Sample records for solar photo-fenton process

  1. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes.

    PubMed

    da Costa, Fabio Moraes; Daflon, Sarah Dario Alves; Bila, Daniele Maia; da Fonseca, Fabiana Valeria; Campos, Juacyara Carbonelli

    2018-06-01

    Leachate from urban solid waste landfills is a complex mixture of organic and inorganic substances that cause damage to the environment, due to the high concentration of recalcitrant organic matter and toxicity. The objective of this study was to apply advanced oxidation processes (AOP), namely the dark Fenton and solar photo-Fenton processes, to young and old landfill leachates prior to biological treatment. The leachates were obtained from the Seropedica and Gramacho landfill sites, respectively, located in Rio de Janeiro State, Brazil. For the two Fenton processes, different conditions of pH (1.5, 3.0 and 5.0) and Fe 2+ : H 2 O 2 ratio (1:2, 1:5 and 1:10) were evaluated. Biodegradability was evaluated using the Zahn-Wellens methodology and Aliivibrio fischeri acute toxicity tests were conducted in order to predict the toxicity in the activated sludge. The best conditions for both Fenton processes were pH of 3.0 and Fe 2+ : H 2 O 2 and COD RAW :H 2 O 2 mass ratios of 1:5 and 1:1, respectively. The solar photo-Fenton process was more effective at improving the quality for both leachates, reaching COD, TOC and abs 254 nm reductions of 82%, 85% and 96.3%, respectively, for the Seropedica landfill leachate. In the case of the Gramacho landfill leachate, the corresponding reductions were 78.2, 80.7% and 91.1%, respectively. The biodegradability results for the untreated leachates from the Seropedica and Gramacho sites were 65% and 30% respectively. The biodegradability of both leachates was improved by the Fenton processes, especially the solar photo-Fenton process, which increased the leachate biodegradability to 89% (Seropedica) and 69% (Gramacho). For both leachates, a greater reduction in the acute toxicity was achieved with the solar photo-Fenton compared to the dark-Fenton process. The Seropedica landfill leachate showed high toxicity (EC50 = 33%, 15 min), after the dark Fenton and solar photo Fenton processes, with EC50 values of 81 and 91%, respectively. In the case of Gramacho landfill leachate toxicity, the EC50 value of the raw leachate was 13%, whereas after the dark Fenton and solar photo Fenton processes the corresponding values were 54% and 59%, respectively. These results indicate that the Fenton process (especially solar photo-Fenton), was efficient in terms of increasing the biodegradability and reducing the toxicity of the leachate. This is important in relation to protecting the microbiological community in the activated sludge process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes.

    PubMed

    Amor, Carlos; De Torres-Socías, Estefanía; Peres, José A; Maldonado, Manuel I; Oller, Isabel; Malato, Sixto; Lucas, Marco S

    2015-04-09

    This work reports the treatment of a mature landfill leachate through the application of chemical-based treatment processes in order to achieve the discharge legal limits into natural water courses. Firstly, the effect of coagulation/flocculation with different chemicals was studied, evaluating the role of different initial pH and chemicals concentration. Afterwards, the efficiency of two different advanced oxidation processes for leachate remediation was assessed. Fenton and solar photo-Fenton processes were applied alone and in combination with a coagulation/flocculation pre-treatment. This physicochemical conditioning step, with 2 g L(-1) of FeCl3 · 6H2O at pH 5, allowed removing 63% of COD, 80% of turbidity and 74% of total polyphenols. Combining the coagulation/flocculation pre-treatment with Fenton reagent, it was possible to reach 89% of COD removal in 96 h. Moreover, coagulation/flocculation combined with solar photo-Fenton revealed higher DOC (75%) reductions than single solar photo-Fenton (54%). In the combined treatment (coagulation/flocculation and solar photo-Fenton), it was reached a DOC reduction of 50% after the chemical oxidation, with 110 kJ L(-1) of accumulated UV energy and a H2O2 consumption of 116 mM. Toxicity and biodegradability assays were performed to evaluate possible variations along the oxidation processes. After the combined treatment, the leachate under study presented non-toxicity but biodegradability increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Degradation of carbendazim in water via photo-Fenton in Raceway Pond Reactor: assessment of acute toxicity and transformation products.

    PubMed

    da Costa, Elizângela Pinheiro; Bottrel, Sue Ellen C; Starling, Maria Clara V M; Leão, Mônica M D; Amorim, Camila Costa

    2018-05-08

    This study aimed at investigating the degradation of fungicide carbendazim (CBZ) via photo-Fenton reactions in artificially and solar irradiated photoreactors at laboratory scale and in a semi-pilot scale Raceway Pond Reactor (RPR), respectively. Acute toxicity was monitored by assessing the sensibility of bioluminescent bacteria (Aliivibrio fischeri) to samples taken during reactions. In addition, by-products formed during solar photo-Fenton were identified by liquid chromatography coupled to mass spectrometry (UFLC-MS). For tests performed in lab-scale, two artificial irradiation sources were compared (UV λ > 254nm and UV-Vis λ > 320nm ). A complete design of experiments was performed in the semi-pilot scale RPR in order to optimize reaction conditions (Fe 2+ and H 2 O 2 concentrations, and water depth). Efficient degradation of carbendazim (> 96%) and toxicity removal were achieved via artificially irradiated photo-Fenton under both irradiation sources. Control experiments (UV photolysis and UV-Vis peroxidation) were also efficient but led to increased acute toxicity. In addition, H 2 O 2 /UV λ > 254nm required longer reaction time (60 minutes) when compared to the photo-Fenton process (less than 1 min). While Fenton's reagent achieved high CBZ and acute toxicity removal, its efficiency demands higher concentration of reagents in comparison to irradiated processes. Solar photo-Fenton removed carbendazim within 15 min of reaction (96%, 0.75 kJ L -1 ), and monocarbomethoxyguanidine, benzimidazole isocyanate, and 2-aminobenzimidazole were identified as transformation products. Results suggest that both solar photo-Fenton and artificially irradiated systems are promising routes for carbendazim degradation.

  4. Effect of combined physico-chemical processes on the phytotoxicity of olive mill wastewaters.

    PubMed

    Andreozzi, Roberto; Canterino, Marisa; Di Somma, Ilaria; Lo Giudice, Roberto; Marotta, Raffaele; Pinto, Gabriele; Pollio, Antonino

    2008-03-01

    A pool of laboratory experiments is planned with the aim of evaluating the possibility to reduce the phytotoxicity of olive mill wastewater (OMW) with combined physico-chemical processes (centrifugation-ozonation, centrifugation-solar photolysis, centrifugation-solar modified photoFenton, centrifugation-solar modified photoFenton-ozonation). A moderate COD removal of an OMW is reached by using ozonation or solar modified photoFenton separately or solar modified photoFenton/O(3) combined process even for prolonged treatment times. The O(3)-treated OMWs are still toxic towards algal growth (Pseudokirchneriella subcapitata) and only for dilutions equal to or higher than 1:160 a stimulation of algal growth is observed. The sole ozonation does not reduce significantly the phytotoxicity of tested OMW measured through the GI calculation of Raphanus sativus L., Cucumis sativus L. and Lactuca sativa L. A marked reduction of OMW inhibition, higher than 50%, is evidenced for 1:8 dilution OMW samples ozonated for 2h. The long-term storage of OMW associated with solar irradiation without or with Fe(III) ions under continuous aeration is less efficient than ozonation, and the combined action of the two former treatments does not significantly contribute to enhance both COD removal and germination index. Better results are obtained on seed germination and root elongation of plantlets of the three selected species, which germinated on OMW-free solidified medium and were then transferred on a solidified culture medium containing O(3)-treated OMW diluted 1:2 and 1:4. The operating costs are estimated for the solar modified photoFenton-ozonation process.

  5. Solar photo-Fenton treatment of microcystin-LR in aqueous environment: Transformation products and toxicity in different water matrices

    EPA Science Inventory

    Transformation products and toxicity patterns of microcystin-LR (MC-LR), a common cyanotoxin in freshwaters, during degradation by solar photo-Fenton process were studied in the absence and presence of two major water components, namely fulvic acid and alkalinity. The transformat...

  6. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: a comparison.

    PubMed

    Klamerth, N; Malato, S; Agüera, A; Fernández-Alba, A

    2013-02-01

    This study compares two different solar photo-Fenton processes, conventional photo-Fenton at pH3 and modified photo-Fenton at neutral pH with minimal Fe (5 mg L⁻¹) and minimal initial H₂O₂ (50 mg L⁻¹) concentrations for the degradation of emerging contaminants in Municipal Wastewater Treatment Plants effluents in solar pilot plant. As Fe precipitates at neutral pH, complexing agents which are able to form photoactive species, do not pollute the environment or increase toxicity have to be used to keep the iron in solution. This study was done using real effluents containing over 60 different contaminants, which were monitored during treatment by liquid chromatography coupled to a hybrid quadrupole/linear ion trap mass analyzer (LC-QTRAP-MS/MS) operating in selected reaction monitoring (SRM) mode. Concentrations of the selected contaminants ranged from a few ng L⁻¹ to tens of μg L⁻¹. It was demonstrated in all cases the removal of over 95% of the contaminants. Photo-Fenton at pH3 provided the best treatment time, but has the disadvantage that the water must be previously acidified. The most promising process was photo-Fenton modified with Ethylenediamine-N,N'-disuccinic acid (EDDS), as the pH remained in the neutral range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Solar photo-Fenton treatment of microcystin-LR in aqueous environment: Transformation products and toxicity in different water matrices.

    PubMed

    Karci, Akin; Wurtzler, Elizabeth M; de la Cruz, Armah A; Wendell, David; Dionysiou, Dionysios D

    2018-05-05

    Transformation products and toxicity patterns of microcystin-LR (MC-LR), a common cyanotoxin in freshwaters, during degradation by solar photo-Fenton process were studied in the absence and presence of two major water components, namely fulvic acid and alkalinity. The transformation products m/z 795, 835, 515/1030 and 532 can be formed through attack of OH on the conjugated carbon double bonds of Adda. Transformation products with m/z 1010, 966 and 513 can be generated through the attack of OH on the methoxy group of Adda. The transformation products m/z 783, 508 and 1012 can be originated from the attack of OH on the cyclic structure of MC-LR. Transformation products (m/z 522, 1028, 1012, 1046 and 514) formed after hydroxylation of the aromatic ring with OH were also identified in this study. The toxicity study revealed that fulvic acid and alkalinity strongly influence the toxicity profiles of solar photo-Fenton treated MC-LR. Fulvic acid enhanced the detoxification whereas low level total alkalinity (1.8 mg L -1 CaCO 3 ) inhibited the detoxification of MC-LR by solar photo-Fenton process as assessed by protein phosphatase-1 (PP-1) inhibition assay. This work provides insights on the utility of solar photo-Fenton destruction of MC-LR in water based on transformation products and toxicity data. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Decontamination of soil washing wastewater using solar driven advanced oxidation processes.

    PubMed

    Bandala, Erick R; Velasco, Yuridia; Torres, Luis G

    2008-12-30

    Decontamination of soil washing wastewater was performed using two different solar driven advanced oxidation processes (AOPs): the photo-Fenton reaction and the cobalt/peroxymonosulfate/ultraviolet (Co/PMS/UV) process. Complete sodium dodecyl sulphate (SDS), the surfactant agent used to enhance soil washing process, degradation was achieved when the Co/PMS/UV process was used. In the case of photo-Fenton reaction, almost complete SDS degradation was achieved after the use of almost four times the actual energy amount required by the Co/PMS/UV process. Initial reaction rate in the first 15min (IR15) was determined for each process in order to compare them. Highest IR15 value was determined for the Co/PMS/UV process (0.011mmol/min) followed by the photo-Fenton reaction (0.0072mmol/min) and the dark Co/PMS and Fenton processes (IR15=0.002mmol/min in both cases). Organic matter depletion in the wastewater, as the sum of surfactant and total petroleum hydrocarbons present (measured as chemical oxygen demand, COD), was also determined for both solar driven processes. It was found that, for the case of COD, the highest removal (69%) was achieved when photo-Fenton reaction was used whereas Co/PMS/UV process yielded a slightly lower removal (51%). In both cases, organic matter removal achieved was over 50%, which can be consider proper for the coupling of the tested AOPs with conventional wastewater treatment processes such as biodegradation.

  9. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    PubMed

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  10. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Varela, A R; Kyriakou, S; Manaia, C M; Fatta-Kassinos, D

    2012-11-01

    This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L(-1)) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe(2+)](0) = 5 mg L(-1); [H(2)O(2)](0) = 75 mg L(-1)) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m(3) day(-1) of secondary wastewater effluent was found to be 0.85 € m(-3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Hepatitis A Virus Disinfection in Water by Solar Photo-Fenton Systems.

    PubMed

    Polo, David; García-Fernández, Irene; Fernández-Ibañez, Pilar; Romalde, Jesús L

    2018-06-01

    This study evaluates and compares the effectiveness of solar photo-Fenton systems for the inactivation of hepatitis A virus (HAV) in water. The effect of solar irradiance, dark- Fenton reaction and three different reactant concentrations (2.5/5, 5/10 and 10/20 mg/L of Fe 2+ /H 2 O 2 ) on the photo-Fenton process were tested in glass bottle reactors (200 mL) during 6 h under natural sunlight. Disinfection kinetics were determined both by RT-qPCR and infectivity assays. Mean water temperatures ranged from 25 to 27.3 °C, with a maximum local noon UV irradiances of 22.36 W/m 2 . Photo-Fenton systems yielded increased viral reduction rates in comparison with the isolated effect under the Fenton reaction in darkness (negligible viral reduction) or the solar radiation (0.25 Log of RNA reduction). With the highest concentration employed (10-20 mg/L Fe 2+ -H 2 O 2 ), an average RNA reduction rate of ~ 1.8 Log (initial concentration of 10 5 pfu/mL) and a reduction of 80% in the infectivity capacity were reached. Results showed a strong synergistic effect between Fe 2+ /H 2 O 2 and sunlight, demonstrating that significant disinfection rates of HAV under photo-Fenton systems may occur with relatively higher efficiency at middle environmental temperatures and without the need for an energy-intensive light source.

  12. Photo-Fenton and Fenton-like processes for the treatment of the antineoplastic drug 5-fluorouracil under simulated solar radiation.

    PubMed

    Koltsakidou, Α; Antonopoulou, M; Sykiotou, M; Εvgenidou, Ε; Konstantinou, I; Lambropoulou, D A

    2017-02-01

    In the present study, photo-Fenton and Fenton-like processes were investigated for the degradation and mineralization of the antineoplastic drug 5-fluorouracil (5-FU). For the optimization of photo-Fenton treatment under simulated solar light (SSL) radiation, the effects of several operating parameters (i.e., 5-FU concentration, Fe 3+ , and oxidant concentration) on the treatment efficiency were studied. According to the results, SSL/[Fe(C 2 Ο 4 ) 3 ] 3- /Η 2 Ο 2 process was the most efficient, since faster degradation of 5-FU and higher mineralization percentages were achieved. All the applied processes followed quite similar transformation routes which include defluorination-hydroxylation as well as pyrimidine ring opening, as demonstrated by the transformation products identified by high resolution mass spectrometry analysis. The toxicity of the treated solutions was evaluated using the Microtox assay. In general, low toxicity was recorded for the initial solution and the solution at the end of the photocatalytic treatment, while an increase in the overall toxicity was observed only at the first stages of SSL/Fe 3+ /Η 2 Ο 2 and SSL/Fe 3+ /S 2 O 8 2- processes.

  13. Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.

    PubMed

    Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C

    2017-05-01

    Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L -1 of Fe 2+ and 500 mg L -1 of H 2 O 2 ; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.

  14. Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: an operational cost study on a pilot plant scale.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I

    2012-05-15

    The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Enhancement of a solar photo-Fenton reaction with ferric-organic ligands for the treatment of acrylic-textile dyeing wastewater.

    PubMed

    Soares, Petrick A; Batalha, Mauro; Souza, Selene M A Guelli U; Boaventura, Rui A R; Vilar, Vítor J P

    2015-04-01

    Literature describes a kinetic mineralization profile for most of acrylic-textile dyeing wastewaters using a photo-Fenton reaction characterized by a slow degradation process and high reactants consumption. This work tries to elucidate that the slow decay on DOC concentration is associated with the formation of stable complexes between Fe(3+) and textile auxiliary products, limiting the photoreduction of Fe(3+). This work also evaluates the enhancement of a solar photo-Fenton reaction through the use of different ferric-organic ligands applied to the treatment of a simulated acrylic-textile dyeing wastewater, as a pre-oxidation step to enhance its biodegradability. The photo-Fenton reaction was negatively affected by two dyeing auxiliary products: i) Sera(®) Tard A-AS, a surfactant mainly composed of alkyl dimethyl benzyl ammonium chloride and ii) Sera(®) Sperse M-IW, a dispersing agent composed of polyglycol solvents. The catalytic activity of the organic ligands toward the ferrous-catalysed system followed this order: Fe(III)-Oxalate > Fe(III)-Citrate > Fe(III)-EDDS, and all were better than the traditional photo-Fenton reaction. Different design parameters such as iron concentration, pH, temperature, flow conditions, UV irradiance and H2O2 addition strategy and dose were evaluated. The ferrioxalate induced photo-Fenton process presented the best results, achieving 87% mineralization after 9.3 kJUV L(-1) and allowing to work until near neutral pH values. As expected, the biodegradability of the textile wastewater was significantly enhanced during the photo-Fenton treatment, achieving a value of 73%, consuming 32.4 mM of H2O2 and 5.7 kJUV L(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale.

    PubMed

    Foteinis, Spyros; Monteagudo, Jose Maria; Durán, Antonio; Chatzisymeon, Efthalia

    2018-01-15

    The environmental sustainability of a semi-industrial solar photo-Fenton reactor, treating real effluents emanating from a pharmaceutical laboratory, is assessed herein. The life cycle assessment/analysis (LCA) methodology was employed and real life cycle inventory (LCI) data was collected from a ferrioxalate-assisted homogeneous solar photo-Fenton wastewater treatment plant (WWTP), at Ciudad Real, Spain. Electricity was provided by photovoltaic (PV) panels in tandem with a battery bank, making the plant autonomous from the local grid. The effective treatment of 1m 3 of secondary-treated pharmaceutical wastewater, containing antipyrine, was used as a functional unit. The main environmental hotspot was identified to be the chemical reagents used to enhance treatment efficiency, mainly hydrogen peroxide (H 2 O 2 ) and to a smaller degree oxalic acid. On the other hand, land use, PV panels, battery units, compound parabolic collectors (CPC), tanks, pipes and pumps, as materials, had a low contribution, ranging from as little as 0.06% up to about 2% on the total CO 2eq emissions. Overall, the solar photo-Fenton process was found to be a sustainable technology for treating wastewater containing micropollutants at semi-industrial level, since the total environmental footprint was found to be 2.71kgCO 2 m -3 or 272mPtm -3 , using IPCC 2013 and ReCiPe impact assessment methods, respectively. A sensitivity analysis revealed that if the excess of solar power is fed back into the grid then the total environmental footprint is reduced. Depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2014-09-15

    The photo-disinfection of water from two different wells (W1, pH: 4.6-5.1 ± 0.02) and (W2 pH: 5.6-5.7 ± 0.02) was carried out during the rainy season at Ouagadougou-Burkina Faso, West Africa. The weather variation during the rainy season significantly affects the photo-disinfection processes (solar disinfection and photo-Fenton). The dilution of the water by rainwater highly affected the chemical composition of the wells' water used in this study; very low iron contents Compared to the ones recorded during the dry season were recorded in all water samples. Both photo-disinfection processes were used to treat 25 L of water in a compound parabolic collector (CPC). None of them have shown the total inactivation of both wild enteric bacteria strains (total coliforms/E. coli and Salmonella spp.) involved in the treatment. However, the total coliforms/E. coli strains were totally inactivated during the exposure under most of the photo-Fenton treatment. Also, the remaining strains, especially those of Salmonella spp. were achieved during the subsequent 24h of dark storage under the action of the Fenton process. Under uniquely solar radiation, total inactivation was recorded only in the total coliforms/E. coli strains. The impact of the available irradiance on the efficiency of the photo-Fenton disinfection of natural water was highlighted during the exposure under high intermittent solar radiation. The impact of the HCO3(-) concentration of both wells' water on the evolution of the pH during the photo-disinfection was recorded. Drastic decrease was noticed after the initial fast increase in presence of low HCO3(-) concentration while a steady state was observed after the increase in presence of higher concentration. The redox activities of the nitrogen components of the water during both photo-disinfection processes have led to increased concentration of nitrite in all the cases and variations were noticed in that of nitrate and ammonia. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound.

    PubMed

    Expósito, A J; Monteagudo, J M; Durán, A; San Martín, I; González, L

    2018-01-15

    The intensification of the solar photo-Fenton system with ferrioxalate photoactive complexes and ultrasound applied to the mineralization of 15mg/L carbamazepine aqueous solution (CBZ) was evaluated. The experiments were carried out in a solar compound parabolic collector (CPC) pilot plant reactor coupled to an ultrasonic processor. The dynamic behavior of hydroxyl radicals generated under the different studied reaction systems was discussed. The initial concentrations of hydrogen peroxide and ferrous/oxalic acid and pH were found to be the most significant variables (32.79%, 25.98% and 26.04%, respectively). Under the selected optimal conditions ([H 2 O 2 ] 0 =150mg/L; [Fe 2+ ] 0 =2.5mg/L/[(COOH) 2 ] 0 =12.1mg/L; pH=5) CBZ was fully degraded after 5min and 80% of TOC was removed using a solar photo-Fenton system intensified with ferrioxalate (SPFF). However, no improvement in the mineralization using SPFF process combined with ultrasound was observed. More mild pH conditions could be used in the SPFF system if compared to the traditional photo-Fenton (pH 3) acidic systems. Finally, a possible reaction pathway for the mineralization of CBZ by the SPFF system was proposed and therein discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Analogies and differences among bacterial and viral disinfection by the photo-Fenton process at neutral pH: a mini review.

    PubMed

    Giannakis, Stefanos

    2017-12-19

    Over the last years, the photo-Fenton process has been established as an effective, green alternative to chemical disinfection of waters and wastewaters. Microorganisms' inactivation is the latest success story in the application of this process at near-neutral pH, albeit without clearly elucidated inactivation mechanisms. In this review, the main pathways of the combined photo-Fenton process against the most frequent pathogen models (Escherichia coli for bacteria and MS2 bacteriophage for viruses) are analyzed. Firstly, the action of solar light is described and the specific inactivation mechanisms in bacteria (internal photo-Fenton) and viruses (genome damage) are presented. The contribution of the external pathways due to the potential presence of organic matter in generating reactive oxygen species (ROS) and their effects on microorganism inactivation are discussed. Afterwards, the effects of the gradual addition of Fe and H 2 O 2 are assessed and the differences among bacterial and viral inactivation are highlighted. As a final step, the simultaneous addition of both reagents induces the photo-Fenton in the bulk, focusing on the differences induced by the homogeneous or heterogeneous fraction of the process and the variation among the two respective targets. This work exploits the accumulated evidence on the mechanisms of bacterial inactivation and the scarce ones towards viral targets, aiming to bridge this knowledge gap and make possible the further application of the photo-Fenton process in the field of water/wastewater treatment.

  20. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH.

    PubMed

    Miralles-Cuevas, S; Oller, I; Pérez, J A Sánchez; Malato, S

    2014-11-01

    In recent years, membrane technologies (nanofiltration (NF)/reverse osmosis (RO)) have received much attention for micropollutant separation from Municipal Wastewater Treatment Plant (MWTP) effluents. Practically all micropollutants are retained in the concentrate stream, which must be treated. Advanced Oxidation Processes (AOPs) have been demonstrated to be a good option for the removal of microcontaminants from water systems. However, these processes are expensive, and therefore, are usually combined with other techniques (such as membrane systems) in an attempt at cost reduction. One of the main costs in solar photo-Fenton comes from reagent consumption, mainly hydrogen peroxide and chemicals for pH adjustment. Thus, in this study, solar photo-Fenton was used to treat a real MWTP effluent with low initial iron (less than 0.2 mM) and hydrogen peroxide (less than 2 mM) concentrations. In order to work at neutral pH, iron complexing agents (EDDS and citrate) were used in the two cases studied: direct treatment of the MWTP effluent and treatment of the concentrate stream generated by NF. The degradation of five pharmaceuticals (carbamazepine, flumequine, ibuprofen, ofloxacin and sulfamethoxazole) spiked in the effluent at low initial concentrations (μg L(-1)) was monitored as the main variable in the pilot-plant-scale photo-Fenton experiments. In both effluents, pharmaceuticals were efficiently removed (>90%), requiring low accumulated solar energy (2 kJUV L(-1), key parameter in scaling up the CPC photoreactor) and low iron and hydrogen peroxide concentrations (reagent costs, 0.1 and 1.5 mM, respectively). NF provided a clean effluent, and the concentrate was positively treated by solar photo-Fenton with no significant differences between the direct MWTP effluent and NF concentrate treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs.

    PubMed

    Sánchez Pérez, José Antonio; Román Sánchez, Isabel María; Carra, Irene; Cabrera Reina, Alejandro; Casas López, José Luis; Malato, Sixto

    2013-01-15

    The aim of this paper is to carry out an economic assessment on a solar photo-Fenton/MBR combined process to treat industrial ecotoxic wastewater. This study focuses on the impact of the contamination present in wastewater, the photochemical oxidation, the use of an MBR as biological process and the plant size on operating and amortization costs. As example of ecotoxic pollutant, a mixture of five commercial pesticides commonly used in the Mediterranean area has been used, ranging from 500 mg/L to 50mg/L, expressed as dissolved organic carbon concentration. The economic evaluation shows that (i) the increase in pollution load does not always involve an increase in photo-Fenton costs because they also depend on organic matter mineralization; (ii) the use of an MBR process permits lower photochemical oxidation requirements than other biological treatments, resulting in approximately 20% photo-Fenton cost reduction for highly polluted wastewater; (iii) when pollution load decreases, the contribution of reactant consumption to the photo-Fenton process costs increase with regard to amortization costs; (iv) 30% total cost reduction can be gained treating higher daily volumes, obtaining competitive costs that vary from 1.1-1.9 €/m(3), depending on the pollution load. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light.

    PubMed

    Moncayo-Lasso, Alejandro; Mora-Arismendi, Luis Enrique; Rengifo-Herrera, Julián Andrés; Sanabria, Janeth; Benítez, Norberto; Pulgarin, César

    2012-05-01

    TiO2 photocatalytic and near-neutral photo-Fenton processes were tested under simulated solar light to degrade two models of natural organic matter - resorcinol (R) (which should interact strongly with TiO2 surfaces) and hydroquinone (H) - separately or in the presence of bacteria. Under similar oxidative conditions, inactivation of Escherichia coli, Shigella sonnei and Salmonella typhimurium was carried out in the absence and in the presence of 10 mg L(-1) of R and H. The 100% abatement of R and H by using a TiO2 photocatalytic process in the absence of bacteria was observed in 90 min for R and in 120 min for H, while in the presence of microorganisms abatement was only of 55% and 35% for R and H, respectively. Photo-Fenton reagent at pH 5.0 completely removed R and H in 40 min, whereas in the presence of microorganisms their degradation was of 60% to 80%. On the other hand, 2 h of TiO2 photocatalytic process inactivated S. typhimurium and E. coli cells in three and six orders of magnitude, respectively, while S. sonnei was completely inactivated in 10 min. In the presence of R or H, the bacterial inactivation via TiO2 photocatalysis was significantly decreased. With photo-Fenton reagent at pH 5 all the microorganisms tested were completely inactivated in 40 min of simulated solar light irradiation in the absence of organics. When R and H were present, bacterial photo-Fenton inactivation was less affected. The obtained results suggest that in both TiO2 and iron photo-assisted processes, there is competition between organic substances and bacteria simultaneously present for generated reactive oxygen species (ROS). This competition is most important in heterogeneous systems, mainly when there are strong organic-TiO2 surface interactions, as in the resorcinol case, suggesting that bacteria-TiO2 interactions could play a key role in photocatalytic cell inactivation processes.

  3. Natural soil mediated photo Fenton-like processes in treatment of pharmaceuticals: Batch and continuous approach.

    PubMed

    Changotra, Rahil; Rajput, Himadri; Dhir, Amit

    2017-12-01

    This paper manifests the potential viability of soil as a cost-free catalyst in photo-Fenton-like processes for treating pharmaceuticals at large scale. Naturally available soil without any cost intensive modification was utilized as a catalyst to degrade pharmaceuticals, specifically ornidazole (ORZ) and ofloxacin (OFX). Soil was characterized and found enriched with various iron oxides like hematite, magnetite, goethite, pyrite and wustite, which contributes toward enhanced dissolution of Fe 3+ than Fe 2+ in the aqueous solution resulting in augmented rate of photo-Fenton reaction. The leached iron concentration in solution was detected during the course of experiments. The degradation of ORZ and OFX was assessed in solar induced batch experiments using H 2 O 2 as oxidant and 95% ORZ and 92% OFX removal was achieved. Elevated efficiencies were achieved due to Fe 2+ /Fe 3+ cycling, producing more hydroxyl radical leading to the existence of homogeneous and heterogeneous reactions simultaneously. The removal efficiency of solar photo-Fenton like process was also compared to photo-Fenton process with different irradiation sources (UV-A and UV-B) and were statistically analysed. Continuous-scale studies were conducted employing soil either in the form of soil beads or as a thin layer spread on the surface of baffled reactor. Soil beads were found to have satisfactory reusability and stability. 84 and 79% degradation of ORZ and OFX was achieved using soil as thin layer while with soil beads 71 and 68% degradation, respectively. HPLC and TOC study confirmed the efficient removal of both the compounds. Toxicity assessment demonstrates the inexistence of toxic intermediates during the reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fosetyl-Al photo-Fenton degradation and its endogenous catalyst inhibition.

    PubMed

    Micó, María M; Zapata, Ana; Maldonado, Manuel I; Bacardit, Jordi; Malfeito, Jorge; Sans, Carme

    2014-01-30

    Interferences from many sources can affect photo-Fenton reaction performance. Among them, catalyst inhibition can be caused by the complexation and/or precipitation of iron species by the organic matter and salts present in the reaction media. This is the case of the oxidation of effluents containing organophosphorous fosetyl-Al. The degradation of this fungicide generates phosphate anions that scavenge iron and hinder Fe(II) availability. Experimental design was applied to artificially enlighten photo-Fenton reaction, in order to evaluate fosetyl-Al degradation. The performed experiments suggested how iron inhibition takes place. The monitoring of photo-Fenton reaction over a mixture of fosetyl-Al with other two pesticides also showed the interferences caused by the presence of the fungicide on other species degradation. Solar empowered photo-Fenton was also essayed for comparison purposes. Artificial and solar light photo-Fenton reactions were revealed as effective treatments for the elimination of tested fungicide. However, the phosphate ions generated during fosetyl oxidation decreased iron availability, what hampered organic matter degradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection.

    PubMed

    Klamerth, Nikolaus; Malato, Sixto; Agüera, Ana; Fernández-Alba, Amadeo; Mailhot, Gilles

    2012-03-06

    The goal of this paper was to develop a modified photo-Fenton treatment able to degrade micro pollutants in municipal wastewater treatment plant (MWTP) effluents at a neutral pH with minimal iron and H(2)O(2) concentrations. Complexation of Fe by ethylenediamine-N,N'-disuccinic acid (EDDS) leads to stabilization and solubilization of Fe at natural pH. Photo-Fenton experiments were performed in a pilot compound parabolic collector (CPC) solar plant. Samples were treated with solid phase extraction (SPE) and analyzed by HPLC-Qtrap-MS. The rapid degradation of contaminants within the first minutes of illumination and the low detrimental impact on degradation of bicarbonates present in the water suggested that radical species other than HO(•) are responsible for the efficiency of such photo-Fenton process. Disinfection of MWTP effluents by the same process showed promising results, although disinfection was not complete.

  6. Conventional and advanced oxidation processes used in disinfection of treated urban wastewater.

    PubMed

    Rodríguez-Chueca, J; Ormad, M P; Mosteo, R; Sarasa, J; Ovelleiro, J L

    2015-03-01

    The purpose of the current study is to compare the inactivation of Escherichia coli in wastewater effluents using conventional treatments (chlorination) and advanced oxidation processes (AOPs) such as UV irradiation, hydrogen peroxide (H2O2)/solar irradiation, and photo-Fenton processes. In addition, an analysis of the operational costs of each treatment is carried out taking into account the optimal dosages of chemicals used. Total inactivation of bacteria (7.5 log) was achieved by means of chlorination and UV irradiation. However, bacterial regrowth was observed 6 hours after the completion of UV treatment, obtaining a disinfection value around 3 to 4 log. On the other hand, the combination H2O2/solar irradiation achieved a maximum inactivation of E. coli of 3.30 ± 0.35 log. The photo-Fenton reaction achieved a level of inactivation of 4.87 ± 0.10 log. The order of disinfection, taking into account the reagent/cost ratio of each treatment, is as follows: chlorination > UV irradiation > photo-Fenton > H2O2/sunlight irradiation.

  7. Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment.

    PubMed

    Brienza, Monica; Nir, Shlomo; Plantard, Gael; Goetz, Vincent; Chiron, Serge

    2018-06-08

    A tertiary treatment of effluent from a biological domestic wastewater treatment plant was tested by combining filtration and solar photocatalysis. Adsorption was carried out by a sequence of two column filters, the first one filled with granular activated carbon (GAC) and the second one with granulated nano-composite of micelle-montmorillonite mixed with sand (20:100, w/w). The applied solar advanced oxidation process was homogeneous photo-Fenton photocatalysis using peroxymonosulfate (PMS) as oxidant agent. This combination of simple, robust, and low-cost technologies aimed to ensure water disinfection and emerging contaminants (ECs, mainly pharmaceuticals) removal. The filtration step showed good performances in removing dissolved organic matter and practically removing all bacteria such as Escherichia coli and Enterococcus faecalis from the secondary treated water. Solar advanced oxidation processes were efficient in elimination of trace levels of ECs. The final effluent presented an improved sanitary level with acceptable chemical and biological characteristics for irrigation.

  8. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH.

    PubMed

    Ortega-Gómez, E; Esteban García, B; Ballesteros Martín, M M; Fernández Ibáñez, P; Sánchez Pérez, J A

    2014-10-15

    This study analyses the use of the solar photo-Fenton treatment in compound parabolic collector photo-reactors at neutral pH for the inactivation of wild enteric Escherichia coli and total coliform present in secondary effluents of a municipal wastewater treatment plant (SEWWTP). Control experiments were carried out to find out the individual effects of mechanical stress, pH, reactants concentration, and UVA radiation as well as the combined effects of UVA-Fe and UVA-H2O2. The synergistic germicidal effect of solar-UVA with 50 mg L(-1) of H2O2 led to complete disinfection (up to the detection limit) of total coliforms within 120 min. The disinfection process was accelerated by photo-Fenton, achieving total inactivation in 60 min reducing natural bicarbonate concentration found in the SEWWTP from 250 to 100 mg L(-1) did not give rise to a significant enhancement in bacterial inactivation. Additionally, the effect of hydrogen peroxide and iron dosage was evaluated. The best conditions were 50 mg L(-1) of H2O2 and 20 mg L(-1) of Fe(2+). Due to the variability of the SEWWTP during autumn and winter seasons, the inactivation kinetic constant varied between 0.07 ± 0.04 and 0.17 ± 0.04 min(-1). Moreover, the water treated by solar photo-Fenton fulfilled the microbiological quality requirement for wastewater reuse in irrigation as per the WHO guidelines and in particular for Spanish legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water.

    PubMed

    Moncayo-Lasso, Alejandro; Sanabria, Janeth; Pulgarin, César; Benítez, Norberto

    2009-09-01

    Bacteria inactivation and natural organic matter oxidation in river water was simultaneously conducted via photo-Fenton reaction at "natural" pH ( approximately 6.5) containing 0.6 mg L(-1) of Fe(3+) and 10 mg L(-1) of H(2)O(2). The experiments were carried out by using a solar compound parabolic collector on river water previously filtered by a slow sand filtration system and voluntarily spiked with Escherichia coli. Fifty five percent of 5.3 mg L(-1) of dissolved organic carbon was mineralized whereas total disinfection was observed without re-growth after 24h in the dark.

  10. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    PubMed Central

    2012-01-01

    Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo–Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo–Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio) of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems. PMID:23369204

  11. Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate.

    PubMed

    Ye, Zhihong; Zhang, Hui; Yang, Lin; Wu, Luxue; Qian, Yue; Geng, Jinyao; Chen, Mengmeng

    2016-12-05

    The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120min treatment utilizing the optimum operating conditions of 47mM H2O2, 0.29mM Fe(2+), pH0 of 3.0 and a current density of 60mA/cm(2). The generation of hydroxyl radicals (OH) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe(2+)/chlorine and UV/chlorine processes taking place in this system also result in additional production of OH due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5kWh/kg COD and the current efficiency was 36.4% for 2h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Photo-Fenton degradation of phenol, 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol mixture in saline solution using a falling-film solar reactor.

    PubMed

    Luna, Airton J; Nascimento, Cláudio A O; Foletto, Edson Luiz; Moraes, José E F; Chiavone-Filhoe, Osvaldo

    2014-01-01

    In this work, a saline aqueous solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) was treated by the photo-Fenton process in a falling-film solar reactor. The influence of the parameters such as initial pH (5-7), initial concentration of Fe2+ (1-2.5mM) and rate of H202 addition (1.87-3.74mmol min-1) was investigated. The efficiency of photodegradation was determined from the removal of dissolved organic carbon (DOC), described by the species degradation of phenol, 2,4-D and 2,4-DCP. Response surface methodology was employed to assess the effects of the variables investigated, i.e. [Fe2+], [H202] and pH, in the photo-Fenton process with solar irradiation. The results reveal that the variables' initial concentration of Fe2+ and H202 presents predominant effect on pollutants' degradation in terms of DOC removal, while pH showed no influence. Under the most adequate experimental conditions, about 85% DOC removal was obtained in 180 min by using a reaction system employed here, and total removal of phenol, 2,4- and 2,4-DCP mixture in about 30min.

  13. Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach.

    PubMed

    Papoutsakis, Stefanos; Miralles-Cuevas, Sara; Gondrexon, Nicolas; Baup, Stéphane; Malato, Sixto; Pulgarin, César

    2015-01-01

    This study aims to evaluate the performance of a novel pilot-scale coupled system consisting of a high frequency ultrasonic reactor (400kHz) and a compound parabolic collector (CPC). The benefits of the concurrent application of ultrasound and the photo-Fenton process were studied in regard to the degradation behavior of a series of organic pollutants. Three compounds (phenol, bisphenol A and diuron) with different physicochemical properties have been chosen in order to identify possible synergistic effects and to obtain a better estimate of the general feasibility of such a system at field scale (10L). Bisphenol A and diuron were specifically chosen due to their high hydrophobicity, and thus their assumed higher affinity towards the cavitation bubble. Experiments were conducted under ultrasonic, photo-Fenton and combined treatments. Enhanced degradation kinetics were observed during the coupled treatment and synergy factors clearly in excess of 1 have been calculated for phenol as well as for saturated solutions of bisphenol A and diuron. Although the relatively high cost of ultrasound compared to photo-Fenton still presents a significant challenge towards mainstream industrial application, the observed behavior suggests that its prudent use has the potential to significantly benefit the photo-Fenton process, via the decrease of both treatment time and H2O2 consumption. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: evaluation of operational and kinetic parameters.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2010-10-01

    Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe(2+)/H(2)O(2)) and heterogeneous photocatalysis with titanium dioxide (TiO(2)) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe(2+) and H(2)O(2) were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe(2+) and H(2)O(2) concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO(2) process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods.

    PubMed

    Giannakis, Stefanos; Gamarra Vives, Franco Alejandro; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2015-11-01

    In this study, wastewater from the output of three different secondary treatment facilities (Activated Sludge, Moving Bed Bioreactor and Coagulation-Flocculation) present in the municipal wastewater treatment plant of Vidy, Lausanne (Switzerland), was further treated with various oxidation processes (UV, UV/H2O2, solar irradiation, Fenton, solar photo-Fenton), at laboratory scale. For this assessment, 6 organic micropollutants in agreement with the new environmental legislation requirements in Switzerland were selected (Carbamazepine, Clarithromycin, Diclofenac, Metoprolol, Benzotriazole, Mecoprop) and monitored throughout the treatment. Also, the overall removal of the organic load was assessed. After each secondary treatment, the efficiency of the AOPs increased in the following order: Coagulation-Flocculation < Activated Sludge < Moving Bed Bioreactor, in almost all cases. From the different combinations tested, municipal wastewater subjected to biological treatment followed by UV/H2O2 resulted in the highest elimination levels. Wastewater previously treated by physicochemical treatment demonstrated considerably inhibited micropollutant degradation rates. The degradation kinetics were determined, yielding: k (UV) < k (UV/H2O2) and k (Fenton) < k (solar irradiation) < k (photo-Fenton). Finally, the evolution of global pollution parameters (COD & TOC elimination) was followed and the degradation pathways for the effluent organic matter are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nanoparticle-assisted photo-Fenton reaction for photo-decomposition of humic acid

    NASA Astrophysics Data System (ADS)

    Banik, Jhuma; Basumallick, Srijita

    2017-11-01

    We report here the synthesis of CuO-doped ZnO composite nanomaterials (NMs) by chemical route and demonstrated for the first time that these NMs are efficient catalysts for H2O2-assisted photo-decomposition (photo-Fenton type catalyst) of humic acid, a natural pollutant of surface water by solar irradiation. This has been explained by faster electron transfer to OH radical at the p-n hetero-junction of this composite catalyst. Application of this composite catalyst in decomposing humus substances of local pond water by solar energy has been demonstrated.

