistency between UARS and SORCE UV measurements. We favour the second explanation.

  9. Solar power satellite life-cycle energy recovery consideration

    NASA Astrophysics Data System (ADS)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  10. The solar cycle dependence of the location and shape of the Venus bow shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.L.; Luhmann, J.G.; Russell, C.T.

    1990-09-01

    From initial Pioneer Venus observations during the maximum of solar cycle 21 it was evident that the position of the Venus bow shock varies with solar activity. The bow shock radius in the terminator plane changed from 2.4 R{sub v} to 2.1 R{sub v} as solar activity went from maximum to minimum and, as activity has increased in cycle 22, it has increased again. The recent studies of the subsolar region show that the altitude of the nose of the bow shock varies from 1,600 km at solar minimum to 2,200 km at intermediate solar activity in concert with themore » terminator altitude so that the shape remains constant and only the size varies during the solar cycle. Using a gas dynamic model and the observed bow shock location, the authors infer the variation in the size of the effective obstacle during the solar cycle. At solar maximum, the effective obstacle is larger than the ionopause as if a magnetic barrier exists in the inner magnetosheath. This magnetic barrier acts as the effective obstacle deflecting the magnetosheath plasma about 500 km above the surface of Venus. However, at solar minimum the effective obstacle is well below the subsolar ionopause, and some absorption of the solar wind plasma by the Venus neutral atmosphere is suggested by these observations. The dependence of the solar cycle variation of the shock position on the orientation of the interplanetary magnetic field reinforces the idea that planetary ion pickup is important in the interaction of the solar wind with Venus.« less

  11. Impact of Rate Design Alternatives on Residential Solar Customer Bills: Increased Fixed Charges, Minimum Bills and Demand-Based Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce; Davidson, Carolyn; Miller, John

    Utilities are proposing changes to residential rate structures to address concerns about lost revenue due to increased adoption of distributed solar generation. An investigation of the impacts of increased fixed charges, minimum bills and residential demand charges on PV and non-PV customer bills suggests that minimum bills more accurately capture utilities' revenue requirement than fixed charges, while not acting as a disincentive to efficiency or negatively impacting low-income customers.

  12. Does the Current Minimum Validate (or Invalidate) Cycle Prediction Methods?

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2010-01-01

    This deep, extended solar minimum and the slow start to Cycle 24 strongly suggest that Cycle 24 will be a small cycle. A wide array of solar cycle prediction techniques have been applied to predicting the amplitude of Cycle 24 with widely different results. Current conditions and new observations indicate that some highly regarded techniques now appear to have doubtful utility. Geomagnetic precursors have been reliable in the past and can be tested with 12 cycles of data. Of the three primary geomagnetic precursors only one (the minimum level of geomagnetic activity) suggests a small cycle. The Sun's polar field strength has also been used to successfully predict the last three cycles. The current weak polar fields are indicative of a small cycle. For the first time, dynamo models have been used to predict the size of a solar cycle but with opposite predictions depending on the model and the data assimilation. However, new measurements of the surface meridional flow indicate that the flow was substantially faster on the approach to Cycle 24 minimum than at Cycle 23 minimum. In both dynamo predictions a faster meridional flow should have given a shorter cycle 23 with stronger polar fields. This suggests that these dynamo models are not yet ready for solar cycle prediction.

  13. A Comparison of Structurally Connected and Multiple Spacecraft Interferometers

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Crawley, Edward F.

    1996-01-01

    Structurally connected and multiple spacecraft interferometers are compared in an attempt to establish the maximum baseline (referred to as the "cross-over baseline") for which it is preferable to operate a single-structure interferometer in space rather than an interferometer composed of numerous, smaller spacecraft. This comparison is made using the total launched mass of each configuration as the comparison metric. A framework of study within which structurally connected and multiple spacecraft interferometers can be compared is presented in block diagram form. This methodology is then applied to twenty-two different combinations of trade space parameters to investigate the effects of different orbits, orientations, truss materials, propellants, attitude control actuators, onboard disturbance sources, and performance requirements on the cross-over baseline. Rotating interferometers and the potential advantages of adding active structural control to the connected truss of the structurally connected interferometer are also examined. The minimum mass design of the structurally connected interferometer that meets all performance-requirements and satisfies all imposed constraints is determined as a function of baseline. This minimum mass design is then compared to the design of the multiple spacecraft interferometer. It is discovered that the design of the minimum mass structurally connected interferometer that meets all performance requirements and constraints in solar orbit is limited by the minimum allowable aspect ratio, areal density, and gage of the struts. In the formulation of the problem used in this study, there is no advantage to adding active structural control to the truss for interferometers in solar orbit. The cross-over baseline for missions of practical duration (ranging from one week to thirty years) in solar orbit is approximately 400 m for non-rotating interferometers and 650 m for rotating interferometers.

  14. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record

    PubMed Central

    Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi

    2014-01-01

    Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming. PMID:24402348

  15. Energetic neutral atom and interstellar flow observations with IBEX: Implications for the global heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwadron, N. A., E-mail: nschwadron@unh.edu; Southwest Research Institute, San Antonio, TX, 78238; McComas, D. J.

    2016-03-25

    Since launch in Oct. 2008, IBEX, with its two energetic neutral atom (ENA) cameras, has provided humankind with the first-ever global images of the complex boundary separating the heliosphere from the local interstellar medium (LISM). IBEX’s energy-resolved all-sky maps, collected every six months, are yielding remarkable new insights into the heliospheres structure as it is shaped by the combined forces of the local interstellar flow, the local interstellar magnetic field (LISMF), and the evolving solar wind. IBEX has also acquired the first images of ENAs backscattered from the surface of the moon as well as global images of the magnetosphericmore » response to solar wind disturbances. IBEX thus addresses all three Heliophysics science objectives set forth in the 2014 Science Plan for NASAs Science Mission Directorate (SMD) as well as the goals in the recent Solar and Space Physics Decadal Survey (NRC 2012). In addition, with the information it provides on the properties of the LISM and the LISMF, IBEX represents a unique bridge between heliophysics and astrophysics, and fills in critical knowledge for understanding the habitability of exoplanetary systems and the future habitability of Earth and the solar system. Because of the few-year time lag due to solar wind and ENA transport, IBEX observed the solar wind/ LISM interaction characteristic of declining phase/solar minimum conditions. In the continuing mission, IBEX captures the response of the interstellar boundaries to the changing structure of the solar wind in its transition toward the “mini” solar maximum and possibly the decline into the next solar minimum. The continuing IBEX mission affords never-to-be-repeated opportunities to coordinate global imaging of the heliospheric boundary with in-situ measurements by the Voyagers as they pass beyond the heliopause and start to directly sample the LISM.« less

  16. INFERRING THE STRUCTURE OF THE SOLAR CORONA AND INNER HELIOSPHERE DURING THE MAUNDER MINIMUM USING GLOBAL THERMODYNAMIC MAGNETOHYDRODYNAMIC SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Pete; Lionello, Roberto; Linker, Jon A., E-mail: pete@predsci.com, E-mail: lionel@predsci.com, E-mail: linkerj@predsci.com

    Observations of the Sun’s corona during the space era have led to a picture of relatively constant, but cyclically varying solar output and structure. Longer-term, more indirect measurements, such as from {sup 10}Be, coupled by other albeit less reliable contemporaneous reports, however, suggest periods of significant departure from this standard. The Maunder Minimum was one such epoch where: (1) sunspots effectively disappeared for long intervals during a 70 yr period; (2) eclipse observations suggested the distinct lack of a visible K-corona but possible appearance of the F-corona; (3) reports of aurora were notably reduced; and (4) cosmic ray intensities atmore » Earth were inferred to be substantially higher. Using a global thermodynamic MHD model, we have constructed a range of possible coronal configurations for the Maunder Minimum period and compared their predictions with these limited observational constraints. We conclude that the most likely state of the corona during—at least—the later portion of the Maunder Minimum was not merely that of the 2008/2009 solar minimum, as has been suggested recently, but rather a state devoid of any large-scale structure, driven by a photospheric field composed of only ephemeral regions, and likely substantially reduced in strength. Moreover, we suggest that the Sun evolved from a 2008/2009-like configuration at the start of the Maunder Minimum toward an ephemeral-only configuration by the end of it, supporting a prediction that we may be on the cusp of a new grand solar minimum.« less

  17. Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia

    NASA Astrophysics Data System (ADS)

    Belkilani, Kaouther; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    The study of the solar radiation is the starting point of any investigation for a new energy, to study and search the best location to install a PV system. A very important factor in the assessment of solar potential is the availability of data for global solar radiation that must be coherent and of high quality. In this paper, we analyze the estimation result of the monthly global solar radiation for three different locations, Bizerte in Northern Tunisia, Kairouan in Middle Eastern Tunisia, and Tozeur in Southern Tunisia, measured on the surface by the National Institute of Meteorology and the meteorological year irradiation based on satellite imagery result PVGIS radiation databases. To get the right measurements with minimum error, we propose a numerical model used to calculate the global solar radiation in the indicated three sites. The results show that the model can estimate the global solar radiation (kWh/m²) at a specific station and over most area of Tunisia. The model gives a good estimation for solar radiation where error between the measured values and those calculated are negligible.

  18. Solar wind temperature observations in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.

  19. MODULATION OF GALACTIC ELECTRONS IN THE HELIOSPHERE DURING THE UNUSUAL SOLAR MINIMUM OF 2006–2009: A MODELING APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potgieter, M. S.; Vos, E. E.; Munini, R.

    The last solar minimum activity period, and the consequent minimum modulation conditions for cosmic rays, was unusual. The highest levels of Galactic protons were recorded at Earth in late 2009 in contrast to expectations. A comprehensive model was used to study the proton modulation for the period from 2006 to 2009 in order to determine what basic processes were responsible for solar modulation during this period and why it differs from proton modulation during previous solar minimum modulation periods. This established model is now applied to studying the solar modulation of electron spectra as observed for 80 MeV–30 GeV bymore » the PAMELA space detector from mid-2006 to the end of 2009. Over this period the heliospheric magnetic field had decreased significantly until the end of 2009 while the waviness of the heliospheric current sheet decreased moderately and the observed electron spectra increased by a factor of ∼1.5 at 1.0 GeV to ∼3.5 at 100 MeV. In order to reproduce the modulation evident from seven consecutive semesters, the diffusion coefficients had to increase moderately while maintaining the basic rigidity dependence. It is confirmed that the main diffusion coefficients are independent of rigidity below ∼0.5 GV, while the drift coefficient had to be reduced below this value. The 2006–2009 solar minimum epoch indeed was different than previously observed minima, at least since the beginning of the space exploration era. This period could be called “diffusion-dominated” as was also found for the modulation of protons.« less

  20. The multifarious temporal variations of low energy, relativistic cosmic ray electrons

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B.; Cline, T. L.; Simnett, G. M.

    1972-01-01

    A detailed examination is made of the intensity variations of 3 - 12 MeV interplanetary electrons. The data used are from the cosmic ray experiment flown on the IMP solar minimum through to the onset of the present solar maximum (i.e., from December 1963 through August 1969). A morphology for the intensity changes is tentatively proposed which includes solar flare-associated events, solar co-rotating increases, Forbush decreases, and quiet-time increases, as well as the long term eleven-year variation. It is contended that the electron component observed both during quiescent times and during quiet-time increases are galactic in origin. The quiet-time increases represent a completely new phenomenon that appears to be unique to the low energy electron population. During a quiet-time increase the electron intensity is enhanced by a factor of 3 to 5 over a period of days, and, in general, these periods anti-correlate with low-energy solar particle events. Qualitatively, their amplitude diminishes with increasing solar activity.

  1. European SpaceCraft for the study of Atmospheric Particle Escape (ESCAPE): a planetary mission to Earth, proposed in response to the ESA M5-call

    NASA Astrophysics Data System (ADS)

    Dandouras, I.; Yamauchi, M.; Rème, H.; De Keyser, J.; Marghitu, O.; Fazakerley, A.; Grison, B.; Kistler, L.; Milillo, A.; Nakamura, R.; Paschalidis, N.; Paschalis, A.; Pinçon, J.-L.; Sakanoi, T.; Wieser, M.; Wurz, P.; Yoshikawa, I.; Häggström, I.; Liemohn, M.; Tian, F.

    2017-09-01

    ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmospheric composition over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets, which is essential for habitability.

  2. Multifarious temporal variations of low-energy relativistic cosmic-ray electrons.

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B.; Cline, T. L.; Simnett, G. M.

    1972-01-01

    Detailed examination of the intensity variations of 3- to 12-MeV interplanetary electrons. The data are from the Goddard cosmic-ray experiment on the Imp satellites and cover the period from just before the last solar minimum through the onset of the present solar maximum (i.e., from December 1963 through August 1969). A morphology for the intensity changes is tentatively proposed that includes solar-flare-associated events, solar co-rotating increases, Forbush decreases, quiet-time increases, and the long-term 11-year variation. It is contended that the electron components observed both during quiescent times and during quiet-time increases are galactic in origin. The quiet-time increases represent a completely new phenomenon that appears to be unique to the low-energy electron population. During a quiet-time increase the electron intensity is enhanced by a factor of 3 to 5 over a period of days, and, in general, these periods anticorrelate with low-energy solar particle events. Qualitatively, their amplitude diminishes with increasing solar activity.

  3. Solar Effects on Climate and the Maunder Minimum: Minimum Certainty

    NASA Technical Reports Server (NTRS)

    Rind, David

    2003-01-01

    The current state of our understanding of solar effects on climate is reviewed. As an example of the relevant issues, the climate during the Maunder Minimum is compared with current conditions in GCM simulations that include a full stratosphere and parameterized ozone response to solar spectral irradiance variability and trace gas changes. The GISS Global Climate/Middle Atmosphere Model coupled to a q-flux/mixed layer model is used for the simulations, which begin in 1500 and extend to the present. Experiments were made to investigate the effect of total versus spectrally-varying solar irradiance changes; spectrally-varying solar irradiance changes on the stratospheric ozone/climate response with both pre-industrial and present trace gases; and the impact on climate and stratospheric ozone of the preindustrial trace gases and aerosols by themselves. The results showed that: (1) the Maunder Minimum cooling relative to today was primarily associated with reduced anthropogenic radiative forcing, although the solar reduction added 40% to the overall cooling. There is no obvious distinguishing surface climate pattern between the two forcings. (2)The global and tropical response was greater than 1 C, in a model with a sensitivity of 1.2 C per W m-2. To reproduce recent low-end estimates would require a sensitivity 1/4 as large. (3) The global surface temperature change was similar when using the total and spectral irradiance prescriptions, although the tropical response was somewhat greater with the former, and the stratospheric response greater with the latter. (4) Most experiments produce a relative negative phase of the NAO/AO during the Maunder Minimum, with both solar and anthropogenic forcing equally capable, associated with the tropical cooling and relative poleward EP flux refraction. (5) A full stratosphere appeared to be necessary for the negative AO/NAO phase, as was the case with this model for global warming experiments, unless the cooling was very large, while the ozone response played a minor role and did not influence surface temperature significantly. (6) Stratospheric ozone was most affected by the difference between present day and preindustrial atmospheric composition and chemistry, with increases in the upper and lower stratosphere during the Maunder Minimum. While the estimated UV reduction led to ozone decreases, this was generally less important than the anthropogenic effect except in the upper middle stratosphere, as judged by two different ozone photochemistry schemes. (7) The effect of the reduced solar irradiance on stratospheric ozone and on climate was similar in Maunder Minimum and current atmospheric conditions.

  4. Modulation of galactic cosmic rays in solar cycles 22-24: Analysis and physical interpretation

    NASA Astrophysics Data System (ADS)

    Kalinin, M. S.; Bazilevskaya, G. A.; Krainev, M. B.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Starodubtsev, S. A.

    2017-09-01

    This work represents a physical interpretation of cosmic ray modulation in the 22nd-24th solar cycles, including an interpretation of an unusual behavior of their intensity in the last minimum of the solar activity (2008-2010). In terms of the Parker modulation model, which deals with regularly measured heliospheric characteristics, it is shown that the determining factor of the increased intensity of the galactic cosmic rays in the minimum of the 24th solar cycle is an anomalous reduction of the heliospheric magnetic field strength during this time interval under the additional influence of the solar wind velocity and the tilt angle of the heliospheric current sheet. We have used in the calculations the dependence of the diffusion tensor on the rigidity in the form K ij ∝ R 2-μ with μ = 1.2 in the sector zones of the heliospheric magnetic field and with μ = 0.8 outside the sector zones, which leads to an additional amplification of the diffusion mechanism of cosmic ray modulation. The proposed approach allows us to describe quite satisfactorily the integral intensity of protons with an energy above 0.1 GeV and the energy spectra in the minima of the 22nd-24th solar cycles at the same value of the free parameter. The determining factor of the anomalously high level of the galactic cosmic ray intensity in the minimum of the 24th solar cycle is the significant reduction of the heliospheric magnetic field strength during this time interval. The forecast of the intensity level in the minimum of the 25th solar cycle is provided.

  5. The effect of atmospheric drag on the design of solar-cell power systems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Kyser, A. C.

    1983-01-01

    The feasibility of reducing the atmospheric drag of low orbit solar powered satellites by operating the solar-cell array in a minimum-drag attitude, rather than in the conventional Sun pointing attitude was determined. The weights of the solar array, the energy storage batteries, and the fuel required to overcome the drag of the solar array for a range of design life times in orbit were considered. The drag of the array was estimated by free molecule flow theory, and the system weights were calculated from unit weight estimates for 1990 technology. The trailing, minimum drag system was found to require 80% more solar array area, and 30% more battery capacity, the system weights for reasonable life times were dominated by the thruster fuel requirements.

  6. Spacecraft Charging Hazards In Low-earth Orbit

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.

    The space environment in low-Earth orbit (LEO) has until recently been considered quite benign to high levels of spacecraft charging. However, it has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to - 2000 V) when encountering intense precipitating electron events (auroral arcs) while traversing the auroral zone. The occurrence frequency of charging events, defined as when the spacecraft charged to levels exceeding 100 V negative, was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma den- sity be low, at most 104 cm-2. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the oc- currence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. Indeed, of the over 1200 events found during the most recent solar cycle, none occurred during the last solar maximum. This has implications to a number of LEO satellite programs, including the International Space Station (ISS). The plasma density in the ISS orbit, at a much lower altitude than DMSP, is well above that at 840 km and rarely below 104 cm-2. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for significant charging effects. With an inclination of 51.6 degrees, the ISS does enter the auroral zone, particularly during geomagnetic storms and substorms when the auroral boundary can penetrate to very low latitudes. This has significant implications for EVA operations in the ISS wake.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.

    Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidalmore » variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period.« less

  8. Could a Hexagonal Sunspot Have Been Observed During the Maunder Minimum?

    NASA Astrophysics Data System (ADS)

    Carrasco, V. M. S.; Vaquero, J. M.; Gallego, M. C.

    2018-03-01

    The Maunder Minimum is the period between 1645 and 1715. Its main characteristic is abnormally low and prolonged solar activity. However, some authors have doubted the low level of solar activity during that period by questioning the accuracy and objectivity of the observers. This work presents a particular case of a sunspot observed during the Maunder Minimum with an unusual shape of its umbra and penumbra: a hexagon. This sunspot was observed by Cassini in November 1676, just at the core of the Maunder Minimum. This historical observation is compared with a twin case that occurred recently in May 2016. The conclusion reached is that Cassini's record is another example of the good quality of the observations that were made during the Maunder Minimum, showing the meticulousness of the astronomers of that epoch. This sunspot observation made by Cassini does not support the conclusions of Zolotova and Ponyavin ( Astrophys. J. 800, 42, 2015) that professional astronomers in the seventeenth century only registered round sunspots. Finally, a discussion is given of the importance of this kind of unusual sunspot record for a better assessment of the true level of solar activity in the Maunder Minimum.

  9. THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeggli, S. A.; Norton, A. A., E-mail: sarah.jaeggli@nasa.gov

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction ismore » relatively constant during high levels of activity; however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.« less

  10. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  11. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  12. The area and absolute magnetic flux of sunspots over the past 400 years

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Tlatov, A. G.; Nagovitsyna, E. Yu.

    2016-09-01

    A new series of yearly-mean relative sunspot numbers SN 2 that has been extrapolated into the past (to 1610) is presented. The Kislovodsk series with the scale factor b = 1.0094 ± 0.0059 represents a reasonable continuation of the mean-monthly and mean-yearly total sunspot areas of the Greenwich series after 1976. The second maximum of the 24th solar-activity cycle was not anomalously low, and was no lower than 6 of the past 13 cycles. A series A 2 of values for the total sunspot area in 1610-2015 has been constructed, and is complementary to new versions of the series of the relative number of sunspots SN 2 and the number of sunspot groups GN 2. When needed, this series can be reduced to yield a quantity having a clear physical meaning—the spot absolute magnetic flux Φ Σ( t)[Mx] = 2.16 × 1019 A( t) [mvh]. The maximum sunspot area during the Maunder minimum is much higher in the new series compared to the previous version. This at least partially supports the validity of arguments that cast doubt on the anomalously low ampltude of the solar cycles during the Maunder minimum that has been assumed by many researchers earlier.

  13. Optimal nodal flyby with near-Earth asteroids using electric sail

    NASA Astrophysics Data System (ADS)

    Mengali, Giovanni; Quarta, Alessandro A.

    2014-11-01

    The aim of this paper is to quantify the performance of an Electric Solar Wind Sail for accomplishing flyby missions toward one of the two orbital nodes of a near-Earth asteroid. Assuming a simplified, two-dimensional mission scenario, a preliminary mission analysis has been conducted involving the whole known population of those asteroids at the beginning of the 2013 year. The analysis of each mission scenario has been performed within an optimal framework, by calculating the minimum-time trajectory required to reach each orbital node of the target asteroid. A considerable amount of simulation data have been collected, using the spacecraft characteristic acceleration as a parameter to quantify the Electric Solar Wind Sail propulsive performance. The minimum time trajectory exhibits a different structure, which may or may not include a solar wind assist maneuver, depending both on the Sun-node distance and the value of the spacecraft characteristic acceleration. Simulations show that over 60% of near-Earth asteroids can be reached with a total mission time less than 100 days, whereas the entire population can be reached in less than 10 months with a spacecraft characteristic acceleration of 1 mm/s2.

  14. The Variance of Solar Wind Magnetic Fluctuations: Solutions and Further Puzzles

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    We study the dependence of the variance directions of the magnetic field in the solar wind as a function of scale, radial distance, and Alfvenicity. The study resolves the question of why different studies have arrived at widely differing values for the maximum to minimum power (approximately equal to 3:1 up to approximately equal to 20:1). This is due to the decreasing anisotropy with increasing time interval chosen for the variance, and is a direct result of the "spherical polarization" of the waves which follows from the near constancy of |B|. The reason for the magnitude preserving evolution is still unresolved. Moreover, while the long-known tendency for the minimum variance to lie along the mean field also follows from this view (as shown by Barnes many years ago), there is no theory for why the minimum variance follows the field direction as the Parker angle changes. We show that this turning is quite generally true in Alfvenic regions over a wide range of heliocentric distances. The fact that nonAlfvenic regions, while still showing strong power anisotropies, tend to have a much broader range of angles between the minimum variance and the mean field makes it unlikely that the cause of the variance turning is to be found in a turbulence mechanism. There are no obvious alternative mechanisms, leaving us with another intriguing puzzle.

  15. The relationship of the large-scale solar field to the interplanetary magnetic field - What will Ulysses find?

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1986-01-01

    Using photospheric magnetic field observations obtained at the Stanford Wilcox Solar Observatory, results from a potential field model for the present solar cycle are given, and qualitative predictions of the IMF that Ulysses may encounter are presented. Results indicate that the IMF consists of large regions of opposite polarity separated by a neutral sheet (NS) (extended to at least 50 deg) and a four-sector structure near solar minimum (produced by small quadripolar NS warps). The latitudinal extent of the NS increases following minimum and the structure near maximum includes multiple NSs, while a simplified IMF is found during the declining phase.

  16. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  17. Comparison of solar activity during last two minima on turn of Activity Cycles 22/23 and 23/24

    NASA Astrophysics Data System (ADS)

    Gryciuk, Magdalena; Gburek, Szymon; Siarkowski, Marek; Podgorski, Piotr; Sylwester, Janusz; Farnik, Frantisek

    2013-07-01

    The subject of our work is the review and comparison of solar activity during the last two solar minima that occurred between recent activity cycles. We use the soft X-ray global solar corona observations covering the two nine-months long time intervals in 1997/98 and 2009. Data from RF15-I multichannel photometer are used for the penultimate minimum. For the last unusually deep and prolonged solar activity minimum in 2009 the data from SphinX spectrophotometer are used. Comparison of measurements from both minima takes place in the overlapping energy range 2-15 keV. We focus on the active region formation, evolution and flaring productivity during respective minima.

  18. Proposed U.S. Space Weather Budget for Fiscal Year 2011 Would Fund Key Programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-09-01

    The proposed U.S. federal budget for space weather research for fiscal year (FY) 2011 would provide funding for key space weather programs within several U.S. agencies, including NASA, NOAA, the National Science Foundation (NSF), and the Air Force. Funding for the programs comes ahead of the upcoming solar maximum, a period of the solar cycle with heightened solar activity, projected for 2013. Several officials indicated that while funding is not tied to a particular solar maximum or minimum, available assets could help with studying and preparing for the solar maximum. The proposed FY 2011 budget for the Heliophysics Division within NASA's Science Mission Directorate is $641.9 million, compared with the FY 2010 enacted budget of $627.4 million. Within the proposed budget is $166.9 million for heliophysics research, down slightly from $173 million for FY 2010. The proposed budget would include $31.7 million for heliophysics research and analysis (compared with $31 million for FY 2010); $66.7 million for “other missions and data analysis,” including Cluster II, the Advanced Composition Explorer (ACE), and the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission; and $48.9 million for sounding rockets.

  19. Quiet-time 0.04 - 2 MeV/nucleon Ions at 1 AU in Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Zeldovich, M. A.; Logachev, Y. I.; Kecskeméty, K.

    2018-01-01

    The fluxes of 3He, 4He, C, O, and Fe ions at low energies (about 0.04 - 2 MeV/nucleon) are studied during quiet periods in Solar Cycles (SC) 23 and 24 using data from the ULEIS/ACE instrument. In selecting quiet periods (the definition is given in Section 2.1), additional data from EPHIN/SOHO and EPAM/ACE were also used. The analysis of the ion energy spectra and their relative abundances shows that their behavior is governed by their first-ionization potential. Substantial differences in the ion energy spectra in two consecutive solar cycles are observed during the quiet periods selected. Quiet-time fluxes are divided into three distinct types according to the {˜} 80 - 320 keV/nucleon Fe/O ratio. Our results confirm the earlier observation that these types of suprathermal particles have different origins, that is, they represent different seed populations that are accelerated by different processes. Except for the solar activity minimum, the Fe/O ratio during quiet-time periods correspond either to the abundances of ions in particle fluxes accelerated in impulsive solar flares or to the mean abundances of elements in the solar corona. At the activity minimum, this ratio takes on values that are characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the ascending, maximum, and decay phases of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and ions accelerated in small impulsive solar flares rich in Fe, while the contribution of remnants from earlier SEP events cannot be excluded. The comparison of suprathermal ion abundances during the first five years of SC 23 and SC 24 suggests that the quiet-time and non-quiet fluxes of Fe and 3He were lower in SC 24.

  20. GUMICS4 Synthetic and Dynamic Simulations of the ECLAT Project

    NASA Astrophysics Data System (ADS)

    Facsko, G.; Palmroth, M. M.; Gordeev, E.; Hakkinen, L. V.; Honkonen, I. J.; Janhunen, P.; Sergeev, V. A.; Kauristie, K.; Milan, S. E.

    2012-12-01

    The European Commission funded the European Cluster Assimilation Techniques (ECLAT) project as a collaboration of five leader European universities and research institutes. A main contribution of the Finnish Meteorological Institute (FMI) is to provide a wide range of global MHD runs with the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS). The runs are divided in two categories: synthetic runs investigating the extent of solar wind drivers that can influence magnetospheric dynamics, as well as dynamic runs using measured solar wind data as input. Here we consider the first set of runs with synthetic solar wind input. The solar wind density, velocity and the interplanetary magnetic field had different magnitudes and orientations; furthermore two F10.7 flux values were selected for solar radiation minimum and maximum values. The solar wind parameter values were constant such that a constant stable solution was archived. All configurations were run several times with three different (-15°, 0°, +15°) tilt angles in the GSE X-Z plane. The Cray XT supercomputer of the FMI provides a unique opportunity in global magnetohydrodynamic simulation: running the GUMICS-4 based on one year real solar wind data. Solar wind magnetic field, density, temperature and velocity data based on Advanced Composition Explorer (ACE) and WIND measurements are downloaded from the OMNIWeb open database and a special input file is created for each Cluster orbit. All data gaps are replaced with linear interpolations between the last and first valid data values before and after the data gap. Minimum variance transformation is applied for the Interplanetary Magnetic Field data to clean and avoid the code of divergence. The Cluster orbits are divided into slices allowing parallel computation and each slice has an average tilt angle value. The file timestamps start one hour before the perigee to provide time for building up a magnetosphere in the simulation space. The real measurements were extrapolated into one minute intervals by the database and the time steps of the simulation result are shifted by 20-30 minutes calculated from the spacecraft position and the actual solar wind velocity. All simulation results are saved every 5th minutes (in calculation time). The result of the 162 simulations named so called "synthetic run library" were visualized and uploaded to the homepage of the FMI after validation as well as the year run savings. Here we present details of these runs.

  1. Galactic Cosmic Ray Intensity in the Upcoming Minimum of the Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Krainev, M. B.; Bazilevskaya, G. A.; Kalinin, M. S.; Svirzhevskaya, A. K.; Svirzhevskii, N. S.

    2018-03-01

    During the prolonged and deep minimum of solar activity between cycles 23 and 24, an unusual behavior of the heliospheric characteristics and increased intensity of galactic cosmic rays (GCRs) near the Earth's orbit were observed. The maximum of the current solar cycle 24 is lower than the previous one, and the decline in solar and, therefore, heliospheric activity is expected to continue in the next cycle. In these conditions, it is important for an understanding of the process of GCR modulation in the heliosphere, as well as for applied purposes (evaluation of the radiation safety of planned space flights, etc.), to estimate quantitatively the possible GCR characteristics near the Earth in the upcoming solar minimum ( 2019-2020). Our estimation is based on the prediction of the heliospheric characteristics that are important for cosmic ray modulation, as well as on numeric calculations of GCR intensity. Additionally, we consider the distribution of the intensity and other GCR characteristics in the heliosphere and discuss the intercycle variations in the GCR characteristics that are integral for the whole heliosphere (total energy, mean energy, and charge).

