Science.gov

Sample records for solar p-mode frequencies

  1. Testing the identification of p-mode frequencies in solar-like stars

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Pérez Hernández, F.; Roca Cortés, T.

    2004-01-01

    The regular pattern that high n p-mode frequencies of solar-like stars show is used to design a method for a quick check to the identification of the modes. The case of a wrong mode identification or a spurious one is clearly shown by the method, which depends rather weakly on the possible stellar models. An application of the method shows evidences of misidentification in the recent frequencies of α Cen A suggested by Bouchy & Carrier (2002).

  2. Magnetic activity cycles in solar-like stars: The cross-correlation technique of p-mode frequency shifts

    NASA Astrophysics Data System (ADS)

    Régulo, C.; García, R. A.; Ballot, J.

    2016-05-01

    Aims: We set out to study the use of cross-correlation techniques to infer the frequency shifts that are induced by changing magnetic fields in p-mode frequencies and to provide a precise estimation of error bars. Methods: This technique and the calculation of the associated errors is first tested and validated on the Sun where p-mode magnetic behaviour is very well known. These validation tests are performed on 6000-day time series of Sun-as-a-star observations delivered by the SoHO spacecraft. Errors of the frequency shifts are quantified through Monte Carlo simulations. The same methodology is then applied to three solar-like oscillating stars: HD 49933, observed by CoRoT, as well as KIC 3733735 and KIC 7940546, observed by Kepler. Results: We first demonstrate the reliability of the error bars computed with the Monte Carlo simulations using the Sun. From the three stars analyzed, we confirm the presence of a magnetic activity cycle in HD 49933 with this methodology and we unveil the seismic signature of ongoing magnetic variations in KIC 3733735. Finally, the third star, KIC 7940546, seems to be in a quiet regime.

  3. solarFLAG hare and hounds: estimation of p-mode frequencies from Sun-as-star helioseismology data

    NASA Astrophysics Data System (ADS)

    Jiménez-Reyes, S. J.; Chaplin, W. J.; García, R. A.; Appourchaux, T.; Baudin, F.; Boumier, P.; Elsworth, Y.; Fletcher, S. T.; Lazrek, M.; Leibacher, J. W.; Lochard, J.; New, R.; Régulo, C.; Salabert, D.; Toutain, T.; Verner, G. A.; Wachter, R.

    2008-10-01

    We report on the results of the latest solarFLAG hare-and-hounds exercise, which was concerned with testing methods for extraction of frequencies of low-degree solar p modes from data collected by Sun-as-a-star observations. We have used the new solarFLAG simulator, which includes the effects of correlated mode excitation and correlations with background noise, to make artificial time-series data that mimic Doppler velocity observations of the Sun-as-a-star. The correlations give rise to asymmetry of mode peaks in the frequency power spectrum. 10 members of the group (the hounds) applied their `peak-bagging' codes to a 3456-d data set, and the estimated mode frequencies were returned to the hare (who was WJC) for comparison. Analysis of the results reveals a systematic bias in the estimated frequencies of modes above ~1.8mHz. The bias is negative, meaning the estimated frequencies systematically underestimate the input frequencies. We identify two sources that are the dominant contributions to the frequency bias. Both sources involve failure to model accurately subtle aspects of the observed power spectral density in the part (window) of the frequency power spectrum that is being fitted. One source of bias arises from a failure to account for the power spectral density coming from all those modes whose frequencies lie outside the fitting windows. The other source arises from a failure to account for the power spectral density of the weak l = 4 and 5 modes, which are often ignored in Sun-as-a-star analysis. The Sun-as-a-star peak-bagging codes need to allow for both sources, otherwise the frequencies are likely to be biased.

  4. Initial high-degree p-mode frequency splittings from the 1988 Mt. Wilson 60-foot Tower Solar Oscillation Program

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.

    1988-01-01

    The initial frequency splitting results of solar p-mode oscillations obtained from the 1988 helioseismology program at the Mt. Wilson Observatory are presented. The frequency splittings correspond to the rotational splittings of sectoral harmonics which range in degree between 10 and 598. They were obtained from a cross-correlation analysis of the prograde and retrograde portions of a two-dimensional (t - v) power spectrum. This power spectrum was computed from an eight-hour sequence of full-disk Dopplergrams obtained on July 2, 1988, at the 60-foot tower telescope with a Na magneto-optical filter and a 1024x1024 pixel CCD camera. These frequency splittings have an inherently larger scatter than did the splittings obtained from earlier 16-day power spectra. These splittings are consistent with an internal solar rotational velocity which is independent of radius along the equatorial plane. The normalized frequency splittings averaged 449 + or - 3 nHz, a value which is very close to the observed equatorial rotation rate of the photospheric gas of 451.7 nHz.

  5. About the p-mode frequency shifts in HD 49933

    NASA Astrophysics Data System (ADS)

    Salabert, D.; Régulo, C.; Ballot, J.; García, R. A.; Mathur, S.

    2011-06-01

    We study the frequency dependence of the frequency shifts of the low-degree p modes measured in the F5V star HD 49933, by analyzing the second run of observations collected by the CoRoT satellite. The 137-day light curve is divided into two subseries corresponding to periods of low and high stellar activity. The activity-frequency relationship is obtained independently from the analysis of the mode frequencies extracted by both a local and a global peak-fitting analyses, and from a cross-correlation technique in the frequency range between 1450 μHz and 2500 μHz. The three methods return consistent results. We show that the frequency shifts measured in HD 49933 present a frequency dependence with a clear increase with frequency, reaching a maximal shift of about 2 μHz around 2100 μHz. Similar variations are obtained between the l = 0 and l = 1 modes. At higher frequencies, the frequency shifts show indications of a downturn followed by an upturn, consistent between the l = 0 and 1 modes. We show that the frequency variation of the p-mode frequency shifts of the solar-like oscillating star HD 49933 has a comparable shape to the one observed in the Sun, which is understood to arise from changes in the outer layers due to its magnetic activity.

  6. A new efficient method for determining weighted power spectra: detection of low-frequency solar p-modes by analysis of BiSON data

    NASA Astrophysics Data System (ADS)

    Fletcher, S. T.; Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; New, R.

    2011-08-01

    We present a new and highly efficient algorithm for computing a power spectrum made from evenly spaced data which combines the noise-reducing advantages of the weighted fit with the computational advantages of the fast Fourier transform. We apply this method to a 10-yr data set of the solar p-mode oscillations obtained by the Birmingham Solar Oscillations Network (BiSON) and thereby uncover three new low-frequency modes. These are the ℓ= 2, n= 5 and n= 7 modes and the ℓ= 3, n=7 mode. In the case of the ℓ= 2, n= 5 mode, this is believed to be the first such identification of this mode in the literature. The statistical weights needed for the method are derived from a combination of the real data and a sophisticated simulation of the instrument performance. Variations in the weights are due mainly to the differences in the noise characteristics of the various BiSON instruments, the change in those characteristics over time and the changing line-of-sight velocity between the stations and the Sun. It should be noted that a weighted data set will have a more time-dependent signal than an unweighted set and that, consequently, its frequency spectrum will be more susceptible to aliasing.

  7. VizieR Online Data Catalog: p-mode frequencies of the solar twin 18 Sco (Bazot+, 2012)

    NASA Astrophysics Data System (ADS)

    Bazot, M.; Campante, T. L.; Chaplin, W. J.; Carfantan, H.; Bedding, T. R.; Dumusque, X.; Broomhall, A.-M.; Petit, P.; Theado, S.; Van Grootel, V.; Arentoft, T.; Castro, M.; Christensen-Dalsgaard, J.; Do Nascimento, J.-D., Jr.; Dintrans, B.; Kjeldsen, H.; Monteiro, M. J. P. F. G.; Santos, N. C.; Sousa, S.; Vauclair, S.

    2012-07-01

    Results from the estimation of the parameter of the spectrum model using the Markov Chain Monte-Carlo (MCMC) algorithm described in Sect.4. A burn-in sequence has been removed. The data is stored in the form of an array [1975001x54] The first 52 columns give the frequencies of the modes order by degree (13 l=0 modes, 13 l=1 modes, 13 l=2 modes, 13 l=3 modes). For each mode, they are sorted in ascending order. The last two columns of each line give the parameters Gamma1 and Gamma2. (1 data file).

  8. Excitation of solar p-modes

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Murray, Norman; Kumar, Pawan

    1994-01-01

    We investigate the rates at which energy is supplied to individual p-modes as a function of their frequencies nu and angular degrees l. The observationally determined rates are compared with those calculated on the hypothesis that the modes are stochastically excited by turbulent convection. The observationally determined excitation rate is assumed to be equal to the product of the mode's energy E and its (radian) line width Gamma. We obtain E from the mode's mean square surface velocity with the aid of its velocity eigenfuction. We assume that Gamma measures the mode's energy decay rate, even though quasi-elastic scattering may dominate true absorption. At fixed l, E(Gamma) arises as nu(exp 7) at low nu, reaches a peak at nu approximately equal 3.5 mHz, and then declines as nu(exp 4.4) at higher nu . At fixed nu, E(Gamma) exhibits a slow decline with increasing l. To calculate energy input rates, P(sub alpha), we rely on the mixing-length model of turbulent convection. We find entropy fluctuations to be about an order of magnitude more effective than the Reynolds stress in exciting p-modes . The calculated P(sub alpha) mimic the nu(exp 7) dependence of E(Gamma) at low nu and the nu(exp -4.4) dependence at high nu. The break of 11.4 powers in the nu-dependence of E(Gamma) across its peak is attributed to a combination of (1) the reflection of high-frequency acoustic waves just below the photosphere where the scale height drops precipitously and (2) the absence of energy-bearing eddies with short enough correlation times to excite high-frequency modes. Two parameters associated with the eddy correlation time are required to match the location and shape of the break. The appropriate values of these parameters, while not unnatural, are poorly constrained by theory. The calculated P(sub alpha) can also be made to fit the magnitude of E(Gamma) with a reasonable value for the eddy aspect ratio. Our resutls suggest a possible explanation for the decline of mode energy

  9. Influence of the solar atmosphere on the p-mode eigenoscillations

    NASA Astrophysics Data System (ADS)

    Dzhalilov, N. S.; Staude, J.; Arlt, K.

    2000-09-01

    An asymptotic theory of global adiabatic p-modes is developed, taking into account the influence of the solar atmosphere. It is shown that waves of the whole frequency range nu ~ 2-10 mHz may reach the chromosphere-corona transition region (CCTR) by means of a tunneling through the atmospheric barriers. The primary acoustic cavity inside the Sun becomes considerably extended by this way, leading to a change of frequencies: low frequencies are increased, while high frequencies are decreased. The transition from low p-mode frequencies to high peak frequencies (nu >~ 6;mHz) is smooth. The locations of the turning points are determined from the wave equation for {div}*/rightarrow{v}. It is shown that the internal turning point of the acoustic cavity is strongly shifted toward the center of the Sun, while the upper turning point is shifted from the surface to CCTR. That means, the turning points cannot be located in the convective zone. A new complex integral dispersion relation for the eigenfrequencies is derived. The imaginary parts of the frequencies indicate a decay of the amplitudes, resulting from considerable energy losses by tunneling from the main cavity. It is shown that waves with a decaying amplitude (complex frequency) may exist in a limited area only, penetration of linear p-modes to the corona is impossible. The CCTR acts as a free surface. We conclude that the p-modes may drive forced surface gravity waves at this surface.

  10. Solar p-mode oscillations as a tracer of radial differential rotation

    NASA Technical Reports Server (NTRS)

    Deubner, F.-L.; Ulrich, R. K.; Rhodes, E. J., Jr.

    1979-01-01

    Photoelectric observations of solar p-modes obtained with improved wavenumber and frequency resolution are presented. The observations are compared with model calculations of the p-modes, and the degree of spatial and temporal coherence of the observed wave pattern is investigated. It is found that the p-mode oscillations pervade the visible surface of the sun with a high degree of coherence in space and time, so that the whole complex pattern of standing waves with its nodes and antinodes can be regarded as a fixed pattern corotating with the solar surface layers. The p-modes are introduced as a tracer of solar rotational flow velocities. The equatorial differential rotation is estimated as a function of effective depth on the basis of the theoretical contribution functions for the p-modes recently derived by Ulrich et al. (1978). The results strongly indicate that the angular speed of rotation is not uniform even in the relatively shallow layer extending about 20,000 km below the photosphere.

  11. Changes in convective properties over the solar cycle: effect on p-mode damping rates

    NASA Astrophysics Data System (ADS)

    Houdek, G.; Chaplin, W. J.; Appourchaux, T.; Christensen-Dalsgaard, J.; Däppen, W.; Elsworth, Y.; Gough, D. O.; Isaak, G. R.; New, R.; Rabello-Soares, M. C.

    2001-10-01

    Measurements of both solar irradiance and p-mode oscillation frequencies indicate that the structure of the Sun changes with the solar cycle. Balmforth, Gough & Merryfield investigated the effect of symmetrical thermal disturbances on the solar structure and the resulting pulsation frequency changes. They concluded that thermal perturbations alone cannot account for the variations in both irradiance and p-mode frequencies, and that the presence of a magnetic field affecting acoustical propagation is the most likely explanation of the frequency change, in the manner suggested earlier by Gough & Thompson and by Goldreich et al. Numerical simulations of Boussinesq convection in a magnetic field have shown that at high Rayleigh number the magnetic field can modify the preferred horizontal length scale of the convective flow. Here, we investigate the effect of changing the horizontal length scale of convective eddies on the linewidths of the acoustic resonant mode peaks observed in helioseismic power spectra. The turbulent fluxes in these model computations are obtained from a time-dependent, non-local generalization of the mixing-length formalism. The modelled variations are compared with p-mode linewidth changes revealed by the analysis of helioseismic data collected by the Birmingham Solar-Oscillations Network (BiSON); these low-degree (low-l) observations cover the complete falling phase of solar activity cycle 22. The results are also discussed in the light of observations of solar-cycle variations of the horizontal size of granules and with results from 2D simulations by Steffen of convective granules.

  12. Importance of Solar Atmospheric Coupling on P-Mode Power within Magnetic Elements

    NASA Astrophysics Data System (ADS)

    Gascoyne, A.; Jain, R.

    2014-12-01

    It has long been known that the power of p-mode oscillations is reducedwithin magnetic plages and sunspots at photospheric level. Recent observations now suggest that this suppression of power extends into the low chromosphere and isalso present in small magnetic elements far from active regions. Weconstruct a model to investigate a possible mechanism of this powerloss whereby p modes buffet small magnetic elements and excite MHDsausage tube waves. These magnetic tube waves propagate along the manymagnetic fibrils which are embedded in the convection zone and expandinto the chromosphere due to the fall in density with height of thesurrounding plasma. We treat the magnetic fibrils as verticallyaligned, thin flux tubes embedded in a two region polytropic-isothermalatmosphere to study the coupling of p-mode driven sausage waves,which are excited in the convection zone and propagate into theoverlying chromosphere. The excited tube waves carry energy away fromthe p-mode cavity resulting in a deficit of p-mode energy which wequantify by computing the associated damping rate and absorptioncoefficient of the driving p modes. We also compare the verticalmotion within the fibril with the vertical motion of the incident p modeby constructing the ratio of their powers using HMI data and theory.In agreement with observational measurements we find that the totalpower is suppressed within strong magnetic elements for frequenciesbelow the acoustic cut-off frequency. We also find that the magnitudeof the power deficit increases with the height above the photosphereat which the measurement is made. Further, we argue that the area ofthe solar disk over which the power suppression extends increases as afunction of height.

  13. Solar seismology. II - The stochastic excitation of the solar p-modes by turbulent convection

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Keeley, D. A.

    1977-01-01

    We test the hypothesis that the solar p-modes are stabilized by damping due to turbulent viscosity in the convective zone. Starting from the assumption that the modes are stable, we calculate expectation values for the modal energies. We find that the interaction between a p-mode and the turbulent convection is such that the modal energy tends toward equipartition with the kinetic energy of turbulent eddies whose lifetimes are comparable to the modal period. From the calculated values of the modal energies, we compute rms surface velocity amplitudes. Our predicted rms surface velocities range from 0.01 cm/sec for the fundamental radial mode to 0.6 cm/sec for the radial mode whose period is approximately 5 minutes. The predicted surface velocities for the low order p-modes are much smaller than the velocities inferred from recent observations.

  14. A method to detect p-mode oscillations in solar-like star signals

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Roca Cortés, T.

    2002-12-01

    A good example of finding a signal buried in noise, a common problem in Astrophysics, is the search for stellar oscillations in the acoustic power spectrum of solar-like stars. In this work it is shown that it is possible to find this type of signal in the power spectrum of stellar oscillations if the peaks are ``almost'' equally spaced in frequency, as the asymptotic theory for acoustic modes predicts. This signature of the power spectra of the p-mode oscillations in solar-like stars is used to design a method that allows the identification of the signal even when this signal is completely buried in noise, sigma_signal /sigma_signal +noise < 1/25.

  15. Solar seismology. I - The stability of the solar p-modes

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Keeley, D. A.

    1977-01-01

    The stability of the radial p-modes of the sun is investigated by computing nonadiabatic eigenvalues and eigenfunctions for a solar envelope model which extends from an inner radius of about 0.3 solar radius out to an optical depth of about 0.0003. The calculations take into account in a crude fashion the response of the convective flux to the oscillation. The dynamical effect of turbulence in the convection zone is parametrized in terms of a turbulent shear viscosity. The results show that if damping by turbulent viscosity is neglected, all modes with periods longer than 6 minutes are unstable. The familiar kappa-mechanism, which operates in the H ionization-H(-) opacity region, is the dominant source of driving of the oscillations. Modes with periods shorter than 6 minutes are stabilized by radiative damping in the solar atmosphere. When turbulent dissipation of pulsational energy is included, all modes are predicted to be stable. However, the margin of stability is very small. In view of the large uncertainty that must be assigned to the estimate of turbulent damping, it is concluded that theoretical calculations cannot unequivocally resolve the question of the stability of the solar p-modes.

  16. Signal-to-noise enhancement in ground-based intensity observations of solar p modes

    NASA Technical Reports Server (NTRS)

    Germain, Marvin E.

    1995-01-01

    Intensity observations of solar p modes are needed to form a complete picture of wave propagation in the photosphere. Ground-based intensity observations are severely hampered by terrestrial atmospheric noise. Partial cancellation of the noise power can be achieved if two spectra having disparate signal-to- noise ratios, and based on time series acquired simultaneously at the same site, are combined. A method of combining the spectra is suggested in which one amplitude is scaled and subtracted from the other. The result is squared yielding a positive-definite power density. To test the method, the intensity of light scattered by the Earth's atmnosphere was recorded at fifteen- second intervals in two narrow bands centered on 0.5 microns and 1.6 microns. When the two resulting spectra were combined, the noise power was attenuated by a factor of 2.7. The scale factor was varied about its optimum value, revealing that noise peaks have a different siganture than signal peaks, and opening up the possibility of a new tool in discrimination against noise peaks. Maxima at symmetry-allowed frequencies and minima at symmetry- forbidden frequencies indicate that the possibility that these results are obtained by chance is only 6.1 x 10(exp -4). The positions of these maxima and minima also support the solar-cycle dependent frequency shifts found by Palle, Regulo, and Roca Cortes.

  17. Source of excitation of low-l solar p modes: characteristics and solar-cycle variations

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.; Appourchaux, T.; Elsworth, Y.; Isaak, G. R.; Miller, B. A.; New, R.

    2000-05-01

    We investigate various properties of the excitation source that is responsible for driving the acoustic p-mode oscillations of the Sun. Current prejudice places this in the superadiabatic layer of the convection zone. We consider in detail how the precise nature of the resonant mode spectrum is modified: (i) as a result of the impact of different source-multipole mixtures; and (ii) as a function of the radial extent of the source. To do this, we model the observed resonant spectra with the solutions to a simple, one-dimensional wave equation which is intended to describe the essential elements of the solar resonant acoustic cavity. Further, we also fit these models to the low-l peaks in a high-resolution power spectrum generated from data collected by the Birmingham Solar-Oscillations Network (BiSON). We also use the extensive BiSON data set to search for variations in the source characteristics over the solar cycle.

  18. Wavelength variation of p-mode intensity fluctuations. [in solar photosphere and low chromosphere

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Harvey, J. W.; Duvall, T. L, Jr.

    1991-01-01

    The oscillatory signal in the solar p-mode band has been measured as a function of optical wavelength using a grating spectrometer and Fourier transform spectrometer. The relative intensity fluctuations are found to increase with height in the solar photosphere, while the absolute level of intensity fluctuations in the p-mode band is reduced by about 50 percent in the cores and wings of Ca II H and K, H-delta, and H-gamma compared to the neighboring spectral regions. Thus, these spectral regions of diminished absolute p-mode signal could be exploited as signal references by spectrophotometers while attempting to observe nonradial p-mode oscillations in stars from the ground. High spectral and temporal resolution observations of several unblended lines in the red portion of the visible spectrum show an asymmetry in the relative and absolute p-mode intensity oscillations across the line profiles. The peak in intensity oscillations lies in the blue wing of the lines.

  19. Energy Loss of Solar p Modes due to the Excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-07-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).

  20. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    SciTech Connect

    Gascoyne, A.; Jain, R.; Hindman, B. W. E-mail: r.jain@sheffield.ac.uk

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  1. ON THE PROPAGATION OF p-MODES INTO THE SOLAR CHROMOSPHERE

    SciTech Connect

    De Wijn, A. G.; McIntosh, S. W.; De Pontieu, B.

    2009-09-10

    We employ tomographic observations of a small region of plage to study the propagation of waves from the solar photosphere to the chromosphere using a Fourier phase-difference analysis. Our results show the expected vertical propagation for waves with periods of 3 minutes. Waves with 5 minute periods, i.e., above the acoustic cutoff period, are found to propagate only at the periphery of the plage, and only in the direction in which the field can be reasonably expected to expand. We conclude that field inclination is critically important in the leakage of p-mode oscillations from the photosphere into the chromosphere.

  2. Observations of low-degree p-mode oscillations in 1984. [solar oscillations

    NASA Technical Reports Server (NTRS)

    Henning, Harald M.; Scherrer, Philip H.

    1986-01-01

    Analysis of Stanford differential velocity observations has been extended through the 1984 observing season. Excellent quality observations were obtained in 1984 on 38 days in a 49 day interval from June 20th through August 7th. The power spectrum of this data has been examined and improved frequency determinations have been made for p-modes of degree 2 through 5 and order 5 through 34. Of special interest are the modes of the lower orders, n ranging from 5 to 10, which have not been identified previously.

  3. Solar-Cycle Changes in GONG P-Mode Widths and Amplitudes 1995-1998

    NASA Technical Reports Server (NTRS)

    Komm R. W.; Howe, R.; Hill, F.

    1999-01-01

    We search for a solar cycle variation in mode widths and amplitudes derived from 3-month GONG time series. The variation of mode width and amplitude observed in GONG data are the combined effects of fill factor, temporal variation, and measurement uncertainties. The largest variation is caused by the fill factor resulting in modes with increased width and reduced amplitude when fill is lower. We assume that the solar cycle variation is the only other systematic variation beside the temporal window function effect. We correct all currently available data sets for the fill factor and simultaneously derive the solar cycle variation. We find an increase of about 3% on average in mode width from the previous minimum to Oct. 1998 and a decrease of about 7% and 6% in mode amplitude and mode area (width x amplitude). We find no l dependence of the solar-cycle changes. As a function of frequency, these changes show a maximum between 2.7 and 3.3 mHz with about 47% higher than average values for mode width and about 29% and 36% higher ones for mode amplitude and area. We estimate the significance of these rather small changes by a pre-whitening method and find that the results are significant at or above the 99.9% level with mode area showing the highest level of significance and mode width the lowest. The variation in background amplitude is most likely not significant and is consistent with a zero change.

  4. Solar FLAG hare and hounds: on the extraction of rotational p-mode splittings from seismic, Sun-as-a-star data

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.; Appourchaux, T.; Baudin, F.; Boumier, P.; Elsworth, Y.; Fletcher, S. T.; Fossat, E.; García, R. A.; Isaak, G. R.; Jiménez, A.; Jiménez-Reyes, S. J.; Lazrek, M.; Leibacher, J. W.; Lochard, J.; New, R.; Pallé, P.; Régulo, C.; Salabert, D.; Seghouani, N.; Toutain, T.; Wachter, R.

    2006-06-01

    We report on results from the first solar Fitting at Low-Angular degree Group (solar FLAG) hare-and-hounds exercise. The group is concerned with the development of methods for extracting the parameters of low-l solar p-mode data (`peak bagging'), collected by Sun-as-a-star observations. Accurate and precise estimation of the fundamental parameters of the p modes is a vital pre-requisite of all subsequent studies. Nine members of the FLAG (the `hounds') fitted an artificial 3456-d data set. The data set was made by the `hare' (WJC) to simulate full-disc Doppler velocity observations of the Sun. The rotational frequency splittings of the l = 1, 2 and 3 modes were the first parameter estimates chosen for scrutiny. Significant differences were uncovered at l = 2 and 3 between the fitted splittings of the hounds. Evidence is presented that suggests this unwanted bias had its origins in several effects. The most important came from the different way in which the hounds modelled the visibility ratio of the different rotationally split components. Our results suggest that accurate modelling of the ratios is vital to avoid the introduction of significant bias in the estimated splittings. This is of importance not only for studies of the Sun, but also of the solar analogues that will be targets for asteroseismic campaigns. Solar FLAG URL: http://bison.ph.bham.ac.uk/~wjc/Research/FLAG.html E-mail: wjc@bison.ph.bham.ac.uk ‡ George Isaak passed away in 2005 June 5, prior to the completion of this work. He is greatly missed by us all.

  5. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  6. Stellar p-modes oscillation measurements in solar-like star signals: α Centauri A as an example

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Roca Cortés, T.

    2007-07-01

    Context: This paper deals with the analysis of observational data series of solar-like stars. In dealing with observations of solar-like stellar oscillations from ground observatories, to achieve the necessary level of signal to noise to measure individual acoustic modes in their power spectra it is necessary to have access to large telescopes and preferably more than one used simultaneously at appropriate longitudes. It is very difficult to obtain observing time to cover more than a few day series of data, which usually implies difficulties in obtaining a precise determination of the acoustic frequencies. Aims: To find the acoustic frequencies of solar-like stars from short duration data series. Methods: The analysis technique is based on an earlier work by the authors that allows the recovery of the acoustic power spectrum of solar-like stars even in cases with poor S/N ratios. The method is applied to solar data to show how it works and also it is used to re-analyse the recently published ultra-high-precision velocity measurements in α Cen A. Results: The method is shown to work well with solar observations and allows us to obtain the acoustic frequencies of solar-like stars from short-duration data series with a precision comparable with that obtained from standard methods in longer data series. Conclusions: This method can be used with currently observed data series to provide useful information on the structure of stars.

  7. EFFECTS OF A DEEP MIXED SHELL ON SOLAR g-MODES, p-MODES, AND NEUTRINO FLUX

    SciTech Connect

    Wolff, Charles L.

    2009-08-10

    A mixed-shell model that reflects g-modes away from the Sun's center is developed further by calibrating its parameters and evaluating a mixing mechanism: buoyancy. The shell roughly doubles g-mode oscillation periods and would explain why there is no definitive detection of their periods. But the shell has only minor effects on most p-modes. The model provides a mechanism for causing short-term fluctuations in neutrino flux and makes plausible the correlations between this flux and solar activity levels. Relations are derived for a shell heated asymmetrically by transient increases in nuclear burning in small 'hot spots'. The size of these spots and the timing of a heating event are governed by sets(l) of standing asymptotic g-modes, coupled by a maximal principle that greatly enhances their excitation and concentrates power toward the equator, assisting the detection of higher-l sets. Signals from all sets, except one, in the range 2 {<=} l {<=} 8 are identified by difference periods between consecutive radial states using the method of Garcia et al. and reinterpreting their latest spectrum. This confirms two detections of sets in a similar range of l by their rotation rates. The mean radius of shell mixing is r{sub m} = 0.16 R{sub sun}, which improves an earlier independent estimate of 0.18 by the author. The shell may cause the unexplained dip in measured sound speed at its location. Another sound speed error, centered near 0.67 R{sub sun}, and reversing flows in the same place with a period originally near 1.3 yr suggest that the g-modes are depositing there about 3% of the solar luminosity. That implies the shell at r{sub m} is receiving a similar magnitude of power, which would be enough energy to mix the corresponding shell in a standard solar model in <<10{sup 7} yr.

  8. THE ACOUSTIC CUTOFF FREQUENCY OF THE SUN AND THE SOLAR MAGNETIC ACTIVITY CYCLE

    SciTech Connect

    Jimenez, A.; Palle, P. L.; Garcia, R. A.

    2011-12-20

    The acoustic cutoff frequency-the highest frequency for acoustic solar eigenmodes-is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities. At frequencies beyond this value, acoustic disturbances are no longer trapped but are traveling waves. Interference among them gives rise to higher-frequency peaks-the pseudomodes-in the solar acoustic spectrum. The pseudomodes are shifted slightly in frequency with respect to p-modes, making possible the use of pseudomodes to determine the acoustic cutoff frequency. Using data from the GOLF and VIRGO instruments on board the Solar and Heliospheric Observatory spacecraft, we calculate the acoustic cutoff frequency using the coherence function between both the velocity and intensity sets of data. By using data gathered by these instruments during the entire lifetime of the mission (1996 until the present), a variation in the acoustic cutoff frequency with the solar magnetic activity cycle is found.

  9. Early solar mass loss, element diffusion, and solar oscillation frequencies

    SciTech Connect

    Guzik, J.A.; Cox, A.N.

    1994-07-01

    Swenson and Faulkner, and Boothroyd et al. investigated the possibility that early main-sequence mass loss via a stronger early solar wind could be responsible for the observed solar lithium and beryllium depiction. This depletion requires a total mass loss of {approximately}0.1 M{circle_dot}, nearly independent of the mass loss timescale. We have calculated the evolution and oscillation frequencies of solar models including helium and element diffusion, and such early solar mass loss. We show that extreme mass loss of 1 M{circle_dot} is easily ruled out by the low-degree p-modes that probe the solar center and sense the steeper molecular weight gradient produced by the early phase of more rapid hydrogen burning. The effects on central structure are much smaller for models with an initial mass of 1.1 M{circle_dot} and exponentially-decreasing mass loss irate with e-folding timescale 0.45 Gyr. While such mass loss slightly worsens the agreement between observed and calculated low-degree modes, the observational uncertainties of several tenths of a microhertz weaken this conclusion. Surprisingly, the intermediate-degree modes with much smaller observational uncertainties that probe the convection zone bottom prove to be the key to discriminating between models: The early mass loss phase decreases the total amount of helium and heavier elements diffused from the convection zone, and the extent of the diffusion produced composition gradient just below the convection zone, deteriorating the agreement with observed frequencies for these modes. Thus it appears that oscillations can also rule out this smaller amount of gradual early main-sequence mass loss in the young Sun. The mass loss phase must be confined to substantially under a billion years, probably 0.5 Gyr or less, to simultaneously solve the solar Li/Be problem and avoid discrepancies with solar oscillation frequencies.

  10. Observations of intermediate- and high-degree p-mode oscillations during sunspot cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J.; Cacciani, A.; Korzennik, S. G.

    1991-01-01

    Extensive time series of resolved solar images have been available for helioseismological investigations since the late 1970's. The paper presents examples of the frequencies, power levels, modal energies, and widths of solar intermediate-degree and high-degreee p-modes obtained at the Mt. Wilson Observatory's 60-Foot Solar Tower Telescope during the rising phase of the current sunspot cycle. It is shown that the inclusion of frequency splittings from the high-degree p-modes has made it possible to demonstrate that the sun's internal equatorial angular velocity is not constant with radius but varies systematically with radius throughout the solar convection zone and below.

  11. ABSORPTION OF p MODES BY THIN MAGNETIC FLUX TUBES

    SciTech Connect

    Jain, Rekha; Hindman, Bradley W.; Braun, Doug C.; Birch, Aaron C.

    2009-04-10

    We study the interaction between p modes and the many magnetic fibrils that lace the solar convection zone. In particular, we investigate the resulting absorption of p-mode energy by the fibril magnetic field. Through mechanical buffeting, the p modes excite tube waves on the magnetic fibrils-in the form of longitudinal sausage waves and transverse kink waves. The tube waves propagate up and down the magnetic fibrils and out of the p-mode cavity, thereby removing energy from the incident acoustic waves. We compute the absorption coefficient associated with this damping mechanism and model the absorption that would be observed for magnetic plage. We compare our results to the absorption coefficient that is measured using the local-helioseismic technique of ridge-filtered holography. We find that, depending on the mode order and the photospheric boundary conditions, we can achieve absorption coefficients for simulated plage that exceed 50%. The observed increase of the absorption coefficient as a function of frequency is reproduced for all model parameters.

  12. Solar oscillation frequency and solar neutrino predictions

    SciTech Connect

    Cox, A.N.

    1990-07-05

    The light and velocity variations of the Sun and solar-like stars are unique among intrinsic variable stars. Unlike all other standard classes, such as Cepheids, B stars, and white dwarfs, the pulsation driving is caused by coupling with the acoustic noise in the upper convection zone. Each global pulsation mode is just another degree of freedom for the turbulent convection, and energy is shared equally between these g{sup {minus}}-modes and the solar oscillation modes. This driving and damping, together with the normal stellar pulsation mechanisms produce extremely low amplitude solar oscillations. Actually, the surface layer radiative damping is strong, and the varying oscillation mode amplitudes manifest the stochastic convection driving and the steady damping. Thus stability calculations for solar-like pulsations are difficult and mostly inconclusive, but calculations of pulsation periods are as straightforward as for all the other classes of intrinsic variable stars. The issue that is important for the Sun is its internal structure, because the mass, radius, and luminosity are extremely well known. Conventionally, we need the pulsation constants for each of millions of modes. Unknown parameters for constructing solar models are the composition and its material pressure, energy, and opacity, as well as the convection mixing length. We treat the nuclear energy and neutrino production formulas as sufficiently well known. The presence of weakly interacting massive particles (WIMPs) orbiting the solar center affects the predicted oscillation frequencies so that they do not agree with observations as well as those for models without WIMPs. 34 refs., 4 figs.

  13. Are short-term variations in solar oscillation frequencies the signature of a second solar dynamo?

    NASA Astrophysics Data System (ADS)

    Broomhall, Anne-Marie; Fletcher, Stephen T.; Salabert, David; Basu, Sarbani; Chaplin, William J.; Elsworth, Yvonne; García, Rafael A.; Jiménez, Antonio; New, Roger

    2011-01-01

    In addition to the well-known 11-year solar cycle, the Sun's magnetic activity also shows significant variation on shorter time scales, e.g. between one and two years. We observe a quasi-biennial (2-year) signal in the solar p-mode oscillation frequencies, which are sensitive probes of the solar interior. The signal is visible in Sun-as-a-star data observed by different instruments and here we describe the results obtained using BiSON, GOLF, and VIRGO data. Our results imply that the 2-year signal is susceptible to the influence of the main 11-year solar cycle. However, the source of the signal appears to be separate from that of the 11-year cycle. We speculate as to whether it might be the signature of a second dynamo, located in the region of near-surface rotational shear.

  14. Solar-cycle variations of large frequency separations of acoustic modes: implications for asteroseismology

    NASA Astrophysics Data System (ADS)

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; New, R.

    2011-06-01

    We have studied solar-cycle changes in the large frequency separations that can be observed in Birmingham Solar Oscillations Network (BiSON) data. The large frequency separation is often one of the first outputs from asteroseismic studies because it can help constrain stellar properties like mass and radius. We have used three methods for estimating the large separations: use of individual p-mode frequencies, computation of the autocorrelation of frequency-power spectra, and computation of the power spectrum of the power spectrum. The values of the large separations obtained by the different methods are offset from each other and have differing sensitivities to the realization noise. A simple model was used to predict solar-cycle variations in the large separations, indicating that the variations are due to the well-known solar-cycle changes to mode frequency. However, this model is only valid over a restricted frequency range. We discuss the implications of these results for asteroseismology.

  15. Solar emission levels at low radio frequencies

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.

    1990-01-01

    Solar radio emission could seriously interfere with observations made by a low frequency (1 to 10 MHz) array in space. International Sun-Earth Explorer (ISEE-3) radio data were used to determine solar emission level. The results indicate that solar emission should seriously disturb less than ten percent of the data, even during the years of solar maximum. Thus it appears that solar emission should not cause a disastrous loss of data. The information needed to design procedures to excise solar interference from the data produced by any low-frequency array is provided.

  16. P-mode oscillation on slim discs

    NASA Astrophysics Data System (ADS)

    Xue, Li; Lu, Ju-Fu

    2016-02-01

    We numerically investigate the thermally unstable accretion discs around spinning black holes with different spins. We adopted an additional evolutionary viscosity equation to replace the standard alpha-prescription based on the results of two MHD simulations. We find an interesting oscillation when accretion switches to slim disc mode. The oscillation arises from the sonic point of accretion flow and propagates outwards. We mimic the bolometric light-curve and find a series of harmonics on its power spectrum. The frequency ratio of those harmonics is a regular integer series. The lowest frequency of the harmonics is identical to the prediction of trapped p-mode in QPO theory.

  17. Stellar p-mode oscillations signal in Procyon A from MOST data

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Roca Cortés, T.

    2005-12-01

    Recently, Matthews et al. (2004, Nature, 430, 51) claim a null detection of p-mode oscillations in Procyon A from 32 days of nearly continuous photometric satellite-based observations (MOST). They did not even find evidence in the Fourier amplitude spectrum of Procyon of the uniform frequency spacing signature that solar-like stars acoustic spectrum must show according to asymptotic theory. However, re-analysing his data, we have found a clear evidence of signal fully compatible with what is expected from p-mode oscillations in Procyon A. Using the method developed in Régulo & Roca Cortés (2002, A&A, 396, 745), that allows the analysis of stellar oscillations in the acoustic power spectrum of solar-like stars when the signal is buried in noise, we have found a frequency spacing in the power spectrum of the data of 54.5 μHz, that agrees well with the expectations of the theory of stellar oscillation as well as with previous estimations from ground-based observations. Moreover, our method allows the recovery of the power spectrum of the signal from the knowledge of the frequency spacing present in the data, which yields clear peaks that can be identified as acoustic p-modes. Nonetheless, as the frequency spacing coincides with the second sub-multiple of the orbital frequency of the satellite (164.34 μHz) the above findings must be taken with caution.

  18. Detection and temporal coherence of p-modes below 1.4 mHz

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, A.; Régulo, C.; Korzennik, S. G.; Pérez Hernández, F.; Roca Cortés, T.

    2008-06-01

    Data collected recently by the helioseismic experiments aboard the SOHO spacecraft have allowed the detection of low degree p-modes with increasingly lower order n. In particular, the GOLF experiment is currently able to unambiguously identify low degree modes with frequencies as low as 1.3 mHz. The detection of p-modes with very low frequency ({i.e.}, low n), is difficult due to the low signal-to-noise ratio in this spectral region and its contamination by solar signals that are not of acoustic origin. To address this problem without using any theoretical a priory, we propose a methodology that relies only on the inversion of observed values to define a spectral window for the expected locations of these low frequency modes. The application of this method to 2920-day-long GOLF observations is presented and its results discussed.

  19. Ionospheric criticial frequencies and solar cycle effects

    NASA Astrophysics Data System (ADS)

    Kilcik, Ali; Ozguc, Atila; Rozelot, Jean Pierre; Yiǧit, Erdal; Elias, Ana; Donmez, Burcin; Yurchyshyn, Vasyl

    2016-07-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions critical frequencies (foF1 and foF2) are investigated observationally for the last four solar cycles (1976-2015). We here show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (foF1) peaks at the same time with small SG numbers, while the foF2 reaches its maximum at the same time with the large SG numbers especially during the solar cycle 23. Thus, we may conclude that the sensitivities of ionospheric F1 and F2 region critical frequencies to sunspot group (SG) numbers are associated with different physical processes that are yet to be investigated in detail. Such new results provide further evidence that the two ionospheric regions have different responses to the solar activity. We also analyzed short term oscillatory behavior of ionospheric critical frequencies and found some solar signatures.

  20. CMEs and frequency cutoff of solar bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Al.; Konovalenko, Al.; Koval, Ar.; Volvach, Y.; Zarka, P.

    2016-05-01

    Radio observations of solar bursts with high-frequency cutoff by the radio telescope UTR-2 (near Kharkiv, Ukraine) at 8-33 MHz on 17-19 August 2012 are presented. Such cutoff may be attributed to the emergence of the burst sources behind limb of the Sun with respect to an observer on the Earth. The events are strongly associated with solar eruptions occurred in a new active region. Ray tracing simulations show that the CMEs play a constructive role for the behind-limb bursts to be detected in ground-based observations. Likely, due to tunnel-like cavities with low density in CMEs, the radio emission of behind-limb solar bursts can be directed towards the Earth.

  1. The detection and characterization of high frequency and high wavenumber solar oscillations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fernandes, David Neil

    1992-01-01

    Doppler shift measurements of the Na D(sub 1) absorption line have revealed solar oscillations in a new regime of frequency and wavenumber. Oscillations of vertical velocities in the temperature minimum and low chromosphere of the Sun are observed with frequencies ranging up to 9.5 mHz. There is no evidence for chromospheric modes of 3 minute period. This indicates that the chromosphere does not form a good cavity for acoustic waves. The fundamental-modes appear with wavenumbers up to 5.57 M per m (equivalent spherical harmonic degree, 3877). The frequencies lie below the predicted values at wavenumbers above 1 M per m. The values are in agreement with previous measurements that exist for wavenumbers up to 2.67 M per m. Spatial maps of velocity power show that high wavenumber oscillations are suppressed in active regions. The shape of the power depression indicates that wave motion is affected in the layer of atmosphere where the measurement is made. The f-modes are suppressed in the same way as p-modes, indicating that the mechanism for wave suppression affects velocity fluctuations. Mode frequencies are not affected by the magnetic fields by more than 50 micro Hz, the precision of the measurement.

  2. A search for p-mode oscillations of Jupiter - Serendipitous observations of nonacoustic thermal wave structure

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Mumma, Michael J.; Espenak, Fred; Jennings, Donald E.; Kostiuk, Theodor; Wiedemann, Gunter

    1989-01-01

    Frequencies for the p-mode oscillations of Jupiter have been determined, and infrared brightness temperature fluctuations are used to search for the modes. Measurements of the infrared intensity of the Jovian disk were obtained in a broad bandwidth using a 20-element linear array. No p-mode oscillations were observed at the 0.07-K level in the 8-13-micron brightness temperature. The results suggest that Jovian p modes are not likely to have observable amplitudes. A prominent nonacoustic wave-like structure in the 8-13-micron brightness temperature is found both at 20 deg N and at the equator.

  3. A search for p-mode oscillations of Jupiter - Serendipitous observations of nonacoustic thermal wave structure

    NASA Astrophysics Data System (ADS)

    Deming, D.; Mumma, M. J.; Espenak, F.; Jennings, D. E.; Kostiuk, T.; Wiedemann, G.; Loewenstein, R.; Piscitelli, J.

    1989-08-01

    Frequencies for the p-mode oscillations of Jupiter have been determined, and infrared brightness temperature fluctuations are used to search for the modes. Measurements of the infrared intensity of the Jovian disk were obtained in a broad bandwidth using a 20-element linear array. No p-mode oscillations were observed at the 0.07-K level in the 8-13-micron brightness temperature. The results suggest that Jovian p modes are not likely to have observable amplitudes. A prominent nonacoustic wave-like structure in the 8-13-micron brightness temperature is found both at 20 deg N and at the equator.

  4. Solar radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1990-01-01

    The characteristics of solar radio emissions at decametric to kilometric wavelengths are reviewed. Special attention is given to the radiation of the quiet sun at several metric and decametric wavelengths and to nonthermal radiation from the active sun, including radio bursts of type III (electron beams), type-III bursts from behind the sun, storms of type III bursts, the flare-associated radio bursts, type II bursts (shock waves), and shock-associated bursts. It is pointed out that almost no observations have been made so far of solar radiation between about 20 MHz and about 2 MHz. Below about 2 MHz, dynamic spectra of flux densities of solar burst have been recorded in space and observations were made of the directions of centroids and characteristic sizes of the emitting sources.

  5. Radio frequency interference affecting type III solar burst observations

    NASA Astrophysics Data System (ADS)

    Anim, N. M.; Hamidi, Z. S.; Abidin, Z. Z.; Monstein, C.; Rohizat, N. S.

    2013-05-01

    The solar burst extinguish from the Sun's corona atmosphere and it dynamical structure of the magnetic field in radio wavelength are studied. Observation of solar radio burst with Compact Astronomical Low cost Low frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) from ETH, Zurich in frequency range of 45 until 870 MHz. Observation done at Pusat Angkasa Negara, Banting, Selangor and successfully detected the solar burst type III on 9th March 2012 from 4:22:00 UT until 4:28:00 UT. The solar burst emission is associated with M6.3 solar flare which occurred at sunspot AR1429 at 03:58UT were observed by NOAA. Frequency ranges chosen as the best ranges for solar monitoring in Malaysia is 150 MHz until 400 MHz. The highest signal amplitude within this frequency ranges is 1.7619 dB at 153.188 MHz (Government Use) have potential to influence the detection of solar radio burst type III within 20 until 400 MHz.

  6. Solar system radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  7. No stellar p-mode oscillations in space-based photometry of Procyon.

    PubMed

    Matthews, Jaymie M; Kuschnig, Rainer; Guenther, David B; Walker, Gordon A H; Moffat, Anthony F J; Rucinski, Slavek M; Sasselov, Dimitar; Weiss, Werner W; Kusching, Rainer

    2004-07-01

    Pressure-driven (p-mode) oscillations at the surface of the Sun, resulting from sound waves travelling through the solar interior, are a powerful probe of solar structure, just as seismology can reveal details about the interior of the Earth. Astronomers have hoped to exploit p-mode asteroseismology in Sun-like stars to test detailed models of stellar structure and evolution, but the observations are extremely difficult. The bright star Procyon has been considered one of the best candidates for asteroseismology, on the basis of models and previous reports of p-modes detected in ground-based spectroscopy. Here we present a search for p-modes in 32 days of nearly continuous photometric satellite-based observations of Procyon. If there are p-modes in Procyon, they must have lifetimes less than 2-3 days and/or peak amplitudes <15 parts per million, which defy expectations from the Sun's oscillations and previous theoretical predictions. Target selection for future planned asteroseismology space missions may need to be reconsidered, as will the theory of stellar oscillations.