  17. Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study.

    PubMed

    Malato, S; Caceres, J; Agüera, A; Mezcua, M; Hernando, D; Vial, J; Fernández-Alba, A R

    2001-11-01

    The technical feasibility, mechanisms, and performance of degradation of aqueous imidacloprid have been studied at pilot scale in two well-defined photocatalytic systems of special interest because natural UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. Equivalent pilot-scale and field conditions used for both allowed adequate comparison of the degree of mineralization and toxicity achieved as well as the transformation products generated in route to mineralization by both systems. Ninety-five percent of mineralization (<2.0 mg/L) was reached after 250 min of photocatalytic treatment with Fenton and 450 min with TiO2, meaning that TOC disappears 2.4 times faster with photo-Fenton photocatalytic treatment than with TiO2. The Daphnia Magna test for final residual TOC does not reveal anytoxic behavior. Transformation products evaluated by GC-MS/AED after two SPE procedures and LC-IC were the same in both cases. The main differences between the two processes are in the amount of transformation products (TPs) generated, not in the TPs detected which were always the same. At the end of both processes low concentration (<0.1 mg/L) of 2 pyrrolidinone (transformation product) remains in the dissolution and around 1 mg/L of formate in the case of photo-Fenton.

  18. Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process

    NASA Astrophysics Data System (ADS)

    Gar Alalm, Mohamed; Tawfik, Ahmed; Ookawara, Shinichi

    2017-03-01

    In this study, solar photo-Fenton reaction using compound parabolic collectors reactor was assessed for removal of phenol from aqueous solution. The effect of irradiation time, initial concentration, initial pH, and dosage of Fenton reagent were investigated. H2O2 and aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. Complete degradation of phenol was achieved after 45 min of irradiation when the initial concentration was 100 mg/L. However, increasing the initial concentration up to 500 mg/L inhibited the degradation efficiency. The dosage of H2O2 and Fe+2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 3.1. Phenol degradation at different concentration was fitted to the pseudo-first order kinetic according to Langmuir-Hinshelwood model. Costs estimation for a large scale reactor based was performed. The total costs of the best economic condition with maximum degradation of phenol are 2.54 €/m3.

  19. How does intensification influence the operational and environmental performance of photo-Fenton processes at acidic and circumneutral pH.

    PubMed

    Salazar, Luis Miguel; Grisales, Claudia Mildred; Garcia, Dorian Prato

    2018-05-31

    This study evaluates the technical, economical, and environmental impact of sodium persulfate (Na 2 S 2 O 8 ) as an enhancing agent in a photo-Fenton process within a solar-pond type reactor (SPR). Photo-Fenton (PF) and photo-Fenton intensified with the addition of persulfate (PFPS) processes decolorize 97% the azo dye direct blue 71 (DB71) and allow producing a highly biodegradable effluent. Intensification with persulfate allowed reducing treatment time in 33% (from 120 to 80 min) and the consumption of chemical auxiliaries needed for pH adjustment. Energy, reagents, and chemical auxiliaries are still and environmental hotspot for PF and PFPS; however, it is worth mentioning that their environmental footprint is lower than that observed for compound parabolic concentrator (CPC)-type reactors. A life-cycle assessment (LCA) confirms that H 2 O 2 , NaOH, and energy consumption are the variables with the highest impact from an environmental standpoint. The use of persulfate reduced the relative impact in 1.2 to 12% in 12 of the 18 environmental categories studied using the ReCiPe method. The PFPS process emits 1.23 kg CO 2 (CO 2 -Eqv/m 3 treated water). On the other hand, the PF process emits 1.28 kg CO 2 (CO 2 -Eqv/m 3 treated water). Process intensification, chemometric techniques, and the use of SPRs minimize the impact of some barriers (reagent and energy consumption, technical complexity of reactors, pressure drops, dirt on the reflecting surfaces, fragility of reactor materials), limiting the application of advanced oxidation systems at an industrial level, and decrease treatment cost as well as potential environmental impacts associated with energy and reagents consumption. Treatment costs for PF processes (US$0.78/m 3 ) and PFPS processes (US$0.63/m 3 ) were 20 times lower than those reported for photo-Fenton processes in CPC-type reactors.

  20. Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO3 perovskite catalyst.

    PubMed

    Dükkancı, Meral

    2018-01-01

    In this study, oxidation of bisphenol-A (IUPAC name - 2,2-(4,4-dihydroxyphenyl, BPA), which is an endocrine disrupting phenolic compound used in the polycarbonate plastic and epoxy resin industry, was investigated using sono-photo-Fenton process under visible light irradiation in the presence of an iron containing perovskite catalyst, LaFeO 3 . The catalyst prepared by sol-gel method, calcined at 500°C showed a catalytic activity in BPA oxidation using sono-photo-Fenton process with a degradation degree and a chemical oxygen demand (COD) reduction of 21.8% and 11.2%, respectively. Degradation of BPA was studied by using individual and combined advanced oxidation techniques including sonication, heterogeneous Fenton reaction and photo oxidation over this catalyst to understand the effect of each process on degradation of BPA. It was seen, the role of sonication was very important in hybrid sono-photo-Fenton process due to the pyrolysis and sonoluminescence effects caused by ultrasonic irradiation. The prepared LaFeO 3 perovskite catalyst was a good sonocatalyst rather than a photocatalyst. Sonication was not only the effective process to degrade BPA but also it was the cost effective process in terms of energy consumption. The studies show that the energy consumption is lower in the sono-Fenton process than those in the photo-Fenton and sono-photo- Fenton processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Solar photo-Fenton treatment of carbofuran: analysis of mineralization, toxicity, and organic by-products.

    PubMed

    Lopez-Alvarez, Blady; Torres-Palma, Ricardo A; Ferraro, Franklin; Peñuela, Gustavo

    2012-01-01

    The degradation of the pesticide carbofuran (CBF) using solar photo-Fenton treatment, at both the laboratory and the pilot scale, was evaluated. At the laboratory scale, in a suntest reactor, the Fe(2+) concentration and H(2)O(2) concentration were evaluated and optimized using the surface response methodology and the Pareto diagram. Under optimal conditions experiments were performed to evaluate the evolution of the substrate removal, oxidation, subsequent mineralization, toxicity and the formation of chloride ions during the treatment. The analysis and evolution of five CBF by-products as well as several control and reactivity tests at the density functional theory level were used to depict a general scheme of the main degradation pathway of CBF via the photo-Fenton system. Finally, at the pilot scale, a sample of the commercial CBF product Furadan was eliminated after 420 min by the photo-Fenton system using direct sunlight. Under these conditions, after 900 min 89% of toxicity (1/E(50) on Vibrio fischeri bacteria), 97% of chemical oxygen demand, and 90% of dissolved organic carbon were removed.

  2. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes.

    PubMed

    Bandala, Erick R; Peláez, Miguel A; Salgado, Maria J; Torres, Luis

    2008-03-01

    Synthetic wastewater samples containing a model surfactant were treated using two different Fenton-like advanced oxidation processes promoted by solar radiation; the photo-Fenton reaction and Co/PMS/UV processes. Comparison between the different experimental conditions was performed by means of the overall surfactant degradation achieved and by obtaining the initial rate in the first 15 min of reaction (IR15). It was found that, for dark Fenton reaction, the maximum surfactant degradation achieved was 14% under low iron and oxidant concentration. Increasing Fenton reagents by one magnitude order, surfactant degradation achieved 63% in 60 min. The use of solar radiation improved the reaction rate by 17% under same conditions and an additional increase of 12.5% was obtained by adjusting initial pH to 2. IR15 values for dark and irradiated Fenton reactions were 0.143 and 0.154 mmol/min, respectively, for similar reaction conditions and this value increased to 0.189 mmol/min when initial pH was adjusted. The use of the Co/PMS system allow us to determine an increase in the degradation rate, for low reaction conditions (1 mM of transition metal; 4 mM oxidant) similar to those used in dark Fenton reaction. Surfactant degradation increased from 3%, for Fenton reaction, to 44.5% in the case of Co/PMS. When solar irradiation was included in the experiments, under same reaction conditions described earlier, surfactant degradation up to 64% was achieved. By increasing Co/PMS reagent concentration by almost 9 times under irradiated conditions, almost complete (>99%) surfactant degradation was reached in 5 min. Comparing IR15 values for Co/PMS and Co/PMS/UV, it allow us to observe that the use of solar radiation increased the degradation rate in one magnitude order when compared with dark experiments and further increase of reagent concentration increased reaction rate twice.

  3. Evaluation of the combined solar TiO2/photo-Fenton process using multivariate analysis.

    PubMed

    Nogueira, R F P; Trovó, A G; Paterlini, W C

    2004-01-01

    The effect of combining the photocatalytic processes using TiO2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 is used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H2O2 and TiO2 in the degradation of DCA.

  4. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.

    PubMed

    Subramanian, Gokulakrishnan; Madras, Giridhar

    2016-11-01

    The identification of iron chelates that can enhance photo-Fenton degradation is of great interest in the field of advanced oxidation process. Saccharic acid (SA) is a polyhydroxy carboxylic acid and completely non-toxic. Importantly, it can effectively bind Fe(III) as well as induce photoreduction of Fe(III). Despite having these interesting properties, the effect of SA on photo-Fenton degradation has not been studied. Herein, we demonstrate the first assessment of SA as an iron chelate in photo-Fenton process using methylene blue (MB) as a model organic contaminant. Our results demonstrate that SA has the ability to (i) enhance the photo-Fenton degradation of MB by about 11 times at pH 4.5 (ii) intensify photochemical reduction of Fe(III) to Fe(II) by about 17 times and (iii) accelerate the rate of consumption of H 2 O 2 in photo-Fenton process by about 5 times (iv) increase the TOC reduction by about 2 times and (v) improve the photo-Fenton degradation of MB in the presence of a variety of common inorganic ions and organic matter. The influential properties of SA on photo-Fenton degradation is attributed to the efficient photochemical reduction of Fe(III) via LMCT (ligand to metal charge transfer reaction) to Fe(II), which then activated H 2 O 2 to generate OH and accelerated photo-Fenton degradation efficiency. Moreover, the effect of operational parameters such as oxidant: contaminant (H 2 O 2 : MB) ratio, catalyst: contaminant (Fe(III)SA: MB) ratio, Fe(III): SA stoichiometry and pH on the degradation of MB by photo-Fenton in the presence of SA is demonstrated. Importantly, SA assisted photo-Fenton caused effective degradation of MB and 4-Chlorophenol under natural sunlight irradiation in natural water matrix. The findings strongly support SA as a deserving iron chelate to enhance photo-Fenton degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Kinetic degradation of guar gum in oilfield wastewater by photo-Fenton process.

    PubMed

    Wang, Shunwu; Li, Ziwang; Yu, Qinglong

    2017-01-01

    Guar gum is considered as a main component of oilfield wastewater. This work is intended to optimize the experimental conditions (H 2 O 2 dosage, Fe 2+ dosage, initial concentration of organics, initial pH and temperature) for the maximum oxidative degradation of guar gum by Fenton's reagent. The kinetics of guar gum removal were evaluated by means of the chemical oxygen demand (COD) and the absorbance measurements. The batch experiment results showed that the optimum conditions were: H 2 O 2 dosage, 10,000 mg/L; Fe 2+ dosage, 2,000 mg/L; initial concentration of organics, 413 mg/L; pH, 3 and temperature, 35 °C, under which the COD removal could reach 61.07% and fairly good stability could be obtained. Under the optimum experimental conditions, using UV irradiation to treat the wastewater, the photo-Fenton systems can successfully eliminate COD from guar gum solution. The COD removal always obeyed a pseudo-first-order kinetics and the degradation rate (k app ) was increased by 25.7% in the photo-Fenton process compared to the Fenton process. The photo-Fenton system needed less time and consequently less quantity of H 2 O 2 to obtain the same results as the Fenton process. The photo-Fenton process needs a dose of H 2 O 2 20.46% lower than that used in the Fenton process to remove 79.54% of COD. The cost of the photo/Fenton process amounted to RMB9.43/m 3 , which was lower than that of the classic Fenton process alone (RMB10.58/m 3 ) and the overall water quality of the final effluent could meet the class Ι national wastewater discharge standard for the petrochemical industry of China.

  6. Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant.

    PubMed

    Rodríguez, S Malato; Gálvez, J Blanco; Rubio, Manuel I Maldonado; Ibáñez, P Fernández; Gernjak, W; Alberola, I Oller

    2005-01-01

    Titanium dioxide photocatalysis (using 20 0mg l(-1) of TiO2), under aerobic and anaerobic conditions, and photo-Fenton (2 and 56 mg l(-1) iron) were applied to the treatment of different NBCS (non-biodegradable chlorinated solvents), such as dichloroethane, dichloromethane and trichloromethane dissolved in water at 50 mg l(-1). All the tests were performed in a 35-l solar pilot plant with compound parabolic collectors (CPCs) under natural illumination. The two solar treatments were compared with attention to chloride release and TOC mineralisation, as the main parameters. Photo-Fenton was found to be the more appropriate treatment for these compounds, assuming volatilisation as a drawback of photocatalytic degradation of NBCS dissolved in water. In this context, several operating parameters related to NBCS degradation, e.g., treatment time, temperature, hydrogen peroxide consumption and volatility of parent compounds are discussed. The correct choice of operating conditions can very often diminish the problem of volatilisation during treatment.

  7. Evaluating the photo-catalytic application of Fenton's reagent augmented with TiO(2) and ZnO for the mineralization of an oil-water emulsion.

    PubMed

    Tony, Maha A; Zhao, Y Q; Purcell, P J; El-Sherbiny, M F

    2009-04-01

    In the present study, homogenous (photo-Fenton) and heterogeneous photo-assisted systems (Fenton/TiO(2)/UV, Fenton/ZnO/UV and Fenton/TiO(2)/UV/Air) were investigated for the treatment of a diesel-oil wastewater emulsion. The augmentation of the photo-Fenton process by heterogeneous TiO(2) increased the reaction rate, in terms of COD reduction efficiency from 61% to 71%. Furthermore, the COD removal efficiency was increased to 84% when air was bubbled through the reactants. However, if the Fenton/TiO(2) /UV/Air process is to be utilized as a treatment for this wastewater, the separation of the TiO(2) from the treated effluent would need further consideration.

  8. Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances.

    PubMed

    Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R

    2017-05-01

    In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.

  9. Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water.

    PubMed

    Marjanovic, Miloch; Giannakis, Stefanos; Grandjean, Dominique; de Alencastro, Luiz Felippe; Pulgarin, Cesar

    2018-09-01

    In this work, solar disinfection (SODIS) was enhanced by moderate addition of Fe and sodium peroxydisulfate (PDS), under solar light. A systematic assessment of the activating factors was performed, firstly isolated, then in pairs and concluded in the combined Fe/heat/solar UV-PDS activation process. Solar light was the most effective (single) activator, and its combination with Fe and heat (double activation) yielded high level of synergies (up to S = 2.13). The triple activation was able to reduce the bacterial load up to 6-log in less than 1 h, similarly to the photo-Fenton process done in comparison (SODIS alone: >5 h). Fe-oxides were suitable activators of PDS under the same conditions while the presence of organic matter enhanced bacterial inactivation by the triple activated PDS process. The degradation of a (selected) mixture of micropollutants (i.e. drugs, pesticides) was also achieved in similar order of magnitude, and faster than the photo-Fenton process. Finally, the removal of a viral pathogen indicator (MS2 bacteriophage) was attained at minute-range residence times. The aforementioned facts indicate the suitability of the mild, combined process, as a potential SODIS enhancement, producing safe drinking water for sunny and especially for developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents.

    PubMed

    Prieto-Rodríguez, L; Oller, I; Klamerth, N; Agüera, A; Rodríguez, E M; Malato, S

    2013-03-15

    Conventional municipal wastewater treatment plants are not able to entirely degrade some organic pollutants that end up in the environment. Within this group of contaminants, Emerging Contaminants are mostly unregulated compounds that may be candidates for future regulation. In this work, different advanced technologies: solar heterogeneous photocatalysis with TiO(2), solar photo-Fenton and ozonation, are studied as tertiary treatments for the remediation of micropollutants present in real municipal wastewater treatment plants effluents at pilot plant scale. Contaminants elimination was followed by Liquid Chromatography/Quadrupole ion trap Mass Spectrometry analysis after a pre-concentration 100:1 by automatic solid phase extraction. 66 target micropollutants were identified and quantified. 16 of those contaminants at initial concentrations over 1000 ng L(-1), made up over 88% of the initial total effluent pollutant load. The order of micropollutants elimination efficiency under the experimental conditions evaluated was solar photo-Fenton > ozonation > solar heterogeneous photocatalysis with TiO(2). Toxicity analyses by Vibrio fischeri and respirometric tests showed no significant changes in the effluent toxicity after the three tertiary treatments application. Solar photo-Fenton and ozonation treatments were also compared from an economical point of view. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Toxicity assessment of tannery effluent treated by an optimized photo-Fenton process.

    PubMed

    Borba, Fernando Henrique; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando Rodolfo; Manenti, Diego Ricieri; Bergamasco, Rosangela; Mora, Nora Diaz

    2013-01-01

    In this work, an optimized photo-Fenton process was applied to remove pollutants from tannery industrial effluent (TIE) with its final toxicity level being assessed by a lettuce-seed-based bioassay test. A full 33 factorial design was applied for the optimization of long-term photo-Fenton experiments. The oPtimum conditions of the photo-Fenton process were attained at concentration values of 0.3 g Fe(2+) L(-1) and 20 g H2O2 L(-1) and pH3, for 120 min UV irradiation time. Reactor operating parameter (ROP) effects on the removal of chemical oxygen demand, colour, turbidity, total suspended solids and total volatile solids were evaluated, suggesting that a broad range of ROP values are also suitable to give results very near to those of the photo-Fenton experiments under optimal conditions. Based on the low calculated median lethal dose (LD50) values from a lettuce-seed-based bioassay test, we suggest that recalcitrant substances are present in treated TIE samples. A possible cause of the high toxicity level could partly be attributed to the nitrate concentration, which was not completely abated by the photo-Fenton process. Apart from this, the photo-Fenton process can be used as a part of an industrial effluent treatment system in order to abate high organic pollutant loads.

  12. Evaluating Microtox as a tool for biodegradability assessment of partially treated solutions of pesticides using Fe3+ and TiO2 solar photo-assisted processes.

    PubMed

    Lapertot, Milena; Ebrahimi, Sirous; Oller, Isabel; Maldonado, Manuel I; Gernjak, Wolfgang; Malato, Sixto; Pulgarín, César

    2008-03-01

    To shorten phototreatment time is of major concern for the cost and energy benefits of the xenobiotics degradation performed by photocatalytic processes. Using photo-Fenton and TiO(2) phototreatments, partially photodegraded solutions of 6 separate pesticides (alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol) were tested for biocompatibility, which was evaluated according to the Zahn-Wellens procedure. This study investigated if Microtox could be considered as a suitable global indicator capable of giving information on the evolution of biocompatibility of the water solution contaminated with organic pollutants during the phototreatment in order to promote biotreatment. The obtained results demonstrated that biodegradability increased significantly after short photo-Fenton treatment times for alachlor, diuron and pentachlorophenol. Uncertain results were obtained with atrazine and isoproturon. Microtox acute toxicity testing was shown to correctly represent dynamics and efficiency of phototreatment.

  13. UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction.

    PubMed

    Tokumura, Masahiro; Ohta, Ayano; Znad, Hussein T; Kawase, Yoshinori

    2006-12-01

    The photochemical decolorization of coffee effluent has been examined by photo-Fenton (UV/Fe2+/H2O2) process. Effects of UV light intensity, initial coffee concentration, iron dose and H2O2 dose on the color removal of model coffee effluent have been investigated. The rate of decolorization increased with decreasing initial coffee effluent concentration. It was found that the Fe ion dose and UV light intensity enhanced the decolorization rate. The decolorization process of coffee effluent could be divided into three established phases. At the beginning of the photo-Fenton process, the instantaneous and significant increase in color of the solution was found (Phase-I). In the subsequent phase (Phase-II), the decolorization rate was initially fast and subsequently decreased. In Phase-III, the rate was accelerated and then the complete decolorization of model coffee effluent was achieved. In order to elucidate the mechanisms of coffee effluent color removal process, the concentration changes in Fe3+ and Fe2+ besides H2O2 were measured during the course of the photo-Fenton process. The rate-determining step in Phase-II was the photo-Fenton reaction or photoreduction of Fe3+. On the other hand, the decolorization process in Phase-III was highly affected by Fenton reaction or decomposition of H2O2 with Fe2+. About 93% mineralization of 250 mg L(-1) model coffee effluent was achieved after 250 min. A comparative study for TiO2, ZnO and photo-Fenton oxidation processes has been also carried out and the photo-Fenton process was found to be the most effective for color removal of coffee effluent.

  14. Fe0 catalyzed photo-Fenton process to detoxify the biodegraded products of azo dye Mordant Yellow 10.

    PubMed

    Brindha, R; Muthuselvam, P; Senthilkumar, S; Rajaguru, P

    2018-06-01

    Inspired by the efficiency of the photo-Fenton process on oxidation of organic pollutants, we herein present the feasibility of visible light driven photo-Fenton process as a post treatment of biological method for the effective degradation and detoxification of monoazo dye Mordant Yellow 10 (MY10). Anaerobic degradation of MY10 by Pseudomonas aeroginosa formed aromatic amines which were further degraded in the subsequent Fe catalyzed photo-Fenton process carried out at pH 3.0, with iron shavings and H 2 O 2 under blue LED light illumination. LC-MS and stoichiometric analysis confirmed that reductive azo bond cleavage was the major reaction in anaerobic bacterial degradation of MY10 producing 4-amino benzene sulfonic acid (4-ABS) and 5-amino salicylic acid (5-ASA) which were further degraded into hydroxyl amines, nitroso and di/tri carboxylic acids by the photo-Fenton process. Toxicity studies with human small cell lung cancer A549 cells provide evidence that incorporation of Fe 0 catalyzed photo-Fenton step after anaerobic bacterial treatment improved the mineralization and detoxification of MY10 dye. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Coupling solar photo-Fenton and biotreatment at industrial scale: main results of a demonstration plant.

    PubMed

    Malato, Sixto; Blanco, Julián; Maldonado, Manuel I; Oller, Isabel; Gernjak, Wolfgang; Pérez-Estrada, Leonidas

    2007-07-31

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500mgL(-1)) containing a non-biodegradable organic substance (alpha-methylphenylglycine at 500mgL(-1)), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe(2+)=20mgL(-1). Based on pilot plant results, an industrial plant with 100m(2) of CPC collectors for a 250L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500Lh(-1) at an average solar ultraviolet radiation of 22.9Wm(-2), under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant.

  16. Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH.

    PubMed

    Giraldo-Aguirre, Ana L; Serna-Galvis, Efraím A; Erazo-Erazo, Edgar D; Silva-Agredo, Javier; Giraldo-Ospina, Héctor; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2017-02-03

    In this work, the photo-Fenton process at near-neutral pH was applied for the removal of the β-lactam antibiotic oxacillin (OXA) in water using artificial and sunlight. Initially, the main variables of the process (Fe(II), H 2 O 2 , and light power) were optimized by a statistical factorial design (2 3 with center points). The experimental design indicated that 90 μmol L -1 of Fe(II), 10 mmol L -1 of H 2 O 2 , and 30 W of power light were the favorable conditions for degradation of OXA at 203 μmol L -1 . In the photo-Fenton system, the H 2 O 2 alone, UV-light/H 2 O 2 , and Fe(II)/H 2 O 2 subsystems presented a significant participation on antibiotic removal. Moreover, based on the primary organic transformation products, a mechanism of OXA degradation was proposed. Under the favorable operational conditions, both the pollutant and the antimicrobial activity were eliminated after 50 min of process application. Although at 480 min of treatment, only 5% of mineralization was achieved, the level of biodegradability of the solutions increased from 0.08 to 0.98. Interestingly, the presence of pharmaceutical additives (glucose, isopropanol, and oxalic acid) had a moderate interference on the efficiency of the pollutant removal. Additionally, the treatment at pilot scale of the β-lactam antibiotic in a pharmaceutical complex matrix using solar radiation allowed the complete removal of the pollutant and its associated antimicrobial activity in a very short time period (5 min). These results evidenced the applicability of the photo-Fenton process to treat wastewaters from pharmaceutical industry loaded with β-lactam antibiotics at near neutral pH values efficiently.

  17. Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species.

    PubMed

    Trovó, Alam G; Pupo Nogueira, Raquel F; Agüera, Ana; Fernandez-Alba, Amadeo R; Malato, Sixto

    2012-10-15

    The photo-Fenton degradation of paracetamol (PCT) was evaluated using FeSO(4) and the iron complex potassium ferrioxalate (FeOx) as iron source under simulated solar light. The efficiency of the degradation process was evaluated considering the decay of PCT and total organic carbon concentration and the generation of carboxylic acids, ammonium and nitrate, expressed as total nitrogen. The results showed that the degradation was favored in the presence of FeSO(4) in relation to FeOx. The higher concentration of hydroxylated intermediates generated in the presence of FeSO(4) in relation to FeOx probably enhanced the reduction of Fe(III) to Fe(II) improving the degradation efficiency. The degradation products were determined using liquid chromatography electrospray time-of-flight mass spectrometry. Although at different concentrations, the same intermediates were generated using either FeSO(4) or FeOx, which were mainly products of hydroxylation reactions and acetamide. The toxicity of the sample for Vibrio fischeri and Daphnia magna decreased from 100% to less than 40% during photo-Fenton treatment in the presence of both iron species, except for D. magna in the presence of FeOx due to the toxicity of oxalate to this organism. The considerable decrease of the sample toxicity during photo-Fenton treatment using FeSO(4) indicates a safe application of the process for the removal of this pharmaceutical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands.

    PubMed

    Berberidou, Chrysanthi; Kitsiou, Vasiliki; Lambropoulou, Dimitra A; Antoniadis, Αpostolos; Ntonou, Eleftheria; Zalidis, George C; Poulios, Ioannis

    2017-06-15

    The present study proposes an integrated system based on the synergetic action of solar photocatalytic oxidation with surface flow constructed wetlands for the purification of wastewater contaminated with pesticides. Experiments were conducted at pilot scale using simulated wastewater containing the herbicide clopyralid. Three photocatalytic methods under solar light were investigated: the photo-Fenton and the ferrioxalate reagent as well as the combination of photo-Fenton with TiO 2 P25, which all led to similar mineralization rates. The subsequent treatment in constructed wetlands resulted in further decrease of DOC and inorganic ions concentrations, especially of NO 3 - . Clopyralid was absent in the outlet of the wetlands, while the concentration of the detected intermediates was remarkably low. These findings are in good agreement with the results of phytotoxicity of the wastewater, after treatment with the ferrioxalate/wetlands process, which was significantly reduced. Thus, this integrated system based on solar photocatalysis and constructed wetlands has the potential to effectively detoxify wastewater containing pesticides, producing a purified effluent which could be exploited for reuse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Environmental application of millimetre-scale sponge iron (s-Fe0) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H2O2 and RhB photosensitizers.

    PubMed

    Ju, Yongming; Yu, Yunjiang; Wang, Xiaoyan; Xiang, Mingdeng; Li, Liangzhong; Deng, Dongyang; Dionysiou, Dionysios D

    2017-02-05

    In this study, we firstly develop the photo-Fenton-like system with millimetric sponge iron (s-Fe 0 ), H 2 O 2 , visible light (vis, λ≥420nm) and rhodamine B (RhB), and present a comprehensive study concerning the mechanism. Thus, we investigate (1) the adsorption of RhB onto s-Fe 0 , (2) the photo-Fenton-like removal of RhB over iron oxides generated from the corrosion of s-Fe 0 , (3) the homogeneous photo-Fenton removal of RhB over Fe 2+ or Fe 3+ , (4) the Fe 3+ -RhB complexes, and (5) the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). The results show that neither the adsorption process over s-Fe 0 nor the photo-Fenton-like process over FeOOH, Fe 3 O 4 and Fe 2 O 3 , achieved efficient removal of RhB. For comparison, in homogeneous photo-Fenton process, the presence of Fe 3+ ions, rather than Fe 2+ ions, effectively eliminated RhB. Furthermore, the UV-vis spectra showing new absorbance at∼285nm indicate the complexes of RhB and Fe 3+ ions, adopting vis photons to form excited state and further eject one electron via ligand-to-metal charge-transfer to activate H 2 O 2 . Additionally, efficient TBBPA removal was obtained only in the presence of RhB. Accordingly, the s-Fe 0 - based photo-Fenton-like process assisted with dyestuff wastewater is promising for removing a series of persistent organic pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Integration of Membrane Distillation with solar photo-Fenton for purification of water contaminated with Bacillus sp. and Clostridium sp. spores.

    PubMed

    Ruiz-Aguirre, A; Polo-López, M I; Fernández-Ibáñez, P; Zaragoza, G

    2017-10-01

    Although Membrane Distillation (MD) has been extensively studied for desalination, it has other applications like removing all kinds of solutes from water and concentrating non-volatile substances. MD offers the possibility of producing a clean stream while concentrating valuable compounds from waste streams towards their recovery, or emerging contaminants and pathogens present in wastewater in order to facilitate their chemical elimination. This paper analyses the elimination of bacterial spores from contaminated water with MD and the role of MD in the subsequent treatment of the concentrate with photo-Fenton process. The experiments were performed at Plataforma Solar de Almería (PSA) using a plate and frame bench module with a Permeate Gap Membrane Distillation (PGMD) configuration. Tests were done for two different kinds of spores in two different water matrixes: distilled water with 3.5wt% of sea salts contaminated with spores of Bacillus subtilis (B. subtilis) and wastewater after a secondary treatment and still contaminated with Clostridium sp. spores. An analysis of the permeate was performed in all cases to determine its purity, as well as the concentrated stream and its further treatment in order to assess the benefits of using MD. Results showed a permeate free of spores in all the cases, demonstrating the viability of MD to treat biological contaminated wastewater for further use in agriculture. Moreover, the results obtained after treating the concentrate with photo-Fenton showed a shorter treatment time for the reduction of the spore concentration in the water than that when only photo-Fenton was used. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes.

    PubMed

    Méndez-Arriaga, F; Torres-Palma, R A; Pétrier, C; Esplugas, S; Gimenez, J; Pulgarin, C

    2009-09-01

    Degradation of the biorecalcitrant pharmaceutical micropollutant ibuprofen (IBP) was carried out by means of several advanced oxidation hybrid configurations. TiO(2) photocatalysis, photo-Fenton and sonolysis - all of them under solar simulated illumination - were tested in the hybrid systems: sonophoto-Fenton (FS), sonophotocatalysis (TS) and TiO(2)/Fe(2+)/sonolysis (TFS). In the case of the sonophoto-Fenton process, the IBP degradation (95%) and mineralization (60%) were attained with photo-Fenton (FH). The presence of ultrasonic irradiation slightly improves the iron catalytic activity. On the other hand, total removal of IBP and elimination of more than 50% of dissolved organic carbon (DOC) were observed by photocatalysis with TiO(2) in the presence of ultrasound irradiation (TS). In contrast only 26% of mineralization was observed by photocatalysis with H(2)O(2) (TH) in the absence of ultrasound irradiation. Additional results showed that, in the TFS system, 92% of DOC removal and complete degradation of IBP were obtained within 240 min of treatment. The advanced oxidation hybrid systems seems to be a promising alternative for full elimination/mineralization for the recalcitrant micro-contaminant IBP.

  2. Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.

    PubMed

    Marcinowski, Piotr P; Bogacki, Jan P; Naumczyk, Jeremi H

    2014-01-01

    Advanced Oxidation Processes (AOPs), such as the Fenton, photo-Fenton and H2O2/UV processes, have been investigated for the treatment of cosmetic wastewaters that were previously coagulated by FeCl3. The Photo-Fenton process at pH 3.0 with 1000/100 mg L(-1) H2O2/Fe(2+) was the most effective (74.0% Chemical Oxygen Demand (COD) removal). The Fenton process with 1200/500 mg L(-1) H2O2/Fe(2+) achieved a COD removal of 72.0%, and the H2O2/UV process achieved a COD removal of 47.0%. Spreading the H2O2 doses over time to obtain optimal conditions did not improve COD removal. The kinetics of the Fenton and photo-Fenton processes may be described by the following equation: d[COD]/dt = -a[COD] t(m) (t represents time and a and m are constants). The rate of COD removal by the H2O2/UV process may be described by a second-order reaction equation. Head Space, Solid-Phase MicroExtraction, Gas Chromatography and Mass Spectrometry (HS-SPME-GC-MS) were used to identify 48 substances in precoagulated wastewater. Among these substances, 26 were fragrances. Under optimal AOP conditions, over 99% of the identified substances were removed in 120 min.

  3. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    PubMed

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  4. Solar photo-Fenton mineralization of antipyrine in aqueous solution.

    PubMed

    Durán, A; Monteagudo, J M; Sanmartín, I; Carrasco, A

    2013-11-30

    The mineralization of an aqueous solution of antipyrine (C11H12N2O), an emerging contaminant, using a solar photocatalytic oxidation process assisted with ferrioxalate was evaluated in a compound parabolic collector (CPC) pilot plant. Under the selected operating conditions ([H2O2] = 250 ppm, [Fe] = 14 ppm, pH = 2.7, and [(COOH)2·2H2O] = 80 ppm), 60% of TOC is removed just 5 min after treating an aqueous solution containing 50 ppm of antipyrine. The addition of oxalic acid up to a maximum concentration of 80 ppm significantly increases the mineralization rate during the first 15 min of the reaction. The synergism between the solar and dark H2O2/ferrioxalate process was quantified at 79%, calculated from the pseudo first-order mineralization rate constants. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions and compared with a novel sono-photocatalytic process using artificial UV-light. The results showed that the ferrioxalate-assisted solar photo-Fenton process was economically feasible, being able to achieve up to 60% mineralization with a total cost of 4.5 cent €/g TOC removed (1.1 €/m(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater.

    PubMed

    Aguas, Yelitza; Hincapie, Margarita; Fernández-Ibáñez, Pilar; Polo-López, María Inmaculada

    2017-12-31

    The interest in developing alternative water disinfection methods that increase the access to irrigation water free of pathogens for agricultural purposes is increasing in the last decades. Advanced Oxidation Processes (AOPs) have been demonstrated to be very efficient for the abatement of several kind of pathogens in contaminated water. The purpose of the current study was to evaluate and compare the capability of several solar AOPs for the inactivation of resistant spores of agricultural fungi. Solar photoassisted H 2 O 2 , solar photo-Fenton at acid and near-neutral pH, and solar heterogeneous photocatalysis using TiO 2, with and without H 2 O 2 , have been studied for the inactivation of spores of Curvularia sp., a phytopathogenic fungi worldwide found in soils and crops. Different concentrations of reagents and catalysts were evaluated at bench scale (solar vessel reactors, 200mL) and at pilot plant scale (solar Compound Parabolic Collector-CPC reactor, 20L) under natural solar radiation using distilled water (DW) and real secondary effluents (SE) from a municipal wastewater treatment plant. Inactivation order of Curvularia sp. in distilled water was determined, i.e. TiO 2 /H 2 O 2 /sunlight (100/50mgL -1 )>H 2 O 2 /sunlight (40mgL -1 )>TiO 2 /sunlight (100mgL -1 )>photo-Fenton with 5/10mgL -1 of Fe 2+ /H 2 O 2 at pH3 and near-neutral pH. For the case of SE, at near neutral pH, the most efficient solar process was H 2 O 2 /Solar (60mgL -1 ); nevertheless, the best Curvularia sp. inactivation rate was obtained with photo-Fenton (10/20mgL -1 of Fe 2+ /H 2 O 2 ) requiring a previous water adicification to pH3, within 300 and 210min of solar treatment, respectively. These results show the efficiency of solar AOPs as a feasible option for the inactivation of resistant pathogens in water for crops irrigation, even in the presence of organic matter (average Dissolved Organic Carbon (DOC): 24mgL -1 ), and open a window for future wastewater reclamation and irrigation use. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparison of adsorption and photo-Fenton processes for phenol and paracetamol removing from aqueous solutions: Single and binary systems

    NASA Astrophysics Data System (ADS)

    Rad, Leila Roshanfekr; Haririan, Ismaeil; Divsar, Faten

    2015-02-01

    In the present study, adsorption and photo-Fenton processes have been compared for the removal of phenol and paracetamol from aqueous solutions in a single and binary systems. NaX nanozeolites and cobalt ferrite nanoparticles were used during adsorption and photo-Fenton processes, respectively. Both nanoparticles were synthesized using microwave heating method. The synthesized nanoparticles were characterized using powder X-ray diffraction (XRD) and scanning electronic microscopy (SEM) analysis. Based on results, more than 99% removing percentages of phenol and paracetamol were obtained during photo-Fenton process at initial concentrations of 10, 20, 50, 100 and 200 mg/L of phenol and paracetamol. Moreover, the complete removing of phenol and paracetamol was only achieved at lower initial concentrations than 10 mg/L for phenol and paracetamol during adsorption process. The results showed a significant dependence of the phenol and paracetamol removing on the initial concentrations of phenol and paracetamol for selection of process. The photo-Fenton process could be considered an alternative method in higher initial concentrations of phenol and paracetamol. However, the adsorption process due to economical issue was preferred for phenol and paracetamol removing at lower initial concentrations. The kinetic data of photo-Fenton and adsorption processes were well described using first-order and pseudo-second-order kinetic models. The results of phenol and paracetamol removing in a binary system confirmed the obtained results of single removing of phenol and paracetamol in selection of process.

  7. Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker metoprolol.

    PubMed

    Romero, V; Acevedo, S; Marco, P; Giménez, J; Esplugas, S

    2016-01-01

    The need for acidification in the Fenton and photo-Fenton process is often outlined as one of its major drawbacks, thus in this work the acidification of the Metoprolol (MET) is avoided by the addition of resorcinol (RES), which is used to simulate model organic matter. The experiments were carried out at natural pH (6.2) with different Fe(2+) (1, 2.5, 5, and 10 mg/L) and H2O2 (25, 50, 125 and 150 mg/L) concentrations. The performance of MET and RES degradation was assessed along the reaction time. Working with the highest concentrations (5 and 10 mg/L of ferrous iron and 125 and 150 mg/L of H2O2) more than 90% of MET and RES removals were reached within 50 and 20 min of treatment, respectively, by Fenton process. However a low mineralization was achieved in both cases, likely, due to by-products accumulation. Regarding to photo-Fenton process, within 3 min with the highest iron and hydrogen peroxide concentrations, a complete MET degradation was obtained and 95% of RES conversion was achieved. Parameters such Total Organic Carbon, Chemical Oxygen Demand, and AOS were measured. Intermediates were identified and MET degradation path was proposed in the presence of resorcinol. Finally, a comparison between Fenton and photo-Fenton processes at acid pH and at initial circumneutral pH was discussed. The positive effect of RES on Fenton and photo-Fenton systems has been confirmed, allowing the work at circumneutral pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.

    PubMed

    Rubio, D; Nebot, E; Casanueva, J F; Pulgarin, C

    2013-10-15

    Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L(-1) Fe(2+) and 10 mg L(-1) of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH(•) radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3(-), the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe(3+)-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments. This study suggests H2O2/UV254 and photo-Fenton treatments for the disinfection of seawater, in spite its high concentration of salts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment.

    PubMed

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2017-04-15

    In this study, the industrial textile wastewater was treated using a chemical-based technique (coagulation-flocculation, C-F) sequential with an advanced oxidation process (AOP: Fenton or Photo-Fenton). During the C-F, Al 2 (SO 4 ) 3 was used as coagulant and its optimal dose was determined using the jar test. The following operational conditions of C-F, maximizing the organic matter removal, were determined: 700 mg/L of Al 2 (SO 4 ) 3  at pH = 9.96. Thus, the C-F allowed to remove 98% of turbidity, 48% of Chemical Oxygen Demand (COD), and let to increase in the BOD 5 /COD ratio from 0.137 to 0.212. Subsequently, the C-F effluent was treated using each of AOPs. Their performances were optimized by the Response Surface Methodology (RSM) coupled with a Box-Behnken experimental design (BBD). The following optimal conditions of both Fenton (Fe 2+ /H 2 O 2 ) and Photo-Fenton (Fe 2+ /H 2 O 2 /UV) processes were found: Fe 2+ concentration = 1 mM, H 2 O 2 dose = 2 mL/L (19.6 mM), and pH = 3. The combination of C-F pre-treatment with the Fenton reagent, at optimized conditions, let to remove 74% of COD during 90 min of the process. The C-F sequential with Photo-Fenton process let to reach 87% of COD removal, in the same time. Moreover, the BOD 5 /COD ratio increased from 0.212 to 0.68 and from 0.212 to 0.74 using Fenton and Photo-Fenton processes, respectively. Thus, the enhancement of biodegradability with the physico-chemical treatment was proved. The depletion of H 2 O 2 was monitored during kinetic study. Strategies for improving the reaction efficiency, based on the H 2 O 2 evolution, were also tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Photonic efficiency of the photodegradation of paracetamol in water by the photo-Fenton process.