  2. The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David

    2010-01-01

    The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..

  3. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  4. Magnetospheric electron density long-term (>1 day) refilling rates inferred from passive radio emissions measured by IMAGE RPI during geomagnetically quiet times

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Wang, Y.; Webb, P. A.; Tengdin, P. M.; Goldstein, J.; Redfern, J. A.; Reinisch, B. W.

    2012-03-01

    Using measurements of the electron density ne found from passive radio wave observations by the IMAGE spacecraft RPI instrument on consecutive passes through the magnetosphere, we calculate the long-term (>1 day) refilling rate of equatorial electron density dne,eq/dt from L = 2 to 9. Our events did not exhibit saturation, probably because our data set did not include a deep solar minimum and because saturation is an unusual occurrence, especially outside of solar minimum. The median rate in cm-3/day can be modeled with log10(dne,eq/dt) = 2.22 - 0.006L - 0.0347L2, while the third quartile rate can be modeled with log10(dne,eq/dt) = 3.39 - 0.353L, and the mean rate can be modeled as log10(dne,eq/dt) = 2.74 - 0.269L. These statistical values are found from the ensemble of all observed rates at each L value, including negative rates (decreases in density due to azimuthal structure or radial motion or for other reasons), in order to characterize the typical behavior. The first quartile rates are usually negative for L < 4.7 and close to zero for larger L values. Our rates are roughly consistent with previous observations of ion refilling at geostationary orbit. Most previous studies of refilling found larger refilling rates, but many of these examined a single event which may have exhibited unusually rapid refilling. Comparing refilling rates at solar maximum to those at solar minimum, we found that the refilling rate is larger at solar maximum for small L < 4, about the same at solar maximum and solar minimum for L = 4.2 to 5.8, and is larger at solar minimum for large L > 5.8 such as at geostationary orbit (L ˜ 6.8) (at least to L of about 8). These results agree with previous results for ion refilling at geostationary orbit, may agree with previous results at lower L, and are consistent with some trends for ionospheric density.

  5. 24/7 Solar Minimum Polar Cap and Auroral Ion Temperature Observations

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig; Bilitza, Dieter

    2011-01-01

    During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 N latitude, 212.5 E longitude where the NSF s new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at midlatitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 N latitude, 16.0 E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, 1 March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably with the quiet-background in temperature, both in magnitude and climatology.

  6. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2014-05-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780-1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2-3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ < 250 nm) relative to bottom-up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 years after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift in the intertropical convergence zone.

  7. Solar system plasma turbulence and intermittency at the maximum and minimum of the solar cycle

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2015-04-01

    We report on the analysis of turbulence properties of the solar wind and the planetary magnetosheaths of Venus and Earth at solar maximum (2000-2001) and minimum (1997-1998, 2007-2008) as revealed by Ulysses, Cluster and Venus Express. We provide an overview of the spectral and scaling properties of turbulence during the targeted time periods. A selection of Ulysses data reveals the spectral properties of the "pure" slow and "pure" fast solar wind turbulence, out of the ecliptic, at radial distances ranging between 1.3 and 5.4 AU. Venus Express and Cluster data contribute to the description of the solar wind turbulence at 0.72 AU and respectively 1 AU. The spectral analysis of magnetosheath data from Venus Express and Cluster reveals the properties of turbulence to be compared to solar wind turbulence. The statistical properties of plasma and magnetic field fluctuations exhibit features linked with intermittency revealed as non-Gaussian Probability Distribution Functions (PDFs) and scale dependent kurtosis. PDFs are computed for the solar wind data from Ulysses, Venus Express and Cluster, and complement the analysis based on second order corrrelation function. The same strategy is applied to study the intermittency of the magnetosheath turbulence of Venus and the Earth. The results of our thorough survey of data bases are organized in catalogues available on line: PSD and PDFs results are stored in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PSDs and PDFs obtained in the terrestrial magnetosheath, and one for the solar minimum, 2007-2008, that includes PSDs and PDFs obtained in the terrestrial and Venus magnetosheaths). As an example of higher order analysis resulting from these results we discuss the similarities and differences between fast and slow wind turbulence and intermittency. We also discuss how the exploitation of data bases produced by the FP7 project STORM contribute to developing a (virtual) laboratory for studying solar system plasma turbulence and intermittency. Research supported by the European FP7 Programme (grant agreement 313038/STORM), and a national grant CNCS -UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.

  8. Variability of the Martian thermospheric temperatures during the last 7 Martian Years

    NASA Astrophysics Data System (ADS)

    Gonzalez-Galindo, Francisco; Lopez-Valverde, Miguel Angel; Millour, Ehouarn; Forget, François

    2014-05-01

    The temperatures and densities in the Martian upper atmosphere have a significant influence over the different processes producing atmospheric escape. A good knowledge of the thermosphere and its variability is thus necessary in order to better understand and quantify the atmospheric loss to space and the evolution of the planet. Different global models have been used to study the seasonal and interannual variability of the Martian thermosphere, usually considering three solar scenarios (solar minimum, solar medium and solar maximum conditions) to take into account the solar cycle variability. However, the variability of the solar activity within the simulated period of time is not usually considered in these models. We have improved the description of the UV solar flux included on the General Circulation Model for Mars developed at the Laboratoire de Météorologie Dynamique (LMD-MGCM) in order to include its observed day-to-day variability. We have used the model to simulate the thermospheric variability during Martian Years 24 to 30, using realistic UV solar fluxes and dust opacities. The model predicts and interannual variability of the temperatures in the upper thermosphere that ranges from about 50 K during the aphelion to up to 150 K during perihelion. The seasonal variability of temperatures due to the eccentricity of the Martian orbit is modified by the variability of the solar flux within a given Martian year. The solar rotation cycle produces temperature oscillations of up to 30 K. We have also studied the response of the modeled thermosphere to the global dust storms in Martian Year 25 and Martian Year 28. The atmospheric dynamics are significantly modified by the global dust storms, which induces significant changes in the thermospheric temperatures. The response of the model to the presence of both global dust storms is in good agreement with previous modeling results (Medvedev et al., Journal of Geophysical Research, 2013). As expected, the simulated ionosphere is also sensitive to the variability of the solar activity. Acknowledgemnt: Francisco González-Galindo is funded by a CSIC JAE-Doc contract financed by the European Social Fund

  9. Space weather at planet Venus during the forthcoming BepiColombo flybys

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Jackson, B.; Odstrcil, D.

    2018-03-01

    The BepiColombo (BC) Mission which will be launched in 2018, will include during its Cruise Phase two flybys of Venus and five Mercury flybys. It will then enter a one Earth year orbit about Mercury (with a possible one-year extension) during which two spacecraft, one provided by ESA (MPO) and one provided by JAXA (MMO), will perform both autonomous and coordinated observations of the Hermean environment at various separations. The measurements will take place during the minimum of solar cycle 24 and the rise of solar cycle 25. At the start of the minimum of solar cycle 23, four major flares, each associated with the production of MeV particle radiation and CME activity occurred. Predictions of the HAFv.2 model of the arrival of particle radiation and a travelling shock at Venus on 6 December 2006 were verified by in-situ measurements made aboard Venus Express (VEX) by the ASPERA 4 instrument. Interplanetary scintillation observations, as well as the ENLIL 3-D MHD model when employed separately or in combination, enable the making of predictions of the solar wind density and speed at various locations in the inner heliosphere. Both methods, which outdate HAFv.2, are utilized in the present paper to predict (retrospectively) the arrival of the flare related, interplanetary propagating shock recorded at Venus on 6 December 2006 aboard VEX with a view to putting in place the facility to make very reliable space weather predictions for BC during both its Cruise Phase and when in the Hermean environment itself. The successful matching of the December 2006 predictions with in-situ signatures recorded aboard Venus Express provide confidence that the predictive methodology to be adopted will be appropriate to provide space weather predictions for BepiColombo during its Venus flybys and throughout the mission.

  10. Variability of the occurrence frequency of solar flares as a function of peak hard X-ray rate

    NASA Technical Reports Server (NTRS)

    Bai, T.

    1993-01-01

    We study the occurrence frequency of solar flares as a function of the hard X-ray peak count rate, using observations of the Solar Maximum Mission. The size distributions are well represented by power-law distributions with negative indices. As a better alternative to the conventional method, we devise a maximum likelihood method of determining the power-law index of the size distribution. We find that the power-law index of the size distribution changes with time and with the phase of the 154-day periodicity. The size distribution is steeper during the maximum years of solar cycle 21 (1980 and 1981) than during the declining phase (1982-1984). The size distribution, however, is flatter during the maximum phase of the 154-day periodicity than during the minimum phase. The implications of these findings are discussed.

  11. Solar power satellite—Life-cycle energy recovery considerations

    NASA Astrophysics Data System (ADS)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  12. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    PubMed Central

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  13. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbits

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; McWilliams, Brett; Koontz, Steven L.

    2006-01-01

    The design estimate for the materials for the International Space Station (ISS) specified in SSP 30512 was a conservative estimate. The environment dose was over estimated. The materials originally qualified for approximately 10-15 years are anticipated to be acceptable for periods of up to 20-30 years based on SSP-30512 or 40-60 years based on 2x SSP-30512. This viewgraph presentation shows charts and graphs that review the altitude, the solar minimum and maximum, and the radiation exposure of other satellite, among other graphics.

  14. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...

  15. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...

  16. Characteristics of magnetic clouds/magnetic-cloud-like structures during the years 1995-2003

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Lepping, R.

    Using nine years of solar wind plasma and magnetic field data we investigated the characteristics of both magnetic clouds MCs and magnetic cloud like structures MCLs during 1995-2003 A MCL structure is an event which was identified by an automatic scheme Lepping et al 2005 with the same criteria as for a MC but is not identifiable as a flux rope by using the MC Burlaga 1981 fitting model developed by Lepping et al 1990 The average occurrence rate is sim 9 5 for MCs and sim 13 6 for MCLs per year for the overall period of interest and there were 82 MCs and 122 MCLs identified during this period The characteristics of MCs and MCL structures are as follows 1 The averaged duration Dt of MCs is 21 1 hour which is 40 longer than MCLs Dt 15 hrs 2 The averaged Bz min minimum Bz found in MC MCL is -10 2 nT for MCs and -6 nT for MCLs 3 The averaged Dst min minimum Dst caused by MC MCL is -82 nT for MCs and -37 nT for MCLs 4 The average of the solar wind velocity is 453 km s for MCs and 413 km s for MCLs 5 The average of the thermal speed is 24 6 km s for MCs and 27 7 km s for MCLs 6 The average of the magnetic field intensity is 12 7 nT for MCs and 9 8 nT for MCLs and 7 The average of the solar wind density is 9 4 cm -3 for MCs and 6 3 cm -3 for MCLs The longer duration more intense magnetic field and higher solar wind speed and denisty of MCs compared to those of the MCLs might be the major reason for generally causing geomagnetic storms with higher

  17. Spectral solar UV irradiance data for cycle 21

    NASA Astrophysics Data System (ADS)

    DeLand, Matthew T.; Cebula, Richard P.

    2001-10-01

    The Nimbus 7 Solar Backscatter Ultraviolet (SBUV) instrument, which began taking data in November 1978, was the first instrument to make solar UV irradiance measurements covering both the minimum and maximum activity levels of a solar cycle. The currently archived irradiance data set was processed with an instrument characterization which fails to completely account for sensor degradation in the later part of the data record, thus limiting the accuracy of estimated long-term solar activity variations and the scientific value of the data. In this paper, we describe an improved Nimbus 7 SBUV spectral irradiance data set, which utilizes a more accurate model for instrument sensitivity and treats other time-dependent problems in the archived data. Estimated long-term irradiance changes during solar cycle 21 are 8.3(+/-2.6%) at 205 nm, and 4.9(+/-1.8)% at 240 nm. The revised Nimbus 7 SBUV irradiance data are in good agreement with predictions of solar cycle variations from the Mg II index proxy model. These solar irradiance changes are also consistent with overlapping irradiance data from the declining phase of solar cycle 21 measured by the Solar Mesosphere Explorer (SME). The Nimbus 7 SBUV irradiance data represent the earliest component of a 20+ year continuous record of solar spectral UV activity.

  18. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  19. Yearly simulation of a solar-aided R22-DEGDME absorption heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ileri, A.

    1995-12-31

    The performance of a solar-aided R22-DEGDME absorption heat pump system designed for 100 kW cooling capacity is investigated by a computer simulation using hourly data for Ankara. In summer the generator, and in winter the evaporator, receives solar energy while the remaining demands are met by auxiliary heaters. When needed, these boost the temperature of the water from the storage tank to the minimum allowable levels which are determined as 20{degree}C in winter and over 80{degree}C in summer. The system performance, judged by the fraction of the load supplied from solar energy, is affected mostly from the climate, source temperaturemore » limit, collector type and area but little from storage tank size, for the sizes and configuration under investigation. With 400 m{sup 2} of high efficiency collectors, the solar energy supplied 38% of the demand in winter and 91% of the demand in summer. 22 refs., 2 figs., 6 tabs.« less

  20. UV index experimental values during the years 2000 and 2001 from the Spanish broadband UV-B radiometric network.

    PubMed

    Martínez-Lozano, José A; Marín, María J; Tena, Fernando; Utrillas, María P; Sánchez-Muniosguren, Luis; González-Frías, Carlos; Cuevas, Emilio; Redondas, Alberto; Lorente, Jerónimo; de Cabo, Xavier; Cachorro, Victoria; Vergaz, Ricardo; de Frutos, Angel; Díaz, Juan P; Expósito, Francisco J; de la Morena, Benito; Vilaplana, José M

    2002-08-01

    An analysis is made of experimental ultraviolet erythemal solar radiation data measured during the years 2000 and 2001 by the Spanish UV-B radiation evaluation and prediction network. This network consists of 16 Robertson-Berger type pyranometers for evaluating solar erythemal radiation and five Brewer spectroradiometers for evaluating the stratospheric ozone. On the basis of these data the Ultraviolet Index (UVI) was evaluated for the measuring stations that are located either in coastal regions or in the more densely populated regions inland on the Iberian Peninsula. It has been checked that in most cases the maximum irradiance values corresponded to solar noon, although there were exceptions that could be explained by cloudiness. The maximum experimental values of the UVI were around 9 during the summer, though frequently passing this value at the inland measurement stations. The annual accumulated dose of irradiation on a horizontal plane has also been studied, as well as the evolution through the year in units of energy, standard erythemal doses and minimum erythemal doses, according to different phototypes.

  1. Solar radiation and out-of-hospital cardiac arrest in Japan.

    PubMed

    Onozuka, Daisuke; Hagihara, Akihito

    2017-11-01

    Although several studies have estimated the effects of temperature on mortality and morbidity, little is known regarding the burden of out-of-hospital cardiac arrest (OHCA) attributable to solar radiation. We obtained data for all cases of OHCA and meteorological data reported between 2011 and 2014 in 3 Japanese prefectures: Hokkaido, Ibaraki, and Fukuoka. We first examined the relationship between daily solar radiation and OHCA risk for each prefecture using time-varying distributed lag non-linear models and then pooled the results in a multivariate random-effects meta-analysis. The attributable fractions of OHCA were calculated for low and high solar radiation, defined as solar radiation below and above the minimum morbidity solar radiation, respectively. The minimum morbidity solar radiation was defined as the specific solar radiation associated with the lowest morbidity risk. A total of 49,892 cases of OHCA occurred during the study period. The minimum morbidity solar radiation for each prefecture was the 100th percentile (72.5 MJ/m 2 ) in Hokkaido, the 83rd percentile (59.7 MJ/m 2 ) in Ibaraki, and the 70th percentile (53.8 MJ/m 2 ) in Fukuoka. Overall, 20.00% (95% empirical confidence interval [eCI]: 10.97-27.04) of the OHCA cases were attributable to daily solar radiation. The attributable fraction for low solar radiation was 19.50% (95% eCI: 10.00-26.92), whereas that for high solar radiation was 0.50% (95% eCI: -0.07-1.01). Low solar radiation was associated with a substantial attributable risk for OHCA. Our findings suggest that public health efforts to reduce OHCA burden should consider the solar radiation level. Large prospective studies with longitudinal collection of individual data is required to more conclusively assess the impact of solar radiation on OHCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. What the Sunspot Record Tells Us About Space Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2004-01-01

    The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modem measures of solar activity including: 10.7-cm radio flux, total irradiance, x-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modem measures of solar activity, and enough to provide important details about long-term variations in solar activity or Space Climate. The sunspot record shows: 1) sunspot cycles have periods of 131 plus or minus 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5 ) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period, 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 1.45 plus or minus 30 in 2010 while the following cycle should have a maximum of about 70 plus or minus 30 in 2023.

  3. Nonlinear solar cycle forecasting: theory and perspectives

    NASA Astrophysics Data System (ADS)

    Baranovski, A. L.; Clette, F.; Nollau, V.

    2008-02-01

    In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters - the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  4. The dynamic relation between activities in the Northern and Southern solar hemispheres

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.

    2016-12-01

    The north-south (N/S) asymmetry of solar activity is the most pronounced phenomenon during 11-year cycle minimums. The goal of this work is to try to interpret the asymmetry as a result of the generalized synchronization of two dynamic systems. It is assumed that these systems are localized in two solar hemispheres. The evolution of these systems is considered in the topological embeddings of a sunspot area time series obtained with the use of the Takens algorithm. We determine the coupling measure and estimate it on the time series of daily sunspot areas. The measurement made it possible to interpret the asymmetry as an exchangeable dynamic equation, in which the roles of the driver-slave components change in time for two hemispheres.

  5. Survey of conditions for artificial aurora experiments at EISCAT Tromsø using dynasonde data

    NASA Astrophysics Data System (ADS)

    Tsuda, T. T.; Rietveld, M. T.; Kosch, M. J.; Oyama, S.; Hosokawa, K.; Nozawa, S.; Kawabata, T.; Mizuno, A.; Ogawa, Y.

    2018-03-01

    We report a brief survey on conditions for artificial aurora optical experiments in F region heating with O-mode at the EISCAT Tromsø site using dynasonde data from 2000 to 2017. The results obtained in our survey indicate the following: The possible conditions for conducting artificial aurora experiments are concentrated in twilight hours in both evening and morning, compared with late-night hours; the possible conditions appear in fall, winter, and spring, while there is no chance in summer, and the month-to-month variation among fall, winter, and spring is not clear. The year-to-year variation is well correlated with the solar cycle, and experiments during the solar minimum would be almost hopeless. These findings are useful for planning future artificial aurora optical experiments.

  6. Annual and solar cycle dependencies of SuperDARN scatter occurrence and ionospheric convection measurements

    NASA Astrophysics Data System (ADS)

    Lester, M.; Imber, S. M.; Milan, S. E.

    2012-12-01

    The Super Dual Auroral Radar Network (SuperDARN) provides a long term data series which enables investigations of the coupled magnetosphere-ionosphere system. The network has been in existence essentially since 1995 when 6 radars were operational in the northern hemisphere and 4 in the southern hemisphere. We have been involved in an analysis of the data over the lifetime of the project and present results here from two key studies. In the first study we calculated the amount of ionospheric scatter which is observed by the radars and see clear annual and solar cycle variations in both hemispheres. The recent extended solar minimum also produces a significant effect in the scatter occurrence. In the second study, we have determined the latitude of the Heppner-Maynard Boundary (HMB) using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection for the interval 1996 - 2011. We find that the average latitude of the HMB at midnight is 61° magnetic latitude during solar the maximum of 2003, but it moves significantly poleward during solar minimum, averaging 64° latitude during 1996, and 68° during 2010. This poleward motion is observed despite the increasing number of low latitude radars built in recent years as part of the StormDARN network, and so is not an artefact of data coverage. We believe that the recent extreme solar minimum led to an average HMB location that was further poleward than the previous solar cycle. We have also calculated the Open-Closed field line Boundary (OCB) from auroral images during a subset of the interval (2000 - 2002) and find that on average the HMB is located equatorward of the OCB by ~7o. We suggest that the HMB may be a useful proxy for the OCB when global images are not available. The work presented in this paper has been undertaken as part of the European Cluster Assimilation Technology (ECLAT) project which is funded through the EU FP7 programme and involves groups at Leicester, Helsinki, Uppsala, FMI, Graz and St. Petersburg. The aim of the project is to provide additional data sets, primarily ground based data, to the Cluster Active Archive, and its successor the Cluster Final Archive, in order to enhance the scientific productivity of the archives.

  7. Design approach for solar cell and battery of a persistent solar powered GPS tracker

    NASA Astrophysics Data System (ADS)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio

    2017-08-01

    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  8. Encore of the Bashful ballerina in solar cycle 23

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Virtanen, I. I.

    2009-04-01

    The rotation averaged location of the heliospheric current sheet has been found to be shifted systematically southward for about three years in the late declining to minimum phase of the solar cycle. This behaviour, called by the concept of the Bashful ballerina, has earlier been shown to be valid at least during the active solar cycle of the last century since the late 1920s. Recently, Zhao et al have analysed the WSO observations and conclude that there is no southward coning in HCS or north-south difference in the heliospheric magnetic field during the late declining phase of solar cycle 23. In disagreement with these results, we find that there is a similar but smaller southward shift of the HCS and dominance of the northern field area as in all previous solar cycles. The present smaller asymmetry is in agreement with an earlier observation based on long-term geomagnetic activity that solar hemispheric asymmetry is larger during highly active solar cycles. Moreover, we connect the smallness of shift to the structure of the solar magnetic field with an exceptionally large tilt. We also discuss the cause of the differences between the two approaches reaching different conclusions.

  9. Forecasting the impact of an 1859-caliber superstorm on geosynchronous Earth-orbiting satellites: Transponder resources

    NASA Astrophysics Data System (ADS)

    Odenwald, Sten F.; Green, James L.

    2007-06-01

    We calculate the economic impact on the existing geosynchronous Earth-orbiting satellite population of an 1859-caliber superstorm event were it to occur between 2008 and 2018 during the next solar activity cycle. From a detailed model for transponder capacity and leasing, we have investigated the total revenue loss over the entire solar cycle, as a function of superstorm onset year and intensity. Our Monte Carlo simulations of 1000 possible superstorms, of varying intensity and onset year, suggest that the minimum revenue loss could be of the order of 30 billion. The losses would be larger than this if more that 20 satellites are disabled, if future launch rates do not keep up with the expected rate of retirements, or if the number of spare transponders falls below ˜30%. Consequently, revenue losses can be significantly reduced below 30 billion if the current satellite population undergoes net growth beyond 300 units during Solar Cycle 24 and a larger margin of unused transponders is maintained.

  10. Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model.

    PubMed

    Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan

    The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.

  11. Salient Features of the New Sunspot Number Time Series

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.; Ygbuhay, R. C.

    2016-12-01

    Recently Clette et al. (Space Sci. Rev. 186, 35, 2014) completed the first revision of the international sunspot number SSN(V2) since its creation by Wolf in 1849 SSN(V1) starting in 1700 and ending in May 2015. The yearly values of SSN(V2) are larger than those of SSN(V1) but the secular trend in their timelines both exhibit a gradual descent after Cycle 21 minimum resulting in greatly reduced activity for Cycle 24. It has two peaks; one in 2012 due to activity in the north hemisphere (NH) and the other in 2014 due to excess activity in the south hemisphere (SH). The N-S excess of hemispheric SSNs is examined for 1950 - 2014, in relation to the time variations of the solar polar field for 1976 - 2015, covering five complete solar cycles (19 - 23) and parts of the bordering two (18, 24). We find that SH tends to become progressively more active in the declining phase of the cycles reaching an extreme value that gave rise to a second higher peak in October 2014 in the smoothed SSNs accompanied by a strong solar polar field in SH. There may be a Gleissberg cyclicity in the asymmetric solar dynamo operation. The continuing descent of the secular trend in SSNs implies that we may be near a Dalton-level grand minimum. The low activity spell may last well past 2060, accompanied by a stable but reduced level of the space weather/climate. Fourier spectrum of the time domain of SSNs shows no evidence of the 208 year/cycle (ypc) (DeVries/Suess cycle) seen in the cosmogenic radionuclide ({}^{10}Be) concentration in the polar ice cores and {}^{14}C record in trees indicating that 208 ypc peak may be of non-solar origin. It may arise from the climate process(es) that change(s) the way radionuclides are deposited on polar ice. It should be noted that we only have {˜} 400 years of SSN data, so it is possible that DeVries/Suess cycle is really driven by the Sun but for now we do not have any evidence of that; there is no known physical process linking 208 ypc to solar dynamo operation.

  12. Space Radiation Risks for Astronauts on Multiple International Space Station Missions

    PubMed Central

    Cucinotta, Francis A.

    2014-01-01

    Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA’s radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members’ radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate. PMID:24759903

  13. Space radiation risks for astronauts on multiple International Space Station missions.

    PubMed

    Cucinotta, Francis A

    2014-01-01

    Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA's radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members' radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate.

  14. VizieR Online Data Catalog: Evolution of solar irradiance during Holocene (Vieira+, 2011)

    NASA Astrophysics Data System (ADS)

    Vieira, L. E. A.; Solanki, S. K.; Krivova, N. A.; Usoskin, I.

    2011-05-01

    This is a composite total solar irradiance (TSI) time series for 9495BC to 2007AD constructed as described in Sect. 3.3 of the paper. Since the TSI is the main external heat input into the Earth's climate system, a consistent record covering as long period as possible is needed for climate models. This was our main motivation for constructing this composite TSI time series. In order to produce a representative time series, we divided the Holocene into four periods according to the available data for each period. Table 4 (see below) summarizes the periods considered and the models available for each period. After the end of the Maunder Minimum we compute daily values, while prior to the end of the Maunder Minimum we compute 10-year averages. For the period for which both solar disk magnetograms and continuum images are available (period 1) we employ the SATIRE-S reconstruction (Krivova et al. 2003A&A...399L...1K; Wenzler et al. 2006A&A...460..583W). SATIRE-T (Krivova et al. 2010JGRA..11512112K) reconstruction is used from the beginning of the Maunder Minimum (approximately 1640AD) to 1977AD. Prior to 1640AD reconstructions are based on cosmogenic isotopes (this paper). Different models of the Earth's geomagnetic field are available before and after approximately 5000BC. Therefore we treat periods 3 and 4 (before and after 5000BC) separately. Further details can be found in the paper. We emphasize that the reconstructions based on different proxies have different time resolutions. (1 data file).

  15. CMEs, the Tail of the Solar Wind Magnetic Field Distribution, and 11-yr Cosmic Ray Modulation at 1 AU. Revised

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Richardson, I. G.

    2003-01-01

    Using a recent classification of the solar wind at 1 AU into its principal components (slow solar wind, high-speed streams, and coronal mass ejections (CMEs) for 1972-2000, we show that the monthly-averaged galactic cosmic ray intensity is anti-correlated with the percentage of time that the Earth is imbedded in CME flows. We suggest that this correlation results primarily from a CME related change in the tail of the distribution function of hourly-averaged values of the solar wind magnetic field (B) between solar minimum and solar maximum. The number of high-B (square proper subset 10 nT) values increases by a factor of approx. 3 from minimum to maximum (from 5% of all hours to 17%), with about two-thirds of this increase due to CMEs. On an hour-to-hour basis, average changes of cosmic ray intensity at Earth become negative for solar wind magnetic field values square proper subset 10 nT.

  16. Characteristics of low-latitude ionospheric depletions and enhancements during solar minimum

    NASA Astrophysics Data System (ADS)

    Haaser, R. A.; Earle, G. D.; Heelis, R. A.; Klenzing, J.; Stoneback, R.; Coley, W. R.; Burrell, A. G.

    2012-10-01

    Under the waning solar minimum conditions during 2009 and 2010, the Ion Velocity Meter, part of the Coupled Ion Neutral Dynamics Investigation aboard the Communication/Navigation Outage Forecasting System satellite, is used to measure in situ nighttime ion densities and drifts at altitudes between 400 and 550 km during the hours 21:00-03:00 solar local time. A new approach to detecting and classifying well-formed ionospheric plasma depletions and enhancements (bubbles and blobs) with scale sizes between 50 and 500 km is used to develop geophysical statistics for the summer, winter, and equinox seasons during the quiet solar conditions. Some diurnal and seasonal geomagnetic distribution characteristics confirm previous work on equatorial irregularities and scintillations, while other elements reveal new behaviors that will require further investigation before they may be fully understood. Events identified in the study reveal very different and often opposite behaviors of bubbles and blobs during solar minimum. In particular, more bubbles demonstrating deeper density fluctuations and faster perturbation plasma drifts typically occur earlier near the magnetic equator, while blobs of similar magnitude occur more often far away from the geomagnetic equator closer to midnight.

  17. Seasonal variations of mesopause temperature and the amplitude of the VLF signals of the Novosibirsk radio station during 2009-2016

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexey; Kozlov, Vladimir; Ammosova, Anastasia; Ammosov, Petr; Gavrilyeva, Galina; Koltovskoi, Igor; Pavlov, Yegor

    2017-10-01

    Dynamics of seasonal variations of the amplitude of the VLF radio signal received in Yakutsk from the navigation station near Novosibirsk and the P-branches of the OH band (6-2) radiation intensity in the wavelength range 835 - 853 nm are considered. The radiation variations give information about mesopause region measured at the Maimaga station (130 km from Yakutsk). The observation from 2009 to 2016 covers period with minimum and maximum solar activity. The mesopause temperature and the VLF signal increase with increasing solar flux F10.7 in winter. The mesopause temperature seasonal variations and the VLF signal strength for the Novosibirsk-Yakutsk path are regularly inverted from year to year. By decade data averaging the VLF radio signal strength dependence on the temperature of the atmosphere at the OH excitation height can be expressed by a linear function. The coefficient of determination: R2 = 0.59, the anticorrelation coefficient: r10 = - 0.77. The variations of the VLF radio noise and the radio station signal for the eight-year interval are similar to solar activity (F10.7 index). The signal level of the radio station and radio noise registered in the winter is more sensitive to variations of F10.7 index in 24th solar cycle activity.

  18. Polar Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2010-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approximately 250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  19. Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    NASA Technical Reports Server (NTRS)

    Hablani, Hari B.

    1993-01-01

    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.