  8. Solar cycle dependence of ion cyclotron wave frequencies

    NASA Astrophysics Data System (ADS)

    Lessard, Marc R.; Lindgren, Erik A.; Engebretson, Mark J.; Weaver, Carol

    2015-06-01

    Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one of many topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of the EMIC to lower L and resulting in the higher frequencies. A numerical estimate of the change in plasmapause location, however, implies that it is not enough to account for the shift in EMIC frequencies that are observed at Halley Station. Another possible explanation for the frequency shift, however, is that the relative density of heavier ions in the magnetosphere (that would be associated with increased solar activity) could account for the change in frequencies. In terms of effects on radiation belt dynamics, the shift to higher frequencies tends to mean that these waves will interact with less energetic electrons, although the details involved in this process are complex and depend on the specific plasma and gyrofrequencies of all populations, including electrons. In addition, the change in location of the generation region to lower L shells means that the waves will have access to higher number fluxes of resonant electrons. Finally, we show that a sunlit ionosphere can inhibit ground observations of EMIC waves with frequencies higher than ˜0.5 Hz and note that the effect likely has resulted in an underestimate of the solar-cycle-driven frequency changes described here.

  9. Excitation of electron Langmuir frequency harmonics in the solar atmosphere

    SciTech Connect

    Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P.

    2013-05-15

    An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.

  10. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  11. Relationships among solar activity SEP occurrence frequency, and solar energetic particle event distribution function

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho

    The solar cycle 20-22 direct spacecraft measurement results are used to analyze the occurrence frequency and distribution function of solar energetic particle (SEP) events as dependent on solar activity. The analysis has shown that • the mean occurrence frequency of the SEP events with ≥30 MeV proton fluence sizes exceeding 106 is proportional to sunspot number, • the SEP event proton distribution functions for periods of different solar activity levels can be described to be power-law functions whose spectral form (spectral indices and cutoff values) are the same. The above results permit the following conclusions: a) to within statistical deviations, the total number of SEP events observed during any given time interval is proportional to the sum of mean-yearly sunspot numbers; b) large SEP events can occur to within quite a definite probability even during solar minima.

  12. Solar S-bursts at Frequencies of 10 - 30 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Dorovskyy, V. V.; Abranin, E. P.; Lecacheux, A.; Lonskaya, A. S.

    2010-06-01

    Solar S-bursts observed by the radio telescope UTR-2 in the period 2001 - 2002 are studied. The bursts chosen for a detailed analysis occurred in the periods 23 - 26 May 2001, 13 - 16 and 27 - 39 July 2002 during three solar radio storms. More than 800 S-bursts were registered in these days. Properties of S-bursts are studied in the frequency band 10 - 30 MHz. All bursts were always observed against a background of other solar radio activity such as type III and IIIb bursts, type III-like bursts, drift pairs and spikes. Moreover, S-bursts were observed during days when the active region was situated near the central meridian. Characteristic durations of S-bursts were about 0.35 and 0.4 - 0.6 s for the May and July storms, respectively. For the first time, we found that the instantaneous frequency width of S-bursts increased with frequency linearly. The dependence of drift rates on frequency followed the McConnell dependence derived for higher frequencies. We propose a model of S-bursts based on the assumption that these bursts are generated due to the confluence of Langmuir waves with fast magnetosonic waves, whose phase and group velocities are equal.

  13. Axisymmetric Scattering of p Modes by Thin Magnetic Tubes

    NASA Astrophysics Data System (ADS)

    Hindman, Bradley W.; Jain, Rekha

    2012-02-01

    We examine the scattering of acoustic p-mode waves from a thin magnetic fibril embedded in a gravitationally stratified atmosphere. The scattering is mediated through the excitation of slow sausage waves on the magnetic tube, and only the scattering of the monopole component of the wave field is considered. Since such tube waves are not confined by the acoustic cavity and may freely propagate along the field lines removing energy from the acoustic wave field, the excitation of fibril oscillations is a source of acoustic wave absorption as well as scattering. We compute the mode mixing that is achieved and the absorption coefficients and phase shifts. We find that for thin tubes the mode mixing is weak and the absorption coefficient is small and is a smooth function of frequency over the physically relevant band of observed frequencies. The prominent absorption resonances seen in previous studies of unstratified tubes are absent. Despite the relatively small absorption, the phase shift induced can be surprisingly large, reaching values as high as 15° for f modes. Further, the phase shift can be positive or negative depending on the incident mode order and the frequency.

  14. Short-term changes in solar oscillation frequencies and solar activity

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.; Kuhn, J. R.; Murray, N.

    1991-01-01

    It is shown that the frequencies of solar rho-mode oscillations change significantly over periods as short as one month. These changes correlate significantly with variations in the strength of surface solar activity as measured by the average, over the sun's visible surface, of the magnitude of the line-of-sight magnetic field component from magnetograms. The frequency and mean magnetic variations are found to obey a linear relationship. It is seen that the mean frequency shift at any time depends on the history of solar activity over an interval of, at most, several months prior to the measurement and conclude that the dominant mechanism of the frequency shift is correlated with surface magnetic activity.

  15. High-frequency wave normals in the solar wind

    SciTech Connect

    Herbert, F.; Smith, L.D.; Sonett, C.P.

    1984-05-01

    High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.

  16. Low-frequency electrostatic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, Satyavir; Singh Lakhina, Gurbax

    2016-07-01

    Electrostatic ion cyclotron waves are one of the ubiquitous features in space and laboratory plasmas. Here we present a linear study of electrostatic ion cyclotron waves in the solar wind. We model the solar wind by three-component magnetised plasma consisting of hot electrons with kappa distribution and fluid cold protons and doubly charged Helium ions. A numerical analysis of the linear electrostatic dispersion relation has been carried out for slow solar wind parameters and for -oblique wave propagation. The system supports four different modes i.e., fast and slow acoustic modes, and proton and Helium cyclotron modes. It has to be emphasised that for parallel propagation, physically acceptable solution to the dispersion relation are those of fast and slow acoustic modes. For oblique propagation, the coupling between various modes can be seen. Moreover, when the angle of propagation is increased the separation between acoustic modes and cyclotron modes increases and at perpendicular propagation, only proton and Helium-cyclotron modes can exist. The effect of various parameters like number density and temperature of Helium ions and kappa index on the dispersive properties has also been investigated. As the number density of helium ions increases, frequency of proton cyclotron mode decreases and frequency of Helium cyclotron mode increases at a fixed wave number. When the value of kappa increases, the frequency of the proton cyclotron mode increases but it does not have significant effect on the frequency of the Helium cyclotron mode. Likewise, when the temperature of Helium ions increases, the frequency of Helium cyclotron mode increases, however, the frequency of proton cyclotron mode remains more or less unchanged.

  17. Radio frequency interference in solar monitoring using CALLISTO

    NASA Astrophysics Data System (ADS)

    Abidin, Zamri Zainal; Anim, Norsuzian Mohd; Hamidi, Zety Sharizat; Monstein, Christian; Ibrahim, Zainol Abidin; Umar, Roslan; Shariff, Nur Nafhatun Md; Ramli, Nabilah; Aziz, Noor Aqma Iryani; Sukma, Indriani

    2015-08-01

    Compact Astronomical Low-frequency, Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO) is a global network of spectrometer system with the purpose to observe the Sun's activities. There are 37 stations (using 68 instruments) forming this network from more than 96 countries. We investigate the radio frequency interference (RFI) affecting CALLISTO at these stations. We found that the RFI severely affecting CALLISTO within radio astronomical windows below 870 MHz are in the ranges of 80-110 MHz and 460-500 MHz. We also found that all stations are relatively free from RFI at 270-290 MHz. We investigate the general effect of RFI on detection of solar bursts. We considered type III solar bursts on 10th May, 28th June, 6th July and 8th July, type II on 24th April and type IV on 9th March (all in 2012) in order to measure the percentage of RFI level during solar burst in general. The SNR of the strong solar bursts in for these detections have maxima reaching up to 46.20 (for 6th July).

  18. Precision spectroscopy with a frequency-comb-calibrated solar spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.

    2015-06-01

    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for

  19. Seismic Study of The Solar Interior: Inferences from SOI/MDI Observations during Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.

    2003-01-01

    The principal investigator describes several types of solar research conducted during the reporting period and gives a statement of work to be performed in the following year. Research conducted during the reporting period includes: exhaustive analysis of observational and instrumental effects that might cause systematic errors in the characterization of high-degree p-modes; study of the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings; characterizing the solar rotation; Time-Distance inversion; and developing and using a new peak-fitting method for very long MDI time series at low degrees.

  20. Prediction of frequency and exposure level of solar particle events.

    PubMed

    Kim, Myung-Hee Y; Hayat, Matthew J; Feiveson, Alan H; Cucinotta, Francis A

    2009-07-01

    For future space missions outside of the Earth's magnetic field, the risk of radiation exposure from solar particle events (SPEs) during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern when designing radiation protection including determining sufficient shielding requirements for astronauts and hardware. While the expected frequency of SPEs is strongly influenced by solar modulation, SPE occurrences themselves are chaotic in nature. We report on a probabilistic modeling approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19-23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, we then estimated the expected frequency of SPEs at any given proton fluence threshold with energy >30 MeV (Phi(30)) during a defined space mission period. Analytic energy spectra of 34 large SPEs observed in the space era were fitted over broad energy ranges extending to GeV, and subsequently used to calculate the distribution of mGy equivalent (mGy-Eq) dose for a typical blood-forming organ (BFO) inside a spacecraft as a function of total Phi(30) fluence. This distribution was combined with a simulation of SPE events using the Poisson model to estimate the probability of the BFO dose exceeding the NASA 30-d limit of 250 mGy-Eq per 30 d. These results will be useful in implementing probabilistic risk assessment approaches at NASA and guidelines for protection systems for astronauts on future space exploration missions. PMID:19509510

  1. Searching for p-modes in MOST Procyon data: another view

    NASA Astrophysics Data System (ADS)

    Baudin, F.; Appourchaux, T.; Boumier, P.; Kuschnig, R.; Leibacher, J. W.; Matthews, J. M.

    2008-02-01

    Context: Photometry of Procyon obtained by the MOST satellite in 2004 has been searched for p modes by several groups, with sometimes contradictory interpretations. Aims: We explore two possible factors that complicate the analysis and may lead to erroneous reports of p modes in these data. Methods: Two methods are used to illustrate the role of subtle instrumental effects in the photometry: time-frequency analysis, and a search for regularly spaced peaks in a Fourier spectrum based on the echelle diagramme approach. Results: We find no convincing evidence of a p-mode signal in the MOST Procyon data. We can account for an apparent excess of power close to the p-mode frequency range and signs of structure in an echelle diagramme in terms of instrumental effects. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  2. Resonant absorption of p-modes by sunspots

    NASA Technical Reports Server (NTRS)

    Chitre, S. M.; Davila, Joseph M.

    1990-01-01

    Explanations for the observed p-mode absorption in sunspots are examined. It is demonstrated that any dissipative process like radiative, viscous, or resistive dissipation leads to the resonant absorption of acoustic waves incident on the sunspot tube, and that the resultant heating rate can be shown to be consistent with the observed absorption of the p-mode power impinging on an isolated inhomogeneously structured sunspot.

  3. Directivity of low frequency solar type III radio bursts

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Fainberg, J.; Bundy, R. B.

    1976-01-01

    The occurrence rate of type III solar bursts in the frequency range 4.9 MHz to 30 kHz is analyzed as a function of burst intensity and burst arrival direction. We find that (1) the occurrence rate of bursts varies inversely with the 1.5 power of the flux, and (2) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the earth-sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction.

  4. Meridional Circulation and Global Solar Oscillations

    NASA Astrophysics Data System (ADS)

    Roth, M.; Stix, M.

    2008-09-01

    We investigate the influence of large-scale meridional circulation on solar p-modes by quasi-degenerate perturbation theory, as proposed by Lavely & Ritzwoller, 1992 (Roy. Soc. Lon. Phil. Trans. Ser. A, 339, 431). As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possibly observable effects are briefly discussed.

  5. Meridional Circulation and Global Solar Oscillations

    NASA Astrophysics Data System (ADS)

    Roth, M.; Stix, M.

    2008-09-01

    We investigate the influence of large-scale meridional circulation on solar p modes by quasi-degenerate perturbation theory, as proposed by Lavely and Ritzwoller ( Roy. Soc. Lond. Phil. Trans. Ser. A 339, 431, 1992). As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possibly observable effects are briefly discussed.

  6. Solar Cycle Variations in the Solar Interior

    NASA Astrophysics Data System (ADS)

    Rhodes, E. J.

    2012-12-01

    This presentation will review the observational evidence for solar cycle-dependent changes in the structure and dynamical motions of the solar interior. It will include the results of studies that have been carried out using the tools of both global and local heiloseismology during Solar Cycles 22, 23, and 24. The presentation will describe results obtained with both ground- and space-based helioseismic programs, and it will also describe the role that these helioseismic studies have played in providing inputs to theoretical studies of the solar dynamo. Among the topics that will be covered are temporal changes in the solar torsional oscillations, the solar meridional circulation, the solar seismic radius, the subsurface vorticity, and the solar p-mode oscillation frequencies and widths. Also covered will be evidence for temporal changes in the solar interior that are related to the emergence of active regions on both the near and far sides of the Sun.

  7. Low frequency spectra of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Weber, R. R.

    1978-01-01

    Flux density spectra have been determined for 91 simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10 to the -14th W/sq m/Hz. The primary factor controlling the spectral peak frequency of these bursts appears to be a variation in intrinsic power radiated by the source as the exciter moves outward from the sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations.

  8. Solar Corona and plasma effects on Radio Frequency waves

    NASA Astrophysics Data System (ADS)

    Nkono, C.; Rosenblatt, P.; Dehant, V. M.

    2009-12-01

    Solar corona (plasma) effects on radio signal waves for three different frequency bands S (2.3 GHz), X (8.4 GHz), and Ka (32 GHz), currently used to track probes in the solar system, have been computed using different models of the total electron content (TEC) along the propagation path between the Earth and Mars. The Earth-Mars-Sun configuration has been obtained from the planetary ephemerides DE421 (using SPICE kernels) for the period from September 2004 to September 2006. This configuration is expressed as a function of the Sun-Earth-Probe (SEP) angles (the probe being in close orbit to Mars). We used the TEC values provided by the different models proposed in the literature in order to estimate the TEC along the propagation path (STEC, for Slant TEC). From these model-dependent STEC estimates, the time delay on the wave propagation as well as the associated frequency shift with a 10 seconds sampling time have been obtained for each of the three frequency bands. For the X-band mostly used in radio science, we have obtained estimates differing by up to several orders of magnitude due to the different STEC values derived from different models of TEC. For example, if the propagation path passes near the Sun such that SEP angle is 1.55° the STEC is ranging from 4.6x1020 electron/m2 to 6.07x1016 electron/m2, which corresponds to a time delay range between 0.87 μs and 1.15x10-4 μs, respectively. For SEP angles between 2° and 8°, the range of the different time delay values reduces to 2.8x10-1 μs and becomes as small as 1.6x10-2 μs for SEP angles larger than 8° (1x10-2 μs is about the order of magnitude of the radioscience instrument precision). These results show that the correction of the solar corona effect on radio frequency waves can be reliably done on usual X-band tracking data of spacecraft for SEP angles >12°, but should be use with caution for lower SEP angles, especially lower than 2°.

  9. Should Radial Modes Always Be Regarded as p-Modes?

    NASA Astrophysics Data System (ADS)

    Takata, M.

    2013-12-01

    As standard textbooks of stellar oscillations say, the only restoring force of radial modes in spherically symmetric stars is the pressure gradient, whereas the buoyancy force does not operate because no horizontal inhomogeneity is generated by radial oscillations. This is the physical reason why all radial modes should be classified as p-modes. In this presentation, however, we numerically demonstrate that unstable (adiabatic) radial modes should not be regraded as p-modes, because they are closely related to f-modes or g-modes of nonradial oscillations.

  10. Solar-stellar connection: the frequency of maximum oscillation power from solar data

    NASA Astrophysics Data System (ADS)

    Barban, C.; Beuret, M.; Baudin, F.; Belkacem, K.; Goupil, M. J.; Samadi, R.

    2013-06-01

    Stellar oscillations provide powerful tools to derive stellar fundamental parameters such as the mass and radius. These global quantities are derived from scaling relations linking seismic quantities [νmax and Δν to global stellar parameters. These relations use the Sun as a reference. In this work, we used VIRGO and GOLF data to study how the solar frequency at the maximum oscillation power (νmax) varies with time along the solar cycle. We show that these variations imply differences of about 4% in radius and 12% in mass. We showed also that the observational method based on intensity or velocity data has also an impact, implying differences in mass of about 22% and 7% in radius.

  11. Observations of low-degree P-mode oscillations in 1984

    NASA Technical Reports Server (NTRS)

    Henning, H. M.; Scherrer, P. H.

    1985-01-01

    Analysis of Stanford differential velocity observations has been extended through the 1984 observing season. Excellent quality observations were obtained in 1984 on 38 days in a 49 day interval from June 20th through August 7th. The power spectrum of this data has been examined and improved frequency determinations have been made for p-modes of degree 2 through 5 and order 5 through 34. Of special interest are the modes of the lower orders, n ranging from 5 to 10, which have not been identified previously.

  12. High-frequency acoustic waves are not sufficient to heat the solar chromosphere.

    PubMed

    Fossum, Astrid; Carlsson, Mats

    2005-06-16

    One of the main unanswered questions in solar physics is why the Sun's outer atmosphere is hotter than its surface. Theory predicts abundant production of high-frequency (10-50 mHz) acoustic waves in subsurface layers of the Sun, and such waves are believed by many to constitute the dominant heating mechanism of the chromosphere (the lower part of the outer solar atmosphere) in non-magnetic regions. Such high-frequency waves are difficult to detect because of high-frequency disturbances in Earth's atmosphere (seeing) and other factors. Here we report the detection of high-frequency waves, and we use numerical simulations to show that the acoustic energy flux of these waves is too low, by a factor of at least ten, to balance the radiative losses in the solar chromosphere. Acoustic waves therefore cannot constitute the dominant heating mechanism of the solar chromosphere. PMID:15959510

  13. IS THE CURRENT LACK OF SOLAR ACTIVITY ONLY SKIN DEEP?

    SciTech Connect

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; Fletcher, S. T.; New, R. E-mail: wjc@bison.ph.bham.ac.uk E-mail: S.Fletcher@shu.ac.uk

    2009-08-01

    The Sun is a variable star whose magnetic activity and total irradiance vary on a timescale of approximately 11 years. The current activity minimum has attracted considerable interest because of its unusual duration and depth. This raises the question: what might be happening beneath the surface where the magnetic activity ultimately originates? The surface activity can be linked to the conditions in the solar interior by the observation and analysis of the frequencies of the Sun's natural seismic modes of oscillation-the p modes. These seismic frequencies respond to changes in activity and are probes of conditions within the Sun. The Birmingham Solar-Oscillations Network (BiSON) has made measurements of p-mode frequencies over the last three solar activity cycles, and so is in a unique position to explore the current unusual and extended solar minimum. We show that the BiSON data reveal significant variations of the p-mode frequencies during the current minimum. This is in marked contrast to the surface activity observations, which show little variation over the same period. The level of the minimum is significantly deeper in the p-mode frequencies than in the surface observations. We observe a quasi-biennial signal in the p-mode frequencies, which has not previously been observed at mid- and low-activity levels. The stark differences in the behavior of the frequencies and the surface activity measures point to activity-related processes occurring in the solar interior, which are yet to reach the surface, where they may be attenuated.

  14. Indication of radio frequency interference (RFI) sources for solar burst monitoring in Malaysia

    NASA Astrophysics Data System (ADS)

    Hamidi, Z. S.; Abidin, Z. Z.; Ibrahim, Z. A.; Shariff, N. N. M.

    2012-06-01

    Apart of monitoring the Sun project, the Radio Frequency Interference (RFI) surveying in the region of (1-1200) MHz has been conducted. The main objective of this surveying is to test and qualify the potential of monitoring a continuous radio emission of Solar in Malaysia. This work is also an initiative of International Space Weather Initiative (ISWI) project where Malaysia is one of the country that participate a e-Callisto Spectrometer network in order to study the behavior of Solar radio burst in frequency of (45-800) MHz region which will be install in this October. Detail results will indicate the potential of monitoring a solar in Malaysia.

  15. Multi-frequency solar observations at Metsähovi Radio Observatory and KAIRA

    NASA Astrophysics Data System (ADS)

    Kallunki, J.; Uunila, M.; McKay-Bukowski, D.

    2015-08-01

    We describe solar observations carried out for the first time jointly with Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Aalto University Metsähovi Radio Observatory (MRO). KAIRA is new radio antenna array observing the decimeter and meter wavelength range. It is located near Kilpisjärvi, Finland, and operated by the Sodankylä Geophysical Observatory, University of Oulu. We investigate the feasibility of KAIRA for solar observations, and the additional benefits of carrying out multi-instrument solar observations with KAIRA and the MRO facilities, which are already used for regular solar observations. The data measured with three instruments at MRO, and with KAIRA during time period 2014 April-October were analyzed. One solar radio event, measured on 2014 April 18, was studied in detail. Seven solar flares were recorded with at least two of the three instruments at MRO, and with KAIRA during the chosen time period. KAIRA is a great versatile asset as a new Finnish instrument that can also be used for solar observations. Collaboration observations with MRO instruments and KAIRA enable detailed multi-frequency solar flare analysis. Flare pulsations, flare statistics and radio spectra of single flares can be investigated due to the broad frequency range observations. The Northern locations of both MRO and KAIRA make as long as 15-hour unique solar observations possible during summer time.

  16. Solar Forcing of Drought Frequency in the Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Hodell, David A.; Brenner, Mark; Curtis, Jason H.; Guilderson, Thomas

    2001-05-01

    We analyzed lake-sediment cores from the Yucatan Peninsula, Mexico, to reconstruct the climate history of the region over the past 2600 years. Time series analysis of sediment proxies, which are sensitive to the changing ratio of evaporation to precipitation (oxygen isotopes and gypsum precipitation), reveal a recurrent pattern of drought with a dominant periodicity of 208 years. This cycle is similar to the documented 206-year period in records of cosmogenic nuclide production (carbon-14 and beryllium-10) that is thought to reflect variations in solar activity. We conclude that a significant component of century-scale variability in Yucatan droughts is explained by solar forcing. Furthermore, some of the maxima in the 208-year drought cycle correspond with discontinuities in Maya cultural evolution, suggesting that the Maya were affected by these bicentennial oscillations in precipitation.

  17. Significant reduction in arc frequency biased solar cells: Observations, diagnostics, and mitigation technique(s)

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Weyl, G. M.; Marinelli, W. J.; Aifer, E.; Hastings, D.; Snyder, D.

    1991-01-01

    A variety of experiments were performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells. These efforts have led to reduction of greater than a factor of 100 in the arc frequency of a single cell following proper remediation procedures. Experiments naturally lead to and focussed on the adhesive/encapsulant that is used to bond the protective cover slip to the solar cell. An image-intensified charge coupled device (CCD) camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude. Water contamination was also identified as a key contributor which enhances arcing of the encapsulant bead along the solar cell edge. Spectrally resolved measurements of the observable UV light shows a feature assignable to OH(A-X) electronic emission, which is common for water contaminated discharges. Experiments in which the solar cell temperature was raised to 85 C showed a reduced arcing frequency, suggesting desorption of H2O. Exposing the solar cell to water vapor was shown to increase the arcing frequency. Clean dry gases such as O2, N2, and Ar show no enhancement of the arcing rate. Elimination of the exposed encapsulant eliminates any measurable sensitivity to H2O vapor.

  18. Solar-cycle variation of oscillation frequencies and surface magnetic field

    NASA Astrophysics Data System (ADS)

    Tan, S.; Thompson, M. J.; Centeno, R.

    2011-12-01

    We investigate the relationship between solar oscillation frequencies and surface magnetic fields over the course of the last solar cycle. Using MDI and GONG data, we study the variation in the even frequency-splitting coefficients ak (describing solar asphericity and effects of the magnetic field), and the variation in the coefficients Bk of the latitudinal Lengendre decomposition of the surface magnetic field, during the period 1996 - 2010. We find a strong linear correlation between the a and B coefficients, during both the rising and declining phases of the solar cycle, consistent with results published in 2001 (Antia et al.). We also investigated different ways to handle the magnetic field decomposition at the poles, and find that the linear correlation persists, though with varying intercepts. The variation of slope with coefficient index that we find is non-monotonic, which disagrees with the previous study by Antia et al. (2001).

  19. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    SciTech Connect

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  20. Frequency variations of solar radio zebras and their power-law spectra

    NASA Astrophysics Data System (ADS)

    Karlický, M.

    2014-01-01

    Context. During solar flares several types of radio bursts are observed. The fine striped structures of the type IV solar radio bursts are called zebras. Analyzing them provides important information about the plasma parameters of their radio sources. We present a new analysis of zebras. Aims: Power spectra of the frequency variations of zebras are computed to estimate the spectra of the plasma density variations in radio zebra sources. Methods: Frequency variations of zebra lines and the high-frequency boundary of the whole radio burst were determined with and without the frequency fitting. The computed time dependencies of these variations were analyzed with the Fourier method. Results: First, we computed the variation spectrum of the high-frequency boundary of the whole radio burst, which is composed of several zebra patterns. This power spectrum has a power-law form with a power-law index -1.65. Then, we selected three well-defined zebra-lines in three different zebra patterns and computed the spectra of their frequency variations. The power-law indices in these cases are found to be in the interval between -1.61 and -1.75. Finally, assuming that the zebra-line frequency is generated on the upper-hybrid frequency and that the plasma frequency ωpe is much higher than the electron-cyclotron frequency ωce, the Fourier power spectra are interpreted to be those of the electron plasma density in zebra radio sources.

  1. Seismic Study of the Solar Interior: Inferences from SOI/MDI Observations During Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.; Wagner, William J. (Technical Monitor)

    2005-01-01

    Work on the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings was carried out primarily in collaboration with Dr. Eff-Darwich (University of La Laguna, Tenerife). This ongoing collaboration produced new results for the inversion of the internal solar rotation rate and further development in inversion methodologies. It also resulted in inferences on the solar stratification. Substantial progress towards the characterization of high-degree p-modes has been achieved. In collaboration with Drs. Rabello-Soares and Schou (Stanford University), we have gained a clear conceptual understanding of the various elements that affect the leakage matrix of the SOI/MDI instrument. This work has precise implications on the properties and the characterization of the HMI instrument being developed for the SDO mission.

  2. Possible signature of solar oblateness in the Sun's oscillation frequency splittings

    NASA Astrophysics Data System (ADS)

    Woodard, M. F.

    2016-10-01

    Departures from spherical symmetry split the frequencies of the Sun's normal oscillation modes. In addition to the well-studied, dominant splitting of the mode frequencies, due to the first-order advection of internal wave motion, a number of second-order effects of rotation on the frequency splittings, predominantly the solar oblateness, are expected. Whereas the largest rotational frequency splittings have an odd dependence on the azimuthal order, m, of the modes, the second-order effects should have an even dependence. The biggest, and thus far the only well-studied, even-m effect on splittings, is due to the solar-cycle variations in magnetic activity near the Sun's surface, which need to be modeled with some care to bring out the signature of solar oblateness. A crude analysis of the even mode-frequency splittings, obtained from approximately 15 years of SOHO/MDI spherical-harmonic time series, was undertaken. To extract the small even-m splittings of interest from the dominant, solar-cycle effects, which have a strong mode-frequency dependence, the former were assumed to depend only weakly on mode frequency and to have no time dependence. Perhaps the most important finding of the study is that the MDI data are capable of yielding statistically significant estimates of solar oblateness. Indeed the oblateness estimates obtained from the analysis presented here appear to be roughly consistent with both theoretical expectations and with direct measurements of the oblateness. There is also a hint of a pole-equator temperature difference in the seismic measurements, at the level recently suggested by Miesch and Hindman.

  3. Frequency distributions and correlations of solar X-ray flare parameters

    NASA Technical Reports Server (NTRS)

    Crosby, Norma B.; Aschwanden, Markus J.; Dennis, Brian R.

    1993-01-01

    Frequency distributions of flare parameters are determined from over 12,000 solar flares. The flare duration, the peak counting rate, the peak hard X-ray flux, the total energy in electrons, and the peak energy flux in electrons are among the parameters studied. Linear regression fits, as well as the slopes of the frequency distributions, are used to determine the correlations between these parameters. The relationship between the variations of the frequency distributions and the solar activity cycle is also investigated. Theoretical models for the frequency distribution of flare parameters are dependent on the probability of flaring and the temporal evolution of the flare energy build-up. The results of this study are consistent with stochastic flaring and exponential energy build-up. The average build-up time constant is found to be 0.5 times the mean time between flares.

  4. The New Solar Minimum: How Deep does the Problem Go?

    NASA Astrophysics Data System (ADS)

    Fletcher, S.; New, R.; Broomhall, A.-M.; Chaplin, W.; Elsworth, Y.

    2010-06-01

    Although there are now some tentative signs that the start of cycle 24 has begun there is still considerable interest in the somewhat unusual behavior of the current solar minimum and the apparent delay in the true start of the next cycle. While this behavior is easily tracked by observing the change in surface activity, a question can also be asked about what is happening beneath the surface where the magnetic activity ultimately originates. In order to try to answer this question we can look at the behavior of the frequencies of the Sun's natural seismic modes of oscillation—the p modes. These seismic frequencies also respond to changes in activity and are probes of conditions in the solar interior. The Birmingham Solar Oscillations Network (BiSON) has made measurements of low-degree (low-l) p mode frequencies over the last three solar cycles, and so is in a unique position to explore the current unusual and extended solar minimum. We compare the frequency shifts in the low-l p-modes obtained from the BiSON data with the change in surface activity as measured by different proxies and show there are significant differences especially during the declining phase of solar cycle 23 and into the current minimum. We also observe quasi-biennial periodic behavior in the p mode frequencies over the last two cycles that, unlike in the surface measurements, seems to be present at mid- and low-activity levels. Additionally we look at the frequency shifts of individual l modes.

  5. Nonradial p-modes in the G9.5 giant ɛ Ophiuchi? Pulsation model fits to MOST photometry

    NASA Astrophysics Data System (ADS)

    Kallinger, T.; Guenther, D. B.; Matthews, J. M.; Weiss, W. W.; Huber, D.; Kuschnig, R.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.

    2008-02-01

    The G9.5 giant ɛ Oph shows evidence of radial p-mode pulsations in both radial velocity and luminosity. We re-examine the observed frequencies in the photometry and radial velocities and find a best model fit to 18 of the 21 most significant photometric frequencies. The observed frequencies are matched to both radial and nonradial modes in the best model fit. The small scatter of the frequencies about the model predicted frequencies indicate that the average lifetimes of the modes could be as long as 10-20 d. The best fit model itself, constrained only by the observed frequencies, lies within ±1σ of ɛ Oph's position in the HR-diagram and the interferometrically determined radius. Based on data from the MOST satellite, a Canadian Space Agency mission jointly operated by Dynacon, Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with assistance from the University of Vienna, Austria.

  6. The Nature of p-Modes and Granulation in Procyon: New MOST Photometry and New Yale Convection Models

    NASA Astrophysics Data System (ADS)

    Guenther, D. B.; Kallinger, T.; Gruberbauer, M.; Huber, D.; Weiss, W. W.; Kuschnig, R.; Demarque, P.; Robinson, F.; Matthews, J. M.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Walker, G. A. H.

    2008-11-01

    We present new photometry of Procyon, obtained by MOST during a 38 day run in 2007, and frequency analyses of those data. The long time coverage and low point-to-point scatter of the light curve yield an average noise amplitude of about 1.5-2.0 ppm in the frequency range 500-1500 μHz. This is half the noise level obtained from each of the previous two Procyon campaigns by MOST in 2004 and 2005. The 2007 MOST amplitude spectrum shows some evidence for p-mode signal: excess power centered near 1000 μHz and an autocorrelation signal near 55 μHz (suggestive of a mode spacing around that frequency), both consistent with p-mode model predictions. However, we do not see regularly spaced frequencies aligned in common l-valued ridges in echelle diagrams of the most significant peaks in the spectrum unless we select modes from the spectrum using a priori assumptions. The most significant peaks in the spectrum are scattered by more than ±5 μHz about the predicted l-valued ridges, a value that is consistent with the scatter among individually identified frequencies obtained from ground-based radial velocity (RV) observations. We argue that the observed scatter is intrinsic to the star, due to short lifetimes of the modes and the dynamic structure of Procyon's thin convection zone. We compare the MOST Procyon amplitude and power density spectra with preliminary results of three-dimensional numerical models of convection by the Yale group. These models show that, unlike in the Sun, Procyon's granulation signal in luminosity has a peak coinciding with the expected frequency region for p-modes near 1000 μHz. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon, Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

  7. Search for solar normal modes in low-frequency seismic spectra

    NASA Astrophysics Data System (ADS)

    Caton, Ross C.

    We use seismic array processing methods to attempt to enhance very low frequency harmonic signals (0-400 microhertz, also ?Hz or uHz) recorded on broadband seismic arrays. Since the discovery of this phenomenon in the 1990s, harmonic signals at these very low frequencies have come to be known as the Earth's "hum." A number of hypotheses have been suggested for the Earth's hum, including forcing by atmospheric turbulence, ocean waves, and, most recently, the Sun. We test the solar hypothesis by searching for statistically significant harmonic lines that correlate with independently observed solar free oscillations. The solar model assumes that free oscillations of the sun modulate the solar wind, producing pure harmonic components of Earth's magnetic field that are postulated to couple to the ground by electromagnetic induction. In this thesis we search the multitaper spectrum of stacks of seismic instruments for solar normal frequencies. We use a median stack instead of the more conventional mean because a more robust estimate of center is required for these low signal-to-noise data with occasional transients. A key advantage of a stack is that data gaps are easily ignored when computing the beam. Results from a stack of 18 Transportable Array stations show multiple possible g-mode detections at the 95-99% confidence level. We are presently applying this method to data from the Homestake Mine array, and may also do so with data from a broadband borehole array currently operating at Pinon Flats, California.

  8. Realistic Solar Surface Convection Simulations

    NASA Technical Reports Server (NTRS)

    Stein, Robert F.; Nordlund, Ake

    2000-01-01

    We perform essentially parameter free simulations with realistic physics of convection near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the convection zone, the p-mode frequencies, the p-mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar convection is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto-convection.

  9. Satellite observations of type 3 solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1973-01-01

    Type III solar radio bursts were observed from 10 MHz to 10 KHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 solar radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics and analysis of individual as well as storms of bursts. Burst rise times are interpreted in terms of exciter length and dispersion while decay times refer to the radiation damping process. The combination of radio observations at the lower frequencies and in-situ measurements on nonrelativistic electrons at 1 AU provide data on the energy range and efficiency of the wave-particle interactions responsible for the radio emission.

  10. Excitations of low-frequency hydromagnetic waves by freshly created ions in the solar wind

    SciTech Connect

    Price, C.P.; Gaffey J.D. Jr.; Dong, J.Q.

    1988-02-01

    Low-frequency hydromagnetic waves excited by newborn ions in the solar wind plasma are studied. The freshly created ions appear in the solar wind frame with a ring beam distribution. Both Alfven and fast magentosonic waves are made unstable by the presence of the newborn ions. The dependence of the growth rate of both waves on the newborn ion density, the angle between the interplanetary magnetic field (IMF) and solar wind flow, and the angle of wave propagation relative to the IMF is investigated. Analytic approximations for the growth rates are presented, and numerical solutions of the dispersion equation are shown. The approximations are quite close to the numerically determined growth rates. We find that the waves grow preferentially in the direction parallel to the IMF and that the growth rates increase with both newborn ion density and the angle between the IMF and the solar wind flow. copyright American Geophysical Union 1988

  11. Solar radial velocity variations and the search for Venus enabled by a laser frequency comb

    NASA Astrophysics Data System (ADS)

    Phillips, David F.; Dumusque, Xavier; Li, Chih-Hao; Glenday, Alexander; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L.

    2016-05-01

    We have recently demonstrated 50 cm/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple, compact solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope calibrated with our green astro-comb. The green astro-comb is a laser frequency comb optimized for calibrating astrophysical spectrographs. We have been operating the solar telescope to detect the RV signal of the Sun as a star for the past year both to study RV jitter associated with stellar (solar) fluctuations and to demonstrate sensitivity of these instruments to detect terrestrial exoplanets. In this talk I will present results from calibrating the HARPS-N exoplanet searcher spectrograph, solar RV stability, and the current status of our search for the signature of Venus.

  12. GLOBAL AND LOCAL CUTOFF FREQUENCIES FOR TRANSVERSE WAVES PROPAGATING ALONG SOLAR MAGNETIC FLUX TUBES

    SciTech Connect

    Routh, S.; Musielak, Z. E.; Hammer, R. E-mail: zmusielak@uta.edu

    2013-01-20

    It is a well-established result that the propagation of linear transverse waves along a thin but isothermal magnetic flux tube is affected by the existence of the global cutoff frequency, which separates the propagating and non-propagating waves. In this paper, the wave propagation along a thin and non-isothermal flux tube is considered and a local cutoff frequency is derived. The effects of different temperature profiles on this local cutoff frequency are studied by considering different power-law temperature distributions, as well as the semi-empirical VAL C model of the solar atmosphere. The obtained results show that the conditions for wave propagation strongly depend on the temperature gradients. Moreover, the local cutoff frequency calculated for the VAL C model gives constraints on the range of wave frequencies that are propagating in different parts of the solar atmosphere. These theoretically predicted constraints are compared to observational data and are used to discuss the role played by transverse tube waves in the atmospheric heating and dynamics, and in the excitation of solar atmospheric oscillations.

  13. Recovery of p-modes in the combined 2004-2005 MOST observations of Procyon

    NASA Astrophysics Data System (ADS)

    Marchenko, S. V.

    2008-03-01

    Aims:Procyon A, a bright F5 IV-V Sun-like star, is justifiably regarded as a prime asteroseismological target. This star was repeatedly observed by MOST, a specialized microsatellite providing long-term, non-interrupted broadband photometry of bright targets. So far, the widely anticipated p-modes eluded direct photometric detection, though numerous independent approaches hinted for the presence of signals in the f ~ 0.5-1.5 mHz range. Methods: Implementation of an alternative approach in data processing, as well as combination of the MOST data from 2004 and 2005 (264 189 measurements in total) helps to reduce the instrumental noise affecting previous reductions, bringing the 3σ detection limit down to ~5.5 part-per-million in the f = 0.8-1.2 mHz range. Results: This enabled us to cross-identifiy 16 p-mode frequencies (though not their degrees) which were previously detected via high-precision radial velocity measurements, and provides an estimate of the large spacing, δν = 0.0540 mHz at f ~ 1 mHz. The relatively low average amplitude of the detected modes, a = 5.8±0.6 ppm, closely matches the amplitudes inferred from the ground-based spectroscopy and upper limits projected from WIRE photometry. This also explains why such low-amplitude signals eluded the direct-detection approach which exclusively relied on the MOST 2004 (or 2005) data processed by a standard pipeline. MOST is a Canadian Space Agency mission, operated jointly by Dynacon, Inc., and the Universities of Toronto and British Columbia, with assistance from the University of Vienna.

  14. On the contribution of sunspots to the observed frequency shifts of solar acoustic modes

    NASA Astrophysics Data System (ADS)

    Santos, A. R. G.; Cunha, M. S.; Avelino, P. P.; Chaplin, W. J.; Campante, T. L.

    2016-09-01

    Activity-related variations in the solar oscillation properties have been known for 30 years. However, the relative importance of the different contributions to the observed variations is not yet fully understood. Our goal is to estimate the relative contribution from sunspots to the observed activity-related variations in the frequencies of the acoustic modes. We use a variational principle to relate the phase differences induced by sunspots on the acoustic waves to the corresponding changes in the frequencies of the global acoustic oscillations. From the sunspot properties (area and latitude as a function of time), we are able to estimate the spot-induced frequency shifts. These are then combined with a smooth frequency shift component, associated with long-term solar-cycle variations, and the results compared with the frequency shifts derived from the Global Oscillation Network Group data. The result of this comparison is consistent with a sunspot contribution to the observed frequency shifts of roughly 30 per cent, with the remaining 70 per cent resulting mostly from a global, non-stochastic variation, possibly related to the changes in the overall magnetic field. Moreover, analysis of the residuals obtained after the subtraction of the model frequency shifts from the observations indicates the presence of a 1.5-yr periodicity in the data in phase with the quasi-biennial variations reported in the literature.

  15. Features of the duration frequency dependence for type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Tsybko, Y. G.

    1989-11-01

    Averaged data on type III solar radio bursts at fixed frequencies in the 12.5-25 MHz range and beyond are examined, showing that there are two branches of the burst duration dependence on frequency. This splitting is used to distinguish between bursts occurring at the fundamental and the second harmonics of the plasma frequency. Type IIIb radiation is characterized by a diagram of the mean duration vs frequency of the stria bursts at the fundamental harmonic. Type III bursts at meter and decameter wavelengths are compared, showing a change in the behavior of the duration frequency dependence. It is suggested that this change may be associated with the initial acceleration and the subsequent expansion of the source along its path in the lower and intermediate corona.

  16. Accurate p-mode measurements of the G0V metal-rich CoRoT target HD 52265

    NASA Astrophysics Data System (ADS)

    Ballot, J.; Gizon, L.; Samadi, R.; Vauclair, G.; Benomar, O.; Bruntt, H.; Mosser, B.; Stahn, T.; Verner, G. A.; Campante, T. L.; García, R. A.; Mathur, S.; Salabert, D.; Gaulme, P.; Régulo, C.; Roxburgh, I. W.; Appourchaux, T.; Baudin, F.; Catala, C.; Chaplin, W. J.; Deheuvels, S.; Michel, E.; Bazot, M.; Creevey, O.; Dolez, N.; Elsworth, Y.; Sato, K. H.; Vauclair, S.; Auvergne, M.; Baglin, A.

    2011-06-01

    Context. The star HD 52265 is a G0V metal-rich exoplanet-host star observed in the seismology field of the CoRoT space telescope from November 2008 to March 2009. The satellite collected 117 days of high-precision photometric data on this star, showing that it presents solar-like oscillations. HD 52265 was also observed in spectroscopy with the Narval spectrograph at the same epoch. Aims: We characterise HD 52265 using both spectroscopic and seismic data. Methods: The fundamental stellar parameters of HD 52265 were derived with the semi-automatic software VWA, and the projected rotational velocity was estimated by fitting synthetic profiles to isolated lines in the observed spectrum. The parameters of the observed p modes were determined with a maximum-likelihood estimation. We performed a global fit of the oscillation spectrum, over about ten radial orders, for degrees l = 0 to 2. We also derived the properties of the granulation, and analysed a signature of the rotation induced by the photospheric magnetic activity. Results: Precise determinations of fundamental parameters have been obtained: Teff = 6100 ± 60 K, log g = 4.35 ± 0.09, [M/H] = 0.19 ± 0.05, as well as vsini=3.6+0.3-1.0kms. We have measured a mean rotation period Prot = 12.3 ± 0.15 days, and find a signature of differential rotation. The frequencies of 31 modes are reported in the range 1500-2550 μHz. The large separation exhibits a clear modulation around the mean value Dnu=98.3 ± 0.1 μHz. Mode widths vary with frequency along an S-shape with a clear local maximum around 1800 μHz. We deduce lifetimes ranging between 0.5 and 3 days for these modes. Finally, we find a maximal bolometric amplitude of about 3.96 ± 0.24 ppm for radial modes. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain.

  17. A Time-Frequency Analysis of the Effects of Solar Activities on Tropospheric Thermodynamics

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Kyle, H. Lee; Wharton, Stephen W. (Technical Monitor)

    2001-01-01

    Whether the Sun has significantly influenced the climate during the last century has been under extensive debates for almost two decades. Since the solar irradiance varies very little in a solar cycle, it is puzzling that some geophysical parameters show proportionally large variations which appear to be responding to the solar cycles. For example, variation in low altitude clouds is shown correlated with solar cycle, and the onset of Forbush decrease is shown correlated with the reduction of the vorticity area index. A possible sun-climate connection is that galactic cosmic rays modulated by solar activities influence cloud formation. In this paper, we apply wavelet transform to satellite and surface data to examine this hypothesis. Data analyzed include the time series for solar irradiance, sunspots, UV index, temperature, cloud coverage, and neutron counter measurements. The interactions among the elements in the Earth System under the external and internal forcings give out very complex signals.The periodicity of the forcings or signals could range widely. Since wavelet transforms can analyze multi-scale phenomena that are both localized in frequency and time, it is a very useful technique for detecting, understanding and monitoring climate changes.

  18. Solar and Magnetospheric Influence on High-Frequency Radar Signal Propagation

    NASA Astrophysics Data System (ADS)

    Burrell, A. G.; Yeoman, T. K.; Milan, S. E.; Lester, M.; Lawal, H. A.

    2015-12-01

    The polar ionosphere is a dynamic region that readily responds to changes in solar irradiance, solar wind, the magnetosphere, and the neutral atmosphere. The most recent solar minimum brought to light gaps in the current understanding of the relationship between ionospheric structure and solar irradiance. The Super Dual Auroral Radar Network (SuperDARN) observes the high-latitude ionosphere using coherent scatter High Frequency (HF) radars. SuperDARN has been operational over one and a half solar cycles, and so provides an invaluable dataset for studying long-term ionospheric variability at the northern and southern poles. This study explores the influence of solar and magnetospheric forcing on HF ground-backscatter. Ground-backscatter, the backscatter that returns from a reflection point on the ground rather than from an ionospheric irregularity, provides a measure of the ionospheric density along the propagation path of the radar signal. By exploring the conditions that inhibit or enhance the propagation of ground-backscatter, we improve our understanding of the state of the bottomside ionosphere.