    PubMed

    Yamal-Turbay, E; Ortega, E; Conte, L O; Graells, M; Mansilla, H D; Alfano, O M; Pérez-Moya, M

    2015-01-01

    An experimental study of the homogeneous Fenton and photo-Fenton degradation of 4-amidophenol (paracetamol, PCT) is presented. For all the operation conditions evaluated, PCT degradation is efficiently attained by both Fenton and photo-Fenton processes. Also, photonic efficiencies of PCT degradation and mineralization are determined under different experimental conditions, characterizing the influence of hydrogen peroxide (H2O2) and Fe(II) on both contaminant degradation and sample mineralization. The maximum photonic degradation efficiencies for 5 and 10 mg L(-1) Fe(II) were 3.9 (H2O2 = 189 mg L(-1)) and 5 (H2O2 = 378 mg L(-1)), respectively. For higher concentrations of oxidant, H2O2 acts as a "scavenger" radical, competing in pollutant degradation and reducing the reaction rate. Moreover, in order to quantify the consumption of the oxidizing agent, the specific consumption of the hydrogen peroxide was also evaluated. For all operating conditions of both hydrogen peroxide and Fe(II) concentration, the consumption values obtained for Fenton process were always higher than the corresponding values observed for photo-Fenton. This implies a less efficient use of the oxidizing agent for dark conditions.

  11. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes - A review.

    PubMed

    Mirzaei, Amir; Chen, Zhi; Haghighat, Fariborz; Yerushalmi, Laleh

    2017-05-01

    The presence of emerging contaminants such as pharmaceuticals in natural waters has raised increasing concern due to their frequent appearance and persistence in the aquatic ecosystem and the threat to health and safety of aquatic life, even at trace concentrations. Conventional water treatment processes are known to be generally inadequate for the elimination of these persistent contaminants. Therefore, the use of advanced oxidation processes (AOPs) which are able to efficiently oxidize organic pollutants has attracted a great amount of attention. The main limitation of AOPs lies in their high operating costs associated with the consumption of energy and chemicals. Fenton-based processes, which utilize nontoxic and common reagents and potentially can exploit solar energy, will considerably reduce the removal cost of recalcitrant contaminants. The disadvantages of homogeneous Fenton processes, such as the generation of high amounts of iron-containing sludge and limited operational range of pH, have prompted much attention to the use of heterogeneous Fenton processes. In this review, the impacts of some controlling parameters including the H 2 O 2 and catalyst dosage, solution pH, initial contaminants concentrations, temperature, type of catalyst, intensity of irradiation, reaction time and feeding mode on the removal efficiencies of hetero/homogeneous Fenton processes are discussed. In addition, the combination of Fenton-type processes with biological systems as the pre/post treatment stages in pilot-scale operations is considered. The reported experimental results obtained by using Fenton and photo-Fenton processes for the elimination of pharmaceutical contaminants are also compiled and evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    PubMed

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2017-11-01

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H 2 O 2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H 2 O 2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H 2 O 2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  13. Solar photochemical treatment of winery wastewater in a CPC reactor.

    PubMed

    Lucas, Marco S; Mosteo, Rosa; Maldonado, Manuel I; Malato, Sixto; Peres, José A

    2009-12-09

    Degradation of simulated winery wastewater was studied in a pilot-scale compound parabolic collector (CPC) solar reactor. Total organic carbon (TOC) reduction by heterogeneous photocatalysis (TiO(2)) and homogeneous photocatalysis with photo-Fenton was observed. The influence of TiO(2) concentration (200 or 500 mg/L) and also of combining TiO(2) with H(2)O(2) or Na(2)S(2)O(8) on heterogeneous photocatalysis was evaluated. Heterogeneous photocatalysis with TiO(2), TiO(2)/H(2)O(2) and TiO(2)/S(2)O(8)(2-) is revealed to be inefficient in removing TOC, originating TOC degradation of 10%, 11% and 25%, respectively, at best. However, photo-Fenton experiments led to 46% TOC degradation in simulated wastewater prepared with diluted wine (WV) and 93% in wastewater prepared with diluted grape juice (WG), and if ethanol is previously eliminated from mixed wine and grape juice wastewater (WW) by air stripping, it removes 96% of TOC. Furthermore, toxicity decreases during the photo-Fenton reaction very significantly from 48% to 28%. At the same time, total polyphenols decrease 92%, improving wastewater biodegradability.

  14. Solar photocatalytic treatment of quinolones: intermediates and toxicity evaluation.

    PubMed

    Sirtori, Carla; Zapata, Ana; Malato, Sixto; Gernjak, Wolfgang; Fernández-Alba, Amadeo R; Agüera, Ana

    2009-05-01

    In this study, degradation of Flumequine (FLU) and nalidixic acid (NXA) in distilled water by two solar photocatalytic processes, TiO(2) and photo-Fenton, was evaluated. Intermediates and acute toxicity of the photoproducts generated were also studied. Degradation efficiency by heterogeneous photocatalysis with TiO(2) was similar for NXA and FLU, which were completely degraded after 25 min of illumination. Less NXA mineralisation was reached after 80 min of illumination. Photo-Fenton degradation of both substances was very quick (<25 min of illumination time), and the same mineralisation was reached in both cases. The kinetic parameters of the two substances were calculated for comparison of their photocatalytic degradation. In all cases, photocatalytic processes were associated with a reduction in toxicity, as evaluated by Vibrio fischeri bioassay. Furthermore, a sharp decrease in inhibition was observed from the beginning of the treatment, even when FLU and NXA were still present in the reaction solution (first samples). These results demonstrate that in both photocatalytic processes studied, toxicity decreases significantly, producing a phototreated sample within safe toxicity limits. The intermediates formed during photocatalytic degradation were studied by liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS).

  15. Oxidation of atrazine in aqueous media by solar- enhanced Fenton-like process involving persulfate and ferrous ion.

    PubMed

    Khandarkhaeva, Marina; Batoeva, Agniya; Aseev, Denis; Sizykh, Marina; Tsydenova, Oyuna

    2017-03-01

    The oxidation of s-triazines (using atrazine (ATZ) as a model compound) by a solar-enhanced Fenton-like process involving persulfate and ferrous ion was studied. A flow-through tubular photoreactor was employed for the experiments. The solar-enhanced oxidative system involving ferrous ion and persulfate (Solar/S 2 O 8 2- /Fe 2+ ) showed the highest ATZ degradation efficiency when compared with other treatments (unactivated S 2 O 8 2- , Solar - sunlight only, S 2 O 8 2- /Fe 2+ , Solar/S 2 O 8 2- ). Complete degradation of ATZ and 20% reduction in total organic carbon (TOC) content were observed after 30min of the treatment. The in situ generated • ОН and SO 4 -• radicals were shown to be involved in ATZ oxidation using the radical scavengers methanol and tert-butyl alcohol. Furthermore, iron compounds were shown to act not only as catalysts but also as photo-sensitizers, as the introduction of ferrous ion into the reaction mixture led to an increased absorbance of the solution and expansion of the absorption spectrum into the longer wavelength spectral region. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater.

    PubMed

    Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D

    2017-05-01

    Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    PubMed

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate.

    PubMed

    Garkusheva, Natalya; Matafonova, Galina; Tsenter, Irina; Beck, Sara; Batoev, Valeriy; Linden, Karl

    2017-07-29

    This work evaluated the feasibility of a photo-Fenton-like process using persulfate (PS) and ferrous iron (Fe 2+ ) under simulated solar radiation for degrading the herbicide atrazine (ATZ, 6-Chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and inactivating E. coli. Milli Q water, lake water, and diluted wastewater effluents were spiked both simultaneously and separately with ATZ (4 mg/L) and E. coli (10 5 CFU/mL), and exposed to treatment. A method for determining the average irradiance throughout the water media in the UV(A+B) range of the Xe lamp emission was developed for bench-scale experiments. These values were used to calculate the UV(A+B) fluences and the solar UV(A+B) energy doses per unit of volume (Q UV(A+B) , kJ/L). The obtained kinetic data were presented versus energy dose. Treatment of lake water at near-neutral pH was ineffective via the photo-Fenton-like process, attaining only 20% ATZ removal and 1-log reduction of E. coli. In Milli Q water and wastewater, the complete degradation of ATZ in the absence of bacteria was observed at an average energy dose of 1.5 kJ/L (60 min), while in the presence of cells the degradation efficiency was ∼60%. When ATZ was present, E. coli inactivation was also affected in Milli Q water, with 1.4-log reduction (93%) at a dose of 1.6 kJ/L (60 min), whereas in wastewater complete inactivation was achieved at a lower dose of 1.3 kJ/L (45 min). The energy requirements on a Q UV(A+B) basis for simultaneous 90% ATZ removal and 99.99% E. coli inactivation in Milli Q water and wastewater were shown to be less than 10 kJ/L. This suggests the solar/PS/Fe 2+ system is promising for simultaneous treatment and disinfection of wastewater effluents.

  19. Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation.

    PubMed

    Manu, B; Mahamood, S

    2011-01-01

    For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H(2)O(2) dosage 60 mg/L, [H(2)O(2)]/[Fe(2+)] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.

  20. Decolorization of reactive dyes in solar pond reactors: Perspectives and challenges for the textile industry.

    PubMed

    Chavaco, L C; Arcos, C A; Prato-Garcia, D

    2017-08-01

    In the past three decades, Fenton and photo-Fenton processes have been the subject of a large number of research studies aimed at developing a low-cost and robust alternative to treat complex wastewater. Aspects such as installation and operating costs and technical complexity of reactors have limited the commercial applications of Fenton processes. In this study, we evaluated the potential of solar pond reactors to carry out degradation of the dye reactive orange 16 (RO16). Decolorization (D = 99 ± 0.6%), chemical oxygen demand reduction (COD = 55 ± 2%), total organic carbon removal (TOC = 28 ± 0.5%), and biocompatibilization can be accomplished using 15% peroxide (0.6 mg H 2 O 2 /mg RO16), which is theoretically required to mineralize the dye. Under dark conditions, decolorization and aromatic removal were scarcely affected (2%), whereas COD and TOC removal were reduced to 37% and 16%, respectively. The application of multivariable analysis and the use of low-cost reactors may lead to a reduction in annual treatment costs of colored effluents to 0.76 (US/m 3 ). Furthermore, the treatment capacity can be increased from 0.6 m 3 wastewater/m 2 reactor surface to 1.7 m 3 wastewater/m 2 reactor surface without compromising process efficiency or the biodegradability (BOD 5 /COD ratio) of the effluent. Dyeing auxiliaries, mainly NaCl, appreciably reduced the decolorization performance in Fenton (13 ± 0.4%) and photo-Fenton (83 ± 0.5%) processes due to the formation of iron-chloride complexes and less powerful oxidants. To reduce the impact of auxiliary agents on process performance and treatment capacity, the Fe 2+ concentration should be increased from 5 mg/L to 15 mg/L. The results seem promising; however, additional studies at pilot and semi-industrial scales should be conducted to demonstrate the potential of low-cost reactors to carry out colored wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process.

    PubMed

    Monteagudo, J M; Durán, A; Aguirre, M; San Martín, I

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H(2)O(2), Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H(2)O(2) and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k(TOC), increased as initial Fe(II) and H(2)O(2) concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. OH and O(2)(-) radicals were the main oxidative intermediate species in the process, although singlet oxygen ((1)O(2)) also played a role in the mineralization reaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results.

    PubMed

    Davididou, K; Chatzisymeon, E; Perez-Estrada, L; Oller, I; Malato, S

    2018-03-14

    The aim of this work was to investigate the treatment of the artificial sweetener saccharin (SAC) in a solar compound parabolic collector pilot plant by means of the photo-Fenton process at pH 2.8. Olive mill wastewater (OMW) was used as iron chelating agent to avoid acidification of water at pH 2.8. For comparative purposes, Ethylenediamine-N, N-disuccinic acid (EDDS), a well-studied iron chelator, was also employed at circumneutral pH. Degradation products formed along treatment were identified by LC-QTOF-MS analysis. Their degradation was associated with toxicity removal, evaluated by monitoring changes in the bioluminescence of Vibrio fischeri bacteria. Results showed that conventional photo-Fenton at pH 2.8 could easily degrade SAC and its intermediates yielding k, apparent reaction rate constant, in the range of 0.64-0.82 L kJ -1 , as well as, eliminate effluent's chronic toxicity. Both OMW and EDDS formed iron-complexes able to catalyse H 2 O 2 decomposition and generate HO. OMW yielded lower SAC oxidation rates (k = 0.05-0.1 L kJ -1 ) than EDDS (k = 2.21-7.88 L kJ -1 ) possibly due to its higher TOC contribution. However, the degradation rates were improved (k = 0.13 L kJ -1 ) by increasing OMW dilution in the reactant mixture. All in all, encouraging results were obtained by using OMW as iron chelating agent, thus rendering this approach promising towards the increase of process sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst.

    PubMed

    Poblete, Rodrigo; Prieto-Rodríguez, Lucia; Oller, Isabel; Maldonado, Manuel I; Malato, Sixto; Otal, Emilia; Vilches, Luis F; Fernández-Pereira, Constantino

    2012-08-01

    The treatment of municipal solid waste landfill leachate in a pilot plant made up of solar compound parabolic collectors, using a solid industrial titanium by-product (WTiO(2)) containing TiO(2) and Fe(III) as a photocatalyst, was investigated. In the study evidence was found showing that the degradation performed with WTiO(2) was mainly due to the Fe provided by this by-product, instead of TiO(2). However, although TiO(2) had very little effect by itself, a synergistic effect was observed between Fe and TiO(2). The application of WTiO(2), which produced coupled photo-Fenton and heterogeneous catalysis reactions, achieved a surprisingly high depuration level (86% of COD removal), higher than that reached by photo-Fenton using commercial FeSO(4) (43%) in the same conditions. After the oxidation process the biodegradability and toxicity of the landfill leachate were studied. The results showed that the leachate biodegradability was substantially increased, at least in the first stages of the process, and again that WTiO(2) was more efficient than FeSO(4) in terms of increasing biodegradability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale.

    PubMed

    Farré, Maria José; Maldonado, Manuel Ignacio; Gernjak, Wolfgang; Oller, Isabel; Malato, Sixto; Domènech, Xavier; Peral, José

    2008-06-01

    A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.

  5. Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size.

    PubMed

    Giannakis, Stefanos; Liu, Siting; Carratalà, Anna; Rtimi, Sami; Talebi Amiri, Masoud; Bensimon, Michaël; Pulgarin, César

    2017-10-05

    The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H 2 O 2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL -1 ) and H 2 O 2 in the system (1, 5 and 10mgL -1 ) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo--Fenton processes.

    PubMed

    Li, Jiuyi; Zhao, Lei; Qin, Lele; Tian, Xiujun; Wang, Aimin; Zhou, Yanmei; Meng, Liao; Chen, Yong

    2016-03-01

    Removal of the refractory organic matters in leachate brines generated from nanofiltration unit in two full-scale municipal solid waste landfill leachate treatment plants was investigated by Fenton oxidative-coagulation and ultraviolet photo - Fenton processes in this study. Fenton oxidative-coagulation was performed under the condition of an initial pH of 5.0 and low H2O2/Fe(2+) ratios. After precipitate separation, the remaining organic constituents were further oxidized by photo - Fenton process. For both leachate brines with varying pollution strength, more than 90% COD and TOC reductions were achieved at H2O2/Fe(2+) dosages of 35 mM/8 mM and 90 mM/10 mM, respectively. The effluent COD ranged 120-160 mg/L under the optimal operating conditions, and the biodegradability was increased significantly. Fenton oxidative-coagulation was demonstrated to contribute nearly 70% overall removal of organic matters. In the combined processes, the efficiency of hydrogen peroxide varied from 216 to 228%, which may significantly reduce the operating cost of conventional Fenton method. Six phthalic acid esters and thirteen polycyclic aromatic hydrocarbons were found in leachate brines, and, on the average, around 80% phthalic acid esters and 90% polycyclic aromatic hydrocarbons were removed by the combined treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Confirming Pseudomonas putida as a reliable bioassay for demonstrating biocompatibility enhancement by solar photo-oxidative processes of a biorecalcitrant effluent.

    PubMed

    García-Ripoll, A; Amat, A M; Arques, A; Vicente, R; Ballesteros Martín, M M; Pérez, J A Sánchez; Oller, I; Malato, S

    2009-03-15

    Experiments based on Vibrio fischeri, activated sludge and Pseudomonas putida have been employed to check variation in the biocompatibility of an aqueous solution of a commercial pesticide, along solar photo-oxidative process (TiO(2) and Fenton reagent). Activated sludge-based experiments have demonstrated a complete detoxification of the solution, although important toxicity is still detected according to the more sensitive V. fischeri assays. In parallel, the biodegradability of organic matter is strongly enhanced, with BOD(5)/COD ratio above 0.8. Bioassays run with P. putida have given similar trends, remarking the convenience of using P. putida culture as a reliable and reproducible method for assessing both toxicity and biodegradability, as a substitute to other more time consuming methods.

  8. Pyrimethanil degradation by photo-Fenton process: Influence of iron and irradiance level on treatment cost.

    PubMed

    Cabrera Reina, A; Miralles-Cuevas, S; Casas López, J L; Sánchez Pérez, J A

    2017-12-15

    This study evaluates the combined effect of photo-catalyst concentration and irradiance level on photo-Fenton efficiency when this treatment is applied to industrial wastewater decontamination. Three levels of irradiance (18, 32 and 46W/m 2 ) and three iron concentrations (8, 20 and 32mg/L) were selected and their influence over the process studied using a raceway pond reactor placed inside a solar box. For 8mg/L, it was found that there was a lack of catalyst to make use of all the available photons. For 20mg/L, the treatment always improved with irradiance indicating that the process was photo-limited. For 32mg/L, the excess of iron caused an excess of radicals production which proved to be counter-productive for the overall process efficiency. The economic assessment showed that acquisition and maintenance costs represent the lowest relative values. The highest cost was found to be the cost of the reagents consumed. Both sulfuric acid and sodium hydroxide are negligible in terms of costs. Iron cost percentages were also very low and never higher than 10.5% while the highest cost was always that of hydrogen peroxide, representing at least 85% of the reagent costs. Thus, the total costs were between 0.76 and 1.39€/m 3 . Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water.

    PubMed

    Hassanshahi, Nahid; Karimi-Jashni, Ayoub

    2018-06-21

    This research was carried out to compare and optimize the gray water treatment performance by the photo-Fenton, photocatalysis and ozone/H 2 O 2 /UV processes. Experimental design and optimization were carried out using Central Composite Design of Response Surface Methodology. The results of experiments showed that the most effective and influencing factors in photo-Fenton process were H 2 O 2 /Fe 2+ ratio, in ozone/H 2 O 2 /UV experiment were O 3 concentration, H 2 O 2 concentration, reaction time and pH and in photocatalytic process were TiO 2 concentration, pH and reaction time. The highest COD removal in photo-Fenton, ozone/H 2 O 2 /UV and photocatalytic process were 90%, 92% and 55%, respectively. The results were analyzed by design expert software and for all three processes second-order models were proposed to simulate the COD removal efficiency. In conclusion the ozone/H 2 O 2 /UV process is recommended for the treatment of gray water, since it was able to remove both COD and turbidity by 92% and 93%, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. EDDS as complexing agent for enhancing solar advanced oxidation processes in natural water: Effect of iron species and different oxidants.

    PubMed

    Miralles-Cuevas, S; Oller, I; Ruíz-Delgado, A; Cabrera-Reina, A; Cornejo-Ponce, L; Malato, S

    2018-03-19

    The main purpose of this pilot plant study was to compare degradation of five microcontaminants (MCs) (antipyrine, carbamazepine, caffeine, ciprofloxacin and sulfamethoxazole at 100 μg/L) by solar photo-Fenton mediated by EDDS and solar/Fe:EDDS/S 2 O 8 2- . The effects of the Fe:EDDS ratio (1:1 and 1:2), initial iron species (Fe(II) or Fe(III) at 0.1 mM) and oxidizing agent (S 2 O 8 2- or H 2 O 2 at 0.25-1.5 mM) were evaluated. The higher the S 2 O 8 2- concentration, the faster MC degradation was, with S 2 O 8 2- consumption always below 0.6 mM and similar degradation rates with Fe(II) and Fe(III). Under the best conditions (Fe 0.1 mM, Fe:EDDS 1:1, S 2 O 8 2- 1 mM) antipyrine, carbamazepine, caffeine, ciprofloxacin and sulfamethoxazole at 100 μg/L where 90% eliminated applying a solar energy of 2 kJ/L (13 min at 30 W/m 2 solar radiation <400 nm). Therefore, S 2 O 8 2- promotes lower consumption of EDDS as Fe:EDDS 1:1 was better than Fe:EDDS 1:2. In photo-Fenton-like processes at circumneutral pH, EDDS with S 2 O 8 2- is an alternative to H 2 O 2 as an oxidizing agent. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.

    PubMed

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2012-01-01

    The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.

  12. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.

    PubMed

    Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal < 150 mg O2 L(-1)) at pH 3.6, requiring a UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2.

  13. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes.

    PubMed

    de Oliveira, Dirce Martins; Cavalcante, Rodrigo Pereira; da Silva, Lucas de Melo; Sans, Carme; Esplugas, Santiago; de Oliveira, Silvio Cesar; Junior, Amilcar Machulek

    2018-02-09

    This paper reports the degradation of 10 mg L -1 Ametryn solution with different advanced oxidation processes and by ultraviolet (UV 254 ) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe 2+ and H 2 O 2 concentrations. The effectiveness of the UV 254 and UV 254 /H 2 O 2 processes were investigated using a low-pressure mercury UV lamp (254 nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365 nm). The UV 254 irradiation process achieved complete degradation of Ametryn solution after 60 min. The degradation time of Ametryn was greatly improved by the addition of H 2 O 2 . It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H 2 O 2 . The kinetic constant of the reaction between Ametryn and HO ● for UV 254 /H 2 O 2 was 3.53 × 10 8  L mol -1  s -1 . The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10 min of reaction for various combinations of Fe 2+ and H 2 O 2 under investigation. Working with the highest concentration (150 mg L -1 H 2 O 2 and 10 mg L -1 Fe 2+ ), around 30 and 70% of TOC removal were reached within 120 min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.

  14. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    PubMed

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  15. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources.

    PubMed

    Starling, Maria Clara V M; Castro, Luiz Augusto S; Marcelino, Rafaela B P; Leão, Mônica M D; Amorim, Camila C

    2017-03-01

    In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m -3 for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.

  16. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after a second biological process, 6.2 kJ L(-1) UV energy and 36 kWh m(-3) electrical energy were consumed using SPEF with a BDD anode at 200 mA cm(-2), 60 mg [TDI]0 L(-1), pH 2.8 and 20 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method

    PubMed Central

    Xue, Zhehua; Wang, Ting; Chen, Bingdi; Malkoske, Tyler; Yu, Shuili; Tang, Yulin

    2015-01-01

    BiFeO3 particles (BFO) were prepared by a simple hydrothermal method and characterized. BFO was pure, with a wide particle size distribution, and was visible light responsive. Tetracycline was chosen as the model pollutant in this study. The pH value was an important factor influencing the degradation efficiency. The total organic carbon (TOC) measurement was emphasized as a potential standard to evaluate the visible light photocatalytic degradation efficiency. The photo-Fenton process showed much better degradation efficiency and a wider pH adaptive range than photocatalysis or the Fenton process solely. The optimal residual TOC concentrations of the photocatalysis, Fenton and photo-Fenton processes were 81%, 65% and 21%, while the rate constants of the three processes under the same condition where the best residual TOC was acquired were 9.7 × 10−3, 3.2 × 10−2 and 1.5 × 10−1 min−1, respectively. BFO was demonstrated to have excellent stability and reusability. A comparison among different reported advanced oxidation processes removing tetracycline (TC) was also made. Our findings showed that the photo-Fenton process had good potential for antibiotic-containing waste water treatment. It provides a new method to deal with antibiotic pollution. PMID:28793568

  18. Photo-Fenton oxidation of 3-amino-5-methylisoxazole: a by-product from biological breakdown of some pharmaceutical compounds.

    PubMed

    Souza, Bianca M; Marinho, Belisa A; Moreira, Francisca C; Dezotti, Márcia W C; Boaventura, Rui A R; Vilar, Vítor J P

    2017-03-01

    The present study aims to assess the removal of 3-amino-5-methylisoxazole (AMI), a recalcitrant by-product resulting from the biological breakdown of some pharmaceuticals, applying a solar photo-Fenton process assisted by ferrioxalate complexes (SPFF) (Fe 3+ /H 2 O 2 /oxalic acid/UVA-Vis) and classical solar photo-Fenton process (SPF) (Fe 2+ /H 2 O 2 /UVA-Vis). The oxidation ability of SPFF was evaluated at different iron/oxalate molar ratios (1:3, 1:6, and 1:9, with [total iron] = 3.58 × 10 -2  mM and [oxalic acid] = 1.07 × 10 -1 , 2.14 × 10 -1 and 3.22 × 10 -1  mM, respectively) and pH values (3.5-6.5), using low iron contents (2.0 mg Fe 3+ L -1 ). Additionally, the use of other organic ligands such as citrate and ethylenediamine-N,N'-disuccinic acid (EDDS) was tested. The oxidation power of the classical SPF was assessed at different pH values (2.8-4.0) using 2.0 mg Fe 2+ per liter. Furthermore, the effect of AMI concentration (2-20 mg L -1 ), presence of inorganic ions (Cl - , SO 4 2- , NO 3 - , HCO 3 - , NH 4 + ), and radical scavengers (sodium azide and D-mannitol) on the SPF method at pH 3.5 was also assessed. Experiments were done using a lab-scale photoreactor with a compound parabolic collector (CPC) under simulated solar radiation. A pilot-scale assay was conducted using the best operation conditions. While at near neutral pH, an iron/oxalate molar ratio of 1:9 led to the removal of 72 % of AMI after 90 min of SPFF, at pH 3.5, an iron/oxalate molar ratio of 1:3 was enough to achieve complete AMI degradation (below the detection limit) after 30 min of reaction. The SPF process at pH 3.5 underwent a slower AMI degradation, reaching total AMI degradation after 40 min of reaction. The scale up of SPF process showed a good reproducibility. Oxalic and oxamic acids were identified as the main low-molecular-weight carboxylic acids detected during the pilot-scale SPF reaction. Graphical abstract ᅟ.

  19. Does the photo-Fenton reaction work for microalgae control? A case study with Desmodesmus subspicatus.

    PubMed

    Torres, Mariana de Almeida; de Liz, Marcus Vinicius; Martins, Lucia Regina Rocha; Freitas, Adriane Martins

    2018-04-18

    Increased concentrations of nutrients in water bodies caused by effluent discharge, fertilizers and other inputs can lead to artificial eutrophication, increasing the primary productivity, bringing well-known and serious consequences to the environment (such as excessive macrophyte and microalgae growth). Most strategies for phytoplankton control in aquatic ecosystems result in metal accumulation or toxic by-product formation after chlorination. Concerning this matter, the photo-Fenton process (usually applied in wastewater treatment and degradation of a variety of contaminants) has been studied for water and effluent disinfection. However, its application in microalgae inactivation has not been reported until now. Therefore, this work aimed to evaluate the process effectiveness in inactivating microalgae, using Desmodesmus subspicatus as a model. Photo-Fenton experiments were carried out at the lab scale, at 105 cells per mL with 20 mg L-1 of H2O2 and 5 mg L-1 of Fe2+ (complexed with oxalic acid). The cell concentration and Growth Inhibition Test (GIT) were used to evaluate the process efficiency and Scanning Electron Microscopy (SEM) to analyze any alterations in the cell morphology. After performing the photo-Fenton reaction, the individual contribution of the reactants and radiation was investigated. The cell concentration was not significantly reduced during the photo-Fenton reaction, but SEM images indicated possible morphology alterations and the GIT showed the loss of cell viability after 30 minutes of exposure. Effects on the cell growth were also observed when exposed only to hydrogen peroxide.

  20. Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: A case study of sulfamethoxazole.

    PubMed

    Li, Yingjie; Zhang, Biaojun; Liu, Xiangliang; Zhao, Qun; Zhang, Heming; Zhang, Yuechao; Ning, Ping; Tian, Senlin

    2018-07-05

    Readily-available and efficient catalyst is essential for activating oxidants to produce reactive species for deeply remediating water bodies contaminated by antibiotics. In this study, Ferrocene (Fc) was introduced to establish a heterogeneous photo-Fenton system for the degradation of sulfonamide antibiotics, taking sulfamethoxazole as a representative. Results showed that the removal of sulfamethoxazole was effective in Fc-catalyzed photo-Fenton system. Electron spin resonance and radical scavenging experiments verified that there was a photoindued electron transfer process from Fc to H 2 O 2 and dissolved oxygen resulting in the formation of OH that was primarily responsible for the degradation of sulfamethoxazole. The reactions of OH with substructure model compounds of sulfamethoxazole unveiled that aniline moiety was the preferable reaction site of sulfamethoxazole, which was verified by the formation of hydroxylated product and the dimer of sulfamethoxazole in Fc-catalyzed photo-Fenton system. This heterogeneous photo-Fenton system displayed an effective degradation efficiency even in a complex water matrices, and Fc represented a long-term stability by using the catalyst for multiple cycles. These results demonstrate that Fc-catalyzed photo-Fenton oxidation may be an efficient approach for remediation of wastewater containing antibiotics. Copyright © 2018. Published by Elsevier B.V.

  1. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution.

    PubMed

    Peternel, Igor T; Koprivanac, Natalija; Bozić, Ana M Loncarić; Kusić, Hrvoje M

    2007-09-05

    In this study advanced oxidation processes (AOPs), UV/TiO(2), UV/ZnO and photo-Fenton, were applied in order to degrade C.I. Reactive Red 45 (RR45) dye in aqueous solution. The effects of key operating parameters, such as initial pH, catalyst and hydrogen peroxide dosage as well as the effect of initial dye concentration on decolorization and mineralization extents were studied. Primary objective was to determine the optimal conditions for each of the processes. The influence of added zeolite on the process efficiency was also studied. UV/vis spectrophotometric and total organic carbon (TOC) measurements were performed for determination of decolorization and mineralization extents. It has been found that photo-Fenton process was the most efficient with 74.2% TOC removal and complete color removal achieved after a 1h treatment.

  2. Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater.

    PubMed

    Leifeld, Vanessa; Dos Santos, Tâmisa Pires Machado; Zelinski, Danielle Wisniewski; Igarashi-Mafra, Luciana

    2018-09-15

    Cassava is the most important tuberous root in tropical and subtropical regions of the world, being the third largest source of carbohydrates. The root processing is related to the production of starch, an important industrial input, which releases a highly toxic liquid wastewater due to its complex composition, which inhibits high performances of conventional effluent treatments. This study aims to evaluate Fenton-like and photo-Fenton-like reactions for treatment of cassava wastewater, reusing ferrous ions from the preliminary coagulation stage. Pre-treated cassava wastewater was submitted to oxidation in three variations of hydrogen peroxide concentrations, with more relevant analytical responses verified in color, turbidity, COD (Chemical Oxygen Demand), and acute toxicity in Artemia salina, besides the action of radicals during Fenton-like reactions. At higher peroxide concentrations, a decrease of 68% in turbidity and 70% in COD on the photo-Fenton-like system was observed, even at slow reaction rates (fastest rate constant k = 2 × 10 -4 min -1 ). Inclusion of UV increases the viability of the Fenton-like reactions by supplementing the reaction medium with hydroxyl radicals, verified by the tert-butanol tests. The oxidation process leads to high EC 50 values in 24 h of incubation in Fenton-like reactions and 48 h in photo-Fenton-like reactions. Final COD and turbidity suggests that the reuse of iron, which remains in the preliminary treatment step shows a great potential as a catalyst for Fenton-like advanced oxidation processes. Tertiary treatment can be less expensive and harmful to the environment, reducing production of residual sludge and metal content in the final effluent, which reduces polluting potential of the effluent regarding solid waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation-flocculation.

    PubMed

    Rodríguez-Chueca, Jorge; Amor, Carlos; Fernandes, José R; Tavares, Pedro B; Lucas, Marco S; Peres, José A

    2016-02-01

    This work reports the treatment of crystallized-fruit effluents, characterized by a very low biodegradability (BOD5/COD <0.19), through the application of a UV-A LED photo-Fenton process. Firstly, a Box-Behnken design of Response Surface Methodology was applied to achieve the optimal conditions for the UV-A LED photo-Fenton process, trying to maximize the efficiency by saving chemicals and time. Under the optimal conditions ([H2O2] = 5459 mg/L; [Fe(3+)] = 286 mg/L; time >180 min), a COD removal of 45, 64 and 74% was achieved after 360 min, using an irradiance of 23, 70 and 85 W/m(2) respectively. Then a combination of UV-A LED photo-Fenton with coagulation-flocculation-decantation attained a higher COD removal (80%), as well as almost total removal of turbidity (99%) and total suspended solids (95%). Subsequent biodegradability of treated effluents increased, allowing the application of a biological treatment step after the photochemical/CFD with 85 W/m(2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Treatment of landfill leachate by the Fenton process.

    PubMed

    Deng, Yang; Englehardt, James D

    2006-12-01

    In recent years, studies of leachate treatment by conventional Fenton, photo-Fenton and electro-Fenton processes have indicated that these methods can effectively reduce concentrations of organic contaminants and color. In addition, the process can increase the biodegradable fraction of organic constituents in leachate, particularly in mature or biologically recalcitrant leachate. Oxidation and coagulation both play important roles in the removal of organics. Initial pH, dosages of Fenton reagents, aeration, final pH, reagent addition mode, temperature, and UV irradiation may influence final treatment efficiency. In this paper, current knowledge of performance and economics of Fenton processes for treatment of landfill leachate as reported for laboratory, pilot and full-scale studies is reviewed, with the conclusion that the Fenton process is an important and competitive technology for the treatment or pretreatment of landfill leachate.

  5. Combination of heterogeneous Fenton-like reaction and photocatalysis using Co-TiO₂nanocatalyst for activation of KHSO₅ with visible light irradiation at ambient conditions.

    PubMed

    Chen, Qingkong; Ji, Fangying; Guo, Qian; Fan, Jianping; Xu, Xuan

    2014-12-01

    A novel coupled system using Co-TiO₂was successfully designed which combined two different heterogeneous advanced oxidation processes, sulfate radical based Fenton-like reaction (SR-Fenton) and visible light photocatalysis (Vis-Photo), for degradation of organic contaminants. The synergistic effect of SR-Fenton and Vis-Photo was observed through comparative tests of 50mg/L Rhodamine B (RhB) degradation and TOC removal. The Rhodamine B degradation rate and TOC removal were 100% and 68.1% using the SR-Fenton/Vis-Photo combined process under ambient conditions, respectively. Moreover, based on XRD, XPS and UV-DRS characterization, it can be deduced that tricobalt tetroxide located on the surface of the catalyst is the SR-Fenton active site, and cobalt ion implanted in the TiO₂lattice is the reason for the visible light photocatalytic activity of Co-TiO₂. Finally, the effects of the calcination temperature and cobalt concentration on the synergistic performance were also investigated and a possible mechanism for the synergistic system was proposed. This coupled system exhibited excellent catalytic stability and reusability, and almost no dissolution of Co²⁺ was found. Copyright © 2014. Published by Elsevier B.V.

  6. Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone.

    PubMed

    Sarria, V; Parra, S; Invernizzi, M; Peringer, P; Pulgarin, C

    2001-01-01

    5-amino-6-methyl-2-benzimidazolone (AMBI), used in the manufacture of dyes, was characterised as a biorecalcitrant compound by means of different biodegradability tests. In order to enhance the biodegradability of this important pollutant, the application of Advanced Oxidation Process (AOPs) as a pretreatment was explored. Some experiments were addressed to find the most efficient AOP. The systems H2O2/hv, TiO2/H2O2/hv, Fe3+/hv, Fe3+/H2O2 and Fe3+/H2O2/hv were compared. The photo-Fenton system was the most efficient and the optimal conditions (AMBI, Fe3+, H2O2 concentrations) for the degradation of AMBI were found. During the photo-Fenton degradation, experiments were also made to obtain information concerning the evolution of: (a) organic carbon and initial compound concentration; (b) the oxidation state; (c) the toxicity; (d) the biodegradability; and (e) the chemical nature of the intermediates. These analyses show that the solution resulting from the treatment of AMBI is biologically compatible and complete mineralisation can be performed by biological means. A combined photochemical (Fenton) and biological flow reactor for the degradation of AMBI was successfully operated in continuous mode at laboratory scale. 100% of the initial concentration of AMBI and 80.3% of Dissolved Organic Carbon (DOC) were removed in 3.5 hours of total residence time. Finally, some field experiments under direct sunlight carried out at the Plataforma Solar de Almeria, Spain, demonstrated that this solar catalytic system is an effective treatment for this kind of industrial wastewater.

  7. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g-1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  8. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    PubMed

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-04

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  9. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    PubMed Central

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g−1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  10. 2,4-D abatement from groundwater samples by photo-Fenton processes at circumneutral pH using naturally iron present. Effect of inorganic ions.

    PubMed

    Gutiérrez-Zapata, Héctor M; Rojas, Karen L; Sanabria, Janeth; Rengifo-Herrera, Julián Andrés

    2017-03-01

    This study evaluated, at laboratory scale, if the using iron naturally present (0.3 mg L -1 ) and adding 10 mg L -1 of hydrogen peroxide was effective to remove 24.3 mgL -1 of 2,4-dichlorophenoxyacetic acid (2,4-D) from groundwater samples by simulated solar irradiation (global intensity = 300 W m -2 ). Under these conditions, the degradation of 2,4-D reached 75.2 % and the apparition of its main oxidation byproduct 2,4-dichlorophenol (DCP) was observed. On the other hand, pH exhibited an increasing from 7.0 to 8.3 during the experiment. Experiments using Milli-Q water at pH 7.0, iron, and H 2 O 2 concentrations of 0.3 and 10 mg L -1 , respectively, were carried out in order to study the effect of ions such as carbonate species, phosphate, and fluoride in typical concentrations often found in groundwater. Ion concentrations were combined by using a factorial experimental design 2 3 . Results showed that carbonates and fluoride did not produce a detrimental effect on the 2,4-D degradation, while phosphate inhibited the process. In this case, the pH increased also from 7.0 to 7.95 and 8.99. Effect of parameters such as pH, iron concentration, and hydrogen peroxide concentration on the 2,4-D degradation by the photo-Fenton process in groundwater was evaluated by using a factorial experimental design 2 3 . Results showed that the pH was the main parameter affecting the process. This study shows for the first time that using the photo-Fenton process at circumneutral pH and iron naturally present seems to be a promising process to remove pesticides from groundwater.

  11. Advancing Fenton and photo-Fenton water treatment through the catalyst design.

    PubMed

    Vorontsov, Alexander V

    2018-04-20

    The review is devoted to modern Fenton, photo-Fenton, as well as Fenton-like and photo-Fenton-like reactions with participation of iron species in liquid phase and as heterogeneous catalysts. Mechanisms of these reactions were considered that include hydroxyl radical and oxoferryl species as the reactive intermediates. The barriers in the way of application of these reactions to wastewater treatment were discussed. The following fundamental problems need further research efforts: inclusion of more mechanism steps and quantum calculations of all rate constants lacking in the literature, checking the outer sphere electron transfer contribution, determination of the causes for the key changes in the homogeneous Fenton reaction mechanism with a change in the reagents concentration. The key advances for Fenton reactions implementation for the water treatment are related to tremendous hydrodynamical effects on the catalytic activity, design of ligands for high rate and completeness of mineralization in short time, and design of highly active heterogeneous catalysts. While both homogeneous and heterogeneous Fenton and photo-Fenton systems are open for further improvements, heterogeneous photo-Fenton systems are most promising for practical applications because of the inherent higher catalyst stability. Modern methods of quantum chemistry are expected to play a continuously increasing role in development of such catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Study of the degradation performance (TOC, BOD, and toxicity) of bisphenol A by the photo-Fenton process.

    PubMed

    Pérez-Moya, M; Kaisto, T; Navarro, M; Del Valle, L J

    2017-03-01

    Degradation of bisphenol A (BPA, 0.5 L, 30 mg L -1 ) was studied by photo-Fenton treatment, while Fenton reagents were variables. The efficiency of the degradation process was evaluated by the reduction of total organic carbon (TOC), the biochemical oxygen demand (BOD), and toxicity. For toxicity analysis, bacterial methods were found infeasible, but the in vitro assay of VERO cells culture was successfully applied. Experiments according to a 2 2 design of experiments (DOE) with star points and three center points for statistical validity allowed selecting those process conditions (Fe(II) and H 2 O 2 load) that maximized the process performance. Photo-Fenton process effectively eliminated BPA and partly degraded its by-products (residual TOC <15 %) under substoichiometric H 2 O 2 dose (100.62 mg L -1 ) and at least 4 mg L -1 Fe(II), after a 90-min treatment. All treated samples were at least partially biodegradable. The cytotoxic concentration (LD 50 ) of BPA for VERO cells was 7 mg L -1 . With small H 2 O 2 amount (15.24 mg L -1 ), only low BPA mineralization (TOC = 92 %) was attained. Toxicity was also detected to 50 % of cellular mortality even at long reaction times. However, 40.25 mg L -1 of H 2 O 2 decreased residual TOC to 70 % while cell mortality decreased down to 25 %. With more H 2 O 2 , the residual TOC decreased down to 15 % but cell mortality remained within the 20-25 % level. Photo-Fenton increased the biodegradability and reduced the toxicity of the studied sample.

  13. Optimization of pharmaceutical wastewater treatment by solar/ferrioxalate photo-catalysis.

    PubMed

    Monteagudo, J M; Durán, A; Culebradas, R; San Martín, I; Carnicer, A

    2013-10-15

    The degradation of a pharmaceutical wastewater using a ferrioxalate-assisted solar/photo-Fenton system has been studied. The photochemical reaction was carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and Neuronal Networks that included the following variables: initial concentrations of H2O2, catalyst Fe (II) and oxalic acid (H2C2O4), temperature and solar power. Under optimal conditions, 84% TOC (Total Organic Carbon) removal was achieved in 115 min. Oxalic acid had a positive effect on mineralization when solar power was above 30 W m(-2). The minimum amount of H2O2 to degrade 1 mol of TOC was found to be 3.57 mol. Both the H2O2 conversion efficiency and the degree of mineralization were highest when the oxalic/Fe(II) initial molar relation was close to 3. HO radicals were the main oxidative intermediate species in the process, although hydroperoxyl radicals (HO(2)(·)) also played a role. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents.