  20. Field aligned current study during the solar declining- extreme minimum of 23 solar cycle

    NASA Astrophysics Data System (ADS)

    Nepolian, Jeni Victor; Kumar, Anil; C, Panneerselvam

    Field Aligned Current (FAC) density study has been carried out during the solar declining phase from 2004 to 2006 of the 23rd solar cycle and the ambient terrestrial magnetic field of the extended minimum period of 2008 and 2009. We mainly depended on CHAMP satellite data (http://isdc.gfz-potsdam.de/) for computing the FAC density with backup of IGRF-10 model. The study indicates that, the FAC is controlled by quasi-viscous processes occurring at the flank of the earth’s magnetosphere. The dawn-dusk conventional pattern enhanced during disturbed days. The intensity of R1 current system is higher than the R2 current system. Detailed results will be discussed in the conference.

  1. Geomagnetic storms of cycle 24 and their solar sources

    NASA Astrophysics Data System (ADS)

    Watari, Shinichi

    2017-05-01

    Solar activity of cycle 24 following the deep minimum between cycle 23 and cycle 24 is the weakest one since cycle 14 (1902-1913). Geomagnetic activity is also low in cycle 24. We show that this low geomagnetic activity is caused by the weak dawn-to-dusk solar wind electric field ( E d-d) and that the occurrence rate of E d-d > 5 mV/m decreased in the interval from 2013 to 2014. We picked up seventeen geomagnetic storms with the minimum Dst index of less than -100 nT and identified their solar sources in cycle 24 (2009-2015). It is shown that the relatively slow coronal mass ejections contributed to the geomagnetic storms in cycle 24.

  2. Panel Discussions on Total Solar Irradiance Variations and the Maunder Minimum

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; White, O. R.

    1993-01-01

    For more than a decade, total solar irradiance has been monitored from several satellites, namely and Nimbus-7, Solar Maximum Mission (SMM), the NASA ERBS, NOAA9 and NOAA10,EURECA, and the Upper Atmospheric Research Satellite (SARS).

  3. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    NASA Astrophysics Data System (ADS)

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  4. Thermospheric mass density model error variance as a function of time scale

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Sutton, E. K.

    2017-12-01

    In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).

  5. Quiet-time properties of low-energy (less than 10 MeV per nucleon) interplanetary ions during solar maximum and solar minimum

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Reames, D. V.; Wenzel, K.-P.; Rodriguez-Pacheco, J.

    1990-01-01

    The abundances and spectra of 1-10 MeV per nucleon protons, He-3, He-4, C, O, and Fe have been exmained during solar quiet periods from 1978 to 1987 in an effort to investigate the recent suggestion by Wenzel et al. (1990) that the ions may be of solar origin. It is found that the intensities of the ions, other than O, fall by an order of magnitude between solar maximum and solar minimum, and that the greater than 1 MeV per nucleon ions exhibit weak streaming away from the sun. More significantly, the quiet-time ions during solar maximum have He-3-rich and Fe-rich abundances which are established characteristics of small impulsive solar flares. Thus, it is suggested that small unresolved impulsive flares make a substantial contribution to the 'quiet-time' fluxes. He-4 from these flares may also contribute strongly to the ion spectra that were reported for the 35-1600 keV energy range by Wenzel et al.

  6. Cosmic Ray Hits in the Central Nervous System at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Curtis, S. B.; Vazquez, M. E.; Wilson, J. W.; Atwell, W.; Kin, M.-H. Y.

    2000-01-01

    It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with z greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain.

  7. Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Schwadron, N. A.; Townsend, L.; Cucinotta, F. A.

    2010-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut’s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth’s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift of the organ exposures to higher velocity or lower stopping powers compared to those in deep space was analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.

  8. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    NASA Astrophysics Data System (ADS)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  9. Space Station Solar Array Joint Repair

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Allmon, Curtis; Reznik, Carter; McFatter, Justin; Davis, Robert E.

    2015-01-01

    In Oct 2007 the International Space Station (ISS) crew noticed a vibrating camera in the vicinity of Starboard Solar Alpha Rotary Joint (SARJ). It had less than 5 months of run time when the anomaly was observed. This approximately 3.2 meter diameter bearing joint supports solar arrays that power the station critical to its operation. The crew performed an EVA to identify what was causing the vibration. It was discovered that one of the 3 bearing tracks of this unconventional bearing had significant spalling damage. This paper discusses the SARJ's unique bearing design and the vulnerability in its design leading to the observed anomaly. The design of a SARJ vacuum test rig is also described along with the results of a life test that validated the proposed repair should extend the life of the SARJ a minimum of 18 years on-orbit.

  10. Using the Solar Polar Magnetic Field for Longterm Predictions of Solar Activity, Solar Cycles 21-25

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.; Schatten, K. H.

    2017-12-01

    We briefly review the dynamo and geomagnetic precursor methods of long-term solar activity forecasting. These methods depend upon the most basic aspect of dynamo theory to predict future activity, future magnetic field arises directly from the amplification of pre-existing magnetic field. We then generalize the dynamo technique, allowing the method to be used at any phase of the solar cycle, to the Solar Dynamo Amplitude (SODA) index. This index is sensitive to the magnetic flux trapped within the Sun's convection zone but insensitive to the phase of the solar cycle. Since magnetic fields inside the Sun can become buoyant, one may think of the acronym SODA as describing the amount of buoyant flux. We will show how effective the SODA Index has been in predicting Solar Cycles 23 and 24, and present a unified picture of earlier estimates of the polar magnetic configuration in Solar Cycle 21 and 22. Using the present value of the SODA index, we estimate that the next cycle's smoothed peak activity will be about 125 ± 30 solar flux units for the 10.7 cm radio flux and a sunspot number of 70 ± 25. This suggests that Solar Cycle 25 will be comparable to Solar Cycle 24. Since the current approach uses data prior to solar minimum, these estimates may improve when the upcoming solar minimum is reached.

  11. Dish Stirling solar receiver program

    NASA Technical Reports Server (NTRS)

    Haglund, R. A.

    1980-01-01

    A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.

  12. Regional climate impacts of a possible future grand solar minimum.

    PubMed

    Ineson, Sarah; Maycock, Amanda C; Gray, Lesley J; Scaife, Adam A; Dunstone, Nick J; Harder, Jerald W; Knight, Jeff R; Lockwood, Mike; Manners, James C; Wood, Richard A

    2015-06-23

    Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.

  13. A Two Dimensional Prediction of Solar Cycle 25

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, A.; Martens, P. C.

    2017-12-01

    To this date solar cycle most cycle predictions have focused on the forecast of solar cycle amplitude and cycle bell-curve shape. However, recent intriguing observational results suggest that all solar cycles follow the same longitudinal path regardless of their amplitude, and have a very similar decay once they reach a sufficient level of maturity. Cast in the light of our current understanding, these results suggest that the toroidal fields inside the Sun are subject to a very high turbulent diffusivity (of the order of magnitude of mixing-length estimates), and their equatorward propagation is driven by a steady meridional flow. Assuming this is the case, we will revisit the relationship between the polar fields at minimum and the amplitude of the next cycle and deliver a new generation of polar-field based predictions that include the depth of the minimum, as well as the latitude and time of the first active regions of solar cycle 25.

  14. Bashful ballerina: Southward shifted heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    2003-11-01

    It is known since long [Rosenberg and Coleman, 1969] that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  15. Bashful Ballerina: Southward shifted Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    It is known since long (Rosenberg and Coleman, 1969) that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  16. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which would be produced mostly by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts that during low solar activity periods, the solar cycle length tends to be longer, as some researchers have claimed. These results clearly indicate that both solar and climate oscillations are linked to planetary motion and, furthermore, their timing can be reasonably hindcast and forecast for decades, centuries and millennia. Scafetta, N.: Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. J. Atmos. Sol.- Terr. Phys. 80, 296-311 (2012). Scafetta, N.: Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol.-Terr. Phys. 81-82, 27-40 (2012). Scafetta, N.: Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques. Astrophys. Space Sci. 354, 275-299 (2014).

  17. Single-Crystalline InGaAs/InP Dense Micro-Pillar Forest on Poly-Silicon Substrates for Low-Cost High-Efficiency Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Hasnain, Constance

    2015-05-04

    The ultimate goal of this project is to develop a photovoltaic system high conversion efficiency (>20%) using high quality III-V compound-based three-dimensional micro-structures on silicon and poly-silicon. Such a PV-system could be of very low cost due to minimum usages of III-V materials. This project will address the barriers that currently hamper the performance of solar cells based on three-dimensional micro-structures. To accomplish this goal the project is divided into 4 tasks, each dealing with a different aspect of the project: materials quality, micropillar growth control, light management, and pillar based solar cells. Materials Quality: the internal quantum efficiency (IQE)more » - by which is meant here the internal fluorescence yield - of the micro-pillars has to be increased. We aim at achieving an IQE of 45% by the end of the first year. By the end of the second year there will be a go-no-go milestone of 65% IQE. By the end of year 3 and 4 we aim to achieve 75% and 90% IQE, respectively. Micropillar growth control: dense forests of micropillars with high fill ratios need to be grown. Pillars within forests should show minimum variations in size. We aim at achieving fill ratios of 2%, 10%, >15%, >20% in years 1, 2, 3, and 4, respectively. Variations in dimension should be minimized by site-controlled growth of pillars. By the end of year 1 we will aim at achieving site-controlled growth with > 15% yield. By end of year 2 the variation of critical pillar dimensions should be less than 25%. Light management: high light absorption in the spectral range of the sun has been to be demonstrated for the micropillar forests. By the end of year 1 we will employ FDTD simulation techniques to demonstrate that pillar forests with fill ratios <20% can achieve 99% light absorption. By end of year 2 our original goal was to demonstrate >85% absorption. By end of year 3 > 90% absorption should be demonstrated. Pillar based solar cells: devices will be studied to explore ways to achieve high open-circuit voltages which will lead to high efficiency micropillar-based solar cells. We will start on single pillar devices and the findings in these studies should pave the way for devices based on forests/ arrays of pillars. By the end of the second year we aim to demonstrate a single pillar device with an open-circuit voltage of 0.7 V, as well as a pillar-forest based device with 8% conversion efficiency. By the end of year 3 these numbers should be improved to 0.9 V open-circuit voltage for single pillar devices and >15% efficiency for forest/array-based devices. We will aim to realize a device with 20% efficiency by the end of the project period.« less

  18. Detection of large scale geomagnetic pulsations by MAGDAS-egypt stations during the solar minimum of the solar cycle 24

    NASA Astrophysics Data System (ADS)

    Fathy, Ibrahim

    2016-07-01

    This paper presents a statistical study of different types of large-scale geomagnetic pulsation (Pc3, Pc4, Pc5 and Pi2) detected simultaneously by two MAGDAS stations located at Fayum (Geo. Coordinates 29.18 N and 30.50 E) and Aswan (Geo. Coordinates 23.59 N and 32.51 E) in Egypt. The second order butter-worth band-pass filter has been used to filter and analyze the horizontal H-component of the geomagnetic field in one-second data. The data was collected during the solar minimum of the current solar cycle 24. We list the most energetic pulsations detected by the two stations instantaneously, in addition; the average amplitude of the pulsation signals was calculated.

  19. Four Years of Venus Express Magnetic Field Observations: Variable Bow Shock Location and Other Features

    NASA Astrophysics Data System (ADS)

    Zhang, Tielong; Baumjohann, Wolfgang; Russell, C. T.

    Since the Venus Express insertion into a highly elliptical polar orbit with a period of 24 h around the planet Venus, the magnetometer has operated continuously for about 4 years and obtained a wealth of data in the solar minimum at rather low altitude, which was not reached by earlier missions. In this paper, we review the magnetic field observations by Venus Express emphasizing on the variable bow shock location and other space environment features such as the magnetic barrier and the magnetotail.

  20. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-11-01

    The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the Dalton Minimum (DM) - this effect is especially well visible for NOx/NOy. Thus, this study also shows the non-linear behaviour of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NOx field is dominated by the energetic particle precipitation. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.

  1. On the Occurrence of Afternoon Counter Electrojet Over Indian Longitudes During June Solstice in Solar Minimum

    NASA Astrophysics Data System (ADS)

    Pandey, Kuldeep; Sekar, R.; Anandarao, B. G.; Gupta, S. P.; Chakrabarty, D.

    2018-03-01

    Studies made earlier using ground-based observations of geomagnetic field over the Indian longitudes revealed that the occurrence of equatorial counter electrojet (CEJ) events in afternoon hours is more frequent during June solstice (May-June-July-August) in solar minimum than in other periods. In general, the June solstice solar minimum CEJ events occur between 1500 local time (LT) and 1800 LT with peak strength of about -10 nT at around 1600 LT. In order to understand the frequent occurrence of these CEJ events, an investigation is carried out using an equatorial electrojet model (Anandarao, 1976, https://doi.org/10.1029/GL003i009p00545) and the empirical vertical drift model by Fejer et al. (2008, https://doi.org/10.1029/2007JA012801). The strength, duration, peak value, and the occurrence time of CEJ obtained using electrojet model match remarkably well with the corresponding observation of average geomagnetic field variations. The occurrence of CEJ is found to be due to solar quiet (Sq) electric field in the westward direction which is manifested as downward drift in Fejer et al. (2008, https://doi.org/10.1029/2007JA012801) model output during 1500-1800 LT. Further, the occurrence of afternoon reversal of Sq electric field in this season is shown to be consistent with earlier studies from Indian sector. Therefore, this investigation provides explicit evidence for the role of westward Sq electric field on the generation of afternoon CEJ during June solstice in solar minimum periods over the Indian sector indicating the global nature of these CEJ events.

  2. Is There a CME Rate Floor? CME and Magnetic Flux Values for the Last Four Solar Cycle Minima

    NASA Astrophysics Data System (ADS)

    Webb, D. F.; Howard, R. A.; St. Cyr, O. C.; Vourlidas, A.

    2017-12-01

    The recent prolonged activity minimum has led to the question of whether there is a base level of the solar magnetic field evolution that yields a “floor” in activity levels and also in the solar wind magnetic field strength. Recently, a flux transport model coupled with magneto-frictional simulations has been used to simulate the continuous magnetic field evolution in the global solar corona for over 15 years, from 1996 to 2012. Flux rope eruptions in the simulations are estimated (Yeates), and the results are in remarkable agreement with the shape of the SOlar Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment coronal mass ejection (CME) rate distribution. The eruption rates at the two recent minima approximate the observed-corrected CME rates, supporting the idea of a base level of solar magnetic activity. In this paper, we address this issue by comparing annual averages of the CME occurrence rates during the last four solar cycle minima with several tracers of the global solar magnetic field. We conclude that CME activity never ceases during a cycle, but maintains a base level of 1 CME every 1.5 to ∼3 days during minima. We discuss the sources of these CMEs.

  3. Behavior of Solar Cycles 23 and 24 Revealed by Microwave Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Maekelae, P.; Michalek, G.; Shibasaki, K.; Hathaway, D. H.

    2012-01-01

    Using magnetic and microwave butterfly diagrams, we compare the behavior of solar polar regions to show that (1) the polar magnetic field and the microwave brightness temperature during solar minimum substantially diminished during the cycle 23/24 minimum compared to the 22/23 minimum. (2) The polar microwave brightness temperature (Tb) seems to be a good proxy for the underlying magnetic field strength (B). The analysis indicates a relationship, B = 0.0067Tb - 70, where B is in G and Tb in K. (3) Both the brightness temperature and the magnetic field strength show north-south asymmetry most of the time except for a short period during the maximum phase. (4) The rush-to-the-pole phenomenon observed in the prominence eruption (PE) activity seems to be complete in the northern hemisphere as of 2012 March. (5) The decline of the microwave brightness temperature in the north polar region to the quiet-Sun levels and the sustained PE activity poleward of 60degN suggest that solar maximum conditions have arrived at the northern hemisphere. The southern hemisphere continues to exhibit conditions corresponding to the rise phase of solar cycle 24. Key words: Sun: chromosphere Sun: coronal mass ejections (CMEs) Sun: filaments, prominences Sun: photosphere Sun: radio radiation Sun: surface magnetism

  4. Great geomagnetic storm of 9 November 1991: Association with a disappearing solar filament

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Balasubramaniam, K. S.; Nitta, N. V.; Li, X.

    2009-02-01

    We attribute the great geomagnetic storm on 8-10 November 1991 to a large-scale eruption that encompassed the disappearance of a ~25° solar filament in the southern solar hemisphere. The resultant soft X-ray arcade spanned ~90° of solar longitude. The rapid growth of an active region lying at one end of the X-ray arcade appears to have triggered the eruption. This is the largest geomagnetic storm yet associated with the eruption of a quiescent filament. The minimum hourly Dst value of -354 nT on 9 November 1991 compares with a minimum Dst value of -161 nT for the largest 27-day recurrent (coronal hole) storm observed from 1972 to 2005 and the minimum -559 nT value observed during the flare-associated storm of 14 March 1989, the greatest magnetic storm recorded during the space age. Overall, the November 1991 storm ranks 15th on a list of Dst storms from 1905 to 2004, surpassing in intensity such well-known storms as 14 July 1982 (-310 nT) and 15 July 2000 (-317 nT). We used the Cliver et al. and Gopalswamy et al. empirical models of coronal mass ejection propagation in the solar wind to provide consistency checks on the eruption/storm association.

  5. Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum in Microwaves

    NASA Technical Reports Server (NTRS)

    Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2011-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radio-heliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  6. Comparison of incoherent scatter radar observations of SIMPLEX electron density depletion with SAMI2 and SAMI3 model results

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Huba, J. D.; Bernhardt, P. A.; Erickson, P. J.

    2010-12-01

    The Space Shuttle's Orbital Maneuvering System (OMS) engines have been used for active ionospheric modification experiments employing ground based ionospheric radars as diagnostic tools. These experiments initiated by the Naval Research Laboratory in 1995 have been scheduled as the Shuttle Ionospheric Modification with Pulsed Localized Exhaust or SIMPLEX through the US Dept. of Defense's Space Test Program. During 2009, two SIMPLEX experiments with the shuttles STS-119 and STS-128 were viewed by the Millstone Hill 440 MHz radar in Westford, MA operated by the MIT Haystack Observatory. The objectives of these experiments were to observe local ion-acoustic turbulence and the ionospheric density irregularities created by the exhaust injection across the magnetic field that present a Bragg scattering target for the radar. The exhaust also creates a depletion in the background electron density at F-region altitudes that persists for a relatively long time and is readily detected by an incoherent scatter radar. The OMS engine burns release 10 kg/s of H2O, CO2, H2, and N2 molecules that charge exchange with ambient O+ ions at the F region heights, producing molecular ions and the electron density depletion due to the recombination with the ambient electrons. 2009 was a year of deep solar minimum that saw the background electron density values 19% lower than were expected during a solar minimum. (Emmert et al., GRL, 2010). We believe that the long recovery time from density depletion in SIMPLEX experiments of 2009 may have a root in the unique nature of the deep solar minimum. The density whole production and recovery will be modeled using NRL SAMI2 and SAMI3 model and the results will be discussed along with the observations using the incoherent scatter radar.

  7. Solar Control of Earth's Ionosphere: Observations from Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Doe, R. A.; Thayer, J. P.; Solomon, S. C.

    2005-05-01

    A nine year database of sunlit E-region electron density altitude profiles (Ne(z)) measured by the Sondrestrom ISR has been partitioned over a 30-bin parameter space of averaged 10.7 cm solar radio flux (F10.7) and solar zenith angle (χ) to investigate long-term solar and thermospheric variability, and to validate contemporary EUV photoionization models. A two stage filter, based on rejection of Ne(z) profiles with large Hall to Pedersen ratio, is used to minimize auroral contamination. Resultant filtered mean Ne(z) compares favorably with subauroral Ne measured for the same F10.7 and χ conditions at the Millstone Hill ISR. Mean Ne, as expected, increases with solar activity and decreases with large χ, and the variance around mean Ne is shown to be greatest at low F10.7 (solar minimum). ISR-derived mean Ne is compared with two EUV models: (1) a simple model without photoelectrons and based on the 5 -- 105 nm EUVAC model solar flux [Richards et al., 1994] and (2) the GLOW model [Solomon et al., 1988; Solomon and Abreu, 1989] suitably modified for inclusion of XUV spectral components and photoelectron flux. Across parameter space and for all altitudes, Model 2 provides a closer match to ISR mean Ne and suggests that the photoelectron and XUV enhancements are essential to replicate measured plasma densities below 150 km. Simulated Ne variance envelopes, given by perturbing the Model 2 neutral atmosphere input by the measured extremum in Ap, F10.7, and Te, are much narrower than ISR-derived geophysical variance envelopes. We thus conclude that long-term variability of the EUV spectra dominates over thermospheric variability and that EUV spectral variability is greatest at solar minimum. ISR -- model comparison also provides evidence for the emergence of an H (Lyman β) Ne feature at solar maximum. Richards, P. G., J. A. Fennelly, and D. G. Torr, EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981, 1994. Solomon, S. C., P. B. Hays, and V. J. Abreu, The auroral 6300 Å emission: Observations and Modeling, J. Geophys. Res., 93, 9867, 1988. Solomon, S. C. and V. J. Abreu, The 630 nm dayglow, J. Geophys. Res., 94, 6817, 1989.

  8. FUPSOL: Modelling the Future and Past Solar Influence on Earth Climate

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Rozanov, E.; Peter, T.

    2012-04-01

    Global warming is becoming one of the main threats to mankind. There is growing evidence that anthropogenic greenhouse gases have become the dominant factor since about 1970. At the same time natural factors of climate change such as solar and volcanic forcings cannot be neglected on longer time scales. Despite growing scientific efforts over the last decades in both, observations and simulations, the uncertainty of the solar contribution to the past climate change remained unacceptably high (IPCC, 2007), the reasons being on one hand missing observations of solar irradiance prior to the satellite era, and on the other hand a majority of models so far not including all processes relevant for solar-climate interactions. This project aims at elucidating the processes governing the effects of solar activity variations on Earth's climate. We use the state-of-the-art coupled atmosphere-ocean-chemistry-climate model (AOCCM) SOCOL (Schraner et al, 2008) developed in Switzerland by coupling the community Earth System Model (ESM) COSMOS distributed by MPI for Meteorology (Hamburg, Germany) with a comprehensive atmospheric chemistry module. The model solves an extensive set of equations describing the dynamics of the atmosphere and ocean, radiative transfer, transport of species, their chemical transformations, cloud formation and the hydrological cycle. The intention is to show how past solar variations affected climate and how the decrease in solar forcing expected for the next decades will affect climate on global and regional scales. We will simulate the global climate system behavior during Dalton minimum (1790 and 1830) and first half of 21st century with a series of multiyear ensemble experiments and perform these experiments using all known anthropogenic and natural climate forcing taken in different combinations to understand the effects of solar irradiance in different spectral regions and particle precipitation variability. Further on, we will quantify the solar influence on global climate in the future by evaluating the simulations and using information from past analogs such as the Dalton minimum. In the end, the project aims at reducing the uncertainty of the solar contribution to past and future climate change, which so far remained high despite many years of analyses of observational records and theoretical investigations with climate models of different complexity.

  9. Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?

    DOE PAGES

    Wing, Simon; Rider, Lisa G.; Johnson, Jay R.; ...

    2015-05-15

    Our objective was to examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlationmore » of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.« less

  10. Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?

    PubMed Central

    Wing, Simon; Rider, Lisa G; Johnson, Jay R; Miller, Federick W; Matteson, Eric L; Gabriel, Sherine E

    2015-01-01

    Objective To examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods We used data from patients with GCA (1950–2004) and RA (1955–2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results The correlation of GCA incidence with AL is highly significant: GCA incidence peaks 0–1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5–7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4–5 years. However, the RA incidence power spectrum main peak is broader (8–11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4–5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. The link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases. PMID:25979866

  11. Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wing, Simon; Rider, Lisa G.; Johnson, Jay R.

    Our objective was to examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlationmore » of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.« less

  12. Predictions of Solar Cycle 24: How are We Doing?

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2016-01-01

    Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average sunspot number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual sunspot number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average sunspot cycle. There were peaks in the daily and monthly averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next sunspot cycle. But predictions based only on the statistics of the sunspot number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.

  13. OSO 8 observations of wave propagation in the solar chromosphere and transition region

    NASA Technical Reports Server (NTRS)

    Chipman, E. G.

    1978-01-01

    The University of Colorado instrument on OSO 8 has been used to observe relative phases of the 300-s intensity variation between the temperature-minimum region and several emission lines formed in the solar chromosphere and chromosphere-corona transition region. The lines used are due to Fe II, Si II, C II, Si IV, and C IV. The scattered light in the spectrograph, which originates almost entirely in the spectral region between 1700 and 1900 A, was used as a probe of the temperature-minimum region. The lines of Fe II, Si II, and C II show almost identical delays of approximately 30 s relative to the temperature minimum, while the intensity oscillations of the lines of Si IV and C IV appear to lead the temperature-minimum intensity oscillations by about 10 s.

  14. Updated Model of the Solar Energetic Proton Environment in Space

    NASA Astrophysics Data System (ADS)

    Jiggens, Piers; Heynderickx, Daniel; Sandberg, Ingmar; Truscott, Pete; Raukunen, Osku; Vainio, Rami

    2018-05-01

    The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) model provides environment specification outputs for all aspects of the Solar Energetic Particle (SEP) environment. The model is based upon a thoroughly cleaned and carefully processed data set. Herein the evolution of the solar proton model is discussed with comparisons to other models and data. This paper discusses the construction of the underlying data set, the modelling methodology, optimisation of fitted flux distributions and extrapolation of model outputs to cover a range of proton energies from 0.1 MeV to 1 GeV. The model provides outputs in terms of mission cumulative fluence, maximum event fluence and peak flux for both solar maximum and solar minimum periods. A new method for describing maximum event fluence and peak flux outputs in terms of 1-in-x-year SPEs is also described. SAPPHIRE proton model outputs are compared with previous models including CREME96, ESP-PSYCHIC and the JPL model. Low energy outputs are compared to SEP data from ACE/EPAM whilst high energy outputs are compared to a new model based on GLEs detected by Neutron Monitors (NMs).

  15. Solar and climate signal records in tree ring width from Chile (AD 1587 1994)

    NASA Astrophysics Data System (ADS)

    Rodolfo Rigozo, Nivaor; Roger Nordemann, Daniel Jean; Evangelista da Silva, Heitor; Pereira de Souza Echer, Mariza; Echer, Ezequiel

    2007-01-01

    Tree growth rings represent an important natural record of past climate variations and solar activity effects registered on them. We performed in this study a wavelet analysis of tree ring samples of Pilgerodendron cupressoides species, from Glaciar Pio XI (Lat: 49°12'S; 74°55'W; Alt: 25 m), Chile. We obtained an average chronology of about 400 years from these trees. The 11-yr solar cycle was present during the whole period in tree ring data, being more intense during Maunder minimum (1645-1715). The short-term periods, around 2-7 yr, that were found are more likely associated with ENSO effects. Further, we found significant periods around 52 and 80-100 yr. These periodicities are coincident with the fourth harmonic (52 yr) of the Suess cycle (208 yr) and Gleissberg (˜80-100 yr) solar cycles. Therefore, the present analysis shows evidence of solar activity effect/modulation on climatic conditions that affect tree ring growth. Although we cannot say with the present analysis if this effect is on local, regional or global climate, these results add evidence to an important role of solar activity over terrestrial climate over the past ˜400 yr.

  16. A reference solar spectral irradiance for use in atmospheric modeling

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The present state of knowledge concerning the absolute magnitude and temporal variability of the solar spectral irradiance is outlined with emphasis on wavelengths relevant to the mesosphere and stratosphere. Reference spectra for the wavelength region 175 to 850 nm are presented including estimates for solar maximum and solar minimum conditions. Values for the Lyman alpha emission are given separately.

  17. On-Orbit Reconfigurable Solar Array

    NASA Technical Reports Server (NTRS)

    Levy, Robert K. (Inventor)

    2017-01-01

    In one or more embodiments, the present disclosure teaches a method for reconfiguring a solar array. The method involves providing, for the solar array, at least one string of solar cells. The method further involves deactivating at least a portion of at least one of the strings of solar cells of the solar array when power produced by the solar array reaches a maximum power allowance threshold. In addition, the method involves activating at least a portion of at least one of the strings of the solar cells in the solar array when the power produced by the solar array reaches a minimum power allowance threshold.

  18. Seven Years of Imaging the Global Heliosphere with IBEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D. J.; Zirnstein, E. J.; Bzowski, M.

    2017-04-01

    The Interstellar Boundary Explorer ( IBEX ) has now operated in space for 7 years and returned nearly continuous observations that have led to scientific discoveries and reshaped our entire understanding of the outer heliosphere and its interaction with the local interstellar medium. Here we extend prior work, adding the 2014–2015 data for the first time, and examine, validate, initially analyze, and provide a complete 7-year set of Energetic Neutral Atom (ENA) observations from ∼0.1 to 6 keV. The data, maps, and documentation provided here represent the 10th major release of IBEX data and include improvements to various prior correctionsmore » to provide the citable reference for the current version of IBEX data. We are now able to study time variations in the outer heliosphere and interstellar interaction over more than half a solar cycle. We find that the Ribbon has evolved differently than the globally distributed flux (GDF), with a leveling off and partial recovery of ENAs from the GDF, owing to solar wind output flattening and recovery. The Ribbon has now also lost its latitudinal ordering, which reflects the breakdown of solar minimum solar wind conditions and exhibits a greater time delay than for the surrounding GDF. Together, the IBEX observations strongly support a secondary ENA source for the Ribbon, and we suggest that this be adopted as the nominal explanation of the Ribbon going forward.« less

  19. Broad Plasma Decreases in the Equatorial Ionosphere

    DTIC Science & Technology

    2009-08-06

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-01-0188 The public reporting burden for this collection of information is estimated to...currently valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-08-2009 2. REPORT TYPE REPRINT...June solstices; during (2) solar minimum years); (3) in the vicinity of the SAA. Neutral densities were examined during periods when BPDs were

  20. Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes

    NASA Astrophysics Data System (ADS)

    Jakobsen, Michael L.; Thorsteinsson, Sune; Poulsen, Peter B.; Riedel, N.; Rødder, Peter M.; Rødder, Kristin

    2017-09-01

    Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data.