  19. Solar Observations at THz Frequencies on Board of a Trans-Antartic Stratospheric Balloon Flight

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Abrantes, André; Bortolucci, Emilio; Caspi, Amir; Fernandes, Luis Olavo T.; Kropotov, Grigory; Kudaka, Amauri; Laurent, Glenn Thomas; Machado, Nelson; Marcon, Rogério; Marun, Adolfo; Nicolaev, Valery; Hidalgo Ramirez, Ray Fernando; Raulin, Jean-Pierre; Saint-Hilaire, Pascal; Shih, Albert; Silva, Claudemir; Timofeevsky, Alexander

    2016-05-01

    Sub-THz and 30 THz solar burst observations revealed a new spectral component, with fluxes increasing towards THz frequencies, simultaneously with the well known component peaking at microwaves, bringing challenging constraints for interpretation. The THz flare spectra can be completed with measurements made from space. A new system of two photometers was built to observe the Sun at 3 and 7 THz named SOLAR-T. An innovative optical setup allows observations of the full solar disk and detect small burst with sub-second time resolution. The photometers use two Golay cell detectors at the foci of 7.6 cm Cassegrain telescopes. The incoming radiation undergoes low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. The system has been integrated to redundant data acquisition system and Iridium short-burst data services telemetry for monitoring during the flight. SOLAR-T has been flown coupled to U.C. Berkeley solar hard X-ray and gamma-ray imaging spectro-polarimeter GRIPS experiment launched on a NASA CSBF stratospheric balloon from U.S. McMurdo base on January 19, 2016, on a trans-Antarctic flight. The mission ended on January 30. The SOLAR-T on-board computers were recovered from the payload that landed in the Argentina Mountain Range, nearly 2100 km from McMurdo. The SOLAR-T performance was successfully attained, with full space qualification instrumentation. Preliminary results provide the solar disk THz brightness temperatures and indicate a 7 THz burst enhancement time coincident to a sub-THz burst observed by SST during the 28 January GOES C9.6 class soft X-ray burst, the largest occurred during the flight.

  20. Stopping frequency of type III solar radio bursts in expanding magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2015-05-01

    Aims: Understanding the properties of type III radio bursts in the solar corona and interplanetary space is one of the best ways to remotely deduce the characteristics of solar accelerated electron beams and the solar wind plasma. One feature of all type III bursts is the lowest frequency they reach (or stopping frequency). This feature reflects the distance from the Sun that an electron beam can drive the observable plasma emission mechanism. The stopping frequency has never been systematically studied before from a theoretical perspective. Methods: Using numerical kinetic simulations, we explore the different parameters that dictate how far an electron beam can travel before it stops inducing a significant level of Langmuir waves, responsible for plasma radio emission. We use the quasilinear approach to model the resonant interaction between electrons and Langmuir waves self-consistently in inhomogeneous plasma, and take into consideration the expansion of the guiding magnetic flux tube and the turbulent density of the interplanetary medium. Results: We find that the rate of radial expansion has a significant effect on the distance an electron beam travels before enhanced levels of Langmuir waves, hence radio waves, cease. Radial expansion of the guiding magnetic flux tube rarefies the electron stream to the extent that the density of non-thermal electrons is too low to drive Langmuir wave production. The initial conditions of the electron beam have a significant effect, where decreasing the beam density or increasing the spectral index of injected electrons would cause higher type III stopping frequencies. We also demonstrate how the intensity of large-scale density fluctuations increases the highest frequency to which Langmuir waves can be driven by the beam and how the magnetic field geometry can be the cause of type III bursts that are only observed at high coronal frequencies.

  1. LOW-FREQUENCY RADIO OBSERVATIONS OF PICOFLARE CATEGORY ENERGY RELEASES IN THE SOLAR ATMOSPHERE

    SciTech Connect

    Ramesh, R.; Sasikumar Raja, K.; Kathiravan, C.; Satya Narayanan, A.

    2013-01-10

    We report low-frequency (80 MHz) radio observations of circularly polarized non-thermal type I radio bursts ({sup n}oise storms{sup )} in the solar corona whose estimated energy is {approx}10{sup 21} erg. These are the weakest energy release events reported to date in the solar atmosphere. The plot of the distribution of the number of bursts (dN) versus their corresponding peak flux density in the range S to S+dS shows a power-law behavior, i.e., dN {proportional_to} S {sup {gamma}} dS. The power-law index {gamma} is in the range -2.2 to -2.7 for the events reported in the present work. The present results provide independent observational evidence for the existence of picoflare category energy releases in the solar atmosphere which are yet to be explored.

  2. Low-frequency waves associated with Langmuir waves in solar wind

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; Wentzel, Donat G.; Stone, R. G.

    1995-01-01

    The Ulysses spacecraft has detected several events of low-frequency electromagnetic waves in association with Langmuir waves in the solar wind. The high time resolution observations show that the Langmuir waves are very intense and occur as broad peaks superposed by collapsing millisecond spikes. The low-frequency waves are identified as electromagnetic lower hybrid waves. The observed energy densities of these waves often exceed the strong turbulence thresholds. It is shown that none of the parametric decay instabilities involving Langmuir and low-frequency waves are energetically favorable to explain the present observations. The low-frequency waves are proposed to arise from currents associated with gradients in the electron beam originating at sites where Langmuir waves scatter the beam electrons.

  3. The Solar Background Spectrum: a Gold Mine of Information

    NASA Astrophysics Data System (ADS)

    Severino, G.; Straus, Th.; Jefferies, S. M.

    We discuss the properties of the intensity-velocity (I-V) phase difference spectra generated from 15 hours of high resolution MDI observations. These spectra provide a spectacular demonstration of the wealth of untapped information that is available on the nature of the solar background. In this context, the regimes of coherent phase in between the modes (``interridges'') and between the f mode and the Lamb waves (``plateau''), first discovered by Deubner et al. 1990, is of extreme interest. Understanding the background is important for several reasons: (i) it contains information about the convection processes and the wave propagation characteristics of the solar atmosphere in addition to that provided by the resonant oscillations, (ii) its interaction with the p-modes may explain why the sense of the asymmetry in the p-mode line profiles depends on the dynamic variable observed (Roxburgh & Vorontsov 1997, Nigam et al. 1998), (iii) estimates for the p-mode line asymmetries are sensitive to errors in the background determination, and (iv) the background limits the g-mode and low frequency p-mode visibilities. We also propose a new model for the solar background which uses the observed phase information: previous models (e.g. Harvey 1985) are restricted to power information only. Currently, our model is limited to low frequencies (1 mHz <= ν <= 3.5 mHz) and intermediate to high ell values, however, it still demonstrates the potential of the phase information to improve our estimates of the background components of both the velocity and intensity signals. A superposition of a correlated background and the p-mode signal succeeds in reproducing the observed I-V phase transition from negative (background) to positive (p-mode) values. Moreover, the model suggests that the background is responsible for the values of I-V phase, equal to or less than the adiabatic values observed in the low photosphere (Hill et al, 1991).

  4. Sound speed and oscillation frequencies for a solar model evolved with Los Alamos ATOMIC opacities

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Fontes, Christopher; Walczak, Przemyslaw; Wood, Suzannah R.; Mussack, Katie

    2015-08-01

    Los Alamos has calculated a new generation of radiative opacities for elements with atomic number Z=1-30 with improved physics input, updated atomic data, and finer temperature grid to replace the Los Alamos LEDCOP opacities released in the year 2000. We calculate the evolution of a standard solar model including these new opacities, and compare with a model evolved using the Lawrence Livermore National Laboratory OPAL opacities released about 1996. We use the solar abundance mixture of Asplund, Grevesse, Sauval, and Scott (2009), including 2015 updates. The Los Alamos ATOMIC opacities (Colgan et al. 2013a,b) are somewhat higher than those of OPAL for temperatures and densities near the base of the solar convection zone. We compare the calculated nonadiabatic solar oscillation frequencies and solar interior sound speed to observed frequencies and helioseismic inferences. We discuss the potential for increased opacities to partially mitigate the ‘solar abundance problem’.References:J. Colgan, D.P. Kilcrease, N.H. Magee, Jr., G.S.J. Armstrong, J. Abdallah, Jr., M.E. Sherrill, C.J. Fontes, H.L. Zhang and P. Hakel, Eighth International Conference on Atomic and Molecular Data and their Applications: ICAMDATA, Gaithersburg, MD 2012, AIP Conf. Proc. No. 1545, (AIP, New York, 2013a), pp. 17-26.J. Colgan, D.P. Kilcrease, N.H. Magee, Jr, G.S.J. Armstrong, J. Abdallah, Jr., M.E. Sherrill, C.J. Fontes, H.L. Zhang and P. Hakel, High Energy Density Physics 9, 369 (2013b).

  5. Spectrum of Finite Frequency Pump Kinetic Alfvén Wave in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Modi, K. V.; Sharma, R. P.; Gaur, Nidhi

    2016-01-01

    The nonlinear interaction between the kinetic Alfvén wave (KAW) and the slow magnetosonic wave is studied. The dynamical equation for the slow magnetosonic wave, in the presence of a ponderomotive force due to finite frequency KAW (ω0<ω_{ci}, where ω0 is the frequency of the KAW and ω_{ci} is the ion gyro frequency) is developed and then numerically solved for the solar wind parameters around 1 AU. Three different propagation angles of the slow magnetosonic wave (θ = 70°, 75°, and 85°) are considered. Our results reveal that due to the nonlinear interplay between the waves, the nature of the formation of localised structures becomes complex and depends on the different propagation angles of the slow magnetosonic wave. The power spectrum of a KAW shows the Kolmogorov scaling in larger scales but exhibits steepening in smaller scales. The scaling index of the power spectrum of the KAW depends on the propagation angles of the slow magnetosonic wave. Therefore, the heating of plasma particles in the solar wind may show such dependence. The present results are consistent with the observation of the Cluster spacecraft for the solar wind around 1 AU.

  6. An investigation of short period oscillations of the solar irradiance and their time variations

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.

    1987-01-01

    Measurements of solar irradiance fluctuations by the Active Cavity Radiometer (ACRIM) instrument onboard the Solar Maximum Mission (SMM) show variations on a time scale of about 5 minutes due to solar p-mode oscillations, as well as longer-term variations related to solar magnetic activity. The question was studied whether the p-mode frequencies change with time as a result of changing solar structure associated with the activity cycle. The ACRIM data on SMM are particularly well-suited for this purpose, because the instrument operated continuously from February 1980 to December 1980 and again from May 1984 to the present. The main activity entailed a detailed study of the observational data to determine if a change in the p-mode frequencies is evident from the time of solar maximum to that of solar minimum. It was concluded that the measured eigenfrequencies were significantly higher during the 1980 time frame than during the 1984 to 1986 time frame. The conclusion that there is significant change in the eigenfrequencies with the activity cycle remains only tentative, and needs confirmation from analysis of more data during the upcoming solar maximum.

  7. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    SciTech Connect

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Ballot, J.; Antia, H. M.; Basu, S.; Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Mathur, S.; García, R. A.; Verner, G. A.; Chaplin, W. J.; Sanderfer, D. T.; Seader, S. E.; Smith, J. C.

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  8. Electromagnetic cyclotron waves near the proton cyclotron frequency in the solar wind

    NASA Astrophysics Data System (ADS)

    Jian, Lan K.; Boardsen, Scott; Moya, Pablo; Stevens, Michael; Alexander, Robert; Vinas, Adolfo

    2015-04-01

    Strong narrow-band electromagnetic waves around the proton cyclotron frequency (fpc) have been found sporadically in the solar wind from 0.3 to 0.7 AU during MESSENGER spacecraft’s cruise phase. These waves are transverse and circularly polarized, and they propagate in directions quasi-parallel to the magnetic field. The wave power decreases quadratically with heliocentric distance, faster than the trend if assuming the conservation of Poynting flux for wave packets, suggesting there is energy dissipation from the waves, which could contribute to the heating and acceleration of solar wind plasma. Although the wave frequency is a few times of fpc in the spacecraft frame, it is a fraction of fpc in the solar wind plasma frame after removing the Doppler shift effect. In this frequency range, the waves can be left-hand (LH) polarized ion cyclotron waves or right-hand (RH) polarized magnetosonic waves. Because the waves are LH or RH polarized in the spacecraft frame with otherwise nearly identical characteristics, they could be due to Doppler shift of a same type of waves or a mixture of waves with intrinsically different polarizations. Through the assistance of audification, we have studied the long-lasting wave events in 2005 using high-cadence magnetic field data from the Wind mission. Statistically, in contrast with general solar wind, the protons at these waves are distributed closer to the proton instability thresholds, while the alpha particles at these waves are distributed further away from the alpha instability thresholds. For selected events of extensive waves, the ion distribution is analyzed in detail. A mixture of temperature anisotropies for core protons, beam protons, and alpha particles, as well as proton beam drift are often found in such events. We conduct linear wave dispersion analysis using these ion moments to examine whether these waves can be explained by the local generation of kinetic instabilities such as the LH ion cyclotron, the RH

  9. Tracing p-mode Waves from the Photosphere to the Corona in Active Regions

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Felipe, Tobías; Chen, Ruizhu; Khomenko, Elena

    2016-10-01

    Atmosphere above sunspots is abundant with different types of waves. Among these waves are running penumbral waves in the chromosphere, quasi-periodic oscillations in the lower coronal loops, and recently reported running waves in sunspots’ photosphere, all of which were interpreted as magnetoacoustic waves by some authors. Are these waves in different atmospheric layers related to each other, what is the nature of these waves, and where are the ultimate sources of these waves? Applying a time–distance helioseismic analysis over a suite of multi-wavelength observations above a sunspot, we demonstrate that the helioseismic p-mode waves are able to channel up from the photosphere through the chromosphere and transition region into the corona, and that the magnetoacoustic waves observed in different atmospheric layers are a same wave originating from the photosphere but exhibiting differently under different physical conditions. We also show waves of different frequencies travel along different paths, which can be used to derive the physical properties of the atmosphere above sunspots. Our numerical simulation of traveling of waves from a subphotospheric source qualitatively resembles the observed properties of the waves and offers an interpretation of the shapes of the wavefronts above the photosphere.

  10. Solar U- and J- Bursts at the Frequencies 10-30MHz

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Abranin, E. P.; Rucker, H. O.; Lecacheux, A.

    2006-08-01

    In the present report we discuss the results of observations of solar U- and J- bursts over the frequency range 10-30MHz, which have been obtained within the framework of an international observational campaign in June - August, 2004 at the radio telescope UTR-2 (Kharkov, Ukraine). We succeed to observe these types of bursts for the first time at such a low frequencies due to combination of large effective area of the radio telescope and high sensitivity of the new back-end. During June - August, 2004 about 30 U- and J- bursts were registered, and only 5 of them were confidently identified as U-bursts that may speak about the relative sparsity of the latter at mentioned frequencies. Both the isolated bursts and their sequences were observed. On average the turning frequencies lay in the range 10-22 MHz that corresponds to the arches heliocentric heights of 1.6-2.2 solar radii. In some sequences the bursts turning frequency was stable that may indicate the arch stability, while in others the turning frequency had tendency to vary from burst to burst. Durations of U- and J- bursts did not differ from those of usual Type III bursts (3-7s), while the drift rates of an ascending arm (on the average -1MHz/ s) was a little bit lower, than those of ordinary Type III bursts in this range. The harmonic structure of U- and J- bursts, and also Jb-J pairs (analogous to IIIb-III pairs) were registered. Also L-shaped bursts (Leblanc and Hoyos, 1985) were recorded. A specific feature of L-shaped bursts is prolonged zero-drift region on their dynamic spectra. The sizes and configurations of the arches were estimated on the base of obtained data. Possible explanations of the observed properties of U- and J- bursts are discussed.

  11. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    NASA Technical Reports Server (NTRS)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons

  12. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    NASA Astrophysics Data System (ADS)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    The part of the solar power production from photovlotaïcs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy in the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. The objective of this study is to present an approach based on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) to highlight the scaling properties of global solar irradiance data G(t). The scale of invariance is detected on this dataset using the Empirical Mode Decomposition in association with arbitrary-order Hilbert spectral analysis, a generalization of (HHT) or Hilbert Spectral Analysis (HSA). The first step is the EMD, consists in decomposing the normalized global solar radiation data G'(t) into several Intrinsic Mode Functions (IMF) Ci(t) without giving an a priori basis. Consequently, the normalized original solar radiation sequence G'(t) can be written as a sum of Ci(t) with a residual rn. From all IMF modes, a joint PDF P(f,A) of locally and instantaneous frequency f and amplitude A, is estimated. To characterize the scaling behavior in amplitude-frequency space, an arbitrary-order Hilbert marginal spectrum is defined to: Iq(f) = 0 P (f,A)A dA (1) with q × 0 In case of scale

  13. Satellite observations of type III solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1974-01-01

    Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 earth radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics, and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 earth radii to 1 AU.

  14. Effect of solar activity on the frequency of occurrence of major anomalies in the Arctic. [weather forecasting

    NASA Technical Reports Server (NTRS)

    Bolotinskaya, M. S.

    1978-01-01

    Major air pressure and temperature anomalies in certain arctic regions were studied with a view toward predicting their occurrence. Correlations are sought between the frequency of arctic anomalies and solar activity, or specifically the Wolf number and the index of geomagnetic disturbance. Graphic techniques are used to show that solar activity has a definite influence on the frequency of occurrence of major anomalies of pressure and temperature in the Arctic.

  15. A search for p-modes and other variability in the binary system 85 Pegasi using MOST photometry

    NASA Astrophysics Data System (ADS)

    Huber, D.; Matthews, J. M.; Croll, B.; Obbrugger, M.; Gruberbauer, M.; Guenther, D. B.; Weiss, W. W.; Rowe, J. F.; Kallinger, T.; Kuschnig, R.; Scholtz, A. L.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Walker, G. A. H.

    2009-10-01

    Context: Asteroseismology has great potential for the study of metal-poor stars due to its sensitivity to determine stellar ages. Solid detections of oscillation frequencies in stars with well constrained fundamental parameters, combined with a known rotation period, should significantly advance our understanding of stellar structure and evolution in context with metallicity effects. Aims: Our goal was to detect p-mode oscillations in the metal-poor sub-dwarf 85 Peg A and to search for variability on longer timescales. Methods: We have obtained continuous high-precision optical photometry of the binary system 85 Pegasi with the MOST (Microvariability & Oscillations of STars) space telescope in two seasons (2005 & 2007). The light curves were analyzed using traditional Fourier techniques. Furthermore, we redetermined v sin i for 85 Peg A using high resolution spectra obtained through the ESO archive, and used photometric spot modeling to interpret long periodic variations. Results: Our frequency analysis yields no convincing evidence for p-modes significantly above a noise level of 4 ppm. Using simulated p-mode patterns we provide upper rms amplitude limits for 85 Peg A. After removal of instrumental trends the light curve shows evidence for variability with a period of about 11 d and this periodicity is also seen in the follow up run in 2007; however, as different methods to remove instrumental trends in the 2005 run yield vastly different results, the exact shape and periodicity of the 2005 variability remain uncertain. Our re-determined v sin i value for 85 Peg A is comparable to previous studies and we provide realistic uncertainties for this parameter. Using these values in combination with simple photometric spot models we are able to reconstruct the observed variations. Conclusions: The null-detection of p-modes in 85 Peg A is consistent with theoretical values for pulsation amplitudes in this star. The detected long-periodic variation in the 85 Peg system

  16. CoRoT sounds the stars: p-mode parameters of Sun-like oscillations on HD 49933

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Michel, E.; Auvergne, M.; Baglin, A.; Toutain, T.; Baudin, F.; Benomar, O.; Chaplin, W. J.; Deheuvels, S.; Samadi, R.; Verner, G. A.; Boumier, P.; García, R. A.; Mosser, B.; Hulot, J.-C.; Ballot, J.; Barban, C.; Elsworth, Y.; Jiménez-Reyes, S. J.; Kjeldsen, H.; Régulo, C.; Roxburgh, I. W.

    2008-09-01

    Context: The first asteroseismology results from CoRoT are presented, on a star showing Sun-like oscillations. We have analyzed a 60 day lightcurve of high-quality photometric data collected by CoRoT on the F5 V star HD 49933. The data reveal a rich spectrum of overtones of low-degree p modes. Aims: Our aim was to extract robust estimates of the key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: Estimation of the mode parameters was performed using maximum likelihood estimation of the power spectrum. A global fitting strategy was adopted whereby 15 mode orders of the mode spectrum (45 modes) were fitted simultaneously. Results: The parameter estimates that we list include mode frequencies, peak linewidths, mode amplitudes, and a mean rotational frequency splitting. We find that the average large frequency (overtone) spacing derived from the fitted mode frequencies is 85.9 ± 0.15 μHz. The frequency of maximum amplitude of the radial modes is at 1760 μHz, where the observed rms mode amplitude is 3.75 ± 0.23 ppm. The mean rotational splitting of the non-radial modes appears to be in the range ≈2.7 μHz to ≈3.4 μHz. The angle of inclination offered by the star, as determined by fits to the amplitude ratios of the modes, appears to be in the range ≈50 degrees to ≈62 degrees. The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES, with participation of the Science Programs of ESA, ESA's RSSD, Austria, Belgium, Brazil, Germany and Spain.

  17. International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling

    NASA Astrophysics Data System (ADS)

    Bais, A. F.; Madronich, S.; Crawford, J.; Hall, S. R.; Mayer, B.; van Weele, M.; Lenoble, J.; Calvert, J. G.; Cantrell, C. A.; Shetter, R. E.; Hofzumahaus, A.; Koepke, P.; Monks, P. S.; Frost, G.; McKenzie, R.; Krotkov, N.; Kylling, A.; Swartz, W. H.; Lloyd, S.; Pfister, G.; Martin, T. J.; Roeth, E.-P.; Griffioen, E.; Ruggaber, A.; Krol, M.; Kraus, A.; Edwards, G. D.; Mueller, M.; Lefer, B. L.; Johnston, P.; Schwander, H.; Flittner, D.; Gardiner, B. G.; Barrick, J.; Schmitt, R.

    2003-08-01

    The International Photolysis Frequency Measurement and Model Intercomparison (IPMMI) took place in Boulder, Colorado, from 15 to 19 June 1998, aiming to investigate the level of accuracy of photolysis frequency and spectral downwelling actinic flux measurements and to explore the ability of radiative transfer models to reproduce the measurements. During this period, 2 days were selected to compare model calculations with measurements, one cloud-free and one cloudy. A series of ancillary measurements were also performed and provided parameters required as input to the models. Both measurements and modeling were blind, in the sense that no exchanges of data or calculations were allowed among the participants, and the results were objectively analyzed and compared by two independent referees. The objective of this paper is, first, to present the results of comparisons made between measured and modeled downwelling actinic flux and irradiance spectra and, second, to investigate the reasons for which some of the models or measurements deviate from the others. For clear skies the relative agreement between the 16 models depends strongly on solar zenith angle (SZA) and wavelength as well as on the input parameters used, like the extraterrestrial (ET) solar flux and the absorption cross sections. The majority of the models (11) agreed to within about ±6% for solar zenith angles smaller than ˜60°. The agreement among the measured spectra depends on the optical characteristics of the instruments (e.g., slit function, stray light rejection, and sensitivity). After transforming the measurements to a common spectral resolution, two of the three participating spectroradiometers agree to within ˜10% for wavelengths longer than 310 nm and at all solar zenith angles, while their differences increase when moving to shorter wavelengths. Most models agree well with the measurements (both downwelling actinic flux and global irradiance), especially at local noon, where the agreement

  18. Association of low-frequency waves with suprathermal ions in the upstream solar wind

    NASA Technical Reports Server (NTRS)

    Paschmann, G.; Sckopke, N.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.; Greenstadt, E. W.

    1979-01-01

    Observations obtained upstream of the earth's bowshock with the LASL/MPI plasma instruments and the UCLA magnetometers on ISEE-1 and 2 have revealed a striking relationship between the presence of low-frequency fluctuations in solar wind density and field strength and the different types of distribution functions of upstream ions. Waves are absent when the ions have the beamlike distribution of the 'reflected' ions. Large-amplitude waves are present only in conjunction with the 'diffuse' ions, which are characterized by flat energy spectra and broad angular distributions. The waves are largely compressive, showing very good correlation between oscillations in magnetic field strength and plasma density.

  19. A search for p-mode pulsations in white dwarf stars using the Berkeley Visible Imaging Tube detector

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; Welsh, B. Y.; Koen, C.; Gulbis, A. A. S.; Kotze, M. M.

    2014-01-01

    We present high-speed photometry (resolution 0.1 s) obtained during the commissioning of the Berkely Visible Imaging Tube system on the Southern African Large Telescope (SALT). The observations were an attempt to search for very rapid p-mode oscillations in white dwarf stars and included three DA stars known to be g-mode pulsators (ZZ Cet, HK Cet and AF Pic), one other DA star (WD 1056-384) not known to be variable and one AM Cvn star (HP Lib). No evidence was found for any variations greater than about 1 mmag in amplitude (˜0.1 per cent) at frequencies in excess of 60 mHz (periods <17 s) in any of the target stars, though several previously known g-mode frequencies were recovered.

  20. Transient Stability and Frequency Response of the US Western Interconnection Under Conditions of High Wind and Solar Generation

    SciTech Connect

    Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan; D'Aquila, Robert; Clark, Kara

    2014-11-13

    The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of wind and solar generation. The main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.

  1. Transient Stability and Frequency Response of the US Western Interconnection under conditions of High Wind and Solar Generation

    SciTech Connect

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan; D'Aquila, Robert

    2015-04-15

    Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of wind and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.

  2. Fine structural features of radio-frequency radiation of the solar flare of February 12, 2010

    NASA Astrophysics Data System (ADS)

    Chernov, G. P.; Fomichev, V. V.; Gorgutsa, R. V.; Markeev, A. K.; Sobolev, D. E.; Hillaris, A.; Alissandrakis, K.

    2014-07-01

    Solar radio emission records received at the IZMIRAN spectrograph (25-270 MHz) during the solar flare event of February 12, 2010 are analyzed. Different fine structures were observed in three large groups of type III bursts against a low continuum. According to data from the Nancay radioheliograph, sources of all three groups of bursts were located in one active region, 11046, and their emissions were accompanied by soft X-ray bursts (GOES satellite): C7.9 at 0721 UT, B9.6 at 0940 UT, and M8.3 at 1125 UT. After the first group of bursts, classical fiber bursts were observed in combination with reverse-drift fiber bursts with unusual arc drift. After the third (the most powerful) group, stable second-length pulsations and slow-drift fiber bursts were observed, the instantaneous frequency bands of which were an order of magnitude larger than the frequency band of classical fiber bursts, and the frequency drift was several times lower. More complex fiber bursts were observed in the weakest group in the time range 0940:39-0942:00 UT. They were narrow-band (˜0.5 MHz) fiber bursts, periodically recurring in a narrow frequency band (5-6 MHz) during several seconds. The presence of many chaotically drifting ensembles of fibers, crossing and superimposing on one another, is a feature of this event. It is assumed that occurrence of these structures can be connected with the existence of many small shock fronts behind the leading edge of a coronal mass ejection.

  3. FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS

    SciTech Connect

    Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.; Obara, T.; Iwai, K.

    2015-08-01

    We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entire frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.

  4. Metal-dielectric frequency-selective surface for high performance solar window coatings

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Guneratne, Ananda C.; Temchenko, Marina

    2016-03-01

    We demonstrate a solar control window film consisting of metallic nanoantennas designed to reflect infrared (IR) light while allowing visible light to pass through. The film consists of a capacitive frequency-selective surface (CFSS) which acts as a band-stop filter, reflecting only light at target wavelengths. The designed CFSS when installed on windows will lower air conditioning costs by reflecting undesired wavelengths of light and thus reduce the amount of heat that enters a building. State-of-the-art commercial solar control films consist of a multilayer stack which is costly ( 13/m2 to 40/m2) to manufacture and absorbs IR radiation, causing delamination or glass breakage when attached to windows. Our solar control film consists of a nanostructured metallic layer on a polyethylene terephthalate (PET) substrate that reflects IR radiation instead of absorbing it, solving the delamination problem. The CFSS is also easy to manufacture with roll-to-roll nanoimprint lithography at a cost of <$12/m2. We design the CFSS using the COMSOL Wave Optics module to solve for electromagnetic wave propagation in optical media via the finite element method. The simulation domain is reduced to a single unit cell with periodic boundary conditions to account for the symmetries of the planar, periodic CFSS. The design is optimized using parametric sweeps around the various geometric components of the metallic nanoantenna. Our design achieves peak reflection of 80% at 1000 nm and has a broadband IR response that will allow for optimum solar control without significantly affecting the transmission of visible light.

  5. The velocity and the density spectrum of the solar wind from simultaneous three-frequency IPS observations

    NASA Technical Reports Server (NTRS)

    Scott, S. L.; Rickett, B. J.; Armstrong, J. W.

    1983-01-01

    Density inhomogeneities in the solar wind cause fluctuations regarding the emission of small diameter radio sources. Such fluctuations are called interplanetary scintillation (IPS). IPS has been studied to obtain information on both the solar wind and on the radio sources. In the present investigation it is attempted to extract information about the solar wind from simultaneous IPS observations at three radio frequencies and a single antenna. Data were recorded at frequencies of 270 MHz, 340 MHz, and 470 MHz on a 91 m telescope. Five different radio sources were observed. The observations are compared with theoretical predictions for spectra, cross-spectra, and cross-correlations using weak scattering theory and various models for the wavenumber spectrum of density inhomogeneities in the solar wind. Good fits are obtained over the observed wavenumbers to a spectrum modeled as a power law.

  6. Beam-plasma instability in the presence of low-frequency turbulence. [during type 3 solar emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Dubois, D. F.

    1982-01-01

    General equations are derived for a linear beam-plasma instability in the presence of low-frequency turbulence. Within a 'quasi-linear' statistical approximation, these equations contain Langmuir wave scattering, diffusion, resonant and nonresonant anomalous absorption, and a 'plasma laser' effect. It is proposed that naturally occurring density irregularities in the solar wind may stabilize the beam-unstable Langmuir waves which occur during type III solar emissions.

  7. The possible role of high-frequency waves in heating solar coronal loops

    NASA Technical Reports Server (NTRS)

    Porter, Lisa J.; Klimchuk, James A.; Sturrock, Peter A.

    1994-01-01

    We investigate the role of high-frequency waves in the heating of solar active region coronal loops. We assume a uniform background magnetic field, and we introduce a density stratification in a direction perpendicular to this field. We focus on ion compressive viscosity as the damping mechanism of the waves. We incorporate viscosity self-consistently into the equations, and we derive a dispersion relation by adopting a slab model, where the density inside the slab is greater than that outside. Such a configuration supports two types of modes: surface waves and trapped body waves. In order to determine under what conditions these waves may contribute to the heating of active regions, we solve our dispersion relation for a range of densities, temperatures, magnetic field strengths, density ratios, wavevector magnitudes, wavevector ratios, and slab widths. We find that surface waves exhibit very small damping, but body waves can potentially damp at rates needed to balance radiative losses. However, the required frequencies of these body waves are very high. For example, the wave frequency must be at least 5.0/s for a slab density of 10(exp 9,5)/cc, a slab temperature of 10(exp 6,5) K, a field strength of 100 G, and a density ratio of 5. For a slab density of 10(exp 10)/cc, this frequency increases to 8.8/s. Although these frequencies are very high, there in no observational evidence to rule out their existence, and they may be generated both below the corona and at magnetic reconnection sites in the corona. However, we do find that, for slab densities of 10(exp 10)/cc or less, the dissipation of high-frequency waves will be insufficient to balance the radiative losses if the magnetic field strength exceeds roughly 200 G. Because the magnetic field is known to exceed 200 G in many active region loops, particularly low-lying loops and loops emanating from sunspots, it is unlikely that high-frequency waves can provide sufficient heating in these regions.

  8. Transverse low frequency wave in a two fluid solar wind. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Solodyna, G. V.

    1973-01-01

    Investigation is made of the properties of low frequency transverse waves in a two-fluid solar wind having a radial magnetic field and radial streaming velocity. In order to examine what effects this streaming medium has on the waves, linearly polarized waves are decomposed into left and right circularly polarized waves. Computation is made of analytic expressions valid to first order for the radial amplitude and phase dependence of these constituent waves. It is shown that after travelling a given distance r, these waves have different amplitudes and phases. The former result causes their superposition to become elliptical rather than linear. The latter causes the axis of the ellipse of polarization to rotate through a well-defined angle. Analytic expressions are obtained for the eccentricity of the ellipse and for the angle of rotation. In analogy with regular Faraday rotation, in which the plane of polarization of a linear polarized wave rotates, the effect is denoted as generalized Faraday rotation.

  9. Influence of multiple ion species on low-frequency electromagnetic wave instabilities. [in solar wind

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1989-01-01

    The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.

  10. Low-frequency Observations of Transient Quasi-periodic Radio Emission from the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Sasikumar Raja, K.; Ramesh, R.

    2013-09-01

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R ⊙) in the active region corona.

  11. LOW-FREQUENCY OBSERVATIONS OF TRANSIENT QUASI-PERIODIC RADIO EMISSION FROM THE SOLAR ATMOSPHERE

    SciTech Connect

    Sasikumar Raja, K.; Ramesh, R.

    2013-09-20

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R{sub ☉}) in the active region corona.

  12. On-board processing of high frequency plasma wave measurements on Solar Orbiter RPW instrument

    NASA Astrophysics Data System (ADS)

    Soucek, J.; Uhlir, L.; Santolik, O.; Kolmasova, I.; Lan, R.

    2013-09-01

    The Radio and Plasma Wave (RPW) instrument of the Solar Orbiter spacecraft will include a Time Domain Sampler module (TDS) dedicated to electromagnetic waveform measurements from about 100 Hz to 500 kHz. The primary science objective of the instrument is in-situ measurement of solar wind Langmuir waves associated with solar bursts and interplanetary shocks and the process of their conversion to electromagnetic radiation. Langmuir waves are observed at relatively high frequency (10-100 kHz) and appear in the form of short bursts (Fig. 1). A secondary science objective of TDS is the detection voltage spikes often observed on electric field antennas as a result of an impact of dust particle on the spacecraft (Fig. 2). Both phenomena are relatively rare and the data volume associated with the measurement is very large. On board detection and pre-processing of the data can thus greatly reduce the telemetry requirements and increase the science return of the experiment. The instrument implements an advanced on-board digital signal processor which allows for preprocessing of captured waveform data by configurable digital filters and basic analysis of waveform snapshots (identification of wave packets and electric field signatures of impacts of dust particles on the spacecraft, calculation of basic signal characteristics). The results of the on-board analysis are used to select interesting wave events for downlink and to collect statistics on observed snapshots which cannot be transmitted to ground. The data filtering and decimation are implemented in FPGA firmware and the more complicated data processing is performed in software running on Leon 3 CPU. We present the design of the instrument, basic overview of the algorithms used in event identification, and the assessment of their erformance on test datasets based data from STEREO spacecraft.

  13. Oblique Bernstein Mode Generation Near the Upper-hybrid Frequency in Solar Pre-flare Plasmas

    NASA Astrophysics Data System (ADS)

    Kryshtal, A.; Fedun, V.; Gerasimenko, S.; Voitsekhovska, A.

    2015-11-01

    We study analytically the generation process of the first harmonics of the pure electron weakly oblique Bernstein modes. This mode can appear as a result of the rise and development of a corresponding instability in a solar active region. We assume that this wave mode is modified by the influence of pair Coulomb collisions and a weak large-scale sub-Dreicer electric field in the pre-flare chromosphere near the footpoints of a flare loop. To describe the pre-flare plasma we used the model of the solar atmosphere developed by Fontenla, Avrett, and Loeser ( Astrophys. J. 406, 319, 1993). We show that the generated first harmonic is close to the upper-hybrid frequency. This generation process begins at the very low threshold values of the sub-Dreicer electric field and well before the beginning of the preheating phase of a flare. We investigate the necessary conditions for the existence of non-damped first harmonics of oblique Bernstein waves with small amplitudes in the flare area.

  14. Surface-effect corrections for the solar model

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Weiss, A.

    2016-07-01

    Context. Solar p-mode oscillations exhibit a systematic offset towards higher frequencies due to shortcomings in the 1D stellar structure models, in particular, the lack of turbulent pressure in the superadiabatic layers just below the optical surface, arising from the convective velocity field. Aims: We study the influence of the turbulent expansion, chemical composition, and magnetic fields on the stratification in the upper layers of the solar models in comparison with solar observations. Furthermore, we test alternative ⟨3D⟩ averages for improved results on the oscillation frequencies. Methods: We appended temporally and spatially averaged ⟨3D⟩ stratifications to 1D models to compute adiabatic oscillation frequencies that we then tested against solar observations. We also developed depth-dependent corrections for the solar 1D model, for which we expanded the geometrical depth to match the pressure stratification of the solar ⟨3D⟩ model, and we reduced the density that is caused by the turbulent pressure. Results: We obtain the same results with our ⟨3D⟩ models as have been reported previously. Our depth-dependent corrected 1D models match the observations to almost a similar extent as the ⟨3D⟩ model. We find that correcting for the expansion of the geometrical depth and the reducing of the density are both equally necessary. Interestingly, the influence of the adiabatic exponent Γ1 is less pronounced than anticipated. The turbulent elevation directly from the ⟨3D⟩ model does not match the observations properly. Considering different reference depth scales for the ⟨3D⟩ averaging leads to very similar frequencies. Solar models with high metal abundances in their initial chemical composition match the low-frequency part much better. We find a linear relation between the p-mode frequency shift and the vertical magnetic field strength with δvnl = 26.21Bz [μHz/kG], which is able to render the solar activity cycles correctly.

  15. Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2012-05-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle may be associated to a quasi-11-year solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Spörer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900-1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature

  16. Harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2012-12-01

    We show that the Schwabe frequency band of the Zurich sunspot record since 1749 is made of three major cycles that are closely related to the spring tidal period of Jupiter and Saturn (~9.93 year), to the tidal sidereal period of Jupiter (about 11.86 years) and to a central cycle that may be associated to a quasi-11-year solar dynamo cycle. The central harmonic is approximately synchronized to the average of the two planetary frequencies. A harmonic model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals major beat periods occurring at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. Equivalent synchronized cycles are found in cosmogenic solar proxy records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima around 1900-1920 and 1960-1980, the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005, and a secular upward trending during the 20th century. The latter modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which is produced by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts

  17. The second post-Newtonian light propagation and its astrometric measurement in the Solar System: Light time and frequency shift

    NASA Astrophysics Data System (ADS)

    Deng, Xue-Mei

    2016-05-01

    The light time equation and frequency shift are worked out in the framework of a second parametrized post-Newtonian (2PPN) formalism in the Solar System barycentric reference system (SSBRS) developed in a recently published paper. Effects of each body’s oblateness, spin and translational motion are taken into account for the light propagation. It is found that, at the second post-Newtonian (2PN) approximation, the light time and frequency shift depend on the parameter η only.

  18. LONG-DURATION LOW-FREQUENCY TYPE III BURSTS AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Gopalswamy, Nat; Maekelae, Pertti

    2010-09-20

    We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with a set of three complex, long-duration, low-frequency (<14 MHz) type III bursts from active region 10588 in 2004 April. The durations were measured at 1 and 14 MHz using data from Wind/WAVES and were well above the threshold value (>15 minutes) normally used to define these bursts. One of the three type III bursts was not associated with a type II burst, which also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1 MHz duration of the type III burst (28 minutes) for this event was near the median value of type III durations found for gradual SEP events and ground level enhancement events. Yet, there was no sign of an SEP event. On the other hand, the other two type III bursts from the same active region had similar duration but were accompanied by WAVES type II bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs for the three events had similar speeds, and the flares also had similar size and duration. This study suggests that the occurrence of a complex, long-duration, low-frequency type III burst is not a good indicator of an SEP event.

  19. Solar-like oscillations in HD 181420: data analysis of 156 days of CoRoT data

    NASA Astrophysics Data System (ADS)

    Barban, C.; Deheuvels, S.; Baudin, F.; Appourchaux, T.; Auvergne, M.; Ballot, J.; Boumier, P.; Chaplin, W. J.; García, R. A.; Gaulme, P.; Michel, E.; Mosser, B.; Régulo, C.; Roxburgh, I. W.; Verner, G.; Baglin, A.; Catala, C.; Samadi, R.; Bruntt, H.; Elsworth, Y.; Mathur, S.

    2009-10-01

    Context: The estimate of solar-like oscillation properties, such as their frequencies, amplitudes and lifetimes, is challenging because of their low amplitudes and will benefit from long and uninterrupted observing runs. The space telescope CoRoT allows us to obtain high-performance photometric data over a long and quasi continuous period. Among its main targets are stars for which we expect solar-like oscillations. Aims: HD 181420, an F2 main sequence star, has been observed by CoRoT during its first long run covering about 156 days. With this unprecedently high-quality set of data, our aim is to derive the p-mode parameters that can be used to probe the stellar interior. Methods: The CoRoT data obtained on HD 181420 is analysed using a classical Fourier approach for the search for the p mode signature. The p-mode parameters are then derived using global fitting of the power spectrum by a Lorentzian model, as used widely in the solar case. Results: From the p-mode frequencies, the mean value of the large spacing is estimated to be 75 {μ Hz}. The p-mode amplitudes are slightly less than 4 ppm with a line width of about 8 {μ Hz} at the maximum of the p modes. The inclination angle is estimated to be around 45 °. The large mode line-width combined with the observed mode spacing make it difficult to identify the ℓ=2 modes and to estimate the rotational splitting. We explore two scenarios for the identification of the modes. The CoRoT space mission, launched on 2006 December 27, was delopped and is operated by the CNES with participation of the Science Programs of ESA; ESA's RSSD, Austria, Belgium, Brazil, Germany and Spain.

  20. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  1. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    SciTech Connect

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-09-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  2. Research of propagation the high frequency signals during total solar eclipses

    NASA Astrophysics Data System (ADS)

    Ryabova, Mariya; Ivanov, Vladimir; Ivanov, Dmitrii; Riabova, Natalia; Elsukov, Aleksei

    Vertical-oblique sounding methods are special importance for the study; they provide data on the electron concentration. In panoramic sounders, the mean frequencies of sounding signals vary consequently in the range of apriori uncertainty of the conditions of their reflection from the ionosphere. The aim of this work is the experimental study of the variations in the MUFs along one-hop HF lines during the total solar eclipses, and their application for the estimation of the effective recombination coefficient. To solve the above problem, experiments were carried out with the use of a chirp sounder manufactured at the Volga State University of Technology. The main advantages of chirp sounder are connected with the use of continuous chirps, which allow for the use of methods of optimal reception when deciphering in a frequency region, which provides for a signal-to-noise ratio acceptable for obtaining reliable results. We carried out experiments on oblique chirp sounding of the ionosphere during the total solar eclipse of March 29, 2006, and on the reference days of March 28 and 30, 2006, as well as during the total solar eclipse of August 1, 2008, and the reference days of July 31 and August 2, 2008. The ionosonde transmitters were located in Great Britain (the town of Inskip), Cyprus, and Irkutsk, and the receiver was located in Yoshkar-Ola. The maximal phases of the eclipse of March 29 at the target sounding point (TSP) were 0.89 for Cyprus-Yoshkar-Ola (observed at 11:15 UT) and 0.49 for Inskip-Yoshkar-Ola (observed at 11:03 UT); for the eclipse of August 1, 1 for Irkutsk-Yoshkar-Ola (observed at 11:36 UT). Based on the primary data (ionograms), the secondary data were determined in automatic mode. In particular, diurnal variations in the MUF of the 1F2 and 2F2 modes were calculated for the eclipse periods and the reference days along different radio paths. Variation in the MUF on the reference days required the use of a smoothing procedure, which was carried out

  3. Seismic Study of the Solar Interior: Inferences from SOI/MDI Observations During Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.; Wagner, William J. (Technical Monitor)

    2001-01-01

    We have continued in collaboration with Dr. Eff-Darwich (University of La Laguna, Tenerife, Spain) the study of the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings. In March 2001, Dr. Eff-Darwich came for 3 weeks visit to CfA. During this visit we completed our work on the inversion of the internal solar rotation rate, and submitted a paper describing this work to the Astrophysical Journal. This paper has been recently revised in response to the referee comments and I expect that it will be accepted for publication very soon. We also have analyzed helioseismic data looking for temporal variations of the solar stratification near the base of the convection zone. We have expanded on the initial work that was presented at the SOHO-10/GONG-2000 meeting (October 2000, Tenerife), and are in the process of writing this up. Substantial progress towards the characterization of high-degree p-modes has been achieved. Indeed, in collaboration Dr. Rabello-Soares (Stanford University), we have gained a clear conceptual understanding of the various elements that affect the leakage matrix of the SOI/MDI instrument. This was presented in an invited talk at the SOHO-10/GONG-2000 meeting (October 2000, Tenerife). Once we will have successfully migrated from a qualitative to a quantitative assessment of these effects, we should be able to generate high-degree p-modes frequencies so crucial in the diagnostic of the layers just below solar surface.

  4. Low-Frequency Type III Bursts and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Makela, Pertti

    2010-01-01

    We analyzed the coronal mass ejections (CMEs), flares, and type 11 radio bursts associated with a set of six low frequency (<14 MHz) extended type III bursts from active region 10588. The durations were measured at 1 and 14 MHz using high resolution data from Wind/WAVES and were within the range (>15 min) normally used to define these bursts. All but one of the type III bursts was not associated with a type 11 burst in the metric or longer wavelength domains. The burst without type 11 burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 min) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs were of similar speeds and the flares are also of similar size and duration. This study suggests that the type III burst duration may not be a good indicator of an SEP event.