    PubMed

    Klamerth, N; Rizzo, L; Malato, S; Maldonado, Manuel I; Agüera, A; Fernández-Alba, A R

    2010-01-01

    The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe=5 mg L(-1) in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 microg L(-1), was found to depend on the presence of CO(3)(2-) and HCO(3)(-) (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H(2)O(2) concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase. (c) 2009 Elsevier Ltd. All rights reserved.

  15. Degradation of the cytostatic 5-Fluorouracil in water by Fenton and photo-assisted oxidation processes.

    PubMed

    Governo, Mariana; Santos, Mónica S F; Alves, Arminda; Madeira, Luís M

    2017-01-01

    Cytostatics are part of the forefront research topics due to their high prescription, high toxicity, and the lack of effective solutions to stop their entrance and spread in the environment. Among them, 5-Fluorouracil (5-Fu) has received particular attention because is one of the most prescribed active substances in chemotherapy worldwide. The degradation of 5-Fu by advanced oxidation processes (AOPs) is a poorly addressed topic, and this work brings valuable inputs concerning this matter. Herein, the efficacy of Fenton's process in the degradation of 5-Fu is explored for the first time; the study of the main variables and its successful application to the treatment of real wastewaters is demonstrated. Moreover, hydrogen peroxide-based and photo-assisted techniques (direct photolysis, photodegradation with H 2 O 2 and photo-Fenton) are also investigated for purposes of comparison. Under the best operation conditions obtained (T = 30 °C, [Fe 2+ ] 0  = 0.5 mM; [H 2 O 2 ] 0  = 240 mM and pH = 3 for [5-Fu] 0  = 0.38 mM), 5-Fu was completely eliminated after 2 h of Fenton's reaction and about 50 % of mineralization was reached after 8 h. The best performance was obtained by the photo-Fenton process, with 5-Fu mineralization level as high as 67 %, using an iron dose within the legal limits required for direct water discharge. Toxicity (towards Vibrio fischeri) of the effluents that resulted from the application of the above-mentioned AOPs was also evaluated; it was found that the degradation products generated from the photo-assisted processes are less toxic than the parent compound, putting into evidence the relevance of such technologies for degradation of cytostatics like 5-Fu.

  16. Heterogeneous photodegradation of methylene blue with iron and tea or coffee polyphenols in aqueous solutions.

    PubMed

    Morikawa, Claudio Kendi; Shinohara, Makoto

    2016-01-01

    Recently, we developed two new Fenton catalysts using iron (Fe) and spent tea leaves or coffee grounds as raw material. In this study, Fe-to-tea or Fe-to-coffee polyphenol complexes were successfully tested as heterogeneous photo-Fenton catalysts. The photodegradation efficiency of methylene blue solutions with Fe-to-polyphenol complexes was higher than that of homogeneous iron salts in the photo-Fenton process. Furthermore, the tested Fe-to-polyphenol complexes could be reused by simply adding H2O2 to the solutions. After three sequential additions of H2O2, the conventional catalysts FeCl2·4H2O and FeCl3 removed only 16.6% and 53.6% of the dye, while the catalysts made using spent coffee grounds and tea leaves removed 94.4% and 96.0% of the dye, respectively. These results showed that the complexes formed between Fe and chlorogenic acid, caffeic acid, gallic acid and catechin, which are the main polyphenols in tea and coffee, can be used to improve the photo-Fenton process.

  17. Degradation of ethylenethiourea pesticide metabolite from water by photocatalytic processes.

    PubMed

    Bottrel, Sue Ellen C; Amorim, Camila C; Leão, Mônica M D; Costa, Elizângela P; Lacerda, Igor A

    2014-01-01

    In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L(-1). The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L(-1) and [Fe(2+)] = 400 mg L(-1), and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L(-1) to 1200 mg L(-1) did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10(-4) mg L(-1) min(-1) and 7.7 × 10(-4) mg L(-1) min(-1), respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.

  18. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    PubMed

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment process was further reinforced by the total removal percentages attained for the identified organic trace contaminants (>90%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process.

    PubMed

    Bocos, Elvira; Oturan, Nihal; Pazos, Marta; Sanromán, M Ángeles; Oturan, Mehmet A

    2016-10-01

    The removal of radiocontrast agent diatrizoic acid (DIA) from water was performed using photo-Fenton (PF) process. First, the effect of H2O2 dosage on mineralization efficiency was determined using ultraviolet (UV) irradiation. The system reached a maximum mineralization degree of 60 % total organic carbon (TOC) removal at 4 h with 20 mM initial H2O2 concentration while further concentration values led to a decrease in TOC abatement efficiency. Then, the effect of different concentrations of Fenton's reagents was studied for homogeneous Fenton process. Obtained results revealed that 0.25 mM Fe(3+) and 20 mM H2O2 were the best conditions, achieving 80 % TOC removal efficiency at 4 h treatment. Furthermore, heterogeneous PF treatment was developed using iron-activated carbon as catalyst. It was demonstrated that this catalyst is a promising option, reaching 67 % of TOC removal within 4 h treatment without formation of iron leachate in the medium. In addition, two strategies of enhancement for process efficiency are proposed: coupling of PF with electro-Fenton (EF) process in two ways: photoelectro-Fenton (PEF) or PF followed by EF (PF-EF) treatments, achieving in both cases the complete mineralization of DIA solution within only 2 h. Finally, the Microtox tests revealed the formation of more toxic compounds than the initial DIA during PF process, while, it was possible to reach total mineralization by both proposed alternatives (PEF or PF-EF) and thus to remove the toxicity of DIA solution.

  20. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    PubMed

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Solar photo-Fenton using peroxymonosulfate for organic micropollutants removal from domestic wastewater: comparison with heterogeneous TiO₂ photocatalysis.

    PubMed

    Ahmed, Moussa Mahdi; Brienza, Monica; Goetz, Vincent; Chiron, Serge

    2014-12-01

    This work aims at decontaminating biologically treated domestic wastewater effluents from organic micropollutants by sulfate radical based (SO4(-)) homogeneous photo-Fenton involving peroxymonosulfate as an oxidant, ferrous iron (Fe(II)) as a catalyst and simulated solar irradiation as a light source. This oxidative system was evaluated by using several probe compounds belonging to pesticides (bifenthrin, mesotrione and clothianidin) and pharmaceuticals (diclofenac, sulfamethoxazole and carbamazepine) classes and its kinetic efficiency was compared to that to the well known UV-Vis/TiO2 heterogeneous photocatalysis. Except for carbamazepine, apparent kinetic rate constants were always 10 times higher in PMS/Fe(II)/UV-Vis than in TiO2/UV-Vis system and more than 70% of total organic carbon abatement was reached in less than one hour treatment. Hydroxyl radical (OH) and SO4(-) reactivity was investigated using mesotrione as a probe compound through by-products identification by liquid chromatography-high resolution-mass spectrometry and transformation pathways elucidation. In addition to two OH based transformation pathways, a specific SO4(-) transformation pathway which first involved degradation through one electron transfer oxidation processes followed by decarboxylation were probably responsible for mesotrione degradation kinetic improvement upon UV-Vis/PMS/Fe(II) system in comparison to UVVis/TiO2 system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sono-photo-degradation of carbamazepine in a thin falling film reactor: Operation costs in pilot plant.

    PubMed

    Expósito, A J; Patterson, D A; Monteagudo, J M; Durán, A

    2017-01-01

    The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H 2 O 2 /Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35min). The synergism between the UV process and the sonolytic one was quantified as 55.2%. To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H 2 O 2 /Fe process reaching 60% of mineralization would cost 2.1 and 3.8€/m 3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate. In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36€/m 3 . However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    PubMed

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Ordóñez, Ruth; Blanco, Angeles

    2012-06-01

    According to current environmental legislation concerned with water scarcity, paper industry is being forced to adopt a zero liquid effluent policy. In consequence, reverse osmosis (RO) systems are being assessed as the final step of effluent treatment trains aiming to recover final wastewater and reuse it as process water. One of the most important drawbacks of these treatments is the production of a retentated stream, which is usually highly loaded with biorecalcitrant organic matter and inorganics; and this effluent must meet current legislation stringent constraints before being ultimately disposed. The treatment of biorefractory RO retentate from a paper mill by several promising advanced oxidation processes (AOPs) - conventional Fenton, photo-Fenton and photocatalysis - was optimized considering the effect and interaction of reaction parameters; particularly using response surface methodology (RSM) when appropriate (Fenton processes). The economical cost of these treatments was also comparatively assessed. Photo-Fenton process was able to totally remove the COD of the retentate, and resulted even operatively cheaper at high COD removal levels than conventional Fenton, which achieved an 80% reduction of the COD at best. In addition, although these optimal results were produced at pH=2.8, it was also tested that Fenton processes are able to achieve good COD reduction efficiencies (>60%) without adjusting the initial pH value, provided the natural pH of this wastewater was close to neutral. Finally, although TiO(2)-photocatalysis showed the least efficient and most expensive figures, it improved the biodegradability of the retentate, so its combination with a final biological step almost achieved the total removal of the COD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Assessment of iron chelates efficiency for photo-Fenton at neutral pH.

    PubMed

    De Luca, Antonella; Dantas, Renato F; Esplugas, Santiago

    2014-09-15

    In this study, homogeneous photo-Fenton like at neutral pH was applied to remove sulfamethoxazole from water. The process was performed using different chelating agents in order to solubilize iron in a neutral water solution. The chelating agents tested were: ethylenediaminetetraacetic acid (EDTA); nitrilotriacetic acid (NTA); oxalic acid (OA) and tartaric acid (TA). The iron leaching was monitored over reaction time to evaluate the chelates stability and their resistance to HO· and UV-A radiation. Chelates of EDTA and NTA presented more stability than OA and TA, which also confirmed their higher efficiency. Total Organic Carbon (TOC) analyses were also performed to evaluate the contribution in terms of solution contamination related to the use of chelating agents. The better properties of biodegradability in respect of EDTA combined with better efficiency in terms of microcontaminant removal and the smallest TOC contribution indicate that NTA could represent a useful option to perform photo-Fenton processes at neutral pH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Monodisperse Zn-doped Fe3O4 formation and photo-Fenton activity for degradation of rhodamine B in water

    NASA Astrophysics Data System (ADS)

    Cen, Huoshi; Nan, Zhaodong

    2018-10-01

    Zn-doped Fe3O4 can be used as a catalyst in the photo-Fenton process to degrade dye molecules dissolved in water, in which cluster-shaped Zn-doped Fe3O4 (CSZnFe) was synthesized. To enhance the catalytic activity, monodisperse Zn-doped Fe3O4 (MZnFe) was facilely synthesized by a modified solvothermal method through replacement of sodium acetate by urea as a base. The particle size of MZnFe was about 9-16 nm. MZnFe exhibits a larger surface area and higher photo-Fenton catalytic activity for degradation of rhodamine B in water than CSZnFe. Additionally, MZnFe exhibits high saturation magnetization (about 80 emu/g), which is very convenient for separation of MZnFe from solution by a magnet. The growth processes for MZnFe were proposed on the basis of results from in situ calorimetry and other techniques, which indicated different formation mechanisms for MZnFe and CSZnFe.

  7. Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands.

    PubMed

    Herrera-Melián, J A; Martín-Rodríguez, A J; Ortega-Méndez, A; Araña, J; Doña-Rodríguez, J M; Pérez-Peña, J

    2012-08-30

    The degradation and detoxification towards the duckweed Lemna minor of 4-nitrophenol (4NP) was studied by means of bench-scale constructed wetlands (CWs), TiO(2)-photocatalysis and Fenton + photoFenton reactions. The main goal of this work was to compare the three treatment techniques to evaluate their possible combination for the efficient, low cost treatment of 4NP effluents. In CWs, adsorption on the substrate of 4NP was found to achieve 34-45%. Low concentrations (up to 100 ppm) of 4NP were successfully treated by CWs in 8-12 h. The microbial degradation of 4NP started after a lag phase which was longer with higher initial concentrations of the pollutant. The greatest degradation rate was found to occur at initial concentrations of 4NP between 60 and 90 ppm. Solar TiO(2)-photocatalysis was faster than the CWs. The greatest removals in terms of mass of 4NP removed after 6 h of irradiation were found to occur at 4NP concentrations of about 200 ppm. Fenton reaction provided complete 4NP degradation up to 500 ppm in only 30 min but TOC was removed by only about 40%. The resulting toxicities were below 20% for initial 4NP concentrations below 300 ppm. It was the Fenton + photoFenton combination (180 min in total) that provided TOC reductions up to 80% and negative L. minor growth inhibition for almost all the 4NP concentrations tested. The combination of solar TiO(2)-photocatalysis (6 h) with CWs (16 h) was able to completely treat and detoxify 4NP effluents with concentrations as high as 200 ppm of the organic. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Photo-assisted electrochemical degradation of polychlorinated biphenyls with boron-doped diamond electrodes.

    PubMed

    Gutiérrez-Hernández, Rubén F; Bello-Mendoza, Ricardo; Hernández-Ramírez, Aracely; Malo, Edi A; Nájera-Aguilar, Hugo A

    2017-09-19

    The capacity of the photo electro-Fenton (PEF) process to degrade a mixture of seven polychlorinated biphenyl (PCB) congeners was studied. Boron-doped diamond (BDD) sheets were used as anode and cathode in the experimental electrolytic cell that contained Na 2 SO 4 0.05 M at pH 3 as supporting electrolyte for the electro generation of H 2 O 2 at the cathode. The effects of UV light intensity (254 and 365 nm), current density (8, 16 and 24 mA cm -2 ) and ferrous ion dosage (0.1, 0.2 and 0.3 mM) on PCB (C 0 = 50 μg L -1 ) degradation were evaluated. The highest level of PCB degradation (97%) was achieved with 16 mA cm -2 of current density, 0.1 mM of ferrous ion and UV light at 365 nm as irradiation source after 6 h of reaction. PCB28, PCB52 and PCB101 were not detected after 0.5, 1.5 and 3 h of reaction, respectively. The degradation of PCB138, PCB153, PCB180 and PCB209 was also high (>95%). The PEF system outperformed other oxidation processes (electro-Fenton, anodic oxidation, Fenton, photo-Fenton and UV photolysis) in terms of reaction rate and degradation efficiency. These results demonstrate for the first time the degradation of PCB209, the most highly chlorinated PCB congener, by an advanced electrochemical oxidation process.

  9. Pyrrolic-N-doped graphene oxide/Fe2O3 mesocrystal nanocomposite: Efficient charge transfer and enhanced photo-Fenton catalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Tian, Lihong; Wang, Ran; Yang, Jinfeng; Guan, Rong; Chen, Xiaobo

    2017-11-01

    Though α-Fe2O3 has attracted much attention in photocatalytic or Fenton-catalytic degradation of organic contaminants, its performance is still unsatisfactory due to fast recombination of electrons and holes in photocatalytic process and the difficult conversion of Fe(II) and Fe(III) in Fenton reaction. Herein, a pyrrolic N-doped graphene oxide/Fe2O3 mesocrystal (NG-Fe2O3) nanocomposite with good distribution is synthesized by a simple solvothermal method and adjusting the oxygen-containing groups on graphene oxide. The morphology of NG-Fe2O3 contributes to a relatively large BET surface area and an intimate contact between NG and Fe2O3. These two important factors along with the excellent electro-conductivity of pyrrolic-N doped GO result in the efficient separation of electron-hole pairs and fast conversion of Fe(II)and Fe(III) in photo-Fenton synergistic reaction. Thus, a remarkably improved photo-Fenton catalytic activity of NG-Fe2O3 is obtained. The degrading rate on methyl blue increases by 1.5 times and the conversion rate of glyphosate increases by 2.3 times under visible light irradiation, compared to pristine α-Fe2O3 mesocrystals.

  10. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2013-01-01

    The overall aim of this work was to examine the degradation of trimethoprim (TMP), which is an antibacterial agent, during the application of two advanced oxidation process (AOP) systems in secondary treated domestic effluents. The homogeneous solar Fenton process (hv/Fe(2+)/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were tested. It was found that the degradation of TMP depends on several parameters such as the amount of iron salt and H2O2, concentration of TiO2, pH of solution, solar irradiation, temperature and initial substrate concentration. The optimum dosages of Fe(2+) and H2O2 for homogeneous ([Fe(2+)] = 5 mg L(-1), [H2O2] = 3.062 mmol L(-1)) and TiO2 ([TiO2] = 3 g L(-1)) for heterogeneous photocatalysis were established. The study indicated that the degradation of TMP during the solar Fenton process is described by a pseudo-first-order reaction and the substrate degradation during the heterogeneous photocatalysis by the Langmuir-Hinshelwood kinetics. The toxicity of the treated samples was evaluated using a Daphnia magna bioassay and was finally decreased by both processes. The results indicated that solar Fenton is more effective than the solar TiO2 process, yielding complete degradation of the examined substrate within 30 min of illumination and dissolved organic carbon (DOC) reduction of about 44% whereas the respective values for the TiO2 process were ∼70% degradation of TMP within 120 min of treatment and 13% DOC removal.

  11. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.

    PubMed

    Wang, Ying; Liang, Mingxing; Fang, Jiasheng; Fu, Jun; Chen, Xiaochun

    2017-09-01

    In this study, α-FeOOH on reduced graphene oxide (rGO-α-FeOOH) supported on an Al-doped MCM-41 catalyst (RFAM) was optimized for the visible-light photo-Fenton oxidation of phenol at neutral pH. The stability of the catalysts, effect of bubbling aeration, and degradation intermediates were investigated. Results indicated that RFAM with a large Brunauer-Emmett-Teller (BET) area and mesoporous structure displayed excellent catalytic activity for the visible-light-driven (VLD) photo-Fenton process. Phenol degradation was well described by a pseudo-first-order reaction kinetics model. Raman analysis demonstrated that an rGO-α-FeOOH (RF) composite is formed during the ferrous-ion-induced self-assembly process. Al-MCM-41 could uniformly disperse RF nanosheets and promote the mobility and diffusion of matter. The activity of the main catalyst α-FeOOH was enhanced after the incorporation of rGO nanosheets. The α-FeOOH crystal in RFAM showed catalytic activity superior to those of Fe 3 O 4 and Fe 2 O 3 . The RFAM catalyst, with an optimal GO-Fe 2+ mass ratio of 2.33, exhibited a larger BET area, pore size, and pore volume, and thus exhibited high performance and energy utilization efficiency in the VLD photo-Fenton reaction with remarkable stability. Bubbling N 2 inhibited catalytic performance, while bubbling O 2 or air only slightly accelerated the phenol degradation. Visible light played an important role in accelerating the formation of reactive oxygen species (·OH) for the highly efficient phenol degradation. Analysis of degradation intermediates indicated a high phenol mineralization level and the formation of low-molecular-weight organic acids. This work would be helpful in providing an insight into a new type of catalyst assembly and a possible route to a promising heterogeneous catalyst applicable in the visible light photo-Fenton process for effective wastewater remediation at neutral pH. Copyright © 2017. Published by Elsevier Ltd.

  12. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

    PubMed

    Serna-Galvis, Efraim A; Giraldo-Aguirre, Ana L; Silva-Agredo, Javier; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2017-03-01

    This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO 2 photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO 2 photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO 2 anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO 2 photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO 2 photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO 2 photocatalysis.

  13. Enhancement of anaerobic digestibility of waste activated sludge using photo-Fenton pretreatment.

    PubMed

    Heng, Gan Chin; Isa, Mohamed Hasnain; Lim, Jun-Wei; Ho, Yeek-Chia; Zinatizadeh, Ali Akbar Lorestani

    2017-12-01

    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H 2 O 2 dosage, H 2 O 2 /Fe 2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H 2 O 2 /kg TS, H 2 O 2 /Fe 2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m 3 /kg VS fed ·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m 3 /kg VS fed ·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.

  14. Use of photo-Fenton's reaction by 400-nm LED light for endodontic disinfection: A preliminary in vitro study on Enterococcus faecalis.

    PubMed

    Lagori, Giuseppe; Fornaini, Carlo; Rocca, Jean-Paul; Merigo, Elisabetta

    2017-06-01

    One of the biggest challenges in endodontics is the complete disinfection of root canals. In addition to mechanical preparation, the technique traditionally also involves channel disinfection with other agents such as sodium hypochlorite, hydrogen peroxide, chlorhexidine, or a combination of these. Some bacterial species are particularly resistant to eradication. Using Enterococcus faecalis in this preliminary study, we tested the bactericidal effectiveness of the Fenton reaction and the photo-Fenton reaction using an LED light with a 400-nm wavelength. Discs of hydroxyapatite were incubated in brain-heart broth contaminated with Enterococcus faecalis. After 4days, they were decontaminated with different bactericidal agents, including some with proven and well-known efficacy (5% sodium hypochlorite and 3% hydrogen peroxide) and other treatments using solutions of 1.5% hydrogen peroxide and 0.15% iron gluconate (Fenton reaction) plus LED light at a Fluence of 4.0J/cm 2 (photo-Fenton reaction). The photo-Fenton reaction demonstrated comparable performance to that of sodium hypochlorite in eliminating Enterococcus faecalis. Copyright © 2017. Published by Elsevier B.V.

  15. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  16. Degradation of bisphenol A in water by the heterogeneous photo-Fenton.

    PubMed

    Jiang, Chuanrui; Xu, Zhencheng; Guo, Qingwei; Zhuo, Qiongfang

    2014-01-01

    Bisphenol A (BPA) is a kind of a controversial endocrine disruptor, and is ubiquitous in environment. The degradation of BPA with the heterogeneous photo-Fenton system was demonstrated in this study. The Fe-Y molecular sieve catalyst was prepared with the ion exchange method, and it was characterized by X-ray radiation diffraction (XRD). The effects ofpH, initial concentration of H2O2, initial BPA concentration, and irradiation intensity on the degradation of BPA were investigated. The service life and iron solubility of catalyst were also tested. XRD test shows that the major phase of the Fe-Y catalyst was Fe2O3. The method of heterogeneous photo-Fenton with Fe-Y catalyst was superior to photolysis, photo-oxidation with only hydrogen, heterogeneous Fenton, and homogeneous photo-Fenton approaches. pH value had no obvious effects on BPA degradation over the range of 2.2-7.2. The initial concentration of H2O2 had an optimal value of 20 x 10(-4) mol/L. The decrease in initial concentration of BPA was favourable for degradation. The intensity of ultraviolet irradiation has no obvious effect on the BPA removal. The stability tests indicated that the Fe-Y catalyst can be reused and iron solubility concentration ranged from NA to 0.0062 mg/L. Based on the results, the heterogeneous photo-Fenton treatment is the available method for the degradation of BPA.

  17. Sunlight, iron and radicals to tackle the resistant leftovers of biotreated winery wastewater.

    PubMed

    Ioannou, Lida; Velegraki, Theodora; Michael, Costas; Mantzavinos, Dionissios; Fatta-Kassinos, Despo

    2013-04-01

    Winery wastewater is characterized by high organic content consisting of alcohols, acids and recalcitrant high-molecular-weight compounds (e.g. polyphenols, tannins and lignins). So far, biological treatment constitutes the best available technology for such effluents that are characterized by high seasonal variability; however the strict legislation applied on the reclamation and reuse of wastewaters for irrigation purposes introduces the need for further treatment of the bioresistant fraction of winery effluents. In this context, the use of alternative treatment technologies, aiming to mineralize or transform refractory molecules into others which could be further biodegraded, is a matter of great concern. In this study, a winery effluent that had already been treated in a sequencing batch reactor was subjected to further purification by homogeneous and heterogeneous solar Fenton oxidation processes. The effect of various operating variables such as catalyst and oxidant concentration, initial pH, temperature and lamp power on the abatement of chemical oxygen demand (COD), dissolved organic carbon (DOC), color, total phenolics and ecotoxicity has been assessed in the homogeneous solar Fenton process. In addition, a comparative assessment between homogeneous and heterogeneous solar Fenton processes was performed. In the present study the homogeneous solar Fenton process has been demonstrated to be the most effective process, yielding COD, DOC and total phenolics removal of about 69%, 48% and 71% in 120 min of the photocatalytic treatment, respectively.

  18. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water.

    PubMed

    Hao, Xiaolong; Zhou, Minghua; Xin, Qing; Lei, Lecheng

    2007-02-01

    To sufficiently utilize chemically active species and enhance the degradation rate and removal efficiency of toxic and biorefractory organic pollutant para-chlorophenol (para-CP), the introductions of iron metal ions (Fe2+/Fe3+) into either pulsed discharge plasma (PDP) process or the PDP process with TiO2 photo-catalyst were tentatively performed. The experimental results showed that under the same experimental condition, the degradation rate and removal efficiency of para-CP were greatly enhanced by the introduction of iron ions (Fe2+/Fe3+) into the PDP process. Moreover, when iron ions and TiO2 were added together in the PDP process, the degradation rate and removal energy of para-CP further improved. The possible mechanism was discussed that the obvious promoting effects were attributed to ferrous ions via plasma induced Fenton-like reactions by UV light irradiation excited and hydrogen peroxide formed in pulsed electrical discharge, resulting in a larger amount of hydroxyl radicals produced from the residual hydrogen peroxide. In addition, the regeneration of ferric ions to ferrous ions facilitates the progress of plasma induced Fenton-like reactions by photo-catalytic reduction of UV light, photo-catalytic reduction on TiO2 surface and electron transfer of quinone intermediates, i.e. 1,4-hydroquinone and 1,4-benzoquinone.

  19. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment.

    PubMed

    Elmorsi, Taha M; Riyad, Yasser M; Mohamed, Zeinhom H; Abd El Bary, Hassan M H

    2010-02-15

    Decolorization of the Mordant red 73 (MR73) azo dye in water was investigated in laboratory-scale experiments using UV/H(2)O(2) and photo-Fenton treatments. Photodegradation experiments were carried out in a stirred batch photoreactor equipped with a low-pressure mercury lamp as UV source at 254 nm. The effect of operating parameters such as pH, [H(2)O(2)](,) [dye] and the presence of inorganic salts (NaNO(3), NaCl and Na(2)CO(3)) were also investigated. The results indicated that complete dye decolorization was obtained in less than 60 min under optimum conditions. Furthermore, results showed that dye degradation was dependent upon pH, [H(2)O(2)] and initial dye concentration. The presence of chloride ion led to large decreases in the photodegradation rate of MR73 while both nitrate and carbonate ions have a slight effect. The photo-Fenton treatment, in the presence of Fe powder as a source of Fe(2+) ions, was highly efficient and resulted in 99% decolorization of the dye in 15 min. Mineralization of MR73 dye was investigated by determining chemical oxygen demand (COD). In a 3h photoperiod "65%" of the dye was mineralized by the H(2)O(2)/UV process, while the photo-Fenton treatment was more efficient producing 85% mineralization over the same 3-h period.

  20. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation.

    PubMed

    Huang, Wenyu; Luo, Mengqi; Wei, Chaoshuai; Wang, Yinghui; Hanna, Khalil; Mailhot, Gilles

    2017-04-01

    In this research, magnetite and ethylenediamine-N,N'-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H 2 O 2 concentration, and pH value were evaluated. The effect of different radical species including HO · and HO 2 · /O 2 ·- was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H 2 O 2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ·- to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO · radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  1. Nanostructured catalysts applied to degrade atrazine in aqueous phase by heterogeneous photo-Fenton process.

    PubMed

    Benzaquén, Tamara B; Barrera, Deicy A; Carraro, Paola M; Sapag, Karim; Alfano, Orlando M; Eimer, Griselda A

    2018-06-02

    SBA-15 and KIT-6 materials have been synthesized and modified with iron salts by the wet impregnation method with different metal loadings. The different mesostructures obtained were characterized by N 2 adsorption-desorption at 77 K, X-ray diffraction, temperature-programmed reduction, and ultraviolet-visible spectroscopy. These iron-containing mesostructured materials have been successfully tested for the heterogeneous photo-Fenton degradation of aqueous solutions of dangerous herbicides, such as atrazine, using UV-visible light irradiation, at room temperature and close to neutral pH. The results showed that the Fe/SBA-15 (10%) and Fe/KIT-6 (5%) catalysts exhibited the highest activities. However, the Fe/KIT-6 (5%) catalyst with minor Fe loading than Fe/SBA-15 (10%) presented a higher degradation of atrazine (above 98% in a reaction time of 240 min). Therefore, the interconnectivity of the cage-like mesopores had an important influence on the catalytic activity, favoring probably mass-transfer effects. Thus, the high performance of these materials indicates that the heterogeneous via of photo-Fenton process can also be efficiently employed to treat wastewaters containing pollutants such as herbicides, in order to reduce them to simplest and less toxic molecules.

  2. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    PubMed Central

    Cheng, Gong; Lin, Jing; Lu, Jian; Zhao, Xi; Cai, Zhengqing; Fu, Jie

    2015-01-01

    The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k) was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+ dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC) concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions. PMID:26347877

  3. Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems.

    PubMed

    Visa, Maria; Duta, Anca

    2013-01-15

    Wastewaters resulting from the textile and dye finishing industries need complex treatment for efficient removal of colour and other compounds existent in the dyeing and rising baths (heavy metals, surfactants, equalizers, etc.). Modified fly ash (FA) mixed with TiO(2) photocatalyst represent a viable option for simultaneous removal of dyes and heavy metals, and the optimized conditions are discussed in this paper for synthetic wastewaters containing methyl-orange (MO) and cadmium. For a cost-effective dye removal process, further tests were done, replacing the photocatalyst with a (photo)Fenton system. The optimized technological parameters (contact time, amount of fly ash and amount of Fe(2+)/H(2)O(2)) allow to reach removal efficiencies up to 88% for the heavy metal and up to 70% for the dye. The adsorption mechanisms and the process kinetic are discussed, also considering the possibility of in situ generation of the Fenton system, due to the fly ash composition. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Cosmetic wastewater treatment by coagulation and advanced oxidation processes.

    PubMed

    Naumczyk, Jeremi; Bogacki, Jan; Marcinowski, Piotr; Kowalik, Paweł

    2014-01-01

    In this study, the treatment process of three cosmetic wastewater types has been investigated. Coagulation allowed to achieve chemical oxygen demand (COD) removal of 74.6%, 37.7% and 74.0% for samples A (Al2(SO4)3), B (Brentafloc F3) and C (PAX 16), respectively. The Fenton process proved to be effective as well - COD removal was equal to 75.1%, 44.7% and 68.1%, respectively. Coagulation with FeCl3 and the subsequent photo-Fenton process resulted in the best values of final COD removal equal to 92.4%, 62.8% and 90.2%. In case of the Fenton process, after coagulation these values were equal to 74.9%, 50.1% and 84.8%, while in case of the H2O2/UV process, the obtained COD removal was 83.8%, 36.2% and 80.9%. High value of COD removal in the Fenton process carried out for A and C wastewater samples was caused by a significant contribution of the final neutralization/coagulation. Very small effect of the oxidation reaction in the Fenton process in case of sample A resulting from the presence of antioxidants, 'OH radical scavengers' in the wastewater.

  5. The photodeposition of surface plasmon Ag metal on SiO2@α-Fe2O3 nanocomposites sphere for enhancement of the photo-Fenton behavior

    NASA Astrophysics Data System (ADS)

    Uma, Kasimayan; Arjun, Nadarajan; Pan, Guan-Ting; Yang, Thomas C.-K.

    2017-12-01

    In this study, a simple sol-gel method was used for the synthesis of a core-shell structure of SiO2@α-Fe2O3 nanocomposites for employment as a visible light photocatalyst. It was observed that Ag nanoparticles about 20 nm in size were successfully deposited on the surface of the SiO2@α-Fe2O3 nanocomposites. The photocatalytic activity of the Ag-SiO2@α-Fe2O3 nanocomposites catalyst was investigated by observing the degradation of methylene blue (MB) dye in a photo-Fenton process. The results showed that the Ag nanoparticles acted as centers for photo induced electron transfer. The catalytic activity in the SiO2@α-Fe2O3 nanocomposites were enhanced due to the plasmoni c effect of Ag metal under visible light irradiation. The addition of H2O2 played an important role, generating more OH radicals which improved the photo-Fenton catalytic activity, resulting in quicker degradation of the MB dye using the Ag-SiO2@α-Fe2O3 nanocomposite catalyst.

  6. Textile wastewater reuse after additional treatment by Fenton's reagent.

    PubMed

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  7. Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation.

    PubMed

    Ballesteros Martín, M M; Sánchez Pérez, J A; García Sánchez, J L; Montes de Oca, L; Casas López, J L; Oller, I; Malato Rodríguez, S

    2008-06-30

    Biodegradability of aqueous solutions of the herbicide alachlor and the fungicide pyrimethanil, partly treated by photo-Fenton, and the effect of photoreaction intermediates on growth and DOC removal kinetics of the bacteria Pseudomonas putida CECT 324 are demonstrated. Toxicity of 30-120 mg L(-1) alachlor and pyrimethanil has been assayed in P. putida. The biodegradability of photocatalytic intermediates found at different photo-treatment times was evaluated for each pesticide. At a selected time during batch-mode phototreatment, larger-scale biodegradation kinetics were analysed in a 12 L bubble column bioreactor. Both alachlor and pyrimethanil are non-toxic for P. putida CECT 324 at the test concentrations, but they are not biodegradable. A approximately 100 min photo-Fenton pre-treatment was enough to enhance biodegradability, the biological oxidation response being dependent on the pesticide tested. The different alachlor and pyrimethanil respiration and carbon uptake rates in pre-treated solutions are related to change in the growth kinetics of P. putida. Reproducible results have shown that P. putida could be a suitable microorganism for determining photo-Fenton pre-treatment time.

  8. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes.

    PubMed

    Tokumura, Masahiro; Sugawara, Asato; Raknuzzaman, Mohammad; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2016-09-01

    Simple semi-theoretical models were developed to estimate the performance of three different kinds of advanced oxidation processes (AOPs) in the degradation of pharmaceuticals. The AOPs included the photo-Fenton process as an example of a liquid-liquid reaction, the TiO2 photocatalytic oxidation process as a solid-liquid reaction, and the combined ozone and hydrogen peroxide oxidation process as a gas-liquid reaction; the effects of the aqueous matrices (CESs: co-existing substances) of actual wastewater on the removal of pharmaceuticals (carbamazepine and diclofenac) was taken into account. By comparing the characteristic parameters of the models, obtained from the experiments using pure water and actual wastewater, the effects of CESs on the respective removal mechanisms could be separately and quantitatively evaluated. As a general tendency, the AOPs proceeded less effectively (were inhibited) in the matrices containing CESs, as observed with the use of a lower initial concentration of pharmaceuticals. The inhibition mechanisms differed for the three types of AOPs. In the photo-Fenton process, the Fenton reaction was improved by the incorporation of CESs, while the photo-reduction reaction was significantly inhibited. In the TiO2 photocatalytic oxidation process, competition between the pharmaceuticals and CESs for adsorption on the catalyst surface was a less significant inhibitory factor than the scavenger effects of the CESs. The combined ozone and hydrogen peroxide oxidation process was most strongly inhibited by CESs among the AOPs investigated in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    PubMed

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively).

  10. Effect of the carbon coating in Fe-C-TiO(2) photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process.

    PubMed

    Tryba, Beata; Morawski, Antoni W; Inagaki, Michio; Toyoda, Masahiro

    2006-08-01

    Fe-C-TiO(2) photocatalysts which contained the residue carbon (0.2-3.3 mass%) were prepared from a mixture of TiO(2) and FeC(2)O(4) through the heating at 673-1173 K in Ar. These photocatalysts did not show a high adsorption of phenol, but they were active in photo-Fenton reactions during decomposition of phenol under UV irradiation with addition of H(2)O(2). It was proved that Fe(2+) governed the photoactivity of Fe-C-TiO(2) photocatalysts, it decreased with heat-treatment temperature above 773 K. For comparison, Fe-TiO(2) photocatalyst was prepared by heating TiO(2) and FeC(2)O(4) at 823 K in air for 3h. Phenol decomposition was going much slower on Fe-TiO(2) photocatalyst in comparison with Fe-C-TiO(2), of which mechanism was different, on the former phenol was decomposed by the radical reaction, on the latter through a complex reaction with iron and intermediates of phenol decomposition. Therefore carbon-coating TiO(2) was found to be advantageous for mounting iron and its application for the phenol decomposition via photo-Fenton process.

  11. Correction: Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study.

    PubMed

    García Ballesteros, S; Costante, M; Vicente, R; Mora, M; Amat, A M; Arques, A; Carlos, L; García Einschlag, F S

    2018-06-13

    Correction for 'Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study' by S. García Ballesteros et al., Photochem. Photobiol. Sci., 2017, 16, 38-45.

  12. Solar photocatalytic treatment of synthetic municipal wastewater.

    PubMed

    Kositzi, M; Poulios, I; Malato, S; Caceres, J; Campos, A

    2004-03-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJL(-1) the synergetic effect of 0.2 gL(-1)TiO(2) P-25 with hydrogen peroxide (H(2)O(2)) and Na(2)S(2)O(8) leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO(2)/oxidant system. An accumulation energy of 20 kJL(-1) leads to 80% reduction of the organic content. The presence of oxalate in the Fe(3+)/H(2)O(2) system leads to an additional improvement of the photocatalytic efficiency.

  13. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater.

    PubMed

    Moreira, Nuno F F; Narciso-da-Rocha, Carlos; Polo-López, M Inmaculada; Pastrana-Martínez, Luisa M; Faria, Joaquim L; Manaia, Célia M; Fernández-Ibáñez, Pilar; Nunes, Olga C; Silva, Adrián M T

    2018-05-15

    Solar-driven advanced oxidation processes were studied in a pilot-scale photoreactor, as tertiary treatments of effluents from an urban wastewater treatment plant. Solar-H 2 O 2 , heterogeneous photocatalysis (with and/or without the addition of H 2 O 2 and employing three different photocatalysts) and the photo-Fenton process were investigated. Chemical (sulfamethoxazole, carbamazepine, and diclofenac) and biological contaminants (faecal contamination indicators, their antibiotic resistant counterparts, 16S rRNA and antibiotic resistance genes), as well as the whole bacterial community, were characterized. Heterogeneous photocatalysis using TiO 2 -P25 and assisted with H 2 O 2 (P25/H 2 O 2 ) was the most efficient process on the degradation of the chemical organic micropollutants, attaining levels below the limits of quantification in less than 4 h of treatment (corresponding to Q UV  < 40 kJ L -1 ). This performance was followed by the same process without H 2 O 2 , using TiO 2 -P25 or a composite material based on graphene oxide and TiO 2 . Regarding the biological indicators, total faecal coliforms and enterococci and their antibiotic resistant (tetracycline and ciprofloxacin) counterparts were reduced to values close, or beneath, the detection limit (1 CFU 100 mL -1 ) for all treatments employing H 2 O 2 , even upon storage of the treated wastewater for 3-days. Moreover, P25/H 2 O 2 and solar-H 2 O 2 were the most efficient processes in the reduction of the abundance (gene copy number per volume of wastewater) of the analysed genes. However, this reduction was transient for 16S rRNA, intI1 and sul1 genes, since after 3-days storage of the treated wastewater their abundance increased to values close to pre-treatment levels. Similar behaviour was observed for the genes qnrS (using TiO 2 -P25), bla CTX-M and bla TEM (using TiO 2 -P25 and TiO 2 -P25/H 2 O 2 ). Interestingly, higher proportions of sequence reads affiliated to the phylum Proteobacteria (Beta- and Gammaproteobacteria) were found after 3-days storage of treated wastewater than before its treatment. Members of the genera Pseudomonas, Rheinheimera and Methylotenera were among those with overgrowth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Sequential two-column electro-Fenton-photolytic reactor for the treatment of winery wastewater.

    PubMed

    Díez, A M; Sanromán, M A; Pazos, M

    2017-01-01

    The high amount of winery wastewaters produced each year makes their treatment a priority issue due to their problematic characteristics such as acid pH, high concentration of organic load and colourful compounds. Furthermore, some of these effluents can have dissolved pesticides, due to the previous grape treatments, which are recalcitrant to conventional treatments. Recently, photo-electro-Fenton process has been reported as an effective procedure to mineralize different organic contaminants and a promising technology for the treatment of these complex matrixes. However, the reactors available for applying this process are scarce and they show several limitations. In this study, a sequential two-column reactor for the photo-electro-Fenton treatment was designed and evaluated for the treatment of different pesticides, pirimicarb and pyrimethanil, used in wine production. Both studied pesticides were efficiently removed, and the transformation products were determined. Finally, the treatment of a complex aqueous matrix composed by winery wastewater and the previously studied pesticides was carried out in the designed sequential reactor. The high removals of TOC and COD reached and the low energy consumption demonstrated the efficiency of this new configuration.

  15. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes.