  1. Variability of space climate and its extremes with successive solar cycles

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Hush, Phillip; Tindale, Elisabeth; Dunlop, Malcolm; Watkins, Nicholas

    2016-04-01

    Auroral geomagnetic indices coupled with in situ solar wind monitors provide a comprehensive data set, spanning several solar cycles. Space climate can be considered as the distribution of space weather. We can then characterize these observations in terms of changing space climate by quantifying how the statistical properties of ensembles of these observed variables vary between different phases of the solar cycle. We first consider the AE index burst distribution. Bursts are constructed by thresholding the AE time series; the size of a burst is the sum of the excess in the time series for each time interval over which the threshold is exceeded. The distribution of burst sizes is two component with a crossover in behaviour at thresholds ≈ 1000 nT. Above this threshold, we find[1] a range over which the mean burst size is almost constant with threshold for both solar maxima and minima. The burst size distribution of the largest events has a functional form which is exponential. The relative likelihood of these large events varies from one solar maximum and minimum to the next. If the relative overall activity of a solar maximum/minimum can be estimated, these results then constrain the likelihood of extreme events of a given size for that solar maximum/minimum. We next develop and apply a methodology to quantify how the full distribution of geomagnetic indices and upstream solar wind observables are changing between and across different solar cycles. This methodology[2] estimates how different quantiles of the distribution, or equivalently, how the return times of events of a given size, are changing. [1] Hush, P., S. C. Chapman, M. W. Dunlop, and N. W. Watkins (2015), Robust statistical properties of the size of large burst events in AE, Geophys. Res. Lett.,42 doi:10.1002/2015GL066277 [2] Chapman, S. C., D. A. Stainforth, N. W. Watkins, (2013) On estimating long term local climate trends , Phil. Trans. Royal Soc., A,371 20120287 DOI:10.1098/rsta.2012.0287

  2. Bashful Ballerina: The asymmetric global solar magnetic field viewed from the heliosphere

    NASA Astrophysics Data System (ADS)

    Mursula, Kalevi

    Long-term observations of the heliospheric magnetic field (HMF) at 1 AU have depicted interesting systematic hemispheric and longitudinal asymmetries that have far-reaching implications for the understanding of solar magnetism. It has been found that the HMF sector of the northern solar hemisphere dominates the observed HMF sector occurrence in the heliosphere for about three years during the late declining to minimum phase of the solar cycle. This leads to a persistent southward shift or coning of the heliospheric current sheet at these times, which has been described by the concept of the bashful ballerina. Measurements of the solar surface fields have verified that, at these times, the average field intensity is smaller and the area larger in the northern than in the southern solar hemisphere. They have also shown that a persistent global quadrupole moment, oppositely oriented with respect to the dipole moment, appears at these times. Long-term observations of the geomagnetic field can yield information on the HMF sector structure in the pre-satellite era, and show that the ballerina was bashful at least since 1930s. In addition to the hemispheric asymmetries, the Sun is systematically asymmetric in longitude. The HMF has persistent active longitudes whose dominance depicts an oscillation with a period of about 3.2 years. Similar flip-flopping is also seen in the longitudinal distribution of sunspots and stellar observations show that this is a general pattern for sun-like cool stars. We describe these phenomena and discuss their theoretical implications.

  3. Bashful Ballerina: The asymmetric global solar magnetic field viewed from the heliosphere

    NASA Astrophysics Data System (ADS)

    Mursula, K.

    2008-05-01

    Long-term observations of the heliospheric magnetic field (HMF) at 1 AU have depicted interesting systematic hemispheric and longitudinal asymmetries that have far-reaching implications for the understanding of solar magnetism. It has been found that the HMF sector of the northern solar hemisphere dominates the observed HMF sector occurrence in the heliosphere for about three years during the late declining to minimum phase of the solar cycle. This leads to a persistent southward shift or coning of the heliospheric current sheet at these times, which has been described by the concept of the bashful ballerina. Measurements of the solar surface fields have verified that, at these times, the average field intensity is smaller and the area larger in the northern than in the southern solar hemisphere. They have also shown that a persistent global quadrupole moment, oppositely oriented with respect to the dipole moment, appears at these times. Long-term observations of the geomagnetic field can yield information on the HMF sector structure in the pre- satellite era, and show that the ballerina was bashful at least since 1930s. In addition to the hemispheric asymmetries, the Sun is systematically asymmetric in longitude. The HMF has persistent active longitudes whose dominance depicts an oscillation with a period of about 3.2 years. Similar flip-flopping is also seen in the longitudinal distribution of sunspots and stellar observations show that this is a general pattern for sun-like cool stars. We describe these phenomena and discuss their theoretical implications.

  4. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Watt, C. E. J.; Rae, I. J.; Fazakerley, A. N.; Kalmoni, N. M. E.; Freeman, M. P.; Boakes, P. D.; Nakamura, R.; Dandouras, I.; Kistler, L. M.; Jackman, C. M.; Coxon, J. C.; Carr, C. M.

    2014-12-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ~1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  5. A new data assimilation engine for physics-based thermospheric density models

    NASA Astrophysics Data System (ADS)

    Sutton, E. K.; Henney, C. J.; Hock-Mysliwiec, R.

    2017-12-01

    The successful assimilation of data into physics-based coupled Ionosphere-Thermosphere models requires rethinking the filtering techniques currently employed in fields such as tropospheric weather modeling. In the realm of Ionospheric-Thermospheric modeling, the estimation of system drivers is a critical component of any reliable data assimilation technique. How to best estimate and apply these drivers, however, remains an open question and active area of research. The recently developed method of Iterative Re-Initialization, Driver Estimation and Assimilation (IRIDEA) accounts for the driver/response time-delay characteristics of the Ionosphere-Thermosphere system relative to satellite accelerometer observations. Results from two near year-long simulations are shown: (1) from a period of elevated solar and geomagnetic activity during 2003, and (2) from a solar minimum period during 2007. This talk will highlight the challenges and successes of implementing a technique suited for both solar min and max, as well as expectations for improving neutral density forecasts.

  6. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  7. Increases in plasma sheet temperature with solar wind driving during substorm growth phases.

    PubMed

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-12-28

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼10 15  J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  8. Cosmic Ray Modulation in the Outer Heliosphere During the Minimum of Solar Cycle 23/24

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Florinski, V.; Washimi, H.; Pogorelov, N. V.

    2011-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations.

  9. Evaluation of the Klobuchar model in TaiWan

    NASA Astrophysics Data System (ADS)

    Li, Jinghua; Wan, Qingtao; Ma, Guanyi; Zhang, Jie; Wang, Xiaolan; Fan, Jiangtao

    2017-09-01

    Ionospheric delay is the mainly error source in Global Navigation Satellite System (GNSS). Ionospheric model is one of the ways to correct the ionospheric delay. The single-frequency GNSS users modify the ionospheric delay by receiving the correction parameters broadcasted by satellites. Klobuchar model is widely used in Global Positioning System (GPS) and COMPASS because it is simple and convenient for real-time calculation. This model is established on the observations mainly from Europe and USA. It does not describe the equatorial anomaly region. South of China is located near the north crest of the equatorial anomaly, where the ionosphere has complex spatial and temporal variation. The assessment on the validation of Klobuchar model in this area is important to improve this model. Eleven years (2003-2014) data from one GPS receiver located at Taoyuan Taiwan (121°E, 25°N) are used to assess the validation of Klobuchar model in Taiwan. Total electron content (TEC) from the dual-frequency GPS observations is calculated and used as the reference, and TEC based on the Klobuchar model is compared with the reference. The residual is defined as the difference between the TEC from Klobuchar model and the reference. It is a parameter to reflect the absolute correction of the model. RMS correction percentage presents the validation of the model relative to the observations. The residuals' long-term variation, the RMS correction percentage, and their changes with the latitudes are analyzed respectively to access the model. In some months the RMS correction did not reach the goal of 50% purposed by Klobuchar, especially in the winter of the low solar activity years and at nighttime. RMS correction did not depend on the 11-years solar activity, neither the latitudes. Different from RMS correction, the residuals changed with the solar activity, similar to the variation of TEC. The residuals were large in the daytime, during the equinox seasons and in the high solar activity years; they are small at night, during the solstice seasons, and in the low activity years. During 1300-1500 BJT in the high solar activity years, the mean bias was negative, implying the model underestimated TEC on average. The maximum mean bias was 33TECU in April 2014, and the maximum underestimation reached 97TECU in October 2011. During 0000-0200 BJT, the residuals had small mean bias, small variation range and small standard deviation. It suggested that the model could describe the TEC of the ionosphere better than that in the daytime. Besides the variation with the solar activity, the residuals also vary with the latitudes. The means bias reached the maximum at 20-22°N, corresponding to the north crest of the equatorial anomaly. At this latitude, the maximum mean bias was 47TECU lower than the observation in the high activity years, and 12TECU lower in the low activity years. The minimum variation range appeared at 30-32°N in high and low activity years. But the minimum mean bias was at different latitudes in the high and low activity years. In the high activity years, it appeared at 30-32°N, and in the low years it was at 24-26°N. For an ideal model, the residuals should have small mean bias and small variation range. Further study is needed to learn the distribution of the residuals and to improve the model.

  10. Relation between Pressure Balance Structures and Polar Plumes from Ulysses High Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi

    2002-01-01

    Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to magnetic discontinuities in PBSs. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.

  11. Relation Between Pressure Balance Structures and Polar Plumes from Ulysses High Latitude Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Suess, Steven T.; Sakurai, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to discontinuities. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.

  12. Validation of the technique for absolute total electron content and differential code biases estimation

    NASA Astrophysics Data System (ADS)

    Mylnikova, Anna; Yasyukevich, Yury; Yasyukevich, Anna

    2017-04-01

    We have developed a technique for vertical total electron content (TEC) and differential code biases (DCBs) estimation using data from a single GPS/GLONASS station. The algorithm is based on TEC expansion into Taylor series in space and time (TayAbsTEC). We perform the validation of the technique using Global Ionospheric Maps (GIM) computed by Center for Orbit Determination in Europe (CODE) and Jet Propulsion Laboratory (JPL). We compared differences between absolute vertical TEC (VTEC) from GIM and VTEC evaluated by TayAbsTEC for 2009 year (solar activity minimum - sunspot number about 0), and for 2014 year (solar activity maximum - sunspot number 110). Since there is difference between VTEC from CODE and VTEC from JPL, we compare TayAbsTEC VTEC with both of them. We found that TayAbsTEC VTEC is closer to CODE VTEC than to JPL VTEC. The difference between TayAbsTEC VTEC and GIM VTEC is more noticeable for solar activity maximum (2014) than for solar activity minimum (2009) for both CODE and JPL. The distribution of VTEC differences is close to Gaussian distribution, so we conclude that results of TayAbsTEC are in the agreement with GIM VTEC. We also compared DCBs evaluated by TayAbsTEC and DCBs from GIM, computed by CODE. The TayAbsTEC DCBs are in good agreement with CODE DCBs for GPS satellites, but differ noticeable for GLONASS. We used DCBs to correct slant TEC to find out which DCBs give better results. Slant TEC correction with CODE DCBs produces negative and nonphysical TEC values. Slant TEC correction with TayAbsTEC DCBs doesn't produce such artifacts. The technique we developed is used for VTEC and DCBs calculation given only local GPS/GLONASS networks data. The evaluated VTEC data are in GIM framework which is handy when various data analyses are made.

  13. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path

    PubMed Central

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-01-01

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber−bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution. PMID:27872280

  14. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path.

    PubMed

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-12-06

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.

  15. A Search for r-Modes from 1825 to the Present

    NASA Technical Reports Server (NTRS)

    Wolff, Charles L.

    1998-01-01

    Global oscillations (r-modes) of the Sun's outer convective envelope with periods approximately 1 month and longer have been detected in several short data strings of several years duration. To test whether r-modes might persist beyond one 11 year cycle, the daily sunspot numbers from 1825 to the present were analyzed. Good evidence, but confidence level less than 3sigma, was found for most of the 14 r-modes with spherical harmonic index lambda less than or equal to 5 that can exist in the presence of solar differential rotation. The characteristic rotation rate of almost every such r-mode was detected, displaced systematically from its expected value by only 0.15%. If this probable detection is real, then most low harmonic r-modes have lifetimes exceeding one century and the rotation of the Sun's outer layers varies by less than 0.05%, except possibly at solar minimum.

  16. Model for Solar Proton Risk Assessment

    NASA Technical Reports Server (NTRS)

    Xapos, M. A.; Stauffer, C.; Gee, G. B.; Barth, J. L.; Stassinopoulos, E. G.; McGuire, R. E.

    2004-01-01

    A statistical model for cumulative solar proton event fluences during space missions is presented that covers both the solar minimum and solar maximum phases of the solar cycle. It is based on data from the IMP and GOES series of satellites that is integrated together to allow the best features of each data set to be taken advantage of. This allows fluence-energy spectra to be extended out to energies of 327 MeV.

  17. Time Exceedances for High Intensity Solar Proton Fluxes

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adam, James H., Jr.; Dietrich, William F.

    2011-01-01

    A model is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  18. Periods of High Intensity Solar Proton Flux

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  19. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimetermore » wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.« less

  20. Recurring coronal holes and their rotation rates during the solar cycles 22-24

    NASA Astrophysics Data System (ADS)

    Prabhu, K.; Ravindra, B.; Hegde, Manjunath; Doddamani, Vijayakumar H.

    2018-05-01

    Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between ± 20° latitudes. In this period, more number of recurring coronal holes appeared in and around 100° and 200° Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area <10^{21} cm2 appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between ± 60° latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.

  1. Have We Entered a 21st Century Prolonged Minimum of Solar Activity? Updated Implications of a 1987 Prediction

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2009-05-01

    Fairbridge and Shirley (1987) predicted that a new prolonged minimum of solar activity would be underway by the year 2013 (Solar Physics 110, 191). While it is much too early to tell if this prediction will be fully realized, recent observations document a striking reduction in the Sun's general level of activity. While other forecasts of reduced future activity levels on decadal time scales have appeared, the Fairbridge-Shirley (FS) prediction is unique in pinpointing the current epoch. We are unaware of any forecast method that shows a better correspondence with the actual behavior of the Sun to this point. The FS prediction was based on the present-day recurrence of two physical indicators that were correlated in time with the occurrence of the Wolf, Sporer, and Maunder Minima. The amplitude of the inertial revolution of the axis of symmetry of the Sun's orbital motion about the solar system barycenter, and the direction in space of that axis, each bear a relationship to the occurrence of the prolonged minima of the historic record. The FS prediction appeared before the importance of solar meridional flows was generally appreciated, and before the existence and role of the tachocline was suspected. We will update and restate some of the physical implications of the FS results, along with those of some more recent investigations, particularly with reference to orbit-spin coupling hypotheses (Shirley, 2006: M.N.R.A.S. 368, 280). New investigations combining and integrating modern dynamo models with physical solutions describing key aspects of the variability of the solar motion may lead to significant advances in our ability to forecast future changes in the Sun. Acknowledgement: This work was supported by the resources of the author. No part of this work was performed at the Jet Propulsion Laboratory under a contract from NASA.

  2. Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by Wind over its first 2.5 years

    NASA Astrophysics Data System (ADS)

    Berdichevsky, Daniel B.; Szabo, Adam; Lepping, Ronald P.; Viñas, Adolfo F.; Mariani, Franco

    2000-12-01

    A list of the interplanetary shocks observed by Wind from its launch (in Nov 1994) to May 1997 is presented. The magnetohydrodynamic nature of the shocks is investigated, and the associated shock parameters and their uncertainties are accurately computed using two techniques. These are: 1) a combination of the ``preaveraged'' magnetic-coplanarity, velocity-coplanarity, and the Abraham-Schrauner-mixed methods, and 2) the Viñas and Scudder [1986] technique for solving the nonlinear least squares Rankine-Hugoniot equations. Within acceptable limits these two techniques generally gave the same results, with some exceptions. The reasons for the exceptions are discussed. The mean strength and rate of occurrence of the shocks appear to correlate with the solar cycle. Both showed a decrease in 1996 coincident with the time of the lowest ultraviolet solar radiance, indicative of solar minimum and the beginning of solar cycle 23. Eighteen shocks appeared to be associated with corotating interaction regions (CIRs). The shock normal distribution showed a mean direction peaking in the ecliptic plane and with a longitude of ~200° (GSE coordinates). Another 16 shocks were determined to be driven by solar transients, including magnetic clouds. These had a broader distribution of normal directions than those of the CIR cases with a mean direction close to the Sun-Earth line. Eight shocks of unknown origin had normal orientations far off the ecliptic plane. No shock propagated with longitude φn>=220+/-10°, i.e. against the average Parker spiral direction. Examination of the obliquity angle θBn (i.e., between the shock normal and the upstream interplanetary magnetic field) for the full set of shocks revealed that about 58% were quasi-perpendicular, and about 32% of the shocks oblique, and the rest quasi-parallel. Small uncertainty in the estimated angle θBn was obtained for about 10 shocks with magnetosonic Mach numbers between 1 and 2.

  3. Interplanetary Coronal Mass Ejections in the Near-Earth Solar Wind During 1996-2002

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Richardson, I. G.

    2003-01-01

    We summarize the occurrence of interplanetary coronal mass injections (ICMEs) in the near-Earth solar wind during 1996-2002, corresponding to the increasing and maximum phases of solar cycle 23. In particular, we give a detailed list of such events. This list, based on in-situ observations, is not confined to subsets of ICMEs, such as magnetic clouds or those preceded by halo CMEs observed by the SOHO/LASCO coronagraph, and provides an overview of 214 ICMEs in the near-Earth solar wind during this period. The ICME rate increases by about an order of magnitude from solar minimum to solar maximum (when the rate is approximately 3 ICMEs/solar rotation period). The rate also shows a temporary reduction during 1999, and another brief, deeper reduction in late 2000-early 2001, which only approximately track variations in the solar 10 cm flux. In addition, there are occasional periods of several rotations duration when the ICME rate is enhanced in association with high solar activity levels. We find an indication of a periodic variation in the ICME rate, with a prominent period of approximately 165 days similar to that previously reported in various solar phenomena. It is found that the fraction of ICMEs that are magnetic clouds has a solar cycle variation, the fraction being larger near solar minimum. For the subset of events that we could associate with a CME at the Sun, the transit speeds from the Sun to the Earth were highest after solar maximum.

  4. A stochastically forced time delay solar dynamo model: Self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário, E-mail: s.hazra@iiserkol.ac.in, E-mail: dariopassos@ist.utl.pt, E-mail: dnandi@iiserkol.ac.in

    Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspotmore » cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.« less

  5. A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities

    NASA Astrophysics Data System (ADS)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-05-01

    Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).

  6. Gaussianity versus intermittency in solar system plasma turbulence

    NASA Astrophysics Data System (ADS)

    Echim, M.

    2014-12-01

    Statistical properties of plasma and magnetic field fluctuations exhibit features linked with the dynamics of the targeted system and sometimes with the physical processes that are at the origin of these fluctuations. Intermittency is sometimes discussed in terms of non-Gaussianity of the Probability Distribution Functions (PDFs) of fluctuations for ranges of spatio/temporal scales. Some examples of self-similarity have been however shown for PDFs whose wings are not Gaussian. In this study we discuss intermittency in terms of non-Gaussianity as well as scale dependence of the higher order moments of PDFs, in particular the flatness. We use magnetic field and plasma data from several space missions, in the solar wind (Ulysses, Cluster, and Venus Express), and in the planetary magnetosheaths (Cluster and Venus Express). We analyze Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We investigate Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We study Cluster data in the solar wind (for time intervals not affected by planetary ions effects), and the magnetosheath. We organize our results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PDFs obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PDFs obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the statistical properties of fluctuations for the minimum and maximum of the solar cycle we also analyze the similarities and differences between fast and slow wind. We emphasize the importance of our data survey and analysis in the context of understanding the solar wind turbulence and complexity, and the exploitation of data bases and as a first step towards developing a (virtual) laboratory for studying solar system plasma turbulence and intermittency. Research supported by the European FP7 Programme (grant agreement 313038/STORM), and a grant of the Romanian CNCS -UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.

  7. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project n° 284461, www.eheroes.eu).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, X.; Florinski, V.

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Ourmore » results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.« less

  9. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  10. High-latitude spacecraft charging in low-Earth polar orbit

    NASA Astrophysics Data System (ADS)

    Frooninckx, Thomas B.

    Spacecraft charging within the upper ionosphere is commonly thought to be insignificant and thus has received little attention. Recent experimental evidence has shown that electric potential differences as severe as 680 volts can develop between Defense Meteorological Satellite Program (DMSP) polar-orbiting (840 kilometers) spacecraft and their high-latitude environment. To explore space vehicle charging in this region more fully, an analysis was performed using DMSP F6, F7, F8, and F9 satellite precipitating particle and ambient plasma measurements taken during the winters of 1986-87 (solar minimum) and 1989-90 (solar maximum). An extreme solar cycle dependence was discovered as charging occurred more frequently and with greater severity during the period of solar minimum. One hundred seventy charging events ranging from -46 to 1,430 volts were identified, and satellite measurements and Time Dependent Ionospheric Model (TDIM) output were used to characterize the environments which generated and inhibited these potentials. All current sources were considered to determine the cause of the solar cycle dependence.

  11. The Earth's Interaction With the Sun Over the Millennia From Analyses of Historical Sunspot, Auroral and Climate Records

    NASA Astrophysics Data System (ADS)

    Yau, K.

    2001-12-01

    A prolonged decrease in the Sun's irradiance during the Maunder Minimum has been proposed as a cause of the Little Ice Age ({ca} 1600-1800). Eddy [{Science} {192}, 1976, 1189] made this suggestion after noting that very few sunspots were observed from 1645 to 1715, indicative of a weakened Sun. Pre-telescopic Oriental sunspot records go back over 2200 years. Periods when no sunspots were seen have been documented by, {eg}, Clark [{Astron} {7}, 2/1979, 50]. Abundances of C 14 in tree rings and Be10 in ice cores are also good indicators of past solar activity. These isotopes are produced by cosmic rays high in the atmosphere. When the Sun is less active more of them are made and deposited at ground level. There is thus a strong {negative} correlation between their abundances and sunspot counts. Minima of solar activity in tree rings and a south polar ice core have been collated by, {eg}, Bard [{Earth Planet Sci Lett} {150} 1997, 453]; and show striking correspondence with periods when no sunspots were seen, centered at {ca} 900, 1050, 1500, 1700. Pang and Yau [{Eos} {79}, #45, 1998, F149] investigated the Medieval Minimum at 700, using in addition the frequency of auroral sighting7s, a good indicator of solar activity too [Yau, PhD thesis, 1988]; and found that the progression of minima in solar activity goes back to 700. Auroral frequency, C 14 and Be 10 concentrations are also affected by variations in the geomagnetic field. Deposition changes can also influence C 14 and Be 10 abundances. Sunspot counts are thus the only true indicator of solar activity. The Sun's bolometric variations (-0.3% for the Maunder Minimum) can contribute to climatic changes (\\0.5° C for the Little Ice Age)[{eg}, Lean, {GRL} {22}, 1995, 3195]. For times with no thermometer data, temperature can be estimated from, {eg}, Oxygen 18 isotopic abundance in ice cores, which in turn depends on the temperature of the ocean water it evaporated from. We have linked the Medieval Minimum to the cold spell, dated to {ca} 700 by Dansgaard [{Nature} {255}, 1974, 24]. Using records of advances and retreats of glaciers, previous researchers have linked it to a cold spell in the previous two centuries instead, thus requiring an offset in timescales. Our literature search has yielded more records of sunspot sightings, and established the fifth century as a minimum of solar activity, ending in a maximum at {ca} 500. These features and the minimum at 700 match contemporary deviations of atmospheric C 14 from a secular trend, due primarily to long-term changes in the strength of the Earth's magnetic moment [Stuiver, {Radiocarbon} {35}, 215]. Pang has shown that the climate of Eurasia was cold in the 5th century, due partly to volcanic cooling [{Eos} {80}, #46, 1999, F220]. Reduced solar luminosity may have contributed to that too. The cold apparently forced massive southward migrations of Teutonic and Asian barbarians into the Roman Empire, ending it in 476. Europe was plunged into the Dark Age, from which it did not recover until the climate warmed up again toward the end of the millennium. Finally, climate changes can also be produced by greenhouse warming, reorganization of ocean current systems "Dansgaard-Oeschger events," the Earth's orbital variations "Milankovitch effects," {etc}. Continued analysis of historical records, in conjunction with other proxy data, can help shed light on the nature of the Earth's interactions with the Sun, and the causes of past climate changes.

  12. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF betweenmore » {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.« less

  13. Global correlation between surface heat fluxes and insolation in the 11-year solar cycle: The latitudinal effect

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.

    2014-12-01

    Because of the small amplitude of insolation variations (1365.2-1366.6 W m-2 or 0.1%) from the 11-year solar cycle minimum to the cycle maximum and the structural complexity of the climatic dynamics, it is difficult to directly observe a solar signal in the surface temperature. The main difficulty is reduced to two factors: (1) a delay in the temperature response to external action due to thermal inertia, and (2) powerful internal fluctuations of the climatic dynamics suppressing the solar-driven component. In this work we take into account the first factor, solving the inverse problem of thermal conductivity in order to calculate the vertical heat flux from the measured temperature near the Earth's surface. The main model parameter—apparent thermal inertia—is calculated from the local seasonal extremums of temperature and albedo. We level the second factor by averaging mean annual heat fluxes in a latitudinal belt. The obtained mean heat fluxes significantly correlate with a difference between the insolation and optical depth of volcanic aerosol in the atmosphere, converted into a hindered heat flux. The calculated correlation smoothly increases with increasing latitude to 0.4-0.6, and the revealed latitudinal dependence is explained by the known effect of polar amplification.

  14. On the variation of the Nimbus 7 total solar irradiance

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1992-01-01

    For the interval December 1978 to April 1991, the value of the mean total solar irradiance, as measured by the Nimbus-7 Earth Radiation Budget Experiment channel 10C, was 1,372.02 Wm(exp -2), having a standard deviation of 0.65 Wm(exp -2), a coefficient of variation (mean divided by the standard deviation) of 0.047 percent, and a normal deviate z (a measure of the randomness of the data) of -8.019 (inferring a highly significant non-random variation in the solar irradiance measurements, presumably related to the action of the solar cycle). Comparison of the 12-month moving average (also called the 13-month running mean) of solar irradiance to those of the usual descriptors of the solar cycle (i.e., sunspot number, 10.7-cm solar radio flux, and total corrected sunspot area) suggests possibly significant temporal differences. For example, solar irradiance is found to have been greatest on or before mid 1979 (leading solar maximum for cycle 21), lowest in early 1987 (lagging solar minimum for cycle 22), and was rising again through late 1990 (thus, lagging solar maximum for cycle 22), having last reported values below those that were seen in 1979 (even though cycles 21 and 22 were of comparable strength). Presuming a genuine correlation between solar irradiance and the solar cycle (in particular, sunspot number) one infers that the correlation is weak (having a coefficient of correlation r less than 0.84) and that major excursions (both as 'excesses' and 'deficits') have occurred (about every 2 to 3 years, perhaps suggesting a pulsating Sun).

  15. Geomagnetic detection of the sectorial solar magnetic field and the historical peculiarity of minimum 23-24

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, J.

    2012-01-01

    [1] Analysis is made of the geomagnetic-activityaaindex covering solar cycle 11 to the beginning of 24, 1868–2011. Autocorrelation shows 27.0-d recurrent geomagnetic activity that is well-known to be prominent during solar-cycle minima; some minima also exhibit a smaller amount of 13.5-d recurrence. Previous work has shown that the recent solar minimum 23–24 exhibited 9.0 and 6.7-d recurrence in geomagnetic and heliospheric data, but those recurrence intervals were not prominently present during the preceding minima 21–22 and 22–23. Using annual-averages and solar-cycle averages of autocorrelations of the historicalaadata, we put these observations into a long-term perspective: none of the 12 minima preceding 23–24 exhibited prominent 9.0 and 6.7-d geomagnetic activity recurrence. We show that the detection of these recurrence intervals can be traced to an unusual combination of sectorial spherical-harmonic structure in the solar magnetic field and anomalously low sunspot number. We speculate that 9.0 and 6.7-d recurrence is related to transient large-scale, low-latitude organization of the solar dynamo, such as seen in some numerical simulations.

  16. The interplanetary and solar magnetic field sector structures, 1962 - 1968

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1972-01-01

    The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.

  17. Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Kai; Kim, Donghoe; Whitaker, James B

    Rapid development of perovskite solar cells (PSCs) during the past several years has made this photovoltaic (PV) technology a serious contender for potential large-scale deployment on the terawatt scale in the PV market. To successfully transition PSC technology from the laboratory to industry scale, substantial efforts need to focus on scalable fabrication of high-performance perovskite modules with minimum negative environmental impact. Here, we provide an overview of the current research and our perspective regarding PSC technology toward future large-scale manufacturing and deployment. Several key challenges discussed are (1) a scalable process for large-area perovskite module fabrication; (2) less hazardous chemicalmore » routes for PSC fabrication; and (3) suitable perovskite module designs for different applications.« less

  18. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  19. On a thermonuclear origin for the 1980-81 deep light minimum of the symbiotic nova PU Vul

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.

    1993-01-01

    The puzzling 1980-81 deep light minimum of the symbiotic nova PU Vul is discussed in terms of a sequence of quasi-static evolutionary models of a hot, 0.5 solar mass white dwarf accreting H-rich matter at a rate 1 x 10 exp -8 solar mass/yr. On the basis of the morphological behavior of the models, it is suggested that the deep light minimum of PU Vul could have been the result of two successive, closely spaced, hydrogen shell flashes on an accreting white dwarf whose core thermal structure and accreted H-rich envelope was not in a long-term thermal 'cycle-averaged' steady state with the rate of accretion.

  20. Historical space weather monitoring of prolonged aurora activities in Japan and in China

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Isobe, Hiroaki; Hayakawa, Hisashi; Tamazawa, Harufumi; Kawamura, Akito Davis; Miyahara, Hiroko; Iwahashi, Kiyomi; Yamamoto, Kazuaki; Takei, Masako; Terashima, Tsuneyo; Suzuki, Hidehiko; Fujiwara, Yasunori; Nakamura, Takuji

    2017-02-01

    Great magnetic storms are recorded as aurora sightings in historical documents. The earliest known example of "prolonged" aurora sightings, with aurora persistent for two or more nights within a 7 day interval at low latitudes, in Japan was documented on 21-23 February 1204 in Meigetsuki, when a big sunspot was also recorded in China. We have searched for prolonged events over the 600 year interval since 620 in Japan based on the catalogue of Kanda and over the 700 year interval since 581 in China based on the catalogues of Tamazawa et al. (2017) and Hayakawa et al. (2015). Before the Meigetsuki event, a significant fraction of the 200 possible aurora sightings in Sòng dynasty (960-1279) of China was detected at least twice within a 7 day interval and sometimes recurred with approximately the solar rotation period of 27 days. The majority of prolonged aurora activity events occurred around the maximum phase of solar cycles rather than around the minimum, as estimated from the 14C analysis of tree rings. They were not reported during the Oort Minimum (1010-1050). We hypothesize that the prolonged aurora sightings are associated with great magnetic storms resulting from multiple coronal mass ejections from the same active region. The historical documents therefore provide useful information to support estimation of great magnetic storm frequency, which are often associated with power outages and other societal concerns.