  5. EVIDENCE FOR HIGH-FREQUENCY QPOs WITH A 3:2 FREQUENCY RATIO FROM A 5000 SOLAR MASS BLACK HOLE

    SciTech Connect

    Pasham, Dheeraj R.; Cenko, S. Bradley; Mushotzky, Richard F.; Tombesi, Francesco; Zoghbi, Abderahmen; Miller, Jon E-mail: brad.cenko@nasa.gov E-mail: richard@astro.umd.edu E-mail: jonmm@umich.edu

    2015-09-20

    Following the discovery of 3:2 resonance quasi-periodic oscillations (QPOs) in M82X-1, we have constructed power density spectra (PDS) of all 15 (sufficiently long) XMM-Newton observations of the ultraluminous X-ray source NGC 1313 X-1 (L{sub X} ≈ 2 × 10{sup 40} erg s{sup −1}). We detect a strong QPO at a frequency of 0.29 ± 0.01 Hz in data obtained on 2012 December 16. Subsequent searching of all the remaining observations for a 3:2/2:3 frequency pair revealed a feature at 0.46 ± 0.02 Hz on 2003 December 13 (frequency ratio of 1.59 ± 0.09). The global significance of the 0.29 Hz feature considering all frequencies between 0.1 and 4 Hz is >3.5σ. The significance of the 0.46 ± 0.02 Hz QPO is >3.5σ for a search at 2/3 and 3/2 of 0.29 Hz. We also detect lower-frequency QPOs (32.9 ± 2.6 and 79.7 ± 1.2 mHz). All the QPOs are superimposed on a continuum consisting of flat-topped, band-limited noise, breaking into a power law at a frequency of 16 ± 3 mHz and white noise at ≳0.1 Hz. NGC 1313 X-1's PDS is analogous to stellar-mass black holes’ (StMBHs) PDS in the so-called steep power-law state, but with the respective frequencies (both QPOs and break frequencies) scaled down by a factor of ∼1000. Using the inverse mass-to-high-frequency QPO scaling of StMBHs, we estimate NGC 1313 X-1's black hole mass to be 5000 ± 1300 M{sub ⊙}, consistent with an inference from the scaling of the break frequency. However, the implied Eddington ratio, L{sub Edd} > 0.03 ± 0.01, is significantly lower compared to that of StMBHs in the steep power-law state (L{sub Edd} ≳ 0.2)

  6. Relationship between the durations of jumps in solar wind time series and the frequency of the spectral break

    NASA Astrophysics Data System (ADS)

    Podesta, John J.; Borovsky, Joseph E.

    2016-03-01

    Several physically motivated examples of stochastic processes that exhibit discontinuous jumps at random times are used to show that if the discontinuous jumps are replaced by continuous or smooth transitions with an average duration Δt, then the power spectral density of the process develops a high-frequency spectral break at a frequency of order ωb = π/Δt. Conversely, if the spectrum of the original process is altered by imposing a high-frequency spectral break, as may be accomplished by filtering with a low-pass filter of some kind, then the discontinuous jumps in the original signal are replaced by continuous jumps having a duration of magnitude Δt = π/ωb, where ωb is the break frequency of the altered spectrum. These results suggest that for any stochastic process containing randomly occurring jumps in the time domain and a high-frequency spectral break in the spectral domain with break frequency ωb, the average durations of the jumps are of order Δt = π/ωb. This result is closely connected with the sampling theorem and the uncertainty principle for Fourier transform pairs and demonstrates that the physical processes responsible for the dissipation of solar wind turbulence also determine the thicknesses of the strongest current sheets in the solar wind.

  7. Annual ionospheric variations of the critical frequency foF2 at the equatorial stations during the solar minima

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    2016-07-01

    We have analyzed annual ionospheric variations of the critical frequency foF2 at the equatorial stations during the solar minima. There are essential distinctions between the global TEC (total electron content) and foF2 annual variations during the last two solar minima. Many authors concluded that the annual means of foF2 and the global TEC were reduced, while others investigations no found essential variations as compared with the previous solar minimum. Most if not all of authors suppose that the possible source of this phenomenon is the low level of the EUV (extreme ultraviolet) during the solar minima. The aim of our paper is to amplify these conclusions or to propose new factor which can change ionosphere parameters during the solar minima. We calculated annual variations of foF2 at the equatorial stations and compared these data with Dst annual variations. We found that in addition to low level of the EUV during the solar minima, geomagnetic storms effects have to be included as the influencing factor on annual ionospheric variations.

  8. Analysing Solar-like Oscillations with an Automatic Pipeline

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Régulo, C.; Ballot, J.; Salabert, D.; Chaplin, W. J.

    2009-09-01

    The Kepler mission will provide a huge amount of asteroseismic data during the next few years, among which hundreds of solar-like stars will be targeted. The amount of stars and their observation length represent a step forward in the comprehension of the stellar evolution that has already been initiated by CoRoT and MOST missions. Up to now, the slow cadence of observed targets allowed an individual and personalized analysis of each star. During the survey phase of Kepler, this will be impossible. This is the reason why, within the AsteroFLAG team, we have been developing automatic pipelines for the Kepler solar-like oscillation stars. Our code starts by finding the frequency-range where p-mode power is present and, after fitting the background, it looks for the mode amplitudes as well as the central frequency of the p-mode hump. A good estimation of the large separation can thus be inferred in this region. If the signal to noise is high enough, the code obtains the characteristics of the p modes by doing a global fitting on the power spectrum. Here, we will first describe a few features of this pipeline and its application to AsteroFLAG synthetic data to check the validity of the code.

  9. Time and frequency transfer by the Master-Slave Returnable Timing System technique - Application to solar power transmission

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.

    1979-01-01

    The concept of the Master Slave Returnable Timing System (MSRTS) is presented which combines the advantages of the master slave (MS) and the Returnable Timing System (RTS) for time and frequency transfer. The basic idea of MSRTS is to send the time-frequency signal received at a particular node back to the sending node. The delay accumulated by this return signal is used to advance the phase of the master (sending) node thereby canceling the effect of the delay introduced by the path. The method can be used in highly accurate clock distribution systems required in avionics, computer communications, and large retrodirective phased arrays such as the Solar Power Satellite.

  10. Low frequency electromagnetic signals in the atmosphere caused by geodynamics and solar activity

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor

    Due to the composed structure of the medium and large portions of energy transferred, a seismic excitation in the oceanic or continental lithosphere disturbs all types of geophysical fields. To investigate the problem of electromagnetic (EM) forcing on the atmosphere from the seismically activated lithosphere, we have formulated two mathematical models of interaction of fields of different physical nature resulting in arising of the low-frequency (from 0.1 to 10 Hz by amplitude of a few hundreds of pT) EM signals in the atmosphere. First we have considered the EM field generation in the moving oceanic lithosphere and then in the moving continental one. For both cases, the main physical principles and geological data were applied for formulation of the model and characteristics of the computed signals of different nature agree with measurements of other authors. On the basis of the 2D model of the seismo-hydro-EM-temperature interaction in a lithosphere-Ocean-atmosphere domain, a block-scheme of a multisensory vertically distributed (from a seafloor up to the ionosphere) tsunami precursors’ detection system is described. On the basis of the 3D model of the seismo-EM interaction in a lithosphere-atmosphere domain, we explain effect of location of the future seismic epicenter area (obtained by Prof. Kopytenko, Yu. A. from Inst. IZMIRAN of Russian Acad. Sci. and co-authors) as the result of the magnetic field measurements in the atmosphere near the earth’s surface. We believe that the biosphere effects of forcing on the atmosphere may not be ignored. We formulate the result of our measurements with the system of micro-voltmeters: low-frequency EM disturbances of the atmosphere caused by solar activity (namely, geomagnetic storms with the geomagnetic index values K = 5 and K = 6), are decreasing temporarily the coherence of oscillations of the electric potentials of different points on the surface of a head, i.e. the coherence of the human brain EM processes. We are

  11. MOST Detects g- and p-Modes in the B Supergiant HD 163899 (B2 Ib/II)

    NASA Astrophysics Data System (ADS)

    Saio, H.; Kuschnig, R.; Gautschy, A.; Cameron, C.; Walker, G. A. H.; Matthews, J. M.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2006-10-01

    The Microvariability and Oscillations of Stars (MOST) satellite observed the B supergiant HD 163899 (B2 Ib/II) for 37 days as a guide star and detected 48 frequencies <~2.8 cycles day-1 with amplitudes of a few millimagnitudes (mmag) and less. The frequency range embraces g- and p-mode pulsations. It was generally thought that no g-modes are excited in less luminous B supergiants because strong radiative damping is expected in the core. Our theoretical models, however, show that such g-modes are excited in massive post-main-sequence stars, in accordance with these observations. The nonradial pulsations excited in models between 20 Msolar at logTeff~4.41 and 15 Msolar at logTeff~4.36 are roughly consistent with the observed frequency range. Excitation by the Fe bump in opacity is possible because g-modes can be partially reflected at a convective zone associated with the hydrogen-burning shell, which significantly reduces radiative damping in the core. The MOST light curve of HD 163899 shows that such a reflection of g-modes actually occurs and reveals the existence of a previously unrecognized type of variable, slowly pulsating B supergiants (SPBsg) distinct from α Cyg variables. Such g-modes have great potential for asteroseismology. Based on data from the MOST satellite, a Canadian Space Agency mission, operated jointly by Dynacon, Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

  12. Why DA and DB white dwarfs do not show coronal activity and p-mode oscillations

    SciTech Connect

    Musielak, Z.E.; Fontenla, J.M. )

    1989-11-01

    The problems of nonradiative heating of outer atmospheric layers and p-mode oscillations in white dwarfs caused by acoustic waves generated in convective zones are discussed. These effects have been studied by calculating the cutoff periods for adiabatic and isothermal waves propagating in atmospheres of DA and DB stars with Teff greater than or equal 20,000 K and log g = 6-9. The obtained cutoff periods are approximately bounded by 0.01 and 40 sec for high- and low-gravity white dwarfs, respectively. Expected amplitudes of p-mode oscillations corresponding to trapped acoustic waves with small angular wave numbers are estimated, indicating that the amplitudes could be observed as Doppler shifts of spectral lines which might be detectable if adequate spectral resolution were available. The luminosity variations corresponding to these amplitudes are unlikely to be observable when all damping processes are accounted for. Results also indicate that the present theory of convection predicts some irregularities in the behavior of physical parameters. 34 refs.

  13. Why DA and DB white dwarfs do not show coronal activity and p-mode oscillations

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Fontenla, J. M.

    1989-01-01

    The problems of nonradiative heating of outer atmospheric layers and p-mode oscillations in white dwarfs caused by acoustic waves generated in convective zones are discussed. These effects have been studied by calculating the cutoff periods for adiabatic and isothermal waves propagating in atmospheres of DA and DB stars with Teff greater than or equal 20,000 K and log g = 6-9. The obtained cutoff periods are approximately bounded by 0.01 and 40 sec for high- and low-gravity white dwarfs, respectively. Expected amplitudes of p-mode oscillations corresponding to trapped acoustic waves with small angular wave numbers are estimated, indicating that the amplitudes could be observed as Doppler shifts of spectral lines which might be detectable if adequate spectral resolution were available. The luminosity variations corresponding to these amplitudes are unlikely to be observable when all damping processes are accounted for. Results also indicate that the present theory of convection predicts some irregularities in the behavior of physical parameters.

  14. The mass of the planet-hosting giant star β Geminorum determined from its p-mode oscillation spectrum

    NASA Astrophysics Data System (ADS)

    Hatzes, A. P.; Zechmeister, M.; Matthews, J.; Kuschnig, R.; Walker, G. A. H.; Döllinger, M.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2012-07-01

    Aims: Our aim is to use precise radial velocity measurements and photometric data to derive the frequency spacing of the p-mode oscillation spectrum of the planet-hosting star β Gem. This spacing along with the interferometric radius for this star can then be used to derive an accurate stellar mass. Methods: We use a long time series of over 60 h of precise stellar radial velocity measurements of β Gem taken with an iodine absorption cell at the echelle spectrograph mounted on the 2 m Alfred Jensch Telescope. We also present complementary photometric data for this star taken with the MOST microsatellite spanning 3.6 d. A Fourier analysis is used to derive the frequencies that are present in each data set. Results: The Fourier analysis of the radial velocity data reveals the presence of up to 17 significant pulsation modes in the frequency interval 10-250 μHz. Most of these fall on a grid of equally-spaced frequencies having a separation of 7.14 ± 0.12 μHz. An analysis of 3.6 days of high precision photometry taken with the MOST space telescopes shows the presence of up to 16 modes, six of which are consistent with modes found in the spectral (radial velocity) data. This frequency spacing is consistent with high overtone radial pulsations; however, until the pulsation modes are identified we cannot be sure if some of these are nonradial modes or even mixed modes. The radial velocity frequency spacing along with angular diameter measurements of β Gem via interferometry results in a stellar mass of M = 1.91 ± 0.09 M⊙. This value confirms the intermediate mass of the star determined using stellar evolutionary tracks. Conclusions.β Gem is confirmed to be an intermediate mass star. Stellar pulsations in giant stars along with interferometric radius measurements can provide accurate determinations of the stellar mass of planet hosting giant stars. These can also be used to calibrate stellar evolutionary tracks. Based on observations obtained at the 2 m Alfred

  15. A mechanism for weak double layers and coherent low-frequency electrostatic wave activity in the solar wind

    NASA Astrophysics Data System (ADS)

    Singh Lakhina, Gurbax; Singh, Satyavir

    2016-07-01

    A mechanism for the weak double layers and coherent low-frequency electrostatic wave activity observed by Wind spacecraft in the solar wind at 1 AU is proposed in terms of ion-acoustic solitons and double layers. The solar wind plasma is modelled by a three component plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having κ- distribution. This system supports two types of, slow and fast, ion-acoustic solitary waves. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. An increase of the κ- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The slow ion-acoustic double layer can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft. The Fourier transform of the slow ion-acoustic solitons/double layers would produce broadband low-frequency electrostatic waves having main peaks between 0.35 kHz to 1.6 kHz, with electric field in the range of E = (0.01 - 0.7 ) mV/m, in excellent agreement with the observed low-frequency electrostatic wave activity in the solar wind at 1 AU.

  16. Multiscaling statistics of high frequency global solar radiation data in the Guadeloupean Archipelago

    NASA Astrophysics Data System (ADS)

    Calif, R.; Schmitt, F. G.; Huang, Y.; Soubdhan, T.

    2013-12-01

    The part of the solar power production from photovoltaiccs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy into the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. A good knowledge of the intermittency of global solar radiation is crucial for selecting the location of a solar power plant and predicting the generation of electricity. This work presents a multifractal analysis study of 367 daily global solar radiation sequences measured with a sampling rate of 1 Hz over one year at Guadeloupean Archipelago (French West Indies) located at 16o15'N latitude and 60o30'W longitude. The mean power spectrum computed follows a power law behaviour close to the Kolmogorov spectrum. The intermittent and multifractal properties of global solar radiation data are investigated using several methods. Under this basis, a characterization for each day using three multifractal parameters is proposed.

  17. Using high frequency consumption data to identify demand response potential for solar energy integration

    NASA Astrophysics Data System (ADS)

    Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.

    2015-12-01

    California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.

  18. FRESH INSIGHTS ON THE STRUCTURE OF THE SOLAR CORE

    SciTech Connect

    Basu, Sarbani; Chaplin, William J.; Elsworth, Yvonne; New, Roger; Serenelli, Aldo M. E-mail: w.j.chaplin@bham.ac.uk E-mail: r.new@shu.ac.uk

    2009-07-10

    We present new results on the structure of the solar core, obtained with new sets of frequencies of solar low-degree p modes obtained from the BiSON network. We find that different methods used in extracting the different sets of frequencies cause shifts in frequencies, but the shifts are not large enough to affect solar structure results. We find that the BiSON frequencies show that the solar sound speed in the core is slightly larger than that inferred from data from Michelson Doppler Imager low-degree modes, and the uncertainties on the inversion results are smaller. Density results also change by a larger amount, and we find that solar models now tend to show smaller differences in density compared to the Sun. The result is seen at all radii, a result of the fact that conservation of mass implies that density differences in one region have to cancel out density differences in others, since our models are constructed to have the same mass as the Sun. The uncertainties on the density results are much smaller too. We attribute the change in results to having more, and lower frequency, low-degree mode frequencies available. These modes provide greater sensitivity to conditions in the core.

  19. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    SciTech Connect

    Nariyuki, Y.

    2015-02-15

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation of Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.

  20. HIGH ANGULAR RESOLUTION RADIO OBSERVATIONS OF A CORONAL MASS EJECTION SOURCE REGION AT LOW FREQUENCIES DURING A SOLAR ECLIPSE

    SciTech Connect

    Ramesh, R.; Kathiravan, C.; Barve, Indrajit V.; Rajalingam, M. E-mail: kathir@iiap.res.in E-mail: rajalingam@iiap.res.in

    2012-01-10

    We carried out radio observations of the solar corona in the frequency range 109-50 MHz during the annular eclipse of 2010 January 15 from the Gauribidanur Observatory, located about 100 km north of Bangalore in India. The radio emission in the above frequency range originates typically in the radial distance range Almost-Equal-To 1.2-1.5 R{sub Sun} in the 'undisturbed' solar atmosphere. Our analysis indicates that (1) the angular size of the smallest observable radio source (associated with a coronal mass ejection in the present case) is Almost-Equal-To 1' {+-} 0.'3, (2) the source size does not vary with radial distance, (3) the peak brightness temperature of the source corresponding to the above size at a typical frequency like 77 MHz is Almost-Equal-To 3 Multiplication-Sign 10{sup 9} K, and (4) the coronal magnetic field near the source region is Almost-Equal-To 70 mG.

  1. An investigation of ground-based observations of solar oscillations at Stanford

    NASA Technical Reports Server (NTRS)

    Henning, Harald M. J.

    1987-01-01

    Data obtained in the last 8 years of solar differential Doppler observations at Stanford were considered. The four best time series of data were examined in detail. The sources of error in the data were investigated and removed where possible. In particular, the contribution resulting from transparency variations in the sky was examined. Detection method applicable to data with low signal to noise ratio and low filling factor were developed and utilized for the investigation of global solar modes of oscillations in the data. The frequencies of p-modes were measured and identified. The presence of g-modes were also determined in the Stanford data.

  2. The quasi-biennial periodicity (QBP) in velocity and intensity helioseismic observations. The seismic QBP over solar cycle 23

    NASA Astrophysics Data System (ADS)

    Simoniello, R.; Finsterle, W.; Salabert, D.; García, R. A.; Turck-Chièze, S.; Jiménez, A.; Roth, M.

    2012-03-01

    Aims: We looked for signatures of quasi-biennial periodicity (QBP) over different phases of solar cycle by means of acoustic modes of oscillation. Low-degree p-mode frequencies are shown to be sensitive to changes in magnetic activity due to the global dynamo. Recently there has been reported evidence of two-year variations in p-mode frequencies. Methods: Long high-quality helioseismic data are provided by BiSON (Birmingham Solar Oscillation Network), GONG (Global Oscillation Network Group), GOLF (Global Oscillation at Low Frequency) and VIRGO (Variability of Solar IRradiance and Gravity Oscillation) instruments. We determined the solar cycle changes in p-mode frequencies for spherical degree ℓ = 0, 1, 2 with their azimuthal components in the frequency range 2.5 mHz ≤ ν ≤ 3.5 mHz. Results: We found signatures of QBP at all levels of solar activity in the modes more sensitive to higher latitudes. The signal strength increases with latitude and the equatorial component also seems to be modulated by the 11-year envelope. Conclusions: The persistent nature of the seismic QBP is not observed in the surface activity indices, where mid-term variations are found only from time to time and mainly in periods of high activity. This feature, together with the latitudinal dependence, provides more evidence of a mechanism that is almost independent and different from the one that brings the active regions up to the surface. Therefore, these findings can be used to provide more constraints on dynamo models that consider a further cyclic component on top of the 11-year cycle.

  3. Energetic electrons from solar flares and associated type 3 radio bursts from metric to hectometric wave frequencies

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Distinct Kev electron events as observed by satellites near the earth are, in general, associated with solar flares which are accompained by the emission of both metric and hectometric type 3 radio bursts. The positions of these flares are mainly on the western hemisphere of the sun. These results show that Kev electrons propagate under the control of the magnetic field in the interplanetary space and that, while propagating through this space, these electrons excite type 3 radio bursts from metric to hectometric wave frequencies. Emission characteristics of hectometric type 3 bursts are briefly considered in relation to the positions of associated flares.

  4. An estimate of the magnetic field strength associated with a solar coronal mass ejection from low frequency radio observations

    SciTech Connect

    Sasikumar Raja, K.; Ramesh, R.; Hariharan, K.; Kathiravan, C.; Wang, T. J.

    2014-11-20

    We report ground based, low frequency heliograph (80 MHz), spectral (85-35 MHz), and polarimeter (80 and 40 MHz) observations of drifting, non-thermal radio continuum associated with the 'halo' coronal mass ejection that occurred in the solar atmosphere on 2013 March 15. The magnetic field strengths (B) near the radio source were estimated to be B ≈ 2.2 ± 0.4 G at 80 MHz and B ≈ 1.4 ± 0.2 G at 40 MHz. The corresponding radial distances (r) are r ≈ 1.9 R {sub ☉} (80 MHz) and r ≈ 2.2 R {sub ☉} (40 MHz).

  5. Differences of the Solar Magnetic Activity Signature in Velocity and Intensity Helioseismic Observations

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Jiménez, A.

    2013-12-01

    The high-quality, full-disk helioseismic observations continuously collected by the spectrophotometer GOLF and the three photometers VIRGO/SPMs onboard the SoHO spacecraft for 17 years now (since April 11, 1996, apart from the SoHO “vacations”) are absolutely unique for the study of the interior of the Sun and its variability with magnetic activity. Here, we look at the differences in the low-degree oscillation p-mode frequencies between radial velocity and intensity measurements taking into account all the known features of the p-mode profiles (e.g., the opposite peak asymmetry), and of the power spectrum (e.g., the presence of the higher degrees ℓ = 4 and 5 in the signal). We show that the intensity frequencies are higher than the velocity frequencies during the solar cycle with a clear temporal dependence. The response between the individual angular degrees is also different. Time delays are observed between the temporal variations in GOLF and VIRGO frequencies. Such analysis is important in order to put new constraints and to better understand the mechanisms responsible for the temporal variations of the oscillation frequencies with the solar magnetic activity as well as their height dependences in the solar atmosphere. It is also important for the study of the stellar magnetic activity using asteroseismic data.

  6. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.

    PubMed

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-12-03

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation &immersion (E &I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm(2)) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance.

  7. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.

    PubMed

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation &immersion (E &I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm(2)) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  8. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    PubMed Central

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  9. Comparison of maximum usable frequency (MUF) variability over Peninsular Malaysia with IRI model during the rise of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Malik, R. A.; Abdullah, M.; Abdullah, S.; Homam, M. J.

    2016-02-01

    The aim of this paper is to study maximum usable frequency (MUF) variability over Peninsular Malaysia (112.5°E, 2.5°N) which is located in the equatorial region during the rise of Solar Cycle 24 (2009-2011). The MUF Test data was obtained from high frequency (HF) transmission tests that were conducted from April 2009 to September 2011. Relative variability VR was used to compute the relative variability of MUF. Variability of diurnal, seasonal and sunspot effect on MUF of test was compared to International Reference Ionosphere (IRI) version of 2012. The results show that: (a) MUF from the IRI model is higher than the MUF Test but the magnitude for the MUF Test and IRI are similar; (b) from the diurnal analysis, MUF is more vulnerable to variability during the nighttime than the daytime where the variability range for MUF Test and IRI during daytime is 4-12% compared to the nighttime range of 10-30%; (c) seasonal variability for MUF Test in 2011 indicates no clear trend for all seasons, and the seasonal and monthly variability for both MUF VR in 2011 is lower compared to 2009 and 2010; and (d) when sunspot number increases, MUF VR decreases. This result complements the variability in the equatorial and low latitude regions in that when solar activity increases, variability decreases.

  10. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  11. On the spectra of type-III solar radio bursts observed at low frequencies

    NASA Technical Reports Server (NTRS)

    Alvarez, H.

    1982-01-01

    The spectra of strong bursts observed at low frequencies by OGO-5 during 1968-1970 are presented. They usually exhibit an intense main peak between 100 kHz and 1 MHz, and sometimes a less intense secondary peak between 1 and 3.5 MHz. Main peaks of 10 to the -12th W per sq m per Hz or more were obtained in very strong events, but because of antenna calibration problems those could be one or two orders of magnitude too high. Recently published work supports the finding that type III bursts at low frequencies can be at least four orders of magnitude more intense than at ground-based frequencies of observation. It is found that the energy received at the earth increases with decreasing frequency approximately as f to the -n, where n is between 3 and 4.

  12. Frequency and voltage dependence of series resistance in a solar cell

    NASA Astrophysics Data System (ADS)

    Ogle, Alexander; Cox, Thaddeus; Heath, Jennifer

    While admittance measurements of solar cells are typically conducted in reverse or at zero bias, and analyzed using the depletion approximation, the operating point of the solar cell is in forward bias, and the series resistance is often estimated using IV curves with a high forward current. In this mode, the device is no longer in the depletion regime, and the large number of injected minority carriers alter the transport properties significantly. In our Cu(In,Ga)Se2 devices, we measure negative values of capacitance at high forward bias, which may be linked to injected minority carriers and carrier transport limitations, although our calculations of capacitance may also be influenced by series resistance. In this study, we compare ac and dc measurements of voltage dependent series resistance to try to better understand the negative capacitance signal.

  13. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  14. SOLAR-LIKE OSCILLATIONS IN KIC 11395018 AND KIC 11234888 FROM 8 MONTHS OF KEPLER DATA

    SciTech Connect

    Mathur, S.; Handberg, R.; Campante, T. L.; GarcIa, R. A.; Bedding, T. R.; White, T. R.; Mosser, B.; Chaplin, W. J.; Hekker, S.; Ballot, J.; Bonanno, A.; Corsaro, E.; Regulo, C.; Salabert, D.; Creevey, O. L.; Verner, G.; Brandao, I. M.

    2011-06-01

    We analyze the photometric short-cadence data obtained with the Kepler mission during the first 8 months of observations of two solar-type stars of spectral types G and F: KIC 11395018 and KIC 11234888, respectively, the latter having a lower signal-to-noise ratio (S/N) compared with the former. We estimate global parameters of the acoustic (p) modes such as the average large and small frequency separations, the frequency of the maximum of the p-mode envelope, and the average line width of the acoustic modes. We were able to identify and to measure 22 p-mode frequencies for the first star and 16 for the second one even though the S/N of these stars are rather low. We also derive some information about the stellar rotation periods from the analyses of the low-frequency parts of the power spectral densities. A model-independent estimation of the mean density, mass, and radius is obtained using the scaling laws. We emphasize the importance of continued observations for the stars with low S/N for an improved characterization of the oscillation modes. Our results offer a preview of what will be possible for many stars with the long data sets obtained during the remainder of the mission.

  15. Solar-like Oscillations in KIC 11395018 and KIC 11234888 from 8 Months of Kepler Data

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Handberg, R.; Campante, T. L.; García, R. A.; Appourchaux, T.; Bedding, T. R.; Mosser, B.; Chaplin, W. J.; Ballot, J.; Benomar, O.; Bonanno, A.; Corsaro, E.; Gaulme, P.; Hekker, S.; Régulo, C.; Salabert, D.; Verner, G.; White, T. R.; Brandão, I. M.; Creevey, O. L.; Doǧan, G.; Elsworth, Y.; Huber, D.; Hale, S. J.; Houdek, G.; Karoff, C.; Metcalfe, T. S.; Molenda-Żakowicz, J.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Kawaler, S. D.; Kjeldsen, H.; Quintana, E. V.; Sanderfer, D. T.; Seader, S. E.

    2011-06-01

    We analyze the photometric short-cadence data obtained with the Kepler mission during the first 8 months of observations of two solar-type stars of spectral types G and F: KIC 11395018 and KIC 11234888, respectively, the latter having a lower signal-to-noise ratio (S/N) compared with the former. We estimate global parameters of the acoustic (p) modes such as the average large and small frequency separations, the frequency of the maximum of the p-mode envelope, and the average line width of the acoustic modes. We were able to identify and to measure 22 p-mode frequencies for the first star and 16 for the second one even though the S/N of these stars are rather low. We also derive some information about the stellar rotation periods from the analyses of the low-frequency parts of the power spectral densities. A model-independent estimation of the mean density, mass, and radius is obtained using the scaling laws. We emphasize the importance of continued observations for the stars with low S/N for an improved characterization of the oscillation modes. Our results offer a preview of what will be possible for many stars with the long data sets obtained during the remainder of the mission.

  16. Determination of defect density of state distribution of amorphous silicon solar cells by temperature derivative capacitance-frequency measurement

    SciTech Connect

    Yang, Guangtao Swaaij, R. A. C. M. M. van; Dobrovolskiy, S.; Zeman, M.

    2014-01-21

    In this contribution, we demonstrate the application temperature dependent capacitance-frequency measurements (C-f) to n-i-p hydrogenated amorphous silicon (a-Si:H) solar cells that are forward-biased. By using a forward bias, the C-f measurement can detect the density of defect states in a particular energy range of the interface region. For this contribution, we have carried out this measurement method on n-i-p a-Si:H solar cells of which the intrinsic layer has been exposed to a H{sub 2}-plasma before p-type layer deposition. After this treatment, the open-circuit voltage and fill factor increased significantly, as well as the blue response of the solar cells as is concluded from external quantum efficiency. For single junction, n-i-p a-Si:H solar cells initial efficiency increased from 6.34% to 8.41%. This performance enhancement is believed to be mainly due to a reduction of the defect density in the i-p interface region after the H{sub 2}-plasma treatment. These results are confirmed by the C-f measurements. After H{sub 2}-plasma treatment, the defect density in the intrinsic layer near the i-p interface region is lower and peaks at an energy level deeper in the band gap. These C-f measurements therefore enable us to monitor changes in the defect density in the interface region as a result of a hydrogen plasma. The lower defect density at the i-p interface as detected by the C-f measurements is supported by dark current-voltage measurements, which indicate a lower carrier recombination rate.

  17. Low Frequency Radio Observations of Bi-directional Electron Beams in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Carley, E.; Reid, H.; Vilmer, N.; Gallagher, P.

    2015-12-01

    The radio signature of a shock travelling through the solar corona is known as a type II solar radio burst. In rare cases, these bursts can exhibit a fine structure known as 'herringbones' which are a direct indicator of particle acceleration occurring at the shock front. However, few studies have been performed on herringbones and the details of the underlying particle acceleration processes are unknown. Here, we use an image processing technique known as the Hough transform to statistically analyse the herringbone fine structure in a radio burst at 20-90MHz observed from the Rosse Solar-Terrestrial Observatory on 2011 September 22. We identify 188 individual bursts which are signatures of bi-directional electron beams continuously accelerated to speeds of 0.16 c. This occurs at a shock acceleration site initially at a constant altitude of 0.6 Rsun in the corona, followed by a shift to 0.5 Rsun. The anti-sunward beams travel a distance of 170 Mm (and possibly further) away from the acceleration site, while those travelling toward the sun come to a stop sooner, reaching a smaller distance of 112 Mm. We show that the stopping distance for the sunward beams may depend on the total number density and the velocity of the beam. Our study concludes that a detailed statistical analysis of herringbone fine structure can provide information on the physical properties of the corona which lead to these relatively rare radio bursts.

  18. Turnover Frequency in Solar Microwave Bursts with an Extremely Flat Optically Thin Spectrum

    NASA Astrophysics Data System (ADS)

    Song, Q. W.; Nakajima, H.; Huang, G. L.; Tan, B. L.; Huang, Y.; Wu, Z.

    2016-10-01

    Four microwave bursts have been selected from the Nobeyama Radio Polarimeter (NoRP) observations with an extremely flat spectrum in the optically thin part and a very hard spectral index between 0 and -1 in the maximum phase of all bursts. It is found that the time evolution of the turnover frequency is inversely proportional to the time profiles of the radio flux in all bursts. Based on the nonthermal gyrosynchrotron theory of Ramaty (Astrophys. J. 158, 753, 1969), the local magnetic field strength and the electron spectral index are calculated uniquely from the observed radio spectral index and the turnover frequency. We found that the electron energy spectrum is very hard (spectral index 1 - 2), and the time variation of the magnetic field strength is also inversely proportional to the radio flux as a function of time in all bursts. Hence, the time evolution of the turnover frequency can be explained directly by its dependence on the local magnetic field strength. The high turnover frequency (several tens of GHz) is mainly caused by a strong magnetic field of up to several hundred gauss, and probably by the Razin effect under a high plasma density over 10^{10} cm^{-3} in the maximum phase of these bursts. Therefore, the extremely flat microwave spectrum can be well understood by the observed high turnover frequency and the calculated hard electron spectral index.

  19. An instability due to the nonlinear coupling of p-modes to g-modes: Implications for coalescing neutron star binaries

    SciTech Connect

    Weinberg, Nevin N.; Arras, Phil; Burkart, Joshua

    2013-06-01

    A weakly nonlinear fluid wave propagating within a star can be unstable to three-wave interactions. The resonant parametric instability is a well-known form of three-wave interaction in which a primary wave of frequency ω {sub a} excites a pair of secondary waves of frequency ω {sub b} + ω {sub c} ≅ ω {sub a}. Here we consider a nonresonant form of three-wave interaction in which a low-frequency primary wave excites a high-frequency p-mode and a low-frequency g-mode such that ω {sub b} + ω {sub c} >> ω {sub a}. We show that a p-mode can couple so strongly to a g-mode of similar radial wavelength that this type of nonresonant interaction is unstable even if the primary wave amplitude is small. As an application, we analyze the stability of the tide in coalescing neutron star binaries to p-g mode coupling. We find that the equilibrium tide and dynamical tide are both p-g unstable at gravitational wave frequencies f {sub gw} ≳ 20 Hz and drive short wavelength p-g mode pairs to significant energies on very short timescales (much less than the orbital decay time due to gravitational radiation). Resonant parametric coupling to the tide is, by contrast, either stable or drives modes at a much smaller rate. We do not solve for the saturation of the p-g instability and therefore we cannot say precisely how it influences the evolution of neutron star binaries. However, we show that if even a single daughter mode saturates near its wave breaking amplitude, the p-g instability of the equilibrium tide will (1) induce significant orbital phase errors (Δφ ≳ 1 radian) that accumulate primarily at low frequencies (f {sub gw} ≲ 50 Hz) and (2) heat the neutron star core to a temperature of T ∼ 10{sup 10} K. Since there are at least ∼100 unstable p-g daughter pairs, Δφ and T are potentially much larger than these values. Tides might therefore significantly influence the gravitational wave signal and electromagnetic emission from coalescing neutron star binaries

  20. An Instability due to the Nonlinear Coupling of p-modes to g-modes: Implications for Coalescing Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin N.; Arras, Phil; Burkart, Joshua

    2013-06-01

    A weakly nonlinear fluid wave propagating within a star can be unstable to three-wave interactions. The resonant parametric instability is a well-known form of three-wave interaction in which a primary wave of frequency ω a excites a pair of secondary waves of frequency ω b + ω c ~= ω a . Here we consider a nonresonant form of three-wave interaction in which a low-frequency primary wave excites a high-frequency p-mode and a low-frequency g-mode such that ω b + ω c Gt ω a . We show that a p-mode can couple so strongly to a g-mode of similar radial wavelength that this type of nonresonant interaction is unstable even if the primary wave amplitude is small. As an application, we analyze the stability of the tide in coalescing neutron star binaries to p-g mode coupling. We find that the equilibrium tide and dynamical tide are both p-g unstable at gravitational wave frequencies f gw >~ 20 Hz and drive short wavelength p-g mode pairs to significant energies on very short timescales (much less than the orbital decay time due to gravitational radiation). Resonant parametric coupling to the tide is, by contrast, either stable or drives modes at a much smaller rate. We do not solve for the saturation of the p-g instability and therefore we cannot say precisely how it influences the evolution of neutron star binaries. However, we show that if even a single daughter mode saturates near its wave breaking amplitude, the p-g instability of the equilibrium tide will (1) induce significant orbital phase errors (Δphi >~ 1 radian) that accumulate primarily at low frequencies (f gw <~ 50 Hz) and (2) heat the neutron star core to a temperature of T ~ 1010 K. Since there are at least ~100 unstable p-g daughter pairs, Δphi and T are potentially much larger than these values. Tides might therefore significantly influence the gravitational wave signal and electromagnetic emission from coalescing neutron star binaries at much larger orbital separations than previously thought.

  1. Observation of harmonically related solar radio zebra patterns in the 1-4 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Karlický, M.; Fernandes, F. C. R.; Cecatto, J. R.

    2002-12-01

    A unique case of two zebra patterns related harmonically with ratio of ~ 1:2 was observed by distant radio telescopes at São José dos Campos and Ondřejov Observatories. Accompanied zebras show that the ratio of frequencies of the neighboring zebra lines is in the range of 1.009-1.037. There is a tendency of a decrease of this ratio with decreasing frequency within the specific zebra pattern. Both facts speak in favour of plasma emission models for the zebra pattern fine structure in radio burst continua.

  2. Low frequency radio observations of bi-directional electron beams in the solar corona

    NASA Astrophysics Data System (ADS)

    Carley, Eoin P.; Reid, Hamish; Vilmer, Nicole; Gallagher, Peter T.

    2015-09-01

    The radio signature of a shock travelling through the solar corona is known as a type II solar radio burst. In rare cases these bursts can exhibit a fine structure known as "herringbones", which are a direct indicator of particle acceleration occurring at the shock front. However, few studies have been performed on herringbones and the details of the underlying particle acceleration processes are unknown. Here, we use an image processing technique known as the Hough transform to statistically analyse the herringbone fine structure in a radio burst at ~20-90 MHz observed from the Rosse Solar-Terrestrial Observatory on 2011 September 22. We identify 188 individual bursts which are signatures of bi-directional electron beams continuously accelerated to speeds of 0.16-0.10+0.11 c. This occurs at a shock acceleration site initially at a constant altitude of ~0.6 R⊙ in the corona, followed by a shift to ~0.5 R⊙. The anti-sunward beams travel a distance of 170-97+174 Mm (and possibly further) away from the acceleration site, while those travelling toward the Sun come to a stop sooner, reaching a smaller distance of 112-76+84 Mm. We show that the stopping distance for the sunward beams may depend on the total number density and the velocity of the beam. Our study concludes that a detailed statistical analysis of herringbone fine structure can provide information on the physical properties of the corona which lead to these relatively rare radio bursts.

  3. Evidence of Increasing Acoustic Emissivity at High Frequency with Solar Cycle 23 in Sun-as-a-star Observations

    SciTech Connect

    Simoniello, R.; Finsterle, W.

    2009-09-16

    We used long high-quality unresolved (Sun-as-a-star observations) data collected by GOLF and VIRGO instruments on board the ESA/NASA SOHO satellite to investigate the amplitude variation with solar cycle 23 in the high-frequency band (5.7<{nu}<6.3 mHz). We found an enhancement of acoustic emissivity over the ascending phase of about 18{+-}3 in velocity observations and a slight enhancement of 3{+-}2 in intensity. Mode conversion from fast acoustic to fast magneto-acoustic waves could explain the enhancement in velocity observations. These findings open up the possibility to apply the same technique to stellar intensity data, in order to investigate stellar-magnetic activity.

  4. A solar plasma stream measured by DRVID and dual-frequency range and Doppler radio metric data

    NASA Technical Reports Server (NTRS)

    Winn, F. B.; Wu, S. C.; Komarek, T. A.; Lam, V. W.; Royden, H. N.; Yip, K. B. W.

    1977-01-01

    S- and X-band DRVID, S- and X-band dual-frequency range (SX(p)), and Doppler (SX(p)) measured a 15-fold increase in the line-of-sight electron content of the solar plasma above the normal plasma background. A general increase in the plasma electron content continued for nearly 50 hours: it started about 12:00 (GMT) on 12 March 1976 and continued to grow until 17:00 (GMT) on 14 March. For the next 55 hours, between 17:00 (GMT) on 14 March to 00:54 (GMT) on 17 March, the plasma level diminished as the background level was approached. Not only were the temporal changes and absolute level of the plasma content measured but the measurements were also used to ascertain the mean-plasma-concentration location: it was estimated to be 4.1 light minutes from earth.

  5. A Novel Hybrid Statistical Particle Swarm Optimization for Multimodal Functions and Frequency Control of Hybrid Wind-Solar System

    NASA Astrophysics Data System (ADS)

    Verma, Harish Kumar; Jain, Cheshta

    2016-09-01

    In this article, a hybrid algorithm of particle swarm optimization (PSO) with statistical parameter (HSPSO) is proposed. Basic PSO for shifted multimodal problems have low searching precision due to falling into a number of local minima. The proposed approach uses statistical characteristics to update the velocity of the particle to avoid local minima and help particles to search global optimum with improved convergence. The performance of the newly developed algorithm is verified using various standard multimodal, multivariable, shifted hybrid composition benchmark problems. Further, the comparative analysis of HSPSO with variants of PSO is tested to control frequency of hybrid renewable energy system which comprises solar system, wind system, diesel generator, aqua electrolyzer and ultra capacitor. A significant improvement in convergence characteristic of HSPSO algorithm over other variants of PSO is observed in solving benchmark optimization and renewable hybrid system problems.

  6. THE FREQUENCY OF HOT JUPITERS ORBITING NEARBY SOLAR-TYPE STARS

    SciTech Connect

    Wright, J. T.; Marcy, G. W.; Howard, A. W.; Johnson, John Asher; Morton, T. D.; Fischer, D. A.

    2012-07-10

    We determine the fraction of F, G, and K dwarfs in the solar neighborhood hosting hot Jupiters as measured by the California Planet Survey from the Lick and Keck planet searches. We find the rate to be 1.2% {+-} 0.38%, which is consistent with the rate reported by Mayor et al. from the HARPS and CORALIE radial velocity (RV) surveys. These numbers are more than double the rate reported by Howard et al. for Kepler stars and the rate of Gould et al. from the OGLE-III transit search; however, due to small number statistics these differences are of only marginal statistical significance. We explore some of the difficulties in estimating this rate from the existing RV data sets and comparing RV rates to rates from other techniques.

  7. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    SciTech Connect

    Cho, K.-S.; Kim, R.-S.; Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S.

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  8. An Estimate of the Coronal Magnetic Field near a Solar Coronal Mass Ejection from Low-frequency Radio Observations

    NASA Astrophysics Data System (ADS)

    Hariharan, K.; Ramesh, R.; Kishore, P.; Kathiravan, C.; Gopalswamy, N.

    2014-11-01

    We report ground-based, low-frequency (<100 MHz) radio imaging, spectral, and polarimeter observations of the type II radio burst associated with the solar coronal mass ejection (CME) that occurred on 2013 May 2. The spectral observations indicate that the burst has fundamental (F) and harmonic (H) emission components with split-band and herringbone structures. The imaging observations at 80 MHz indicate that the H component of the burst was located close to leading edge of the CME at a radial distance of r ≈ 2 R ⊙ in the solar atmosphere. The polarimeter observations of the type II burst, also at 80 MHz, indicate that the peak degree of circular polarization (dcp) corresponding to the emission generated in the corona ahead of and behind the associated MHD shock front are ≈0.05 ± 0.02 and ≈0.1 ± 0.01, respectively. We calculated the magnetic field B in the above two coronal regions by adopting the empirical relationship between the dcp and B for the harmonic plasma emission and the values are ≈(0.7-1.4) ± 0.2 G and ≈(1.4-2.8) ± 0.1 G, respectively.

  9. An estimate of the coronal magnetic field near a solar coronal mass ejection from low-frequency radio observations

    SciTech Connect

    Hariharan, K.; Ramesh, R.; Kishore, P.; Kathiravan, C.; Gopalswamy, N.

    2014-11-01

    We report ground-based, low-frequency (<100 MHz) radio imaging, spectral, and polarimeter observations of the type II radio burst associated with the solar coronal mass ejection (CME) that occurred on 2013 May 2. The spectral observations indicate that the burst has fundamental (F) and harmonic (H) emission components with split-band and herringbone structures. The imaging observations at 80 MHz indicate that the H component of the burst was located close to leading edge of the CME at a radial distance of r ≈ 2 R {sub ☉} in the solar atmosphere. The polarimeter observations of the type II burst, also at 80 MHz, indicate that the peak degree of circular polarization (dcp) corresponding to the emission generated in the corona ahead of and behind the associated MHD shock front are ≈0.05 ± 0.02 and ≈0.1 ± 0.01, respectively. We calculated the magnetic field B in the above two coronal regions by adopting the empirical relationship between the dcp and B for the harmonic plasma emission and the values are ≈(0.7-1.4) ± 0.2 G and ≈(1.4-2.8) ± 0.1 G, respectively.

  10. The Contribution of Microbunching Instability to Solar Flare Emission in the GHz to THz Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Klopf, J. Michael; Kaufmann, Pierre; Raulin, Jean-Pierre; Szpigel, Sérgio

    2014-08-01

    Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed "double spectra." Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving rise to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible.

  11. The contribution of microbunching instability to solar flare emission in the GHz to THz range of frequencies

    SciTech Connect

    Klopf, J. Michael; Kaufmann, Pierre; Raulin, Jean-Pierre; Szpigel, Sergio

    2014-07-01

    Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed "double spectra." Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving rise to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible.

  12. The contribution of microbunching instability to solar flare emission in the GHz to THz range of frequencies

    SciTech Connect

    Michael Klopf, J.; Kaufmann, Pierre; Raulin, Jean-Pierre; Szpigel, Sérgio

    2014-08-10

    Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed 'double spectra'. Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving rise to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible.

  13. FREQUENCY OF MAUNDER MINIMUM EVENTS IN SOLAR-TYPE STARS INFERRED FROM ACTIVITY AND METALLICITY OBSERVATIONS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2012-03-10

    We consider the common proposition that the fraction of chromospherically very inactive stars in a solar-type sample is analogous to the fraction of the Sun's main-sequence lifetime spent in a grand minimum state. In a new approach to this proposition, we examine chromospheric activity log R'{sub HK} in a stellar sample having Hipparcos parallax measurements, and having spectroscopically determined metallicity close to solar (-0.1 {<=} [Fe/H] {<=} 0.1). We evaluate height above the Hipparcos main sequence, and estimate age using isochrones, to identify the most Sun-like stars in this sample. As a threshold below which a star is labeled very inactive, we use the peak of the HK activity distribution mapped over the quiet Sun during the 1968 epoch. We estimate the fraction of Maunder Minimum (MM) analog candidates in our sample at 11.1%. Given the 70 yr duration of the historical MM, this suggests that in any given year there is a 1/630 chance of entering a similar grand minimum. There are three important cautions with this type of estimate. First, recent investigation using actual activity and photometric time series has suggested that very low activity may not be a necessary criterion for identifying a non-cycling MM analog candidate. Second, this type of estimate depends very strongly on the choice of very low activity threshold. Third, in instantaneous measurements of log R'{sub HK}, it is not always clear whether a star is a viable MM analog candidate or merely an older star nearing the end of its main-sequence lifetime.