    PubMed

    Jiménez, Silvia; Micó, María M; Arnaldos, Marina; Ferrero, Enrique; Malfeito, Jorge J; Medina, Francisco; Contreras, Sandra

    2017-02-01

    In this study, bench scale dissolved air flotation (DAF) and settling processes have been studied and compared to a novel flotation technology based on the use of glass microspheres of limited buoyancy and its combination with conventional DAF, (Enhanced DAF or E-DAF). They were evaluated as pretreatments for advanced oxidation processes (AOPs) to polish produced water (PW) for reuse purposes. Settling and E-DAF without air injection showed adequate turbidity and oil and grease (O&G) removals, with eliminations higher than 87% and 90% respectively, employing 70 mg L -1 of FeCl 3 and 83 min of settling time, and 57.9 mg L -1 of FeCl 3 , 300 mg L -1 of microspheres and a flocculation rate of 40 rpm in the E-DAF process. A linear correlation was observed between final O&G concentration and turbidity after E-DAF. In order to polish the O&G content of the effluent even further, to remove soluble compounds as phenol and to take advantage of residual iron after these treatments, Fenton and photo-Fenton reactions were essayed. After 6 h of the Fenton reaction at pH 3, the addition of 1660 mg L -1 of H 2 O 2 and 133 mg L -1 of iron showed a maximum O&G elimination of 57.6% and a phenol removal up to 80%. Photo-Fenton process showed better results after 3 h, adding 600 mg L -1 of H 2 O 2 and 300 mg L -1 of iron, at pH 3, with a higher fraction of elimination of the O&G content (73.7%) and phenol (95%) compared to the conventional Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Correction: Controlled synthesis of Bi25FeO40 with different morphologies: growth mechanism and enhanced photo-Fenton catalytic properties.

    PubMed

    Ji, Wenda; Li, Mingmeng; Zhang, Gaoke; Wang, Pei

    2017-03-14

    Correction for 'Controlled synthesis of Bi 25 FeO 40 with different morphologies: growth mechanism and enhanced photo-Fenton catalytic properties' by Wenda Ji et al., Dalton Trans., 2017, DOI: 10.1039/c6dt04864a.

  17. Application of solar photo-Fenton for benzophenone-type UV filters removal.

    PubMed

    Zúñiga-Benítez, Henry; Peñuela, Gustavo A

    2018-07-01

    Benzophenones (BPs) family is one of the most frequently used groups of UV-filters. However, it has been reported by different authors that this kind of chemical compounds could be associated with some endocrine disrupting activity, genotoxicity and reproductive toxicity. In addition, different studies have evidenced the presence of BPs in several environmental matrices, indicating that conventional technologies of water treatment are not able to remove them, which generates the necessity of evaluating new alternatives of remediation. In this way, the main objective of this paper was to consider the potential removal of the benzophenone-type compounds, Benzophenone-1 and Benzophenone-2 in aqueous solutions using photo-Fenton under simulated sunlight radiation. Effects of different operational parameters, including H 2 O 2 and Fe 2+ initial concentrations, on pollutants elimination were assessed, and conditions that allow to get higher degradation rates were established. In general, results indicated that evaluated photo-catalytic system is able to remove completely the studied benzophenones, and to increase the samples biodegradability after a notable reduction of the organic carbon present in the solutions. Additionally, the identification of some of the reaction byproducts showed that hydroxylation of the substrates molecules is one of the main stages that conduct to its elimination under the evaluated experimental conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Ferrocene-modified carbon nitride for direct oxidation of benzene to phenol with visible light.

    PubMed

    Ye, Xiangju; Cui, Yanjuan; Wang, Xinchen

    2014-03-01

    Ferrocene moieties were heterogenized onto carbon nitride polymers by a covalent -C=N- linkage bridging the two conjugation systems, enabling the merging of the redox function of ferrocene with carbon nitride photocatalysis to construct a heterogeneous Photo-Fenton system for green organocatalysis at neutral conditions. The synergistic donor-acceptor interaction between the carbon nitride matrix and ferrocene group, improved exciton splitting, and coupled photocatalytic performance allowed the direct synthesis of phenol from benzene in the presence of H2 O2 under visible light irradiation. This innovative modification method will offer an avenue to construct functionalized two-dimensional polymers useful also for other green synthesis processes using solar irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale.

    PubMed

    Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2015-12-01

    This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mineralization of humic acids (HAs) by a solar photo-Fenton reaction mediated by ferrioxalate complexes: commercial HAs vs extracted from leachates.

    PubMed

    Santos, Ana P F; Souza, Bianca M; Silva, Tânia F C V; Cavalcante, Rodrigo P; Oliveira, Silvio C; Machulek, Amílcar; Boaventura, Rui A R; Vilar, Vítor J P

    2018-03-15

    The mineralization of bio-recalcitrant humic acids (HAs) by a solar photo-Fenton (SPF) process was investigated in aqueous system, in order to understand its abatement in real high-HA content matrices, such as sanitary landfill leachates. SPF reactions were performed in tubular photoreactors with CPCs at lab-scale (simulated solar light) and pilot-scale (natural sunlight). Considering the experimental conditions selected for this work, the formation of insoluble HA-Fe 3+ complexes was observed. Thus, to avoid HA precipitation, oxalic acid (Ox) was added, since Fe 3+ -Ox complexes present a higher stability constant. The effect of different process variables on the performance of SPF reaction mediated by ferrioxalate complexes (SPFF) was assessed with excess of H 2 O 2 (50-250 mg L -1 ), at lab-scale: (i) pH (2.8-4.0); (ii) initial iron concentration (20-60 mg Fe 3+ L -1 ); (iii) iron-oxalate molar ratio (Fe 3+ -Ox of 1:3 and 1:6); (iv) temperature (20-40 °C); (v) UV irradiance (21-58 W UV  m -2 ); and (vi) commercial-HA concentration (50-200 mg C L -1 ). At the best lab conditions (40 mg Fe 3+ L -1 , pH 2.8, 30 °C, 1.6 Fe 3+ -Ox molar ratio, 41 W UV m -2 ), commercial HAs' mineralization profile was also compared with HAs extracted from a sanitary landfill leachate, achieving 88 and 91% of dissolved organic carbon removal, respectively, after 3-h irradiation (8.7 kJ UV  L -1 ). Both reactions followed the same trend, although a 2.1-fold increase in the reaction rate was observed for the leachate-HA experiment, due to its lower humification degree. At pilot-scale, under natural sunlight, 95% HA mineralization was obtained, consuming 42 mM of H 2 O 2 and 5.9 kJ UV  L -1 of accumulated UV energy. However, a pre-oxidation during 2.8 kJ UV  L -1 (12 mM H 2 O 2 ) was enough to obtain a biodegradability index of 89%, showing the strong feasibility to couple the SPFF process to a downstream biological oxidation, with low chemicals and energetic demands. Graphical abstract ᅟ.

  1. Efficient mineralization of the antibiotic trimethoprim by solar assisted photoelectro-Fenton process driven by a photovoltaic cell.

    PubMed

    Zhang, Yanyu; Wang, Aimin; Tian, Xiujun; Wen, Zhenjun; Lv, Hanjiao; Li, Desheng; Li, Jiuyi

    2016-11-15

    In this study, a novel self-sustainable solar assisted photoelectro-Fenton (SPEF) system driven by a solar photovoltaic cell was developed for the efficient mineralization of antibiotic trimethoprim (TMP) in water. A comparative degradation of 200mgL(-1) TMP by RuO2/Ti anodic oxidation (AO), anodic oxidation with H2O2 electrogeneration (AO-H2O2), electro-Fenton (EF) and SPEF was investigated. SPEF was proved to exhibit the highest oxidation power, i.e., more than 80% TOC was removed after 360min SPEF treatment of 200mgL(-1) of TMP under optimal conditions at pH 3.0, 1.0mM Fe(2+) and 18mAcm(-2). Influences of current density, pH, initial Fe(2+) and initial TMP concentration on SPEF process were also studied. Ten aromatic intermediates generated from hydroxylation, carbonylation and demethylation reactions were identified using UPLC-QTOF-MS/MS system during the SPEF treatment, together with three carboxylic acids (oxamic, oxalic and formic acids) and two inorganic ions (NH4(+) and NO3(-)) measured. Therefore, a reasonable pathway of TMP degradation in SPEF process was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation.

    PubMed

    Michael, I; Panagi, A; Ioannou, L A; Frontistis, Z; Fatta-Kassinos, D

    2014-09-01

    This study investigated the application of a solar-driven advanced oxidation process (solar Fenton) combined with previous coagulation/flocculation, for the treatment of olive mill wastewater (OMW) at a pilot scale. Pre-treatment by coagulation/flocculation using FeSO4·7H2O (6.67 g L(-1)) as the coagulant, and an anionic polyelectrolyte (FLOCAN 23, 0.287 g L(-1)) as the flocculant, was performed to remove the solid content of the OMW. The solar Fenton experiments were carried out in a compound parabolic collector pilot plant, in the presence of varying doses of H2O2 and Fe(2+). The optimization of the oxidation process, using reagents at low concentrations ([Fe(2+)] = 0.08 g L(-1); [H2O2] = 1 g L(-1)), led to a high COD removal (87%), while the polyphenolic fraction, which is responsible for the biorecalcitrant and/or toxic properties of OMW, was eliminated. A kinetic study using a modified pseudo first-order kinetic model was performed in order to determine the reaction rate constants. This work evidences also the potential use of the solar Fenton process at the inherent pH of the OMW, yielding only a slightly lower COD removal (81%) compared to that obtained under acidic conditions. Moreover, the results demonstrated the capacity of the applied advanced process to reduce the initial OMW toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba), and the water flea Daphnia magna. The OMW treated samples displayed a varying toxicity profile for each type of organism and plant examined in this study, a fact that can potentially be attributed to the varying oxidation products formed during the process applied. Finally, the overall cost of solar Fenton oxidation for the treatment of 50 m(3) of OMW per day was estimated to be 2.11 € m(-3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Impact of some herbicides on the biomass activity in biological treatment plants and biodegradability enhancement by a photo-Fenton process.

    PubMed

    Benzaquén, T B; Benzzo, M T; Isla, M A; Alfano, O M

    2013-01-01

    In recent years, the use of agrochemicals has increased because they are essential for profitable agricultural production. Herbicides are heavily demanded compounds and among these, the most marketed are 2,4-D, atrazine and acetochlor. They have characteristics that can cause problems to humans and the environment. Therefore, it is necessary to design systems that can reduce these compounds to harmless molecules. This work aims at evaluating the possibility of incorporating these herbicides into degradable effluents in a biological treatment system, without reducing its efficiency. For this purpose, studies of organic matter degradability in the presence of these agrochemicals were performed. A synthetic effluent based on glucose and mineral salts was inoculated with microorganisms. Glucose consumption and biomass concentration were assessed. Subsequently, preliminary studies were performed to test the viability of degradation of the most harmful compound with an advanced oxidation process (AOP). The results showed that the incorporation of these herbicides into degradable effluents in a biological treatment system has a negative impact on microorganisms. Therefore, the application of an AOP, such as the Fenton or photo-Fenton processes, prior to a biological treatment was found to degrade these substances to simpler and less toxic molecules.

  4. Photo-oxidation of PAHs with calcium peroxide as a source of the hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Kozak, Jolanta; Włodarczyk-Makuła, Maria

    2018-02-01

    The efficiency of the removal of selected PAHs from the pretreated coking wastewater with usage of CaO2, Fenton reagent (FeSO4) and UV rays are presented in this article. The investigations were carried out using coking wastewater originating from biological, industrial wastewater treatment plant. At the beginning of the experiment, the calcium peroxide (CaO2) powder as a source of hydroxyl radicals (OH•) and Fenton reagent were added to the samples of wastewater. Then, the samples were exposed to UV rays for 360 s. The process was carried out at pH 3.5-3.8. After photo-oxidation process a decrease in the PAHs concentration was observed. The removal efficiency of selected hydrocarbons was in the ranged of 89-98%. The effectiveness of PAHs degradation was directly proportional to the calcium peroxide dose.

  5. Greywater as a sustainable water source: A photocatalytic treatment technology under artificial and solar illumination.

    PubMed

    Tsoumachidou, Sophia; Velegraki, Theodora; Antoniadis, Apostolos; Poulios, Ioannis

    2017-06-15

    Greywater considers being a highly reclaimable water source particularly important for water-stressed nations. In this work, heterogeneous photocatalysis using artificial and solar illumination has been applied for the mineralization of simulated light greywater (effluents from dishwashers and kitchen sinks were excluded from the study). The effects on the process' efficiency of TiO 2 P25 catalyst's concentration, initial concentration of H 2 O 2 and Fe 3+ , pH of the solution, as well as the type of radiation, were evaluated in a bench-scale Pyrex reactor and a pilot-scale slurry fountain photoreactor. The treatment efficiency has been followed through the evolution of the organic matter content expresses as dissolved organic carbon (DOC). Best results were obtained with the photo-Fenton-assisted TiO 2 photocatalytic process with 72% DOC removal after 210 min of bench scale treatment, while under the same photocatalytic conditions in the pilot reactor the DOC removal reached almost 64%. Moreover, the decrease in toxicity, phytotoxicity and biodegradability of the simulated wastewater has been observed after solar-induced photocatalytic treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant.

    PubMed

    Espinoza, Carolina; Romero, Julio; Villegas, Loreto; Cornejo-Ponce, Lorena; Salazar, Ricardo

    2016-12-05

    A complete mineralization of a textile dye widely used in the Chilean textile industry, acid yellow 42 (AY42), was studied. Degradation was carried out in an aqueous solution containing 100mgL(-1) of total organic carbon (TOC) of dye using the advanced solar photoelectro-Fenton (SPEF) process in a lab-scale pilot plant consisting of a filter press cell, which contains a boron doped diamond electrode and an air diffusion cathode (BDD/air-diffusion cell), coupled with a solar photoreactor for treat 8L of wastewater during 270min of electrolysis. The main results obtained during the degradation of the textile dye were that a complete transformation to CO2 depends directly on the applied current density, the concentration of Fe(2+) used as catalyst, and the solar radiation intensity. The elimination of AY42 and its organic intermediates was due to hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between electrogenerated H2O2 and added Fe(2+). The application of solar radiation in the process (SPEF) yield higher current efficiencies and lower energy consumptions than electro-Fenton (EF) and electro-oxidation with electrogenerated H2O2 (E OH2O2) by the additional production of hydroxyl radicals from the photolysis of Fe(III) hydrated species and the photodecomposition of Fe(III) complexes with organic intermediates. Moreover, some products and intermediates formed during mineralization of dye, such as inorganic ions, carboxylic acids and aromatic compounds were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO2. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase

    PubMed Central

    2014-01-01

    Background In recent years, pollution of soil and groundwater caused by fuel leakage from old underground storage tanks, oil extraction process, refineries, fuel distribution terminals, improper disposal and also spills during transferring has been reported. Diesel fuel has created many problems for water resources. The main objectives of this research were focused on assessing the feasibility of using photo-Fenton like method using nano zero-valent iron (nZVI/UV/H2O2) in removing total petroleum hydrocarbons (TPH) and determining the optimal conditions using Taguchi method. Results The influence of different parameters including the initial concentration of TPH (0.1-1 mg/L), H2O2 concentration (5-20 mmole/L), nZVI concentration (10-100 mg/L), pH (3-9), and reaction time (15-120 min) on TPH reduction rate in diesel fuel were investigated. The variance analysis suggests that the optimal conditions for TPH reduction rate from diesel fuel in the aqueous phase are as follows: the initial TPH concentration equals to 0.7 mg/L, nZVI concentration 20 mg/L, H2O2 concentration equals to 5 mmol/L, pH 3, and the reaction time of 60 min and degree of significance for the study parameters are 7.643, 9.33, 13.318, 15.185 and 6.588%, respectively. The predicted removal rate in the optimal conditions was 95.8% and confirmed by data obtained in this study which was between 95-100%. Conclusion In conclusion, photo-Fenton like process using nZVI process may enhance the rate of diesel degradation in polluted water and could be used as a pretreatment step for the biological removal of TPH from diesel fuel in the aqueous phase. PMID:24955242

  8. Photodecomposition of dyes on Fe-C-TiO(2) photocatalysts under UV radiation supported by photo-Fenton process.

    PubMed

    Tryba, B; Piszcz, M; Grzmil, B; Pattek-Janczyk, A; Morawski, A W

    2009-02-15

    Fe-C-TiO(2) photocatalysts were prepared by mechanical mixing of commercial anatase TiO(2) precursor with FeC(2)O(4) and heating at 500-800 degrees C under argon flow. These photocatalysts were tested for dyes decomposition: Methylene Blue (MB), Reactive Black (RB) and Acid Red (AR). The preliminary adsorption of dyes on the photocatalysts surface was performed. Modification of anatase by FeC(2)O(4) caused reducing of zeta potential of the photocatalyst surface from +12 to -7mV and decreasing of their adsorption ability towards RB and AR, which were negatively charged, -46.8 and -39.7, respectively. Therefore, unmodified TiO(2) showed the highest degree of RB and AR decompositions in the combination of dyes adsorption and UV irradiation. Methylene Blue, which had zeta potential of +4.3 in the aqueous solution was poorly adsorbed on all the tested photocatalysts and also slowly decomposed under UV irradiation. The high rate of dyes decomposition was noted on Fe-C-TiO(2) photocatalysts under UV irradiation with addition of H(2)O(2). It was observed, that at lower temperatures of heat treatment such as 500 degrees C higher content of carbon is remained in the sample, blocking the built in of iron into the TiO(2) lattice. This iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. At higher temperatures of heat treatment, less active FeTiO(3) phase is formed, therefore Fe-C-TiO(2) sample prepared at 800 degrees C showed low photocatalytic activity for dyes decomposition. Fe-C-TiO(2) photocatalysts are active under visible light irradiation, however, the efficiency of a dye decomposition is lower than under UV light. In a dark Fenton process there is observed an insignificant generation of OH radicals and very little decomposition of a dye, what suggests the powerful of photo-Fenton process in the dyes decomposition.

  9. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2014-06-30

    Iron-catalyzed hydrogen peroxide decomposition for in situ generation of hydroxyl radicals (HO(•)) has been extensively developed as advanced oxidation processes (AOPs) for environmental applications. A variety of catalytic iron species constituting metal salts (in Fe(2+) or Fe(3+) form), metal oxides (e.g., Fe2O3, Fe3O4), and zero-valent metal (Fe(0)) have been exploited for chemical (classical Fenton), photochemical (photo-Fenton) and electrochemical (electro-Fenton) degradation pathways. However, the requirement of strict acidic conditions to prevent iron precipitation still remains the bottleneck for iron-based AOPs. In this article, we present a thorough review of alternative non-iron Fenton catalysts and their reactivity towards hydrogen peroxide activation. Elements with multiple redox states (like chromium, cerium, copper, cobalt, manganese and ruthenium) all directly decompose H2O2 into HO(•) through conventional Fenton-like pathways. The in situ formation of H2O2 and decomposition into HO(•) can be also achieved using electron transfer mechanism in zero-valent aluminum/O2 system. Although these Fenton systems (except aluminum) work efficiently even at neutral pH, the H2O2 activation mechanism is very specific to the nature of the catalyst and critically depends on its composition. This review describes in detail the complex mechanisms and emphasizes on practical limitations influencing their environmental applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  11. Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution.

    PubMed

    Monteagudo, J M; Carmona, M; Durán, A

    2005-08-01

    The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.

  12. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes.

    PubMed

    Serna-Galvis, Efraim A; Silva-Agredo, Javier; Giraldo, Ana L; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-01-15

    Synthetic pharmaceutical effluents loaded with the β-lactam antibiotic oxacillin were treated using advanced oxidation processes (the photo-Fenton system and TiO2 photocatalysis) and chloride mediated electrochemical oxidation (with Ti/IrO2 anodes). Combinations of the antibiotic with excipients (mannitol or tartaric acid), an active ingredient (calcium carbonate, i.e. bicarbonate ions due to the pH) and a cleaning agent (sodium lauryl ether sulfate) were considered. Additionally, urban wastewater that had undergone biological treatment was doped with oxacillin and treated with the tested systems. The evolution of antimicrobial activity was monitored as a parameter of processes efficiency. Although the two advanced oxidation processes (AOPs) differ only in the way they produce OH, marked differences were observed between them. There were also differences between the AOPs and the electrochemical system. Interestingly, each additive had a different effect on each treatment. For water loaded with mannitol, electrochemical treatment was the most suitable option because the additive did not significantly affect the efficiency of the system. Due to the formation of a complex with Fe(3+), tartaric acid accelerated the elimination of antibiotic activity during the photo-Fenton process. For TiO2 photocatalysis, the presence of bicarbonate ions contributed to antibiotic activity elimination through the possible formation of carbonate and bicarbonate radicals. Sodium lauryl ether sulfate negatively affected all of the processes. However, due to the higher selectivity of HOCl compared with OH, electrochemical oxidation showed the least inhibited efficiency. For the urban wastewater doped with oxacillin, TiO2 photocatalysis was the most efficient process. These results will help select the most suitable technology for the treatment of water polluted with β-lactam antibiotics. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Highly concentrated phenolic wastewater treatment by heterogeneous and homogeneous photocatalysis: mechanism study by FTIR-ATR.

    PubMed

    Araña, J; Tello-Rendón, E; Doña-Rodríguez, J M; Campo, C V; Herrera-Melidán, J A; González-Díaz; Pérez-Peña, J

    2001-01-01

    The degradation of high phenol concentrations (1 g/L) in water solutions by TiO2 photocatalysis and the photo-Fenton reaction has been studied. From the obtained data it may be suggested that degradation of phenol by TiO2-UV takes place onto the catalyst surface by means of peroxo-compounds formation. At low phenol concentrations other mechanism, the insertion of OH. radicals, may be favored. On the other hand, highly concentrated phenol aqueous solutions treatment by the photo-Fenton reaction gives rise to the formation of polyphenolic polymers. These seem to reduce the process rate. Degradation intermediates have been identified by HPLC and FTIR. The FTIR study of the catalyst surface has shown infrared bands attributable to different chemisorbed peroxo-compounds, formates, ortho-formates and carboxylates that can inactivate the catalyst.

  14. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.

    PubMed

    Li, Huiyuan; Li, Yanli; Xiang, Luojing; Huang, Qianqian; Qiu, Juanjuan; Zhang, Hui; Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine; Valange, Sabine

    2015-04-28

    A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  16. Optimization of photo-Fenton process for the treatment of prednisolone.

    PubMed

    Díez, Aida María; Ribeiro, Ana Sofia; Sanromán, Maria Angeles; Pazos, Marta

    2018-03-29

    Prednisolone is a widely prescribed synthetic glucocorticoid and stated to be toxic to a number of non-target aquatic organisms. Its extensive consumption generates environmental concern due to its detection in wastewater samples at concentrations ranged from ng/L to μg/L that requests the application of suitable degradation processes. Regarding the actual treatment options, advanced oxidation processes (AOPs) are presented as a viable alternative. In this work, the comparison in terms of pollutant removal and energetic efficiencies, between different AOPs such as Fenton (F), photo-Fenton (UV/F), photolysis (UV), and hydrogen peroxide/photolysis (UV/H 2 O 2 ), was carried out. Light diode emission (LED) was the selected source to provide the UV radiation. The UV/F process revealed the best performance, reaching high levels of both degradation and mineralization with low energy consumption. Its optimization was conducted and the operational parameters were iron and H 2 O 2 concentrations and the working volume. Using the response surface methodology with the Box-Behnken design, the effect of independent variables and their interactions on the process response were effectively evaluated. Different responses were analyzed taking into account the prednisolone removal (TOC and drug abatements) and the energy consumptions associated. The obtained model showed an improvement of the UV/F process when treating smaller volumes and when adding high concentrations of H 2 O 2 and Fe 2+ . The validation of this model was successfully carried out, having only 5% of discrepancy between the model and the experimental results. Finally, the performance of the process when having a real wastewater matrix was also tested, achieving complete mineralization and detoxification after 8 h. In addition, prednisolone degradation products were identified. Finally, the obtained low energy permitted to confirm the viability of the process.

  17. Humic like substances for the treatment of scarcely soluble pollutants by mild photo-Fenton process.

    PubMed

    Caram, Bruno; García-Ballesteros, Sara; Santos-Juanes, Lucas; Arques, Antonio; García-Einschlag, Fernando S

    2018-05-01

    Humic-like substances (HLS) extracted from urban wastes have been tested as auxiliaries for the photo-Fenton removal of thiabendazole (TBZ) under simulated sunlight. Experimental design methodology based on Doehlert matrices was employed to check the effects of hydrogen peroxide concentration, HLS amount as well as TBZ loading; this last parameter was studied in the range 25-100 mg/L, to include values below and above the limit of solubility at pH = 5. Very satisfactory results were reached when TBZ was above solubility if HLS and H 2 O 2 amounts were high. This could be attributed to an interaction of HLS-TBZ that enhances the solubility of the pollutant. Additional evidence supporting the latter interaction was obtained by fluorescence measurements (excitation emission matrices) and parallel factor analysis (PARAFAC). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Experimental design applied to photo-Fenton treatment of highly methomyl-concentrated water.

    PubMed

    Micó, María M; Bacardit, Jordi; Sans, Carme

    2010-01-01

    This work is focused on the study of the suitability of the photo-Fenton process as a pretreatment for water highly contaminated with a methomyl commercial formulation in Advanced Greenhouses devices. Initial concentrations of reagents and pesticide were evaluated according to a central composite experimental design, with methomyl depletion and biocompatibility of the final effluent as response functions. A triad of optimal operation conditions could be determined, [Met.](0)=50 mg L(-1), [H(2)O(2)](0)=254 mg L(-1) and [Fe(2+)](0)=77 mg L(-1) for the best elimination yield and an acceptable BOD(5)/COD value, and initial concentration of methomyl can be established as the most important parameter for the performance of the treatment due to the limitations that impose on the hydrogen peroxide doses in the presence of the excipients of the commercial formulation.

  19. Decolorizing textile wastewater with Fenton's reagent electrogenerated with a solar photovoltaic cell.

    PubMed

    Figueroa, Sandra; Vázquez, Leticia; Alvarez-Gallegos, A

    2009-02-01

    In this work it is demonstrated that Fenton's reagent can be electroproduced with abundant and cheap feedstock: oxygen saturated wastewater and solar energy. Experiments were carried out in a divided electrochemical flow cell using two electrodes: a three dimensional reticulated vitreous carbon cathode and stainless steel anode. Fenton's reagent is produced by oxygen reduction on the cathode in the presence of 1mM Fe(2+). The influence of electrolyte nature and its concentration and potential difference on the current efficiency, as well as the rate of Fenton's reagent electroproduction is discussed and it is concluded that over this extended range of conditions the current efficiency, for Fenton's reagent production, fell within the range 50-70%. It is possible to electroproduce a stoichiometric amount of Fenton reagent for the oxidation of 0.061mM Reactive Black 5 (in tap water+0.05M Na(2)SO(4), approximately pH 2.8). Similar results were obtained for solutions containing 0.1mM Acid Green 25. Some practical applications in the field of water treatment are included. The energy required for drive electrochemical reaction is supplied to the flow cell by means of a commercial solar panel.

  20. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: An integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light

    NASA Astrophysics Data System (ADS)

    He, Donglin; Chen, Yanfeng; Situ, Yue; Zhong, Li; Huang, Hong

    2017-12-01

    g-C3N4/Ag/γ-FeOOH photocatalyst was prepared and the synergy of photocatalysis with heterogeneous Fenton-like process was measured by degrading methyl Orange(MO). g-C3N4 can apply electron for γ-FeOOH to change Fe3+ to Fe2+, and γ-FeOOH can help g-C3N4 to enhance the absorption of visible light. The Ag nanoparticles were photo deposited on the layer of γ-FeOOH and g-C3N4 for the separation of electron-holes. g-C3N4(5%)/Ag/γ-FeOOH showed the great ability to degrade MO, and the optimal concentration of H2O2, the effect of pH and the stability of the photocatalyst and synergistic mechanism of photocatalysity with heterogeneous Fenton-like process were also discussed in this study.

  1. Solar photoassisted advanced oxidation process of azo dyes.

    PubMed

    Prato-Garcia, D; Buitrón, G

    2009-01-01

    Advanced oxidation processes assisted with natural solar radiation in CPC type reactors (parabolic collector compound), was applied for the degradation of three azo dyes: acid orange (AO7), acid red 151 (AR151) and acid blue 113 (AB113). Fenton, Fenton like and ferrioxalate-type complexes showed to be effective for degrade the azo linkage and moieties in different extensions. Initially, the best dose of reagents (Fe(3 + )-H(2)O(2)) was determined through a factorial experimental design, next, using response surface methodologies, the reagent consumption was reduced up to 40%, maintaining in all cases high decolourisation percentages (>98%) after 60 min. of phototreatment. In this work, it was also studied the effect of concentration changes of the influent between 100-300 mg/L and the operation of the photocatalytic process near neutral conditions (pH 6.0-6.5) by using ferrioxalate type complex (FeOx).

  2. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    NASA Astrophysics Data System (ADS)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  3. Solar-chemical treatment of groundwater contaminated with petroleum at gas station sites: ex situ remediation using solar/TiO(2) photocatalysis and Solar Photo-Fenton.

    PubMed

    Cho, Ii-Hyoung; Kim, Young-Gyu; Yang, Jae-Kyu; Lee, Nae-Hyun; Lee, Seung-Mok

    2006-01-01

    Groundwater samples contaminated by BTEX (benzene, toluene, ethylbenzene, xylene isomers and TPHs (total petroleum hydrocarbons) were treated with advanced oxidation processes (AOPs), such as TiO(2) photocatalysis and Fe(2+)/H(2)O(2) exposed to solar light (37 degrees N and 128 degrees E) with an average intensity of 1.7 mW/cm(2) at 365 nm. These AOP processes showed feasibility in the treatment of groundwater contaminated with BTEX, TPH and TOC (Total Organic Carbon). Outdoor field tests showed that the degradation efficiency of each contaminant was higher in the Fe(2+)/H(2)O(2) system without solar light compared to the TiO(2)/solar light and H(2)O(2)/solar light systems. However, the TiO(2)/solar light and the Fe(2+)/H(2)O(2)/solar light systems showed significantly enhanced efficiencies in the degradation of BTEX, TPH and TOC with the additional use of H(2)O(2). Near complete degradation of BTEX and TPH was observed within 2 and 4 hrs, respectively, however, that of TOC was slower. Without pretreatment of the groundwater, fouling of the TiO(2), due to the ionic species present, was observed within 1 hr of operation, which resulted in the inhibition of further BTEX, TPH and TOC destruction. The degradation rate of n-alkanes with carbon numbers ranging from C10 to C15 was relatively greater than that of n-alknaes with carbon numbers ranging from C16 to C20. From this work, the AOP process (Fe(2+)/H(2)O(2)/solar light and TiO(2)/H(2)O(2)/solar light) illuminated with solar light was identified as an effective ex situ technique in the remediation of groundwater contaminated with petroleum.

  4. Effect of Photo-Fenton Bleaching on Tetracycline-stained Dentin in vitro.

    PubMed

    Bennett, Zackary Yale; Walsh, Laurence James

    2015-02-01

    Tetracycline-stained tooth structure is difficult to bleach using nightguard tray methods. The possible benefits of in-office light-accelerated bleaching systems based on the photo-Fenton reaction are of interest as possible adjunctive treatments. This study was a proof of concept for possible benefits of this approach, using dentine slabs from human tooth roots stained in a reproducible manner with the tetracycline antibiotic demeclocycline hydrochloride. Color changes overtime in tetra-cycline stained roots from single rooted teeth treated using gel (Zoom! WhiteSpeed(®)) alone, blue LED light alone, or gel plus light in combination were tracked using standardized digital photography. Controls received no treatment. Changes in color channel data were tracked overtime, for each treatment group (N = 20 per group). Dentin was lighter after bleaching, with significant improvements in the dentin color for the blue channel (yellow shade) followed by the green channel and luminosity. The greatest changes occurred with gel activated by light (p < 0.0001), which was superior to effects seen with gel alone. Use of the light alone did not significantly alter shade. This proof of concept study demonstrates that bleaching using the photo-Fenton chemistry is capable of lightening tetracycline-stained dentine. Further investigation of the use of this method for treating tetracycline-stained teeth in clinical settings appears warranted. Because tetracycline staining may respond to bleaching treatments based on the photo-Fenton reaction, systems, such as Zoom! WhiteSpeed, may have benefits as adjuncts to home bleaching for patients with tetracycline-staining.

  5. Quick photo-Fenton degradation of phenolic compounds by Cu/Al2O3-MCM-41 under visible light irradiation: small particle size, stabilization of copper, easy reducibility of Cu and visible light active material.

    PubMed

    Pradhan, Amaresh C; Nanda, Binita; Parida, K M; Das, Mira

    2013-01-14

    The present study reports the photo-Fenton degradation of phenolic compounds (phenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol) in aqueous solution using mesoporous Cu/Al(2)O(3)-MCM-41 nanocomposite as a heterogeneous photo-Fenton-like catalyst. The in situ incorporation of mesoporous Al(2)O(3) (MA) into the framework of MCM-41 (sol-gel method) forms Al(2)O(3)-MCM-41 and wetness impregnation of Cu(II) on Al(2)O(3)-MCM-41 generates mesoporous Cu/Al(2)O(3)-MCM-41 composite. The effects of pH and H(2)O(2) concentration on degradation of phenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol are studied. Kinetics analysis shows that the photocatalytic degradation reaction follows a first-order rate equation. Mesoporous 5 Cu/Al(2)O(3)-MCM-41 is found to be an efficient photo-Fenton-like catalyst for the degradation of phenolic compounds. It shows nearly 100% degradation in 45 min at pH 4. The combined effect of small particle size, stabilization of Cu(2+) on the support Al(2)O(3)-MCM-41, ease reducibility of Cu(2+) and visible light activeness are the key factors for quick degradation of phenolic compounds by Cu/Al(2)O(3)-MCM-41.

  6. Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway.

    PubMed

    Pérez-Estrada, Leónidas A; Malato, Sixto; Gernjak, Wolfgang; Agüera, Ana; Thurman, E Michael; Ferrer, Imma; Fernández-Alba, Amadeo R

    2005-11-01

    In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident. In this sense, advanced oxidation processes (AOPs) represent a good choice for the treatment of hazardous nonbiodegradable pollutants. This work deals with the solar photodegradation of diclofenac, an antiinflammatory drug, in aqueous solutions by photo-Fenton reaction. A pilot-scale facility using a compound parabolic collector (CPC) reactor was used for this study. Results obtained show rapid and complete oxidation of diclofenac after 60 min, and total mineralization (disappearance of dissolved organic carbon, DOC) after 100 min of exposure to sunlight. Although diclofenac precipitates during the process at low pH, its degradation takes place in the homogeneous phase governed by a precipitation-redissolution-degradation process. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Gas chromatography-mass spectrometry (GC/ MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) were used to identify 18 intermediates, in two tentative degradation routes. The main one was based on the initial hydroxylation of the phenylacetic acid moiety in the C-4 position and subsequent formation of a quinone imine derivative that was the starting point for further multistep degradation involving hydroxylation, decarboxylation, and oxidation reactions. An alternative route was based on the transient preservation of the biphenyl amino moiety that underwent a similar oxidative process of C-N bond cleavage. The proposed degradation route differs from those previously reported involving alternative degradation processes (ozonization, UV/H2O2, or photolysis), indicating that diclofenac degradation follows different pathways, depending on the treatment applied.

  7. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    PubMed

    Radjenović, Jelena; Sirtori, Carla; Petrović, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Wang, Kebai; Li, Dai; Qin, Jiabin

    2017-10-01

    The novel graphite carbon coating hollow CuFe2O4 spheres were fabricated through solvothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectra, etc. The catalytic performance of the graphite carbon coating hollow CuFe2O4 spheres was evaluated in photo-Fenton-like degradation of methylene blue (MB) using H2O2 as a green oxidant under light irradiation (λ > 400 nm). The results demonstrated that the hollow CuFe2O4 spheres with graphite carbon coating exhibited superior catalytic activity. In the preparation process of catalyst, the addition of glucose was very important to its catalytic performance. Photoresponse analysis of the typical samples proved that CuFe2O4@graphite carbon core-shell hollow spheres possessed excellent photocurrent response and lower electrochemical impedance. In addition, a possible mechanism for photocatalytic degradation of MB had been presumed. Moreover, after five regeneration cycles, the graphite carbon coating hollow CuFe2O4 spheres still exhibited better properties.

  9. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes.

    PubMed

    Fiorentino, Antonino; Ferro, Giovanna; Alferez, María Castro; Polo-López, Maria Inmaculada; Fernández-Ibañez, Pilar; Rizzo, Luigi

    2015-07-01

    Solar disinfection and solar-driven advanced oxidation processes (AOPs) (namely H2O2/sunlight, TiO2/sunlight, H2O2/TiO2/sunlight, solar photo-Fenton) were evaluated in the inactivation of indigenous antibiotic-resistant bacteria (ARB) in real urban wastewater. A multidrug resistant (MDR) Escherichia coli strain isolated from the effluent of the biological process of an urban wastewater treatment plant was the target ARB. The higher inactivation rates (residual density under detection limit, 2 CFUm L(-1)) were achieved with H2O2/TiO2/sunlight (cumulative energy per unit of volume (QUV) in the range 3-5 kJ L(-1), depending on H2O2/TiO2 ratio) and H2O2/sunlight (QUV of 8 kJ L(-1)) processes. All investigated processes did not affect antibiotic resistance of survived colonies. Moreover, H2O2/sunlight was compared with conventional chlorination process to evaluate bacterial regrowth potential and particularly the proportion of indigenous MDR E. coli with respect to total indigenous E. coli population. Chlorination (1.0 mg Cl2 L(-1)) was more effective than H2O2/sunlight (50 mg H2O2 L(-1)) to achieve total inactivation of MDR E. coli (15 min Vs 90 min) but less effective in controlling their regrowth (24 h Vs 48 h). Interestingly, the percentage of MDR E. coli in H2O2/sunlight treated samples decreased as incubation time increased; the opposite was observed for chlorinated samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology.

    PubMed

    El-Ghenymy, Abdellatif; Garcia-Segura, Sergi; Rodríguez, Rosa María; Brillas, Enric; El Begrani, Mohamed Soussi; Abdelouahid, Ben Ali

    2012-06-30

    A central composite rotatable design and response surface methodology were used to optimize the experimental variables of the electro-Fenton (EF) and solar photoelectro-Fenton (SPEF) degradations of 2.5L of sulfanilic acid solutions in 0.05M Na(2)SO(4). Electrolyses were performed with a pre-pilot flow plant containing a Pt/air diffusion reactor generating H(2)O(2). In SPEF, it was coupled with a solar photoreactor under an UV irradiation intensity of ca. 31Wm(-2). Optimum variables of 100mAcm(-2), 0.5mM Fe(2+) and pH 4.0 were determined after 240min of EF and 120min of SPEF. Under these conditions, EF gave 47% of mineralization, whereas SPEF was much more powerful yielding 76% mineralization with 275kWh kg(-1) total organic carbon (TOC) energy consumption and 52% current efficiency. Sulfanilic acid decayed at similar rate in both treatments following a pseudo-first-order kinetics. The final solution treated by EF contained a stable mixture of tartaric, acetic, oxalic and oxamic acids, which form Fe(III) complexes that are not attacked by hydroxyl radicals formed from H(2)O(2) and added Fe(2+). The quick photolysis of these complexes by UV light of sunlight explains the higher oxidation power of SPEF. NH(4)(+) was the main inorganic nitrogen ion released in both processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Self-Assembled Nano-FeO(OH)/Reduced Graphene Oxide Aerogel as a Reusable Catalyst for Photo-Fenton Degradation of Phenolic Organics.

    PubMed

    Liu, Renlan; Xu, Yiming; Chen, Baoliang

    2018-06-19

    Fabrication of visible-light-responsive, macroscopic photo-Fenton catalysts is crucial for wastewater treatment. Here, we report a facile fabrication method for nano-FeO(OH)/reduced graphene oxide aerogels (FeO(OH)-rGA) equipped with a stable macrostructure and a high efficiency for catalytic degradation of phenolic organics. The structure of FeO(OH)/rGA was characterized by SEM, TEM, XPS, Raman analysis. The FeO(OH) is the main constituent of ferrihydrite, which dispersed in the graphene aerogel with a particle size of ∼3 nm can efficiently activate H 2 O 2 to generate abundant •OH. The excellent performance of the FeO(OH)/rGO aerogel was specifically exhibited by the outstanding catalyst activity, sustained mineralization and eminent reaction rate for phenolic organics. A synergy effect between FeO(OH) and graphene aerogel was observed, which came from the extensive electron transfer channels and active sites of the 3D graphene aerogel and the visible-light-activated FeO(OH) and H 2 O 2 consistently producing •OH. The FeO(OH)/rGA could be reused for 10 cycles without a reduction in the catalytic activity and had less iron leaching, which guarantees that the active ingredient remains in the gel. Moreover, the FeO(OH)/rGA induced photo-Fenton degradation of 4-chlorophenol under near neutral pH conditions because the tight connection of FeO(OH) with the rGO aerogel results in less iron leaching and prevents the generation of Fe(OH) 3 . The 4-chlorophenol was completely removed in 80 min with a 0.074 min -1 rate constant in the FeO(OH)-rGA/H 2 O 2 photo-Fenton system under visible-light irradiation, and mineralization rate was up to 80% after 6 h. Oxidative •OH can continuously attack 4-chlorophenol, 2,4,6-trichlorophenol and bisphenol A without selectivity. These results lay a foundation for highly effective and durable photo-Fenton degradation of phenolic organics at near neutral pH and sufficient activation of H 2 O 2 for future applications.

  12. Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: mineralization and characterization of major intermediate products.