  1. Technology developments toward 30-year-life of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    As part of the United States National Photovoltaics Program, the Jet Propulsion Laboratory's Flat-Plate Solar Array Project (FSA) has maintained a comprehensive reliability and engineering sciences activity addressed toward understanding the reliability attributes of terrestrial flat-plate photovoltaic arrays and to deriving analysis and design tools necessary to achieve module designs with a 30-year useful life. The considerable progress to date stemming from the ongoing reliability research is discussed, and the major areas requiring continued research are highlighted. The result is an overview of the total array reliability problem and of available means of achieving high reliability at minimum cost.

  2. Analysis of selected microflares observed by SphinX over the last minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Siarkowski, Marek; Sylwester, Janusz; Sylwester, Barbara; Gryciuk, Magdalena

    The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between 1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of selected microflare-class events. We selected events of unusual lightcurves or location. Our study involves determination of temporal characteristics (times of start, maximum and end of flares) and analysis of physical conditions in flaring plasma (temperature, emission measure). Dedicated method has been used in order to remove emission not related to flare. Supplementary information about morphology and evolution of investigated events has been derived from the analysis of XRT/Hinode and SECCHI /STEREO images.

  3. The relationship between solar activity and coronal hole evolution

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Krieger, A. S.; Solodyna, C. V.; Golub, L.

    1978-01-01

    The relationship between coronal hole evolution and solar active regions during the Skylab period is examined. A tendency is found for holes to grow or remain stable when the activity nearby, seen as calcium plages and bright regions in X-rays, is predominantly large, long-lived regions. It is also found that there is a significantly higher number of small, short-lived active regions, as indicated by X-ray bright points, in the vicinity of decaying holes than there is near other holes. This is interpreted to mean that holes disappear at least in part because they become filled with many small scale, magnetically closed, X-ray emitting features. This interpretation, together with the observation that the number of X-ray bright points was much larger near solar minimum than it was during the Skylab period, provides a possible explanation for the disappearance of the large, near-equatorial coronal holes at the time of solar minimum.

  4. Decentralized and cost-effective solar water purification system for remote communities

    NASA Astrophysics Data System (ADS)

    Abd-ur-Rehman, Hafiz M.; Shakir, Sehar; Atta-ur-Razaq; Saqib, Hamza; Tahir, Saad

    2018-05-01

    In this study, a modified stepped solar still is proposed for water desalination. The overall objective of this work is to develop and test the proposed still design to identify the productivity enhancement as compared to conventional basin type solar still. The proposed design takes the advantage of its stepped configuration that allows the water stream to maintain a minimum desirable water column height and the water flow through the stages under the force of gravity. A minimum water depth in the still results in a higher rate of evaporation. The still is also incorporated with Fresnel lens to increase the water temperature that eventually increases the rate of water evaporation. Another important aspect of this design is the incorporation of phase-change-material (PCM) to increase the operational hours of the solar still. Consequently, daily productivity of fresh water is increased.

  5. Long-term-average, solar cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Klimas, A. J.; Kanekal, S. G.; Baker, D. N.; Weigel, R. S.

    2002-11-01

    Among the interplanetary activity parameters the solar wind speed is the one best correlated with the energetic electron fluxes in the inner magnetosphere. We examine the radial and temporal characteristics of the 2-6 MeV electron response, approximating it in this paper with linear filters. The filter response is parameterized by the time delay (τ), measured from the time of solar wind impact, and the L shell (L). We examine solar cycle and seasonal effects using an 8-year-long database of Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX)/ Proton Electron Telescope (PET) measurements at the radial range L = 1.1-10. The main peak P1 of the long-term-average response is at (τ, L) = (2, 5.3) and has a simultaneous response over a wide range of radial distances, ΔL = 5. The duration of the response after the peak is inversely proportional to the L shell. The central part of the inner magnetosphere (L = 3.7-5.75) has a much more prolonged response (>10 days) than other parts. Prior to the main response, P1, a brief response, P0, of typically lower amplitude appears at (τ, L) = (0, 3), probably as a quasi-adiabatic response to the compression of the magnetosphere by the solar wind pressure. Over the solar cycle the variation in solar wind input results in a systematic change of the position, amplitude, radial extent, and duration of the two peaks: during solar wind minimum the quasi-adiabatic peak disappears, and the radial size of the responding region decreases; both are responses to low-density, high-speed streams. During solar minimum, the duration is at least 3 days (30%) longer than average, probably due to the sustained solar wind input. Systematic variations appear also as a function of season due to several magnetic and fluid effects. During equinoxes the coupling is stronger, and the duration is longer (by at least 2 days) compared to solstices. Between the two equinoxes the fall response has a significantly higher amplitude and longer duration than the spring equinox response. This is at least partly due to the higher GSE By component during the observation time, which acts to increase the effective GSM Bz component according to the Russell-McPherron effect. The seasonal modulation of the response is consistent with the variation in the fluxes themselves [, 1999]. The modulation is discussed in terms of the equinoctial and axial hypotheses [, 1970; , 1973; , 2000].

  6. Evolution of Multiscale Multifractal Turbulence in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Macek, W. M.; Wawrzaszek, A.

    2009-04-01

    The aim of this study is to examine the question of scaling properties of intermittent turbulence in the space environment. We analyze time series of velocities of the slow and fast speed streams of the solar wind measured in situ by Helios 2, Advanced Composition Explorer and Voyager 2 spacecraft in the inner and outer heliosphere during solar minimum and maximum at various distances from the Sun. To quantify asymmetric scaling of solar wind turbulence, we consider a generalized two-scale weighted Cantor set with two different scales describing nonuniform distribution of the kinetic energy flux between cascading eddies of various sizes. We investigate the resulting spectrum of generalized dimensions and the corresponding multifractal singularity spectrum depending on one probability measure parameter and two rescaling parameters, demonstrating that the multifractal scaling is often rather asymmetric. In particular, we show that the degree of multifractality for the solar wind during solar minimum is greater for fast streams velocity fluctuations than that for the slow streams; the fast wind during solar minimum may exhibit strong asymmetric scaling. Moreover, we observe the evolution of multifractal scaling of the solar wind in the outer heliosphere. It is worth noting that for the model with two different scaling parameters a much better agreement with the solar wind data is obtained, especially for the negative index of the generalized dimensions. Therefore we argue that there is a need to use a two-scale cascade model. Hence we propose this new more general model as a useful tool for analysis of intermittent turbulence in various environments. References [1] W. M. Macek and A. Szczepaniak, Generalized two-scale weighted Cantor set model for solar wind turbulence, Geophys. Res. Lett., 35, L02108, doi:10.1029/2007GL032263 (2008). [2] A. Szczepaniak and W. M. Macek, Asymmetric multifractal model for solar wind intermittent turbulence, Nonlin. Processes Geophys., 15, 615-620 (2008), http://www.nonlin-processes-geophys.net/15/615/2008/. [3] W. M. Macek and A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res., A013795, doi:10.1029/2008JA013795, in press.

  7. Steps towards understanding deep atmospheric heating in flares

    NASA Technical Reports Server (NTRS)

    Mauas, Pablo J. D.; Machado, Marcos E.

    1986-01-01

    Different aspects of the heating of the deep solar atmosphere during flares, including temperature minimum enhancements and white light emission, are discussed. The proper treatment of H(-) radiative losses is discussed, and compared with previous studies, as well as a quantitative analysis of the ionizing effect of nonthermal particles and ultraviolet radiation. It is concluded that temperature minimum heating may be a natural consequence of the global radiation transport in flares. The implications of these results are discussed within the context of homogeneous and inhomogeneous models of the solar atmosphere.

  8. Solar-cycle dependence of a model turbulence spectrum using IMP and ACE observations over 38 years

    NASA Astrophysics Data System (ADS)

    Burger, R. A.; Nel, A. E.; Engelbrecht, N. E.

    2014-12-01

    Ab initio modulation models require a number of turbulence quantities as input for any reasonable diffusion tensor. While turbulence transport models describe the radial evolution of such quantities, they in turn require observations in the inner heliosphere as input values. So far we have concentrated on solar minimum conditions (e.g. Engelbrecht and Burger 2013, ApJ), but are now looking at long-term modulation which requires turbulence data over at a least a solar magnetic cycle. As a start we analyzed 1-minute resolution data for the N-component of the magnetic field, from 1974 to 2012, covering about two solar magnetic cycles (initially using IMP and then ACE data). We assume a very simple three-stage power-law frequency spectrum, calculate the integral from the highest to the lowest frequency, and fit it to variances calculated with lags from 5 minutes to 80 hours. From the fit we then obtain not only the asymptotic variance at large lags, but also the spectral index of the inertial and the energy, as well as the breakpoint between the inertial and energy range (bendover scale) and between the energy and cutoff range (cutoff scale). All values given here are preliminary. The cutoff range is a constraint imposed in order to ensure a finite energy density; the spectrum is forced to be either flat or to decrease with decreasing frequency in this range. Given that cosmic rays sample magnetic fluctuations over long periods in their transport through the heliosphere, we average the spectra over at least 27 days. We find that the variance of the N-component has a clear solar cycle dependence, with smaller values (~6 nT2) during solar minimum and larger during solar maximum periods (~17 nT2), well correlated with the magnetic field magnitude (e.g. Smith et al. 2006, ApJ). Whereas the inertial range spectral index (-1.65 ± 0.06) does not show a significant solar cycle variation, the energy range index (-1.1 ± 0.3) seems to be anti-correlated with the variance (Bieber et al. 1993, JGR); both indices show close to normal distributions. In contrast, the variance (e.g. Burlaga and Ness, 1998, JGR), and both the bendover scale (see Ruiz et al. 2014, Solar Physics) and cutoff scale appear to be log-normal distributed.

  9. Solar total irradiance in cycle 23

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Schmutz, W.

    2011-05-01

    Context. The most recent minimum of solar activity was deeper and longer than the previous two minima as indicated by different proxies of solar activity. This is also true for the total solar irradiance (TSI) according to the PMOD composite. Aims: The apparently unusual behaviour of the TSI has been interpreted as evidence against solar surface magnetism as the main driver of the secular change in the TSI. We test claims that the evolution of the solar surface magnetic field does not reproduce the observed TSI in cycle 23. Methods: We use sensitive, 60-min averaged MDI magnetograms and quasi-simultaneous continuum images as an input to our SATIRE-S model and calculate the TSI variation over cycle 23, sampled roughly every two weeks. The computed TSI is then compared with the PMOD composite of TSI measurements and with the data from two individual instruments, SORCE/TIM and UARS/ACRIM II, that monitored the TSI during the declining phase of cycle 23 and over the previous minimum in 1996, respectively. Results: Excellent agreement is found between the trends shown by the model and almost all sets of measurements. The only exception is the early, i.e. 1996 to 1998, PMOD data. Whereas the agreement between the model and the PMOD composite over the period 1999-2009 is almost perfect, the modelled TSI shows a steeper increase between 1996 and 1999 than implied by the PMOD composite. On the other hand, the steeper trend in the model agrees remarkably well with the ACRIM II data. A closer look at the VIRGO data, which are the basis of the PMOD composite after 1996, reveals that only one of the two VIRGO instruments, the PMO6V, shows the shallower trend present in the composite, whereas the DIARAD measurements indicate a steeper trend. Conclusions: Based on these results, we conclude that (1) the sensitivity changes of the PMO6V radiometers within VIRGO during the first two years have very likely not been correctly evaluated; and that (2) the TSI variations over cycle 23 and the change in the TSI levels between the minima in 1996 and 2008 are consistent with the solar surface magnetism mechanism.

  10. Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries

    NASA Technical Reports Server (NTRS)

    Stewart, G. A.; Bravo, S.

    1995-01-01

    Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.

  11. Solar Cycle Variability and Grand Minima Induced by Joy's Law Scatter

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark S.

    2017-08-01

    The strength of the solar cycle varies from one cycle to another in an irregular manner and the extreme example of this irregularity is the Maunder minimum when Sun produced only a few spots for several years. We explore the cause of these variabilities using a 3D Babcock--Leighton dynamo. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with flux, tilt angle, and time of emergence all obtain from their observed distributions. The dynamo growth is limited by a tilt quenching.The randomnesses in the BMR emergences make the poloidal field unequal and eventually cause an unequal solar cycle. When observed fluctuations of BMR tilts around Joy's law, i.e., a standard deviation of 15 degrees, are considered, our model produces a variation in the solar cycle comparable to the observed solar cycle variability. Tilt scatter also causes occasional Maunder-like grand minima, although the observed scatter does not reproduce correct statistics of grand minima. However, when we double the tilt scatter, we find grand minima consistent with observations. Importantly, our dynamo model can operate even during grand minima with only a few BMRs, without requiring any additional alpha effect.

  12. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    NASA Astrophysics Data System (ADS)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  13. A Synthesis of Solar Cycle Prediction Techniques

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.; Reichmann, Edwin J.

    1999-01-01

    A number of techniques currently in use for predicting solar activity on a solar cycle timescale are tested with historical data. Some techniques, e.g., regression and curve fitting, work well as solar activity approaches maximum and provide a month-by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but only provide an estimate of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides a more accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This combined precursor method gives a smoothed sunspot number maximum of 154 plus or minus 21 at the 95% level of confidence for the next cycle maximum. A mathematical function dependent on the time of cycle initiation and the cycle amplitude is used to describe the level of solar activity month by month for the next cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between previous activity levels and this function. This Combined Solar Cycle Activity Forecast gives, as of January 1999, a smoothed sunspot maximum of 146 plus or minus 20 at the 95% level of confidence for the next cycle maximum.

  14. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps to refine and extend previous observations; for example, we show that ionospheric contribution to O(+3)) is negligible. Through comparison with model ion trajectories, we interpret the lack of pronounced secondary ion density peaks colocated with the primary density peaks to indicate that: (1) negligible charge exchange occurs at L greater than 7, that is, solar wind secondaries are produced at L less than 7, and (2) solar wind secondaries do not form a significant portion of the plasma sheet population injected into the QTR. We conclude that little of the energetic solar wind secondary ion population is recirculated through the magnetosphere.

  15. The role of solar ultraviolet irradiation in zoster.

    PubMed Central

    Zak-Prelich, M.; Borkowski, J. L.; Alexander, F.; Norval, M.

    2002-01-01

    Ultraviolet radiation (UVR) suppresses many aspects of cell-mediated immunity but it is uncertain whether solar UV exposure alters resistance to human infectious diseases. Varicella-zoster virus (VZV) causes varicella (chickenpox) and can reactivate from latency to cause zoster (shingles). The monthly incidence of chickenpox and zoster in a defined Polish population over 2 years was recorded and ground level solar UV was measured daily. There was a significant seasonality of UVR. Evidence of seasonal variation was found for all zoster cases and for zoster in males, with the lowest number of cases in the winter. The number of zoster cases with lesions occurring on exposed body sites (the face) demonstrated highly significant seasonality with a peak in July/August. Seasonal models for UVR and zoster cases showed similar temporal patterns. By contrast, for varicella, the maximum number of cases was found in March and the minimum in August/September, probably explained by the respiratory spread of VZV. It is tempting to speculate that the increase in solar UVR in the summer could induce suppression of cellular immunity, thus contributing to the corresponding rise in the incidence of zoster. PMID:12558343

  16. The role of solar ultraviolet irradiation in zoster.

    PubMed

    Zak-Prelich, M; Borkowski, J L; Alexander, F; Norval, M

    2002-12-01

    Ultraviolet radiation (UVR) suppresses many aspects of cell-mediated immunity but it is uncertain whether solar UV exposure alters resistance to human infectious diseases. Varicella-zoster virus (VZV) causes varicella (chickenpox) and can reactivate from latency to cause zoster (shingles). The monthly incidence of chickenpox and zoster in a defined Polish population over 2 years was recorded and ground level solar UV was measured daily. There was a significant seasonality of UVR. Evidence of seasonal variation was found for all zoster cases and for zoster in males, with the lowest number of cases in the winter. The number of zoster cases with lesions occurring on exposed body sites (the face) demonstrated highly significant seasonality with a peak in July/August. Seasonal models for UVR and zoster cases showed similar temporal patterns. By contrast, for varicella, the maximum number of cases was found in March and the minimum in August/September, probably explained by the respiratory spread of VZV. It is tempting to speculate that the increase in solar UVR in the summer could induce suppression of cellular immunity, thus contributing to the corresponding rise in the incidence of zoster.

  17. Control device for automatic orientation of a solar panel based on a microcontroller (PIC16f628a)

    NASA Astrophysics Data System (ADS)

    Rezoug, M. R.; Krama, A.

    2016-07-01

    This work proposes a control device for autonomous solar tracker based on one axis, It consists of two main parts; the control part which is based on "the PIC16f628a"; it has the role of controlling, measuring and plotting responses. The second part is a mechanical device, which has the role of making the solar panel follows the day-night change of the sun throughout the year. Both parties are established to improve energy generation of the photovoltaic panels. In this paper, we will explain the main operating principles of our system. Also, we will provide experimental results which demonstrate the good performance and the efficiency of this system. This innovation is different from what has been proposed in previous studies. The important points of this system are maximum output energy and minimum energy consumption of solar tracker, its cost is relatively low with simplicity in implementation. The average power increase produced by using the tracking system for a particular day, is over 30 % compared with the static panel.

  18. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).

  19. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  20. Heliophysics at total solar eclipses

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2017-08-01

    Observations during total solar eclipses have revealed many secrets about the solar corona, from its discovery in the 17th century to the measurement of its million-kelvin temperature in the 19th and 20th centuries, to details about its dynamics and its role in the solar-activity cycle in the 21st century. Today's heliophysicists benefit from continued instrumental and theoretical advances, but a solar eclipse still provides a unique occasion to study coronal science. In fact, the region of the corona best observed from the ground at total solar eclipses is not available for view from any space coronagraphs. In addition, eclipse views boast of much higher quality than those obtained with ground-based coronagraphs. On 21 August 2017, the first total solar eclipse visible solely from what is now United States territory since long before George Washington's presidency will occur. This event, which will cross coast-to-coast for the first time in 99 years, will provide an opportunity not only for massive expeditions with state-of-the-art ground-based equipment, but also for observations from aloft in aeroplanes and balloons. This set of eclipse observations will again complement space observations, this time near the minimum of the solar activity cycle. This review explores the past decade of solar eclipse studies, including advances in our understanding of the corona and its coronal mass ejections as well as terrestrial effects. We also discuss some additional bonus effects of eclipse observations, such as recreating the original verification of the general theory of relativity.

  1. Minimum exposure limits and measured relationships between the vitamin D, erythema and international commission on non-ionizing radiation protection solar ultraviolet.

    PubMed

    Downs, Nathan; Parisi, Alfio; Butler, Harry; Turner, Joanna; Wainwright, Lisa

    2015-01-01

    The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established guidelines for exposure to ultraviolet radiation in outdoor occupational settings. Spectrally weighted ICNIRP ultraviolet exposures received by the skin or eye in an 8 h period are limited to 30 J m(-2). In this study, the time required to reach the ICNIRP exposure limit was measured daily in 10 min intervals upon a horizontal plane at a subtropical Australian latitude over a full year and compared with the effective Vitamin D dose received to one-quarter of the available skin surface area for all six Fitzpatrick skin types. The comparison of measured solar ultraviolet exposures for the full range of sky conditions in the 2009 measurement period, including a major September continental dust event, show a clear relationship between the weighted ICNIRP and the effective vitamin D dose. Our results show that the horizontal plane ICNIRP ultraviolet exposure may be used under these conditions to provide minimum guidelines for the healthy moderation of vitamin D, scalable to each of the six Fitzpatrick skin types. © 2014 The American Society of Photobiology.

  2. Reinventing the Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.

  3. The Solar Spectral Irradiance as a Function of the Mg II Index for Atmosphere and Climate Modelling

    NASA Technical Reports Server (NTRS)

    Thuillier, Gerard; DeLand, Matthew; Shapiro, Alexander; Schmutz, Werner; Bolsee, David; Melo, Stella

    2011-01-01

    In this paper we present a new method to reconstruct the solar spectrum irradiance in the Ly alpha-400 nm region, and its variability, based on the Mg II index and neutron monitor. Measurements of the solar spectral irradiance available in the literature have been made with different instruments at different times and different spectral ranges. However, climate studies require harmonized data sets. This new approach has the advantage of being independent of the absolute calibration and aging of the instruments. First, the Mg II index is derived using solar spectra from Ly alpha (121 nm) to 410 nm measured from 1978 to 2010 by several space missions. The variability of the spectra with respect to a chosen reference spectrum as a function of time and wavelength is scaled to the derived Mg II index. The set of coefficients expressing the spectral variability can be applied to the chosen reference spectrum to reconstruct the solar spectra within a given time frame or Mg II index values. The accuracy of this method is estimated using two approaches: by direct comparison with particular cases where solar spectra are available from independent measurements, and by calculating the standard deviation between the measured spectra and their reconstruction. From direct comparisons with measurements we obtain an accuracy of about 1 to 2 %, which degrades towards Ly alpha. In a further step, we extend our solar spectral irradiance reconstruction back to the Maunder Minimum introducing the relationship between the Mg II index and the neutron monitor data. Consistent measurements of the Mg II index are not available prior to 1978. However, we observe that over the last three solar cycles, the Mg II index shows strong correlation with the modulation potential determined from the neutron monitor data. Assuming that this correlation can be applied to the past, we reconstruct the Mg II index from the modulation potential back to the Maunder Minimum, and obtain the corresponding solar spectral irradiance reconstruction back to that period. As there is no direct measurement of the spectral irradiance for this period we discuss this methodology in light of the other proposed approaches available in the literature. The use of the cosmogenic isotope data provides a major advantage: it provides information about the solar activity over several thousands years. Using technology of today we can calibrate the solar irradiance against the activity and thus reconstruct it for the times when cosmogenic isotope data are available. This calibration can be re-accessed at any time, if necessary.

  4. Auroral-E Observations: The First Year’s Data.

    DTIC Science & Technology

    1993-02-01

    incidence-sound- ing (VIS) ionograms. One group, generally called auroral-E, includes nighttime E (par- ticle E) of the k type and E of the r type (Esr...toward solar minimum. Auroral-E tended to occur in clusters or "swarms" during periods of increased geo- magnetic activity. Figures 15a, 15b, and 15c show...midnight and several hours after local midnight. In the hours between 2200 and 0300 local time, when the K index is sufficiently high to place the

  5. Proton irradiation and endometriosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.

    1983-08-01

    Female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was 7 years after exposure. The doses and energies of the radiation received were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event, leading to the conclusion that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crewmembers.

  6. MODULATION OF GALACTIC COSMIC RAYS OBSERVED AT L1 IN SOLAR CYCLE 23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fludra, A., E-mail: Andrzej.Fludra@stfc.ac.uk

    2015-01-20

    We analyze a unique 15 yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0 GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin et al. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 Decembermore » reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008-2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30° in mid-2008 to 5° in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35°. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.« less

  7. Solar photospheric network properties and their cycle variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibault, K.; Charbonneau, P.; Béland, M., E-mail: kim@astro.umontreal.ca-a, E-mail: paulchar@astro.umontreal.ca-b, E-mail: michel.beland@calculquebec.ca-c

    We present a numerical simulation of the formation and evolution of the solar photospheric magnetic network over a full solar cycle. The model exhibits realistic behavior as it produces large, unipolar concentrations of flux in the polar caps, a power-law flux distribution with index –1.69, a flux replacement timescale of 19.3 hr, and supergranule diameters of 20 Mm. The polar behavior is especially telling of model accuracy, as it results from lower-latitude activity, and accumulates the residues of any potential modeling inaccuracy and oversimplification. In this case, the main oversimplification is the absence of a polar sink for the flux,more » causing an amount of polar cap unsigned flux larger than expected by almost one order of magnitude. Nonetheless, our simulated polar caps carry the proper signed flux and dipole moment, and also show a spatial distribution of flux in good qualitative agreement with recent high-latitude magnetographic observations by Hinode. After the last cycle emergence, the simulation is extended until the network has recovered its quiet Sun initial condition. This permits an estimate of the network relaxation time toward the baseline state characterizing extended periods of suppressed activity, such as the Maunder Grand Minimum. Our simulation results indicate a network relaxation time of 2.9 yr, setting 2011 October as the soonest the time after which the last solar activity minimum could have qualified as a Maunder-type Minimum. This suggests that photospheric magnetism did not reach its baseline state during the recent extended minimum between cycles 23 and 24.« less

  8. An Alternative Interpretation of the Relationship between the Inferred Open Solar Flux and the Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Riley, Pete

    2007-01-01

    Photospheric observations at the Wilcox Solar Observatory (WSO) represent an uninterrupted data set of 32 years and are therefore unique for modeling variations in the magnetic structure of the corona and inner heliosphere over three solar cycles. For many years, modelers have applied a latitudinal correction factor to these data, believing that it provided a better estimate of the line-of-sight magnetic field. Its application was defended by arguing that the computed open flux matched observations of the interplanetary magnetic field (IMF) significantly better than the original WSO correction factor. However, no physically based argument could be made for its use. In this Letter we explore the implications of using the constant correction factor on the value and variation of the computed open solar flux and its relationship to the measured IMF. We find that it does not match the measured IMF at 1 AU except at and surrounding solar minimum. However, we argue that interplanetary coronal mass ejections (ICMEs) may provide sufficient additional magnetic flux to the extent that a remarkably good match is found between the sum of the computed open flux and inferred ICME flux and the measured flux at 1 AU. If further substantiated, the implications of this interpretation may be significant, including a better understanding of the structure and strength of the coronal field and I N providing constraints for theories of field line transport in the corona, the modulation of galactic cosmic rays, and even possibly terrestrial climate effects.

  9. Turbulent Transport in a Three-dimensional Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiota, D.; Zank, G. P.; Adhikari, L.

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for themore » temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.« less

  10. Unusual behavior of quiet-time zonal and vertical plasma drift velocities over Jicamarca during the recent extended solar minimum of 2008

    NASA Astrophysics Data System (ADS)

    Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.

    2017-11-01

    The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.

  11. Possible space weather influence on the Earth wheat prices

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, L.; Yom Din, G.; Dorman, L.

    We present development of our study of possible influence of space weather modulated by cycle of solar activity on the price bursts in the Earth markets In our previous works 1 2 we showed that correspondent response may have place in the specific locations characterized by a high sensitivity of the weather cloudiness in particular to cosmic ray variation b risk zone agriculture c isolated wheat market with limited external supply of agriculture production We showed that in this situation we may wait specific price burst reaction on unfavorable phase of solar activity and space weather what lead to corresponding abnormalities in the local weather and next crop failure We showed that main types of manifestation of this connection are a Distribution of intervals between price bursts must be like to the distribution of intervals between correspondent extremes of solar activity minimums or maximums b price asymmetry between opposite states of solar activity price in the one type of activity state is systematically higher then in the opposite one We showed in our previous publications that this influence in interval distribution is detected with high reliability in Mediaeval England 1250-1700 both for wheat prices and price of consumables basket We showed that for period of Maunder Minimum price asymmetry of wheat prices observed all prices in minimum state of solar activity was higher the prices in the next maximum state We showed later that this price asymmetry had place in 20-th century in USA durum prices too In

  12. Implications of the Deep Minimum for Slow Solar Wind Origin

    NASA Astrophysics Data System (ADS)

    Antiochos, S. K.; Mikic, Z.; Lionello, R.; Titov, V. S.; Linker, J. A.

    2009-12-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of the Deep Minimum, affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at the Deep Minimum and describe further observational and theoretical tests. This work has been supported by the NASA HTP, SR&T, and LWS programs.

  13. Comprehensive Ionospheric Polar and Auroral Observations for Solar Minimum of Cycle 23/24

    NASA Astrophysics Data System (ADS)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig

    Only the incoherent scatter radar (ISR) is able to simultaneously measure full profiles of elec-tron density, ion temperature, and electron temperatures through the E-and F-layers of the terrestrial ionosphere. Historically ISR's have been operated for periods much less than a month. Hence, their measurements do not constitute a continuous sequence from which quiet, disturbed, and storm periods can reliably be discerned. This is particularly true in the auroral and polar regions. During the International Polar Year (IPY) two ISRs achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the IRI with a fiduciary E-and F-region ionosphere descriptions for solar minimum conditions at auroral and polar cap locations. The ionospheric description being electron den-sity, ion temperature, electron temperature, and even molecular ion composition profiles from as low as 90 km extending several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.4° N, 147.5° W where the NSF's new Poker Flat Incoherent Scatter Radar (PFISR) is located. During solar minimum conditions this location is in the auroral region for most of the day and is at mid-latitudes, equatorward of the cusp, for about 4 to 8 hours per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78° N, 16° E where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap often with a noon sector passage through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be demarked between quiet and disturbed. During the IPY year, 1 March 2007 to 29 February 2008, a total of 50 solar wind corotating interaction regions (CIRs) impacted geospace. Each CIR has a one-to-three day geomagnetic disturbance that is observed in the ISR auroral and polar observations. Hence, this data set enables the quiet-background ionosphere to be established as a function of season and local time. This quiet-background ionosphere has the unique attribute that it has self-consistent altitude profiles of the density and the temper-ature. This we believe is a true fiduciary reference for the IRI in a high latitude region, that is otherwise particularly difficult to quantify.

  14. Aerosol Radiative Forcing over­­­­­­ North-East India: Synergy of Model simulation and ground based observations

    NASA Astrophysics Data System (ADS)

    Pathak, B.