  14. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with

  15. The stability of decametric type III burst parameters over the 11-year solar activity cycle - The frequency drift rate of radio bursts

    NASA Astrophysics Data System (ADS)

    Abranin, E. P.; Bazelyan, L. L.; Tsybko, Y. G.

    1990-02-01

    Results are presented from measurements of the frequency drift rates for the maximum of the solar type III and IIIb-III bursts in the 25-12.5 MHz range during the period from 1973 to 1984. In the decameter wavelength range, the frequency drift rate is proportional to the value of observational frequency and has a weak dependence on the type of phase within the 11-yr solar cycle. The results are compared with results for the hectometer range, showing that the hectometer type II burst generation process generally occurs at the first harmonic. Data on the frequency dependence of the drift rates at hectometer and decameter wavelengths are consistent with the generation of type II bursts in the streamer at a burst source speed of about 0.3 s.

  16. Radio-frequency magnetron triode sputtering of cadmium telluride and zinc telluride films and solar cells

    NASA Astrophysics Data System (ADS)

    Sanford, Adam Lee

    The n-CdS/p-CdTe solar cell has been researched for many years now. Research groups use a variety of processes to fabricate thin-film CdS/CdTe cells, including physical vapor deposition, chemical vapor deposition, and RF diode sputtering. One of the central areas of investigation concerning CdS/CdTe cells is the problem of a Schottky barrier at the back contact. Even cells fabricated with ohmic back contacts degrade into Schottky barriers as the devices are used. This severely degrades power generation. One possible solution is to use p+-ZnTe as an interlayer between CdTe and the back contact. ZnTe is easily doped with Cu to be p-type. However, even contacts with this ZnTe interlayer degrade over time, because Cu is highly mobile and diffuses away from the contact towards the CdS/CdTe junction. Another possibility is to dope ZnTe with N. It has been demonstrated using molecular beam epitaxy and RF diode sputtering. In this study, CdTe films are fabricated using a variation of RF diode sputtering called triode sputtering. This technique allows for control of ion bombardment to the substrate during deposition. Also, a higher plasma density near the target is achieved allowing depositions at lower pressures. These films are characterized structurally to show the effects of the various deposition parameters. N-doped ZnTe films are also fabricated using this technique. These films are characterized electrically to show the effects of the various deposition parameters. Also, the effects of post-deposition annealing are observed. It is found that annealing at the right temperature can increase the conductivity of the films by a factor of 3 or more. However, annealing at higher temperatures decreases the conductivity to as low as 12% of the initial conductivity. Finally, RF triode sputtered N-doped ZnTe films are used as an interlayer at the back contact of a CdS/CdTe solar cell. The effects of annealing the device before and after contact deposition are observed

  17. A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.

    1984-01-01

    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.

  18. 1-eV GaInNAs solar cells for ultrahigh-frequency multijunction devices

    SciTech Connect

    Friedman, D.J.; Geisz, J.F.; Kurtz, S.R.; Olson, J.M.

    1998-09-01

    The authors demonstrate working prototypes of a GaInNAs-based solar cell lattice-matched to GaAs with photoresponse down to 1 eV. This device is intended for use as the third junction of future-generation ultrahigh-efficiency three- and four-junction devices. Under the AM1.5 direct spectrum with all the light higher in energy than the GaAs band gap filtered out, the prototypes have open-circuit voltages ranging from 0.35 to 0.44 V, short-circuit currents of 1.8 mA/cm{sup 2}, and fill factors from 61--66%. The short-circuit currents are of principal concern: the internal quantum efficiencies rise only to about 0.2. The authors discuss the short diffusion lengths which are the reason for this low photocurrent. As a partial workaround for the poor diffusion lengths, they demonstrate a depletion-width-enhanced variation of one of the prototype devices that grades off decreased voltage for increased photocurrent, with a short-circuit current of 6.5 mA/cm{sup 2} and an open-circuit voltage of 0.29 V.

  19. RADIAL DEPENDENCE OF THE FREQUENCY BREAK BETWEEN FLUID AND KINETIC SCALES IN THE SOLAR WIND FLUCTUATIONS

    SciTech Connect

    Bruno, R.; Trenchi, L.

    2014-06-01

    We investigate the radial dependence of the spectral break separating the inertial from the dissipation range in power density spectra of interplanetary magnetic field fluctuations, between 0.42 and 5.3 AU, during radial alignments between MESSENGER and WIND for the inner heliosphere and between WIND and ULYSSES for the outer heliosphere. We found that the spectral break moves to higher and higher frequencies as the heliocentric distance decreases. The radial dependence of the corresponding wavenumber is of the kind κ {sub b} ∼ R {sup –1.08}, in good agreement with that of the wavenumber derived from the linear resonance condition for proton cyclotron damping. These results support conclusions from previous studies which suggest that a cyclotron-resonant dissipation mechanism must participate in the spectral cascade together with other possible kinetic noncyclotron-resonant mechanisms.

  20. The Transport of Low-Frequency Turbulence in Astrophysical Flows. II. Solutions for the Super-Alfvenic Solar Wind

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Zank, G. P.; Bruno, R.; Telloni, D.; Hunana, P.; Marino, R.; Hu, Q.

    2015-12-01

    Zank et al. 2012 developed a low-frequency turbulence transport model for any magnetized inhomogeneous flow. The model describes the energy corresponding to forward and backward propagating modes, the residual energy, and the correlation lengths corresponding to forward and backward propagating modes and the residual energy. We apply the Zank et al. model to the super-Alfvénic solar wind, considering i) the heliosphere from 0.29 to 5 AU with and without the Alfvén velocity, and ii) the entire heliosphere from 0.29 to 100 AU in the absence of the Alfvén velocity. The model shows that (1) shear driving is responsible for the in situ generation of backward propagating modes, (2) the inclusion of the background magnetic field modifies the transport of turbulence in the inner heliosphere, (3) the correlation lengths of forward and backward propagating modes are almost equal beyond ˜30 AU, and (4) the fluctuating magnetic and kinetic energies in MHD turbulence are in approximate equipartition beyond ˜30 AU. Model results for each case are compared to observations, using Helios 2 and Ulysses observations for the first case, and Voyager 2 data for the second case. For the Voyager 2 observations, we calculate the turbulent quantities corresponding to a positive and negative sign of B_r and B_t, and the azimuthal angle φ=tan-1(B_t /B_r ). The model reproduces the observations quite well from 0.29 to 5 AU. The outer heliosphere (>1 AU) observations are well described by the model. The temporal and latitudinal dependence of the observations makes a detailed comparison difficult but the overall trends are well captured by the models. We conclude that the results reasonably validate the Zank et al. model for the super-Alfvénic solar wind.

  1. The low-high-low trend of type III radio burst starting frequencies and solar flare hard X-rays

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Vilmer, Nicole; Kontar, Eduard P.

    2014-07-01

    Aims: Using simultaneous X-ray and radio observations from solar flares, we investigate the link between the type III radio burst starting frequency and hard X-ray spectral index. For a proportion of events the relation derived between the starting height (frequency) of type III radio bursts and the electron beam velocity spectral index (deduced from X-rays) is used to infer the spatial properties (height and size) of the electron beam acceleration region. Both quantities can be related to the distance travelled before an electron beam becomes unstable to Langmuir waves. Methods: To obtain a list of suitable events we considered the RHESSI catalogue of X-ray flares and the Phoenix 2 catalogue of type III radio bursts. From the 200 events that showed both type III and X-ray signatures, we selected 30 events which had simultaneous emission in both wavelengths, good signal to noise in the X-ray domain and >20 s duration. Results: We find that >50% of the selected events show a good correlation between the starting frequencies of the groups of type III bursts and the hard X-ray spectral indices. A low-high-low trend for the starting frequency of type III bursts is frequently observed. Assuming a background electron density model and the thick target approximation for X-ray observations, this leads to a correlation between starting heights of the type III emission and the beam electron spectral index. Using this correlation we infer the altitude and vertical extents of the flare acceleration regions. We find heights from 183 Mm down to 25 Mm while the sizes range from 13 Mm to 2 Mm. These values agree with previous work that places an extended flare acceleration region high in the corona. We also analyse the assumptions that are required to obtain our estimates and explore possible extensions to our assumed model. We discuss these results with respect to the acceleration heights and sizes derived from X-ray observations alone. Appendices are available in electronic form

  2. SEARCH FOR GLOBAL f-MODES AND p-MODES IN THE {sup 8}B NEUTRINO FLUX

    SciTech Connect

    Lopes, Ilídio E-mail: ilopes@uevora.pt

    2013-11-01

    The impact of global acoustic modes on the {sup 8}B neutrino flux time series is computed for the first time. It is shown that the time fluctuations of the {sup 8}B neutrino flux depend on the amplitude of acoustic eigenfunctions in the region where the {sup 8}B neutrino flux is produced: modes with low n (or order) that have eigenfunctions with a relatively large amplitude in the Sun's core strongly affect the neutrino flux; conversely, modes with high n that have eigenfunctions with a minimal amplitude in the Sun's core have a very small impact on the neutrino flux. It was found that the global modes with a larger impact on the {sup 8}B neutrino flux have a frequency of oscillation in the interval 250 μHz to 500 μHz (or a period in the interval 30 minutes to 70 minutes), such as the f-modes (n = 0) for the low degrees, radial modes of order n ≤ 3, and the dipole mode of order n = 1. Their corresponding neutrino eigenfunctions are very sensitive to the solar inner core and are unaffected by the variability of the external layers of the solar surface. If time variability of neutrinos is observed for these modes, it will lead to new ways of improving the sound speed profile inversion in the central region of the Sun.

  3. The perspectives of high-rate low frequency a-Si:H films deposition: Solar cell application and stability control

    SciTech Connect

    Budaguan, B.G.; Meytin, M.N.; Radosel`sky, A.G.; Aivazov, A.A.

    1998-12-31

    The perspectives for solar cell application of structural inhomogeneous a-Si:H films deposited at high growth rates ({approximately}10--20 {angstrom}/s) from 100% SiH{sub 4} in low frequency (LF) 55kHz glow discharge plasma have been investigated. In this case the influence of structural inhomogeneity on dark dc and photoconductivities and light-induced defect generation kinetics (Staebler-Wronski effect, SWE) in a-Si:H films have been studied. The microstructure of films was investigated by IR spectroscopy analysis Microstructural parameter R = [SiH{sub 2}]/([SiH] + [SiH{sub 2}]), was used for the quantitative characterization of structural inhomogeneity in the material bulk. It was found that Fermi level position is fixed by deep defect states and does not depend on microstructure parameter R. The comparative analysis of photoconductivity modeling and ESR measurements have shown that recombination in a-Si:H films is controlled by neutral dangling bonds and doesn`t depend on parameter R. Meanwhile it was found that the kinetics of light-induced defect generation was controlled by SiH{sub 2} or clustered SiH groups content. Thus, the above results allow to perform an independent control of stability and electronic properties of a-Si:H films deposited in LF glow discharge plasma.

  4. Two-Point Observations of High- and Low-Frequency Variations of Helium Abundance in the Solar Win

    NASA Astrophysics Data System (ADS)

    Safrankova, J.; Cagas, P.; Nemecek, Z.; Prech, L.; Zastenker, G. N.; Riazantseva, M.

    2014-12-01

    Variations of the abundance of heavy species observed in the solar wind are usually attributed to spacecraft encounters with streams emanating from different places and altitudes in the source region and their further evolution is considered as being negligible. These conclusions are based on an analysis of highly averaged data and much less attention was devoted to variations on the time scale of seconds. The BMSW instrument onboard the Spektr-R spacecraft provides a high-time resolution data of the helium and proton fluxes and proton velocity, density, and temperature that suitable for investigations of rapid variations. The paper compares measurements in two points (Spektr-R and Wind) and focuses on the changes of helium abundance on this middle scale and on their correlations with variations of other parameters. We have found that only a low-frequency part of He abundance variations can be attributed to changes of the source region, whereas a significant portion of them could be generated by in-transit turbulence that is probably driven by the speed difference between the ion species.

  5. High Zn Content Single-phase RS-MgZnO Suitable for Solar-blind Frequency Applications

    SciTech Connect

    Liang, H. L.; Mei, Z. X.; Liu, Z. L.; Guo, Y.; Du, X. L.; Azarov, A. Yu.; Kuznetsov, A. Yu.; Hallen, A.

    2010-11-01

    Single-phase rock-salt MgZnO films with high Zn content were successfully fabricated on the templates of MgO (111)/{alpha}-sapphire (0001) by radio-frequency plasma assisted molecular beam epitaxy. The influence of growth temperature on epitaxy of MgZnO alloy films was investigated by the combined studies of crystal structures, compositions, and optical properties. It is found that the incorporation of Zn atoms into the rock-salt MgZnO films is greatly enhanced at low temperature, confirmed by in-situ reflection high-energy electron diffraction observations and ex-situ X-ray diffraction characterization. Zn fraction in the single-phase rock-salt Mg{sub 0.53}Zn{sub 0.47}O film was determined by Rutherford backscattering spectrometry. Optical properties of the films were investigated by transmittance spectroscopy and reflectance spectroscopy, both of which demonstrate the solar-blind band gap and its dependence on Zn content.

  6. Asymmetries of solar oscillation line profiles

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Jefferies, S. M.; Harvey, J. W.; Osaki, Y.; Pomerantz, M. A.

    1993-01-01

    Asymmetries of the power spectral line profiles of solar global p-modes are detected in full-disk intensity observations of the Ca II K Fraunhofer line. The asymmetry is a strong function of temporal frequency being strongest at the lowest frequencies observed and vanishing near the peak of the power distribution. The variation with spherical harmonic degree is small. The asymmetry is interpreted in terms of a model in which the solar oscillation cavity is compared to a Fabry-Perot interferometer with the source slightly outside the cavity. A phase difference between an outward direct wave and a corresponding inward wave that passes through the cavity gives rise to the asymmetry. The asymmetry is different in velocity and intensity observations. Neglecting the asymmetry when modeling the power spectrum can lead to systematic errors in the measurement of mode frequencies of as much as 10 exp -4 of the mode frequency. The present observations and interpretation locate the source of the oscillations to be approximately 60 km beneath the photosphere, the shallowest position suggested to date.

  7. On the choice of parameters in solar-structure inversion

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. C.; Basu, Sarbani; Christensen-Dalsgaard, J.

    1999-10-01

    The observed solar p-mode frequencies provide a powerful diagnostic of the internal structure of the Sun and permit us to test in considerable detail the physics used in the theory of stellar structure. Among the most commonly used techniques for inverting such helioseismic data are two implementations of the optimally localized averages (OLA) method, namely the subtractive optimally localized averages (SOLA) and multiplicative optimally localized averages (MOLA). Both are controlled by a number of parameters, the proper choice of which is very important for a reliable inference of the solar internal structure. Here we make a detailed analysis of the influence of each parameter on the solution and indicate how to arrive at an optimal set of parameters for a given data set.

  8. A Study of the Parameters for Solar Structure Inversion Methods

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. C.; Basu, Sarbani; Christensen-Dalsgaard, J.

    The observed solar p-mode frequencies provide an extremely useful diagnostic of the internal structure of the Sun, and permit us to test in considerable detail the physics used in the theory of stellar structure. Two implementations of the optimally localized averages (OLA) method are amongst the most commonly used techniques for inverting helioseismic data, namely the Subtractive Optimally Localized Averages (SOLA) and Multiplicative Optimally Localized Averages (MOLA). In both of them, there are a number of parameters that must be chosen in order to find the solution. Proper choice of the parameters is very important to determine correctly the variation of the internal structure along the solar radius. In this work, we make a detailed analysis on the influence of each parameter on the solution and indicate how to arrive at an optimal set of parameters for a given data set.

  9. Resolving the source of the solar acoustic oscillations: What will be possible with DKIST?

    NASA Astrophysics Data System (ADS)

    Rast, Mark; Martinez Pillet, Valentin

    2016-05-01

    The solar p-modes are likely excited by small-scale convective dynamics in the solar photosphere, but the detailed source properties are not known. Theoretical models differ and observations are yet unable to differentiate between them. Resolving the underlying source events is more than a curiosity. It is important to the veracity of global helioseismic measurements (including local spectral methods such as ring diagram analysis) because global p-mode line shapes and thus accurate frequency determinations depend critically on the relationship between intensity and velocity during the excitation events. It is also fundamental to improving the accuracy of the local time-distance measurements because in these kernel calculations depend on knowledge of the source profile and the properties of the excitation noise. The Daniel K. Inouye Solar Telescope (DKIST) will have the spatial resolution and spectral range needed to resolve the solar acoustic excitation events in both time and space (horizontally and with height) using multi-wavelength observations. Inversions to determine the dynamic and thermodynamic evolution of the discrete small-scale convective events that serve as acoustic sources may also be possible, though determination of the pressure fluctuations associated with the sources is a challenge. We describe the DKIST capabilities anticipated and the preliminary work needed to prepare for them.

  10. INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY ALFVEN-WAVE TURBULENCE

    SciTech Connect

    Chandran, Benjamin D. G.; Dennis, Timothy J.; Quataert, Eliot; Bale, Stuart D. E-mail: tim.dennis@unh.edu E-mail: bale@ssl.berkeley.edu

    2011-12-20

    We develop a one-dimensional solar-wind model that includes separate energy equations for the electrons and protons, proton temperature anisotropy, collisional and collisionless heat flux, and an analytical treatment of low-frequency, reflection-driven, Alfven-wave (AW) turbulence. To partition the turbulent heating between electron heating, parallel proton heating, and perpendicular proton heating, we employ results from the theories of linear wave damping and nonlinear stochastic heating. We account for mirror and oblique firehose instabilities by increasing the proton pitch-angle scattering rate when the proton temperature anisotropy exceeds the threshold for either instability. We numerically integrate the equations of the model forward in time until a steady state is reached, focusing on two fast-solar-wind-like solutions. These solutions are consistent with a number of observations, supporting the idea that AW turbulence plays an important role in the origin of the solar wind.

  11. Study of the lacustrine phytoplankton productivity dependence on solar radiation, on the basis of direct high-frequency measurements

    NASA Astrophysics Data System (ADS)

    Provenzale, Maria; Ojala, Anne; Heiskanen, Jouni; Erkkilä, Kukka-Maaria; Mammarella, Ivan; Hari, Pertti; Vesala, Timo

    2016-04-01

    One of the main components of the carbon cycle in lakes is phytoplankton. Its in situ photosynthesis and respiration are usually studied with traditional methods (dark and light bottle method, 14C labelling technique). These methods, relying on sampling and incubation, may lead to unrealistic results. They also have a poor temporal resolution, which does not allow the non-linear relationship between photosynthetically active solar radiation (PAR) and photosynthesis to be properly investigated. As a consequence, the phytoplankton net primary productivity (NPP) cannot be parameterised as a function of ambient variables. In 2008 an innovative free-water approach was proposed. It is based on non-dispersive infrared air CO2 probes that, by building an appropriate system, can be used to measure the CO2 concentration in the water at a high-frequency. At that time, the method was tested only on 3 days of data. Here, we deployed it on a boreal lake in Finland for four summers, in order to calculate the NPP and verify its dependence on PAR. The set-up was completed by an eddy-covariance system and water PAR and temperature sensors. In analogy with the procedure typically used in terrestrial ecology, we obtained the phytoplankton NPP computing the mass balance of CO2 in the mixed layer of the lake, i.e. the superficial layer where the conditions are homogeneous and most of the photosynthetic activity takes place. After calculating the NPP , we verified its dependence on PAR. The theoretical model we used was a saturating Michaelis-Menten curve, in which the variables are water temperature and PAR. The equation also contains parameters typical of the phytoplankton communities, which represent their maximum potential photosynthetic rate, their half-saturation constant and their basal respiration. These parameters allow the NPP to be parameterised as a function of T and PAR. For all the analysed year, we found a very good agreement between theory and data (R2 ranged from 0.80 to

  12. Solar Forbidden Oxygen, Revisited

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2008-10-01

    Recent large reductions in the solar oxygen abundance, based on synthesis of photospheric O I, OH, and CO absorptions with 3D convection models, have provoked consternation in the helioseismology community: the previous excellent agreement between measured p-mode oscillation frequencies and predictions based on the recommended epsilonO of a decade ago (680 parts per million [ppm] relative to hydrogen) unravels at the new low value (460 ppm). In an attempt to reconcile these conflicting results, the formation of pivotal [O I] λ6300, which is blended with a weak Ni I line, has been reconsidered, exploiting an alternative 3D model (albeit only a single temporal snapshot). And while there are several areas of agreement with the earlier [O I] studies of Allende Prieto, Asplund, and others, there is one crucial point of disagreement: the epsilonO derived here is significantly larger, 650 +/- 65 ppm (although at the expense of a ~30% weaker Ni I line than expected from the recommended nickel abundance). One innovation is a more robust treatment of the solar wavelengths: the balance between the components of the [O I] + Ni I blend is sensitive to velocity errors of only a few hundred m s-1. A second improvement is enforcement of a "continuum calibration" to ensure a self-consistent 3D temperature scale. Because of the renewed agreement between the linchpin tracer [O I] and seismic oxygen, the proposed downward slump of the solar metallicity and the perceived "oxygen crisis" now can be said to rest on less secure footings.

  13. The quest for the solar g modes

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Belkacem, K.; Broomhall, A.-M.; Chaplin, W. J.; Gough, D. O.; Houdek, G.; Provost, J.; Baudin, F.; Boumier, P.; Elsworth, Y.; García, R. A.; Andersen, B. N.; Finsterle, W.; Fröhlich, C.; Gabriel, A.; Grec, G.; Jiménez, A.; Kosovichev, A.; Sekii, T.; Toutain, T.; Turck-Chièze, S.

    2010-02-01

    Solar gravity modes (or g modes)—oscillations of the solar interior on which buoyancy acts as the restoring force—have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well-observed acoustic modes (or p modes). The relative high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this article, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made—from both data and data-analysis perspectives—to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.

  14. Low-frequency noise, microplasma, and electroluminescence measurements as faster tools to investigate quality of monocrystalline-silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chobola, Zdenek; Lunak, Miroslav; Vanek, Jiri; Barinka, Radim

    2013-05-01

    Two sets of c-Si solar cells varying in front side phosphorus doped emitters were produced by standard screen printing techniques. The first group of samples, 3121, was prepared by a combination of standard washing and a bath with a highly dilute HF before diffusion of n+-emitter. The second group of samples, 3122, was treated only with standard washing. A comparison of solar cell conversion efficiency and results from a noise spectroscopy, microplasma, and electroluminescence presence are presented. As was already shown in previous publications noise spectral density reflects the quality of solar cells, and thus represents an alternative advanced cell diagnostic tool. Our results confirm this relationship and moreover bring clear evidence for the maximum spectral noise voltage density being related to the emitter structure. The best results were reached for the group of solar cells in sample 3122, which was treated only with standard washing.

  15. What Can We Learn on the Structure and the Dynamics of the Solar Core with g Modes?

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Ballot, J.; Eff-Darwich, A.; García, R. A.; Jiménez-Reyes, S. J.; Korzennik, S. G.; Turck-Chièze, S.

    2009-12-01

    The detection of the signature of dipole gravity modes has opened the path to study the solar inner radiative zone. Indeed, g modes should be the best probes to infer the properties of the solar nuclear core that represents more than half of the total mass of the Sun. Concerning the dynamics of the solar core, we can study how future observations of individual g modes could enhance our knowledge of the rotation profile of the deep radiative zone. Applying inversions on a set of real p-mode splittings coupled with either one or several g modes, we have checked the improvement of the inferred rotation profile when different error bars are considered for the g modes. Moreover, using a new methodology based on the analysis of the almost constant separation of the dipole gravity modes, we can introduce new constraints on solar models. For that purpose, we can compare g-mode predictions computed from several models including different physical inputs with the g-mode asymptotic signature detected in Global Oscillations at Low Frequencies (GOLF) data and calculate the correlation. This work shows the great consistency between the signature of dipole gravity modes and our knowledge of p-modes: incompatibility of data with a present standard model including the Asplund composition.

  16. The scattering of f- and p-modes from ensembles of thin magnetic flux tubes: an analytical approach

    SciTech Connect

    Hanson, Chris S.; Cally, Paul S.

    2014-08-20

    Motivated by the observational results of Braun, we extend the model of Hanson and Cally to address the effect of multiple scattering of f and p modes by an ensemble of thin vertical magnetic flux tubes in the surface layers of the Sun. As in the observational Hankel analysis, we measure the scatter and phase shift from an incident cylindrical wave in a coordinate system roughly centered in the core of the ensemble. It is demonstrated that although thin flux tubes are unable to interact with high-order fluting modes individually, they can indirectly absorb energy from these waves through the scatters of kink and sausage components. It is also shown how the distribution of absorption and phase shift across the azimuthal order m depends strongly on the tube position as well as on the individual tube characteristics. This is the first analytical study into an ensembles multiple-scattering regime that is embedded within a stratified atmosphere.

  17. The Scattering of f- and p-modes from Ensembles of Thin Magnetic Flux Tubes: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Hanson, Chris S.; Cally, Paul S.

    2014-08-01

    Motivated by the observational results of Braun, we extend the model of Hanson & Cally to address the effect of multiple scattering of f and p modes by an ensemble of thin vertical magnetic flux tubes in the surface layers of the Sun. As in the observational Hankel analysis, we measure the scatter and phase shift from an incident cylindrical wave in a coordinate system roughly centered in the core of the ensemble. It is demonstrated that although thin flux tubes are unable to interact with high-order fluting modes individually, they can indirectly absorb energy from these waves through the scatters of kink and sausage components. It is also shown how the distribution of absorption and phase shift across the azimuthal order m depends strongly on the tube position as well as on the individual tube characteristics. This is the first analytical study into an ensembles multiple-scattering regime that is embedded within a stratified atmosphere.

  18. Crowdsourcing a Spatial Temporal Study of Low Frequency (LF) Propagation Effects Due to a Total Solar Eclipse: Engaging Students and Citizens in STEM

    NASA Astrophysics Data System (ADS)

    Lumsden, N. A.; Lukes, L.; Nelson, J.; Liles, W. C.; Kerby, K. C.; Crowov, F.; Rockway, J.

    2015-12-01

    The first experiments to study the effects of a solar eclipse on radio wave propagation were done in 1912 utilizing Low Frequency (LF; 30 - 300 kHz) radio waves at a handful of sites across Europe before any theory of the ionosphere had been confirmed and even before the word "ionosphere" existed. In the 1920s, a large cooperative experiment was promoted in the U.S. by Scientific American magazine. They collected over 2000 reports of AM broadcast stations from throughout the U.S. Unfortunately, many of the submissions were unusable because they lacked critical information such as date, time or location. We propose to use the 2017 solar eclipse over the continental U.S. to conduct the first wide-area LF propagation study. To perform this study, we plan to crowdsource the collection of the data by engaging student groups, citizens, and the scientific community. The tools for the different collection stations will consist of a simple homemade antenna, a simple receiver to convert the radio frequency (RF) signals to audio frequencies and a smart phone app. By using the time, date and location features of the smart phone, the problems experienced in the Scientific American experiment will be minimized. By crowdsourcing the observation sites, a number of different short, medium and long-paths studies can be obtained as the total eclipse crosses the continental U.S. The transmitter for this experiment will be WWVB located near Fort Collins, Colorado on 60.000 kHz. This is a U.S. frequency standard that is operated by NIST and transmits time codes. A second frequency, 55.500 kHz transmitted by a LF station in Dixon, CA is also being considered for this experiment. We will present an overall strategy for recruiting participants/crowdsourcing the RF collections during the 2017 total solar eclipse. Preliminary coverage calculations will be presented for WWVB and Dixon, as well as path loss calculations that can be expected during the solar eclipse condition. We will also

  19. Solar flare soft-X-ray spectra from Very Low Frequency observations of ionospheric modulations: Possibility of uninterrupted observation of non-thermal electron-plasma interaction in solar atmosphere.

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    The hard and soft X-ray regions of a solar flare spectrum are the manifestation of interaction, namely of bremsstrahlung radiation of the non-thermal electrons moving inward in the denser part of the solar atmosphere with the plasma heated by those energetic electrons. The continuous and uninterrupted knowledge of X-ray photon spectra of flares are of great importance to derive information on the electron acceleration and hence time-evolution of energy transport and physics during solar flares. Satellite observations of solar X-ray spectrum are often limited by the restricted windows in each duty cycle to avoid the interaction of detectors and instruments with harmful energetic charge particles. In this work we have tried to tackle the problem by examining the possibility of using Earth's ionosphere and atmosphere as the detector of such transient events. Earth's lower ionosphere and upper atmosphere are the places where the X-rays and gamma-rays from such astronomical sources are absorbed. The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectra and hence vary from one source to another. Obviously the electron and ion density vs. altitude profile has the imprint of the incident photon spectrum. As a preliminary exercise we developed a novel deconvolution method to extract the soft X-ray part of spectra of some solar flares of different classes from the electron density profiles obtained from Very Low Frequency (VLF) observation of lower ionosphere during those events. The method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. with the possibilities of probing even lower parts of the atmosphere.

  20. THE QUASI-BIENNIAL PERIODICITY AS A WINDOW ON THE SOLAR MAGNETIC DYNAMO CONFIGURATION

    SciTech Connect

    Simoniello, R.; Turck-Chieze, S.; Baldner, C.; Finsterle, W.

    2013-03-10

    Manifestations of the solar magnetic activity through periodicities of about 11 and 2 years are now clearly seen in all solar activity indices. In this paper, we add information about the mechanism driving the 2-year period by studying the time and latitudinal properties of acoustic modes that are sensitive probes of the subsurface layers. We use almost 17 years of high-quality resolved data provided by the Global Oscillation Network Group to investigate the solar cycle changes in p-mode frequencies for spherical degrees l from 0 to 120 and 1600 {mu}Hz {<=}{nu} {<=} 3500 {mu}Hz. For both periodic components of solar activity, we locate the origin of the frequency shift in the subsurface layers and find evidence that a sudden enhancement in amplitude occurs in just the last few hundred kilometers. We also show that, in both cases, the size of the shift increases toward equatorial latitudes and from minimum to maximum solar activity, but, in agreement with previous findings, the quasi-biennial periodicity (QBP) causes a weaker shift in mode frequencies and a slower enhancement than that caused by the 11-year cycle. We compare our observational findings with the features predicted by different models, that try to explain the origin of this QBP and conclude that the observed properties could result from the beating between a dipole and quadrupole magnetic configuration of the dynamo.

  1. Validation of solar-cycle changes in low-degree helioseismic parameters from the Birmingham Solar-Oscillations Network

    NASA Astrophysics Data System (ADS)

    Howe, R.; Davies, G. R.; Chaplin, W. J.; Elsworth, Y. P.; Hale, S. J.

    2015-12-01

    We present a new and up-to-date analysis of the solar low-degree p-mode parameter shifts from the Birmingham Solar-Oscillations Network over the past 22 years, up to the end of 2014. We aim to demonstrate that they are not dominated by changes in the asymmetry of the resonant peak profiles of the modes and that the previously published results on the solar-cycle variations of mode parameters are reliable. We compare the results obtained using a conventional maximum-likelihood estimation algorithm and a new one based on the Markov Chain Monte Carlo (MCMC) technique, both taking into account mode asymmetry. We assess the reliability of the solar-cycle trends seen in the data by applying the same analysis to artificially generated spectra. We find that the two methods are in good agreement. Both methods accurately reproduce the input frequency shifts in the artificial data and underestimate the amplitude and width changes by a small amount, around 10 per cent. We confirm earlier findings that the frequency and line width are positively correlated, and the mode amplitude anticorrelated, with the level of solar activity, with the energy supplied to the modes remaining essentially unchanged. For the mode asymmetry the correlation with activity is marginal, but the MCMC algorithm gives more robust results than the MLE (Maximum-Likelihood Estimate). The magnitude of the parameter shifts is consistent with earlier work. There is no evidence that the frequency changes we see arise from changes in the asymmetry, which would need to be much larger than those observed in order to give the observed frequency shift.

  2. Helioseismic Ring-diagram Diagnostics of Solar Fares.

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric

    2014-06-01

    Flares are known to excite waves in the solar atmosphere. Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, also showed they excite p-modes. We confirm and extend here these results by:-applying the same analysis to other locations on the Sun at the time of the Halloween flare-analyzing another event also showing a signature of p-mode excitation-looking in details at the results of the ring diagrams analysis in terms of noise fitting.The Halloween flare present an apparent localized excitation of p-modes, similar to what is observed for the other event analyzed.

  3. Prediction soft-X-ray spectrum of solar flares from Very Low Frequency observations: an inverse problem in ionospheric science

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    Earth's lower ionosphere and upper atmosphere absorb X-rays and gamma-rays from astronomical sources such as solar flares, Short Gamma ray Repeaters (SGRs) or Gamma Ray Bursts (GRBs). The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectrum and hence vary from one source to another. Obviously the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we examine the possibility of inverting the electron density-height profiles uniquely by deconvolution of the VLF amplitude signal to obtain information on the injected spectrum. We have been able to reproduce the soft-X-ray part of the injected spectra from two different classes of solar flares with satisfactory accuracy. With the possibilities of probing even lower parts of the atmosphere, the method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. We show that to a certain accuracy, the Earth's atmosphere may be used as a gigantic detector of relatively strong ionizing extra-terrestrial events.

  4. Inverse problem in ionospheric science: prediction of solar soft-X-ray spectrum from very low frequency radiosonde results

    NASA Astrophysics Data System (ADS)

    Palit, S.; Ray, S.; Chakrabarti, S. K.

    2016-05-01

    X-rays and gamma-rays from astronomical sources such as solar flares are mostly absorbed by the Earth's atmosphere. Resulting electron-ion production rate as a function of height depends on the intensity and wavelength of the injected spectrum and therefore the effects vary from one source to another. In other words, the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we investigate whether we can invert the problem uniquely by deconvolution of the VLF amplitude signal to obtain the details of the injected spectrum. We find that it is possible to do this up to a certain accuracy. This leads us to the possibility of uninterrupted observation of X-ray photon spectra of solar flares that are often hindered by the restricted observation window of space satellites to avoid charge particle damages. Such continuous means of observation are essential in deriving information on time evolution of physical processes related to electron acceleration and interaction with plasma in solar atmosphere. Our method is useful to carry out a similar exercise to infer the spectra of more energetic events such as the Gamma Ray Bursts (GRBs), Soft Gamma-ray Repeaters (SGRs) etc., by probing even the lower part of the Earth's atmosphere. We thus show that to certain extent, the Earth's atmosphere could be used as a gigantic detector of relatively strong astronomical events.

  5. Towards solar activity maximum 24 as seen by GOLF and VIRGO/SPM instruments

    NASA Astrophysics Data System (ADS)

    García, R. A.; Salabert, D.; Mathur, S.; Régulo, C.; Ballot, J.; Davies, G. R.; Jiménez, A.; Simoniello, R.

    2013-06-01

    All p-mode parameters vary with time as a response to the changes induced by the cyclic behavior of solar magnetic activity. After the unusual long solar-activity minimum between cycles 23 and 24 -where the p-mode parameters have shown a different behavior than the surface magnetic proxies- we analyze the temporal variation of low-degree p-mode parameters measured by GOLF (in velocity) and VIRGO (in intensity) Sun-as-a-star instruments on board SoHO. We compare our results with other activity proxies.

  6. Orbital changes, variation in solar activity and increased anthropogenic activities: controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy

    NASA Astrophysics Data System (ADS)

    Vannière, B.; Magny, M.; Joannin, S.; Simonneau, A.; Wirth, S. B.; Hamann, Y.; Chapron, E.; Gilli, A.; Desmet, M.; Anselmetti, F. S.

    2012-09-01

    Two lacustrine sediment cores from Lake Ledro in Northern Italy were studied to produce chronologies of flood events for the past 10 000 yr. For this purpose, we have developed an automatic method that objectively identifies the sedimentary imprint of river floods in the downstream lake basin. The automatic counting of flood deposits was based on colour data extracted from processed core photographs, and the count data were processed to capture the flood signal. Automatic quantification was compared with naked-eye counting. Counts were performed twice on the proximal and distal cores to provide an objective and reproducible record of flood frequency. Geophysical and geochemical analyses made it possible to distinguish event deposits from background sedimentation. Flood frequency and reconstructed sedimentary dynamics were compared with lake-level changes and pollen dynamics inferred from vegetation data. The data suggest a record marked by low flood frequency during the early and middle Holocene (10 000-4500 cal BP). Only modest increases during short intervals are recorded at ca. 8000, 7500, and 7100 cal BP. The last third of the Holocene is characterised by a shift toward increased flood frequency at ca. 4500-4000 cal BP. With the exception of two short intervals around 2900-2500 and 1800-1400 cal BP, which show a slightly reduced number of floods, the trend of increasing flood frequency prevailed until the 20th century, reaching a maximum between the 16th and the 19th centuries. Brief-flood frequency increases recorded during the early and middle Holocene can be attributed to cold climatic oscillations. On a centennial time scale, major changes in flood frequency, such as those observed at ca. 4500 and 500 cal BP, can be attributed to large-scale climatic changes such as the Neo-glacial and Little Ice Age, which are under orbital and possibly solar control. The role of climate as the main forcing factor in flood activity is supported by the lake-level records

  7. Preparation of triple junction a-Si:H nip based solar cells at deposition rates of 10{angstrom}/s using a very high frequency technique

    SciTech Connect

    Jones, S.J.; Deng, X.; Liu, T.; Izu, M.

    1999-07-01

    In an effort to find an alternative deposition method to the standard low deposition rate 13.56 MHz PECVD technique, the feasibility of using a 70 MHz rf plasma frequency to prepare a-Si:H based i-layer materials at high rates for nip based triple-junction solar cells has been tested. As a prelude to multi-junction cell fabrication, the deposition conditions used to make single-junction a-Si:H and a-SiGe:H cells using this Very High Frequency (VHF) method have been varied to optimize the material quality and the cell efficiencies. It was found that the efficiencies and the light stability for both a-Si:H and a-SiGe:H single-junction cells remain relatively constant as the i-layer deposition rate is varied from 1 to 10 {angstrom}/s. Also these stable efficiencies are similar to those for cells made at low deposition rates (1 {angstrom}/s) using the standard 13.56 MHz PECVD technique and the same deposition equipment. Using the knowledge obtained in the fabrication of the single-junction devices, a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cells have been fabricated with all of the i-layers prepared using the VHF technique and deposition rates near 10 {angstrom}/s. Thin doped layers for these devices were prepared using the standard 13.56 MHz rf frequency and deposition rates near 1 {angstrom}/s. Pre-light soaked efficiencies of greater than 10% have been obtained for these cells prepared at the high rates. In addition, after 600 hrs. of light soaking under white light conditions, the cell efficiencies degraded by only 10--13%, values similar to the degree of degradation for high efficiency triple-junction cells made by the standard 13.56 MHz method using i-layer deposition rates near 1 {angstrom}/s. Thus, use of this VHF method in the production of large area a-Si:H based multi-junction solar modules will allow for higher i-layer deposition rates, higher module throughput and reduced module cost.

  8. The Structure of the Solar Core: an Observer's Point of View

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.

    Since the beginning of helioseismology, most of the internal and dynamics structure of the Sun has been revealed or so we thought. The last island where our powerful tools start to fail is the solar core, where nuclear reactions take place. With the advent of SOHO and GONG, we have now a quality of helioseismic data without precedence that should enable us to understand better the physics of the deepest solar regions. This goal can be partially achieved by measuring low-degree rotational splitting of p-modes, and by detecting the elusive g-modes. In a first part, I will review the fitting techniques that are being used for inferring the rotational splittings of low-degree p-modes. I will particularly focus on Fourier spectra fitting developped by Schou (1992) and refined by Appourchaux et al (1998). I will show how one can visualize from the data, the leakage matrix and how one can clean the data from the mode leakages. I will give examples of systematic errors introduced by the leakage matrix and by modes of aliasing degrees. I will also compare the Fourier spectra fitting technique to others techniques that use power spectra. I will give some recent results from SOHO and GONG. In a second part, I will report on the progress of the Phoebus group for detecting g-modes. The Phoebus group is composed of team members of BiSON, VIRGO and SOI/MDI. I will summarize some of the techniques we used for finding g-modes, and how one can use those for finding low-order low-frequency p-modes. I will, most probably, not report on g-mode detection but most likely stress that the future ahead of us is brighter than ever.

  9. Solar Shape Changes and Oscillations from Space (P15)

    NASA Astrophysics Data System (ADS)

    Damé, L.

    2006-11-01

    The diameter was observed to be constant over the last solar cycles and, as such, is not a "proper" solar-terrestrial "climate" indicator. Ground measurements with small telescopes are spurious diffraction and seeing affected, the Maunder Minimum ones of Picard during the XVII century not being an exception. Large instruments (like the 45 cm Gregory's of A. Wittmann in Locarno and Tenerife) that average seeing cells see no variations (< 40 mas) and, as well, space instruments (MDI/SOHO) that are naturally not affected by turbulence. We present the four approaches, Wittmann on ground with large telescopes, Kuhn et al. (2004) who used the six pixels limb data of MDI, Antia (2003) with a completely different method since using the ultra-precise frequency variation of the f-modes, and our approach (Damé and Cugnet, 2006) using seven years of MDI filtergrams data (150 000 photograms and magnetograms). These four careful analyses converge towards the same insignificant variations (below 15 mas for space experiments or even less: 0.6 km, 0.8 mas for the helioseismology approach!). Following Antia, we conclude that: "If a careful analysis is performed, then it turns out that there is no evidence for any variation in the solar radius." There were no theoretical reasons for large solar radius variations and there is no observational evidence for them with consistent ground and space observations. This being said, the radius measurements are of interest for the solar shape changes that might occur along the cycle (sub- surface convective flows?). Radius oscillations (but higher in the atmosphere, further in the UV: 220 nm) might also bring up low order p-modes and, eventually, g-modes if ever accessible. At the level of formation of the 220 nm continuum there is the maximum magnification of the p-modes and intensity oscillations. 220 nm is also the Lyman Alpha absorption region and ozone formation layer. A New Solar Shape and Oscillation Telescope (NSSOT) is proposed and

  10. Aspects of the Solar Tachocline

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1997-01-01

    The splitting of the frequencies of p-mode multiplets enables information to be gained about the internal rotation of the sun. Such data have revealed a transition at the base of the convection zone from differential rotation similar to that observed at the surface to almost solid-body rotation in the radiative interior. This transition region, known as the tachocline, has been found to be relatively narrow and centered below the base of the convection zone. In this paper, the evolution of the transition region is investigated numerically. Without a large anisotropic viscosity, the depth to which it would spread in one solar age, under the assumption of a constant prescribed differential rotation at the base of the convection zone, is found to be greater than its extent as inferred from helioseismology. In the second part of the paper a highly anisotropic turbulent viscosity with a large horizontal component, as suggested by Spiegel & Zahn (1992), is assumed. In this case, a steady tachocline is formed in which the advection of angular momentum balances the Reynolds stresses. The horizontal component of turbulent viscosity required to match the thickness of the tachocline to that obtained by helioseismology, is estimated to be 5 x 1O sq cm/s The transport of helium is studied in this case and is found to yield a sound-speed increase similar to that required by helioseismology.

  11. Intensity/frequency indicator for detection in space the high values of the incident solar or laser optical radiation in comparison with the appropriate maximum permissible exposure

    NASA Astrophysics Data System (ADS)

    Tsitomeneas, S.; Petropoulos, B.

    2001-08-01

    The solar or laser optical radiation impact to humans in space depends on the intensity, on the exposure type (direct or indirect) & duration and on the matching of radiation wavelength to tissue characteristics. The main protection factor in space is the application of exposure limits. This paper describes the main biological optical interaction parameters, the optical exposure hazards and the development of a small active lightweight indicator, with output beeper rate depended to the ratio of optical irradiance / exposure limit. The indicator may be used as warning element on the side of helmets, goggles, spectacles, etc, with low power consumption. Electronically the indicator is an intensity/frequency converter, based on the value of the ratio of exposure / exposure limits, with audio & light beepers like the indication output of the ionizing (radioactive) radiation monitors.

  12. Intensity/frequency indicator for detection in space: the high values of the incident solar or laser optical radiation in comparison with the appropriate maximum permissible exposure.

    PubMed

    Tsitomeneas, S; Petropoulos, B

    2001-01-01

    The solar or laser optical radiation impact to humans in space depends on the intensity, on the exposure type (direct or indirect) & duration and on the matching of radiation wavelength to tissue characteristics. The main protection factor in space is the application of exposure limits. This paper describes the main biological optical interaction parameters, the optical exposure hazards and the development of a small active lightweight indicator, with output beeper rate depended to the ratio of optical irradiance/exposure limit. The indicator may be used as warning element on the side of helmets, goggles, spectacles, etc, with low power consumption. Electronically the indicator is an intensity/frequency converter, based on the value of the ratio of exposure/exposure limits, with audio & light beepers like the indication output of the ionizing (radioactive) radiation monitors.

  13. Excitation of Low-frequency Waves in the Solar Wind by Newborn Interstellar Pickup Ions H+ and He+ as Seen by Voyager at 4.5 AU

    NASA Astrophysics Data System (ADS)

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Murphy, Neil; Schwadron, Nathan A.

    2010-12-01

    We report the observation of a spectral enhancement in the magnetic field fluctuations measured by the MAG instrument on the Voyager 2 spacecraft during 4.5 hr on DOY 7, 1979 at a heliocentric radial position of 4.5 AU. This time period is contained within a solar wind rarefaction when the large-scale interplanetary magnetic field was nearly radial. The frequency range and polarization of the enhanced fluctuations are consistent with waves generated by newly ionized interstellar H+ and He+. We show sunward propagation of the waves via a cross-helicity analysis. We compare the observation with a theoretical model and find reasonable agreement given the model assumptions. This event is the first indication of pickup ion-generated waves seen at Voyager. It is also the first identification of pickup He+ waves by any spacecraft.