    PubMed

    Michael, I; Hapeshi, E; Aceña, J; Perez, S; Petrović, M; Zapata, A; Barceló, D; Malato, S; Fatta-Kassinos, D

    2013-09-01

    This work investigated the application of a solar driven advanced oxidation process (solar Fenton), for the degradation of the antibiotic ofloxacin (OFX) in various environmental matrices at a pilot-scale. All experiments were carried out in a compound parabolic collector pilot plant in the presence of doses of H2O2 (2.5 mg L(-1)) and at an initial Fe(2+) concentration of 2 mg L(-1). The water matrices used for the solar Fenton experiments were: demineralized water (DW), simulated natural freshwater (SW), simulated effluent from municipal wastewater treatment plant (SWW) and pre-treated real effluent from municipal wastewater treatment plant (RE) to which OFX had been spiked at 10 mg L(-1). Dissolved organic carbon removal was found to be dependent on the chemical composition of the water matrix. OFX mineralization was higher in DW (78.1%) than in SW (58.3%) at 12 mg L(-1) of H2O2 consumption, implying the complexation of iron or the scavenging of hydroxyl radicals by the inorganic ions present in SW. On the other hand, the presence of dissolved organic matter (DOM) in SWW and RE, led to lower mineralization per dose of H2O2 compared to DW and SW. The major transformation products (TPs) formed during the solar Fenton treatment of OFX, were elucidated using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS). The transformation of OFX proceeded through a defluorination reaction, accompanied by some degree of piperazine and quinolone substituent transformation while a hydroxylation mechanism occurred by attack of the hydroxyl radicals generated during the process leading to the formation of TPs in all the water matrices, seven of which were tentatively identified. The results obtained from the toxicity bioassays indicated that the toxicity originates from the DOM present in RE and its oxidation products formed during the photocatalytic treatment and not from the TPs resulted from the oxidation of OFX. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation.

    PubMed

    Karaolia, Popi; Michael, Irene; García-Fernández, Irene; Agüera, Ana; Malato, Sixto; Fernández-Ibáñez, Pilar; Fatta-Kassinos, Despo

    2014-01-15

    The presence of pathogenic antibiotic-resistant bacteria in aquatic environments has become a health threat in the last few years. Their presence has increased due to the presence of antibiotics in wastewater effluents, which are not efficiently removed by conventional wastewater treatments. As a result there is a need to study the possible ways of removal of the mixtures of antibiotics present in wastewater effluents and the antibiotic-resistant bacteria, which may also spread the antibiotic resistance genes to other bacterial populations. In this study the degradation of a mixture of antibiotics i.e. sulfamethoxazole and clarithromycin, the disinfection of total enterococci and the removal of those resistant to: a) sulfamethoxazole, b) clarithromycin and c) to both antibiotics have been examined, along with the toxicity of the whole effluent mixture after treatment to the luminescent aquatic bacterium Vibrio fischeri. Solar Fenton treatment (natural solar driven oxidation) using Fenton reagent doses of 50 mg L(-1) of hydrogen peroxide and 5 mg L(-1) of Fe(3+) in a pilot-scale compound parabolic collector plant was used to examine the disinfection and antibiotic resistance removal efficiency in different aqueous matrices, namely distilled water, simulated and real wastewater effluents. There was a faster complete removal of enterococci and of antibiotics in all aqueous matrices by applying solar Fenton when compared to photolytic treatment of the matrices. Sulfamethoxazole was more efficiently degraded than clarithromycin in all three aqueous matrices (95% removal of sulfamethoxazole and 70% removal of clarithromycin in real wastewater). The antibiotic resistance of enterococci towards both antibiotics exhibited a 5-log reduction with solar Fenton in real wastewater effluent. Also after solar Fenton treatment, there were 10 times more antibiotic-resistant enterococci in the presence of sulfamethoxazole than in the presence of clarithromycin. Finally, the toxicity of the treated wastewater to V. fischeri remained very low throughout the treatment time. © 2013.

  14. Homogeneous photocatalytic oxidation of UV filter para-aminobenzoic acid in aqueous solutions.

    PubMed

    Tsoumachidou, Sophia; Lambropoulou, Dimitra; Poulios, Ioannis

    2017-01-01

    The presence of personal care product (PCP) residues in the aquatic environment is an emerging issue due to their uncontrolled release through graywater; for this reason, efforts are being made to develop methods to inactivate or eliminate this class of substances in the environment. In this work, homogeneous photocatalysis has been applied for the degradation of UV filter para-aminobenzoic acid (PABA), which exists in several types of PCPs, in order to identify the optimum degradation conditions. The oxidation of PABA by photo-Fenton and oxalate-induced photo-Fenton (ferrioxalate) processes was investigated, and the effect of various operating variables has been assessed, i.e., Fe 3+ (0.0035-0.014 g L -1 ), H 2 O 2 (0.025-0.2 g L -1 ), T (280-323 K), and type of radiation (UV-A, visible). Furthermore, experiments under optimal conditions have been performed in order to evaluate the transformation pathways and phytotoxicity of the treated PABA solution.

  15. UV-C radiation based methods for aqueous metoprolol elimination.

    PubMed

    Rivas, F J; Gimeno, O; Borralho, T; Carbajo, M

    2010-07-15

    The endocrine disruptor metoprolol has been oxidised in aqueous solution by means of the systems UV-C, UV-C/H(2)O(2), UV-C/percarbonate, UV-C/monopersulfate, UV-C/TiO(2), UV-C/H(2)O(2)/TiO(2) and photo-Fenton. From simple photolysis experiments the quantum yield of metoprolol has been calculated (roughly 5x10(-3) mol Einstein(-1) at circumneutral pH). Addition of free radicals promoters significantly enhanced the metoprolol depletion rate. Mineralization degree was negligible when no promoter was added, while low values were achieved in the presence of either inorganic peroxides or titanium dioxide. The combination of radiation, hydrogen peroxide and TiO(2) increased the mineralization level up to values in the proximity of 45-50% under the best conditions investigated. The photo-Fenton process was the best system in terms of total oxidation (mineralization degree 70%) when optimum conditions were applied. 2010 Elsevier B.V. All rights reserved.

  16. Concentrating versus non-concentrating reactors for solar photocatalytic degradation of p-nitrotoluene-o-sulfonic acid.

    PubMed

    Parra, S; Malato, S; Blanco, J; Péringer, P; Pulgari, C

    2001-01-01

    The photocatalytic oxidation of the non-biodegradable p-nitrotoluene-o-sulfonic acid (p-NTS) in homogeneous (photo-Fenton reactions) and heterogeneous (with TiO2) solutions has been studied at a pilot-scale under solar irradiation at the Plataforma Solar de Almeria (PSA). In this study two different reactors were tested: a medium concentrating radiation system (Heliomans, HM) and a non-concentrating radiation system (CPC). Their advantages and disadvantages for p-NTS degradation have been compared and discussed. The degradation rates obtained in the CPC collector are around three times more efficient than in the HM collectors. However, in both systems, 100% of the initial concentration of p-NTS was removed. Kinetic experiments were performed in both systems using TiO2 suspensions. During the photodegradation, the disappearance of p-NTS was followed by HPLC, the mineralization of the solution by the TOC technique, the evolution of NO3-, NO2-, and SO4(2-) concentration by ionic chromatography, the toxicity by the standard Microtox test, and the biodegradability by BOD5 and COD measurements. The obtained results demonstrated the utility of the heterogeneous catalysis (using TiO2 as catalyst) as a pretreatment method that can be followed by a biological process.

  17. Coupling of solar photoelectro-Fenton with a BDD anode and solar heterogeneous photocatalysis for the mineralization of the herbicide atrazine.

    PubMed

    Garza-Campos, Benjamín R; Guzmán-Mar, Jorge Luis; Reyes, Laura Hinojosa; Brillas, Enric; Hernández-Ramírez, Aracely; Ruiz-Ruiz, Edgar J

    2014-02-01

    Here, the synergetic effect of coupling solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) on the mineralization of 200mL of a 20mg L(-1) atrazine solution, prepared from the commercial herbicide Gesaprim, at pH 3.0 was studied. Uniform, homogeneous and adherent anatase-TiO2 films onto glass spheres of 5mm diameter were prepared by the sol-gel dip-coating method and used as catalyst for SPC. However, this procedure yielded a poor removal of the substrate because of the low oxidation ability of positive holes and OH formed at the catalyst surface to destroy it. Atrazine decay was improved using anodic oxidation (AO), electro-Fenton (EF), SPEF and coupled SPEF-SPC at 100mA. The electrolytic cell contained a boron-doped diamond (BDD) anode and H2O2 was generated at a BDD cathode fed with an air flow. The removal and mineralization of atrazine increased when more oxidizing agents were generated in the sequence AO

  18. HPLC-MS degradation study of E10 Sunset Yellow FCF in a commercial beverage.

    PubMed

    Gosetti, Fabio; Gianotti, Valentina; Polati, Stefano; Gennaro, Maria Carla

    2005-10-07

    Experimental evidence has shown that a beverage containing Sunset Yellow FCF (labelled as E110 in the European Union), when exposed to natural conditions of summer temperature and sunlight, losses its colour. To possibly identify the degradation pathway and collect information on the potential toxicity of the uncoloured species formed, different degradation conditions, under both oxidising and reducing environments, were simulated in laboratory. Experiments were carried out under the following conditions: (i) thermally induced degradation, (ii) visible photo induced degradation, (iii) UV-photo induced conditions in oxidising environment (addition of hydrogen peroxide, Fenton reaction) and (iv) UV-photo induced conditions in reducing environment (addition of sulphide and ascorbic acid, addition of ascorbic acid in the absence and in the presence of saccharose). Decolourisation process was observed in oxidant conditions when applying the Fenton reaction but the reaction was too quick to be progressively followed. On the other hand, it was also possible to study the degradation reaction observed in reducing conditions in the presence of ascorbic acid. The HPLC-MS results gave evidence for the cleavage of the double bond and the protonation of the azo groups. The loss of colour is therefore not due to a mineralization process but to the formation of a dimeric form of 5-amino-6-hydroxy-2-naphthalene sulfonate and, likely, of p-amino-benzensulfonate.

  19. Environmental assessment of different advanced oxidation processes applied to a bleaching Kraft mill effluent.

    PubMed

    Muñoz, Iván; Rieradevall, Joan; Torrades, Francesc; Peral, José; Domènech, Xavier

    2006-01-01

    Different advanced oxidation processes (AOPs) have been applied to remove the organic carbon content of a paper mill effluent originating from the Kraft pulp bleaching process. The considered AOPs were: TiO(2)-mediated heterogeneous photocatalysis, TiO(2)-mediated heterogeneous photocatalysis assisted with H(2)O(2), TiO(2)-mediated heterogeneous photocatalysis coupled with Fenton, photo-Fenton, ozonation and ozonation with UV-A light irradiation. The application of the selected AOPs all resulted in a considerable decrease in dissolved organic carbon (DOC) content with variable treatment efficiencies depending upon the nature/type of the applied AOP. A Life Cycle Assessment (LCA) study was used as a tool to compare the different AOPs in terms of their environmental impact. Heterogeneous photocatalysis coupled with the Fenton's reagent proved to have the lowest environmental impact accompanied with a moderate-to-high DOC removal rate. On the other hand, heterogeneous photocatalysis appeared to be the worst AOP both in terms of DOC abatement rate and environmental impact. For the studied AOPs, LCA has indicated that the environmental impact was attributable to the high electrical energy (power) consumption necessary to run a UV-A lamp or to produce ozone.

  20. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  1. An innovative ultrasound, Fe(2+) and TiO(2) photoassisted process for bisphenol A mineralization.

    PubMed

    Torres-Palma, Ricardo A; Nieto, Jessica I; Combet, Evelyne; Pétrier, Christian; Pulgarin, Cesar

    2010-04-01

    This paper explores the degradation of a model pollutant, bisphenol A, by an advanced oxidation process that combines sonolysis, Fe(2+), and TiO(2) in a photoassisted process. Experiments were done under saturated oxygen conditions. The effect of different Fe(2+) (0.56 and 5.6 mg/L) and TiO(2) (10 and 50 mg/L) concentrations was investigated on both the elimination and mineralization of the pollutant. A pronounced synergistic effect that led to the complete and rapid elimination of dissolved organic carbon (DOC) was observed even at low catalyst loadings. In this system, almost a complete removal of DOC (93%) was observed after 4 h using 10 and 5.6 mg/L of TiO(2) and Fe(2+), respectively, whereas at the same time, only 5, 6, and 22% of DOC was removed by an individual process alone (TiO(2) photocatalysis, ultrasound, and photo-Fenton, respectively). In this system, ultrasound has the principal role of eliminating the initial substrate and providing hydrogen peroxide for the photocatalytic systems, while photo-Fenton and TiO(2) photocatalysis are mainly responsible for the transformation of the intermediates in CO(2) and H(2)O. The role of H(2)O(2) generated from the sonochemical process is also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale.

    PubMed

    Oller, I; Gernjak, W; Maldonado, M I; Pérez-Estrada, L A; Sánchez-Pérez, J A; Malato, S

    2006-12-01

    The technical feasibility and performance of photocatalytic degradation of six water-soluble pesticides (cymoxanil, methomyl, oxamyl, dimethoate, pyrimethanil and telone) have been studied at pilot-plant scale in two well-defined systems which are of special interest because natural solar UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. TiO(2) photocatalysis tests were performed in a 35L solar pilot plant with three Compound Parabolic Collectors (CPCs) under natural illumination and a 75L solar pilot plant with four CPC units was used for homogeneous photocatalysis tests. The initial pesticide concentration studied was 50 mg L(-1) and the catalyst concentrations employed were 200 mg L(-1) of TiO(2) and 20 mg L(-1) of iron. Both toxicity (Vibrio fischeri, Biofix) and biodegradability (Zahn-Wellens test) of the initial pesticide solutions were also measured. Total disappearance of the parent compounds and nearly complete mineralization were attained with all pesticides tested. Treatment time, hydrogen peroxide consumption and release of heteroatoms are discussed.

  3. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction

    PubMed Central

    2015-01-01

    Graphene represents an attractive two-dimensional carbon-based nanomaterial that holds great promise for applications such as electronics, batteries, sensors, and composite materials. Recent work has demonstrated that carbon-based nanomaterials are degradable/biodegradable, but little work has been expended to identify products formed during the degradation process. As these products may have toxicological implications that could leach into the environment or the human body, insight into the mechanism and structural elucidation remain important as carbon-based nanomaterials become commercialized. We provide insight into a potential mechanism of graphene oxide degradation via the photo-Fenton reaction. We have determined that after 1 day of treatment intermediate oxidation products (with MW 150–1000 Da) were generated. Upon longer reaction times (i.e., days 2 and 3), these products were no longer present in high abundance, and the system was dominated by graphene quantum dots (GQDs). On the basis of FTIR, MS, and NMR data, potential structures for these oxidation products, which consist of oxidized polycyclic aromatic hydrocarbons, are proposed. PMID:24860637

  4. Using Central Composite Experimental Design to Optimize the Degradation of Tylosin from Aqueous Solution by Photo-Fenton Reaction

    PubMed Central

    Sarrai, Abd Elaziz; Hanini, Salah; Merzouk, Nachida Kasbadji; Tassalit, Djilali; Szabó, Tibor; Hernádi, Klára; Nagy, László

    2016-01-01

    The feasibility of the application of the Photo-Fenton process in the treatment of aqueous solution contaminated by Tylosin antibiotic was evaluated. The Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimize the effect of hydrogen peroxide, ferrous ion concentration and initial pH as independent variables on the total organic carbon (TOC) removal as the response function. The interaction effects and optimal parameters were obtained by using MODDE software. The significance of the independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results show that the concentration of the ferrous ion and pH were the main parameters affecting TOC removal, while peroxide concentration had a slight effect on the reaction. The optimum operating conditions to achieve maximum TOC removal were determined. The model prediction for maximum TOC removal was compared to the experimental result at optimal operating conditions. A good agreement between the model prediction and experimental results confirms the soundness of the developed model. PMID:28773551

  5. Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst.

    PubMed

    Xu, Zhihui; Zhang, Ming; Wu, Jingyu; Liang, Jianru; Zhou, Lixiang; L, Bo

    2013-01-01

    In this study, a novel TiO2/β-FeOOH composite photocatalyst was synthesized by a hydrothermal method. X-ray diffraction, Fourier transform infrared spectrum, UV-vis diffuse reflectance spectra and scanning electron microscopy (SEM) were used to characterize the composite photocatalyst. The photocatalytic activity of the prepared composite photocatalyst was evaluated in a heterogeneous photo-Fenton-like process using methyl orange (MO) as target pollutant. The TiO2/β-FeOOH composites exhibited higher photocatalytic activity than pure β-FeOOH and TiO2 under visible-light irradiation. The enhanced photocatalytic activity can be ascribed to the formation of TiO2/β-FeOOH heterostructure, which plays an important role in expanding the photoactivity to the visible light region and in effectively prolonging the lifetime of photoinduced electrons and holes. Further investigation revealed that the 25TiO2/β-FeOOH composite synthesized with the TiO2/Fe(3+) in a mole ratio of 25:75 showed the highest catalytic activity.

  6. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoxia; Li, Rong; Zhao, Shuyu; Xing, Yanjun

    2017-02-01

    A novel flower-like 3D hierarchical cobalt phosphate Co3(PO4)2·8H2O (fCoP), and a plate-like cobalt phosphate (pCoP) were successfully synthesized via a microwave-assisted method at low temperature under atmospheric pressure using hexamethylene tetramine (HMTA) or urea as a template. All CoPs were characterized using XRD, FESEM, TEM, DRS and surface photovoltage spectra (SPS). The performance of the photocatalytic degradation of Rhodamine B (RhB) via a Fenton-like process on CoPs was evaluated both in the dark and under illumination. The results showed that the morphology and composition of the CoPs affected the RhB degradation. The flower-like hierarchical fCoP favored the photo degradation of RhB. fCoP was also confirmed to have the merits of easy recycling and good stability based on successive degradation experiments. The active species trapping experiments showed that the superoxide radical (rad O2-) was the dominant active species in the Fenton-like process. The catalytic activation was confirmed to be related to both the Co(II) on the surface and the fCoP framework.

  7. Comparison of AOPs for the removal of natural organic matter: performance and economic assessment.

    PubMed

    Murray, C A; Parsons, S A

    2004-01-01

    Control of disinfection by-products during water treatment is primarily achieved by reducing the levels of organic precursor species prior to chlorination. Many waters contain natural organic matter at levels up to 15 mg L(-1); therefore it is necessary to have a range of control methods to support conventional coagulation. Advanced oxidation processes are such processes and in this paper the Fenton and photo-Fenton processes along with photocatalysis are assessed for their NOM removal potential. The performance of each process is shown to be dependent on pH and chemical dose as well as the initial NOM concentration. Under optimum conditions the processes achieved greater than 90% removal of DOC and UV254 absorbance. This removal led to the THMFP of the source water being reduced from 140 to below 10 microg L(-1), well below UK and US standards. An economic assessment of the processes revealed that currently such processes are not economic. With advances in technology and tightening of water quality standards these processes should become economically feasible options.

  8. Iron in non-hydroxyl radical mediated photochemical processes for dye degradation: Catalyst or inhibitor?

    PubMed

    Wu, Bingdang; Zhang, Shujuan; Li, Xuchun; Liu, Xitong; Pan, Bingcai

    2015-07-01

    The acetylacetone (AA) mediated photochemical process has been proven as an efficient approach for decoloration. For azo dyes, the UV/AA process was several to more than ten times more efficient than the UV/H2O2 process. Iron is one of the most common elements on the earth. It is well known that iron can improve the UV/H2O2 process through thermal Fenton and photo-Fenton reactions. What will be the role of iron in the UV/AA process? Could iron-AA complexes act as photocatalysts in environmental remediation? To answer these questions, the photo-degradation of an azo dye, Acid Orange 7 (AO7), was conducted under the variant combinations of AA with iron species in both ionic (Fe2+, Fe3+) and complex (Fe(AA)3) forms. The pseudo-first-order decoloration rate constants of AO7 in these photochemical processes followed such an order: UV/Fe(II)/AA

  9. Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye

    NASA Astrophysics Data System (ADS)

    Jiang, De Bin; Liu, Xiaoying; Xu, Xuan; Zhang, Yu Xin

    2018-01-01

    In this work we demonstrate the synthesis of novel Fe2O3 nanosheets with double-shell hollow morphology by replica molding from diatomite framework. The nanostructures of Fe2O3 nanosheets were examined by focused-ion-beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET) specific surface area measurements and Fourier transform infrared (FT-IR) spectroscopy. The results reveal that (1) Pure Fe2O3 nanosheets were successfully obtained; (2) The double-shell Fe2O3 hollow structure achieved via the NaOH etching silica method was observed; (3) Fe2O3 nanosheets possessed uniformly distributed porous nanosheets. Such structural features enlarged the specific surface area of Fe2O3 nanosheets and led to more catalytic active sites. In the heterogeneous photo-Fenton reaction, the double-shell Fe2O3 hollow morphology exhibited excellent catalytic capability for the degradation of malachite green (MG) at circumneutral pH condition. Under optimum condition, MG solution was almost completely decolorized in 60 min (99.9%). The Fe2O3 nanosheets also showed good stability and recyclability, demonstrating great potential as a promising photo-Fenton catalyst for the effective degradation of MG dye in wastewater.

  10. Removal of natural organic matter from drinking water by advanced oxidation processes.

    PubMed

    Matilainen, Anu; Sillanpää, Mika

    2010-06-01

    Over the past 10-20years the amount of the natural organic matter (NOM) has been increased in raw water supplies on several areas. The presence of NOM causes many problems in drinking water treatment processes, including: (i) negative effect on water quality by colour, taste and odor problems, (ii) increased coagulant and disinfectant dose requirements (which in turn results increased sludge and potential harmful disinfection by-product formation), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. Thus, more efficient methods for the removal of NOM have emerged. Among these are advanced oxidation processes (AOPs). These include O(3)/H(2)O(2), O(3)/UV, UV/H(2)O(2), TiO(2)/UV, H(2)O(2)/catalyst, Fenton and photo-Fenton prosesses as well as ultrasound. In the present work, an overview of the recent research studies dealing with AOP methods for the removal of NOM and related compounds from drinking water is presented.

  11. Effective removal of the antibiotic Nafcillin from water by combining the Photoelectro-Fenton process and Anaerobic Biological Digestion.

    PubMed

    Vidal, Jorge; Huiliñir, Cesar; Santander, Rocío; Silva-Agredo, Javier; Torres-Palma, Ricardo A; Salazar, Ricardo

    2018-05-15

    The elimination of the antibiotic Nafcillin (NAF), which is usually used in hospitals and veterinary clinics around the world, was assessed through a combination of three advanced electrochemical oxidation processes followed by anaerobic digestion process. In the first stage different electrochemical advanced oxidation processes (EAOPs) were used: electro-oxidation with hydrogen peroxide (EO-H 2 O 2 ), electro-Fenton (EF) and Photo electro-Fenton (PEF). After PEF, almost complete and highly efficient degradation and elimination of NAF was achieved, with the concomitant elimination of the associated antimicrobial activity. The fast degradation rate produced by PEF is explained by the oxidative action of hydroxyl radicals (•OH) together with the direct UV photolysis of complexes formed between Fe 3+ and some organic intermediates. Total removal of NAF occurs after 90min of electrolysis by PEF, with the generation of organic intermediates that remain in solution. However, when this post PEF process solution was treated with an anaerobic biological process, the intermediates generated in the electrochemical degradation of NAF were completely eliminated after 24h. The kinetic degradation of NAF as well as the identification/quantification of products and intermediates formed during the degradation of antibiotic, such as inorganic ions, carboxylic acids and aromatic compounds, were determined by chromatographic and photometric methods. Finally, an oxidation pathway is proposed for the complete conversion to CO 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  12. VUV/UV light inducing accelerated phenol degradation with a low electric input.

    PubMed

    Li, Mengkai; Wen, Dong; Qiang, Zhimin; Kiwi, John

    2017-01-23

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4-6 min. The HO˙ and HO 2 ˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H 2 O 2 and Fe 3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H 2 O 2 or Fe 3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants.

  13. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    PubMed

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  14. Bifunctional composite from spent "Cyprus coffee" for tetracycline removal and phenol degradation: Solar-Fenton process and artificial neural network.

    PubMed

    Oladipo, Akeem Adeyemi; Abureesh, Mosab Ali; Gazi, Mustafa

    2016-09-01

    Removals of tetracycline and photocatalytic degradation of phenol by Fe3O4/coffee residue (MCC) were investigated. Brunauer-Emmett-Teller (BET), vibrating sample magnetometer (VSM) and Boehm titration were employed to characterize MCC. Artificial neural network (ANN) model was developed to predict the tetracycline (TC) concentration in the column effluent. Maximum tetracycline adsorption capacity of 285.6mg/g was observed in a batch system. High removal efficiency (87%) was obtained at 3.3mL/min flow rate, 8.0cm bed height and 50mg/L influent TC concentration in a column system. Complete degradation of phenol by solar-Fenton was attained at 60min irradiation time. Total organic carbon (TOC) removal increased to 63.3% in the presence of 1.0g/L MCC, 1.2g/L H2O2 and solar irradiation. MCC showed remarkable potential to remove antibiotics from wastewater even in the presence of heavy metal (Ni(2+)) via magnetic separation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Landfill leachate treatment by solar-driven AOPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Elisangela M.R.; Vilar, Vitor J.P.; Boaventura, Rui A.R.

    2011-01-15

    Sanitary landfill leachate resulting from the rainwater percolation through the landfill layers and waste material decomposition is a complex mixture of high-strength organic and inorganic compounds which constitutes serious environmental problems. In this study, different heterogeneous (TiO{sub 2}/UV, TiO{sub 2}/H{sub 2}O{sub 2}/UV) and homogenous (H{sub 2}O{sub 2}/UV, Fe{sup 2+}/H{sub 2}O{sub 2}/UV) photocatalytic processes were investigated as an alternative for the treatment of a mature landfill leachate. The addition of H{sub 2}O{sub 2} to TiO{sub 2}/UV system increased the reduction of the aromatic compounds from 15% to 61%, although mineralization was almost the same. The DOC and aromatic content abatement ismore » similar for the H{sub 2}O{sub 2}/UV and TiO{sub 2}/H{sub 2}O{sub 2}/UV processes, although the H{sub 2}O{sub 2} consumption is three times higher in the H{sub 2}O{sub 2}/UV system. The low efficiency of TiO{sub 2}/H{sub 2}O{sub 2}/UV system is presumably due to the alkaline leachate solution, for which the H{sub 2}O{sub 2} becomes highly unstable and self-decomposition of H{sub 2}O{sub 2} occurs. The efficiency of the TiO{sub 2}/H{sub 2}O{sub 2}/UV system increased 10 times after a preliminary pH correction to 4. The photo-Fenton process is much more efficient than heterogeneous (TiO{sub 2}, TiO{sub 2}/H{sub 2}O{sub 2}/UV) or homogeneous (H{sub 2}O{sub 2}/UV) photocatalysis, showing an initial reaction rate more than 20 times higher, and leading to almost complete mineralization of the wastewater. However, when compared with TiO{sub 2}/H{sub 2}O{sub 2}/UV with acidification, the photo-Fenton reaction is only two times faster. The optimal initial iron dose for the photo-Fenton treatment of the leachate is 60 mg Fe{sup 2+} L{sup -1}, which is in agreement with path length of 5 cm in the photoreactor. The kinetic behaviour of the process (60 mg Fe{sup 2+} L{sup -1}) comprises a slow initial reaction, followed by a first-order kinetics (k = 0.020 LkJ{sub UV}{sup -1}, r{sub 0} = 12.5 mg kJ{sub UV}{sup -1}), with H{sub 2}O{sub 2} consumption rate of k{sub H2O2} = 3.0 mmol H{sub 2}O{sub 2}kJ{sub UV}{sup -1}, and finally, the third reaction period, characterized by a lower DOC degradation and H{sub 2}O{sub 2} consumption until the end of the experiment, presumably due to the formation of low-molecular-weight carboxylic groups. A total of 306 mM of H{sub 2}O{sub 2} was consumed for achieving 86% mineralization (DOC{sub final} = 134 mg L{sup -1}) and 94% aromatic content reduction after 110 kJ{sub UV} L{sup -1}, using an initial iron concentration of 60 mg Fe{sup 2+} L{sup -1}. (author)« less

  16. Influence of dihydroxybenzenes on paracetamol and ciprofloxacin degradation and iron(III) reduction in Fenton processes.

    PubMed

    Costa E Silva, Beatriz; de Lima Perini, João Angelo; Nogueira, Raquel F Pupo

    2017-03-01

    The degradation of paracetamol (PCT) and ciprofloxacin (CIP) was compared in relation to the generation of dihydroxylated products, Fe(III) reduction and reaction rate in the presence of dihydroxybenzene (DHB) compounds, or under irradiation with free iron (Fe 3+ ) or citrate complex (Fecit) in Fenton or photo-Fenton process. The formation of hydroquinone (HQ) was observed only during PCT degradation in the dark, which increased drastically the rate of PCT degradation, since HQ formed was able to reduce Fe 3+ and contributed to PCT degradation efficiency. When HQ was initially added, PCT and CIP degradation rate in the dark was much higher in comparison to the absence of HQ, due to the higher and faster formation of Fe 2+ at the beginning of reaction. In the absence of HQ, no CIP degradation was observed; however, when HQ was added after 30 min, the degradation rate increased drastically. Ten PCT hydroxylated intermediates were identified in the absence of HQ, which could contribute for Fe(III) reduction and consequently to the degradation in a similar way as HQ. During CIP degradation, only one product of hydroxyl radical attack on benzene ring and substitution of the fluorine atom was identified when HQ was added to the reaction medium.

  17. Application of the response surface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction.

    PubMed

    Colombo, Renata; Ferreira, Tanare C R; Alves, Suellen A; Carneiro, Renato L; Lanza, Marcos R V

    2013-03-30

    Lambda-cyhalothrin is a potent pyrethroid insecticide used widely in pest management. Detectable levels of the pyrethroid in agricultural watersheds are potentially toxic to aquatic organisms. There is little information in the scientific literature about degradation in aqueous media of the Lambda-cyhalothrin by Advanced Oxidative Process. A mathematical approach for the degradation of this compound has not yet been fully explored… The Central composite design (CCD) and response surface method (RSM) were applied to evaluate and optimize the interactive effects of two operating variables. The initial dosages of H2O2 and Fe(2+) on photo-Fenton degradation of an aqueous solution of Lambda-cyhalothrin in a recirculation flow-through UV photoreactor were used. The remaining concentration of Lambda-cyhalothrin (y1) and the percentage removal of total organic carbon (y2) were the monitored factors since they are dependent parameters of y1 and y2. According to analysis of variances (ANOVA) results, two proposed models can be used to navigate the design space with regression coefficient R(2) - 0.834 and 0.843 for y1 and y2, respectively. A multi-response optimization procedure, based on the global desirability of the factors, was performed to establish the best concentrations of hydrogen peroxide and ferrous sulfate that would allow the most efficient degradation of Lambda-cyhalothrin concomitant with a maximal removal of total organic carbon. The global desirability surface revealed that 0.295 mmol L(-1) of ferrous sulfate and 3.85 mmol L(-1) of hydrogen peroxide were close to the optimum conditions to satisfy both factors simultaneously using minimal amounts of reagents. These photo-Fenton conditions promoted 100% of Lambda-cyhalothrin degradation and 79.83% TOC removal (mineralization) in 120 min of reaction time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation.

    PubMed

    Boruah, Purna K; Sharma, Bhagyasmeeta; Karbhal, Indrapal; Shelke, Manjusha V; Das, Manash R

    2017-03-05

    Synthesis of easily separable and eco-friendly efficient catalyst with both photocatalytic and photo-Fenton degradation properties is of great importance for environment remediation application. Herein, ammonia-modified graphene (AG) sheets decorated with Fe 3 O 4 nanoparticles (AG/Fe 3 O 4 ) as a magnetically recoverable photocatalyst by a simple in situ solution chemistry approach. First, we have functionalized graphene oxide (GO) sheets by amide functional group and then Fe 3 O 4 nanoparticles (NPs) are doped onto the functionalized GO surface. The AG/Fe 3 O 4 nanocomposite showed efficient photocatalytic activity towards degradation of phenol (92.43%), 2-nitrophenol (2-NP) (98%) and 2-chlorophenol (2-CP) (97.15%) within 70-120min. Consequently, in case of photo-Fenton degradation phenomenon, 93.56% phenol, 98.76% 2-NP and 98.06% of 2-CP degradation were achieved within 50-80min using AG/Fe 3 O 4 nanocomposite under sunlight irradiation. The synergistic effect between amide functionalized graphene and Fe 3 O 4 nanoparticles (NPs) enhances the photocatalytic activity by preventing the recombination rate of electron-hole-pair in Fe 3 O 4 NPs. Furthermore, the remarkable reusability of the AG/Fe 3 O 4 nanocomposite was observed up to ten cycles during the photocatalytic degradation of these phenolic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector.

    PubMed

    Isarain-Chávez, Eloy; Rodríguez, Rosa María; Cabot, Pere Lluís; Centellas, Francesc; Arias, Conchita; Garrido, José Antonio; Brillas, Enric

    2011-08-01

    The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L⁻¹ of total organic carbon of each drug in 0.1 M Na₂SO₄ with 0.5 mM Fe²⁺ of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single Pt/carbon felt (CF) and boron-doped diamond (BDD)/air-diffusion electrode (ADE) cells and combined Pt/ADE-Pt/CF and BDD/ADE-Pt/CF cells were used. SPEF treatments were more potent with the latter cell, yielding 95-97% mineralization with 100% of maximum current efficiency and energy consumptions of about 0.250 kWh g TOC⁻¹. However, the Pt/ADE-Pt/CF cell gave much lower energy consumptions of about 0.080 kWh g TOC⁻¹ with slightly lower mineralization of 88-93%, then being more useful for its possible application at industrial level. The EF method led to a poorer mineralization and was more potent using the combined cells by the additional production of hydroxyl radicals (•OH) from Fenton's reaction from the fast Fe²⁺ regeneration at the CF cathode. Organics were also more rapidly destroyed at BDD than at Pt anode. The decay kinetics of beta-blockers always followed a pseudo first-order reaction, although in SPEF, it was accelerated by the additional production of •OH from the action of UV light of solar irradiation. Aromatic intermediates were also destroyed by hydroxyl radicals. Ultimate carboxylic acids like oxalic and oxamic remained in the treated solutions by EF, but their Fe(III) complexes were photolyzed by solar irradiation in SPEF, thus explaining its higher oxidation power. NO₃⁻ was the predominant inorganic ion lost in EF, whereas the SPEF process favored the production of NH₄⁺ ion and volatile N-derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C3N4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm.

    PubMed

    Li, Yunxiang; Ouyang, Shuxin; Xu, Hua; Wang, Xin; Bi, Yingpu; Zhang, Yuanfang; Ye, Jinhua

    2016-10-03

    Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g-C 3 N 4 , a solid-gas interfacial Fenton reaction is coupled into alkalinized g-C 3 N 4 -based photocatalyst to effectively convert photocatalytic generation of H 2 O 2 into oxygen-related radicals. This system includes light energy as power, alkalinized g-C 3 N 4 -based photocatalyst as an in situ and robust H 2 O 2 generator, and surface-decorated Fe 3+ as a trigger of H 2 O 2 conversion, which attains highly efficient and universal activity for photodegradation of volatile organic compounds (VOCs). Taking the photooxidation of isopropanol as model reaction, this system achieves a photoactivity of 2-3 orders of magnitude higher than that of pristine g-C 3 N 4 , which corresponds to a high apparent quantum yield of 49% at around 420 nm. In-situ electron spin resonance (ESR) spectroscopy and sacrificial-reagent incorporated photocatalytic characterizations indicate that the notable photoactivity promotion could be ascribed to the collaboration between photocarriers (electrons and holes) and Fenton process to produce abundant and reactive oxygen-related radicals. The strategy of coupling solid-gas interfacial Fenton process into semiconductor-based photocatalysis provides a facile and promising solution to the remediation of air pollution via solar energy.

  1. Photo-oxidation of cork manufacturing wastewater.

    PubMed

    Silva, Carla A; Madeira, Luis M; Boaventura, Rui A; Costa, Carlos A

    2004-04-01

    Several photo-activated processes have been investigated for oxidation of a cork manufacturing wastewater. A comparative activity study is made between different homogeneous (H2O2/UV-Vis and H2O2/Fe2+/UV-Vis) and heterogeneous (TiO2/UV-Vis and TiO2/H2O2/UV-Vis) systems, with degradation performances being evaluated in terms of total organic carbon (TOC) removal. Results obtained in a batch photo-reactor show that photo-catalysis with TiO2 is not suitable for this kind of wastewater while the H2O2/UV-Vis oxidation process, for which the effect of some operating conditions was investigated, allows to remove 39% of TOC after 4 h of operation (for C(H2O2)=0.59 M, pH=10 and T=35 degrees C). The combined photo-activated process, i.e., using both TiO2 and H2O2, yields an overall TOC decrease of 46% (for C(TiO2)=1.0 gl(-1)). The photo-Fenton process proved to be the most efficient, proceeds at a much higher oxidation rate and allows to achieve 66% mineralization in just 10 min of reaction time (for C(H2O2)=0.31 M, T=30 degrees C, Fe2+:H2O2=0.12 (mol) and pH=3.2).

  2. Photocatalytic degradation of molinate in aqueous solutions.

    PubMed

    Bizani, E; Lambropoulou, D; Fytianos, K; Poulios, I

    2014-11-01

    In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron's and electron scavenger's concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes.

  3. The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOP.

    PubMed

    Mustafa, Yasmen A; Jaid, Ghydaa M; Alwared, Abeer I; Ebrahim, Mothana

    2014-06-01

    The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe(+2)) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe(+2), pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2 = 400 mg/L, Fe(+2) = 40 mg/L, pH = 3, irradiation time = 150 min, and temperature = 30 °C) for 1,000 mg/L oil load was found to be 72%. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R (2) = 0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe(+2), pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6%.

  4. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review.

    PubMed

    Matafonova, Galina; Batoev, Valeriy

    2018-04-01

    Over the last decade, ultraviolet light-emitting diodes (UV LEDs) have attracted considerable attention as alternative mercury-free UV sources for water treatment purposes. This review is a comprehensive analysis of data reported in recent years (mostly, post 2014) on the application of UV LED-induced advanced oxidation processes (AOPs) to degrade organic pollutants, primarily dyes, phenols, pharmaceuticals, insecticides, estrogens and cyanotoxins, in aqueous media. Heterogeneous TiO 2 -based photocatalysis in lab grade water using UVA LEDs is the most frequently applied method for treating organic contaminants. The effects of controlled periodic illumination, different TiO 2 -based nanostructures and reactor types on degradation kinetics and mineralization are discussed. UVB and UVC LEDs have been used for photo-Fenton, photo-Fenton-like and UV/H 2 O 2 treatment of pollutants, primarily, in model aqueous solutions. Notably, UV LED-activated persulfate/peroxymonosulfate processes were capable of providing degradation in DOC-containing waters. Wall-plug efficiency, energy-efficiency of UV LEDs and the energy requirements in terms of Electrical Energy per Order (E EO ) are discussed and compared. Despite the overall high degradation efficiency of the UV LED-based AOPs, practical implementation is still limited and at lab scale. More research on real water matrices at more environmentally relevant concentrations, as well as an estimation of energy requirements providing fluence-based kinetic data are required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Treatment of amoxicillin by O3/Fenton process in a rotating packed bed.

    PubMed

    Li, Mo; Zeng, Zequan; Li, Yingwen; Arowo, Moses; Chen, Jianfeng; Meng, Hong; Shao, Lei

    2015-03-01

    In this study, simulated amoxicillin wastewater was treated by the O3/Fenton process in a rotating packed bed (RPB) and the results were compared with the Fenton process and the O3 followed by Fenton (O3 + Fenton) process. The chemical oxygen demand (COD) removal rate and the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD5/COD) in the O3/Fenton process were approximately 17% and 26%, respectively, higher than those in the O3 + Fenton process with an initial pH of 3. The COD removal rate of the amoxicillin solution reached maximum at the Fe(II) concentration of 0.6 mM, temperature of 25 °C, rotation speed of 800 rpm and initial pH of 3. The BOD5/COD of the amoxicillin solution increased from 0 to 0.38 after the solution was treated by the O3/Fenton process. Analysis of the intermediates indicated that the pathway of amoxicillin degradation in the O3/Fenton process was similar to that in the O3 + Fenton process. Contrast experiment results showed that amoxicillin degradation was significantly intensified in the RPB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box-Behnken design and ecotoxicity tests.

    PubMed

    Fernandes, Neemias Cintra; Brito, Lara Barroso; Costa, Gessyca Gonçalves; Taveira, Stephânia Fleury; Cunha-Filho, Marcílio Sérgio Soares; Oliveira, Gisele Augusto Rodrigues; Marreto, Ricardo Neves

    2018-06-06

    The conventional treatment of textile effluents is usually inefficient in removing azo dyes and can even generate more toxic products than the original dyes. The aim of the present study was to optimize the process factors in the degradation of Disperse Red 343 by Fenton and Fenton-like processes, as well as to investigate the ecotoxicity of the samples treated under optimized conditions. A Box-Behnken design integrated with the desirability function was used to optimize dye degradation, the amount of residual H 2 O 2 [H 2 O 2residual ], and the ecotoxicity of the treated samples (lettuce seed, Artemia salina, and zebrafish in their early-life stages). Dye degradation was affected only by catalyst concentration [Fe] in both the Fenton and Fenton-like processes. In the Fenton reaction, [H 2 O 2residual ] was significantly affected by initial [H 2 O 2 ] and its interaction with [Fe]; however, in the Fenton-like reaction, it was affected by initial [H 2 O 2 ] only. A. salina mortality was affected by different process factors in both processes, which suggests the formation of different toxic products in each process. The desirability function was applied to determine the best process parameters and predict the responses, which were confirmed experimentally. Optimal conditions facilitated the complete degradation of the dye without [H 2 O 2residual ] or toxicity for samples treated with the Fenton-like process, whereas the Fenton process induced significant mortality for A. salina. Results indicate that the Fenton-like process is superior to the Fenton reaction to degrade Disperse Red 343. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: transformation products and ecotoxicity evaluation.