    2015-12-01

    The diurnal evolution of shortwave solar radiance at the surface has been investigated from Kipp and Zonen CNR4 net radiometer measurements in a humid sub-tropical location Dibrugarh in the North Eastern region of India. Data for a total of 345 clear days within a span of two years during March 2013- January 2015 are analyzed which are further utilized to validate the Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) simulated flux. The diurnal evolution of solar radiation maximizes in its amplitude in monsoon months (JJAS) and is minimum during the winter months (DJF) prescribed by the Northern Hemisphere routine. The net shortwave radiation increases from the minimum value of ~100 Wm-2 at the beginning of the year and attains maximum ~300 Wm-2 during monsoon. Both the measured and model simulated diurnal and seasonal solar flux exhibit similar behaviour at the surface with good correlation with R2~ 0.98-0.99. The present study also focuses on the validation of the surface albedo and the albedo retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by the CNR4 net Radiometer measurements, which again shows a good agreement. This validation is essential for the reliability of satellite retrieved surface reflectance that are being utilised in the radiative transfer models. In order to study the influence of the aerosols upon the incoming solar irradiances the aerosol radiative forcing (ARF) and aerosol radiative forcing efficiency (ARFE) is estimated. The ARFEsurface during the Winter is the highest (-75.02 ± 8.03 W m-2 τ-1) and minimum during Retreating Monsoon (ON) (-58.40 ±25.03 W m-2 τ-1). For both the modeled and the field based estimation, the aerosol radiative forcing obtained during the study period ranged from -39 ±6 Wm-2 to -10 ±4 Wm-2 at the surface and 10±3 Wm-2 to 28±7 Wm-2 at the atmosphere and -7±4 Wm-2 to -10 ±3 Wm-2 at the TOA. The measured and the model ARF values differ by 5 - 8 % in winter and premonsoon and almost ~6% in monsoon. The average atmospheric heating rate is maximum in pre-monsoon for both the estimations. The observation of ARF is further compared with the ICTP's RegCM4 model in order to acquire the model utility in the location where measurements are not feasible.

  15. Inertial Range Turbulence of Fast and Slow Solar Wind at 0.72 AU and Solar Minimum

    NASA Astrophysics Data System (ADS)

    Teodorescu, Eliza; Echim, Marius; Munteanu, Costel; Zhang, Tielong; Bruno, Roberto; Kovacs, Peter

    2015-05-01

    We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s-1. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005-0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is -1.60 for fast solar wind and -1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.

  16. Solar Changes and Climate Changes. (Invited)

    NASA Astrophysics Data System (ADS)

    Feynman, J.

    2009-12-01

    During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.

  17. Testing the Sun-climate Connection with Paleoclimate Data

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.; Howard, Matthew K.

    1990-01-01

    If there is a significant sun-climate connection, it should be detectable in high-resolution paleoclimate records. Of particular interest is the last few thousand years, where we have both indices of solar variability (C-14 and Be-10) and climate variations (alpine glaciers, tree rings, ice cores, corals, etc.). Although there are a few exceptions, statistical analyses of solar and climate records generally indicates a flickering relationship between the two -- sometimes it seems to be present, sometimes not. The most repeatable solar climate periods occur at approx. 120 and approx. 56 yrs, although there is also evidence for approx. 420 and approx. 200 yrs. power in some records. However, coherence between solar and climate spectra is usually low, and occurrence of solar spectra in climate records is sometimes dependent on choice of analysis program. These results suggest in general a relatively weak sun-climate link on time scales of decades to centuries. This conclusion is consistent with previous studies and with the observation that inferred climate fluctuations of 1.0 to 1.5 C on this time scale would require solar constant variations of approximately 0.5 to 1.0 percent. This change in forcing is almost an order of magnitude greater than observed changes over the last solar cycle and appears to be on the far-outer limit of acceptable changes for a Maunder Minimum-type event.

  18. Performance of the IRI-2007 Model for Equatorial Topside Ion Density in the African Sector for Low and Extremely Low Solar Activity

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Simoes, F.; Ivanov, S.; Bilitza, D.; Heelis, R. A.; Rowland, D.

    2012-01-01

    The recent availability of new data sets during the recent extreme solar minimum provides an opportunity for testing the performance of the International Reference Ionosphere in historically under-sampled regions. This study will present averages and variability of topside ionospheric densities over Africa as a function of season, local time, altitude, and magnetic dip latitude as measured by the Coupled Ion-Neutral Dynamics Investigation (CINDI) Mission of Opportunity on the C/NOFS satellite. The results will be compared to the three topside model options available in IRI-2007. Overall, the NeQuick model is found to have the best performance, though during the deepest part of the solar minimum all three options significantly overestimate density.

  19. Structure and Dynamics of the 2009 July 22 Eclipse White-light Corona

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.; Rušin, V.; Saniga, M.; Druckmüllerová, H.; Babcock, B. A.

    2011-11-01

    The white-light corona (WLC) during the total solar eclipse of 2009 July 22 was observed by several teams in the Moon's shadow stretching from India and China across the Pacific Ocean with its many isolated islands. We present a comparison of the WLC as observed by eclipse teams located in China (Shanghai region) and on the Enewetak Atoll in the Marshall Islands, with observations taken 112 minutes apart, combined with near-simultaneous space observations. The eclipse was observed at the beginning of solar cycle 24, during a deep solar minimum (officially estimated as 2008 December according to the smoothed sunspot number, but very extended). The solar corona shows several different types of features (coronal holes, polar rays, helmet streamers, faint loops, voids, etc.), though it was extremely sparse in streamers as shown from Large-Angle Spectroscopic Coronagraph data. No large-scale dynamical phenomena were seen when comparing the observations from the two sites, confirming that the corona was quiescent. We measure a Ludendorff flattening coefficient of 0.238, typical of solar minimum.

  20. High latitude field aligned light ion flows in the topside ionosphere deduced from ion composition and plasma temperatures

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.

    1993-01-01

    Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.

  1. Solar activity indices as a proxy for the variation of ionospheric Total Electron Content (TEC) over Bahir Dar, Ethiopia during the year 2010-2014

    NASA Astrophysics Data System (ADS)

    Kassa, Tsegaye; Tilahun, Samson; Damtie, Baylie

    2017-09-01

    This paper was aimed at investigating the solar variations of vTEC as a function of solar activity parameters, EUV and F10.7 radio flux. The daily values of ionospheric vertical Total Electron Content (vTEC) were observed using a dual frequency GPS receiver deployed at Bahir Dar (11.6°N and 37.36°E), Ethiopia. Measurements were taken during the period of 2010-2014 for successive five years and analysis was done on only quiet day observations. A quadratic fit was used as a model to describe the daily variation of vTEC in relation to solar parameters. Linear and non-linear coefficients of the vTEC variations were calculated in order to capture the trend of the variation. The variation of vTEC have showed good agreement with the trend of solar parameters in almost all of the days we consider during the period of our observations. We have explicitly observed days with insignificant TECU deviation (eg. modeling with respect to EUV, DOY = 49 in 2010 and modeling with respect to F10.7, DOY = 125 in 2012 and the like) and days with maximum deviation (about 50 TECU). A maximum deviation were observed, on average, during months of equinox whereas minimum during solstice months. This implies that there is a need to consider more parameters, including EUV and F10.7, that can affect the variation of vTEC during equinox seasons. Relatively, small deviations was observed in modeling vTEC as a function of EUV compared to that of the variation due to F10.7 cm flux. This may also tell us that EUV can be more suitable in modeling the solar variation of vTEC especially for longterm trends. Even though, the linear trend of solar variations of vTEC was frequently observed, significant saturation and amplification trends of the solar variations of vTEC were also observed to some extent across the months of the years we have analyzed. This mixed trend of the solar variation of vTEC implies the need for thorough investigation on the effect of solar parameters on TEC. However, based on long-term dataset, we came to conclude that the solar variations of vTEC is dominated by its linear pattern.

  2. A model for solar constant secular changes

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    In this paper, contrast models for solar active region and global photospheric features are used to reproduce the observed Active Cavity Radiometer and Earth Radiation Budget secular trends in reasonably good fashion. A prediction for the next decade of solar constant variations is made using the model. Secular trends in the solar constant obtained from the present model support the view that the Maunder Minimum may be related to the Little Ice Age of the 17th century.

  3. Automated array assembly task, phase 1

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1977-01-01

    State-of-the-art technologies applicable to silicon solar cell and solar cell module fabrication were assessed. The assessment consisted of a technical feasibility evaluation and a cost projection for high volume production of solar cell modules. Design equations based on minimum power loss were used as a tool in the evaluation of metallization technologies. A solar cell process sensitivity study using models, computer calculations, and experimental data was used to identify process step variation and cell output variation correlations.

  4. Distinct EUV minimum of the solar irradiance (16-40 nm) observed by SolACES spectrometers onboard the International Space Station (ISS) in August/September 2009

    NASA Astrophysics Data System (ADS)

    Nikutowski, B.; Brunner, R.; Erhardt, Ch.; Knecht, St.; Schmidtke, G.

    2011-09-01

    In the field of terrestrial climatology the continuous monitoring of the solar irradiance with highest possible accuracy is an important goal. SolACES as a part of the ESA mission SOLAR on the ISS is measuring the short-wavelength solar EUV irradiance from 16-150 nm. This data will be made available to the scientific community to investigate the impact of the solar irradiance variability on the Earth's climate as well as the thermospheric/ionospheric interactions that are pursued in the TIGER program. Since the successful launch with the shuttle mission STS-122 on February 7th, 2008, SolACES initially recorded the low EUV irradiance during the extended solar activity minimum. Thereafter it has been observing the EUV irradiance during the increasing solar activity with enhanced intensity and changing spectral composition. SolACES consists of three grazing incidence planar grating spectrometers. In addition there are two three-signal ionisation chambers, each with exchangeable band-pass filters to determine the absolute EUV fluxes repeatedly during the mission. One important problem of space-borne instrumentation recording the solar EUV irradiance is the degradation of the spectrometer sensitivity. The two double ionisation chambers of SolACES, which could be re-filled with three different gases for each recording, allow the recalibration of the efficiencies of the three SolACES spectrometers from time to time.

  5. Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; De Santis, C; Di Felice, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S A; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Potgieter, M S; Vos, E E

    2016-06-17

    Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.

  6. Trends and solar cycle effects in mesospheric ice clouds

    NASA Astrophysics Data System (ADS)

    Lübken, Franz-Josef; Berger, Uwe; Fiedler, Jens; Baumgarten, Gerd; Gerding, Michael

    Lidar observations of mesospheric ice layers (noctilucent clouds, NLC) are now available since 12 years which allows to study solar cycle effects on NLC parameters such as altitudes, bright-ness, and occurrence rates. We present observations from our lidar stations in Kuehlungsborn (54N) and ALOMAR (69N). Different from general expectations the mean layer characteris-tics at ALOMAR do not show a persistent anti-correlation with solar cycle. Although a nice anti-correlation of Ly-alpha and occurrence rates is detected in the first half of the solar cycle, occurrence rates decreased with decreasing solar activity thereafter. Interestingly, in summer 2009 record high NLC parameters were detected as expected in solar minimum conditions. The morphology of NLC suggests that other processes except solar radiation may affect NLC. We have recently applied our LIMA model to study in detail the solar cycle effects on tempera-tures and water vapor concentration the middle atmosphere and its subsequent influence on mesospheric ice clouds. Furthermore, lower atmosphere effects are implicitly included because LIMA nudges to the conditions in the troposphere and lower stratosphere. We compare LIMA results regarding solar cycle effects on temperatures and ice layers with observations at ALO-MAR as well as satellite borne measurements. We will also present LIMA results regarding the latitude variation of solar cycle and trends, including a comparison of northern and southern hemisphere. We have adapted the observation conditions from SBUV (wavelength and scatter-ing angle) in LIMA for a detailed comparison with long term observations of ice clouds from satellites.

  7. Observed solar near UV variability: A contribution to variations of the solar constant

    NASA Technical Reports Server (NTRS)

    London, Julius; Pap, Judit; Rottman, Gary J.

    1989-01-01

    Continuous Measurements of the Solar UV have been made by an instrument on the Solar Mesosphere Explorer (SME) since October 1981. The results for the wavelength interval 200 to 300 nm show an irradiance decrease to a minimum in early 1987 and a subsequent increase to mid-April 1989. The observed UV changes during part of solar cycles 21 to 22 represent approx. 35 percent (during the decreasing phase) and 25 percent (during the increasing phase) of the observed variations of the solar constant for the same time period as the SME measurements.

  8. Solar Forcing of Regional Climate Change During the Maunder Minimum

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Mann, Michael E.; Rind, David; Waple, Anne; Hansen, James E. (Technical Monitor)

    2002-01-01

    We examine the climate response to solar irradiance changes between the late 17th century Maunder Minimum and the late 18th century. Global average temperature changes are small (about 0.3 to 0.4 C) in both a climate model and empirical reconstructions. However, regional temperature changes are quite large. In the model, these occur primarily through a forced shift toward the low index state of the Arctic Oscillation/North Atlantic Oscillation. This leads to colder temperatures over the Northern Hemisphere continents, especially in winter (1 to 2 C), in agreement with historical records and proxy data for surface temperatures.

  9. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  10. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  11. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  12. Influence of the 11-year solar cycle on the effects of the equatorial quasi-biennial oscillation, manifesting in the extratropical northern atmosphere

    NASA Astrophysics Data System (ADS)

    Sitnov, S. A.

    2009-01-01

    Using the longest and most reliable ozonesonde data sets grouped for four regions (Japan, Europe, as well as temperate and polar latitudes of Canada) the comparative analysis of regional responses of ozone, temperature, horizontal wind, tropopause and surface pressure on the equatorial quasi-biennial oscillation (QBO effects), manifesting in opposite phases of the 11-year solar cycle (11-yr SC) was carried out. The impact of solar cycle is found to be the strongest at the Canadian Arctic, near one of two climatological centres of polar vortex, where in solar maximum conditions the QBO signals in ozone and temperature have much larger amplitudes, embrace greater range of heights, and are maximized much higher than those in solar minimum conditions. The strengthening of the temperature QBO effect during solar maxima can explain why correlation between the 11-yr SC and polar winter stratospheric temperature is reversed in the opposite QBO phases. At the border of polar vortex the 11-yr SC also modulates the QBO effect in zonal wind, strengthening the quasi-biennial modulation of polar vortex during solar maxima that is associated with strong negative correlation between stratospheric QBO signals in zonal wind and temperature. Above Japan the QBO effects of ozone, temperature, and zonal wind, manifesting in solar maxima reveal the downward phase dynamics, reminding similar feature of the zonal wind in the equatorial stratosphere. Above Europe, the QBO effects in solar maxima reveal more similarity with those above Japan, while in solar minima with the effects obtained at the Canadian middle-latitude stations. It is revealed that the 11-yr SC influences regional QBO effects in tropopause height, tropopause temperature and surface pressure. The influence most distinctly manifest itself in tropopause characteristics above Japan. The results of the accompanying analysis of the QBO reference time series testify that in the period of 1965-2006 above 50-hPa level the duration of the QBO cycle in solar maxima is 1-3 months longer than in solar minima. The differences are more distinct at higher levels, but they are diminished with lengthening of the period.

  13. Evolution of 3D electron density of the solar corona from the minimum to maximum of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Reginald, Nelson L.; Davila, Joseph M.; St Cyr, O. C.

    2016-10-01

    The variability of the solar white-light corona and its connection to the solar activity has been studied for more than a half century. It is widely accepted that the temporal variation of the total radiance of the K-corona follows the solar cycle pattern (e.g., correlated with sunspot number). However, the origin of this variation and its relationships with regard to coronal mass ejections and the solar wind are yet to be clearly understood. COR1-A and -B instruments onboard the STEREO spacecraft have continued to perform high-cadence (5 min) polarized brightness (pB) measurements from two different vantage points from the solar minimum to the solar maximum of Solar Cycle 24. With these pB observations we have reconstructed the 3D coronal density between 1.5-4.0 solar radii for 100 Carrington rotations (CRs) from 2007 to 2014 using the spherically symmetric inversion (SSI) method. We validate these 3D density reconstructions by other means such as tomography, MHD modeling, and pB inversion of LASCO/C2 data. We analyze the solar cycle variations of total coronal mass (or average density) over the global Sun and in two hemispheres, as well as the variations of the streamer area and mean density. We find the short-term oscillations of 8-9 CRs during the ascending and maximum phases through wavelet analysis. We explore the origin of these oscillations based on evolution of the photospheric magnetic flux and coronal structures.

  14. Equatorial temperature anomaly during solar minimum

    NASA Astrophysics Data System (ADS)

    Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.

    2001-11-01

    We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.

  15. The Distribution of Solar Wind Speeds During Solar Minimum: Calibration for Numerical Solar Wind Modeling Constraints on the Source of the Slow Solar Wind (Postprint)

    DTIC Science & Technology

    2012-03-05

    subsonic corona below the critical point, resulting in an increased scale height and mass flux, while keeping the kinetic energy of the flow fairly...Approved for public release; distribution is unlimited. tubes with small expansion factors the heating occurs in the supersonic corona, where the energy ...goes into the kinetic energy of the solar wind, increasing the flow speed [Leer and Holzer, 1980; Pneuman, 1980]. Using this model and a sim- plified

  16. Planetary exploration through year 2000: An augmented program. Part two of a report by the Solar System Exploration Committee of the NASA Advisory Council

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.

  17. Primary cosmic rays on the lunar surface

    NASA Technical Reports Server (NTRS)

    Vernov, S. N.; Lavrukhina, A. K.

    1977-01-01

    Results are reported for determination of the galactic cosmic ray flux during various time intervals in the 1965-1972 period, on the basis of data from the instruments of a spacecraft that made a soft landing on the lunar surface, and from the radioactivity of samples returned by the spacecraft. During minimum solar activity (the second half of 1965 and the beginning of 1966) I sub 0 (E greater than or equal to 30 percent MeV/nucleon) was determined to be 0.43 (plus or minus 10 percent). These values, within the error limits of the determinations, agree with the corresponding values of galactic cosmic ray intensities determined by stratospheric measurements. The mean flux of galactic cosmic rays over the past million years is equal to I (E greater or equal to 100 MeV/nucleon) + 0.28 (plus or minus 20 percent). This value agrees with the mean flux of modulated cosmic rays during the period of the nineteenth solar cycle. The mean flux of solar protons between 1965 and 1972 was 2.46.

  18. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program

    NASA Astrophysics Data System (ADS)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul

    1998-10-01

    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  19. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  20. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong n8 band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  1. Heliospheric Magnetic Field: The Bashful Ballerina dancing in Waltz Tempo

    NASA Astrophysics Data System (ADS)

    Mursula, K.

    The recent developments in the long-term observations of the heliospheric magnetic field HMF observed at 1 AU have shown that the HMF sector coming from the northern solar hemisphere systematically dominates in the late declining to minimum phase of the solar cycle This leads to a persistent southward shift or coning of the heliospheric current sheet at these times that can be picturesquely described by the concept of the Bashful Ballerina This result has recently been verified by direct measurements of the solar magnetic field The average field intensity is smaller and the corresponding area is larger in the northern hemisphere Also ground-based observations of the HMF sector structure extend these results to 1920s Moreover it has been shown that the global HMF has persistent active longitudes whose dominance depicts an oscillation with a period of about 3 2 years Accordingly the Bashful Ballerina takes three such steps per activity cycle thus dancing in waltz tempo We discuss the implications of this behaviour

  2. Effects of meteorologic factors and schooling on the seasonality of group A streptococcal pharyngitis

    NASA Astrophysics Data System (ADS)

    Hervás, Daniel; Hervás-Masip, Juan; Ferrés, Laia; Ramírez, Antonio; Pérez, José L.; Hervás, Juan A.

    2016-05-01

    The objective of this study was to determine the seasonal pattern of group A streptococcal pharyngitis in children attended at a hospital emergency department in the Mediterranean island of Mallorca (Spain), and its association with meteorologic factors and schooling. We conducted a retrospective review of the medical records of children aged 1-15 years with a diagnosis of Streptococcus pyogenes pharyngitis between January 2006 and December 2011. The number of S. pyogenes pharyngitis was correlated to temperature, humidity, rainfall, atmospheric pressure, wind speed, solar radiation, and schooling, using regression and time series techniques. A total of 906 patients (median, 4 years old) with S. pyogenes pharyngitis, confirmed by throat culture, were attended during the study period. A seasonal pattern was observed with a peak activity in June and a minimum in September. Mean temperature, solar radiation, and school holidays were the best predicting variables ( R 2 = 0.68; p < 0.001 ). S. pyogenes activity increased with the decrease of mean temperature ( z = -2.4; p < 0.05), the increase of solar radiation ( z = 4.2; p < 0.001), and/or the decrease in school holidays ( z = -2.4; p < 0.05). In conclusion, S. pyogenes pharyngitis had a clear seasonality predominating in springtime, and an association with mean temperature, solar radiation, and schooling was observed. The resulting model predicted 68 % of S. pyogenes pharyngitis.

  3. Spotless Days

    NASA Image and Video Library

    2018-02-07

    The sun has had no sunspots for almost two weeks (as of Feb. 1, 2018) and just has a single, tiny one that appeared on Jan. 31, 2018. The video shows a rotating sun in filtered light for the past week, but it is even hard to tell the sun is rotating since there are just about no features. Even the small spot that appears on the 31st is hard to see. This spotless period is a prelude to the approaching period of solar minimum next year, when the sun's activity will be at the low end of its 11-year cycle. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22242

  4. Building with integral solar-heat storage--Starkville, Mississippi

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

  5. Quiet-Time Suprathermal (˜0.1 - 200 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Linghua; Yang, Liu; Tao, Jiawei; Zong, Qiugang; Li, Gang; Wimmer-Schweingruber, Robert; He, Jiansen; Tu, Chuanyi; Bale, Stuart

    2017-04-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-200 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. The observed energy spectrum of both (beaming) strahl and (isotropic) halo electrons at ˜0.1-1.5 keV generally fits to a Kappa distribution function with an index κ and effective temperature Teff, while the observed energy spectrum of nearly isotropic superhalo electrons at ˜20-200 keV generally fits to a power-law function, J ˜ E-β. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl density and halo density. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. For the superhalo population, the spectral index β ranges from ˜1.6 to ˜3.7 and the integrated density nsup ranges from 10-8 cm-3 to 10-5 cm-3, with no clear association with the sunspot number. In solar cycle 23 (24), the distribution of β has a broad maximum between 2.4 and 2.8 (2.0 and 2.4). All the strahl, halo and superhalo populations show no obvious correlation with the solar wind core population. These results reflect the nature of the generation of solar wind suprathermal electrons.

  6. SCD 02 thermal design

    NASA Technical Reports Server (NTRS)

    Cardoso, Humberto Pontes

    1990-01-01

    The Satelite de Coleta de Dados (SCD) 02 (Data Collection Satellite) has the following characteristics: 115 kg weight, octagonal prism shape, 1 m diameter, and 0.67 m height. Its specified orbit is nearly circular, 700 km altitude, is inclined 25 deg with respect to the equator line, and has 100 min period. The electric power is supplied by eight solar panels installed on the lateral sides of the satellite. The equipment is located on the central (both faces) and lower (internal face) panels. The satellite is spin stabilized and its attitude control is such that during its lifetime, the solar aspect angle will vary between 80 and 100 deg with respect to its spin axis. Two critical cases were selected for thermal control design purposes: Hot case (maximum solar constant, solar aspect angle equal to 100 deg, minimum eclipse time and maximum internal heat dissipation); and a passive thermal design concept was achieved and the maximum and minimum equipment operating temperatures were obtained through a 109 node finite difference mathematical model.

  7. Consistency Between SC#21REF Solar XUV Energy Input and the 1973 Pioneer 10 Observations of the Jovian Photoelectron Excited H2 Airglow

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, P.; Ogawa, H. S.; Judge, D. L.

    1988-01-01

    It has been suggested in the literature that the F74113 solar spectrum for the solar minimum condition needs to be modified to explain the production of photoelectrons in the Earth's atmosphere. We have studied here the effect of another solar minimum spectrum, SC#21REF, on the Jovian upper atmosphere emissions and we have compared the predicted photoelectron excited H2 airglow with the 1973 Pioneer 10 observations, analyzed according to the methodology of Shemansky and Judge (1988). In this model calculation we find that in 1973, the Jovian H2 band emissions can be accounted for almost entirely by photoelectron excitation, if the preflight calibration of the Pioneer 10 ultraviolet photometer is adopted. If the SC#21REF flux shortward of 250 A is multiplied by 2 as proposed by Richards and Torr (1988) then the Pioneer 10 calibration and/or the airglow model used must be modified in order to have a self consistent set of observations.

  8. The Mg II h and k lines. II - Comparison with synthesized profiles and Ca II K. [solar spectra

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Linsky, J. L.

    1976-01-01

    Measured high-dispersion center and limb profiles of the solar Mg II h and k resonance lines are compared with synthetic spectra computed with a partial-redistribution formalism and based on several upper-photosphere and lower-chromosphere temperature distributions. Profiles of the analogously formed Ca II K resonance line are also synthesized for the same atmospheric models. The spectrum-synthesis approach is outlined, and the collisional and fixed radiative rates appropriate to the adopted model atoms and solar atmosphere are discussed. It is found that the HSRA and VAL models predict systematically lower intensities in the h, k, and K inner wings than observed and that models with a somewhat higher minimum temperature (about 4450 K) can reproduce the measured inner wings and limb darkening. A 'Ca II' solar model with a minimum temperature of 4450 K is proposed as an alternative to the class of models based on continuum observations.

  9. Development of a predictive model to estimate the effect of soil solarization on survival of soilborne inoculum of Phytophthora ramorum and Phytophthora pini

    Treesearch

    Fumiaki Funahashi; Jennifer L. Parke

    2017-01-01

    Soil solarization has been shown to be an effective tool to manage Phytophthora spp. within surface soils, but estimating the minimum time required to complete local eradication under variable weather conditions remains unknown. A mathematical model could help predict the effectiveness of solarization at different sites and soil depths....

  10. Climate variability related to the 11 year solar cycle as represented in different spectral solar irradiance reconstructions

    NASA Astrophysics Data System (ADS)

    Kruschke, Tim; Kunze, Markus; Misios, Stergios; Matthes, Katja; Langematz, Ulrike; Tourpali, Kleareti

    2016-04-01

    Advanced spectral solar irradiance (SSI) reconstructions differ significantly from each other in terms of the mean solar spectrum, that is the spectral distribution of energy, and solar cycle variability. Largest uncertainties - relative to mean irradiance - are found for the ultraviolet range of the spectrum, a spectral region highly important for radiative heating and chemistry in the stratosphere and troposphere. This study systematically analyzes the effects of employing different SSI reconstructions in long-term (40 years) chemistry-climate model (CCM) simulations to estimate related uncertainties of the atmospheric response. These analyses are highly relevant for the next round of CCM studies as well as climate models within the CMIP6 exercise. The simulations are conducted by means of two state-of-the-art CCMs - CESM1(WACCM) and EMAC - run in "atmosphere-only"-mode. These models are quite different with respect to the complexity of the implemented radiation and chemistry schemes. CESM1(WACCM) features a chemistry module with considerably higher spectral resolution of the photolysis scheme while EMAC employs a radiation code with notably higher spectral resolution. For all simulations, concentrations of greenhouse gases and ozone depleting substances, as well as observed sea surface temperatures (SST) are set to average conditions representative for the year 2000 (for SSTs: mean of decade centered over year 2000) to exclude anthropogenic influences and differences due to variable SST forcing. Only the SSI forcing differs for the various simulations. Four different forcing datasets are used: NRLSSI1 (used as a reference in all previous climate modeling intercomparisons, i.e. CMIP5, CCMVal, CCMI), NRLSSI2, SATIRE-S, and the SSI forcing dataset recommended for the CMIP6 exercise. For each dataset, a solar maximum and minimum timeslice is integrated, respectively. The results of these simulations - eight in total - are compared to each other with respect to their shortwave heating rate differences (additionally collated with line-by-line calculations using libradtran), differences in the photolysis rates, as well as atmospheric circulation features (temperature, zonal wind, geopotential height, etc.). It is shown that atmospheric responses to the different SSI datasets differ significantly from each other. This is a result from direct radiative effects as well as indirect effects induced by ozone feedbacks. Differences originating from using different SSI datasets for the same level of solar activity are in the same order of magnitude as those associated with the 11 year solar cycle within a specific dataset. However, the climate signals related to the solar cycle are quite comparable across datasets.

  11. Changes of atmospheric properties over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015

    NASA Astrophysics Data System (ADS)

    Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.

    2018-06-01

    Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected based on the VLF/LF signal variations, as a consequence of Lyα radiation decrease.

  12. Model predictions and visualization of the particle flux on the surface of Mars.

    PubMed

    Cucinotta, Francis A; Saganti, Premkumar B; Wilson, John W; Simonsen, Lisa C

    2002-12-01

    Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year.

  13. Modulation of galactic and anomalous cosmic rays in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Heber, B.

    Our knowledge on how galactic and anomalous cosmic rays are modulated in the inner heliosphere has been dramatically enlarged due to measurements provided by several missions launched in the past ten years. The current paradigma of singly charged anomalous cosmic rays has been confirmed by recent measurements from the SAMPEX and ACE satelite. Ulysses explored the inner heliosphere at polar regions during the last solar minimum period and is heading again to high heliographic latitudes during the time of the conference in July, 2000. The Sun approaches maximum activity when the spacecraft is at high heliographic latitudes giving us for the first time the possibility to explore modulation of cosmic rays in the inner three-dimensional heliosphere during such conditions. Ulysses electron measurements in addition to the 1 AU ICE electron and IMP helium measurements allows us to investigate charge sign dependent modulation over a full 22-year solar magnetic cycle. Implications of these observations for our understanding of different modulation processes in the inner three-dimensional heliosphere are presented.

  14. The Art and Science of Long-Range Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  15. An Extended IEEE 118-Bus Test System With High Renewable Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Ivonne; Martinez-Anido, Carlo Brancucci; Hodge, Bri-Mathias

    This article describes a new publicly available version of the IEEE 118-bus test system, named NREL-118. The database is based on the transmission representation (buses and lines) of the IEEE 118-bus test system, with a reconfigured generation representation using three regions of the US Western Interconnection from the latest Western Electricity Coordination Council (WECC) 2024 Common Case [1]. Time-synchronous hourly load, wind, and solar time series are provided for over one year (8784 hours). The public database presented and described in this manuscript will allow researchers to model a test power system using detailed transmission, generation, load, wind, and solarmore » data. This database includes key additional features that add to the current IEEE 118-bus test model, such as: the inclusion of 10 generation technologies with different heat rate functions, minimum stable levels and ramping rates, GHG emissions rates, regulation and contingency reserves, and hourly time series data for one full year for load, wind and solar generation.« less

  16. Space weather effects on the low latitude D-region ionosphere during solar minimum

    NASA Astrophysics Data System (ADS)

    Kumar, Abhikesh; Kumar, Sushil

    2014-12-01

    The effects of the solar flares and the geomagnetic storms (disturbance storm time ( Dst) < -50 nT) during December 2006 to 2008, a period during the unprecedented solar minimum of solar cycles 23 and 24, have been examined on sub-ionospheric very low frequency (VLF) signals from NWC (19.8 kHz), NPM (21.4 kHz), VTX (18.2 kHz), and NLK (24.8 kHz) transmitters monitored at Suva (18.2° S, 178.4° E), Fiji. Apart from the higher class solar flares (C to X), a solar flare of class B8.5 also produced enhancements both on the amplitude and phase. The amplitude enhancements in NLK, NPM, and NWC signals as a function of peak solar flare X-ray flux in decibel (dB; relative to 1 μW/m2) shows that the relationship curve is steeper and quite linear between the flare power levels of 0 to 15 dB; below 0 dB, the curve gets less steep and flattens towards -5 dB flare power level, while it also gets less steep above 15 dB and almost flattens above 20 dB. In general, the level of amplitude enhancement for NLK signal is higher than that for NPM and NWC signals for all solar flares. The enhancement in the amplitude and phase of VLF signals by solar flares is due to the increase in the D-region electron density by the solar flare-produced extra ionization. The modeling of VLF perturbations produced by B8.5 and C1.5 classes of solar flares on 29 January 2007 using LWPC (Long Wave Propagation Capability) V2.1 codes show that reflection height ( H') was reduced by 0.6 and 1.2 km and the exponential sharpness factor ( β) was raised by 0.010 and 0.005 km-1, respectively. Out of seven storms with Dst < -50 nT, only the intense storm of 14 to 16 December 2006 with a minimum Dst of -145 nT has shown a clear reduction in the signal strength of NWC and NPM sub-ionospheric signals due to storm-induced reduction in the D-region electron density.