  14. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Maslova, O.; Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P.

    2015-09-01

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  15. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    SciTech Connect

    Maslova, O.; Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P.

    2015-09-21

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  16. Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices

    NASA Astrophysics Data System (ADS)

    Sharma, Saumya

    Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30microV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes. Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that

  17. A New Challenge to Solar Dynamo Models from Helioseismic Observations: The Latitudinal Dependence of the Progression of the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Simoniello, R.; Tripathy, S. C.; Jain, K.; Hill, F.

    2016-09-01

    The onset of the solar cycle at mid-latitudes, the slowdown in the drift of sunspots toward the equator, the tail-like attachment, and the overlap of successive cycles at the time of minimum activity are delicate issues in models of the αΩ dynamo wave and the flux transport dynamo. Very different parameter values produce similar results, making it difficult to understand the origin of the properties of these solar cycles. We use helioseismic data from the Global Oscillation Network Group to investigate the progression of the solar cycle as observed in intermediate-degree global p-mode frequency shifts at different latitudes and subsurface layers, from the beginning of solar cycle 23 up to the maximum of the current solar cycle. We also analyze those for high-degree modes in each hemisphere obtained through the ring-diagram technique of local helioseismology. The analysis highlights differences in the progression of the cycle below 15° compared to higher latitudes. While the cycle starts at mid-latitudes and then migrates equatorward/poleward, the sunspot eruptions of the old cycle are still ongoing below 15° latitude. This prolonged activity causes a delay in the onset of the cycle and an overlap of successive cycles, whose extent differs in the two hemispheres. Then the activity level rises faster, reaching a maximum characterized by a single-peak structure as opposed to the double peak at higher latitudes. Afterwards the descending phase shows up with a slower decay rate. The latitudinal properties of the progression of the solar cycle highlighted in this study provide useful constraints for discerning among the multitude of solar dynamo models.

  18. Low-frequency observations of drifting, non-thermal continuum radio emission associated with the solar coronal mass ejections

    SciTech Connect

    Ramesh, R.; Kishore, P.; Barve, Indrajit V.; Kathiravan, C.; Mulay, Sargam M.; Wang, T. J.

    2013-11-20

    Low-frequency (80 MHz) imaging and spectral (≈85-20 MHz) observations of moving type IV radio bursts associated with coronal mass ejections (CMEs) from the Sun on three different days are reported. The estimated drift speed of the bursts is in the range ≈150-500 km s{sup –1}. We find that all three bursts are most likely due to second harmonic plasma emission from the enhanced electron density in the associated white-light CMEs. The derived maximum magnetic field strength of the latter is B ≈ 4 G at a radial distance of r ≈ 1.6 R {sub ☉}.

  19. Actinometric measurement of j[O[sub 3]-O([sup 1]D)], the solar photolysis frequency of ozone to singlet D oxygen atoms

    SciTech Connect

    Tesfamariam, B.S.

    1992-01-01

    A chemical actinometer for measuring the solar photolysis frequency of ozone to [sup 1]D oxygen atoms, j[O[sub 3]-O([sup 1]D)], has been built. Ozone, generated by oxygen flowing through an electric discharge ozonizer, is mixed with helium and nitrous oxide. The mixture of gases passes through traps into an ozone meter and into a photolysis tube that can be exposed to sunlight. Sunlight in the wavelength region less than 320 nm, photolyzes ozone into oxygen molecules and excited oxygen atoms that are in [sup 1]D state. The [sup 1]D oxygen atoms formed react with N[sub 2]O and ozone to produce oxides of nitrogen. Computer model predictions show that NO[sub 2] is the major product. The gases after photolysis pass through an ozone removing trap into the detector. NO[sub 2] in the gas mixture is detected by its chemiluminescence reaction with luminol. The instrument is able to measure j[O[sub 3]-O([sup 1]D)] with a noise level less that 5 x 10[sup [minus]1] sec[sup [minus]1]. The instrument measures j[O[sub 3]-O([sup 1]D)] with a precision of [+-]10%. Sixty days of data are taken between February 19, 1991 and May 18, 1991 in Denver, Colorado. Over 400 clear day j[O[sub 3]-O(1D)] values are correlated with effective ozone column density. Seasonal variation of j[O[sub 3]-O([sup 1]D)] is calculated from the peak hourly average values near solar noon for the months February, March, April and May. j[O[sub 3]-O([sup 1]D)] increased by 34% from February to May. j[O[sub 3]-O([sup 1]D)] measured in this study is compared with previous measurements and model calculations. Three photometers with approximate cosine response have been built and compared to the j[O[sub 3]-O([sup 1]D)] actinometer. j[[sub 3]-O([sup 1]D)] values are also compared to an output of a radiometer that measures global solar radiation. A new method to estimate j[O[sub 3]-O([sup 1]D)] on cloudy days using the global solar radiation is successfully tested.

  20. Detection of solar-like oscillations in the red giant star ɛ Ophiuchi by MOST spacebased photometry

    NASA Astrophysics Data System (ADS)

    Barban, C.; Matthews, J. M.; De Ridder, J.; Baudin, F.; Kuschnig, R.; Mazumdar, A.; Samadi, R.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Walker, G. A. H.; Weiss, W. W.

    2007-06-01

    Context: Solar-like oscillations have been discovered in a few red giants, including ɛ Oph, through spectroscopy. Acoustic modes around 60 μHz were clearly seen in this star, but daily aliasing of the groundbased data made it impossible to unambiguously isolate the p-mode frequencies in the eigenspectrum, and hence the correct value of the large spacing, to asteroseismically constrain the mass of this pulsating star. Aims: We obtained about 28 days of contiguous high-precision photometry of ɛ Oph in May-June 2005 with the MOST (Microvariability & Oscillations of STars) satellite. The thorough time sampling removes the ambiguity of the frequency identifications based on the groundbased discovery data. Methods: We identify equidistant peaks in the Fourier spectrum of the MOST photometry in the range where the p-modes were seen spectroscopically. Those peaks are searched by autocorrelation of the power spectrum to estimate the value of the large separation in the p-mode eigenspectrum. Having isolated the oscillation modes, we determine their mode parameters (frequency, amplitude and line width) by fitting the distribution of peaks to Lorentzian profiles. Results: The clear series of equidistant peaks in the power spectrum, with amplitudes from about 30 to 130 ppm, are consistent with radial modes spaced by a mean value of ( 5.3 ± 0.1) μHz. This large separation matches one of the two possibilities allowed by the groundbased observations thus constraining the stellar models to a much greater extent than previously possible. The line widths and Lorentzian fits indicate a rather short average mode lifetime: (2.7+0.6-0.8}) days. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

  1. LOW-FREQUENCY OBSERVATIONS OF POLARIZED EMISSION FROM LONG-LIVED NON-THERMAL RADIO SOURCES IN THE SOLAR CORONA

    SciTech Connect

    Ramesh, R.; Kathiravan, C.; Satya Narayanan, A. E-mail: kathir@iiap.res.in

    2011-06-10

    We report observations of circularly polarized emission from the solar corona at 77 MHz during the periods 2006 August 11-18, 2006 August 23-29, and 2007 May 16-22 in the minimum phase between the sunspot cycles 23 and 24. The observations were carried out with the east-west one-dimensional radio polarimeter at the Gauribidanur observatory located about 100 km north of Bangalore. Two-dimensional imaging observations at 77 MHz during the same period with the radioheliograph at the same observatory revealed that the emission region co-rotated with the Sun during the three aforementioned periods. Their rotation rates, close to the central meridian on the Sun, are 4.'6, 5.'2, and 4.'9 {+-} 0.'5 per day, respectively. We derived the radial distance of the region from the above observed rotation rates and the corresponding values are {approx}1.24 {+-} 0.03 R{sub sun} (2006 August 11-18), {approx}1.40 {+-} 0.03 R{sub sun} (2006 August 23-29), and {approx}1.32 {+-} 0.03 R{sub sun} (2007 May 16-22). The estimated lower limit for the magnetic field strength at the above radial distances and periods are {approx}1.1, 0.6, and 0.9 G, respectively.

  2. High Efficiency Amorphous and Microcrystalline Silicon Based Double-Junction Solar Cells made with Very-High-Frequency Glow Discharge

    SciTech Connect

    Banerjee, Arindam

    2004-10-20

    We have achieved a total-area initial efficiency of 11.47% (active-area efficiency of 12.33%) on a-Si:H/μc-Si:H double-junction structure, where the intrinsic layer bottom cell was made in 50 minutes. On another device in which the bottom cell was made in 30 min, we achieved initial total-area efficiency of 10.58% (active-efficiency of 11.35%). We have shown that the phenomenon of ambient degradation of both μc-Si:H single-junction and a-Si:H/μc-Si:H double-junction cells can be attributed to impurity diffusion after deposition. Optimization of the plasma parameters led to alleviation of the ambient degradation. Appropriate current matching between the top and bottom component cells has resulted in a stable total-area efficiency of 9.7% (active-area efficiency of 10.42%) on an a-Si:H/μc-Si:H double-junction solar cell in which the deposition time for the μc-Si:H intrinsic layer deposition was of 30 min.

  3. Dynamics of Flare Processes and Variety of the Fine Structure of Solar Radio Emission over a Wide Frequency Range of 30 - 7000 MHz

    NASA Astrophysics Data System (ADS)

    Chernov, Gennady; Fomichev, Valery; Tan, Baolin; Yan, Yihua; Tan, Chengming; Fu, Qijun

    2015-01-01

    Radiobursts exhibiting fine structure observed over two years during the rising phase of Cycle 24 by the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou) in the range 1 - 7.6 GHz and the spectrograph IZMIRAN in the meter range (25 - 270 MHz) are analyzed. In five events the zebra structure, various fiber bursts, and fast pulsations were observed. These observations have great importance for testing different theoretical models of fine structure formation, as, for example, only for explaining the zebra structure more than ten mechanisms have been proposed. The events on 15 and 24 February 2011 are of the greatest interest. In the course of the flare on 15 February (which occurred close to the center of disk) the zebra structure was observed during three sequential flare brightenings. The polarization changed sign in the third. This behavior of polarization combined with images of the corresponding flare brightenings, obtained in extreme ultraviolet radiation by the Solar Dynamics Observatory (SDO/AIA, 171 Å), provides important clues. The polarization of radio emission in all three cases is related to the ordinary wave mode of radio emission. The zebra structure was present at frequencies 190 - 220 MHz in the Culgoora spectrum. The event on 24 February 2011 is remarkable, as the zebra structure at frequencies of 2.6 - 3.8 GHz was not polarized and it appeared during the magnetic reconnection observed by SDO/AIA 171 Å in this limb flare. In the event on 9 August 2011, for the first time, a superfine millisecond structure was registered simultaneously in the fast pulsations and the stripes of the zebra structure. In the event on 1 August 2010 after the zebra structure two families of fibers bursts with opposite frequency drifts were observed. On 19 April 2012 the fibers against the background of type III bursts were observed by IZMIRAN and Nançay spectrographs. In the band of 42 - 52 MHz a group of nine slowly drifting narrow-band (

  4. On the Behavior of the Frequency Break Between Fluid and Kinetic Regimes in Solar Wind Fluctuations During Radial Expansion

    NASA Astrophysics Data System (ADS)

    Bruno, Roberto; Trenchi, Lorenzo

    2014-05-01

    We investigate the radial dependence of the spectral break located at the border between fluid and kinetic regimes during the wind expansion between 0.42 and 5.3 AU. We exploited radial alignments between MESSENGER and WIND for the inner heliosphere and between WIND and ULYSSES for the outer heliosphere. We found that this spectral break moves to lower and lower frequencies as heliocentric distance increases, following a power law dependence. Our results would support conclusions from previous studies which require that a cyclotron-resonant dissipation mechanism must participate into the spectral energy cascade together with other possible kinetic noncyclotron-resonant mechanisms. Research partially supported by the Agenzia Spaziale Italiana, contract ASI/INAF I/013/12/0 and by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 313038/STORM

  5. Differential rotation in main-sequence solar-like stars: Qualitative inference from asteroseismic data

    SciTech Connect

    Lund, Mikkel N.; Christensen-Dalsgaard, Jørgen; Miesch, Mark S.

    2014-08-01

    Understanding differential rotation of Sun-like stars is of great importance for insight into the angular momentum transport in these stars. One means of gaining such information is that of asteroseismology. By a forward modeling approach we analyze in a qualitative manner the impact of different differential rotation profiles on the splittings of p-mode oscillation frequencies. The optimum modes for inference on differential rotation are identified along with the best value of the stellar inclination angle. We find that in general it is not likely that asteroseismology can be used to make an unambiguous distinction between a rotation profile such as a conical Sun-like profile and a cylindrical profile. In addition, it seems unlikely that asteroseismology of Sun-like stars will result in inferences on the radial profile of the differential rotation, such as can be done for red giants. At best, one could possibly obtain the sign of the radial differential rotation gradient. Measurements of the extent of the latitudinal differential from frequency splitting are, however, more promising. One very interesting aspect that could likely be tested from frequency splittings is whether the differential rotation is solar-like or anti-solar-like in nature, in the sense that a solar-like profile has an equator rotating faster than the poles.

  6. Observations of Low-degree Modes from the Solar Maximum Mission (extended Abstract)

    NASA Technical Reports Server (NTRS)

    Woodard, M.

    1984-01-01

    Mean frequencies, amplitudes, and linewidths for the solar 5 min p mode oscillations of degree 0, 1, and 2 have been obtained from approx. 280 days of SMM-ACRIM total irradiance data. The frequencies are in good agreement with measurements obtained from velocity data. The amplitudes of the modes lie along a well defined envelope of power vs. frequency, which peaks at 3.1 mHz and has a width of 0.7 mHz (FWHM). The r.m.s. amplitude of the highest peak in the spectrum (n=21, l=1) is approx. 3 ppm of the total flux. The linewidths of the narrowest l=O modes are approx. 1 micro Hz (FWHM). A broad continuum of power caused both by solar surface granulation and by instrumental noise interferes with the analysis of 5 min modes. The continuum spectral power in a 1 micro Hz band near 3 mHz corresponds to an apparent r.m.s. variation of approx. 0.5 parts per million of the mean solar flux.

  7. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth's surface

    NASA Astrophysics Data System (ADS)

    Palmer, S. J.; Rycroft, M. J.; Cermack, M.

    2006-09-01

    The possibility that conditions on the Sun and in the Earth’s magnetosphere can affect human health at the Earth’s surface has been debated for many decades. This work reviews the research undertaken in the field of heliobiology, focusing on the effect of variations of geomagnetic activity on human cardiovascular health. Data from previous research are analysed for their statistical significance, resulting in support for some studies and the undermining of others. Three conclusions are that geomagnetic effects are more pronounced at higher magnetic latitudes, that extremely high as well as extremely low values of geomagnetic activity seem to have adverse health effects and that a subset of the population (10-15%) is predisposed to adverse health due to geomagnetic variations. The reported health effects of anthropogenic sources of electric and magnetic fields are also briefly discussed, as research performed in this area could help to explain the results from studies into natural electric and magnetic field interactions with the human body. Possible mechanisms by which variations in solar and geophysical parameters could affect human health are discussed and the most likely candidates investigated further. Direct effects of natural ELF electric and magnetic fields appear implausible; a mechanism involving some form of resonant absorption is more likely. The idea that the Schumann resonance signals could be the global environmental signal absorbed by the human body, thereby linking geomagnetic activity and human health is investigated. Suppression of melatonin secreted by the pineal gland, possibly via desynchronised biological rhythms, appears to be a promising contender linking geomagnetic activity and human health. There are indications that calcium ions in cells could play a role in one or more mechanisms. It is found to be unlikely that a single mechanism can explain all of the reported phenomena.

  8. Five-minute Oscillation Power within Magnetic Elements in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Jain, Rekha; Gascoyne, Andrew; Hindman, Bradley W.; Greer, Benjamin

    2014-12-01

    It has long been known that magnetic plage and sunspots are regions in which the power of acoustic waves is reduced within the photospheric layers. Recent observations now suggest that this suppression of power extends into the low chromosphere and is also present in small magnetic elements far from active regions. In this paper we investigate the observed power suppression in plage and magnetic elements, by modeling each as a collection of vertically aligned magnetic fibrils and presuming that the velocity within each fibril is the response to buffeting by incident p modes in the surrounding field-free atmosphere. We restrict our attention to modeling observations made near the solar disk center, where the line-of-sight velocity is nearly vertical and hence, only the longitudinal component of the motion within the fibril contributes. Therefore, we only consider the excitation of axisymmetric sausage waves and ignore kink oscillations as their motions are primarily horizontal. We compare the vertical motion within the fibril with the vertical motion of the incident p mode by constructing the ratio of their powers. In agreement with observational measurements we find that the total power is suppressed within strong magnetic elements for frequencies below the acoustic cut-off frequency. However, further physical effects need to be examined for understanding the observed power ratios for stronger magnetic field strengths and higher frequencies. We also find that the magnitude of the power deficit increases with the height above the photosphere at which the measurement is made. Furthermore, we argue that the area of the solar disk over which the power suppression extends increases as a function of height.

  9. Five-minute oscillation power within magnetic elements in the solar atmosphere

    SciTech Connect

    Jain, Rekha; Gascoyne, Andrew; Hindman, Bradley W.; Greer, Benjamin

    2014-12-01

    It has long been known that magnetic plage and sunspots are regions in which the power of acoustic waves is reduced within the photospheric layers. Recent observations now suggest that this suppression of power extends into the low chromosphere and is also present in small magnetic elements far from active regions. In this paper we investigate the observed power suppression in plage and magnetic elements, by modeling each as a collection of vertically aligned magnetic fibrils and presuming that the velocity within each fibril is the response to buffeting by incident p modes in the surrounding field-free atmosphere. We restrict our attention to modeling observations made near the solar disk center, where the line-of-sight velocity is nearly vertical and hence, only the longitudinal component of the motion within the fibril contributes. Therefore, we only consider the excitation of axisymmetric sausage waves and ignore kink oscillations as their motions are primarily horizontal. We compare the vertical motion within the fibril with the vertical motion of the incident p mode by constructing the ratio of their powers. In agreement with observational measurements we find that the total power is suppressed within strong magnetic elements for frequencies below the acoustic cut-off frequency. However, further physical effects need to be examined for understanding the observed power ratios for stronger magnetic field strengths and higher frequencies. We also find that the magnitude of the power deficit increases with the height above the photosphere at which the measurement is made. Furthermore, we argue that the area of the solar disk over which the power suppression extends increases as a function of height.

  10. FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005-2008

    SciTech Connect

    Gould, A.; Dong, Subo; Gaudi, B. S.; Han, C. E-mail: gaudi@astronomy.ohio-state.ed

    2010-09-10

    suggests a universal separation distribution across 2 dex in planet-star separation, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were 'analogs' of the solar system, our sample would have yielded 18.2 planets (11.4 'Jupiters', 6.4 'Saturns', 0.3 'Uranuses', 0.2 'Neptunes') including 6.1 systems with two or more planet detections. This compares to six planets including one two-planet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems.

  11. Helioseismic Constraints on New Solar Models from the MoSEC Code

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1998-01-01

    Evolutionary solar models are computed using a new stellar evolution code, MOSEC (Modular Stellar Evolution Code). This code has been designed with carefully controlled truncation errors in order to achieve a precision which reflects the increasingly accurate determination of solar interior structure by helioseismology. A series of models is constructed to investigate the effects of the choice of equation of state (OPAL or MHD-E, the latter being a version of the MHD equation of state recalculated by the author), the inclusion of helium and heavy-element settling and diffusion, and the inclusion of a simple model of mixing associated with the solar tachocline. The neutrino flux predictions are discussed, while the sound speed of the computed models is compared to that of the sun via the latest inversion of SOI-NMI p-mode frequency data. The comparison between models calculated with the OPAL and MHD-E equations of state is particularly interesting because the MHD-E equation of state includes relativistic effects for the electrons, whereas neither MHD nor OPAL do. This has a significant effect on the sound speed of the computed model, worsening the agreement with the solar sound speed. Using the OPAL equation of state and including the settling and diffusion of helium and heavy elements produces agreement in sound speed with the helioseismic results to within about +.-0.2%; the inclusion of mixing slightly improves the agreement.

  12. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  13. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  14. Basic Principles of Solar Acoustic Holography - (Invited Review)

    NASA Astrophysics Data System (ADS)

    Lindsey, C.; Braun, D. C.

    2000-03-01

    We summarize the basic principles of holographic seismic imaging of the solar interior, drawing on familiar principles in optics and parallels with standard optical holography. Computational seismic holography is accomplished by the phase-coherent wave-mechanical reconstruction of the p-mode acoustic field into the solar interior based on helioseismic observations at the solar surface. It treats the acoustic field at the solar surface in a way broadly analogous to how the eye treats electromagnetic radiation at the surface of the cornea, wave-mechanically refocusing radiation from submerged sources to render stigmatic images that can be sampled over focal surfaces at any desired depth. Holographic diagnostics offer a straight-forward assessment of the informational content of the observed p-mode spectrum independent of prospective physical models of the local interior anomalies that it represents. Computational holography was proposed as the optimum approach whereby to address the severe diffraction effects that confront standard tomography in the solar p-mode environment. It has given us a number of remarkable discoveries in the last two years and now promises a new insight into solar interior structure and dynamics in the local perspective. We compare the diagnostic roles of simple acoustic-power holography and phase-sensitive holography, and anticipate approaches to solar interior modeling based on holographic signatures. We identify simple computational principles that, applied to high-quality helioseismic observations, make it easy for prospective analysts to produce high-quality holographic images for practical applications in local helioseismology.

  15. Cyclic thermal signature in a global MHD simulation of solar convection

    NASA Astrophysics Data System (ADS)

    Cossette, J.; Charbonneau, P.; Smolarkiewicz, P. K.

    2013-12-01

    Space-based observations have clearly established that total solar irradiance (TSI) varies on time scales from minutes to days and months as well as on the longer time scale of the 11-year solar cycle. The most conspicuous of these variations is arguably the slight increase of TSI (0.1%) at solar maxima relative to solar minima. Models that include contributions from surface solar magnetism alone (i.e. sunspots, faculae and magnetic network) have been very successful at reproducing the observed TSI fluctuations on time scales shorter than a year, but leave some doubts as to the origin of the longer decadal fluctuations. In particular, one school of thought argues that surface magnetism alone can explain the entire TSI variance; see (Lean & al. 1998, ApJ, 492, 390), whereas; the other emphasizes on taking into account the effect of a global modulation of solar thermal structure by magnetic activity; see (Li & al. 2003, ApJ, 591, 1267). Observationally, the potential for the occurrence of magnetically-modulated global structural changes is supported by a positive correlation between p-mode oscillation frequencies and the TSI cycle as well as by recent evidence for a long-term trend in the TSI record that is not seen in indicators of surface magnetism; see (Bhatnagar & al. 1999, ApJ, 521, 885; Fröhlich 2013, Space Sci Rev,176, 237). Additionally, 1D structural solar models have demonstrated that the inclusion of a magnetically-modulated turbulent mechanism could explain the observed p-mode oscillation frequency changes with great accuracy. However, these models relied upon an ad-hoc parametrization of the alleged process and therefore obtaining a complete physical picture of the modulating mechanism requires solving the equations governing the self-consistent evolution of the solar plasma. Here we present a global magnetohydrodynamical (MHD) simulation of solar convection extending over more than a millennium that produces large-scale solar-like axisymmetric magnetic

  16. Excitation of Resonant Helioseimic Modes by Solar Flares.

    NASA Astrophysics Data System (ADS)

    Leibacher, John W.; Baudin, Frédéric; Rabello Soares,, Maria Cristina

    2015-08-01

    Flares are known to excite propagating sound waves in the solar atmosphere, and Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, showed that they excite resonant p-modes as well. We confirm and extend here these results by:-applying the same analysis to other locations on the Sun at the time of the Halloween flare-analyzing other events also showing a signature of p-mode excitation-looking in detail at the results of the ring diagrams analysis in terms of noise fitting and the center-to-limb variation of ring-diagram power.

  17. Excitation of Resonant Helioseimic Modes by Solar Flares

    NASA Astrophysics Data System (ADS)

    Leibacher, John William; Baudin, Frédéric; Rabello Soares, Maria Cristina

    2015-04-01

    Flares are known to excite propagating sound waves in the solar atmosphere, and Maurya et al. (2009), using a local analysis (ring diagrams) of the 2003 Halloween flare, showed that they excite resonant p-modes as well. We confirm and extend here these results by: applying the same analysis to other locations on the Sun at the time of the Halloween flare, analyzing other events also showing a signature of p-mode excitation, looking in detail at the results of the ring diagrams analysis in terms of noise fitting and the center-to-limb variation of ring-diagram power.

  18. The effects of large-scale convection on solar eigenfrequencies

    NASA Astrophysics Data System (ADS)

    Swisdak, Michael Marchand, III

    We describe and implement an approach for determining the eigenfrequencies of solar acoustic oscillations (p modes) in a convective envelope. By using the ray approximation, we transform the problem into one in which we seek the eigenfrequencies of a Hamiltonian system. To find these eigenfrequencies we have written a computer program which implements the method of adiabatic switching. In this technique, we begin with a system with no convective perturbations for which the eigenmodes and eigenfrequencies are known. The code adiabatically increases the strength of the convective structures, allowing the mode eigenfrequency to adjust from its initial value to the eigenfrequency of the perturbed state. The ray approximation restricts our investigations to perturbations which are large compared to the mode wavelength. For a simple class of structures we test our results against the predictions of semi-classical EBK quantization and find the two methods agree. We then examine more complicated perturbations, concentrating on the dependence of the frequency shifts on the radial and angular mode numbers as well as the perturbation strength. Among our results, we conclude that the fractional frequency shift is given by the weighted average of the perturbation over the resonant cavity. As a result, convective perturbations with horizontally anti-symmetric structures generate downward frequency shifts which are second-order in the perturbation strength. We also examine more complex convective structures which we find tend to produce downshifts whose magnitude scales with the strength of the perturbation. These results may have implications for resolving the differences between eigenfrequencies derived from solar models and those deduced from helioseismic observations.

  19. Note on one-fluid modeling of low-frequency Alfvénic fluctuations in a solar wind plasma with multi-ion components

    SciTech Connect

    Nariyuki, Y.; Umeda, T.; Suzuki, T. K.; Hada, T.

    2015-12-15

    A simple point of view that non-zero Alfvén ratio (residual energy) appears as a consequence of one-fluid modeling of uni-directional Alfvén waves in a solar wind plasma is presented. Since relative speeds among ions are incorporated into the one-fluid model as a pressure anisotropy, the Alfvén ratio can be finite due to the decrease in the phase velocity. It is shown that a proton beam component typically found in the solar wind plasma can contribute to generating non-zero Alfvén ratio observed in the solar wind plasma. Local equilibrium velocity distribution functions of each ion component are also discussed by using maximum entropy principle.

  20. Effect of wavelength on the electrical parameters of a vertical parallel junction silicon solar cell illuminated by its rear side in frequency domain

    NASA Astrophysics Data System (ADS)

    Sahin, Gökhan

    The influence of the illumination wavelength on the electrical parameters of a vertical parallel junction silicon solar cell by its rear side is theoretically analyzed. Based on the excess minority carrier's density, the photocurrent density and photovoltage across the junction were determined. From both photocurrent and the photovoltage, the series and shunt resistance expressions are deduced and the solar cell associated capacitance and conversion efficiency are calculated. The aim of this study is to show the influence of the illumination wavelength on the electrical parameters of the cell and the behavior of both parasitic resistances and capacitance versus operating point.

  1. Review of observations relevant to solar oscillations

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1982-01-01

    Recent solar oscillation observations and methods used are described. Integrated or almost integrated sunlight (Sun as a star observation) was observed. The most certain observations are in the 5 minute range. The p-mode and g-mode oscillations are expected from 3 to more than 300 minutes. The possible period ranges are described into the three intervals: (1) the 5 minute range for which the most dramatic and certain results are reported; (2) the 10 to 20 minute range for which solar diameter oscillations are reported; and (3) the 160 minute oscillation found in velocity and several other quantities.

  2. Photocharge Transport and Recombination Measurements in Amorphous Silicon Films and Solar Cells by Photoconductive Frequency Mixing: Final Subcontract Report, 20 April 1998-30 June 2002

    SciTech Connect

    Braunstein, R.; Boshta, M.; Sheng, S.; Kattwinkel, A.; Liebe, J.; Sun, G.

    2002-12-01

    The tasks carried out under this subcontract focused on characterizing the charge transport, opto-electronic, and structural properties of a number of amorphous and microcrystalline semiconductors prepared by several techniques. The dominant approach to accomplish the tasks of the present phase of the program is the photoconductive frequency mixing technique. This technique enabled us to determine separately the drift mobility and the photomixing lifetime of the photogenerated carriers. The technique is based on the idea of heterodyne detection for photoconductors. When two similarly polarized monochromatic optical beams of slightly different frequencies are incident on a photoconductor, the photocurrent produced, when a dc bias is applied, will contain components resulting from the square of the sum of the incident electric fields. Consequently, a photocurrent composed of a dc and a microwave current due to the beat frequency of the incident fields will be produced; these two currents allow a separate determination of the drift mobility and the photomixing lifetime. In the present work, we improved the instrumentation of the photomixing measurements by applying bias pulses of arbitrary width and frequency. The longitudinal modes of a He-Ne laser were used to generate a beat frequency of 252 MHz; all the measurements were performed at this frequency for the data indicated in the accompanying figures and tables. Results from this technique, as well as FTIR, XRD, SAXS, and optical spectroscopy, are presented in the full report.

  3. Corruption of radio metric Doppler due to solar plasma dynamics: S/X dual-frequency Doppler calibration for these effects

    NASA Technical Reports Server (NTRS)

    Winn, F. B.; Reinbold, S. R.; Yip, K. W.; Koch, R. E.; Lubeley, A.

    1975-01-01

    Doppler data from Mariner 6, 7, 9, and 10 and Pioneer 10 and 11 were discussed and the rms noise level for various sun-earth-probe angles were shown. The noise levels of both S- and X-band Doppler data for sun-earth-probe angles smaller than 20 deg were observed to be orders of magnitude greater than nominal. Such solar plasma-related Doppler degradation reduced the Mariner 10-Mercury 11 encounter navigation accuracy by nearly a factor of 10. Furthermore, this degradation was shown to be indirectly related to plasma dynamics and not a direct measure of the dynamics.

  4. The analysis of solar models: Neutrinos and oscillations

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Rhodes, E. J., Jr.; Tomczyk, S.; Dumont, P. J.; Brunish, W. M.

    1983-01-01

    Tests of solar neutrino flux and solar oscillation frequencies were used to assess standard stellar structure theory. Standard and non-standard solar models are enumerated and discussed. The field of solar seismology, wherein the solar interior is studied from the measurement of solar oscillations, is introduced.

  5. Solar Power Satellite (SPS) pilot beam and communication link subsystem investigation study, phase 1. [ionospheric propagation, radio frequency interference, and microwave transmission

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary engineering model of ionospheric interactions with the pilot beam was established and used to demonstrate that the dual frequency baseline pilot beam system might not be viable in the presence of an unstable transmission path. Alternate approaches to remove this difficulty are described. Although ionospheric fluctuations will not significantly degrade beam pointing or raise the sidelobe levels, they will reduce transmission efficiency by upwards of 25%. Mitigating strategies to substantially reduce this effect are proposed. Based on the Klystron noise spectrum, the pilot beam transmitter power was determined as a function of frequency offset from the power beam carrier frequency. The RFI from the pilot beam, on the ground and at geosynchronous orbit is shown. Noise levels on the earth's surface due to the SPS are presented as a function of frequency and the number of SPS systems. Analysis of the communication subsystem indicates that a standard telemetry line of 1.544 MB/s would satisfy both voice and data link requirements. Additional links would be required for TV and radio transmissions.

  6. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies

    SciTech Connect

    Zhang, Y.; Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.; Zhu, R.

    2015-03-15

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.

  7. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.

    PubMed

    Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R

    2015-03-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters. PMID:25832239

  8. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  9. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  10. EXCITATION OF LOW-FREQUENCY WAVES IN THE SOLAR WIND BY NEWBORN INTERSTELLAR PICKUP IONS H{sup +} AND He{sup +} AS SEEN BY VOYAGER AT 4.5 AU

    SciTech Connect

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Murphy, Neil; Schwadron, Nathan A. E-mail: Charles.Smith@unh.ed E-mail: Neil.Murphy@jpl.nasa.go

    2010-12-01

    We report the observation of a spectral enhancement in the magnetic field fluctuations measured by the MAG instrument on the Voyager 2 spacecraft during 4.5 hr on DOY 7, 1979 at a heliocentric radial position of 4.5 AU. This time period is contained within a solar wind rarefaction when the large-scale interplanetary magnetic field was nearly radial. The frequency range and polarization of the enhanced fluctuations are consistent with waves generated by newly ionized interstellar H{sup +} and He{sup +}. We show sunward propagation of the waves via a cross-helicity analysis. We compare the observation with a theoretical model and find reasonable agreement given the model assumptions. This event is the first indication of pickup ion-generated waves seen at Voyager. It is also the first identification of pickup He{sup +} waves by any spacecraft.

  11. Frequency up-conversion in nonpolar a-plane GaN/AlGaN based multiple quantum wells optimized for applications with silicon solar cells

    SciTech Connect

    Radosavljević, S.; Radovanović, J. Milanović, V.; Tomić, S.

    2014-07-21

    We have described a method for structural parameters optimization of GaN/AlGaN multiple quantum well based up-converter for silicon solar cells. It involves a systematic tuning of individual step quantum wells by use of the genetic algorithm for global optimization. In quantum well structures, the up-conversion process can be achieved by utilizing nonlinear optical effects based on intersubband transitions. Both single and double step quantum wells have been tested in order to maximize the second order susceptibility derived from the density matrix formalism. The results obtained for single step wells proved slightly better and have been further pursued to obtain a more complex design, optimized for conversion of an entire range of incident photon energies.

  12. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  13. Beat frequency interference pattern characteristics study

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.

    1981-01-01

    The frequency spectra and corresponding beat frequencies created by the relative motions between multiple Solar Power Satellites due to solar wind, lunar gravity, etc. were analyzed. The results were derived mathematically and verified through computer simulation. Frequency spectra plots were computer generated. Detailed computations were made for the seven following locations in the continental US: Houston, Tx.; Seattle, Wa.; Miami, Fl.; Chicago, Il.; New York, NY; Los Angeles, Ca.; and Barberton, Oh.

  14. Scaling of oscillation frequencies in rotating stars

    NASA Astrophysics Data System (ADS)

    Castañeda, D.; Deupree, R. G.

    2016-06-01

    Properties of stars undergoing pulsation such as the well-known root-mean-density scaling relation can be useful when trying to match the observed properties of a particular star. It is often assumed that this relation is valid for p-mode frequencies in rotating stars. To examine the change in frequency with rotation and mass, we have studied oscillation frequencies of two-dimensional uniformly rotating zero-age main-sequence stellar models in the δ Scuti mass range. We identified axisymmetric p and g modes for non-rotating models and then traced them as the rotational velocity was increased. We considered a rotation sequence of ten models for four different masses, with the largest rotation rate being about 200 km s-1. The models were required to have the same surface shape between all masses for a given rotation rate. We find that scaling relationships exist among the oscillation frequencies of the same mode for different masses when the models have the same shape. For p modes, this scaling closely follows the period-root-mean-density relation found in spherical stars. The g modes also scale between models of the same shape, with the scaling reflecting the change in properties outside the convective core as the stellar mass increases. These scaling relationships can be particularly useful in finding specific stellar models to match the oscillation frequencies of individual stars. We also find that the large separation scales approximately with the root mean density as the rotation rate increases, although the individual mode frequencies do not.

  15. The Galileo solar redshift experiment

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.; Morabito, David D.; Anderson, John D.

    1993-01-01

    From the October 1989 launch to the first December 1990 earth gravity assist, we regularly obtained frequency measurements of the spacecraft clock - an ultrastable crystal oscillator (USO) supplied by Frequency Electronics, Inc. The solar gravitational redshift in frequency was readily detectable, and because of the unique variations in heliocentric distance we could separate the general relativistic effects from the USO's intrinsic frequency variations. We have verified the total frequency shift predicted by general relativity to 0.5 percent accuracy, and the solar gravitational redshift to 1 percent accuracy.

  16. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  17. Solar-like oscillations in distant stars as seen by CoRoT : the special case of HD 42618, a solar sister

    NASA Astrophysics Data System (ADS)

    Barban, C.; Deheuvels, S.; Goupil, M. J.; Lebreton, Y.; Mathur, S.; Michel, E.; Morel, Th; Ballot, J.; Baudin, F.; Belkacem, K.; Benomar, O.; Boumier, P.; Davies, G. R.; García, R. A.; Hall, M. P.; Mosser, B.; Poretti, E.; Régulo, C.; Roxburgh, I.; Samadi, R.; Verner, G.; the CoRoT Team

    2013-06-01

    We report the observations of a main-sequence star, HD 42618 (Teff = 5765 K, G3V) by the space telescope CoRoT. This is the closest star to the Sun ever observed by CoRoT in term of its fundamental parameters. Using a preliminary version of CoRoT light curves of HD 42618, p modes are detected around 3.2 mHz associated to l = 0, 1 and 2 modes with a large spacing of 142 μHz. Various methods are then used to derive the mass and radius of this star (scaling relations from solar values as well as comparison between theoretical and observationnal frequencies) giving values in the range of (0.80 - 1.02)Msolar and (0.91 - 1.01)Rsolar. A preliminary analysis of l = 0 and 1 modes allows us also to study the amount of penetrative convection at the base of the convective envelope.

  18. Effects of heavy-element settling on solar neutrino fluxes and interior structure

    NASA Technical Reports Server (NTRS)

    Proffitt, Charles R.

    1994-01-01

    We consider the effects of gravitational settling of both He and heavier elements on the predicted solar neutrino fluxes and interior sound speed and density profiles. We find that while the structural changes that result from the inclusion of both He and heavy-element settling are only slightly larger than the changes resulting from the inclusion of He settling alone, the additional increases in expected neutrino fluxes are of comparable size. Our preferred model with both He and heavy-element settling has neutrino count rates of 9.0 SNU for Cl-37 detectors and 137 SNU for Ga-71 detectors, as compared to 7.1 and 127 SNU for a comparable model without any diffusive separation, or 8.0 and 132 SNU for a model that includes He settling alone. We suggest that the correction factors by which the predicted neutrino fluxes of solar models calculated without including the effects of diffusion should be multiplied are 1.25 +/- 0.08 for Cl detectors, 1.07 +/- 0.02 for Ga detectors, and 1.28 +/- 0.09 for the B-8 flux (1 sigma errors). Comparison of internal sound speed and density profiles strongly suggests that the additional changes in calculated p-mode oscillation frequencies due to the inclusion of heavy-element settling will be small compared to the changes that result from He settling alone, especially for the higher degree modes. All models with diffusive separation give much better agreement with the observed depth of the convection zone than do nondiffusive models. The model that includes both He and heavy-element settling requires an initial He mass fraction Y = 0.280 and has a surface He abundance of Y = 0.251 at the solar age.

  19. SOLAR-A

    NASA Technical Reports Server (NTRS)

    Ninomiya, K.; Ogawara, Y.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for SOLAR-A are summarized. The SOLAR-A mission objectives are to investigate high energy phenomena of the Sun using x-ray telescopes and spectrometers during the maximum activity period of the solar cycle. The spacecraft will be launched into a circular earth orbit of approximately 500 km altitude and 31 deg inclination. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  20. Precise Velocity Observation of K-Giants: Evidence for Solar-Like Oscillations in Arcturus

    NASA Astrophysics Data System (ADS)

    Merline, W. J.

    High accuracy measurements of variations in the radial velocity of the K1 giant star Arcturus have been obtained. The observations span 5 years and have a point-to-point repeatability of 5 m/s and night-to-night stability of better than 20 m/s. Velocity oscillations of Arcturus were discovered during the course of this work in 1986. Subsequent, extensive additional data, indicate that Arcturus is exhibiting global non-radial acoustic oscillations with characteristics similar to those occurring in the Sun. All observations were done using a radial velocity spectrometer, designed to search for extrasolar planets, at a dedicated facility of the University of Arizona on Kitt Peak. A dedicated facility was crucial to this work --- because of the changing nature of the oscillations, many observing runs, over several years, were required to understand the star's behavior. Continuous data sets as long as 30 days were acquired. Preliminary pulsation models were performed in collaboration of Art Cox at Los Alamos National Lab. The velocity power spectra are complicated and variable. There is substantial evidence that the variations are solar-like p-mode oscillations. At least 10 frequencies have been identified, over the range 8.3 to 1.7 days. A spectrum of evenly spaced modes is apparent, yielding a value for Δ nuIo ~1.2mu Hz. The average power spectrum peaks near 3 days. There is a broad envelope of power with a distribution reminiscent of that seen in the Sun. Both the mode spacing and the period of peak power are consistent with scaling from the Sun (Kjeldsen & Bedding 1995, A&A 293, 87). The oscillations appear to undergo abrupt discontinuities and have phase coherence times of a few weeks. We interpret the driving to be due to stochastic excitation by convection. Recent observations of the G5 IV star eta Boo by Brown et al. 1997 (Ap. J. 475, 322) have failed to confirm the detection of p-mode oscillations reported by Kjeldsen et al. 1995 (A.J. 109, 1313). Thus

  1. On the generation of sound by turbulent convection. I - A numerical experiment. [in solar interior

    NASA Technical Reports Server (NTRS)

    Bogdan, Thomas J.; Cattaneo, Fausto; Malagoli, Andrea

    1993-01-01

    Motivated by the problem of the origin of the solar p-modes, we study the generation of acoustic waves by turbulent convection. Our approach uses the results of high-resolution 3D simulations as the experimental basis for our investigation. The numerical experiment describes the evolution of a horizontally periodic layer of vigorously convecting fluid. The sound is measured by a procedure, based on a suitable linearization of the equations of compressible convection that allows the amplitude of the acoustic field to be determined. Through this procedure we identify unambiguously some 400 acoustic modes. The total energy of the acoustic field is found to be a fraction of a percent of the kinetic energy of the convection. The amplitudes of the observed modes depend weakly on (horizontal) wavenumber but strongly on frequency. The line widths of the observed modes typically exceed the natural linewidths of the modes as inferred from linear theory. This broadening appears to be related to the (stochastic) interaction between the modes and the underlying turbulence which causes abrupt, episodic events during which the phase coherence of the modes is lost.

  2. Solar chromospheric spicules from the leakage of photospheric oscillations and flows.

    PubMed

    De Pontieu, Bart; Erdélyi, Robert; James, Stewart P

    2004-07-29

    Spicules are dynamic jets propelled upwards (at speeds of approximately 20 km s(-1)) from the solar 'surface' (photosphere) into the magnetized low atmosphere of the Sun. They carry a mass flux of 100 times that of the solar wind into the low solar corona. With diameters close to observational limits (< 500 km), spicules have been largely unexplained since their discovery in 1877: none of the existing models can account simultaneously for their ubiquity, evolution, energetics and recently discovered periodicity. Here we report a synthesis of modelling and high-spatial-resolution observations in which numerical simulations driven by observed photospheric velocities directly reproduce the observed occurrence and properties of individual spicules. Photospheric velocities are dominated by convective granulation (which has been considered before for spicule formation) and by p-modes (which are solar global resonant acoustic oscillations visible in the photosphere as quasi-sinusoidal velocity and intensity pulsations). We show that the previously ignored p-modes are crucial: on inclined magnetic flux tubes, the p-modes leak sufficient energy from the global resonant cavity into the chromosphere to power shocks that drive upward flows and form spicules. PMID:15282598

  3. Solar chromospheric spicules from the leakage of photospheric oscillations and flows.

    PubMed

    De Pontieu, Bart; Erdélyi, Robert; James, Stewart P

    2004-07-29

    Spicules are dynamic jets propelled upwards (at speeds of approximately 20 km s(-1)) from the solar 'surface' (photosphere) into the magnetized low atmosphere of the Sun. They carry a mass flux of 100 times that of the solar wind into the low solar corona. With diameters close to observational limits (< 500 km), spicules have been largely unexplained since their discovery in 1877: none of the existing models can account simultaneously for their ubiquity, evolution, energetics and recently discovered periodicity. Here we report a synthesis of modelling and high-spatial-resolution observations in which numerical simulations driven by observed photospheric velocities directly reproduce the observed occurrence and properties of individual spicules. Photospheric velocities are dominated by convective granulation (which has been considered before for spicule formation) and by p-modes (which are solar global resonant acoustic oscillations visible in the photosphere as quasi-sinusoidal velocity and intensity pulsations). We show that the previously ignored p-modes are crucial: on inclined magnetic flux tubes, the p-modes leak sufficient energy from the global resonant cavity into the chromosphere to power shocks that drive upward flows and form spicules.

  4. A solar infrared photometer for space flight application

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Deming, Drake

    1991-01-01

    A photometer concept which is capable of nearly simultaneous measurements of solar radiation from 1.6 to 200 microns in seven wavelength bands is described. This range of wavelengths can probe the solar photosphere from below the level of unit optical depth in the visible to the temperature minimum, about 500 km above it. An instrument package including a 20-cm Gregorian telescope and a filter wheel photometer utilizing noncryogenic pyroelectric infrared detectors is described. Approaches to the rejection of the visible solar spectrum in the instrument, the availability of optical and mechanical components, and the expected instrumental sensitivity are discussed. For wavelengths below 35 microns, the projected instrumental sensitivity is found to be adequate to detect the intensity signature of solar p-mode oscillations during 5 min of integration. For longer wavelengths, clear detection is expected through Fourier analysis of modest data sets.

  5. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  6. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  7. Solar energy

    NASA Astrophysics Data System (ADS)

    Rapp, D.

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  8. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  9. Frequency spirals

    NASA Astrophysics Data System (ADS)

    Ottino-Löffler, Bertrand; Strogatz, Steven H.