    PubMed

    Michael, I; Hapeshi, E; Osorio, V; Perez, S; Petrovic, M; Zapata, A; Malato, S; Barceló, D; Fatta-Kassinos, D

    2012-07-15

    The pilot-scale solar degradation of trimethoprim (TMP) in different water matrices (demineralized water: DW, simulated natural freshwater: SW; simulated wastewater: SWW; and real effluent: RE) was investigated in this study. DOC removal was lower in the case of SW compared to DW, which can be attributed to the presence of inorganic anions which may act as scavengers of the HO·. Furthermore, the presence of organic carbon and higher salt content in SWW and RE led to lower mineralization per dose of hydrogen peroxide compared to DW and SW. Toxicity assays in SWW and RE were also performed indicating that toxicity is attributed to the compounds present in RE and their by-products formed during solar Fenton treatment and not to the intermediates formed by the oxidation of TMP. A large number of compounds generated by the photocatalytic transformation of TMP were identified by UPLC-QToF/MS. The degradation pathway revealed differences among the four matrices; however hydroxylation, demethylation and cleavage reactions were observed in all matrices. To the best of our knowledge this is the first time that TMP degradation products have been identified by adopting a solar Fenton process at a pilot-scale set-up, using four different aqueous matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Advanced oxidation of Reactive Blue 181 solution: a comparison between Fenton and Sono-Fenton process.

    PubMed

    Basturk, Emine; Karatas, Mustafa

    2014-09-01

    In this work, the decolorization of C.I. Reactive Blue 181 (RB181), an anthraquinone dye, by Ultrasound and Fe(2+) H2O2 processes was investigated. The effects of operating parameters, such as Fe(2+) dosage, H2O2 dosage, pH value, reaction time and temperature were examined. Process optimisation [pH, ferrous ion (Fe(2+)), hydrogen peroxide (H2O2), and reaction time], kinetic studies and their comparison were carried out for both of the processes. The Sono-Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35-kHz frequency. The optimum conditions were determined as [Fe(2+)]=30 mg/L, [H2O2]=50 mg/L and pH=3 for the Fenton process and [Fe(2+)]=10 mg/L, [H2O2]=40 mg/L and pH=3 for the Sono-Fenton process. The colour removals were 88% and 93.5% by the Fenton and Sono-Fenton processes, respectively. The highest decolorization was achieved by the Sono-Fenton process because of the production of some oxidising agents as a result of sonication. The paper also discussed kinetic parameters. The decolorization kinetic of RB181 followed pseudo-second-order reaction (Fenton study) and Behnajady kinetics (Sono-Fenton study). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration.

    PubMed

    Villegas-Guzman, Paola; Silva-Agredo, Javier; Florez, Oscar; Giraldo-Aguirre, Ana L; Pulgarin, Cesar; Torres-Palma, Ricardo A

    2017-04-01

    To provide new insights toward the selection of the most suitable AOP for isoxazolyl penicillins elimination, the degradation of dicloxacillin, a isoxazolyl penicillin model, was studied using different advanced oxidation processes (AOPs): ultrasound (US), photo-Fenton (UV/H 2 O 2 /Fe 2+ ) and TiO 2 photocatalysis (UV/TiO 2 ). Although all processes achieved total removal of the antibiotic and antimicrobial activity, and increased the biodegradability level of the solutions, significant differences concerning the mineralization extend, the pH of the solution, the pollutant concentration and the chemical nature of additives were found. UV/TiO 2 reached almost complete mineralization; while ∼10% mineralization was obtained for UV/H 2 O 2 /Fe 2+ and practically zero for US. Effect of initial pH, mineral natural water and the presence of organic (glucose, 2-propanol and oxalic acid) were then investigated. UV/H 2 O 2 /Fe 2+ and US processes were improved in acidic media, while natural pH favored UV/TiO 2 system. According to both the nature of the added organic compound and the process, inhibition, no effect or enhancement of the degradation rate was observed. The degradation in natural mineral water showed contrasting results according to the antibiotic concentration: US process was enhanced at low concentration of dicloxacillin followed by detrimental effects at high substrate concentrations. A contrary effect was observed during photo-Fenton, while UV/TiO 2 was inhibited in all of cases. Finally, a schema illustrating the enhancement or inhibiting effects of water matrix is proposed as a tool for selecting the best process for isoxazolyl penicillins degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Catalytic Properties of Fe-containing Layered Aluminosilicates in Photo-oxidation of Dye “Methyl Green”

    NASA Astrophysics Data System (ADS)

    Shadrina, O. A.; Dashinamzhilova, E. Ts; Khankhasaeva, S. Ts

    2017-11-01

    The iron-containing materials with an iron content of 40 mg/g and 52.5 mg/g, a specific surface area of 107 m2/g and 96 m2/g are developed on the basis of natural layered aluminosilicate (montmorillonite) and polyhydroxo complexes of iron. It is shown that the materials exhibit high catalytic activity in the photo-oxidation of dye “Methyl Green”. The influence of physicochemical parameters (loading of the catalyst, a ratio of initial concentrations [H2O2]/[MG] on the efficiency of the dye photo-oxidation was established. The optimum conditions, which made it possible to achieve high mineralization and 100 % the dye oxidation efficiency were determined: the catalyst loading equal to 1.0 g/l and the ratio of [H2O2] and [MG] equal to stoichiometric ratio (55 mol/mol). The decrease of the total organic carbon content after photo-oxidation reaction was 56.5%. The average value of the quantum yield of the dye photo-oxidation was to 0.30 mol/Einstein. The results of the conducted research show that the developed iron-containing materials are the promising catalysts for photo-Fenton processes of oxidative degradation of organic compounds. The materials are of interest for use in wastewater treatment processes from toxic organic pollutants.

  11. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.

    PubMed

    Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica

    2016-01-01

    Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.

  12. Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction.

    PubMed

    Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva

    2014-01-01

    The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry.

  13. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  14. Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids.

    PubMed

    MacAdam, Jitka; Ozgencil, Haci; Autin, Olivier; Pidou, Marc; Temple, Clive; Parsons, Simon; Jefferson, Bruce

    2012-12-01

    The treatment of spent metalworking fluids (MWFs) is difficult due to their complex and variable composition. Small businesses often struggle to meet increasingly stringent legislation and rising costs as they need to treat this wastewater on site annually over a short period. Larger businesses that treat their wastewater continuously can benefit from the use of biological processes, although new MWFs designed to resist biological activity represent a challenge. A three-stage treatment is generally applied, with the oil phase being removed first, followed by a reduction in COD loading and then polishing of the effluent's quality in the final stage. The performance of advanced oxidation processes (AOPs), which could be of benefit to both types of businesses was studied. After assessing the biodegradability of spent MFW, different AOPs were used (UV/H2O2, photo-Fenton and UV/TiO2) to establish the treatability of this wastewater by hydroxyl radicals (*OH). The interactions of both the chemical and biological treatments were also investigated. The wastewater was found to be readily biodegradable in the Zahn-Wellens test with 69% COD and 74% DOC removal. The UV/TiO2 reactor was found to be the cheapest option achieving a very good COD removal (82% at 20 min retention time and 10 L min(-1) aeration rate). The photo-Fenton process was found to be efficient in terms of degradation rate, achieving 84% COD removal (1 M Fe2+, 40 M H2O2, 20.7 J cm(-2), pH 3) and also improving the wastewater's biodegradability. The UV/H202 process was the most effective in removing recalcitrant COD in the post-biological treatment stage.

  15. Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water.

    PubMed

    Vidal, Jorge; Huiliñir, Cesar; Santander, Rocío; Silva-Agredo, Javier; Torres-Palma, Ricardo A; Salazar, Ricardo

    2018-05-17

    Ampicillin (AMP) is an antibiotic widely used in hospitals and veterinary clinics around the world for treating infections caused by bacteria. Therefore, it is common to find traces of this antibiotic in wastewater from these entities. In this work, we studied the mineralization of this antibiotic in solution as well as the elimination of its antimicrobial activity by comparing different electrochemical advanced oxidation processes (EAOPs), namely electro-oxidation with hydrogen peroxide (EO-H 2 O 2 ), electro-Fenton (EF), and photo electro-Fenton (PEF). With PEF process, a high degradation, mineralization, and complete elimination of antimicrobial activity were achieved in 120-min electrolysis with high efficiency. In the PEF process, fast mineralization rate is caused by hydroxyl radicals (·OH) that are generated in the bulk, on the anode surface, by UV radiation, and most importantly, by the direct photolysis of complexes formed between Fe 3+ and some organic intermediates. Moreover, some products and intermediates formed during the degradation of the antibiotic Ampicillin, such as inorganic ions, carboxylic acids, and aromatic compounds, were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO 2 .

  16. Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: Effect of system parameters and synergistic effect study.

    PubMed

    Lin, Meiqing; Ning, Xun-an; An, Taicheng; Zhang, Jianhao; Chen, Changmin; Ke, Yaowei; Wang, Yujie; Zhang, Yaping; Sun, Jian; Liu, Jingyong

    2016-04-15

    To establish an efficient oxidation process for the degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge, the effects of various operating parameters were optimized during the ultrasound process, Fenton process and the combined ultrasound-Fenton process. The results showed that the ultrasonic density of 1.80w/cm(3), both H2O2 and Fe(2+) dosages of 140mmol/L and pH 3 were favorable conditions for the degradation of PAHs. The degradation efficiency of high molecular weight PAHs was close to or even higher than that of light molecular weight PAHs. The highest degradation efficiencies of Σ16 PAHs were obtained within 30min in the order of: Fenton (83.5%) >ultrasound-Fenton (75.5%) >ultrasound (45.5%), then the efficiencies were decreased in the other of: ultrasound-Fenton (73.0%) >Fenton (70.3%) >ultrasound (41.4%) in 60min. The extra PAHs were released from the intracellular substances and the cavities of sludge due to the disruption of sludge during the oxidation process. Also, the degradation of PAHs could be inhibited by the other organic matter in the sludge. The combined ultrasound-Fenton process showed more efficient than both ultrasound process and Fenton process not only in the surface of sludge but also in the sludge interior. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Removal of Nonylphenol by using Fe-doped NaBiO3 compound as an efficient visible-light-heterogeneous Fenton-like catalyst.

    PubMed

    An, Junjian; Huang, Mengxuan; Wang, Mengling; Chen, Jiali; Wang, Peng

    2018-04-12

    Fe-doped NaBiO 3 nanoscaled compounds were prepared by hydrothermal method and evaluated as a highly efficient photo-Fenton-like catalyst under visible light irradiation. The Fe-doped NaBiO 3 compound had a specific surface area of 41.42 m 2  g -1 , which is considerably larger than that of NaBiO 3 nanoparticles (28.81 m 2  g -1 ). The compound exhibited an excellent visible light-Fenton-like catalysis activity, which is influenced by the iron content of the compound and the pH value of the solution. Under the optimal conditions, the Fe-doped NaBiO 3 compound led to fast degradation of Nonylphenol with an apparent rate constant of 5.71 × 10 -2 min -1 , which was 8.23-fold of that achieved by using NaBiO 3 . The significantly enhanced visible light-Fenton-like catalytic property of the Fe-doped NaBiO 3 was attributed to the large surface area and the high adsorption capacity of the compound, and the Fenton catalytic ability of iron in the compound.

  18. Degradation of dyes from aqueous solution by Fenton processes: a review.

    PubMed

    Nidheesh, Puthiya Veetil; Gandhimathi, Rajan; Ramesh, Srikrishnaperumal Thanga

    2013-04-01

    Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as "Fenton circle". This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H2O2 concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal.

  19. Enhanced sonochemical degradation of azure B dye by the electroFenton process.

    PubMed

    Martínez, Susana Silva; Uribe, Edgar Velasco

    2012-01-01

    The degradation of azure B dye (C15H16ClN3S; AB) has been studied by Fenton, sonolysis and sono-electroFenton processes employing ultrasound at 23 kHz and the electrogeneration of H2O2 at the reticulated vitreous carbon electrode. It was found that the dye degradation followed apparent first-order kinetics in all the degradation processes tested. The rate constant was affected by both the pH of the solution and initial concentration of Fe2+, with the highest degradation obtained at pH between 2.6 and 3. The first-order rate constant decreased in the following order: sono-electroFenton>Fenton>sonolysis. The rate constant for AB degradation by sono-electroFenton is ∼10-fold that of sonolysis and ∼2-fold the one obtained by Fenton under silent conditions. The chemical oxygen demand was abated ∼68% and ∼85% by Fenton and sono-electroFenton respectively, achieving AB concentration removal over 90% with both processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Magnetic diatomite(Kieselguhr)/Fe2O3/TiO2 composite as an efficient photo-Fenton system for dye degradation

    NASA Astrophysics Data System (ADS)

    Barbosa, Isaltino A.; Zanatta, Lucas D.; Espimpolo, Daniela M.; da Silva, Douglas L.; Nascimento, Leandro F.; Zanardi, Fabrício B.; de Sousa Filho, Paulo C.; Serra, Osvaldo A.; Iamamoto, Yassuko

    2017-10-01

    We explored the potential use of diatomite/Fe2O3/TiO2 composites as catalysts for heterogeneous photo-Fenton degradation of methylene blue under neutral pH. Such system consists in magnetic solids synthesized by co-precipitation with Fe2+/Fe3+ in the presence of diatomite, followed by impregnation of TiO2. The results showed that the optimal amount of the catalyst was 2.0 g L-1, since aggregation phenomena become significant above this concentration, which decreases the photodegradation activity. The catalyst is highly efficient in the degradation of methylene blue and shows an easy recovery by an external magnetic field. This allows for an effective catalyst reuse without significant loss of activity in catalytic cycles, which is a highly interesting prospect for recyclable dye degradation systems.

  1. Effects of Solvent Diols on the Synthesis of ZnFe2O4 Particles and Their Use as Heterogeneous Photo-Fenton Catalysts

    PubMed Central

    Anchieta, Chayene Gonçalves; Cancelier, Adriano; Mazutti, Marcio Antonio; Jahn, Sérgio Luiz; Kuhn, Raquel Cristine; Gündel, Andre; Chiavone-Filho, Osvaldo; Foletto, Edson Luiz

    2014-01-01

    A solvothermal method was used to prepare zinc ferrite spinel oxide (ZnFe2O4) using ethylene glycol and 1,4 butanediol as solvent diols, and the influence of diols on the physical properties of ZnFe2O4 particles was investigated. The produced particles were characterized by X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption isotherms, and the catalytic activity for the organic pollutant decomposition by heterogeneous photo-Fenton reaction was investigated. Both solvents produced particles with cubic spinel structure. Microporous and mesoporous structures were obtained when ethylene glycol and 1,4 butanediol were used as diols, respectively. A higher pore volume and surface area, as well as a higher catalytic activity for the pollutant degradation were found when 1,4 butanediol was used as solvent. PMID:28788191

  2. Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2017-05-01

    The treatment of a naphthenic acid model compound, cyclohexanoic acid, with classical Fenton, UV-H 2 O 2 , UV-Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-NTA-Fenton, and UV photolysis of Fe-NTA processes at pHs 3 and 8 was investigated. At 1.47 mM H 2 O 2 , 0.089 mM Fe, and 0.18 mM NTA, the UV-NTA-Fenton process at pH 3 exhibited the highest H 2 O 2 decomposition (100% in 25 min), CHA removal (100% in 12 min) with a rate constant of 0.27 ± 0.025 min -1 , and NTA degradation (100% in 6 min). Due to the formation of H 2 O 2 -Fe(III)NTA adduct, the total Fe concentration in the UV-NTA-Fenton system (0.063 mM at the end of the reaction) at pH 8 was much higher than that in the UV photolysis of Fe(III)NTA process (0.024 mM). The co-complexing effect of borate buffer helped to keep iron soluble; however, it imposed a negative influence on the CHA degradation in the UV-NTA-Fenton process (68% CHA removal in 60 min in the borate buffer compared to 92% in MilliQ water). The results demonstrated that the most efficient process for the CHA degradation under the experimental conditions was the UV-NTA-Fenton process at pH 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Solar treatment of cork boiling and bleaching wastewaters in a pilot plant.

    PubMed

    Vilar, Vítor J P; Maldonado, Manuel I; Oller, I; Malato, Sixto; Boaventura, Rui A R

    2009-09-01

    This paper reports on cork boiling and bleaching wastewaters treatment by solar photocatalytic processes, TiO(2)/UV and Fe(2+)/H(2)O(2)/UV (TiO(2)-only for bleaching wastewater), in a pilot plant with compound parabolic collectors. The photo-Fenton reaction (k=0.12L/kJ(UV), r(0)=59.4 mg/kJ(UV)) is much more efficient that TiO(2) photocatalysis and TiO(2)+S(2)O(8)(2-) (k=0.0024 L/kJ(UV), r(0)=1.36 mg/kJ(UV)), leading to 94% mineralization of the bleaching wastewater after 31.5 kJ(UV)/L, consuming 77.1mM of H(2)O(2) (3.0 mmol/kJ(UV)) and using 20 mg/L of iron. For the cork boiling wastewater, after a slow initial reaction rate, the DOC degradation curve shows a first-order kinetics behaviour (k=0.015 L/kJ(UV), r(0)=20.8 mg/kJ(UV)) until 173 kJ(UV)/L ( approximately 300 mgC/L). According to the average oxidation state (AOS), toxicity profiles, respirometry and kinetic results obtained in two solar CPCs plants, the optimal energy dose estimated for phototreatment to reach a biodegradable effluent is 15 kJ(UV)/L and 114 kJ(UV)/L, consuming 33 mM and 151 mM of H(2)OT:/PGN/ELSEVIER/WR/web/00007490/(2), achieving almost 49% and 48% mineralization of the wastewaters, respectively for the cork bleaching and boiling wastewaters.

  4. Removal of phosphonates from industrial wastewater with UV/FeII, Fenton and UV/Fenton treatment.

    PubMed

    Rott, Eduard; Minke, Ralf; Bali, Ulusoy; Steinmetz, Heidrun

    2017-10-01

    Phosphonates are an important group of phosphorus-containing compounds due to their increasing industrial use and possible eutrophication potential. This study involves investigations into the methods UV/Fe II , Fenton and UV/Fenton for their removal from a pure water matrix and industrial wastewaters. It could be shown that the degradability of phosphonates by UV/Fe II (6 kWh/m 3 ) in pure water crucially depended on the pH and was higher the less phosphonate groups a phosphonate contains. The UV/Fe II method is recommended in particular for the treatment of concentrates with nitrogen-free phosphonates, only little turbidity and a low content of organic compounds. Using Fenton reagent, the degradation of polyphosphonates was relatively weak in a pure water matrix (<20% transformation to o-PO 4 3- ). By means of the Photo-Fenton method (6 kWh/m 3 ), those phosphonates with the smallest numbers of phosphonate groups were easier degraded as well at pH 3.5 in a pure water matrix (o-PO 4 3- formation rates of up to 80%). Despite an incomplete transformation of organically bound phosphorus to o-PO 4 3- with Fenton reagent in an organically highly polluted wastewater (max. 15%), an almost total removal of the total P occurred. The most efficient total P elimination rates were achieved in accordance with the following Fenton implementation: reaction → sludge separation (acidic) → neutralization of the supernatant → sludge separation (neutral). Accordingly, a neutralization directly after the reaction phase led to a lower total P removal extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. VUV/UV light inducing accelerated phenol degradation with a low electric input† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra26043h Click here for additional data file.

    PubMed Central

    Li, Mengkai; Wen, Dong

    2017-01-01

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4–6 min. The HO˙ and HO2˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H2O2 and Fe3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H2O2 or Fe3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants. PMID:28496972

  6. In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology.

    PubMed

    Peralta-Hernández, J M; Meas-Vong, Yunny; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A

    2006-05-01

    In this work, the design and construction of an annular tube reactor for the electrochemical and photo-electrochemical in situ generation of H2O2 are described. By cathodic reduction of dissolved oxygen and the coupled oxidation of water at a UV-illuminated nanocrystalline-TiO2 semiconductor anode, it was found that the electrochemically generated H2O2 can be employed to readily oxidize the model compound Direct Yellow-52 in dilute acidic solution at high rates in the presence of small quantities of dissolved iron(II). Although, the model organic compound is chemically stable under UV radiation, its electrochemical oxidation rate increases substantially when the semiconductor anode is illuminated as compared to the same processes carried out in the dark.

  7. Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts.

    PubMed

    Quadrado, Rafael F N; Fajardo, André R

    2017-12-01

    The efficiency of Fenton and Fenton-like processes can be seriously affected by the continuous loss of iron ions and by the formation of solid sludge. Here, alginate (Alg) films were synthesized to stabilize iron ions (Fe 2+ and Fe 3+ ) and to enhance their catalytic activities towards the decolorization of methyl orange via heterogeneous Fenton and Fenton-like processes. Iron ions were ionically bond to the Alg molecules resulting in a three-dimensional network with specific structural and morphological features according to the valence states of iron. Our results demonstrated that both Alg-Fe 2+ and Alg-Fe 3+ films show highlighted catalytic activity for the decolorization of MO and high decolorization rates. Reuse experiments demonstrated that both films could be employed in at least five consecutive decolorization processes without losing their catalytic efficiency or stability. Taken together, our findings reveal that the Alg-Fe 2+ and Alg-Fe 3+ films may be suitable low-cost catalysts in heterogeneous Fenton and Fenton-like processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes.

    PubMed

    Arimi, Milton M; Zhang, Yongjun; Namango, Saul S; Geißen, Sven-Uwe

    2016-03-01

    Anaerobic digestion is used to treat effluents with a lot of organics, such as molasses distillery wastewater (MDW) which is the effluent of bioethanol production from molasses. The raw MDW requires a lot of dilution water before biodigestion, while the digested MDW has high level of recalcitrants which are problematic for its discharge. This study investigated ferric coagulation, Fenton, Fenton-like (with ferric ions as catalyst) processes and their combinations on the biodegradability of digested MDW. The Fenton and Fenton-like processes after coagulation increased the MDW biodegradability defined by (BOD5/COD) from 0.07 to (0.4-0.6) and saved 50% of H2O2 consumed in the classic Fenton process. The effluent from coagulation coupled to a Fenton-like process was used as dilution water for the raw MDW before the anaerobic digestion. The process was stable with volumetric loading of approx. 2.7 g COD/L/d. It resulted in increased overall biogas recovery and significantly decreased the demand for the dilution water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate.

    PubMed

    Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V

    2018-03-15

    Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions.

    PubMed

    Ballesteros Martín, M M; Casas López, J L; Oller, I; Malato, S; Sánchez Pérez, J A

    2010-09-01

    Four biodegradability tests (Pseudomonas putida bioassay, Zahn-Wellens test, BOD5/COD ratio and respirometry assay) have been used to determine the biodegradability enhancement during the treatment of wastewater containing 200 mg L(-1) of dissolved organic carbon (DOC) of a five commercial pesticides mixture (Vydate, Metomur, Couraze, Ditumur and Scala) by an advanced oxidation process (AOP). A comparative study was carried out taking into account repeatability and precision of each biodegradability test. Solar photo-Fenton was the AOP selected for pesticide degradation up to three levels of mineralization: 20%, 40% and 60% of initial DOC. Intra- and interday precisions were evaluated conducting each biodegradability test by triplicate and they were applied three times on different dates over a period of three months. Fisher's least significant difference method was applied to the means, P. putida and Zahn-Wellens tests giving higher repeatability and precision. The P. putida test requires a shorter time to obtain reliable results using a standardized inoculum and constitutes a worthwhile alternative to estimate biodegradability in contrast to other less accurate or more time consuming methods. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell.

    PubMed

    de Luna, Mark Daniel G; Veciana, Mersabel L; Su, Chia-Chi; Lu, Ming-Chun

    2012-05-30

    Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box-Behnken design was used to determine the effects of initial Fe(2+) and H(2)O(2) concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe(2+) concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2014-01-01

    Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes.

    PubMed

    Rosales, Emilio; Anasie, Delia; Pazos, Marta; Lazar, Iuliana; Sanromán, M Angeles

    2018-05-01

    The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H 2 O 2 :Fe 2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H 2 O 2 :Fe 2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Simultaneous Removal of Thallium and EDTA by Fenton Process

    NASA Astrophysics Data System (ADS)

    Xu, Ruibing; Huang, Xuexia; Li, Huosheng; Su, Minhua; Chen, Diyun

    2018-01-01

    The wastewater containing heavy metals and organic pollutants is widely discharged from industries. Because of the coexistence of heavy metals and organic pollutants, the treatment of such wastewater is very difficult. Fenton process is considered to be one of the most effective approaches for the degradation of organic pollutants in aqueous solution due to the strong oxidative ability of hydroxyl radical which generated from the Fenton process. Apart from this, heavy metals are able to be removed during Fenton process owning to the synergic effect of coagulation and precipitation. In this work, pollutants of thallium and EDTA were successfully removed via the Fenton process. A series of single-factor experiments were designed and performed to achieve an optimal reaction conditions for the removal of both thallium and EDTA. Results showed that the removal efficiencies of thallium and TOC could be as high as 96.54% and 70.42%, respectively. The outcomes from our study demonstrate that Fenton process is a promising method for the purification of wastewater containing thallium and EDTA.

  15. Pretreatment of furfural industrial wastewater by Fenton, electro-Fenton and Fe(II)-activated peroxydisulfate processes: a comparative study.

    PubMed

    Yang, C W; Wang, D; Tang, Q

    2014-01-01

    The Fenton, electro-Fenton and Fe(II)-activated peroxydisulfate (PDS) processes have been applied for the treatment of actual furfural industrial wastewater in this paper. Through the comparative study of the three processes, a suitable pretreatment technology for actual furfural wastewater treatment was obtained, and the mechanism and dynamics process of this technology is discussed. The experimental results show that Fenton technology has a good and stable effect without adjusting pH of furfural wastewater. At optimal conditions, which were 40 mmol/L H₂O₂ initial concentration and 10 mmol/L Fe²⁺ initial concentration, the chemical oxygen demand (COD) removal rate can reach 81.2% after 90 min reaction at 80 °C temperature. The PDS process also has a good performance. The COD removal rate could attain 80.3% when Na₂S₂O₈ initial concentration was 4.2 mmol/L, Fe²⁺ initial concentration was 0.1 mol/L, the temperature remained at 70 °C, and pH value remained at 2.0. The electro-Fenton process was not competent to deal with the high-temperature furfural industrial wastewater and only 10.2% COD was degraded at 80 °C temperature in the optimal conditions (2.25 mA/cm² current density, 4 mg/L Na₂SO₄, 0.3 m³/h aeration rate). For the Fenton, electro-Fenton and PDS processes in pretreatment of furfural wastewater, their kinetic processes follow the pseudo first order kinetics law. The pretreatment pathways of furfural wastewater degradation are also investigated in this study. The results show that furfural and furan formic acid in furfural wastewater were preferentially degraded by Fenton technology. Furfural can be degraded into low-toxicity or nontoxic compounds by Fenton pretreatment technology, which could make furfural wastewater harmless and even reusable.

  16. High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Xijia; Sun, Haiming; Zhang, Lishu; Zhao, Lijun; Lian, Jianshe; Jiang, Qing

    2016-08-01

    A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.

  17. High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors.

    PubMed

    Yang, Xijia; Sun, Haiming; Zhang, Lishu; Zhao, Lijun; Lian, Jianshe; Jiang, Qing

    2016-08-16

    A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.

  18. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation.

    PubMed

    Al-Kahtani, Abdullah A; Abou Taleb, Manal F

    2016-05-15

    CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H2O2 concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10mM H2O2 at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    PubMed

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Comparison of Nitrilotriacetic Acid and [S,S]-Ethylenediamine-N,N'-disuccinic Acid in UV-Fenton for the Treatment of Oil Sands Process-Affected Water at Natural pH.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-10-04

    The application of UV-Fenton processes with two chelating agents, nitrilotriacetic acid (NTA) and [S,S]-ethylenediamine-N,N'-disuccinic acid ([S,S]-EDDS), for the treatment of oil sands process-affected water (OSPW) at natural pH was investigated. The half-wave potentials of Fe(III/II)NTA and Fe(III/II)EDDS and the UV photolysis of the complexes in Milli-Q water and OSPW were compared. Under optimum conditions, UV-NTA-Fenton exhibited higher efficiency than UV-EDDS-Fenton in the removal of acid extractable organic fraction (66.8% for the former and 50.0% for the latter) and aromatics (93.5% for the former and 74.2% for the latter). Naphthenic acids (NAs) removals in the UV-NTA-Fenton process (98.4%, 86.0%, and 81.0% for classical NAs, NAs + O (oxidized NAs with one additional oxygen atom), and NAs + 2O (oxidized NAs with two additional oxygen atoms), respectively) under the experimental conditions were much higher than those in the UV-H 2 O 2 (88.9%, 48.7%, and 54.6%, correspondingly) and NTA-Fenton (69.6%, 35.3%, and 44.2%, correspondingly) processes. Both UV-NTA-Fenton and UV-EDDS-Fenton processes presented promoting effect on the acute toxicity of OSPW toward Vibrio fischeri. No significant change of the NTA toxicity occurred during the photolysis of Fe(III)NTA; however, the acute toxicity of EDDS increased as the photolysis of Fe(III)EDDS proceeded. NTA is a much better agent than EDDS for the application of UV-Fenton process in the treatment of OSPW.

  1. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  2. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.

    PubMed

    Sirés, Ignasi; Brillas, Enric

    2012-04-01

    In the last years, the decontamination and disinfection of waters by means of direct or integrated electrochemical processes are being considered as a very appealing alternative due to the significant improvement of the electrode materials and the coupling with low-cost renewable energy sources. Many electrochemical technologies are currently available for the remediation of waters contaminated by refractory organic pollutants such as pharmaceutical micropollutants, whose presence in the environment has become a matter of major concern. Recent reviews have focused on the removal of pharmaceutical residues upon the application of other important methods like ozonation and advanced oxidation processes. Here, we present an overview on the electrochemical methods devised for the treatment of pharmaceutical residues from both, synthetic solutions and real pharmaceutical wastewaters. Electrochemical separation technologies such as membrane technologies, electrocoagulation and internal micro-electrolysis, which only isolate the pollutants from water, are firstly introduced. The fundamentals and experimental set-ups involved in technologies that allow the degradation of pharmaceuticals, like anodic oxidation, electro-oxidation with active chlorine, electro-Fenton, photoelectro-Fenton and photoelectrocatalysis among others, are further discussed. Progress on the promising solar photoelectro-Fenton process devised and further developed in our laboratory is especially highlighted and documented. The abatement of total organic carbon or reduction of chemical oxygen demand from contaminated waters allows the comparison between the different methods and materials. The routes for the degradation of the some pharmaceuticals are also presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The catalytic oxidation of malachite green by the microwave-Fenton processes.

    PubMed

    Zheng, Huaili; Zhang, Huiqin; Sun, Xiaonan; Zhang, Peng; Tshukudu, Tiroyaone; Zhu, Guocheng

    2010-01-01

    Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2+ concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of -dC/dt=0.0337 [malachite green]0.9860[Fe2+)]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.

  4. Catalytic Wastewater Treatment Using Pillared Clays

    NASA Astrophysics Data System (ADS)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  5. Effect of the ultrasound-Fenton oxidation process with the addition of a chelating agent on the removal of petroleum-based contaminants from soil.

    PubMed

    Li, Ying; Li, Fangmin; Li, Fanxiu; Yuan, Fuqian; Wei, Pingfang

    2015-12-01

    The effects of ultrasonic irradiation, the chelating agent modified Fenton reaction, and a combination of ultrasound and the Fenton method in removing petroleum contaminants from a soil were studied. The results showed that the contaminant removal rate of the Fenton treatment combined with an oxalic acid chelating agent was 55.6% higher than that without a chelating agent. The average removal rate of the contaminants using the ultrasound-Fenton treatment was 59.0% higher than that without ultrasonic treatment. A combination of ultrasound and an Fe(2+)/Fe(3+)-oxalate complex-modified Fenton reagent resulted in significantly higher removal rates of n-alkanes (C(n)H(2n+2), n < 28), isoprenoid hydrocarbons, aromatic hydrocarbons, and saturated polycyclic terpenes compared with the ultrasound treatment alone or the Fenton method. The Fenton reaction and the ultrasound-Fenton treatment can unselectively remove multiple components of residual hydrocarbons and a number of benzene rings in polycyclic aromatic hydrocarbons. The chemistry of the heterocyclic compounds and the position and number of substituents can affect the degradation process.

  6. Comparative study of the degradation of carbamazepine in water by advanced oxidation processes.

    PubMed

    Dai, Chao-Meng; Zhou, Xue-Fei; Zhang, Ya-Lei; Duan, Yan-Ping; Qiang, Zhi-Min; Zhang, Tian C

    2012-06-01

    Degradation of carbamazepine (CBZ) using ultraviolet (UV), UV/H2O2, Fenton, UV/Fenton and photocatalytic oxidation with TiO2 (UV/TiO2) was studied in deionized water. The five different oxidation processes were compared for the removal kinetics of CBZ. The results showed that all the processes followed pseudo-first-order kinetics. The direct photolysis (UV alone) was found to be less effective than UV/H2O2 oxidation for the degradation of CBZ. An approximate 20% increase in the CBZ removal efficiency occurred with the UV/Fenton reaction as compared with the Fenton oxidation. In the UV/TiO2 system, the kinetics of CBZ degradation in the presence of different concentrations of TiO2 followed the pseudo-first order degradation, which was consistent with the Langmuir-Hinshelwood (L-H) model. On a time basis, the degradation efficiencies ofCBZ were in the following order: UV/Fenton (86.9% +/- 1.7%) > UV/TiO2 (70.4% +/- 4.2%) > Fenton (67.8% +/- 2.6%) > UV/H2O2 (40.65 +/- 5.1%) > UV (12.2% +/- 1.4%). However, the lowest cost was obtained with the Fenton process.

  7. Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis.

    PubMed

    Gan, Yu-Yan; Zhou, Si-Li; Dai, Xiao; Wu, Han; Xiong, Zi-Yao; Qin, Yuan-Hang; Ma, Jiayu; Yang, Li; Wu, Zai-Kun; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2018-06-15

    Fenton-based processes with four different iron salts in two different dosing modes were used to pretreat rice straw (RS) samples to increase their enzymatic digestibility. The composition analysis shows that the RS sample pretreated by the dosing mode of iron salt adding into H 2 O 2 has a much lower hemicellulose content than that pretreated by the dosing mode of H 2 O 2 adding into iron salt, and the RS sample pretreated by the chloride salt-based Fenton process has a much lower lignin content and a slightly lower hemicellulose content than that pretreated by the sulphate salt-based Fenton process. The higher concentration of reducing sugar observed on the RS sample with lower lignin and hemicellulose contents justifies that the Fenton-based process could enhance the enzymic hydrolysis of RS by removing hemicellulose and lignin and increasing its accessibility to cellulase. FeCl 3 ·6H 2 O adding into H 2 O 2 is the most efficient Fenton-based process for RS pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge.

    PubMed

    Zhang, Jian-Hao; Zou, Hai-Yuan; Ning, Xun-An; Lin, Mei-Qing; Chen, Chang-Min; An, Tai-Cheng; Sun, Jian

    2017-03-22

    To develop an effective method to remove the toxic and carcinogenic polycyclic aromatic hydrocarbons (CPAHs) from textile dyeing sludge, five CPAHs were selected to investigate the degradation efficiencies using ultrasound combined with Fenton process (US/Fenton). The results showed that the synergistic effect of the US/Fenton process on the degradation of CPAHs in textile dyeing sludge was significant with the synergy degree of 30.4. During the US/Fenton process, low ultrasonic density showed significant advantage in degrading the CPAHs in textile dyeing sludge. Key reaction parameters on CPAHs degradation were optimized by the central composite design as followed: H 2 O 2 concentration of 152 mmol/L, ultrasonic density of 408 W/L, pH value of 3.7, the molar ratio of H 2 O 2 to Fe 2+ of 1.3 and reaction time of 43 min. Under the optimal conditions of the US/Fenton process, the degradation efficiencies of five CPAHs were obtained as 81.23% (benzo[a]pyrene) to 84.98% (benz[a]anthracene), and the benzo[a]pyrene equivalent (BaP eq ) concentrations of five CPAHs declined by 81.22-85.19%, which indicated the high potency of US/Fenton process for removing toxic CPAHs from textile dyeing sludge.

  9. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.

    PubMed

    Cao, Zhenbang; Zhang, Jia; Zhou, Jizhi; Ruan, Xiuxiu; Chen, Dan; Liu, Jianyong; Liu, Qiang; Qian, Guangren

    2017-05-15

    A zinc-dominant ferrite catalyst for efficient degradation of organic dye was prepared by the calcination of electroplating sludge (ES). Characterizations indicated that zinc ferrite (ZnFe 2 O 4 ) coexisted with Fe 2 O 3 structure was the predominant phase in the calcined electroplating sludge (CES). CES displayed a high decolorization ratio (88.3%) of methylene blue (MB) in the presence of H 2 O 2 combined with UV irradiation. The high efficiency could be ascribed to the photocatalytic process induced by ZnFe 2 O 4 and the photo-Fenton dye degradation by ferrous content, and a small amount of Al and Mg in the sludge might also contribute to the catalysis. Moreover, the degradation capability of dye by CES was supported by the synthetic ZnFe 2 O 4 with different Zn to Fe molar ratio (n(Zn): n(Fe)), as 84.81%-86.83% of dye was removed with n(Zn): n(Fe) ranged from 1:0.5 to 1:3. All synthetic ferrite samples in the simulation achieved adjacent equilibrium decolorization ratio, the flexible proportioning of divalent metal ions (M 2+ ) to trivalent metal ions (M 3+ ) applied in the synthesis indicated that the catalyst has a high availability. Therefore, an efficacious catalyst for the degradation of dye can potentially be derived from heavy metal-containing ES, it's a novel approach for the reutilization of ES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study.

    PubMed

    Khataee, A R; Vatanpour, V; Amani Ghadim, A R

    2009-01-30

    This study makes a comparison between UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton (EF) and electrocoagulation (EC) treatment methods to investigate the removal of C.I. Acid Blue 9 (AB9), which was chosen as the model organic contaminant. Results indicated that the decolorization efficiency was in order of Fenton>EC>UV/Nano-TiO(2)>Fenton-like>EF. Desired concentrations of Fe(2+) and H(2)O(2) for the abatement of AB9 in the Fenton-based processes were found to be 10(-4)M and 2 x 10(-3) M, respectively. In the case of UV/Nano-TiO(2) process, we have studied the influence of the basic photocatalytic parameters such as the irradiation time, pH of the solution and amount of TiO(2) nanoparticles on the photocatalytic decolorization efficiency of AB9. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 25 min. Our results also revealed that the most effective decomposition of AB9 was observed with 150 mg/l of TiO(2) nanoparticles in acidic condition. The effect of operational parameters including current density, initial pH and time of electrolysis were studied in electrocoagulation process. The results indicated that for a solution of 20 mg/l AB9, almost 98% color were removed, when the pH was about 6, the time of electrolysis was 8 min and the current density was approximately 25 A/m(2) in electrocoagulation process.

  12. Metal-Catalyzed Aqueous Oxidation Processes in Merged Microdroplets

    NASA Astrophysics Data System (ADS)

    Davis, R. D.; Wilson, K. R.

    2017-12-01

    Iron-catalyzed production of reactive oxygen species (ROS) from hydrogen peroxide (Fenton's reaction) is a fundamental process throughout nature, from groundwater to cloud droplets. In recent years, Fenton's chemistry has gained further interest in atmospheric science as a potentially important process in the oxidation of aqueous secondary organic aerosol (e.g., Chu et al., Sci. Rep., 2017), with some observations indicating that Fenton's reaction proceeds at a higher rate at aerosol interfaces compared to in the bulk (Enami et al., PNAS, 2014). However, a fundamental-level mechanistic understanding of this process remains elusive and the relative importance of interfacial versus bulk chemistry for aqueous organic processing via Fenton's has yet to be fully established. Here, we present a microreactor experimental approach to studying aqueous-phase Fenton's chemistry in microdroplets by rapidly mixing droplets of different composition. Utilizing two on-demand droplet generators, a stream of microdroplets containing aqueous iron chloride were merged with a separate stream of microdroplets containing aqueous hydrogen peroxide and a range of aromatic organic compounds, initiating ROS production and subsequent aqueous-phase oxidation reactions. Upon merging, mixing of the microdroplets occurred in submillisecond timescales, thus allowing the reaction progress to be monitored with high spatial and temporal resolution. For relatively large microreactor (droplet) sizes (50 µm diameter post-merging), the Fenton-initiated aqueous oxidation of aromatic organic compounds in merged microdroplets was consistent with bulk predictions with hydroxyl radicals as the ROS. The microdroplet-size dependence of this observation, along with the role of other ROS species produced from Fenton and Fenton-like processes, will be discussed in the context of relative importance to aqueous organic processing of atmospheric particles.