  17. Planetary Hypothesis, sub-Milankovitch frequencies and Holocene cold events

    NASA Astrophysics Data System (ADS)

    Compagnucci, R. H.; Cionco, R. G.; Agosta, E.; Wanner, H.

    2013-05-01

    The Planetary Hypothesis of solar cycles proposes that the movement of the Sun around the solar system barycenter modulates the solar cycles at several times scales. Using a 3-D model of the solar system (Cionco and Compagnucci, 2012) we derived the solar barycentric motion and various dynamic parameters such as the angular momentum (L= Lx, Ly, Lz) for the Holocene. Angular momentum inversions are sporadic and important events in the dynamics of the MSB: Lz becomes negative and giant planets are nearly aligned. These episodes are related to some grand solar grand minima such as Maunder and Dalton, and also to the recent deep minimum 2007-2010 which was preceded by a Lz inversion in 1990. During the Holocene several negative Lz episodes occur that are grouped in approximately millennia to centuries long periods. Each group is separated by ~2000 years where the Lz values remain positive, both generating a cycle between 1500 and 2500 years. The spectral analysis shows significant peaks at sub-Milankovitch frequencies. Furthermore, the analysis of the spatiotemporal variability of temperature defined six specific cold events (8200, 6300, 4700, 2700, 1550 and 550 years BP) during the Holocene (Wanner et al, 2011). During, and /or before, of these major climates cooling, a group of negative Lz episodes were presented. Oppositely the resulted during the warms periods were the lack of the angular movement inversion together with the extremes of positive Lz . Therefore, the origin of Holocene cold events seems to be linked to the gravitational influence of the planets, that is to say the planetary torque that has a non-negligible effect on the causes of the solar magnetic cycle. Acknowledgements:The support of the Grants PID-UTN1351, UBACYT N_:20020100101049, CONICET PIP PIP 114-201001-00250 and MINCYT-MEYS ARC/11/09. References Cionco, R.G.; Compagnucci,R.H. (2012) Dynamical characterization of the last prolonged solar minima , Advances in Space Research 50(10), 1434-1444 Wanner, H.; Solomina, O.; Grosjean, M.; Ritz, S. P.; Jetel, M. (2011) Structure and origin of Holocene cold events.Quat. Sci. Rev. 30, 3109-3123.;

  18. Solar electric propulsion for Mars transport vehicles

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  19. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  20. Intense Geomagnetic Storms of Solar Cycle 24 and Associated Energetics

    NASA Astrophysics Data System (ADS)

    Rawat, R.; Echer, E.; Gonzalez, W. D.

    2013-12-01

    Solar cycle 24 commenced in November 2008 following a deep solar minimum. The solar activity picked up gradually and consequently led to increase in geomagnetic activity during the ascending phase of new cycle. From the start of this cycle till July 2013, only 12 intense geomagnetic storms (Dst < -100 nT) have occurred. We investigate the solar wind-interplanetary drivers for these intense geomagnetic storms using satellite data. Total energy Poynting flux (ɛ) representing the fraction of solar wind energy transferred into the magnetosphere during different storms will be calculated. Solar cycle 24 is weaker as compared to previous solar cycle (23). In this work, a comparative study of solar and geomagnetic signatures during the ascending phase of the two cycles will be carried out.

  1. Short time variability of solar corona during recent solar cycle minimum

    NASA Astrophysics Data System (ADS)

    Siarkowski, Marek; Gryciuk, Magdalena; Gburek, Szymon; Sylwester, Janusz; Sylwester, Barbara; Kepa, Anna; Buczkowska, Agnieszka; Kowalinski, Miroslaw

    Sphinx is the X-ray spectrophotometer designed to measure X-ray emission from the Sun in the energy range between 0.8 keV and 15 keV. The instrument is placed onboard Russian KORONAS-PHOTON satellite launched on January 30, 2009. In this paper we present the observations of coronal emission obtained between March-April and August-September 2009, i.e. the times towards the end of the last, very prolonged and deep minimum of solar activity. Prompt analysis of SphinX spectra reveal the variability of the average coronal plasma charac-teristics like the temperature and emission measure. These data are used to compare SphinX and GOES measurements, for selected times. Examples of many sub/microflare events with maxima of the X-ray flux, observed much below the GOES sensitivity threshold level will be presented.

  2. Peculiarities of cosmic ray modulation in the solar minimum 23/24

    NASA Astrophysics Data System (ADS)

    Alania, M. V.; Modzelewska, R.; Wawrzynczak, A.

    2014-06-01

    We study changes of the galactic cosmic ray (GCR) intensity for the ending period of the solar cycle 23 and the beginning of the solar cycle 24 using neutron monitors experimental data. We show that an increase of the GCR intensity in 2009 is generally related with decrease of the solar wind velocity U, the strength B of the interplanetary magnetic field (IMF), and the drift in negative (A < 0) polarity epoch. We present that temporal changes of rigidity dependence of the GCR intensity variation, before reaching maximum level in 2009 and after it, do not noticeably differ from each other. The rigidity spectrum of the GCR intensity variations calculated based on neutron monitors data (for rigidities > 10 GV) is hard in the minimum and near-minimum epoch. We do not recognize any nonordinary changes in the physical mechanism of modulation of the GCR intensity in the rigidity range of GCR particles to which neutron monitors respond. We compose 2-D nonstationary model of transport equation to describe variations of the GCR intensity for 1996-2012 including the A > 0 (1996-2001) and the A < 0 (2002-2012) periods; diffusion coefficient of cosmic rays for rigidity 10-15 GV is increased by 30% in 2009 (A < 0) comparing with 1996 (A > 0). We believe that the proposed model is relatively realistic, and obtained results are satisfactorily compatible with neutron monitors data.

  3. Lighting Condition Analysis for Mars Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; De Carufel, Guy

    2016-01-01

    A manned mission to Phobos may be an important precursor and catalyst for the human exploration of Mars, as it will fully demonstrate the technologies for a successful Mars mission. A comprehensive understanding of Phobos' environment such as lighting condition and gravitational acceleration are essential to the mission success. The lighting condition is one of many critical factors for landing zone selection, vehicle power subsystem design, and surface mobility vehicle path planning. Due to the orbital characteristic of Phobos, the lighting condition will change dramatically from one Martian season to another. This study uses high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, the Earth, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos' state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting condition over one Martian year are presented in this paper, which include length of solar eclipse, average solar radiation intensity, surface exposure time, total maximum solar energy, and total surface solar energy (constrained by incident angle). The results show that Phobos' solar eclipse time changes throughout the Martian year with the maximum eclipse time occurring during the Martian spring and fall equinox and no solar eclipse during the Martian summer and winter solstice. Solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice. Total surface exposure time is longer near the north pole and around the anti- Mars point. Total maximum solar energy is larger around the anti-Mars point. Total surface solar energy is higher around the anti-Mars point near the equator. The results from this study and others like it will be important in determining landing site selection, vehicle system design and mission operations for the human exploration of Phobos and subsequently Mars.

  4. A reexamination of the QBO period modulation by the solar cycle

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Tung, K. K.

    2008-04-01

    Using the updated Singapore wind from 1953 to 2007 for the lower stratosphere 70-10 hPa, courtesy of Barbara Naujokat of Free University of Berlin, we examine the variation of the period of the Quasi-Biennial Oscillation (QBO) as a function of height and its modulation in time by the 11-year solar cycle. The analysis is supplemented by the ERA-40 reanalysis up to 1 hPa. Previously, it was reported that the descent of the easterly shear zone tends to stall near 30 hPa during solar minimum, leading to a lengthened QBO westerly duration near 44-50 hPa and the reported anticorrelation of the westerly duration and the solar cycle. Using an objective method, continuous wavelet transform (CWT), for the determination of local QBO period, we find that the whole QBO period is almost invariant with respect to height, so that the stalling mechanism affects only the partition of the whole period between easterly and westerly durations. Using this longest data set available for equatorial stratospheric wind, which spans five and half solar cycles (six solar minima), we find that in three solar minima, the QBO period is lengthened, while in the remaining almost three solar cycles, the QBO period is lengthened instead at solar maxima. We suggest that the decadal variation of the QBO period originates in the upper stratosphere, where the solar-ozone radiative influence is strong. The solar modulation of the QBO period is found to be nonstationary; the averaged effect cannot be determined unless the data record is much longer. In shorter records, the correlation can change sign, as we have found in segments of the longest record available, with or without lag.

  5. Solar cycle dependence of the heliospheric shape deduced from a global MHD simulation of the interaction process between a nonuniform time-dependent solar wind and the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Washimi, H.

    1999-06-01

    The global structure of the solar wind/very local interstellar medium interaction is studied from a fully three-dimensional time-dependent magnetohydrodynamic model, in which the solar wind speed increases from 400 to 800 km/s in going from the ecliptic to pole and the heliolatitude of the low-high-speed boundary changes from 30° to 80° in going from the solar minimum to solar maximum. In addition, the interplanetary magnetic field (IMF) changes its polarity at the solar maximum. As a whole, the shapes of the terminal shock (TS) and heliopause (HP) are elongated along the solar polar axis owing to a high solar wind ram pressure over the poles. In the ecliptic plane, the heliospheric structure changes little throughout a solar cycle. The TS in this plane shows a characteristic bullet-shaped structure. In the polar plane, on the other hand, the shape of the TS exhibits many specific structures according to the stage of the solar cycle. These structures include the polygonal configuration of the polar TS seen around the solar minimum, the mesa- and terrace-shaped TSs in the high- and low-speed solar wind regions seen around the ascending phase, and the chimney-shaped TS in the high-speed solar wind region seen around the solar maximum. These structures are formed from different combinations of right-angle shock, oblique shock, and steep oblique shock so as to transport the heliosheath plasma most efficiently toward the heliotail (HT). In the HT, the hot and weakly-magnetized plasma from the high-heliolatitude TS invades as far as the ecliptic plane. A weakly time-dependent recirculation flow in the HT is a manifestation of invading flow. Distributions of magnetic field in the HT, which are a pile-up of the compressed MF over several solar cycles, are modified by the flow from high-heliolatitude.

  6. Solar system plasma Turbulence: Observations, inteRmittency and Multifractals

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2016-04-01

    The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a function of the targeted system (solar wind/magnetospheres/geomagnetic indices), solar cycle phase (minimum versus maximum), type of result (PSDs, PDFs, Multifractals). The results catalogues, available online from http://www.storm-fp7.eu, include 4094 PSD spectra, 9566 PDFs and 15633 multifractal spectra (from partition function and respectively Rank Ordered (ROMA) formalisms). These results are obtained at solar maximum (2001-2002, both in the solar wind and the terrestrial magnetosheath) and solar minimum (1997-1998 in the solar wind, 2007-2008 in the solar wind, Venus and Earth magnetosheath and selected regions of the magnetosphere). Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM.

  7. The Solar Stormwatch CME catalogue: Results from the first space weather citizen science project

    NASA Astrophysics Data System (ADS)

    Barnard, L.; Scott, C.; Owens, M.; Lockwood, M.; Tucker-Hood, K.; Thomas, S.; Crothers, S.; Davies, J. A.; Harrison, R.; Lintott, C.; Simpson, R.; O'Donnell, J.; Smith, A. M.; Waterson, N.; Bamford, S.; Romeo, F.; Kukula, M.; Owens, B.; Savani, N.; Wilkinson, J.; Baeten, E.; Poeffel, L.; Harder, B.

    2014-12-01

    Solar Stormwatch was the first space weather citizen science project, the aim of which is to identify and track coronal mass ejections (CMEs) observed by the Heliospheric Imagers aboard the STEREO satellites. The project has now been running for approximately 4 years, with input from >16,000 citizen scientists, resulting in a data set of >38,000time-elongation profiles of CME trajectories, observed over 18 preselected position angles. We present our method for reducing this data set into a CME catalogue. The resulting catalogue consists of 144 CMEs over the period January 2007 to February 2010, of which 110 were observed by STEREO-A and 77 were observed by STEREO-B. For each CME, the time-elongation profiles generated by the citizen scientists are averaged into a consensus profile along each position angle that the event was tracked. We consider this catalogue to be unique, being at present the only citizen science-generated CME catalogue, tracking CMEs over an elongation range of 4° out to a maximum of approximately 70°. Using single spacecraft fitting techniques, we estimate the speed, direction, solar source region, and latitudinal width of each CME. This shows that at present, the Solar Stormwatch catalogue (which covers only solar minimum years) contains almost exclusively slow CMEs, with a mean speed of approximately 350 km s-1. The full catalogue is available for public access at www.met.reading.ac.uk/~spate/solarstormwatch. This includes, for each event, the unprocessed time-elongation profiles generated by Solar Stormwatch, the consensus time-elongation profiles, and a set of summary plots, as well as the estimated CME properties.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, M. I.; Dayeh, M. A.; Allegrini, F.

    We investigate the latitude, energy, and temporal variations of the ∼0.5–6 keV energetic neutral atom (ENA) fluxes and spectral indices measured by the Interstellar Boundary Explorer ( IBEX ) outside of the Ribbon from 2009 to 2013. By combining all-sky maps for years 1–3 and years 4–5, we find that the >1.2 keV globally distributed (GD) ENA fluxes at all latitudes decrease by ∼25% from years 1–3 to years 4–5, but there is no change (<5%) in the corresponding spectral indices. We also show that the latitudinal profile and energy-dependence of the ≥1 keV ENA spectral indices outside the Ribbonmore » exhibit no significant time differences between years 1–3 and 4–5, lending strong support for the notion that the highly organized, persistent energy dependence and latitudinal pattern of the ENA spectral indices during 2009–2014 are determined by that of the solar wind (SW) speed observed in the inner heliosphere during the deep solar minimum conditions of 2006–2010. In contrast, the ∼25% decrease in the >1.2 keV ENA fluxes at all latitudes from years 1–3 to years 4–5 occurs because the magnitude of the driving SW parameters (SW density or dynamic pressure) diminished significantly from 2006 to 2010. Based on the reconstructed latitudinal and temporal profiles of SW parameters from 2011 to 2014, i.e., during the rising phase of solar cycle 24, we suggest that the GD ENA fluxes in years 2014–2017, i.e., in maps 6–9, will either stabilize or increase and the latitudinal pattern and energy dependence of the corresponding spectral indices will be disrupted.« less

  9. Determination of Thermal State of Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  10. STATISTICAL CHARACTERISTICS OF ELEMENTAL ABUNDANCE RATIOS: OBSERVATIONS FROM THE ACE SPACECRAFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.-L.; Zhang, H.

    We statistically analyze the elemental galactic cosmic ray (GCR) composition measurements of elements 5 ≤ Z ≤ 28 within the energy range 30–500 MeV/nucleon from the CRIS instrument on board the ACE spacecraft in orbit about the L1 Lagrange point during the period from 1997 to 2014. Similarly to the last unusual solar minimum, the elevated elemental intensities of all heavy nuclei during the current weak solar maximum in 2014 are ∼40% higher than that of the previous solar maximum in 2002, which has been attributed to the weak modulation associated with low solar activity levels during the ongoing weakestmore » solar maximum since the dawn of space age. In addition, the abundance ratios of heavy nuclei with respect to elemental oxygen are generally independent of kinetic energy per nucleon in the energy region 60–200 MeV/nuc, in good agreement with previous experiments. Furthermore, the abundance ratios of most relatively abundant species, except carbon, exhibit considerable solar-cycle variation, which are obviously positively correlated with the sunspot numbers with about one-year time lag. We also find that the percentage variation of abundance ratios for most elements are approximately identical. These preliminary results provide valuable insights into the characteristics of elemental heavy nuclei composition and place new and significant constraints on future GCR heavy nuclei propagation and modulation models.« less

  11. PV modules for ground testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The main objective was to design and build a minimum of three photovoltaic test panels for plasma interaction experiments. These experiments are intended to provide data on the interactions between high-voltage solar arrays and the space plasma environment. Data gathered will significantly contribute to the development of design criteria for the space station solar arrays. Electrical isolation between the solar cell strings and the module mounting plate is required for high-voltage bias.

  12. Solar Cycle and Geomagnetic Activity Variation of Topside Ionospheric Upflow as Measured by DMSP

    NASA Astrophysics Data System (ADS)

    Coley, W. R.; Hairston, M. R.

    2016-12-01

    Under the proper conditions a considerable amount of plasma can escape the Earth's ionosphere into the magnetosphere. Indeed, there are indications that at least part of the time the ionosphere may be the dominant source of ions for the plasma sheet and near-Earth portion of the magnetosphere. The upward flux of thermal O+ from the lower part of the topside ionosphere actively provides plasma into intermediate altitudes where they may be given escape energy by various mechanisms. Previous work has indicated that there is considerable time variation of upwelling low energy ionospheric plasma to these intermediate altitudes during moderate to high solar activity. Here we use the SSIES thermal plasma instruments on board the Defense Meteorological Satellite Program (DMSP) F13-F19 series of spacecraft to examine the vertical flux of thermal O+ from the deep solar minimum of 2008-2009 to the moderately active period of 2012-2015. Separately integrating the upward and downward fluxes over the high-latitude region (auroral zone and polar cap) allows the observation of the total upflow/downflow as a function of the current geomagnetic conditions, solar cycle, and solar wind conditions. In particular we investigate the incidence of high upward flux events as a function of solar wind velocity and density during the deepest solar minimum since the space age began.

  13. Amplitudes of solar modulation of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Von Rosenvinge, T. T.; Paizis, C.

    1982-01-01

    There have been differences of opinion regarding the origin and behavior of the solar modulation of galactic cosmic rays. It has been shown that the return to solar maximum intensity levels beginning in early 1978 was dominated by Forbush decreases. These Forbush decreases were caused by radially moving interplanetary shocks resulting from large solar flares. The present investigation is concerned with solar modulation effects which were observed during the previous solar minimum. The effects were associated with high-speed streams in the solar wind. These streams caused the formation of corotating interaction regions with both forward and reverse shocks. The modulation effects seen near earth are intimately connected with these shocks.

  14. Some Options for a Minimum Solar Probe Mission

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Tsurutani, B. T.; Turner, P. R.; Miyake, R. M.; Ayon, J. A.

    1996-01-01

    Smaller and lower cost options of NASA's Solar Probe mission have recently been studied. The difference between these options and the results of earlier studies is dramatic. The motivation for low cost has encouraged the JPL design team to accomodate a smaller scientific payload using innovative multi-functional subsystems.

  15. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  16. Weakened Magnetization and Onset of Large-scale Turbulence in the Young Solar Wind—Comparisons of Remote Sensing Observations with Simulation

    NASA Astrophysics Data System (ADS)

    Chhiber, Rohit; Usmanov, Arcadi V.; DeForest, Craig E.; Matthaeus, William H.; Parashar, Tulasi N.; Goldstein, Melvyn L.

    2018-04-01

    Recent analysis of Solar-Terrestrial Relations Observatory (STEREO) imaging observations have described the early stages of the development of turbulence in the young solar wind in solar minimum conditions. Here we extend this analysis to a global magnetohydrodynamic (MHD) simulation of the corona and solar wind based on inner boundary conditions, either dipole or magnetogram type, that emulate solar minimum. The simulations have been calibrated using Ulysses and 1 au observations, and allow, within a well-understood context, a precise determination of the location of the Alfvén critical surfaces and the first plasma beta equals unity surfaces. The compatibility of the the STEREO observations and the simulations is revealed by direct comparisons. Computation of the radial evolution of second-order magnetic field structure functions in the simulations indicates a shift toward more isotropic conditions at scales of a few Gm, as seen in the STEREO observations in the range 40–60 R ⊙. We affirm that the isotropization occurs in the vicinity of the first beta unity surface. The interpretation based on early stages of in situ solar wind turbulence evolution is further elaborated, emphasizing the relationship of the observed length scales to the much smaller scales that eventually become the familiar turbulence inertial range cascade. We argue that the observed dynamics is the very early manifestation of large-scale in situ nonlinear couplings that drive turbulence and heating in the solar wind.

  17. Experimental evaluation of a unique radiometer for use in solar simulation testing

    NASA Technical Reports Server (NTRS)

    Richmond, R. G.

    1978-01-01

    The vane radiometer is designed to operate over the range 0-1 solar constant and is capable of withstanding temperatures over the range -200 to +175 C. Two of these radiometers, for use in the Johnson Space Center's largest space simulator, have been evaluated for: (1) thermal sensitivity with no solar input, (2) linearity as a function of solar simulation input, and (3) output drift as a function of time. The minimum sensitivity was measured to be approximately 25.5 mV/solar constant. An unusual effect in the pressure range 760 to 1.0 torr is discussed.

  18. NASA advanced design program: Analysis, design, and construction of a solar powered aircraft. B.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chan, Agnes; Conley, Kristin; Javorski, Christian T.; Cheung, Kwok-Hung; Crivelli, Paul M.; Torrey, Nancy P.; Traver, Michael L.

    1992-01-01

    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as the most logical alternative source of power. The major objective of this project was to build a solar powered remotely controlled aircraft to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design was optimized for minimum weight and maximum strength of the structure. These design constraints necessitated a carbon fiber composite structure. Surya is a lightweight, durable aircraft capable of achieving level flight powered entirely by solar cells.

  19. Solar drying of crops and food. (Latest citations from Food Science Technology Abstracts (FSTA)). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The bibliography contains citations concerning the design and utilization of solar food driers. Solar collectors used are described in depth. Drying of fish, peanuts, fruits, potatoes, onions, garlic, ginseng, grains, coffee, and tobacco using this method is discussed. The use of focused solar energy and the addition of silica gel to drying foods are evaluated. Use of solar driers in the field, as a home preservation method, in underdeveloped countries, and as part of industrial food processing is considered. (Contains a minimum of 214 citations and includes a subject term index and title list.)

  20. Solar drying of crops and food. (Latest citations from Food Science & Technology Abstracts (FSTA)). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-02-01

    The bibliography contains citations concerning the design and utilization of solar food driers. Solar collectors used are described in depth. Drying of fish, peanuts, fruits, potatoes, onions, garlic, ginseng, grains, coffee, and tobacco using this method is discussed. The use of focused solar energy and the addition of silica gel to drying foods are evaluated. Use of solar driers in the field, as a home preservation method, in underdeveloped countries, and as part of industrial food processing is considered. (Contains a minimum of 217 citations and includes a subject term index and title list.)

  1. Interpretation of 3He variations in the solar wind

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Ogilvie, K. W.; Geiss, J.; Bochsler, P.

    1983-01-01

    The ion composition instrument (ICI) on ISEE-3 observed the isotopes of helium of mass 3 and 4 in the solar wind almost continuously between August 1978 and July 1982. This period included the increase towards the maximum of solar activity cycle 21, the maximum period, and the beginning of the descent towards solar minimum. Observations were made when the solar wind speed was between 300 and 620 km/s. For part of the period evidence for regular interplanetary magnetic sector structure was clear and a number of 3He flares occurred during this time.

  2. Interpretation of He-3 abundance variations in the solar wind

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Ogilvie, K. W.; Bochsler, P.; Geiss, J.

    1984-01-01

    The ion composition instrument (ICI) on ISEE-3 observed the isotopes of helium of mass 3 and 4 in the solar wind almost continuously between August 1978 and July 1982. This period included the increase towards the maximum of solar activity cycle 21, the maximum period, and the beginning of the descent towards solar minimum. Observations were made when the solar wind speed was between 300 and 620 km/s. For part of the period evidence for regular interplanetary magnetic sector structure was clear and a number of He-3 flares occurred during this time.

  3. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  4. Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael W.; Xu, Shaosui; Dong, Chuanfei; Bougher, Stephen W.; Johnson, Blake C.; Ilie, Raluca; De Zeeuw, Darren L.