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  10. Variation of solar acoustic emission and its relation to phase of the solar cycle

    NASA Astrophysics Data System (ADS)

    Chen, Ruizhu; Zhao, Junwei

    2016-05-01

    Solar acoustic emission is closely related to solar convection and photospheric magnetic field. Variation of acoustic emission and its relation to the phase of solar cycles are important to understand dynamics of solar cycles and excitation of acoustic waves. In this work we use 6 years of SDO/HMI Dopplergram data to study acoustic emissions of the whole sun and of the quiet-sun regions, respectively, in multiple acoustic frequency bands. We show the variation of acoustic emission from May 2010 to April 2016, covering half of the solar cycle 24, and analyze its correlation with the solar activity level indexed by daily sunspot number and total magnetic flux. Results show that the correlation between the whole-Sun acoustic emission and the solar activity level is strongly negative for low frequencies between 2.5 and 4.5 mHz, but strongly positive for high frequencies between 4.5 and 6.0 mHz. For high frequencies, the acoustic emission excess in sunspot halos overwhelms the emission deficiency in sunspot umbrae and penumbrae. The correlation between the acoustic emission in quiet regions and the solar activity level is negative for 2.5-4.0 mHz and positive for 4.0-5.5 mHz. This shows that the solar background acoustic power, with active regions excluded, also varies during a solar cycle, implying the excitation frequencies or depths are highly related to the solar magnetic field.

  11. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  12. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  13. Solar Cooking

    Atmospheric Science Data Center

    2014-09-25

    ... (kWh/m2/day) Amount of electromagnetic energy (solar radiation) incident on the surface of the earth. Also referred to as total or global solar radiation.   Midday insolation (kWh/m2/day) Average ...

  14. Solar Lentigo

    MedlinePlus

    ... hyperpigmented) lesion caused by natural or artificial ultraviolet (UV) light. Solar lentigines may be single or multiple. This ... simplex) because it is caused by exposure to UV light. Solar lentigines are benign, but they do indicate ...

  15. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  16. Buying Solar.

    ERIC Educational Resources Information Center

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  17. The LOFAR Solar Imaging Pipeline and the LOFAR Solar Data Center

    NASA Astrophysics Data System (ADS)

    Breitling, F.; Mann, G.; Vocks, C.; Steinmetz, M.; Strassmeier, K. G.

    2015-11-01

    LOFAR is a new and sensitive radio interferometer that can be used for dynamic high-resolution imaging spectroscopy at low radio frequencies from 10 to 90 and 110 to 250 MHz. Here we describe its usage for observations of the Sun and in particular of solar radio bursts. We also describe the processing, archiving and accessing of solar LOFAR data, which is accomplished via the LOFAR Solar Imaging Pipeline and the LOFAR Solar Data Center.

  18. Solar nutrinos

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.

    1981-01-01

    The topics covered include: an overview of the subject of solar neutrinos, a brief summary of the theory of stellar evolution, a description of the main sources of solar neutrinos, a brief summary of the results of the Brookhaven C1-37 experiment, an anaysis of the principal solar neutrino experiments, and a discussion of how solar neutrino experiments can be used to detect the collapse of stars in the Galaxy. A description of how the Ga-71 experiment can be used to decide whether the origin of the present discrepancy between theory and observation lies in conventional solar models or conventional physics is presented.

  19. Solar flair.

    PubMed Central

    Manuel, John S

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  20. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  1. Solar Optics

    SciTech Connect

    Rozsnyai, B.F.

    2000-10-04

    Solar opacities are presented from the center of the Sun to the photosphere. The temperatures, densities and hydrogen mass fractions are taken from the standard solar model. For the heavy element abundances the Grevesse mixture is used. In the solar interior photoabsorption is dominated by free-free absorption and they compare two sets of opacities based on two different models for the inverse bremsstrahlung. The radiative luminosities calculated from the two sets of opacities are compared with those predicted by previous models of the standard solar model and also with the known luminosity of the Sun. pressures, specific heats and the speed of sound in the solar plasma are also presented.

  2. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  3. Solar radioastronomical instruments

    NASA Astrophysics Data System (ADS)

    Gonze, R.

    Instruments for detecting and recording the radio emissions of the sun are required to cover the entire electromagnetic spectrum, measure intensity and polarization, as well as the region of the emissions, and display high resolution in both space and time. Radioheliographic images of the sun are made from wavelengths outside of the visible, and yield images based on a grid of relative intensities of varying fineness of resolution. Radioelectric isophote contours can be generated using radiotelescopes at specific receptive frequencies, and interferometric techniques permit the employment of multiple paraboloidal receivers to construct a synthetic image of greater resolution than possible with a single antenna. Dynamic radiospectrography is used to examine transitory solar radio emissions where fine structures are produced in frequency bands covering at least an octave. Multichannel radiospectrographic equipment with many receptors tuned to discrete frequencies and regularly adjusted permits coverage of broad frequency bands, with digital control to augment the dynamics of the instruments.

  4. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  5. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  6. Solar structure: Models and inferences from helioseismology

    SciTech Connect

    Guzik, J.A.

    1998-12-31

    In this review the author summarizes results published during approximately the least three years concerning the state of one-dimensional solar interior modeling. She discusses the effects of refinements to the input physics, motivated by improving the agreement between calculated and observed solar oscillation frequencies, or between calculated and inferred solar structure. She has omitted two- and three-dimensional aspects of the solar structure, such as the rotation profile, detailed modeling of turbulent convection, and magnetic fields, although further progress in refining solar interior models may require including such two- and three-dimensional dynamical effects.

  7. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  8. Observations of Solar Radio Transients

    NASA Astrophysics Data System (ADS)

    Paige, Giorla

    2011-05-01

    A low frequency radio telescope has been recently been constructed on the campus of the The College of New Jersey (TCNJ) and has begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of solar radio emission including strong prompt radio emission associated with solar burst events. We will discuss solar observations conducted with this instrument as well as an effort to conduct coincident observations with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  9. Coronal plasma-frequency radio echoes

    SciTech Connect

    Eremin, A.B.

    1986-06-01

    If the mechanism that Zaitsev and the author propose for generating the fundamental mode of type III solar radio bursts is correct, then coronal echo events can occur at the plasma frequency. Certain events recorded during the type IIIb-III storm of July 1974 are identifiable as echoes. Radio-wave reflection from moving solar-wind irregularities consistently shifts the echoes to shorter wavelengths than the primary burst, yielding an estimate of about 10 to the 7th cm/sec for the mean wind velocity 1-2 solar radii from the photosphere. 8 references.

  10. Solar greenhouse

    SciTech Connect

    Baldwin, R.E.

    1980-04-01

    A solar greenhouse is disclosed wherein plants are grown and utilized as collectors to absorb solar radiation and produce heat laden humidified air through the process of evapotranspiration. This humidified air is then further heated by solar energy. Energy is then extracted from the humidified air by cooling the air and condensing the water vapor within the air. The extracted heat can then be stored and utilized as required to heat the greenhouse and plants.

  11. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  12. Solar Simulator

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  13. Asymptotic theory of intermediate- and high-degree solar acoustic oscillations

    NASA Technical Reports Server (NTRS)

    Brodsky, M.; Vorontsov, S. V.

    1993-01-01

    A second-order asymptotic approximation is developed for adiabatic nonradial p-modes of a spherically symmetric star. The exact solutions of adiabatic oscillations are assumed in the outermost layers, where the asymptotic description becomes invalid, which results in a eigenfrequency equation with model-dependent surface phase shift. For lower degree modes, the phase shift is a function of frequency alone; for high-degree modes, its dependence on the degree is explicitly taken into account.

  14. Solar Spectral Irradiance Observations from the PICARD/PREMOS Radiometer

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Schöll, M.; Schmutz, W. K.; Wehrli, C.; Groebner, J.; Haberreiter, M.; Kretzschmar, M.; Shapiro, A.; Thuillier, G. O.; Finsterle, W.; Fox, N.; Hochedez, J. F.; Koller, S.; Meftah, M.; Nyeki, S.; Pfiffner, D.; Roth, H.; Rouze, M.; Spescha, M.; Tagirov, R.; Werner, L.; Wyss, J.

    2015-12-01

    Space weather and space climate studies require accurate Solar Spectral Irradiance (SSI) observations. The PREcision Monitoring Sensor (PREMOS) instrument aboard the PICARD satellite acquired solar irradiance measurements in specific spectral windows in the UV, visible and near infrared from October 2010 to March 2014. This contribution aims at presenting the Level 3 data, corrected for non solar features as well as for degradation. These level 3 data has been tested over different scientific cases, such as observations during the Venus transit and the presence of the p-mode signature within high-cadence data. The PREMOS Level 3 data have also been compared to others data sets, namely the SOLSTICE and SIM instruments aboard SORCE, for nearly 3 and half years. An excellent correlation has been found for the UV spectral ranges. We have also found a rather good correlation for visible and near-infrared observations for short-term variations, for which an error of about 200 ppm has been estimated within PREMOS visible and near-infrared observations. The PREMOS data could also be used to address several scientific topics, i.e. for validating semi-empirical models of the solar irradiance. We will emphasize about our new irradiance model, COSIR for Code of Solar Irradiance Reconstruction, which is successful at reproducing the solar modulation as seen in the PREMOS, SoHO/Virgo and SORCE data.

  15. Solar Technologies

    ERIC Educational Resources Information Center

    von Hippel, Frank; Williams, Robert H.

    1975-01-01

    As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…

  16. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  17. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image On June 10, 2002 the Moon obscured the central portion of the solar disk in a phenomenon known as an annular solar eclipse. Partial phases of the eclipse were visible throughout much of southeast Asia and North ...

  18. Theoretical studies of the physics of the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1992-01-01

    Significant advances in our theoretical basis for understanding several physical processes related to dynamical phenomena on the sun were achieved. We have advanced a new model for spicules and fibrils. We have provided a simple physical view of resonance absorption of MHD surface waves; this allowed an approximate mathematical procedure for obtaining a wealth of new analytical results which we applied to coronal heating and p-mode absorption at magnetic regions. We provided the first comprehensive models for the heating and acceleration of the transition region, corona, and solar wind. We provided a new view of viscosity under coronal conditions. We provided new insights into Alfven wave propagation in the solar atmosphere. And recently we have begun work in a new direction: parametric instabilities of Alfven waves.

  19. Environmental Degradation of Solar Reflectors

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1985-01-01

    Report presents results of study of atmospheric degradation of large solar reflectors for power generators. Three general types of reflective surfaces investigated. Report also describes computer buildup and removal (by rain and dew) of contamination from reflectors. Data used to determine effects of soil buildup and best method and frequency of washing at various geographic locations.

  20. Solar electricity and solar fuels

    NASA Astrophysics Data System (ADS)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  1. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    This report first describes the different types of solar ponds including the nonconvecting salt gradient pond and various saltless pond designs. It then discusses the availability and cost of salts for salt gradient ponds, and compares the economics of salty and saltless ponds as a function of salt cost. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirements is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  2. Solar sail

    SciTech Connect

    Drexler, K.E.

    1986-09-30

    This patent describes a solar sail propulsion system comprising: solar sail means for intercepting light pressure to produce thrust, the solar sail means being a thin metal film; tension truss means having two ends attached at one end to the solar sail means for transferring the thrust from the solar sail and for preventing gross deformation of the solar sail under light pressure, the solar sail means being a plurality of separate generally two-dimensional pieces joined by springs to the tension truss means; a payload attached to the other end of the tension truss means, the tension truss means comprising a plurality of attachment means for attaching shroud lines to the top of the tension truss means and a plurality of the shroud lines attached to the attachment means at one of their ends and the payload at the other; a plurality of reel means attached to the shroud lines for controllably varying the length of the lines; and a plurality of reflective panel means attached to the sail means for controlling the orientation of the system.

  3. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    The different types of solar ponds are described, including the nonconvecting salt gradient pond and various saltless pond designs. Then the availability and cost of salts for salt gradient ponds are discussed and costs are compared. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirement is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  4. Solar extreme events

    NASA Astrophysics Data System (ADS)

    Hudson, Hugh S.

    2015-08-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of “extreme events,” defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than S-2, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial 14C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observational results have impacted our use of the relatively limited historical record in new ways: the detection of actual events in the 14C tree-ring records, and the systematic observations of flares and “superflares” by the Kepler spacecraft. I discuss how these new findings may affect our understanding of the distribution function expected for extreme solar events.

  5. Coronal plasma-frequency radio echoes?

    NASA Astrophysics Data System (ADS)

    Eremin, A. B.

    1986-06-01

    In the frame of the mechanism of generation of the fundamental mode of type III solar radio bursts suggested by Eremin and Zajtsev (1985) the formation of an echo event in the corona at plasma frequency is shown to be possible. Examples of events are given which were observed during the type IIIb-III radio storm in July, 1974 and may be identified as radio echos. A regular "violet" (in comparison with the primary burst) frequency shift of the echo burst has been detected that results from the radiation reflection from moving inhomogeneities of the solar wind. An estimate of the mean velocity of the solar wind of VSW ≅ 107cm/s at the distance R_sun; from the photosphere is obtained.

  6. Solar Two

    SciTech Connect

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  7. Solar-geophysical data number 496, December 1985. Part 2: (Comprehensive reports). Data for June 1985, January-May 1985 and miscellanea

    NASA Technical Reports Server (NTRS)

    Coffey, H. E. (Editor)

    1985-01-01

    Contents include the detailed index for 1985; data for June 1985 (solar flares, solar radio bursts at fixed frequencies, solar X-ray radiation from GOES satellite graphs, mass ejections from the sun, and active prominences and filaments); data for January to May 1985 (solar flares January 1985, solar flares February 1985, solar flares March 1985, solar flares April 1985, solar flares May 1985, and number of flares August 1966 to June 1985); and the international geophysical calendar 1986.

  8. Speculation on a Solar Chronometer for Climate

    NASA Technical Reports Server (NTRS)

    Perry, Charles A.

    1990-01-01

    Solar activity has been correlated to climatic fluctuations and has been postulated as a major factor in quasi-periodic global climatic change. However, correlations are not explanations of physical mechanisms and do not couple cause with effect. A mechanism for a chronometer for solar output variability is proposed based on relations between properties of thermonuclear fusion, nuclear magnetic moment, and nuclear magnetic resonance. A fundamental oscillation of a nucleus with a net nuclear magnetic moment (NMM) is the precession of its axis of rotation when subjected to a magnetic field. Nuclear magnetic resonance (NMR) is the preferred frequency of precession for a nucleus of a particular isotope when placed in a magnetic field of specific intensity. The NMM for those isotopes involved in the proton-proton (p-p) chain pathway for solar fusion varies from strong positive to strong negative. Individual fusion events, for hydrogen and helium isotopes which release varying amounts of energy, may be controlled by NMR frequencies. The pulses of energy from fusion events occurring at NMR frequencies in the solar interior may be transformed into pressure or gravity waves that emerge as gravity or acoustic waves at the surface. Dictated by spherical harmonics, certain wavelengths may be reinforced and reenter the solar interior to modulate the fusion process. Qualitative analysis of solar and climatic data support the interaction of the three basic components of the chronometer, magnetic activity, oscillation frequency, and solar energy output.

  9. Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

    NASA Astrophysics Data System (ADS)

    Oh, Suyeon; Kim, Bogyeong

    2013-06-01

    The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

  10. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  11. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  12. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  13. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  14. Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Bruntt, H.; Michel, E.; Barban, C.; Verner, G.; Régulo, C.; Mosser, B.; Mathur, S.; Gaulme, P.; Garcia, R. A.; Boumier, P.; Appourchaux, T.; Samadi, R.; Catala, C.; Baudin, F.; Baglin, A.; Auvergne, M.; Roxburgh, I. W.; Pérez Hernández, F.

    2010-06-01

    Context. The star HD 49385 is the first G-type solar-like pulsator observed in the seismology field of the space telescope CoRoT. The satellite collected 137 days of high-precision photometric data on this star, confirming that it presents solar-like oscillations. HD 49385 was also observed in spectroscopy with the NARVAL spectrograph in January 2009. Aims: Our goal is to characterize HD 49385 using both spectroscopic and seismic data. Methods: The fundamental stellar parameters of HD 49385 are derived with the semi-automatic software VWA, and the projected rotational velocity is estimated by fitting synthetic profiles to isolated lines in the observed spectrum. A maximum likelihood estimation is used to determine the parameters of the observed p modes. We perform a global fit, in which modes are fitted simultaneously over nine radial orders, with degrees ranging from ℓ = 0 to ℓ = 3 (36 individual modes). Results: Precise estimates of the atmospheric parameters (Teff, [M/H], log g) and of the ν sin i of HD 49385 are obtained. The seismic analysis of the star leads to a clear identification of the modes for degrees ℓ = 0,1,2. Around the maximum of the signal (ν ≃ 1013 μHz), some peaks are found significant and compatible with the expected characteristics of ℓ = 3 modes. Our fit yields robust estimates of the frequencies, linewidths and amplitudes of the modes. We find amplitudes of ~5.6 ± 0.8 ppm for radial modes at the maximum of the signal. The lifetimes of the modes range from one day (at high frequency) to a bit more than two days (at low frequency). Significant peaks are found outside the identified ridges and are fitted. They are attributed to mixed modes. Based on data obtained from the CoRoT (Convection, Rotation and planetary Transits) space mission, developed by the French Space agency CNES in collaboration with the Science Programs of ESA, Austria, Belgium, Brazil, Germany and Spain.Based on data obtained using the Télescope Bernard Lyot at

  15. Solar chulha

    NASA Astrophysics Data System (ADS)

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-01

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  16. Solar dryer

    SciTech Connect

    Dodelin, R.W.; Hurst, D.W.; Osos, G.R.

    1984-02-07

    Fabrics are dried by tumbling the fabrics in a drying chamber into which hot air is introduced. The hot air is formed by passing ambient air through a solar heater to heat the air to a first temperature, and then further heating the air with a second heater such as a burner. The burner can be one which burns a fuel in the presence of combustion air. The combustion air can be a portion of the air that is passed through the solar heater. After drying the fabrics by this method, the drying zone can be cooled and the fabrics can be further dried by passing air through the solar heater, and then without further heating the air that has passed through the solar heater, introducing the air to the drying chamber.

  17. Solar cell

    SciTech Connect

    Frank, R.I.; Kaplow, R.

    1980-08-26

    An improved solar cell designed for optimum efficiency is comprised of a plurality of series connected unit solar cells formed from a common substrate of semiconductor material. Each unit solar cell has spaced elongate sidewalls, and a ''dead space'' area between adjoining sidewalls of adjacent units is made substantially smaller than an active, light receiving area, extending between the opposite sidewalls of each individual unit. In addition, the width of the active area is concisely limited to ensure that radiation incident on the active area is incident at a point which is spaced from the p-n junction of each unit by no more than a predetermined optimum distance. Reducing the ''dead space'' area while concisely limiting the width of the active area provides improved solar cell performance without requiring focusing lenses.

  18. Solar Energy

    ERIC Educational Resources Information Center

    Building Design and Construction, 1977

    1977-01-01

    Describes 21 completed projects now using solar energy for heating, cooling, or electricity. Included are elementary schools in Atlanta and San Diego, a technical school in Detroit, and Trinity University in San Antonio, Texas. (MLF)

  19. Solar Nexus.

    ERIC Educational Resources Information Center

    Murphy, Jim

    1980-01-01

    The design team for the Solar Energy Research Institute (SERI) has pushed the state of the energy art to its current limits for the initial phase, with provisions for foreseeable and even speculative future applications. (Author/MLF)

  20. Solar Cells

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Heat Exchanger Method (HEM) produces high efficiency crystal ingots in an automated well-insulated furnace offering low equipment, labor and energy costs. The "grown" silicon crystals are used to make solar cells, or photovoltaic cells which convert sunlight directly into electricity. The HEM method is used by Crystal Systems, Inc. and was developed under a NASA/Jet Propulsion Laboratory contract. The square wafers which are the result of the process are sold to companies manufacturing solar panels.

  1. Solar Schematic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  2. Solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Smith, D. F.

    1981-01-01

    Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission.

  3. Ionospheric response to the High Speed Solar Streams during last solar minimum

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Koucka Knizova, Petra; Georgieva, Katya

    Ionosphere is a highly variable system. Response of ionospheric plasma to the High Speed Solar Streams (HSS) by means of critical frequencies fof2, heights of maximum electron concentration hmf2 and the occurrence of sporadic E-layer during last prolonged solar minimum is presented and we compare it to previous studies. State of the ionosphere depends on the daytime, season, phase of solar cycle etc. The extent of ionospheric response to the solar event (HSS, CME etc.) is a subject of mentioned conditions and strength of solar event itself but it also significantly depends on the actual geomagnetic and ionospheric situation and the memory of the system, e.g. length of the preceding quiet or disturbed period. Ionospheric storms have been relatively widely studied. However, last solar minimum gives us an exceptional possibility to study ionospheric processes under conditions of unusually long time of low solar activity.

  4. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  5. Frequency-Rank Distributions

    ERIC Educational Resources Information Center

    Brookes, Bertram C.; Griffiths, Jose M.

    1978-01-01

    Frequency, rank, and frequency rank distributions are defined. Extensive discussion on several aspects of frequency rank distributions includes the Poisson process as a means of exploring the stability of ranks; the correlation of frequency rank distributions; and the transfer coefficient, a new measure in frequency rank distribution. (MBR)

  6. Low-Frequency Waves in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery

    2016-02-01

    Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.

  7. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits . III. The frequency of brown dwarfs and giant planets as companions to solar-type stars

    NASA Astrophysics Data System (ADS)

    Reggiani, M.; Meyer, M. R.; Chauvin, G.; Vigan, A.; Quanz, S. P.; Biller, B.; Bonavita, M.; Desidera, S.; Delorme, P.; Hagelberg, J.; Maire, A.-L.; Boccaletti, A.; Beuzit, J.-L.; Buenzli, E.; Carson, J.; Covino, E.; Feldt, M.; Girard, J.; Gratton, R.; Henning, T.; Kasper, M.; Lagrange, A.-M.; Mesa, D.; Messina, S.; Montagnier, G.; Mordasini, C.; Mouillet, D.; Schlieder, J. E.; Segransan, D.; Thalmann, C.; Zurlo, A.

    2016-02-01

    Context. In recent years there have been many attempts to characterize the occurrence and distribution of stellar, brown dwarf (BD), and planetary-mass companions to solar-type stars with the aim of constraining formation mechanisms. From radial velocity observations a dearth of companions with masses between 10-40 MJupiter has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. Aims: We present a model for the substellar companion mass function (CMF). This model consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the radial velocity measured CMF for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program (NaCo-LP) and the complementary archive datasets, which probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. Methods: We developed a Monte Carlo simulation tool to predict the outcome of a given survey, depending on the shape of the orbital parameter distributions (mass, semimajor axis, eccentricity, and inclination). Comparing the predictions with the results of the observations, we calculate the likelihood of different models and which models can be ruled out. Results: Current observations are consistent with the proposed model for the CMF, as long as a sufficiently small outer truncation radius (≲100 AU) is introduced for the planet separation distribution. Some regions of parameter space can be excluded by the observations. Conclusions: We conclude that the results of the direct imaging surveys searching for substellar companions around Sun-like stars are consistent with a combined substellar mass spectrum of planets and BDs. This mass distribution has a minimum between 10 and 50 MJupiter, in agreement

  8. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  9. Solar Minimum

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Mathews, John; Manross, Kevin

    1995-12-01

    Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.

  10. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  11. Obliquity Modulation of the Incoming Solar Radiation

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  12. Solar Energy and You.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  13. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  14. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  15. Solar heating

    SciTech Connect

    Resnick, M.; Startevant, R.C.

    1985-01-22

    A solar heater has an outlet conduit above an inlet conduit intercoupling a solar heating chamber with the inside of a building through a window opening. In one form the solar collecting chamber is outside the building below the window and the outlet conduit and inlet conduit are contiguous and pass through the window opening between the windowsill and the lower sash. In another form of the invention the solar collecting chambers are located beside each side of the window and joined at the top by the outlet conduit that passes through an opening between the upper window sash and the top of the window frame and at the bottom by an inlet conduit that passes through an opening between the lower sash and the windowsill. The outlet conduit carries photoelectric cells that provide electrical energy for driving a squirrel-cage fan in the outlet conduit through a mercury switch seated on a damper actuated by a bimetallic coil that closes the damper when the temperature in the outlet conduit goes below a predetermined temperature.

  16. Solar VLBI

    NASA Technical Reports Server (NTRS)

    Tapping, K. F.; Kuijpers, J.

    1986-01-01

    In April, 1981, radio telescopes at Dwingeloo (The Netherlands) and Onsala (Sweden) were used as a long-baseline interferometer at a wavelength of 18 cm. The baseline of 619 km gave a spatial resolution on the Sun of about 45 km. The major problems of Solar Very Long Baseline Interferometry are discussed.

  17. Solar Directory.

    ERIC Educational Resources Information Center

    Pesko, Carolyn, Ed.

    This directory is designed to help the researcher and developer, the manufacturer and distributor, and the general public communicate together on a mutually beneficial basis. Its content covers the wide scope of solar energy activity in the United States primarily, but also in other countries, at the academic, governmental, and industrial levels.…

  18. Solar Power

    ERIC Educational Resources Information Center

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  19. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... View Larger Image Within that narrow window during a solar eclipse where an observer on Earth can watch the Moon's shadow obscure ... of the imagery acquired during Terra orbit 20920. The panels cover an area of about 380 kilometers x 2909 kilometers and use data ...

  20. Solar oven

    SciTech Connect

    Golder, J.C.

    1981-10-06

    A portable, foldable solar oven is provided wherein the basic construction material is ordinary cardboard, some surfaces of which are coated with a reflective material. The portable oven doubles as an insulated container for keeping refrigerated foodstuffs cold while being transported to a distant site for cooking.

  1. Low frequency magnetic signals associated with Langmuir waves

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Goetz, K.; Lin, N.; Monson, S. J.; Balogh, A.; Forsyth, R. J.; Stone, R. G.

    1992-01-01

    With the URAP experiment on Ulysses, low frequency signals with a magnetic component in close time correlation with electrostatic Langmuir waves at the plasma frequency are observed. In most, if not all, of these cases, the Langmuir waves are part of a Type III solar burst. This effect is investigated and it is shown that the low frequency waves are in the whistler mode and are most likely due to nonlinear effects involving Langmuir waves.

  2. MEASUREMENTS OF RAPID DENSITY FLUCTUATIONS IN THE SOLAR WIND

    SciTech Connect

    Malaspina, D. M.; Ergun, R. E.; Kellogg, P. J.; Bale, S. D.

    2010-03-01

    The power spectrum of density fluctuations in the solar wind is inferred by tracking small timescale changes in the electron plasma frequency during periods of strong Langmuir wave activity. STEREO electric field waveform data are used to produce time profiles of plasma density from which the density power spectrum is derived. The power spectra obtained by this method extend the observed frequency range by an order of magnitude while remaining consistent with previous results near a few Hertz. Density power spectral indices are found to be organized by the angle between the local magnetic field and the solar wind direction, indicating significant anisotropy in solar wind high-frequency density turbulence.

  3. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  4. The origin of Total Solar Irradiance variability on timescales less than a day

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander; Krivova, Natalie; Schmutz, Werner; Solanki, Sami K.; Leng Yeo, Kok; Cameron, Robert; Beeck, Benjamin

    2016-07-01

    Total Solar Irradiance (TSI) varies on timescales from minutes to decades. It is generally accepted that variability on timescales of a day and longer is dominated by solar surface magnetic fields. For shorter time scales, several additional sources of variability have been proposed, including convection and oscillation. However, available simplified and highly parameterised models could not accurately explain the observed variability in high-cadence TSI records. We employed the high-cadence solar imagery from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and the SATIRE (Spectral And Total Irradiance Reconstruction) model of solar irradiance variability to recreate the magnetic component of TSI variability. The recent 3D simulations of solar near-surface convection with MURAM code have been used to calculate the TSI variability caused by convection. This allowed us to determine the threshold timescale between TSI variability caused by the magnetic field and convection. Our model successfully replicates the TSI measurements by the PICARD/PREMOS radiometer which span the period of July 2010 to February 2014 at 2-minute cadence. Hence, we demonstrate that solar magnetism and convection can account for TSI variability at all timescale it has ever been measured (sans the 5-minute component from p-modes).

  5. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  6. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2016-07-12

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  7. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  8. Digital frequency synthesizer for radar astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Satorius, E.; Robinett, L.; Olson, E.

    1990-01-01

    The digital frequency synthesizer (DFS) is an integral part of the programmable local oscillator (PLO) which is being developed for the NASA's Deep Space Network (DSN) and radar astronomy. Here, the theory of operation and the design of the DFS are discussed, and the design parameters in application for the Goldstone Solar System Radar (GSSR) are specified. The spectral purity of the DFS is evaluated by analytically evaluating the output spectrum of the DFS. A novel architecture is proposed for the design of the DFS with a frequency resolution of 1/2(exp 48) of the clock frequency (0.35 mu Hz at 100 MHz), a phase resolution of 0.0056 degrees (16 bits), and a frequency spur attenuation of -96 dBc.

  9. Solar-geophysical data number 494, October 1985, Part 2: (Comprehensive reports). Data for April 1985, January-June 1984 and miscellanea

    NASA Technical Reports Server (NTRS)

    Coffey, H. E.

    1985-01-01

    Contents include: detailed index for 1985; data for April 1985 (Meudon carte synoptique, solar radio bursts at fixed frequencies, solar X-ray radiation form GOES satellite, mass ejections from the sun, active prominences and filaments); data for January to June 1984 (solar flares January 1984, solar flares February 1984, solar flares March l984, solar flares April 1984, solar flares May 1984, solar flares June 1984, and number of flates August 1966 to June 1984); and miscellaneous data (interplanetary solar wind July 1984 to March 1985, errata solar X-rays event list January 1985).

  10. On Solar-Wind Electron Heating at Large Solar Distances

    NASA Astrophysics Data System (ADS)

    Chashei, Igor V.; Fahr, Hans J.

    2014-04-01

    We study the temperature of electrons advected with the solar wind to large solar distances far beyond 1 AU. Almost nothing is known about the thermodynamics of these electrons from in-situ plasma observations at these distances, and usually it is tacitly assumed that electrons, due to adiabatic behaviour and vanishing heat conduction, rapidly cool off to very low temperatures at larger distances. In this article we show, however, that electrons on their way to large distances undergo non-adiabatic interactions with travelling shocks and solar-wind bulk-velocity jumps and thereby are appreciably heated. Examining this heating process on an average statistical basis, we find that solar-wind electrons first cool down to a temperature minimum, which depending on the occurrence frequency of bulk velocity jumps is located between 3 and 6 AU, but beyond this the lowest electron temperature again starts to increase with increasing solar distance, finally achieving temperatures of about 7×104 K to 7×105 K at the location of the termination shock. Hence these electrons are unexpectedly shown to play an important dynamical role in structuring this shock and in determining the downstream plasma properties.

  11. The solar-like CoRoT target HD 170987: spectroscopic and seismic observations

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Catala, C.; Bruntt, H.; Mosser, B.; Appourchaux, T.; Ballot, J.; Creevey, O. L.; Gaulme, P.; Hekker, S.; Huber, D.; Karoff, C.; Piau, L.; Régulo, C.; Roxburgh, I. W.; Salabert, D.; Verner, G. A.; Auvergne, M.; Baglin, A.; Chaplin, W. J.; Elsworth, Y.; Michel, E.; Samadi, R.; Sato, K.; Stello, D.

    2010-07-01

    Context. The CoRoT mission is in its third year of observation and the data from the second long run in the galactic centre direction are being analysed. The solar-like oscillating stars that have been observed up to now have given some interesting results, specially concerning the amplitudes that are lower than predicted. We present here the results from the analysis of the star HD 170987. Aims: The goal of this research work is to characterise the global parameters of HD 170987. We look for global seismic parameters such as the mean large separation, maximum amplitude of the modes, and surface rotation because the signal-to-noise ratio in the observations does not allow us to measure individual modes. We also aim to retrieve the parameters of the star and its chemical composition. Methods: We studied the chemical composition of the star through ground-based observations performed with the NARVAL spectrograph. We used several methods to calculate the global parameters from the acoustic oscillations based on CoRoT data. The light curve of the star has been interpolated with inpainting algorithms to reduce the effect of data gaps. Results: We found the power excess related to p modes in the range [400-1200] μHz with a mean large separation of 55.2 ± 0.8 μHz with a probability above 95 % that increases to 55.9 ± 0.2 μHz in a higher frequency range [500-1250] μHz and a rejection level of 1%. A hint of the variation of this quantity with frequency was also found. The rotation period of the star is estimated to be around 4.3 days with an inclination axis of i = 50° +20-13. We measured a bolometric amplitude per radial mode in a range [2.4-2.9] ppm around 1000 μHz. Finally we estimate the stellar mass with a grid of models, M = 1.43 ± 0.05 M_⊙, the radius, R = 1.96 ± 0.046 R_⊙, and the age ~2.4 Gyr. The CoRoT space mission, launched on 2006 December 27, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD

  12. Solar irradiance variability from modern measurements

    NASA Technical Reports Server (NTRS)

    Froehlich, C.; Foukal, P. V.; Hickey, J. R.; Hudson, H. S.; Willson, R. C.

    1991-01-01

    Direct measurements from satellites of the solar 'constant' (the total irradiance at mean sun-earth distance) during more than ten years show variations over time scales from minutes to years and decades. At high frequencies, solar oscillations contribute to the variance. The most important influences are related to solar activity: during the passage of active regions on the solar disk (sunspots and faculae) changes of a few 0.1 percent lasting for several days are observed. The effects of spots can be well reproduced by the projected sunspot index, whereas the influence of faculae have to be modeled from proxy data like the Ca-K plage index or the He I index. Long-term trends are detected which are connected to the 11-yr solar activity cycle.

  13. Solar concentrator

    SciTech Connect

    Smyth, J.S.

    1982-06-08

    A solar concentrator having an open framework formed as a geodesic dome. A rotatable support axle extends substantially diametrically across the dome and has the opposite ends thereof supported on the framework. The support axle defines a first rotational axis which is oriented to extend substantially parallel with the earth's north-south axis. A support post is hingedly mounted on the support shaft substantially at the midpoint thereof for permitting angular displacement of the support post relative to the support shaft about a second rotational axis which is perpendicular to the first axis. A dishshaped reflector assembly is positioned within the interior of the framework and fixedly secured to the support post. First and second drives effect angular displacement of the reflector assembly about the first and second axes, respectively, to permit tracking of the solar position.

  14. Solar cells

    NASA Astrophysics Data System (ADS)

    Treble, F. C.

    1980-11-01

    The history, state of the art, and future prospects of solar cells are reviewed. Solar cells are already competitive in a wide range of low-power applications, and during the 1980's they are expected to become cheaper to run than diesel or gasoline generators, the present mainstay of isolated communities. At this stage they will become attractive for water pumping, irrigation, and rural electrification, particularly in developing countries. With further cost reduction, they may be used to augment grid supplies in domestic, commercial, institutional, and industrial premises. Cost reduction to the stage where photovoltaics becomes economic for large-scale power generation in central stations depends on a technological breakthrough in the development of thin-film cells. DOE aims to reach this goal by 1990, so that by the end of the century about 20% of the estimated annual additions to their electrical generating capacity will be photovoltaic.

  15. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  16. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  17. Solar observations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    High energy processes that take place in the Sun's atmosphere and the relationship of these phenomena to the basic problems of solar activity are discussed. Gamma ray emission exhibits characteristics of the conditions in regions where accelerated high energy particles interact. A number of gamma ray production mechanisms are considered. These include: the Compton effect, magnetobremsstrahlung, pi meson production by proton-proton interaction or by proton-antiproton annihilation, fission and neutral of charged particle radiative capture on inelastic scatter.

  18. Solar cooker

    SciTech Connect

    Zwach, D.M.

    1987-09-29

    A solar unit is described comprising a solar oven having an open end. A generally concave parabolic main reflector is joined to the oven to move therewith and reflect solar radiation away from the oven. The main reflector has a central opening to the oven open end, a generally parabolic convex secondary reflector for reflecting the radiation from the main reflector through the central opening to the open end of the oven, means for mounting the secondary reflector on the main reflector for movement, a frame, and means for mounting the oven on the frame for adjustable movement relative to the frame. This permits adjusting the angular position relative to the earth. The last mentioned means includes means for supporting the oven including first and second pairs of pivot members that respectively have a fist pivot axis and a second pivot axis that extends perpendicular to the first pivot axis. The oven extends between each of the first pivot members and each of the second pivot members.

  19. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  20. Solar-stellar astrophysics

    NASA Technical Reports Server (NTRS)

    Jordan, S. D.

    1982-01-01

    Nonthermal physical processes in the solar atmosphere are discussed. The solar atmospheric regions are defined, and solar convection and its phenomena are explained. The relationship of the solar dynamo, magnetic field, and flares is explored. The solar atmospheric velocity fields are discussed, and the unresolved problem of the nature of atmospheric heating is detailed. The solar wind heating and acceleration are discussed and the need for global solar atmospheric models is emphasized. The application of these solar nonthermal processes to the stars in general is then taken up, employing the same categories as were applied to the solar atmosphere.

  1. Solar Sails

    NASA Technical Reports Server (NTRS)

    Young, Roy

    2006-01-01

    The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control

  2. Use of very-high-frequency plasmas to prepare a-Si:H-based triple-junction solar cells at high deposition rates: Annual technical status report, 11 March 1998--11 March 1999

    SciTech Connect

    Jones, S.J.; Liu, T.; Tsu, D.; Izu, M.

    1999-10-25

    This report describes work performed by Energy Conversion Devices, Inc. (ECD) during this phase of this subcontract. ECD researchers have made significant progress in advancing the very high frequency (VHF), high-rate technology. They demonstrated that 8.0% stable efficiencies can be achieved for a-Si:H cells whose i-layers are prepared at rates near 10 {angstrom}/s using the VHF technique. Presently, there is not a great difference in the performance of a-Si:H cells made using the VHF technique and i-layer deposition rates near 10 {angstrom}/s and that for cells made using the standard 13.56 MHz technique and rates near 1 {angstrom}/s in the same deposition system. In terms of the a-SiGe:H cells, researchers have completed a number of studies of devices with properties appropriate for middle-junction cells-that is, cells without Ag/ZnO back-reflectors having Voc values near 0.75V and Jsc values near 8.0 mA/cm{sup 2} when measured using AM1.5 light filtered using a 530-nm, low-band-pass filter. The stabilized proper ties for these cells prepared at i-layer rates near 10 {angstrom}/s are again similar to a-SiGe:H cells made using the same deposition hardware and the low-rate 13.56 MHz method. Establishing an initial 10.5% for a triple-junction cell whose i-layers are prepared at the high rates sets the baseline for ECD's future studies. The triple-junction cell degradation (10%--13%) with prolonged light soaking is similar to that regularly obtained for cells prepared at low i-layer deposition rates (1 {angstrom}/s). This is important because the use of high-rate methods to prepare i-layers typically leads to less-stable materials and cells. Increasing the buffer-layer deposition rate to 6 {angstrom}/s leads to nearly a 15-min decrease in the total deposition time, whereas the increase in the n-layer and p-layer deposition rates both decrease the total time by 5 and 5.8 min, respectively. Thus, besides the i-layer growth rates, increasing the buffer layer growth

  3. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  4. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2016-07-12

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  5. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  6. Solar Innovator | Alta Devices

    SciTech Connect

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  7. The Source of Alfven Waves That Heat the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.; Berger, M. A.

    1998-01-01

    We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.

  8. IPS limits on very low frequency VLBI. [Interplanetary Scintillation

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.; Williamson, Robert S., III

    1990-01-01

    The ability of a space-based radio interferometer array to make high resolution images at frequencies of only a few MHz will be limited by interplanetary scintillation. Numerical simulations have been used to study the severity of interferometer phase fluctuations caused by the density fluctuations in the solar wind over a range of frequencies and solar elongation angles. The impact of these fluctuations on the quality of radio images produced has also been investigated. The results show that, for baselines up to 100 km, accurate imaging should be possible when nu sin (epsilon/2) is equal to or greater than 2.5, where nu is the observing frequency in MHz and epsilon is the solar elongation angle.

  9. Frequency stability review

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1987-01-01

    Certain aspects of the description and measurement of oscillator stability are treated. Topics covered are time and frequency deviations, Allan variance, the zero-crossing counter measurement technique, frequency drift removal, and the three-cornered hat.

  10. Modeling Frequency Comb Sources

    NASA Astrophysics Data System (ADS)

    Li, Feng; Yuan, Jinhui; Kang, Zhe; Li, Qian; Wai, P. K. A.

    2016-06-01

    Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

  11. Seismology and geodesy of the sun: Solar geodesy.

    PubMed

    Dicke, R H

    1981-03-01

    Measurements of the elliptical figure of the sun made in 1966 are analyzed on an hourly basis. This analysis yields an improved measure of the previously found solar distortion, rotating rigidly with a sidereal period of 12.38+/-0.10 days. It also yields a set of residùals used to search for signals due to low-frequency solar oscillations.

  12. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  13. Solar inverse theory

    NASA Astrophysics Data System (ADS)

    Gough, D.

    1984-12-01

    Helioseismological inversion, as with the inversion of any other data, is divided into three phases. The first is the solution of the so-called forward problem: namely, the calculation of the eigenfrequencies of a theoretical equilibrium state. The second is an attempt to understand the results, either empirically by determining how those frequencies vary as chosen parameters defining the equilibrium model are varied, or analytically from asymptotic expansions in limiting cases of high order or degree. The third phase is to pose and solve an inverse problem, which seeks to find a plausible equilibrium model of the Sun whose eigenfrequencies are consistent with observation. The three phases are briefly discussed in this review, and the third, which is not yet widely used in helioseismology, is illustrated with some selected inversions of artificial solar data.

  14. Eastern Frequency Response Study

    SciTech Connect

    Miller, N.W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2013-05-01

    This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.

  15. Frequency Response Tool

    SciTech Connect

    Etingov, Pavel; Chassin, PNNL David; Zhang, PNNL Yu; PNNL,

    2014-03-13

    According to the North American Electric Reliability Corporation (NERC) definition: “Frequency response is a measure of an Interconnection’s ability to stabilize frequency immediately following the sudden loss of generation or load, and is a critical component of the reliable operation of the Bulk-Power System, particularly during disturbances and recoveries. Failure to maintain frequency can disrupt the operation of equipment and initiate disconnection of power plant equipment to prevent it from being damaged, which could lead to wide-spread blackouts.” Frequency Response Tool automates the power system frequency response analysis process. The tool performs initial estimation of the system frequency parameters (initial frequency, minimum frequency, settling point). User can visually inspect and adjust these parameters. The tool also calculates the frequency response performance metrics of the system, archives the historic events and baselines the system performance. Frequency response performance characteristics of the system are calculated using phasor measurement unit (PMU) information. Methodology of the frequency response performance assessment implemented in the tool complies with the NERC Frequency response standard.

  16. Frequency Response Tool

    2014-03-13

    According to the North American Electric Reliability Corporation (NERC) definition: “Frequency response is a measure of an Interconnection’s ability to stabilize frequency immediately following the sudden loss of generation or load, and is a critical component of the reliable operation of the Bulk-Power System, particularly during disturbances and recoveries. Failure to maintain frequency can disrupt the operation of equipment and initiate disconnection of power plant equipment to prevent it from being damaged, which could leadmore » to wide-spread blackouts.” Frequency Response Tool automates the power system frequency response analysis process. The tool performs initial estimation of the system frequency parameters (initial frequency, minimum frequency, settling point). User can visually inspect and adjust these parameters. The tool also calculates the frequency response performance metrics of the system, archives the historic events and baselines the system performance. Frequency response performance characteristics of the system are calculated using phasor measurement unit (PMU) information. Methodology of the frequency response performance assessment implemented in the tool complies with the NERC Frequency response standard.« less

  17. Solar collector

    SciTech Connect

    Nevins, R.L.

    1981-10-27

    A heat sink in the form of a mesh is interposed between two spaced panes in a window or door light. A combination of holes and passageways formed in the window sash frame members permit the selective establishment of convective air currents past the mesh to absorb the solar converted thermal heat stored in the sink. By manipulating the source of the air for these convective currents (I.E. From the inside or the outside of a building) and by choosing the volume into which the warmed air currents are to be discharged (I.E. Inside or outside the building) significant heating and cooling efficiencies are achieved.

  18. Solar Electricity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  19. solar spicules and jets

    NASA Astrophysics Data System (ADS)

    Tavabi, E.; Koutchmy, S.; Ajabshirizadeh, A.

    2012-06-01

    In order to clear up the origin and possibly explain some solar limb and disc spicule quasi-periodic recurrences produced by overlapping effects, we present a simulation model assuming quasi- random positions of spicules. We also allow a set number of spicules with different physical properties (such as: height, lifetime and tilt angle as shown by an individual spicule) occurring randomly. Results of simulations made with three different spatial resolutions of the corresponding frames and also for different number density of spicules, are analyzed. The wavelet time/frequency method is used to obtain the exact period of spicule visibility. Results are compared with observations of the chromosphere from i/ the Transition Region and Coronal Explorer (TRACE) filtergrams taken at 1600 angstrom, ii/ the Solar Optical Telescope (SOT) of Hinode taken in the Ca II H-line and iii/ the Sac-Peak Dunn's VTT taken in H? line. Our results suggest the need to be cautious when interpreting apparent oscillations seen in spicule image sequences when overlapping is present, i.e.; when the spatial resolution is not enough to resolve individual components of spicules.

  20. Solar greenhouses in Minnesota

    SciTech Connect

    Polich, M.

    1981-12-01

    After a discussion of solar greenhouse phenomena and the potential for heat collection and food production, design recommendations are provided for attached heat collecting solar sunspaces and for attached food producing solar greenhouses. Also, design of a single solar structure to maximize heat collection and food production is considered. A method of predicting the performance for attached heat collecting solar sunspaces is given in which the solar savings fraction is calculated. (LEW)

  1. Conversion of solar energy

    NASA Astrophysics Data System (ADS)

    Semenov, N. N.; Shilov, A. E.

    The papers presented in this volume provide an overview of current theoretical and experimental research related to the conversion and practical utilization of solar energy. Topics discussed include semiconductor photovoltaic cells, orbital solar power stations, chemical and biological methods of solar energy conversion, and solar energy applications. Papers are included on new theoretical models of solar cells and prospects for increasing their efficiency, metrology and optical studies of solar cells, and some problems related to the thermally induced deformations of large space structures.

  2. Low-frequency heliographic observations of the quiet Sun corona

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Koval, A. A.; Konovalenko, A. A.

    2013-12-01

    We present new results of heliographic observations of quiet-Sun radio emission fulfilled by the UTR-2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two-dimensional heliograph within 16.5-33 MHz. Moreover, the UTR-2 radio telescope was used also as an 1-D heliograph for one-dimensional scanning of the Sun at the beginning of September 2010 as well as in short-time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet-Sun radio emission in the range 16.5-200 MHz. It is equal to -2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched-out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies.

  3. Harmonic Frequency Lowering

    PubMed Central

    Kirchberger, Martin

    2016-01-01

    A novel algorithm for frequency lowering in music was developed and experimentally tested in hearing-impaired listeners. Harmonic frequency lowering (HFL) combines frequency transposition and frequency compression to preserve the harmonic content of music stimuli. Listeners were asked to make judgments regarding detail and sound quality in music stimuli. Stimuli were presented under different signal processing conditions: original, low-pass filtered, HFL, and nonlinear frequency compressed. Results showed that participants reported perceiving the most detail in the HFL condition. In addition, there was no difference in sound quality across conditions. PMID:26834122

  4. Regional flood frequency analysis

    SciTech Connect

    Singh, V.P.

    1987-01-01

    This book, the fourth of a four volume set, contains five sections encompassing major aspects of regional flood frequency analysis. Each section starts usually with an invited state-of-the-art paper followed by contributed papers. The first section provides an assessment of regional flood frequency analysis. Methods for performing regional frequency analysis for ungaged watersheds are presented in Section 2. More discussion on regional frequency analysis is provided in Section 3. Selection and comparison of regional frequency methods are dealt with in Section 4; these are of great interest to the user. Increasing attention is being focused these days on paleohydrologic flood analysis. This topic is covered in Section 5.

  5. Frequency selective infrared sensors

    SciTech Connect

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  6. Frequency selective infrared sensors

    DOEpatents

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  7. Frequency set on systems

    NASA Astrophysics Data System (ADS)

    Wilby, W. A.; Brett, A. R. H.

    Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.

  8. Frequency discriminator/phase detector

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1974-01-01

    Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.

  9. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  10. Solar Heating and Cooling

    ERIC Educational Resources Information Center

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  11. Solar skylight

    DOEpatents

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  12. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  13. The effects of scattering on solar oscillations

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Murray, Norman

    1994-01-01

    Acoustic modes are scattered by turbulent velocity fluctuations in the solar convection zone. The strongest scattering occurs near the top of the acoustic cavity where the mode changes character from propagating to evanescent. This layer is located at depth z(sub 1) approximately g/omega(exp 2) below the photosphere. The scattering optical depth tau(sub s) is of order M(sub 1)(exp 2), where M(sub 1) is the Mach number of the energy-bearing eddies at z(sub 1). The corresponding contribution to the line width is gamma(exp s) is approximately (omega) M(sub 1)(exp 2)/(pi)(n+1), where n is the mode's radial order. At the top of the acoustic cavity the correlation time of energy-bearing eddies is much longer than omega(exp -1). Also, the pressure scale height H and the eddy correlation length Lambda are comparable to omega/c, where c is the sound speed. Thus scattering couples modes of similar omega and all l and has little effect on the sum of their energies. Observations show that mode energies decline with decreasing n (increasing l) at fixed omega. Consequently, scattering damps p-modes and excites f-modes.

  14. Alfven Waves and Turbulence in the Solar Atmosphere and Solar Wind

    NASA Technical Reports Server (NTRS)

    Verdini, Andrea; Velli, Marco

    2007-01-01

    We solve the problem of propagation and dissipation of Alfvenic turbulence in a model solar atmosphere consisting of a static photosphere and chromosphere, transition region, and open corona and solar wind using a phenomenological model for the turbulent dissipation based on wave reflection. We show that most of the dissipation for a given wave frequency spectrum occurs in the lower corona, and the overall rms amplitude of the fluctuations evolves in a way consistent with observations. The frequency spectrum for a Kolmogorov-like slope is not found to change dramatically from the photosphere to the solar wind; however, it does preserve signatures of transmission throughout the lower atmospheric layers, namely, oscillations in the spectrum at high frequencies reminiscent of the resonances found in the linear case. These may disappear once more realistic couplings for the nonlinear terms are introduced or if time-dependent variability of the lower atmospheric layer is introduced.

  15. Utility Solar Generation Valuation Methods

    SciTech Connect

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public

  16. Frequency dependent squeezed light at audio frequencies

    NASA Astrophysics Data System (ADS)

    Miller, John

    2015-04-01

    Following successful implementation in the previous generation of instruments, squeezed states of light represent a proven technology for the reduction of quantum noise in ground-based interferometric gravitational-wave detectors. As a result of lower noise and increased circulating power, the current generation of detectors places one further demand on this technique - that the orientation of the squeezed ellipse be rotated as function of frequency. This extension allows previously negligible quantum radiation pressure noise to be mitigated in addition to quantum shot noise. I will present the results of an experiment which performs the appropriate rotation by reflecting the squeezed state from a detuned high-finesse optical cavity, demonstrating frequency dependent squeezing at audio frequencies for the first time and paving the way for broadband quantum noise reduction in Advanced LIGO. Further, I will indicate how a realistic implementation of this approach will impact Advanced LIGO both alone and in combination with other potential upgrades.

  17. The solar cycle variation of coronal mass ejections and the solar wind mass flux

    NASA Technical Reports Server (NTRS)

    Webb, David F.; Howard, Russell A.

    1994-01-01

    Coronal mass ejections (CMEs) are an important aspect of coronal physics and a potentially significant contributor to perturbations of the solar wind, such as its mass flux. Sufficient data on CMEs are now available to permit study of their longer-term occurrency patterns. Here we present the results of a study of CME occurrence rates over more than a complete 11-year solar sunspot cycle and a comparison of these rates with those of other activity related to CMEs and with the solar wind particle flux at 1 AU. The study includes an evaluation of correlations to the CME rates, which include instrument duty cycles, visibility functions, mass detection thresholds, and geometrical considerations. The main results are as follows: (1) The frequency of occurrence of CMEs tends to track the solar activity cycle in both amplitude and phase; (2) the CME rates from different instruments, when corrected for both duty cycles and visibility functions, are reasonably consistent; (3) considering only longer-term averages, no one class of solar activity is better correlated with CME rate than any other; (4) the ratio of the annualized CME to solar wind mass flux tends to track the solar cycle; and (5) near solar maximum, CMEs can provide a significant fraction (i.e., approximately equals 15%) of the average mass flux to the near-ecliptic solar wind.

  18. SOLAR-CYCLE VARIATION OF SOUND SPEED NEAR THE SOLAR SURFACE

    SciTech Connect

    Rabello-Soares, M. C.

    2012-02-01

    We present evidence that the sound-speed variation with solar activity has a two-layer configuration, similar to the one observed below an active region, which consists of a negative layer near the solar surface and a positive one in the layer immediately below the first one. Frequency differences between the activity minimum and maximum of solar cycle 23, obtained applying global helioseismology to the Michelson Doppler Imager on board the Solar and Heliospheric Observatory, is used to determine the sound-speed variation from below the base of the convection zone to a few Mm below the solar surface. We find that the sound speed at solar maximum is smaller than at solar minimum at the limit of our determination (5.5 Mm). The min-to-max difference decreases in absolute values until {approx}7 Mm. At larger depths, the sound speed at solar maximum is larger than at solar minimum and the difference increases with depth until {approx}10 Mm. At this depth, the relative difference ({delta}c{sup 2}/c{sup 2}) is less than half of the value observed at the lowest depth determination. At deeper layers, it slowly decreases with depth until there is no difference between maximum and minimum activity.

  19. Solar Energy: Solar and the Weather.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  20. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  1. The significant solar proton events in 20th solar cycle for the period October 1964 to March 1970

    NASA Technical Reports Server (NTRS)

    Atwell, W.

    1972-01-01

    Solar proton data are presented from observations by the Explorer 21, 28, 34 and 41 satellites. The NASA Solar Particle Alert Network (SPAN) solar optical and radio frequency data for the period May 1967 to March 1970 are associated with the proton events observed by the Explorer 34 and 41 satellites; however, missing data are supplemented with data recorded at other international observatories. From a radiation hazard standpoint, NASA is concerned with solar proton events of the order of 10 to the 8th power proton/sq cm. Radiation dose data are presented for some of the large proton events that have occurred thus far in the 20th solar cycle and are compared with some of the large proton events of the 19th solar cycle. Finally, the results of a simple parametric correlation study are presented for both the 19th and 20th solar cycles.

  2. Solar electric systems

    NASA Astrophysics Data System (ADS)

    Warfield, G.

    Subjects discussed in connection with solar electricity are related to solar radiation fundamentals, wind electric conversion and utilization, the basic theory of solar cells, photovoltaic materials, photovoltaic technology, components of solar thermal electric systems, solar thermal power plants, and integrated solar thermal electric complexes. The solar technology development in the Arab world is also examined, taking into account the horizon of solar energy in the Arab countries, solar energy activities at the Scientific Research Council in Iraq, solar energy activities at the Royal Scientific Society in Jordan, the solar energy program at Kuwait Institute for Scientific Research, application of solar energy in Libya, prospects of solar energy for Egypt, solar energy programs in Qatar, performance characteristics of a 350 kW photovoltaic power system for Saudi Arabian villages, nonconventional energy in Syria, wind and solar energies in Sudan, solar electric research and development program in Tunisia, and solar energy research and utilization in Yemen Arab Republic. No individual items are abstracted in this volume

  3. Background solar irradiance spectrum at high and low phases of the solar activity cycle

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, H.; Roca Cortés, T.; Régulo, C.

    2002-12-01

    Two data series of disk integrated solar irradiance, taken by the Variability of the solar IRradiance and Gravity Oscillations (VIRGO) experiment on board the Solar and Heliospheric Observatory (SoHO) mission, corresponding to epochs of minimum and maximum solar activity have been analysed in order to study the background signal of the associated power spectra. We fit the most apparent convective structures that appear at low frequencies in the spectrum as well as non-periodic components. We aim to compare the results found in the three observed bands (centered in λ=402nm, λ=500nm and λ=862nm) as well as to find dependences of the non-periodic convective structures parameters with the solar cycle.

  4. Solar-geophysical data number 479, August 1981. Part 2: (Comprehensive reports), data for January 1984 and August 1981 and miscellanea. Explanation of data reports issued as number 474 (supplement) February 1984

    NASA Technical Reports Server (NTRS)

    Coffey, H. E.

    1984-01-01

    Various solar physical data are presented including: data for January 1984--(solar radio bursts af fixed frequencies, solar X-ray radiation from GOES satellite, Mass ejections from the sun); data for August 1981--solar flares; Miscellaneous data--(meudon carte synoptique, solar X-ray radiation from GOES satellite).

  5. EDITORIAL Solar harvest Solar harvest

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  6. Stability analysis of the Gravito-Electrostatic Sheath-based solar plasma equilibrium

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.; Lal, M.; Dwivedi, C. B.

    2016-08-01

    We present approximate solutions of non-local linear perturbational analysis for discussing the stability properties of the Gravito-Electrostatic Sheath (GES)-based solar plasma equilibrium, which is indeed non-uniform on both the bounded and unbounded scales. The relevant physical variables undergoing perturbations are the self-solar gravity, electrostatic potential and plasma flow along with plasma population density. We methodologically derive linear dispersion relation for the GES fluctuations, and solve it numerically to identify and characterize the existent possible natural normal modes. Three distinct natural normal modes are identified and named as the GES-oscillator mode, GES-wave mode and usual (classical) p-mode. In the solar wind plasma, only the p-mode survives. These modes are found to be linearly unstable in wide-range of the Jeans-normalized wavenumber, k. The local plane-wave approximation marginally limits the validity or reliability of the obtained results in certain radial- and k-domains only. The phase and group velocities, time periods of these fluctuation modes are investigated. It is interesting to note that, the oscillation time periods of these modes are 3-10 min, which match exactly with those of the observed helio-seismic waves and solar surface oscillations. The proposed GES model provides a novel physical view of the waves and oscillations of the Sun from a new perspective of plasma-wall interaction physics. Due to simplified nature of the considered GES equilibrium, it is a neonatal stage to highlight its applicability in the real Sun. The proposed GES model and subsequent fluctuation analysis need further improvements to make it more realistic.

  7. Seismology and geodesy of the sun: low-frequency oscillations

    SciTech Connect

    Dicke, R.H.

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ..nu.. < 0.5 h/sup -1/. Nothing significant is found for frequencies ..nu.. > 0.1 hr/sup -1/ but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.

  8. Seismology and geodesy of the sun: Low-frequency oscillations.

    PubMed

    Dicke, R H

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu < 0.5 hr(-1). Nothing significant is found for frequencies nu > 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.

  9. Solar-geophysical data number 489, May 1985. Part 2: (Comprehensive reports). Data for December 1984, March-May 1983 and miscellanea

    NASA Technical Reports Server (NTRS)

    Coffey, H. E. (Editor)

    1985-01-01

    Contents include: detailed index for 1984 to 1985; data for December 1984--(Meudon Carte Synoptique, solar radio bursts at fixed frequencies, solar X-ray radiation from GOES satellite graphs, mass ejections from the sun, active prominences and filaments, solar irradiance); and data for March, April and May 1983--(solar flares March 1983, solar flares April 1983, solar flares May 1983, number of flares August 1966 to May 1983).

  10. Radio frequency detection assembly and method for detecting radio frequencies

    DOEpatents

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  11. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  12. Solar collector

    SciTech Connect

    Miller, R.L.

    1983-05-31

    A solar energy water heating unit is provided which heats water from a swimming pool by passing the water through a series of spiral hoses mounted on a supporting surface. The supporting surface is mounted on a platform raised from the ground and is cone-shaped to allow for at least a portion of each hose line to be exposed to the sun at all times of the day. The spiral hose lines are mounted in spiral grooves provided on the supporting surface. A pump pumps the water from the swimming pool to the inlet of the hose lines, which inlet is adjacent the lowermost edge of the supporting surface so that the water is always pumped upwardly to the outlet end of the hose lines adjacent the apex of the supporting surface.

  13. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  14. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  15. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1976-01-01

    The paper reviews the current status of research on solar radio continuum emissions from metric to hectometric wave frequencies, emphasizing the role of energetic electrons in the 10-100 keV range in these emissions. It is seen that keV-energy electrons generated in active sunspot groups must be the sources of radio continuum storm emissions for wide frequency bands. These electrons excite plasma oscillations in the medium, which in turn are converted to electromagnetic radiation. The radio noise continuum sources are usually associated with type III burst activity observed above these sources. Although the mechanism for the release of the energetic electrons is not known, it seems they are ejected from storm source regions in association with rapid variation of associated sunspot magnetic fields due to their growth into complex types. To explain some of the observed characteristics, the importance of two-stream instability and the scattering of ambient plasma ions on energetic electron streams is pointed out.

  16. Frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    A frequency conversion system comprises first and second gain sources providing first and second frequency radiation outputs where the second gain source receives as input the output of the first gain source and, further, the second gain source comprises a Raman or Brillouin gain fiber for wave shifting a portion of the radiation of the first frequency output into second frequency radiation output to provided a combined output of first and second frequencies. Powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  17. Laser frequency offset synthesizer

    NASA Astrophysics Data System (ADS)

    Lewis, D. A.; Evans, R. M.; Finn, M. A.

    1985-01-01

    A method is reported for locking the frequency difference of two lasers with an accuracy of 0.5 kHz or less over a one-second interval which is simple, stable, and relatively free from systematic errors. Two 633 nm He-Ne lasers are used, one with a fixed frequency and the other tunable. The beat frequency between the lasers is controlled by a voltage applied to a piezoelectric device which varies the cavity length of the tunable laser. This variable beat frequency, scaled by a computer-controlled modulus, is equivalent to a synthesizer. This approach eliminates the need for a separate external frequency synthesizer; furthermore, the phase detection process occurs at a relatively low frequency, making the required electronics simple and straightforward.

  18. Solar Flare Observations at Submm-waves

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Raulin, J.-P.; Correia, E.; Costa, J. E. R.; Guillermo, C.; de Castro, Giménez; Silva, A. V. R.; Levato, H.; Rovira, M.; Mandrini, C.; Fernández-Borda, R.; Bauer, O.

    We report on the recent installation of the new Solar Submillimeter Telescope(SST) at the El Leoncito site, located in the Argentinean Andes, and also show first observational results. The instrument consists of a radome-enclosed 1.5-m cassegrain reflector and a system of two radiometers at 405 GHz and four at 212 GHz. The SST observes the quiet Sun and solar bursts simultaneously at both submillimeter-wave frequencies with a sampling rate of 1 millisecond. Since SST has seen the "first light" in May 1999, nearly 45 hours of continuous tracking of solar active regions were collected during short campaigns which produced first evidence for solar activity. The project has been funded by the Brazilian agency FAPESP, receiving support from the Argentinean agency CONICET through their institutes CASLEO and IAFE and from IAP, University of Bern and the Swiss National Science Foundation.

  19. Turbulence in solar wind and laboratory plasmas

    SciTech Connect

    Carbone, V.

    2010-06-16

    Recent studies of plasma turbulence based on measurements within solar wind and laboratory plasmas has been discussed. Evidences for the presence of a turbulent energy cascade, using the Yaglom's law for MHD turbulence, has been provided through data from the Ulysses spacecraft. This allows, for the first time, a direct estimate of the turbulent energy transfer rate, which can contribute to the in situ heating of the solar wind. The energy cascade has been evidenced also for ExB electrostatic turbulence in laboratory magnetized plasmas using measurements of intermittent transport (bursty turbulence) at the edge of the RFX-mod reversed field pinch plasma device. Finally the problem of the dispersive region of turbulence in solar wind above the ion-cyclotron frequency, where a spectral break is usually observed, and the problem of dissipation in a collisionless fluid as the solar wind, are briefly discussed.

  20. Toward a Solar Civilization

    ERIC Educational Resources Information Center

    Hippel, Frank von; Williams, Robert H.

    1977-01-01

    The future of solar energy is examined environmentally, socially, and economically. Coal and nuclear fission are discussed as long-range energy alternatives and U. S. regional strategies are suggested. Discussed in detail are low temperature solar heat, solar electricity, and chemical fuels from solar energy. (MA)

  1. A Solar Energy Bibliography.

    ERIC Educational Resources Information Center

    Guthrie, David L.; Riley, Robert A.

    This document contains 5,000 references to literature through 1976 dealing with various aspects of solar energy. Categories are established according to area of solar research. These categories include: (1) overview; (2) measurement; (3) low-range solar energy collection (below 120 degrees C); (4) intermediate-range solar energy collection (120…

  2. Solar heating and you

    SciTech Connect

    1994-08-01

    This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

  3. Nonlinear Frequency Compression

    PubMed Central

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  4. Frequency Response Analysis Tool

    SciTech Connect

    Etingov, Pavel V.; Kosterev, Dmitry; Dai, T.

    2014-12-31

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  5. Photovoltaic solar concentrator

    SciTech Connect

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  6. Solar array drive system

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Sturman, J. C.; Stanhouse, R. W.

    1976-01-01

    A solar array drive system consisting of a solar array drive mechanism and the corresponding solar array drive electronics is being developed. The principal feature of the solar array drive mechanism is its bidirectional capability which enables its use in mechanical redundancy. The solar array drive system is of a widely applicable design. This configuration will be tested to determine its acceptability for generic mission sets. Foremost of the testing to be performed is the testing for extended duration.

  7. Development of Solar Research

    NASA Astrophysics Data System (ADS)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  8. Solar collector array

    SciTech Connect

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  9. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; Kaiser, M.; Kassim, N.; Kuiper, T.; MacDowall, R.; Mahoney, M.; Perley, R.; Preston, R.; Reiner, M.; Rodriguez, P.; Stone, R.; Unwin, S.; Weiler, K.; Woan, G.; Woo, R.

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  10. Constraining magnetic-activity modulations in three solar-like stars observed by CoRoT and NARVAL

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Morgenthaler, A.; Salabert, D.; Petit, P.; Ballot, J.; Régulo, C.; Catala, C.

    2013-02-01

    Context. Stellar activity cycles are the manifestation of dynamo process running in the stellar interiors. They have been observed from years to decades thanks to the measurement of stellar magnetic proxies on the surface of the stars, such as the chromospheric and X-ray emissions, and to the measurement of the magnetic field with spectropolarimetry. However, all of these measurements rely on external features that cannot be visible during, for example, a Maunder-type minimum. With the advent of long observations provided by space asteroseismic missions, it has been possible to penetrate the stars and study their properties. Moreover, the acoustic-mode properties are also perturbed by the presence of these dynamos. Aims: We track the temporal variations of the amplitudes and frequencies of acoustic modes allowing us to search for signature of magnetic activity cycles, as has already been done in the Sun and in the CoRoT target HD 49933. Methods: We used asteroseimic tools and more classical spectroscopic measurements performed with the NARVAL spectropolarimeter to check that there are hints of any activity cycle in three solar-like stars observed continuously for more than 117 days by the CoRoT satellite: HD 49385, HD 181420, and HD 52265. To consider that we have found a hint of magnetic activity in a star we require finding a change in the amplitude of the p modes that should be anti-correlated with a change in their frequency shifts, as well as a change in the spectroscopic observations in the same direction as the asteroseismic data. Results: Our analysis gives very small variation in the seismic parameters preventing us from detecting any magnetic modulation. However, we are able to provide a lower limit of any magnetic-activity change in the three stars that should be longer than 120 days, which is the length of the time series. Moreover we computed the upper limit for the line-of-sight magnetic field component being 1, 3, and 0.6 G for HD 49385, HD 181420

  11. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  12. Type IIIb bursts and their fine structure in frequency band 18-30 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Rucker, H. O.; Konovalenko, A. A.; Shevchuk, N. V.; Abranin, E. P.; Dorovskyy, V. V.; Lecacheux, A.

    2010-01-01

    This paper deals with Type IIIb bursts, which were observed in the frequency band from 18 to 30 MHz. These bursts have fine frequency structures contrary to usual Type III bursts. The main properties of Type IIIb bursts such as number of striae in a burst, their frequency drift rates, durations, frequency widths of stria, emission fluxes are presented. It is also shown that parameters of stria bursts depend on the position of active areas on the solar disk.

  13. Electromagnetic radiation trapped in the magnetosphere above the plasma frequency

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Shaw, R. R.

    1973-01-01

    An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.

  14. Frequency modulated oscillator

    NASA Technical Reports Server (NTRS)

    Honnell, M. A. (Inventor)

    1977-01-01

    A frequency modulated push-pull oscillator in which the non-linear characteristic of varactors producing frequency modulation is compensated for by an opposite non-linear characteristic of a field effect transistor providing modulating bias to the varactors is described.

  15. Frequencies for radio astronomy.

    PubMed

    Smith, F G

    1970-10-31

    At present the scope of research in radio astronomy is limited by the allocation of frequencies, some of which have to be shared with other radio services. When the International Telecommunications Union reconsiders all frequency allocations next year, astronomers are hoping for an improvement.

  16. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  17. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  18. Digital frequency discriminator

    NASA Technical Reports Server (NTRS)

    Reid, W. J.

    1970-01-01

    Frequency discriminator has five integrated circuit chips interconnected to provide a divide function, exclusive OR function, phase shifting, and holding so that a single binary output signal results. The state of the binary signal indicates which one of the two input signals has a lower frequency than the other.

  19. Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Donelan, Darsa; Mueller, Guido; Thorpe, James; Livas, Jeffrey

    2011-01-01

    Laser ranging and interferometry are essential technologies allowing for many astounding new spacebased missions such as the Laser Interferometer Space Antenna (LISA) to measure gravitational radiation emitted from distant super massive black hole mergers or distributed aperture telescopes with unprecedented angular resolution in the NIR or visible regime. The requirements on laser frequency noise depend on the residual motion and the distances between the spacecraft forming the interferometer. The intrinsic frequency stability of commercial lasers is several orders of magnitude above these requirements. Therefore, it is necessary for lasers to be stabilized to an ultrastable frequency reference so that they can be used to sense and control distances between spacecraft. Various optical frequency references and frequency stabilization schemes are considered and investigated for the applicability and usefulness for space-based interferometry missions.

  20. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  1. External laser frequency stabilizer

    SciTech Connect

    Hall, J.L.; Hansch, T.W.

    1987-10-13

    A frequency transducer for controlling or modulating the frequency of a light radiation system is described comprising: a source of radiation having a predetermined frequency; an electro-optic phase modulator for receiving the radiation and for changing the phase of the radiation in proportion to an applied error voltage; an acousto-optic modulator coupled to the electro-optic modulator for shifting the frequency of the output signal of the electro-optic modulator; a signal source for providing an error voltage representing undesirable fluctuations in the frequency of the light radiation; a first channel including a fast integrator coupled between the signal source and the input circuit of the electro-optic modulator; a second channel including a voltage controlled oscillator coupled between the signal source and the acousto-optic modulator; and a network including an electronic delay circuit coupled between the first and second channels for matching the delay of the acousto-optic modulator.

  2. Solar still

    SciTech Connect

    Gruntman, L.R.

    1980-08-26

    A solar still adapted to float on a body of water has a toroidal evaporating chamber with sunlight admitting and absorbing, respectively, top and bottom walls for vaporizing water from the body admitted to overlie the bottom wall. A surrounding inner float ring and underlying toroidal inflatable float support the chamber. A condenser depends from and communicates with the evaporating chamber through elongate coaxial vapor outlet and air return tubes, and in turn supplies distillate to a pendent holding tank. A rotatable shaft extending coaxially down through the evaporating chamber carries a fan to propel vapor from the evaporating chamber into the condenser due to rotation of a windmill atop the chamber. A curved reflector is rotatably driven atop the inner ring to direct additional sunlight on the evaporating chamber as the sun moves overhead. An outer float ring loosely coaxially surrounds the inner float ring. The annular water surface between the float rings, covered by a transparent film, forms an oxygen production zone occupiable by oxygen producing phytoplankton fed by nutrients in water brought up from beneath the thermocline by thermosiphon flow between the warm condenser and a surrounding heat skirt. Pump units mounted on the outer float ring remove distilled water and any oxygen produced, the latter for example to a device for dissolving the oxygen below the thermocline in the body of water.

  3. Solar oven

    SciTech Connect

    Burns, T.J.; Burns, C.L.

    1989-07-18

    This patent describes a solar oven. It comprises: an oven chamber having an open end and defining an interior cooking chamber; means providing a flat-back interior surface on the cooking chamber for absorbing sunlight and converting the absorbed sunlight into heat; an oven door hingedly mounted over the open end and movable between open and closed positions relative to the open end; means for pivotably supporting the oven chamber about a first substantially horizontal pivot axis; user-actuable latch means for selectively retaining the oven chamber in selected positions around the first horizontal axis, the user-actuable latch means including a user releasable ratchet mechanism including a plurality of ratchet teeth formed on the oven chamber and ratchet pawl pivoted to the support means in a position to engage selective ones of the ratchet teeth to retain the over chamber in selected orientations around the horizontal axis, the latch means further including means for pivoting the pawl into and out of the path of movement of the ratchet teeth to thereby achieve the selective positioning; a tray disposed within the interior cooking chamber for supporting foodstuffs during coking; pivot means for pivotally mounting the tray within the interior cooking chamber for movement around a second substantially horizontal pivot axis such that the tray can be positioned so as to maintain the foodstuffs in a substantially level position independently of the position of the oven chamber around the first pivot axis.

  4. An investigation of solar flares and associated solar radio bursts on ionospheric total electron content

    NASA Astrophysics Data System (ADS)

    Uwamahoro, Jean

    2016-07-01

    Solar transients events such as Coronal Mass Ejections (CMEs) and solar flares represent are the cause of various aspects of space weather and can impact the modern man made technological system. Such solar transients are often associated with solar radio bursts (SRBs), particularly of type II and III that , at ground level can be detected by the CALLISTO (Compact Astronomical Low-frequency Low-cost Instrument for Spectroscopy and Transportable Observatories) solar spectrometer. The present study aims at investigating solar flares and associated SRBs impact on the ionospheric total electron content (TEC). SRBs data used are dynamic spectra covering the 2014-2015 period and detected by the CALLISTO instrument that is installed at the university of Rwanda, Kigali. To investigate ionospheric impact, we use TEC data from IGS stations located at almost the same universal time zone, and correlate the observed TEC changes to the corresponding observed solar bursts events. Preliminary observations resulting from this study indicate a slight enhancement in TEC during the burst event days. The observed TEC enhancement on the burst day can be associated to increased UV and X-rays radiations and particle acceleration that are associated with SRBs events. This work is a contribution to more understanding of the geo-space impact of solar transients phenomena for modeling and prediction.

  5. An investigation of solar flares and associated solar radio bursts impact on ionospheric total electron content

    NASA Astrophysics Data System (ADS)

    Tuyizere, Sarathiel

    2016-07-01

    Solar transients events such as Coronal Mass Ejections (CMEs) and solar flares represent the cause of various aspects of space weather and can impact the modern man made technological system. Such solar transients are often associated with solar radio bursts (SRBs), particularly of type II and III that , at ground level can be detected by the CALLISTO (Compact Astronomical Low-frequency Low-cost Instrument for Spectroscopy and Transportable Observatories) solar spectrometer. The present study aims at investigating solar flares and associated SRBs impact on the ionospheric total electron content (TEC). SRBs data used are dynamic spectra covering the 2014-2015 period and detected by the CALLISTO instrument that is installed at the university of Rwanda, Kigali. To investigate ionospheric impact, we use TEC data from IGS stations located at almost the same universal time zone, and correlate the observed TEC changes to the corresponding observed solar bursts events. Preliminary observations resulting from this study indicate a slight enhancement in TEC during the burst event days. The observed TEC enhancement on the burst day can be associated to increased UV and X-rays radiations and particle acceleration that are associated with SRBs events. This work is a contribution to more understanding of the geo-space impact of solar transients phenomena for modeling and prediction.

  6. Resonant Plasma Heating Below the Cyclotron Frequency

    SciTech Connect

    Roscoe White; Liu Chen; Zhihong Lin

    2001-11-26

    Resonant heating of a magnetized plasma by low-frequency waves of large amplitude is considered. It is shown that the magnetic moment can be changed nonadiabatically by a single large amplitude wave, even at frequencies normally considered nonresonant. Two examples clearly demonstrate the existence of the resonances leading to chaos and the generic nature of heating below the cyclotron frequency. First, the classical case of an electrostatic wave of large amplitude propagating across a confining uniform magnetic field, and second, a large amplitude Alfvén wave, propagating obliquely across the magnetic field. Waves with frequencies a small fraction of the cyclotron frequency are shown to produce significant heating; bringing, in the case of Alfvén waves, particles to speeds comparable to the Alfvén velocity in a few hundred cyclotron periods. Stochastic threshold for heating occurs at significantly lower amplitude with a perturbation spectrum consisting of a number of modes. This phenomenon may have relevance for the heating of ions in the solar corona as well as for ion heating in some toroidal confinement fusion devices.

  7. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  8. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  9. Solar Design Workbook

    SciTech Connect

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  10. SOLARES - A new hope for solar energy

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of reducing the diurnal variation and enhancing the average intensity of sunlight with a space system of minimum mass and complexity. The key impact that such a system makes on the economic viability of solar farming and other solar applications is demonstrated. The system is compatible with incremental implementation and continual expansion to meet the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even competitive with conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation. Development of the terrestrial solar conversion technique, optimized for this new artificial source of solar radiation, yet remains.

  11. Precision frequency synthesizing sources with excellent time/frequency performances

    NASA Technical Reports Server (NTRS)

    Zhou, Liren; Lin, Hai

    1994-01-01

    Precision frequency synthesizing sources are needed in the time / frequency measuring system, atomic frequency standards, telemetry, communication, and radar systems. This kind of frequency synthesizing source possesses high frequency accuracy and excellent long term and short term frequency stability. Several precision frequency synthesizing sources developed by Beijing Institute of Radio Metrology and Measurement (BIRMM) which have been successfully applied to the time / frequency measuring system, atomic frequency standards system, and radar system are described. In addition, the working principle, implementation approach, and the main technical specifications of the frequency synthesizing sources are also given.

  12. Frequency comb swept lasers.

    PubMed

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G

    2009-11-01

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  13. Simple sweep frequency generator

    NASA Astrophysics Data System (ADS)

    Yegorov, I.

    1985-01-01

    A sweep frequency generator is described whose center frequency can be varied from 10 kHz to 50 MHz, with seven 1 to 3 and 3 to 10 scales covering the 10 kHz to 30 MHz range and one 3 to 5 scale for the 30 to 50 MHz range. It consists of a tunable pulse generator with output voltage attenuator, a diode mixer for calibration, and a sawtooth voltage generator as a source of frequency deviation. The pulse generator is a multivibrator with two emitter coupled transistors and two diodes in the collector circuit of one. The first diode extends the tuning range and increases the frequency deviation, the second diode provides the necessary base bias to the other transistor. The pulse repetition rate is modulated either directly by the sweep voltage of the calibrating oscilloscope, this voltage being applied to the base of the transistor with the two diodes in its collector circuit through an additional attenuator or a special emitter follower, or by the separate sawtooth voltage generator. The latter is a conventional two transistor multivibrator and produces signals at any constant frequency within the 40 to 60 Hz range. The mixer receives unmodulated signals from a reference frequency source and produces different frequency signals which are sent through an RCR-filter to a calibrating oscilloscope.

  14. Development of 2.8-GHz Solar Flux Receivers

    NASA Astrophysics Data System (ADS)

    Yun, Youngjoo; Park, Yong-Sun; Kim, Chang-Hee; Lee, Bangwon; Kim, Jung-Hoon; Yoo, Saeho; Lee, Chul-Hwan; Han, Jinwook; Kim, Young Yun

    2014-12-01

    We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at 100° C. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

  15. Detrimental Effects of Extreme Solar Activity on Life on Earth

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Jackman, Charles

    2015-07-01

    Solar Coronal Mass Ejections (CMEs), the most energetic eruptions in the Solar System, represent large-scale disturbances forming with the solar corona and are associated with solar flares and Solar Energetic Particles (SEP) events. Current Kepler data from solar-like stars suggest that the frequency of occurrence of energetic flares and associated CMEs from the Sun can be as high as 1 per 1500 years. What effects would CME and associated SEPs have on Earth's habitability? We have performed a three-dimensional time-dependent global magnetohydrodynamic simulation of the magnetic interaction of such a CME cloud with the Earth's magnetosphere. We calculated the global structure of the perturbed magnetosphere and derive the latitude of the open-closed magnetic field boundary. We used a 2D GSFC atmospheric code to calculate the efficiency of ozone depletion in the Earth's atmosphere due to SEP events and its effects on our society and life on Earth.

  16. Turbulence and wave particle interactions in solar-terrestrial plasmas

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Goldman, M. V.; Toomre, J.

    1985-01-01

    Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.

  17. Some Candidates for Solar Gravity Modes

    NASA Astrophysics Data System (ADS)

    Thomson, David J.

    2015-04-01

    Since the accidental discovery of solar modes in space (Thomson,Maclennan, and Lanzerotti, Nature, 1995) work has continued and there are now a few candidates for identified solar gravity modes using charged particles and interplanetary magnetic field data. Contrary to initial expectations, there is a preference for higher-l modes, typically l = 2 to 5.Second, different frequencies are expected at ACE (at L1) and Ulysses, in an almost sidereal solar-polar orbit. Given a candidate detection at ACE where signal-to-noise ratios are higher, one can then shift frequencies by ±32m nHz and test for agreement at Ulysses.Third, the 7.5 degree inclination of the ecliptic on the solar equator splits odd-parity modes at ACE by32 nHz. The two sub-singlets have a defined phase relation that can be used as a further check on parity. Two such modes are G2,-1 at 296.195 uHz and G3,-2 at 296.887 uHz. Both have all 2l+1 singlets detected on both ACE and Ulysses.The 11 singlets of the G5,-1 mode are also all detected above the 99% level. The mode has a center frequency of 383.812 uHz with a1 ≈ 918 nHz.

  18. POLARIZATION OF THE THERMAL RADIO EMISSION FROM OUTER SOLAR CORONA

    SciTech Connect

    Sastry, Ch. V.

    2009-06-01

    The Haselgrove equations for radio-ray propagation in an anisotropic medium are used to determine the degree of circular polarization (dcp) of the low-frequency thermal radio emission from the outer solar corona with a magnetic field. The variation of dcp with frequency and magnetic field strength is investigated. It is found that weak magnetic fields can be detected by measuring the dcp at low frequencies.

  19. Frequency discriminating laser

    SciTech Connect

    Thomas, M.D.

    1987-10-20

    A laser is described for discriminating between a higher gain transition and a lower gain transition to permit the laser to lase at the lower gain transition. It consists of: a laser cavity, including more than two mirrors each of which is highly transmissive at the frequency of the higher gain transition, one of which is partially reflective at the frequency of the lower gain transition, and all but the one of which are highly reflective at the frequency of the lower gain transition; an active laser medium disposed within the cavity; and means for pumping the active laser medium.

  20. Digital Radio Frequency Memories

    NASA Astrophysics Data System (ADS)

    Hey-Shipton, Gregory L.

    The Digital RF Memory (DRFM) is gradually replacing the recirculating Frequency Memory Loop (FML). The shortcomings of the FML in the area of limited storage time, single signal processing, and limited ECM capabilities are overcome by the use of the DRFM. There are several architectures for the DRFM but all of them accomplish the same basic function: to convert an incoming RF signal to a low enough frequency to allow storage in a digital memory and subsequent upconversion to the original signal frequency. Multiple signal handling capabilities on a pulse by pulse basis and software controlled ECM generation make the DRFM a powerful addition to any ECM suite.

  1. Low-frequency VLBI in space and interstellar refraction

    SciTech Connect

    Dennison, B.; Booth, R.S.

    1986-08-01

    The proposed orbiting Quasat antenna, equipped with a low-frequency capability (e.g. 327 MHz), would be uniquely suited for studying refractive focusing (slow scintillation) in the interstellar medium, which is suspected of being responsible for at least some apparent low-frequency variability of extragalactic sources. The authors consider in some detail various technical considerations, including the decorrelating effects of the ionosphere and interplanetary medium, and conclude that low-frequency VLBI observations involving Quasat and Earth-based antennas would be feasible, particularly if sources are observed when they are in the anti-solar hemisphere.

  2. Solar buildings. Overview: The Solar Buildings Program

    SciTech Connect

    Not Available

    1998-04-01

    Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

  3. Rigid Solar Generator (GSR) solar arrays

    NASA Astrophysics Data System (ADS)

    Martin, G. A.; Laget, R.; Urbain, G.; Bastard, J. L.

    The Telecom, TV-SAT, and ARABSAT solar arrays are described. The Telecom minimal power requirement of 110 W during the spinned transfer phase (solar array stowed on the spacecraft walls) and 1054 W summer solstice on orbit (3 axis stabilized), led to a 3 panels per wing solar array with panel dimensions of 1295.4 x 2047 mm. The TV-SAT and ARABSAT arrays differ from Telecom by their partial deployment in transfer orbit. The arrays contain 14,256 solar cells for primary power and 1560 cells for battery charging. Cells are 180 micron thick back surface reflectors.

  4. Classic papers in Solar Energy: Solar distillation

    SciTech Connect

    Howe, E.D.

    1990-06-01

    The following Classic Paper was presented by Professor Howe at the first international Conference on Solar Energy at Tucson, Arizona, USA in 1955. That conference was sponsored by the Association of Applied solar Energy (AFASE), the precursor of ISES. Although this paper does not represent the many developments in solar distillation later applied by Professor Howe in the South Pacific, it is a classic paper because it presents Professor Howe's pioneering work in setting up the Seawater Conversion Laboratory in Richmond for the University of California at Berkeley, US. The research of Professor Howe and his colleagues at the Seawater Conversion Laboratory formed the foundation of contemporary solar energy desalination and distillation systems.

  5. Introduction to solar technology

    NASA Astrophysics Data System (ADS)

    Fisk, M. J.; Anderson, H. C. W.

    An introductory textbook of the basic theoretical, engineering, and architectural principles of solar energy conversion systems is presented, with an emphasis on building heating applications. Attention is given to solar radiation measurement and heat transfer by radiation, convection, and conduction. The functional characteristics of flat plate collectors are explored, together with heat storage technologies, designs, and controls. Consideration is given to parameters affecting system design, selection, and optimization, and passive solar building heating systems are described, including architectural details. Concentrating solar collectors are discussed in conjunction with heat engines and air conditioning units. Finally, solar energy electricity generating technologies are reviewed, as are factors affecting the future uses of solar energy.

  6. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  7. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth is now 10,000 times greater than normal. The increase of particles at this energy level still poses no appreciable hazard to air travelers, astronauts or satellites, and the NOAA SEC rates this radiation storm as a moderate S2 to S3, on a scale that goes to S5. Monday's solar flare produced an R4 radio blackout on the sunlit side of the Earth. An R4 blackout, rated by the NOAA SEC, is second to the most severe R5 classification. The classification measures the disruption in radio communications. X-ray and ultraviolet light from the flare changed the structure of the Earth's electrically charged upper atmosphere (ionosphere). This affected radio communication frequencies that either pass through the ionosphere to satellites or are reflected by it to traverse the globe. The SOHO mission is being conducted collaboratively between the European Space Agency and NASA. Images courtesy SOHO Project, NASA's Goddard Space Flight Center

  8. Supernova frequency estimates

    SciTech Connect

    Tsvetkov, D.Y.

    1983-01-01

    Estimates of the frequency of type I and II supernovae occurring in galaxies of different types are derived from observational material acquired by the supernova patrol of the Shternberg Astronomical Institute.

  9. Sub-photosphere to Solar Atmosphere Connection

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; De Moortel, Ineke; Fan, Yuhong; Ilonidis, Stathis; Steiner, Oskar

    2015-12-01

    Magnetic fields extend from the solar interior through the atmosphere. The formation and evolution of active regions can be studied by measuring subsurface flows with local helioseismology. The emergence of magnetic flux from the solar convection zone is associated with acoustic perturbation signatures. In near-surface layers, the average dynamics can be determined for emerging regions. MHD simulations of the emergence of a twisted flux tube show how magnetic twist and free energy are transported from the interior into the corona and the dynamic signatures associated with such transport in the photospheric and sub-photospheric layers. The subsurface twisted flux tube does not emerge into the corona as a whole in emerging active regions. Shear flows at the polarity inversion line and coherent vortical motions in the subsurface flux tubes are the major means by which twist is transported into the corona, leading to the formation of sigmoid-shaped coronal magnetic fields capable of driving solar eruptions. The transport of twist can be followed from the interior by using the kinetic helicity of subsurface flows as a proxy of magnetic helicity; this quantity holds great promise for improving the understanding of eruptive phenomena. Waves are not only vital for studying the link between the solar interior and the surface but for linking the photosphere with the corona as well. Acoustic waves that propagate from the surface into the magnetically structured, dynamic atmosphere undergo mode conversion and refraction. These effects enable atmospheric seismology to determine the topography of magnetic canopies in the solar atmosphere. Inclined magnetic fields lower the cut-off frequency so that low frequency waves can leak into the outer atmosphere. Recent high resolution, high cadence observations of waves and oscillations in the solar atmosphere, have lead to a renewed interest in the potential role of waves as a heating mechanism. In light of their potential contribution

  10. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  11. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  12. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    NASA Technical Reports Server (NTRS)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  13. Solar Short-Period Oscillations Excited by a Smooth Force

    NASA Astrophysics Data System (ADS)

    Chang, Heon-Young

    2003-06-01

    The basic objective of helioseismology is to determine the structure and the dynamics of the Sun by analysing the frequency spectrum of the solar oscillations. Accurate frequency measurements provide information that enables us to probe the solar interior structure and the dynamics. Therefore the frequency of the solar oscillation is the most fundamental and important information to be extracted from the solar oscillation observation. This is why many efforts have been put into the development of accurate data analysis techniques, as well as observational efforts. To test one's data analysis method, a realistic artificial data set is essential because the newly suggested method is calibrated with a set of artificial data with predetermined parameters. Therefore, unless test data sets reflect the real solar oscillation data correctly, such a calibration is likely incomplete and a unwanted systematic bias may result in. Unfortunately, however, commonly used artificial data generation algorithms insufficiently accommodate physical properties of the stochastic excitation mechanism. One of reason for this is that it is computaionally very expensive to solve the governing equation directly. In this paper we discuss the nature of solar oscillation excitation and suggest an efficient algorithm to generate the artificial solar oscillation data. We also briefly discuss how the results of this work can be applied in the future studies.

  14. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    SciTech Connect

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-15

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  15. Solar-Collector Radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr

    1984-01-01

    Water-cooled Kendall radiometer measures output of solar energy concentrators. Unit measures irradiance up to 30,000 solar constants with 1 percent accuracy and responds to wavelengths from ultraviolet to far infrared.

  16. Solar engineering 1994

    SciTech Connect

    Klett, D.E.; Hogan, R.E.; Tanaka, Tadayoshi

    1994-01-01

    This volume of 83 papers constitutes the Proceedings of the 1994 International Solar Energy Conference held March 27--30, 1994 in San Francisco, California. The Conference was jointly sponsored by the Solar Energy Division of the American Society of Mechanical Engineers, The Japan Society of Mechanical Engineers and the Japan Solar Energy Society. This is the fourth cooperation between ASME, JSME and JSES in cosponsoring the International Solar Energy Conference. The papers cover a wide range of solar technologies from low temperature solar ponds and desalinization to high temperature concentrators for space applications and central receivers for terrestrial power generation. Other topics covered include solar detoxification of hazardous waste, dish Stirling systems, solar cooling, photovoltaics, building energy analysis and conservation, simulation, and testing and measurement techniques. All papers were indexed separately for the data base.

  17. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  18. Solar Neutral Particles

    NASA Video Gallery

    This animation shows a neutral solar particle's path leaving the sun, following the magnetic field lines out to the heliosheath. The solar particle hits a hydrogen atom, stealing its electron, and ...

  19. Solar Resource Assessment

    SciTech Connect

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  20. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.