    2017-06-01

    This study investigates the role of solar EUV intensity at controlling the location of the Mars magnetotail current sheet and the structure of the lobes. Four simulation results are examined from a multifluid magnetohydrodynamic model. The solar wind and interplanetary magnetic field (IMF) conditions are held constant, and the Mars crustal field sources are omitted from the simulation configuration. This isolates the influence of solar EUV. It is found that solar maximum conditions, regardless of season, result in a Venus-like tail configuration with the current sheet shifted to the -Y (dawnside) direction. Solar minimum conditions result in a flipped tail configuration with the current sheet shifted to the +Y (duskside) direction. The lobes follow this pattern, with the current sheet shifting away from the larger lobe with the higher magnetic field magnitude. The physical process responsible for this solar EUV control of the magnetotail is the magnetization of the dayside ionosphere. During solar maximum, the ionosphere is relatively strong and the draped IMF field lines quickly slip past Mars. At solar minimum, the weaker ionosphere allows the draped IMF to move closer to the planet. These lower altitudes of the closest approach of the field line to Mars greatly hinder the day-to-night flow of magnetic flux. This results in a buildup of magnetic flux in the dawnside lobe as the S-shaped topology on that side of the magnetosheath extends farther downtail. The study demonstrates that the Mars dayside ionosphere exerts significant control over the nightside induced magnetosphere of that planet.Plain Language SummaryMars, which does not have a strong magnetic field, has an induced magnetic environment from the draping of the interplanetary magnetic field from the Sun. It folds around Mars, forming two "lobes" of magnetic field behind the planet with a current sheet of electrified gas (plasma) behind it. The current sheet is not directly behind the planet but rather shifted toward the dawn or dusk direction. It is shown here that one factor controlling the location of the current sheet is the dayside ionosphere. At solar maximum, the ionosphere is dense, the magnetic field slips easily by the planet, and the current sheet is shifted toward dawn. At solar minimum, the ionosphere is relatively weak, the magnetic field slippage is slowed down, and the current sheet shifts toward dusk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1762S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1762S"><span>Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy</p> <p>2016-07-01</p> <p>A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EaFut...4....2B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EaFut...4....2B"><span>Integrating solar energy and climate research into science education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Betts, Alan K.; Hamilton, James; Ligon, Sam; Mahar, Ann Marie</p> <p>2016-01-01</p> <p>This paper analyzes multi-year records of solar flux and climate data from two solar power sites in Vermont. We show the inter-annual differences of temperature, wind, panel solar flux, electrical power production, and cloud cover. Power production has a linear relation to a dimensionless measure of the transmission of sunlight through the cloud field. The difference between panel and air temperatures reaches 24°C with high solar flux and low wind speed. High panel temperatures that occur in summer with low wind speeds and clear skies can reduce power production by as much as 13%. The intercomparison of two sites 63 km apart shows that while temperature is highly correlated on daily (<fi>R</fi>2=0.98) and hourly (<fi>R</fi>2=0.94) timescales, the correlation of panel solar flux drops markedly from daily (<fi>R</fi>2=0.86) to hourly (<fi>R</fi>2=0.63) timescales. Minimum temperatures change little with cloud cover, but the diurnal temperature range shows a nearly linear increase with falling cloud cover to 16°C under nearly clear skies, similar to results from the Canadian Prairies. The availability of these new solar and climate datasets allows local student groups, a Rutland High School team here, to explore the coupled relationships between climate, clouds, and renewable power production. As our society makes major changes in our energy infrastructure in response to climate change, it is important that we accelerate the technical education of high school students using real-world data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSH34A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSH34A..01H"><span>Hemispherical and Longitudinal Asymmetries in the Heliospheric Magnetic Field: Flip-flops of a Bashful Ballerina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiltula, T.; Mursula, K.</p> <p>2004-12-01</p> <p>Several studies during many decennia have studied possible longitudinal and hemispherical asymmetries in various forms of solar activity. E.g., there are well known periods when one of the solar hemispheres has dominated the other in sunspot numbers, flare occurrence or some other form of solar activity. However, the solar asymmetries have not been found to be very conclusive, or to form any clear systematical patterns (e.g., relation to solar cycle). On the contrary, recent studies of similar longitudinal and hemispherical asymmetries in the heliospheric magnetic field have shown a very clear and systematic behaviour. E.g., it was found recently that the dominance of the two HMF sectors experiences an oscillation with a period of about 3.2 years. This new flip-flop periodicity in the heliospheric magnetic field is most likely related to a similar periodicity recently found in sunspots. Also, it has recently been found that the HMF sector coming from the northern solar hemisphere systematically dominates at 1AU during solar minimum times. This leads to a persistent southward shift or coning of the heliospheric current sheet at these times that can be picturesquely described by the concept of a Bashful Ballerina. This result also implies that the Sun has a large-scale quadrupole magnetic moment. Here we review these recent developments concerning the longitudinal and hemispherical asymmetries in the heliospheric magnetic field and study their inter-connection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950038791&hterms=solar+energy+effective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Benergy%2Beffective','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950038791&hterms=solar+energy+effective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Benergy%2Beffective"><span>Cosmic-ray isotopic composition of C, N, O, Ne, Mg, Si nuclei in the energy range 50-200 MeV per nucleon measured by the Voyager spacecraft during the solar minimum period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.</p> <p>1994-01-01</p> <p>The isotopic composition of C, N, O, Ne, Mg, Si cosmic ray nuclei has been measured in the energy range 50-200 MeV per nucleon using data collected by the High-Energy Telescope of the cosmic-ray subsystem experiment on the Voyager 1 and 2 spacecraft. These data were collected during the period of minimum solar activity in 1986-1988 at an average distance of 27 AU with an effective solar modulation that was much less than at the Earth. The isotope analysis, based on the energy loss - total energy method, has a mass resolution of 0.2 amu for carbon and 0.4 amu at silicon. We find a (C-13)/(C-12) ratio slightly lower and a (O-18)/(O-16) ratio slightly enhanced over their solar system value. We also observe the previously reported enhancement of the (Ne-22)/(Ne-20) ratio relative to solar at the cosmic-ray source but only a weak, if any, enhancement of the (Mg-25)/(Mg-24), (Mg-26)/(Mg 24), and (Si-30)/(Si-28) ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654320-solar-cycle-another-moderate-cycle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654320-solar-cycle-another-moderate-cycle"><span>SOLAR CYCLE 25: ANOTHER MODERATE CYCLE?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cameron, R. H.; Schüssler, M.; Jiang, J., E-mail: cameron@mps.mpg.de</p> <p>2016-06-01</p> <p>Surface flux transport simulations for the descending phase of Cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 (2.5 ± 1.1 G) is comparable to that observed at the end of Cycle 23 (about 2 G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that Cycle 25 will be of moderate amplitude, not muchmore » higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.171..119W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.171..119W"><span>Modeling study of the ionospheric responses to the quasi-biennial oscillations of the sun and stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jack C.; Tsai-Lin, Rong; Chang, Loren C.; Wu, Qian; Lin, Charles C. H.; Yue, Jia</p> <p>2018-06-01</p> <p>The Quasi-biennial Oscillation (QBO) is a persistent oscillation in the zonal mean zonal winds of the low latitude middle atmosphere that is driven by breaking planetary and gravity waves with a period near two years. The atmospheric tides that dominate the dynamics of the mesosphere and lower thermosphere region (MLT, between heights of 70-120 km) are excited in the troposphere and stratosphere, and propagate through QBO-modulated zonal mean zonal wind fields. This allows the MLT tidal response to also be modulated by the QBO, with implications for ionospheric/thermospheric variability. Interannual oscillations in solar radiation can also directly drive the variations in the ionosphere with similar periodicities through the photoionization. Many studies have observed the connection between the solar activity and QBO signal in ionospheric features such as total electron content (TEC). In this research, we develop an empirical model to isolate stratospheric QBO-related tidal variability in the MLT diurnal and semidiurnal tides using values from assimilated TIMED satellite data. Migrating tidal fields corresponding to stratospheric QBO eastward and westward phases, as well as with the quasi-biennial variations in solar activity isolated by the Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) analysis from Hilbert-Huang Transform (HHT), are then used to drive the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The numerical experiment results indicate that the ionospheric QBO is mainly driven by the solar quasi-biennial variations during the solar maximum, since the solar quasi-biennial variation amplitude is directly proportionate to the solar cycle. The ionospheric QBO in the model is sensitive to both the stratospheric QBO and solar quasi-biennial variations during the solar minimum, with solar effects still playing a stronger role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8862E..0HH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8862E..0HH"><span>The solar and heliospheric imager (SoloHI) instrument for the solar orbiter mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, Russell A.; Vourlidas, Angelos; Korendyke, Clarence M.; Plunkett, Simon P.; Carter, Michael T.; Wang, Dennis; Rich, Nathan; McMullin, Donald R.; Lynch, Sean; Thurn, Adam; Clifford, Greg; Socker, Dennis G.; Thernisien, Arnaud F.; Chua, Damien; Linton, Mark G.; Keller, David; Janesick, James R.; Tower, John; Grygon, Mark; Hagood, Robert; Bast, William; Liewer, Paulett C.; DeJong, Eric M.; Velli, Marco M. C.; Mikic, Zoran; Bothmer, Volker; Rochus, Pierre; Halain, Jean-Philippe; Lamy, Philippe L.</p> <p>2013-09-01</p> <p>The SoloHI instrument for the ESA/NASA Solar Orbiter mission will track density fluctuations in the inner heliosphere, by observing visible sunlight scattered by electrons in the solar wind. Fluctuations are associated with dynamic events such as coronal mass ejections, but also with the "quiescent" solar wind. SoloHI will provide the crucial link between the low corona observations from the Solar Orbiter instruments and the in-situ measurements on Solar Orbiter and the Solar Probe Plus missions. The instrument is a visible-light telescope, based on the SECCHI/Heliospheric Imager (HI) currently flying on the STEREO mission. In this concept, a series of baffles reduce the scattered light from the solar disk and reflections from the spacecraft to levels below the scene brightness, typically by a factor of 1012. The fluctuations are imposed against a much brighter signal produced by light scattered by dust particles (the zodiacal light/F-corona). Multiple images are obtained over a period of several minutes and are summed on-board to increase the signal-to-noise ratio and to reduce the telemetry load. SoloHI is a single telescope with a 40⁰ field of view beginning at 5° from the Sun center. Through a series of Venus gravity assists, the minimum perihelia for Solar Orbiter will be reduced to about 60 Rsun (0.28 AU), and the inclination of the orbital plane will be increased to a maximum of 35° after the 7 year mission. The CMOS/APS detector is a mosaic of four 2048 x 1930 pixel arrays, each 2-side buttable with 11 μm pixels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992AIPC..246..130G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992AIPC..246..130G"><span>Integrated shielding systems for manned interplanetary spaceflight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>George, Jeffrey A.</p> <p>1992-01-01</p> <p>The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998sct..conf...55A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998sct..conf...55A"><span>Surface Charging in the Auroral Zone on the DMSP Spacecraft in LEO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Phillip C.</p> <p>1998-11-01</p> <p>A recent anomaly on the DMSP F13 spacecraft was attributed to an electrical malfunction caused by an electrostatic discharge on the vehicle associated with surface charging. It occurred during an intense energetic electron precipitation event (an auroral arc) within a region of very low plasma density in the auroral zone. A study of 1.5 year's worth of DMSP data from three satellites acquired during the recent minimum in the solar cycle has shown that such charging was a common occurrence with 704 charging events found. This is the result of significantly reduced background plasma densities associated with the solar minimum; smaller than ever previously experienced by the DMSP spacecraft. At times, the spacecraft charged for periods of 10s of seconds as they skimmed along an auroral arc instead of cutting across it. We show examples of the observed plasma density and the precipitating electron and ion spectra associated with the charging, and the MLT distribution and the seasonal distribution of the events. The preponderance of events occurred in the premidnight and morning sectors with two types of electron spectra being observed: a sharply peaked distribution indicative of field-aligned acceleration in the premidnight sector and a very hard distribution in the morning sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1006Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1006Q"><span>Temporal Variability of Atomic Hydrogen From the Mesopause to the Upper Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, Liying; Burns, Alan G.; Solomon, Stan S.; Smith, Anne K.; McInerney, Joseph M.; Hunt, Linda A.; Marsh, Daniel R.; Liu, Hanli; Mlynczak, Martin G.; Vitt, Francis M.</p> <p>2018-01-01</p> <p>We investigate atomic hydrogen (H) variability from the mesopause to the upper thermosphere, on time scales of solar cycle, seasonal, and diurnal, using measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite, and simulations by the National Center for Atmospheric Research Whole Atmosphere Community Climate Model-eXtended (WACCM-X). In the mesopause region (85 to 95 km), the seasonal and solar cycle variations of H simulated by WACCM-X are consistent with those from SABER observations: H density is higher in summer than in winter, and slightly higher at solar minimum than at solar maximum. However, mesopause region H density from the Mass-Spectrometer-Incoherent-Scatter (National Research Laboratory Mass-Spectrometer-Incoherent-Scatter 00 (NRLMSISE-00)) empirical model has reversed seasonal variation compared to WACCM-X and SABER. From the mesopause to the upper thermosphere, H density simulated by WACCM-X switches its solar cycle variation twice, and seasonal dependence once, and these changes of solar cycle and seasonal variability occur in the lower thermosphere ( 95 to 130 km), whereas H from NRLMSISE-00 does not change solar cycle and seasonal dependence from the mesopause through the thermosphere. In the upper thermosphere (above 150 km), H density simulated by WACCM-X is higher at solar minimum than at solar maximum, higher in winter than in summer, and also higher during nighttime than daytime. The amplitudes of these variations are on the order of factors of 10, 2, and 2, respectively. This is consistent with NRLMSISE-00.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.2247M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.2247M"><span>Solar forcing for CMIP6 (v3.2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthes, Katja; Funke, Bernd; Andersson, Monika E.; Barnard, Luke; Beer, Jürg; Charbonneau, Paul; Clilverd, Mark A.; Dudok de Wit, Thierry; Haberreiter, Margit; Hendry, Aaron; Jackman, Charles H.; Kretzschmar, Matthieu; Kruschke, Tim; Kunze, Markus; Langematz, Ulrike; Marsh, Daniel R.; Maycock, Amanda C.; Misios, Stergios; Rodger, Craig J.; Scaife, Adam A.; Seppälä, Annika; Shangguan, Ming; Sinnhuber, Miriam; Tourpali, Kleareti; Usoskin, Ilya; van de Kamp, Max; Verronen, Pekka T.; Versick, Stefan</p> <p>2017-06-01</p> <p>This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850-2014), and future (2015-2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models.For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2-NRLSSI2) and a semi-empirical one (SATIRE). A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m-2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of -0.04 W m-2. In the 200-400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %).We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP5 predecessor by using time-slice experiments of two chemistry-climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of -0.35 K day-1 at the stratopause), cooler stratospheric temperatures (-1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (-3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day-1 at the stratopause), temperatures ( ˜ 1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset.CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry-climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long-term effects of particles to be addressed for the first time. The consideration of particle forcing has been shown to significantly improve the representation of reactive nitrogen and ozone variability in the polar middle atmosphere, eventually resulting in further improvements in the representation of solar climate variability in global models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AdSpR..52.1247B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AdSpR..52.1247B"><span>GPS TEC near the crest of the EIA at 95°E during the ascending half of solar cycle 24 and comparison with IRI simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhuyan, Pradip Kumar; Hazarika, Rumajyoti</p> <p>2013-10-01</p> <p>Total electron content (TEC) data obtained from GPS dual frequency measurements during the ascending half of the solar cycle 24 from 2009 to 2012 over Dibrugarh (27.5°N, 94.9°E; 17.6°N MLAT) have been used to study the diurnal, seasonal, annual and solar cycle variation of TEC. The measurements reported here are for the first time from the location situated at the poleward edge of the northern equatorial ionization anomaly (EIA) and within the peak region of the longitudinal wave number 4 (WN4) structure in EIA crest TEC. TEC exhibits a minimum around 0600 LT and diurnal maximum around 1300-1600 LT. In the low and moderate solar activity years 2009-2010 and 2010-2011, average daytime (1000-1600 LT) TEC in summer was higher (25.4 and 36.6 TECU) compared to that in winter (21.5 and 26.1 TECU). However, at the peak of the solar cycle in 2011-2012, reversal in the level of ionization between winter and summer takes place and winter TEC becomes higher (50.6 TECU) than that in summer (45.0 TECU). Further, TEC in spring (34.1, 49.9 and 63.3 TECU respectively in 2009-10, 2010-11 and 2011-12) is higher than that in autumn (24.2, 32.3 and 51.9 TECU respectively) thus showing equinoctial asymmetry in all the years of observation. The winter anomaly in high solar activity years and equinoctial asymmetry all throughout may be largely attributed to changes in the thermospheric O/N2 density ratio. A winter to summer delay of ˜1 h in the time of occurrence of the diurnal maximum has also been observed. Daytime maximum TEC bears a nonlinear relationship with F10.7 cm solar flux. TEC increases linearly with F10.7 cm solar flux initially up to about 140 sfu (1 sfu = 10-22 W m-2 Hz-1) after which it tends to saturate. On the contrary, TEC increases linearly with solar EUV flux (photons cm-2 s-1, 0.5-50 nm) during the same period. TEC predicted by the IRI 2012 are lower than the measured TEC for nearly 90% of the time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRA..120..344D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRA..120..344D"><span>Upstream proton cyclotron waves at Venus near solar maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.</p> <p>2015-01-01</p> <p>magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of observable proton cyclotron waves near solar maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..12111474H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..12111474H"><span>Annual variations in the Martian bow shock location as observed by the Mars Express mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, B. E. S.; Lester, M.; Sánchez-Cano, B.; Nichols, J. D.; Andrews, D. J.; Edberg, N. J. T.; Opgenoorth, H. J.; Fränz, M.; Holmström, M.; Ramstad, R.; Witasse, O.; Cartacci, M.; Cicchetti, A.; Noschese, R.; Orosei, R.</p> <p>2016-11-01</p> <p>The Martian bow shock distance has previously been shown to be anticorrelated with solar wind dynamic pressure but correlated with solar extreme ultraviolet (EUV) irradiance. Since both of these solar parameters reduce with the square of the distance from the Sun, and Mars' orbit about the Sun increases by ˜0.3 AU from perihelion to aphelion, it is not clear how the bow shock location will respond to variations in these solar parameters, if at all, throughout its orbit. In order to characterize such a response, we use more than 5 Martian years of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer measurements to automatically identify 11,861 bow shock crossings. We have discovered that the bow shock distance as a function of solar longitude has a minimum of 2.39RM around aphelion and proceeds to a maximum of 2.65RM around perihelion, presenting an overall variation of ˜11% throughout the Martian orbit. We have verified previous findings that the bow shock in southern hemisphere is on average located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (total distance variation of ˜2.4%), and the same annual variations occur irrespective of the hemisphere. We have identified that the bow shock location is more sensitive to variations in the solar EUV irradiance than to solar wind dynamic pressure variations. We have proposed possible interaction mechanisms between the solar EUV flux and Martian plasma environment that could explain this annual variation in bow shock location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950050247&hterms=time+series+modeling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtime%2Bseries%2Bmodeling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950050247&hterms=time+series+modeling&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtime%2Bseries%2Bmodeling"><span>Time-series photometric spot modeling. 2: Fifteen years of photometry of the bright RS CVn binary HR 7275</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strassmeier, K. G.; Hall, D. S.; Henry, G. W.</p> <p>1994-01-01</p> <p>We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA21A2506N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA21A2506N"><span>Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.</p> <p>2017-12-01</p> <p>Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24668282','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24668282"><span>Tantalum-based semiconductors for solar water splitting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Peng; Zhang, Jijie; Gong, Jinlong</p> <p>2014-07-07</p> <p>Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070034012&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddynamo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070034012&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddynamo"><span>Solar Cycle 24 and the Solar Dynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pesnell, W. D.; Schatten, K.</p> <p>2007-01-01</p> <p>We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100033360&hterms=astronomia+espacio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dastronomia%2By%2Bespacio','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100033360&hterms=astronomia+espacio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dastronomia%2By%2Bespacio"><span>Stereo Science Results at Solar Minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christian, Eric R.; Kaiser, Michael L.; Kucera Therese A.; St. Cyr, O. C.; van Driel-Gesztelyi, Lidia; Mandrini, Cristina H.</p> <p>2009-01-01</p> <p>The magnetic fields that drive solar activity are complex and inherently three-dimensional structures. Twisted flux ropes, magnetic reconnection and the initiation of solar storms, as well as space weather propagation through the heliosphere, are just a few of the topics that cannot properly be observed or modeled in only two dimensions. Examination of this three-dimensional complex has been hampered by the fact that solar remote sensing observations have occurred only from the Earth-Sun line, and in situ observations, while available from a greater variety of locations, have been sparse throughout the heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..788I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..788I"><span>Latitude and Power Characteristics of Solar Activity at the End of the Maunder Minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, V. G.; Miletsky, E. V.</p> <p>2017-12-01</p> <p>Two important sources of information about sunspots in the Maunder minimum are the Spörer catalog (Spörer, 1889) and observations of the Paris observatory (Ribes and Nesme-Ribes, 1993), which cover in total the last quarter of the 17th and the first two decades of the 18th century. These data, in particular, contain information about sunspot latitudes. As we showed in (Ivanov et al., 2011; Ivanov and Miletsky, 2016), dispersions of sunspot latitude distributions are tightly related to sunspot indices, and we can estimate the level of solar activity in the past using a method which is not based on direct calculation of sunspots and weakly affected by loss of observational data. The latitude distributions of sunspots in the time of transition from the Maunder minimum to the regular regime of solar activity proved to be wide enough. It gives evidences in favor of, first, not very low cycle no.-3 (1712-1723) with the Wolf number in maximum W = 100 ± 50, and, second, nonzero activity in the maximum of cycle no.-4 (1700-1711) W = 60 ± 45. Therefore, the latitude distributions in the end of the Maunder minimum are in better agreement with the traditional Wolf numbers and new revisited indices of activity SN and GN (Clette et al., 2014; Svalgaard and Schatten, 2016) than with the GSN (Hoyt and Schatten, 1998); the latter provide much lower level of activity in this epoch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA223660','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA223660"><span>NASA Radiation Belt Models AP-8 and AE-8</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-09-30</p> <p>MeV). The quiet day solar cycle variation is defined by taking the ratio of the omni-directional flux measured from solar minimum to a standard...Note 1: Model Evaluation, TREND issued at IASB , Printed at MATRA, ESTEC/Contract #8011/88/NIJMAC, 28 June 1989. "Models of the Trapped Radiation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/esif/esi-news-201502.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/esif/esi-news-201502.html"><span>Energy Systems Integration News | Energy Systems Integration Facility |</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Aids Solar Power in Hawaii Inverter <em>load</em> rejection overvoltage tests completed by NREL with partner the report, Inverter <em>Load</em> Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report. Based % of minimum daytime <em>load</em> (MDL) to 250% of MDL. If those increases are implemented, they will represent</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100008438&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsolar%2Bintensity%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100008438&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsolar%2Bintensity%2Bmeasurement"><span>Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.</p> <p>2010-01-01</p> <p>Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AAS...22432349S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AAS...22432349S"><span>MESSENGER soft X-ray observations of the quiet solar corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwartz, Richard A.; Hudson, Hugh S.; Tolbert, Anne K; Dennis, Brian R.</p> <p>2014-06-01</p> <p>In a remarkable result from their "SphinX" experiment, Sylwester et al. (2012) found a non-varying base level of soft X-ray emission at the quietest times in 2009. We describe comparable data from the soft X-ray monitor on board MESSENGER (en route to Mercury) which had excellent coverage both in 2009 and during the true solar minimum of 2008. These observations overlap SphinX's and also are often exactly at Sun-MESSENGER-Earth conjunctions. During solar minimum the Sun-MESSENGER distance varied substantially, allowing us to use the inverse-square law to help distinguish the aperture flux (ie, solar X-rays) from that due to sources of background in the 2-5 keV range. The MESSENGER data show a non-varying background level for many months in 2008 when no active regions were present. We compare these data in detail with those from SphinX. Both sets of data reveal a different behavior when magnetic active regions are present on the Sun, and when they are not.Reference: Sylwester et al., ApJ 751, 111 (2012)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050123571','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050123571"><span>A Mechanism For Solar Forcing of Climate: Did the Maunder Minimum Cause the Little Ice Age?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yung, Yuk L.</p> <p>2004-01-01</p> <p>The mechanism we wish to demonstrate exploits chemical, radiative, and dynamical sensitivities in the stratosphere to affect the climate of the troposphere. The sun, while its variability in total radiative output over the course of the solar cycle is on the order of 0.1%, exhibits variability in the UV output on the order of 5%. We expect to show that a substantially decreased solar UV output lessened the heating of the Earth's stratosphere during the Maunder Minimum, through decreased radiative absorption by ozone and oxygen. These changes in stratospheric heating would lead to major changes in the stratospheric zonal wind pattern which would in turn affect the propagation characteristics of planetary-scale waves launched in the winter hemisphere. Until recently, there was no quantitative data to relate the changes in the stratosphere to those at the surface. There is now empirical evidence from the NCEP Reanalysis data that a definitive effect of the solar cycle on climate in the troposphere exists. Our recent work is summarized as follows (see complete list of publications in later part of this report).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AnGeo..32..197B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AnGeo..32..197B"><span>Automated identification and tracking of polar-cap plasma patches at solar minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burston, R.; Hodges, K.; Astin, I.; Jayachandran, P. T.</p> <p>2014-03-01</p> <p>A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1734g0007E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1734g0007E"><span>New operating strategies for molten salt in line focusing solar fields - Daily drainage and solar receiver preheating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eickhoff, Martin; Meyer-Grünefeldt, Mirko; Keller, Lothar</p> <p>2016-05-01</p> <p>Nowadays molten salt is efficiently used in point concentrating solar thermal power plants. Line focusing systems still have the disadvantage of elevated heat losses at night because of active freeze protection of the solar field piping system. In order to achieve an efficient operation of line focusing solar power plants using molten salt, a new plant design and a novel operating strategy is developed for Linear Fresnel- and Parabolic Trough power plants. Daily vespertine drainage of the solar field piping and daily matutinal refilling of the solar preheated absorber tubes eliminate the need of nocturnal heating of the solar field and reduce nocturnal heat losses to a minimum. The feasibility of this new operating strategy with all its sub-steps has been demonstrated experimentally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760044011&hterms=activity+Physics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dactivity%2BPhysics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760044011&hterms=activity+Physics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dactivity%2BPhysics"><span>Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newkirk, G., Jr.</p> <p>1975-01-01</p> <p>Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23933340','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23933340"><span>Using solar-powered refrigeration for vaccine storage where other sources of reliable electricity are inadequate or costly.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCarney, Steve; Robertson, Joanie; Arnaud, Juliette; Lorenson, Kristina; Lloyd, John</p> <p>2013-12-09</p> <p>Large areas of many developing countries have no grid electricity. This is a serious challenge that threatens the continuity of the vaccine cold chain. The main alternatives to electrically powered refrigerators available for many years--kerosene- and gas-driven refrigerators--are plagued by problems with gas supply interruptions, low efficiency, poor temperature control, and frequent maintenance needs. There are currently no kerosene- or gas-driven refrigerators that qualify under the minimum standards established by the World Health Organization (WHO) Performance, Quality, and Safety (PQS) system. Solar refrigeration was a promising development in the early 1980s, providing an alternative to absorption technology to meet cold chain needs in remote areas. Devices generally had strong laboratory performance data; however, experience in the field over the years has been mixed. Traditional solar refrigerators relied on relatively expensive battery systems, which have demonstrated short lives compared to the refrigerator. There are now alternatives to the battery-based systems and a clear understanding that solar refrigerator systems need to be designed, installed, and maintained by technicians with the necessary knowledge and training. Thus, the technology is now poised to be the refrigeration method of choice for the cold chain in areas with no electricity or extremely unreliable electricity (less than 4h per average day) and sufficient sunlight. This paper highlights some lessons learned with solar-powered refrigeration, and discusses some critical factors for successful introduction of solar units into immunization programs in the future including: •Sustainable financing mechanisms and incentives for health workers and technicians are in place to support long-term maintenance, repair, and replacement parts. •System design is carried out by qualified solar refrigerator professionals taking into account the conditions at installation sites. •Installation and repair are conducted by well-trained technicians. •Temperature performance is continuously monitored and protocols are in place to act on data that indicate problems. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH23A2082S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH23A2082S"><span>Simulating Cyclic Evolution of Coronal Magnetic Fields using a Potential Field Source Surface Model Coupled with a Dynamo Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suresh, A.; Dikpati, M.; Burkepile, J.; de Toma, G.</p> <p>2013-12-01</p> <p>The structure of the Sun's corona varies with solar cycle, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. Why does this pattern occur? It is widely accepted that large-scale coronal structure is governed by magnetic fields, which are most likely generated by the dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential field source surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation and above the photosphere these dynamo-generated fields are extended from the photosphere to the corona by using a potential field source surface model. Under the assumption of axisymmetry, the large-scale poloidal fields can be written in terms of the curl of a vector potential. Since from the photosphere and above the magnetic diffusivity is essentially infinite, the evolution of the vector potential is given by Laplace's Equation, the solution of which is obtained in the form of a first order Associated Legendre Polynomial. By taking linear combinations of these polynomial terms, we find solutions that match more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986-1991), we compute the coefficients of the Associated Legendre Polynomials up to degree eight and compare with observation. We reproduce some previous results that at minimum the dipole term dominates, but that this term fades with the progress of the cycle and higher order multipole terms begin to dominate. We find that the amplitudes of these terms are not exactly the same in the two limbs, indicating that there is some phi dependence. Furthermore, by comparing the solar minimum corona during the past three minima (1986, 1996, and 2008), we find that, while both the 1986 and 1996 minima were dipolar, the minimum in 2008 was unusual, as there was departure from a dipole. In order to investigate the physical cause of this departure from dipole, we implement north-south asymmetry in the surface source of the magnetic fields in our model, and find that such n/s asymmetry in solar cycle could be one of the reasons for this departure. This work is partially supported by NASA's LWS grant with award number NNX08AQ34G. NCAR is sponsored by the NSF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22130978-two-novel-parameters-evaluate-global-complexity-sun-magnetic-field-track-solar-cycle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22130978-two-novel-parameters-evaluate-global-complexity-sun-magnetic-field-track-solar-cycle"><span>TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, L.; Landi, E.; Gibson, S. E., E-mail: lzh@umich.edu</p> <p>2013-08-20</p> <p>Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make itmore » timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier HCS in the north than the south, associated with the early reversal of the polar magnetic field in the north relative to the south.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASTP.164..142M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASTP.164..142M"><span>Climatology of GW-TIDs in the magnetic equatorial upper thermosphere over India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manju, G.; Aswathy, R. P.</p> <p>2017-11-01</p> <p>An analysis of Gravity wave induced travelling ionospheric disturbances (GW-TIDs) in the thermosphere during high and low solar epochs is undertaken using ionosonde data at Trivandrum (8.50N, 770E). Wavelet analysis is performed on the temporal variations of foF2 and the amplitudes of waves present in two period bands of (0.5-1.5) h and (2-4) h are extracted. The real height profiles are generated at 15 min internal for the whole day (for sample days) during high and low solar activity years. The study reveals that the GW-TID activity is significantly greater for solar minimum compared to solar maximum for the period 8.5-17.5 h. Diurnally the GW-TID activity in the (2-4) h period band peaks in the post sunset hours for both high and low solar epochs. For the 0.5-1.5 h period band, the diurnal maximum in GW-TID is occurring in the post sunset hours for high solar epoch while it occurs in the morning hours around 10 h LT for low solar epoch. Seasonally the day time GW-TID activity maximizes (minimizes) for winter (vernal equinox). The post sunset time GW-TID maximizes (minimizes) either for summer/winter (vernal equinox). The other interesting observation is the anti correlation of GW-TID in upper thermosphere with solar activity for day time and the correlation of the same with solar activity in the post sunset hours. The present results for daytime are in agreement with the equatorial daytime GW-TID behaviour reported from CHAMP satellite observations. The GW-TID activity during post sunset time for equatorial region upper thermosphere has not been reported so far.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH53A2150M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH53A2150M"><span>Radiance And Irradiance Of The Solar HeII 304 Emission Line</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMullin, D. R.; Floyd, L. E.; Auchère, F.</p> <p>2013-12-01</p> <p>For over 17 years, EIT and the later EUVI instruments aboard SoHO and STEREO, respectively, have provided a time series of radiant images in the HeII 30.4 nm transition region and three coronal emission lines (FeIX/X, FeXII, and FeXV). While the EIT measurements were gathered from positions approximately on the Earth-Sun axis, EUVI images have been gathered at angles ranging to more than ×90 degrees in solar longitude relative the Earth-Sun axis. Using a Differential Emission Measure (DEM) model, these measurements provide a basis for estimates of the spectral irradiance for the solar spectrum of wavelengths between 15 and 50 nm at any position in the heliosphere. In particular, we generate the He 30.4 spectral irradiance in all directions in the heliosphere and examine its time series in selected directions. Such spectra are utilized for two distinct purposes. First, the photoionization rate of neutral He at each position is calculated. Neutral He is of interest because it traverses the heliopause relatively undisturbed and therefore provides a measure of isotopic parameters beyond the heliosphere. Second, we use these generate a time series of estimates of the solar spectral luminosity in the HeII 30.4 nm emission line extending from the recent past solar cycle 23 minimum into the current weak solar cycle 24 enabling an estimate of its variation over the solar cycle. Because this 30.4~nm spectral luminosity is the sum of such radiation in all directions, its time series is devoid of the 27-day solar rotation periodicity present in indices typically used to represent solar activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA13B2370A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA13B2370A"><span>Topside Ionospheric Response to Solar EUV Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, P. C.; Hawkins, J.</p> <p>2015-12-01</p> <p>We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an altitude a scale height above the F2 peak. When the topside ionosphere is H+ dominated, DMSP may be much less than a scale height above the F2 peak while when it is O+ dominated, DMSP may be several scale heights above the F2 peak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050156193&hterms=surface+density&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsurface%2Bdensity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050156193&hterms=surface+density&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsurface%2Bdensity"><span>The Surface Density Distribution in the Solar Nebula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davis, Sanford S.</p> <p>2004-01-01</p> <p>The commonly used minimum mass power law representation of the pre-solar nebula is reanalyzed using a new cumulative-mass-model. This model predicts a smoother surface density approximation compared with methods based on direct computation of surface density. The density is quantified using two independent analytical formulations. First, a best-fit transcendental function is applied directly to the basic planetary data. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the solar nebula data. The latter model is shown to be a good approximation to the finite-size early Solar Nebula, and by extension to other extra solar protoplanetary disks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdSpR..54.2430T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdSpR..54.2430T"><span>Effect of solar activity on the repetitiveness of some meteorological phenomena</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Todorović, Nedeljko; Vujović, Dragana</p> <p>2014-12-01</p> <p>In this paper we research the relationship between solar activity and the weather on Earth. This research is based on the assumption that every ejection of magnetic field energy and particles from the Sun (also known as Solar wind) has direct effects on the Earth's weather. The impact of coronal holes and active regions on cold air advection (cold fronts, precipitation, and temperature decrease on the surface and higher layers) in the Belgrade region (Serbia) was analyzed. Some active regions and coronal holes appear to be in a geo-effective position nearly every 27 days, which is the duration of a solar rotation. A similar period of repetitiveness (27-29 days) of the passage of the cold front, and maximum and minimum temperatures measured at surface and at levels of 850 and 500 hPa were detected. We found that 10-12 days after Solar wind velocity starts significantly increasing, we could expect the passage of a cold front. After eight days, the maximum temperatures in the Belgrade region are measured, and it was found that their minimum values appear after 12-16 days. The maximum amount of precipitation occurs 14 days after Solar wind is observed. A recurring period of nearly 27 days of different phases of development for hurricanes Katrina, Rita and Wilma was found. This analysis confirmed that the intervals of time between two occurrences of some particular meteorological parameter correlate well with Solar wind and A index.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>