  13. Photo-Fenton Degradation of Organic Dyes Based on a Fe₃O₄ Nanospheres/Biomass Composite Loaded Column.

    PubMed

    Zheng, Kai; Zhang, Jubo; Wang, Yan; Gao, Longxue; Di, Mingyu; Yuan, Fang; Bao, Wenhui; Yang, Tao; Liang, Daxin

    2018-06-01

    In order to deal with pollution of organic dyes, magnetic Fe3O4 nanospheres (NPs) with an average diameter of 202 ± 0.5 nm were synthesized by a solvothermal method at 200 °C, and they can efficiently degrade organic dyes (methylene blue (MB), rhodamine B (RhB) and xylenol orange (XO)) aqueous solutions (20 mg/L) within 1 min. Based on this Fenton reagent, Fe3O4 NPs/biomass composite degradation column was made using sawdust as substrate, and it can efficiently degrade organic dyes continually. More importantly, the composite can be regenerated just by an ultrasonic treatment, and its degradation performance almost remains the same.

  14. Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation

    NASA Astrophysics Data System (ADS)

    Richard, Cynthia; Simmchen, Juliane; Eychmüller, Alexander

    2018-05-01

    Harvesting energy from photochemical reactions has long been studied as an efficient means of renewable energy, a topic that is increasingly gaining importance also for motion at the microscale. Iron oxide has been a material of interest in recent studies. Thus, in this work different synthesis methods and encapsulation techniques were used to try and optimize the photo-catalytic properties of iron oxide colloids. Photodegradation experiments were carried out following the encapsulation of the nanoparticles and the Fenton effect was also verified. The end goal would be to use the photochemical degradation of peroxide to propel an array of swimmers in a controlled manner while utilizing the Fenton effect for the degradation of dyes or waste in wastewater remediation.

  15. 77 FR 41397 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ...; ER10-2504-002; ER12-610-002; ER10-2436-003; ER11-4381-002. Applicants: Fenton Power Partners I, LLC, Wapsipinicon Wind Project, LLC, Shiloh Wind Project 2, LLC, Hoosier Wind Project, LLC, Oasis Power Partners, LLC, Bellevue Solar, LLC, Yamhill Solar, LLC, Chanarambie Power Partners, LLC, LWP Lessee, LLC...

  16. Application and stability of cathodes with manganese dioxide nanoflowers supported on Vulcan by Fenton systems for the degradation of RB5 azo dye.

    PubMed

    Aveiro, L R; Da Silva, A G M; Candido, E G; Antonin, V S; Parreira, L S; Papai, R; Gaubeur, I; Silva, Fernando L; Lanza, M R V; Camargo, P H C; Santos, M C

    2018-05-21

    This work describes the electrochemical degradation of Reactive Black 5 (RB5) by two methods: electrochemical and photo-assisted electrochemical degradation with and without a Fenton reagent. Two anodes were used, Pt and boron-doped diamond (BDD, 2500 ppm), and the cathode was 3% MnO 2 nanoflowers (NFMnO 2 ) on a carbon gas diffusion electrode (GDE). An electrochemical cell without a divider with a GDE with 3% w/w NFMnO 2 /C supported on carbon Vulcan XC72 was used. The decolorization efficiency was monitored by UV-vis spectroscopy, and the degradation was monitored by Total Organic Carbon (TOC) analysis. For dissolution monitoring, aliquots (1 mL) were collected during the degradation. After 6 h of H 2 O 2 electrogeneration, the manganese concentration in the RB5 solution was only 23.1 ± 1.2 μg L -1 . It was estimated that approximately 60 μg L -1 (<0.2%) of manganese migrated from the GDE to the solution after 12 h of electrolysis, which indicated the good stability of the GDE. The photoelectro-Fenton-BDD (PEF-BDD) processes showed both the best color removal percentage (∼93%) and 91% of mineralization. The 3% NFMnO 2 /C GDE is promising for RB5 degradation. Copyright © 2018. Published by Elsevier Ltd.

  17. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge.

    PubMed

    Sivrioğlu, Özge; Yonar, Taner

    2015-04-01

    In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one NTO in aqueous suspension of TiO2. Comparison with Fenton oxidation.

    PubMed

    Le Campion, L; Giannotti, C; Ouazzani, J

    1999-03-01

    5-nitro-1,2,4-triazol-3-one (NTO) is a powerful insensitive explosive, present in industrial waste waters. A remediation method based on photochemical decomposition and Fenton oxidation of NTO has been evaluated by monitoring the mineralization of 14C-labelled NTO. The TiO2-catalyzed photodegradation (lambda > 290 nm, TiO2 0.4 g/l, NTO 150 mg/l)) leads to the complete mineralization of NTO in 3 hours. This degradation involves a simultaneous denitrification and ring scission of NTO leading to nitrites, nitrates and carbon dioxide. No significant photo-degradation of NTO was detected in the absence of the catalyst. Long term irradiation over one week, leads to a complete degradation of concentrated NTO (5 g/l), suggesting that this method could be useful to clean-up NTO wastes. Fenton oxidation offers an efficient cost-effective method for NTO remediation. This reaction is faster that the TiO2 catalyzed photolysis and find application on the mineralization of high concentrations of NTO (15 g/l). Fenton oxidation provokes ring cleavage and subsequent elimination of the two carbon atoms of NTO as CO2. During this reaction, the nitro group is completely transformed into nitrates.

  19. Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.

    PubMed

    Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

    2014-08-01

    Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2

  20. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology.

    PubMed

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-10-30

    A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L(-1) MCPA solutions in 0.05 M Na(2)SO(4) at a liquid flow rate of 180 L h(-1) with an average UV irradiation intensity of about 32 Wm(-2). The optimum variables found for the SPEF process were 5.0 A, 1.0mM Fe(2+) and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 k Wh kg(-1) TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale.

    PubMed

    Behin, Jamshid; Akbari, Abbas; Mahmoudi, Mohsen; Khajeh, Mehdi

    2017-09-15

    In present work, the treatment of aromatic compounds of simulated wastewater was performed by Fenton and NaOCl/Fe 2+ processes. The model solution was prepared based on the wastewater composition of Diisocyanate unit of Karoon Petrochemical Company/Iran containing Diamino-toluenes, Nitro-phenol, Mononitro-toluene, Nitro-cresol, and Dinitro-toluene. Experiments were conducted in a batch mode to examine the effects of operating variables such as pH, oxidant dosages, ferrous ion concentration and numbers of feeding on COD removal. Taguchi experimental design was used to determine the optimum conditions. The COD removal efficiency under optimum conditions (suggested by Taguchi design) in Fenton and NaOCl/Fe 2+ processes was 88.7% and 83.4%, respectively. The highest contribution factor in Fenton process belongs to pH (47.47%) and in NaOCl/Fe 2+ process belongs to NaOCl/pollutants (50.26%). High regression coefficient (R 2 : 0.98) obtained for Taguchi method, indicates that models are statistically significant and are in well agreement with each other. The NaOCl/Fe 2+ process utilizing a conventional oxidant, in comparison to hydrogen peroxide, is an efficient cost effective process for COD removal from real wastewater, although the removal efficiency is not as high as in Fenton process; however it is a suitable process to replace Fenton process in industrial scale for wastewater involved aromatic compounds with high COD. This process was successfully applied in Karoon Petrochemical Company/Iran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sequential Combination of Electro-Fenton and Electrochemical Chlorination Processes for the Treatment of Anaerobically-Digested Food Wastewater.

    PubMed

    Shin, Yong-Uk; Yoo, Ha-Young; Kim, Seonghun; Chung, Kyung-Mi; Park, Yong-Gyun; Hwang, Kwang-Hyun; Hong, Seok Won; Park, Hyunwoong; Cho, Kangwoo; Lee, Jaesang

    2017-09-19

    A two-stage sequential electro-Fenton (E-Fenton) oxidation followed by electrochemical chlorination (EC) was demonstrated to concomitantly treat high concentrations of organic carbon and ammonium nitrogen (NH 4 + -N) in real anaerobically digested food wastewater (ADFW). The anodic Fenton process caused the rapid mineralization of phenol as a model substrate through the production of hydroxyl radical as the main oxidant. The electrochemical oxidation of NH 4 + by a dimensionally stable anode (DSA) resulted in temporal concentration profiles of combined and free chlorine species that were analogous to those during the conventional breakpoint chlorination of NH 4 + . Together with the minimal production of nitrate, this confirmed that the conversion of NH 4 + to nitrogen gas was electrochemically achievable. The monitoring of treatment performance with varying key parameters (e.g., current density, H 2 O 2 feeding rate, pH, NaCl loading, and DSA type) led to the optimization of two component systems. The comparative evaluation of two sequentially combined systems (i.e., the E-Fenton-EC system versus the EC-E-Fenton system) using the mixture of phenol and NH 4 + under the predetermined optimal conditions suggested the superiority of the E-Fenton-EC system in terms of treatment efficiency and energy consumption. Finally, the sequential E-Fenton-EC process effectively mineralized organic carbon and decomposed NH 4 + -N in the real ADFW without external supply of NaCl.

  3. Reuse of Fenton sludge as an iron source for NiFe2O4 synthesis and its application in the Fenton-based process.

    PubMed

    Zhang, Hui; Liu, Jianguo; Ou, Changjin; Faheem; Shen, Jinyou; Yu, Hongxia; Jiao, Zhenhuan; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun

    2017-03-01

    The potentially hazardous iron-containing sludge from the Fenton process requires proper treatment and disposal, which often results in high treatment cost. In this study, a novel method for the reuse of Fenton sludge as an iron source for the synthesis of nickel ferrite particles (NiFe 2 O 4 ) is proposed. Through a co-precipitation method followed by sintering at 800°C, magnetic NiFe 2 O 4 particles were successfully synthesized, which was confirmed by powder X-ray diffraction (XRD), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The synthesized NiFe 2 O 4 could be used as an efficient catalyst in the heterogeneous Fenton process. In phenol degradation with H 2 O 2 or NiFe 2 O 4 alone, the phenol removal efficiencies within the reaction time of 330min were as low as 5.9%±0.1% and 13.5%±0.4%, respectively. However, in the presence of both NiFe 2 O 4 and H 2 O 2 , phenol removal efficiency as high as 95%±3.4% could be achieved, indicating the excellent catalytic performance of NiFe 2 O 4 in the heterogeneous Fenton process. Notably, a rapid electron exchange between Ni II and Fe III ions in the NiFe 2 O 4 structure could be beneficial for the Fenton reaction. In addition, the magnetic catalyst was relatively stable, highly active and recoverable, and has potential applications in the Fenton process for organic pollutant removal. Copyright © 2016. Published by Elsevier B.V.

  4. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).

    PubMed

    Ren, Yi; Yuan, Yue; Lai, Bo; Zhou, Yuexi; Wang, Juling

    2016-01-25

    To decompose or transform the toxic and refractory reverse osmosis (RO) concentrate and improve the biodegradability, 1stFe/Cu/air-Fenton-2ndFe/Cu/air were developed to treat RO concentrate obtained from an amino acid production plant in northern China. First, their operating conditions were optimized thoroughly. Furthermore, 5 control experiments were setup to confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and synergistic reaction between Fe/Cu/air and Fenton. The results suggest that the developed method could obtain high COD removal (65.1%) and BOD5/COD ratio (0.26) due to the synergistic reaction between Fe/Cu/air and Fenton. Under the optimal conditions, the influent and effluent of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and 5 control experiments were analyzed by using UV, FTIR, EEM and LC, which confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air. Therefore, the developed method in this study is a promising process for treatment of RO concentrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Eco-friendly processing in enzymatic xylooligosaccharides production from corncob: Influence of pretreatment with sonocatalytic-synergistic Fenton reaction and its antioxidant potentials.

    PubMed

    Kawee-Ai, Arthitaya; Srisuwun, Aungkana; Tantiwa, Nidtaya; Nontaman, Wimada; Boonchuay, Pinpanit; Kuntiya, Ampin; Chaiyaso, Thanongsak; Seesuriyachan, Phisit

    2016-07-01

    Delignification can be considered as a feasible process to pretreat lignocellulosic biomass in xylooligosaccharides production after the performance and efficiency has been improved through a few modifications. This study compared various pretreatment strategies such as Fenton, sonocatalytic, and sonocatalytic-synergistic Fenton employed on corncob in order to expose lignin content and saccharides to enhance the xylooligosaccharides yield by enzymatic hydrolysis. The dissolution of lignin and xylooligosaccharides production of corncob was enhanced by ultrasound assisted TiO2 and Fenton reaction. The corncob pretreated with a sonocatalytic-synergistic Fenton reaction gave the highest release of the lignin concentration level (1.03 g/L), dissolution level (80.25%), and xylooligosaccharides content (46.45 mg/g substrate). A two-step pretreatment processes consisting of the alkali treatment (pretreatment) and sonocatalytic-synergistic Fenton process (posttreatment) illustrated that subsequent enzymatic hydrolysis could be enhanced considerably. The release of the lignin concentration and xylooligosaccharides content were 33.20 g/L and 174.81 mg/g substrate, respectively. The antioxidant potential of xylooligosaccharides showed significant differences regarding the amount of xylooligosaccharides and the phenolic compounds produced. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions.

    PubMed

    Meijide, J; Gómez, J; Pazos, M; Sanromán, M A

    2016-12-05

    In this work, a comparative study using anodic oxidation, Fenton and electro-Fenton treatments was performed in order to determine the synergic effect for the removal of thiamethoxan. The results determined that electro-Fenton process showed high efficiency in comparison with Fenton or anodic oxidation. After that, this hybrid process was optimized and the influence of iron catalyst concentration and applied current intensity on the degradation and mineralization were evaluated. Degradation profiles were monitored by high performance liquid chromatography (HPLC) being satisfactorily described by pseudo-first order kinetic model. At the optimal experimental conditions (300mA and 0.2mM Fe(+2)), the complete degradation of thiamethoxam was achieved after 10min. On the other hand, mineralization of thiamethoxam was monitored by total organic carbon (TOC) decay reaching more than 92% of TOC removal after 8h. Furthermore, a plausible mineralization pathway for the thiamethoxam degradation was proposed based on the identification of by-products such as aromatic intermediates, carboxylic acids and inorganic ions released throughout electro-Fenton process. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of changes in floc morphology, extracellular polymeric substances and heavy metals speciation of anaerobically digested biosolid under treatment with a novel chelated-Fe2+ catalyzed Fenton process.

    PubMed

    He, Juanjuan; Yang, Peng; Zhang, Weijun; Cao, Bingdi; Xia, Hua; Luo, Xi; Wang, Dongsheng

    2017-11-01

    A novel chelated-Fe 2+ catalyzed Fenton process (CCFP) was developed to enhance dewatering performance of anaerobically digested biosolid, and changes in floc morphology, extracellular polymeric substances (EPS) and heavy metals speciation were also investigated. The results showed that addition of chelating agents caused EPS solubilization by binding multivalent cations. Like traditional Fenton, CCFP performed well in improving anaerobically digested sludge dewatering property. The highly active radicals (OH, O 2 - ) produced in classical Fenton and CCFP were responsible for sludge flocs destruction and consequently degradation of biopolymers into small molecules. Furthermore, more plentiful pores and channels were presented in cake after Fenton treatment, which was conducive to water drainage under mechanical compression. Additionally, a portion of active heavy metals in the form of oxidizable and reducible states were dissolved under CCFP. Therefore, CCFP could greatly simplify the operating procedure of Fenton conditioning and improve its process adaptability for harmless treatment of biological sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Qimei; Chen, Yingying; Wang, Lingli; Ai, Shasha; Ding, Hanming

    2017-12-01

    Alkalinized graphitic carbon nitride (CNK-OH) has been synthesized by one-step thermal poly-condensation method, and Cu-modified alkalinized g-C3N4 (Cu-CNK-OH) has been prepared by impregnation approach over CNK-OH. These copper species in Cu-CNK-OH are embedded in the frame of CNK-OH mostly via the Cu-N bonds. Cu-CNK-OH has been employed as a heterogeneous Fenton-like catalyst to degrade rhodamine B (RhB). Both the production efficiency of hydroxyl radicals and the transformation rate of Cu(II)/Cu(I) redox pair increase under visible-light irradiation. As a result, Cu-CNK-OH exhibits improved Fenton-like catalytic activity on the degradation of RhB. The synergetic interaction between Fenton-like process and photocatalytic process also contributes such improvement. The hydroxyl radicals and holes are the major reactive species in the photocatalytically assisted Fenton-like process. This study provides a valuable strategy for metal modification of alkalinized g-C3N4 with enhanced Fenton-like catalytic performance for the degradation of organic contaminants.

  9. Fenton-like initiation of a toluene transformation mechanism

    EPA Science Inventory

    In Fenton-driven oxidation treatment systems, reaction intermediates derived from parent compounds can play a significant role in the overall treatment process. Fenton-like reactions in the presence of toluene or benzene, involved a transformation mechanism that was highly effici...

  10. Kinetic studies of the reaction between pesticides and hydroxyl radical generated by laser flash photolysis.

    PubMed

    Gozzi, Fábio; Oliveira, Silvio C; Dantas, Renato F; Silva, Volnir O; Quina, Frank H; Machulek, Amilcar

    2016-03-30

    Due to contamination of the environment by pesticides and their mishandling, there is the need for treatment of contaminated sites and correct disposal of materials containing them. Thus, studies with advanced oxidation processes are expanding and can determine the rate constant of the hydroxyl radical with organic compounds of great importance in environmental contamination. In this context, the use of laser flash photolysis has been shown to be viable for the determination of these constants. The reaction rate constants of different pesticides with HO(•) in degassed acetonitrile have been determined. They were 1.6 × 10(9)  M(-1)  s(-1), 0.6 × 10(9)  M(-1)  s(-1), 1.2 × 10(9)  M(-1)  s(-1), 2.4 × 10(9)  M(-1)  s(-1) and 2.2 × 10(9)  M(-1)  s(-1) for the pesticides carbaryl, propoxur, fenoxycarb, ethoxysulfuron and chlorimuron-ethyl, respectively. These values are about an order of magnitude smaller than the diffusion controlled rate and correlate with the relative rates of disappearance of the pesticides in the photo-Fenton reaction in water. The correlation of the relative rate constants determined by laser flash photolysis with the relative rates of photo-Fenton degradation of the pesticides is compelling evidence for the participation of the hydroxyl radical in the degradation of these pesticides in the latter system. © 2015 Society of Chemical Industry.

  11. Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe3O4@γ-Fe2O3 composite.

    PubMed

    Dai, Huiwang; Xu, Shuying; Chen, Jianxin; Miao, Xiaozeng; Zhu, Jianxi

    2018-05-01

    Oxalate enhanced mechanism of Fe 3 O 4 @γ-Fe 2 O 3 was developed to provide novel insight into catalytic process regulation of iron oxide catalysts in heterogeneous UV-Fenton system. And the iron oxide composite of Fe 3 O 4 @γ-Fe 2 O 3 was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FTIR) spectroscopy and nitrogen adsorption-desorption isotherms. The results showed that large amount of iron could be leached from catalyst in the presence of oxalate, which promoted the homogeneous UV-Fenton reactions in solution. Orange II degradation could be significantly enhanced with the increase of the ratio of homogeneous UV-Fenton process to heterogeneous UV-Fenton process. The optimum concentration of oxalate determined by experiment was 0.5 mM in oxalate enhanced heterogeneous UV-Fenton system. On this condition, the pseudo-first-order rate constant value of Orange II degradation was 0.314 min -1 , which was 2.3 times as high as that in heterogeneous UV-Fenton system. The removal rates of color and TOC were 100% and 86.6% after 20 min and 120 min treatment, respectively. In addition, the iron ions in solution could be almost completely adsorbed back to the catalyst surface in later degradation stages of Orange II. During the recycle experiments, the results showed that the increase of pH in solution and the sorption of intermediates on the catalyst surface would hinder oxalate enhanced process and lead to a decrease of degradation rate of Orange II in oxalate enhanced heterogeneous UV-Fenton system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Novel low-cost Fenton-like layered Fe-titanate catalyst: preparation, characterization and application for degradation of organic colorants.

    PubMed

    Chen, Yongzhou; Li, Nian; Zhang, Ye; Zhang, Lide

    2014-05-15

    Novel low-cost layered Fe-titanate catalyst for photo-Fenton degradation of organic contaminants was successfully developed by ion exchange of Fe(3+) with Na(+) layered nano Na-titanates which was prepared by alkali hydrothermal method. The as prepared materials were characterized by powder X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectrometer (EDX). The catalytic activity of the Fe-titanate catalyst was evaluated by the decolorization of three different dyes (rhodamine 6G (R6G), methyl blue (MB), and methyl orange (MO)) under UV irradiation at room temperature. Effect of several important factors such as Fe loading in the catalyst, initial solution pH, catalyst dosage, H2O2 amount, and reaction time was systematically studied. It was found that the decolorization was very efficient for all three dyes. The efficiency reached 98% for R6G, 98.5% for MB, and 97% for MO, respectively, under optimal conditions. The oxidation process was quick, and only 15 min is needed for all three dyes. Moreover, the Fe-titanate catalyst could be used in a wider and near neutral pH range compared with classic Fenton systems which need to be operated at around pH 3.0. Kinetic analysis results showed that the oxidation kinetics was accurately represented by pseudo-first-order model. More importantly, the catalyst was very stable and could be reused for at least four cycles when operated under near neutral pH. The Fe leaching from the catalyst measured was almost negligible, which not only demonstrated the stability of the catalyst, but also avoided the formation of secondary Fe pollution. Therefore, the reported Fe-titanates are promising nanomaterials which can be used as Fenton like catalyst for the degradation of organic contaminant in wastewater. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  13. Pretreatment of lignocellulosic biomass using Fenton chemistry

    USDA-ARS?s Scientific Manuscript database

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  14. Treatment of TFT-LCD wastewater containing ethanolamine by fluidized-bed Fenton technology.

    PubMed

    Anotai, Jin; Chen, Chia-Min; Bellotindos, Luzvisminda M; Lu, Ming-Chun

    2012-06-01

    The objectives of this study are: (1) to determine the effect of pH, initial concentration of Fe(2+) and H(2)O(2) dosage on the removal efficiency of MEA by fluidized-bed Fenton process and Fenton process, (2) to determine the optimal conditions for the degradation of ethanolamine from TFT-LCD wastewater by fluidized-bed Fenton process. In the design of experiment, the Box-Behnken design was used to optimize the operating conditions. A removal efficiency of 98.9% for 5mM MEA was achieved after 2h under optimal conditions of pH3, [Fe(2+)]=5mM and [H(2)O(2)]=60mM. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater.

    PubMed

    Bautista, P; Casas, J A; Zazo, J A; Rodriguez, J J; Mohedano, A F

    2014-01-01

    The treatment of cosmetic wastewaters by Fenton (Fe²⁺/H₂O₂) and Fenton-like (Fe³⁺/H₂O₂) oxidation has been studied. From batch and continuous experiments it has been proved that both versions of the Fenton process lead to quite similar results in terms of chemical oxygen demand (COD) and total organic carbon reduction although the COD shows a slightly higher rate in the early stages of reaction. COD reductions of around 55% after 2 h reaction time and 75-80% with 4 h residence time were reached in batch and continuous experiments, respectively, conducted at pH around 3, ambient temperature (20 °C), with 200 mg/L of Fe dose and an initial H₂O₂/COD weight ratio corresponding to the theoretical stoichiometric value. Achieving the locally allowable limit of COD for industrial wastewater discharge into the municipal sewer system takes no more than 30 min reaction time under those conditions by both Fenton systems. However, the Fenton-like process, where iron is fed as Fe(3+), would be preferable for industrial applications since the ferric sludge resulting upon final neutralization of the effluent can be recycled to the process. A second-order kinetic equation with respect to COD fitted fairly well the experimental results at different temperatures, thus providing a simple practical tool for design purposes.

  16. Advanced oxidation of real sulfamethoxazole + trimethoprim formulations using different anodes and electrolytes.

    PubMed

    Murillo-Sierra, Juan C; Sirés, Ignasi; Brillas, Enric; Ruiz-Ruiz, Edgar J; Hernández-Ramírez, Aracely

    2018-02-01

    A commercial sulfamethoxazole + trimethoprim formulation has been degraded in 0.050 M Na 2 SO 4 at pH 3.0 by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton with a 6-W UVA lamp (PEF) and solar photoelectro-Fenton (SPEF). The tests were performed in an undivided cell with an IrO 2 -based, Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H 2 O 2 electrogeneration. The anode material had little effect on the accumulated H 2 O 2 concentration. Both drugs always obeyed a pseudo-first-order decay with low apparent rate constant in EO-H 2 O 2 . Much higher values were found in EF, PEF and SPEF, showing no difference because the main oxidant was always OH formed from Fenton's reaction between H 2 O 2 and added Fe 2+ . The solution mineralization increased in the sequence EO-H 2 O 2  < EF < PEF < SPEF regardless of the anode. The IrO 2 -based and Pt anodes behaved similarly but BDD was always more powerful. In SPEF, similar mineralization profiles were found for all anodes because of the rapid removal of photoactive intermediates by sunlight. About 87% mineralization was obtained as maximum for the powerful SPEF with BDD anode. Addition of Cl - enhanced the decay of both drugs due to their quicker reaction with generated active chlorine, but the formation of persistent chloroderivatives decelerated the mineralization process. Final carboxylic acids like oxalic and oxamic were detected, yielding Fe(III) complexes that remained stable in EF with BDD but were rapidly photolyzed in SPEF with BDD, explaining its superior mineralization ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Drinking water and biofilm disinfection by Fenton-like reaction.

    PubMed

    Gosselin, F; Madeira, L M; Juhna, T; Block, J C

    2013-10-01

    A Fenton-like disinfection process was conducted with Fenton's reagent (H2O2) at pH 3 or 5 on autochthonous drinking water biofilms grown on corroded or non-corroded pipe material. The biofilm disinfection by Fenton-like oxidation was limited by the low content of iron and copper in the biomass grown on non-corroded plumbing. It was slightly improved by spiking the distribution system with some additional iron source (soluble iron II or ferrihydrite particles appeared as interesting candidates). However successful in situ disinfection of biofilms was only achieved in fully corroded cast iron pipes using H2O2 and adjusting the pH to 5. These new results provide additional support for the use of Fenton's processes for cleaning drinking water distribution systems contaminated with biological agents or organics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Treatment of hazardous waste landfill leachate using Fenton oxidation process

    NASA Astrophysics Data System (ADS)

    Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei

    2018-03-01

    The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.

  19. Integration of membrane separation and Fenton processes for sanitary landfill leachate treatment.

    PubMed

    Santos, Amanda Vitória; Andrade, Laura Hamdan de; Amaral, Míriam Cristina Santos; Lange, Liséte Celina

    2018-04-06

    The appropriate treatment of sanitary landfill leachate is one of the greatest challenges nowadays due to the large volumes of solid waste generated. Thus, the aim of this study is to evaluate the performance of different routes involving the integration of advanced oxidation processes based on Fenton's reagents (AOP-Fenton) and microfiltration (MF) and nanofiltration (NF) membrane processes for the treatment of landfill leachate. MF module configuration (submerged or sidestream) and MF and NF recovery rate were evaluated. The combination of AOP-Fenton, MF and NF proved to be an effective treatment for landfill leachate. High removal efficiencies of chemical oxidation demand (94-96%) and colour (96-99%) were obtained. The configuration named route 3, composed of MF of raw landfill leachate (MF1), POA-Fenton-MF2 of the MF1 concentrate and NF of both MF1 and MF2 permeates, showed a higher global water recovery and was responsible for lower waste generation. It was considered the best one in terms of environmental, technical and economical aspects.

  20. Colossal photo-conductive gain in low temperature processed TiO2 films and their application in quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Mandal, Debranjan; Goswami, Prasenjit N.; Rath, Arup K.

    2017-03-01

    Colloidal quantum dot (QD) solar cells have seen remarkable progress in recent past to reach the certified efficiency of 10.6%. Anatase titanium oxide (TiO2) is a widely studied n-type widow layer for the collection of photogenerated electrons in QD solar cells. Requirement of high temperature (˜500 °C) processing steps proved to be disadvantageous for its applications in flexible solar cells and roll to roll processing, and it also has adverse commercial implications. Here, we report that solar light exposure to low temperature processed (80 °C-150 °C) TiO2 and niobium doped TiO2 films leads to unprecedented enhancement in their electron densities and electron mobilities, which enables them to be used as efficient n-type layers in quantum dot solar cells. Such photoinduced high conducting states in these films show gradual decay over hours after the light bias is taken off and can be retrieved under solar illumination. On the contrary, TiO2 films processed at 500 °C show marginal photo induced enhancements in their characteristics. In bilayer configuration with PbS QDs, photovoltaic devices based on low temperature processed TiO2 films show improved performance over high temperature processed TiO2 films. The stability of photovoltaic devices also improved in low temperature processed TiO2 films under ambient working conditions.

  1. Decolorization of distillery spent wash effluent by electro oxidation (EC and EF) and Fenton processes: A comparative study.

    PubMed

    David, Charles; Arivazhagan, M; Tuvakara, Fazaludeen

    2015-11-01

    In this study, laboratory scale experiments were performed to degrade highly concentrated organic matter in the form of color in the distillery spent wash through batch oxidative methods such as electrocoagulation (EC), electrofenton (EF) and Fenton process. The effect of corresponding operating parameters, namely initial pH: 2-10; current intensity: 1-5A; electrolysis time: 0.5-4h; agitation speed: 100-500rpm; inter-electrode distance: 0.5-4cm and Fenton's reagent dosage: 5-40mg/L was employed for optimizing the process of spent wash color removal. The performance of all the three processes was compared and assessed in terms of percentage color removal. For EC, 79% color removal was achieved using iron electrodes arranged with 0.5cm of inter-electrode space and at optimum conditions of pH 7, 5A current intensity, 300rpm agitation speed and in 2h of electrolysis time. In EF, 44% spent wash decolorization was observed using carbon (graphite) electrodes with an optimum conditions of 0.5cm inter-electrode distance, pH 3, 4A current intensity, 20mg/L FeSO4 and agitation speed of 400rpm for 3h of electrolysis time. By Fenton process, 66% decolorization was attained by Fenton process at optimized conditions of pH 3, 40mg/L of Fenton's reagent and at 500rpm of agitation speed for 4h of treatment time. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  3. Cryptosporidium-contaminated water disinfection by a novel Fenton process.

    PubMed

    Matavos-Aramyan, Sina; Moussavi, Mohsen; Matavos-Aramyan, Hedieh; Roozkhosh, Sara

    2017-05-01

    Three novel modified advanced oxidation process systems including ascorbic acid-, pro-oxidants- and ascorbic acid-pro-oxidants-modified Fenton system were utilized to study the disinfection efficiency on Cryptosporidium-contaminated drinking water samples. Different concentrations of divalent and trivalent iron ions, hydrogen peroxide, ascorbic acid and pro-oxidants at different exposure times were investigated. These novel systems were also compared to the classic Fenton system and to the control system which comprised of only hydrogen peroxide. The complete in vitro mechanism of the mentioned modified Fenton systems are also provided. The results pointed out that by considering the optimal parameter limitations, the ascorbic acid-modified Fenton system decreased the Cryptosporidium oocytes viability to 3.91%, while the pro-oxidant-modified and ascorbic acid-pro-oxidant-modified Fenton system achieved an oocytes viability equal to 1.66% and 0%, respectively. The efficiency of the classic Fenton at optimal condition was observed to be 20.12% of oocytes viability. The control system achieved 86.14% of oocytes viability. The optimum values of the operational parameters during this study are found to be 80mgL -1 for the divalent iron, 30mgL -1 for ascorbic acid, 30mmol for hydrogen peroxide, 25mgL -1 for pro-oxidants and an exposure time equal to 5min. The ascorbic acid-pro-oxidants-modified Fenton system achieved a promising complete water disinfection (0% viability) at the optimal conditions, leaving this method a feasible process for water disinfection or decontamination, even at industrial scales. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  5. Application of electrochemical advanced oxidation to bisphenol A degradation in water. Effect of sulfate and chloride ions.

    PubMed

    Burgos-Castillo, Rutely C; Sirés, Ignasi; Sillanpää, Mika; Brillas, Enric

    2018-03-01

    Electrochemical oxidation with electrogenerated H 2 O 2 (EO- H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar PEF (SPEF) have been applied to mineralize bisphenol A solutions in 0.050 M Na 2 SO 4 or 0.008 M NaCl + 0.047 M Na 2 SO 4 at pH 3.0. The assays were performed in an undivided cell with a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H 2 O 2 production. The PEF and SPEF processes yielded almost total mineralization due to the potent synergistic action of generated hydroxyl radicals and active chlorine, in conjunction with the photolytic action of UV radiation. The higher intensity of UV rays from sunlight explained the superior oxidation ability of SPEF. The effect of applied current density was studied in all treatments, whereas the role of bisphenol A concentration was examined in PEF. Bisphenol A abatement followed a pseudo-first-order kinetics, which was very quick in SPEF since UV light favored a large production of hydroxyl radicals from Fenton's reaction. Eight non-chlorinated and six chlorinated aromatics were identified as primary products in the chloride matrix. Ketomalonic, tartronic, maleic and oxalic acids were detected as final short-chain aliphatic carboxylic acids. The large stability of Fe(III)-oxalate complexes in EF compared to their fast photomineralization in PEF and PEF accounted for by the superior oxidation power of the latter processes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. ROLE OF THE PHOTO-FENTON REACTION IN THE PRODUCTION OF HYDROXYL RADICALS AND PHOTOBLEACHING OF COLORED DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photochemical reactions involving colored dissolved organic matter (CDOM) in natural waters are important determinants of nutrient cycling, trace gas production and control of light penetration into the water column. In this study the role of the hydroxyl radical ((OH)-O-.) in CD...

  7. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    PubMed

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).

  8. Degradation of black liquor from bioethanol process using coagulation and Fenton-like methods

    NASA Astrophysics Data System (ADS)

    Muryanto, Muryanto; Sari, Ajeng Arum; Abimanyu, Haznan

    2017-01-01

    Black liquor is one of the main by-products of the pretreatment process in bioethanol production from oil palm empty fruit bunches. Black liquor wastewater releases black coloured effluent with high chemical oxygen demand (COD) and low dissolved oxygen (DO). It had a distinctive dark coloration, high alkalinity (pH=13), high organic content (COD > 50,000 ppm) and a high solid content (TSS > 5,000 ppm). Lignin destruction can be done by using high oxidation from OH radical system such as advanced oxidation processes (AOPs). Thereafter, the high concentration of COD, color, and TSS can be removed. The general aim of the present investigation was to determine degradation of black liquor wastewater by using a combined coagulation and Fenton-like methods. In this research, we use Poly Aluminum Chloride (PAC) as a coagulant and FeCl3.6H2O and H2O2 for Fenton-like's reagent. The process was conducted in jar test at 200 rpm for 30 minutes and after that slowly mixed for 2 hours and left for sedimentation 24 hours. 50 ml black liquor was added with variation dose of 1-5% PAC, and 10 % Fenton-like reagent. Hydroxyl radical was generated by the Fenton-like's reagent (ratio FeCl3.6H2O : H2O2 was varied). The highest decolorization of black liquor 70 % was obtained under 5% PAC coagulant. The pH of the wastewater was reduced from 13.00 to 8.07 after the addition of the coagulant. The decolorization of original black liquor was approximately 58% through the Fenton-like process. The combination of PAC and Fenton-like reagent has able to enhance the decolorization of black liquor up to 97%.

  9. Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process.

    PubMed

    Xing, Zi-Peng; Sun, De-Zhi

    2009-09-15

    Attempts were made in this study to examine the combined polyferric sulfate (PFS) coagulation, Fenton and sedimentation process for treatment of non-degradable antibiotic fermentation wastewater. The experimental results indicated that 66.6% of color and 72.4% of chemical oxygen demand (COD) were removed under the optimum conditions of PFS dosage 200mg/L and pH 4.0. In addition, optimal parameters of Fenton process were determined to be 150 mg/L of H(2)O(2) dosage, 120 mg/L of FeSO(4) and 1h of reaction time. When Fenton treated effluent was controlled at pH 7.0, the pollutants could be further removed by sedimentation process. The overall color, COD and suspended solids (SS) removal reached 97.3%, 96.9% and 86.7% under selected conditions, respectively. Thus this study might offer an effective way for wastewater treatment of antibiotics manufacturer and pharmaceutical industry.

  10. Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts

    NASA Astrophysics Data System (ADS)

    Li, Keyan; Zhao, Yongqin; Janik, Michael J.; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe2O3/CuO and α-Fe2O3/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe3O4/C/Cu was obtained by calcining the tartrate precursor under N2 atmosphere at 500 °C. The Fe3O4/C/Cu composite possessed mesoporous structure and large surface area up to 133 m2 g-1. The Fenton catalytic performance of Fe3O4/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe3+ to Fe2+, which accelerated the Fe3+/Fe2+ cycles and favored H2O2 decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe3+ and Cu2+, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe3O4/C/Cu-H2O2 system, and MB (100 mg L-1) was nearly removed within 60 min. The Fe3O4/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile, cheap and green method for the synthesis of mesoporous composites as excellent Fenton-like catalysts, without any additional reductants or organic surfactants.

  11. Abatement of the antibiotic levofloxacin in a solar photoelectro-Fenton flow plant: Modeling the dissolved organic carbon concentration-time relationship.

    PubMed

    Coria, Gabriela; Pérez, Tzayam; Sirés, Ignasi; Brillas, Enric; Nava, José L

    2018-05-01

    The degradation of solutions of the antibiotic levofloxacin (LVN) in sulfate medium at pH 3.0 has been investigated at pre-pilot scale by solar photoelectro-Fenton (SPEF) process. The flow plant included an FM01-LC filter-press cell equipped with a Ti|Pt anode and a three-dimensional-like air-diffusion cathode, connected to a compound parabolic collector as photoreactor and a continuous stirred tank under recirculation batch mode. The effect of volumetric flow rate on H 2 O 2 electrogeneration from O 2 reduction was assessed. Then, the influence of initial LVN concentration and Fe 2+ concentration as catalyst on dissolved organic carbon (DOC) removal was thoroughly investigated. LVN was gradually mineralized by SPEF process, with faster DOC abatement at 0.50 mM Fe 2+ , yielding 100% after 360 min at applied cathodic potential of -0.30 V|SHE. The high mineralization current efficiency (MCE) and low specific energy consumption (EC DOC ) revealed the extraordinary role of homogeneous hydroxyl radicals and natural UV light, which allowed the degradation of the antibiotic and its by-products with MCE values greater than 100%. Five cyclic by-products, N,N-diethylformamide and three short-chain linear carboxylic acids were detected by GC-MS and HPLC analyses. A parametric model to simulate the DOC decay versus electrolysis time was implemented for the SPEF pre-pilot flow plant, showing good agreement with experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields.

    PubMed

    Rodríguez-Chueca, J; Mediano, A; Ormad, M P; Mosteo, R; Ovelleiro, J L

    2014-09-01

    This research work is focused on the application and assessment of effectiveness of the Fenton-like processes induced by radiofrequency for the inactivation of faecal bacteria (Escherichia coli and Enterococcus sp.) present in treated urban wastewater effluents. Fenton processes were carried out at near neutral pH (pH 5) with different iron sources, such as iron salts (ferric chloride, 5, 50 and 100 mg/L Fe(3+)), magnetite (1 g/L) and clay (80 g/L), hydrogen peroxide (25 mg/L) and in absence and presence of radiofrequency. Two different electromagnetic field intensities (1.57 and 3.68 kA/m) were used in Fenton processes induced by radiofrequency. Different agents used in the Fenton processes induced by electromagnetic fields (iron source, hydrogen peroxide and RF) were analyzed individually and in combination under the same experimental conditions. First assays of ferromagnetic material/H2O2/radiofrequency processes achieved promising results in terms of bacterial inactivation. For instance, Fe(3+)/H2O2/Radiofrequency achieved a maximum level of E. coli inactivation of 3.55 log after 10 min of treatment. These results are higher than those obtained in absence of radiofrequency. The thermal activation of iron atoms allows the Fenton reaction to intensify, increasing the final yield of the treatment. On the other hand, different behavior was observed in the inactivation of E. coli and Enterococcus sp. due to the structural differences between Gram-negative and Gram-positive bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    PubMed

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid.

  14. Degradation of bisphenol-A by dielectric barrier discharge system: influence of polyethylene glycol stabilized nano zero valent iron particles

    NASA Astrophysics Data System (ADS)

    Tijani, Jimoh O.; Mouele, Massima E. S.; Fatoba, Ojo O.; Babajide, Omotola O.; Petrik, Leslie F.

    2017-09-01

    In this study we report the synthesis and catalytic properties of polyethylene glycol stabilized nano zero valent iron particles (PEG-nZVI) added to the dielectric barrier discharge (DBD) system to induce photo-Fenton process in the degradation of bisphenol A (BPA) in aqueous solution. The influence of operating parameters such as solution pH, initial concentration of the modelled pollutant and PEG-nZVI dosage on the extent of BPA degradation was investigated. The residual concentration of BPA and its intermediates were determined using high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LCMS). The high resolution scanning electron microscope (HRSEM), x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and x-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of filamentous, high surface area iron nanoparticles in the zero valent state. The BPA mineralization rate was monitored using total organic carbon (TOC) analyser. 100% BPA removal was achieved with DBD/PEG-nZVI system within 30 min compared to 67.9% (BPA) with DBD alone after 80 min. The complete BPA removal within a short reaction time was attributed to the existence of a synergetic effect in the combined DBD/PEG-nZVI system. Five new transformation products of BPA namely: 4-nitrophenol (C6H5NO3), 4-nitrosophenolate (C6H4NO2), 4-(prop-1-en-2-yl) cyclohexa-3,5-diene-1,2-dione, (C9H8O2), 4-(2-hydroxylpropan-2-yl)cyclohexane-3,5-diene-1,2-dione (C9H10O3), and 1,2-dimethyl-4-(2-nitropropan-2-yl)benzene (C9H10NO4) were identified. BPA degradation proceeded via ozonation, hydroxylation, dimerization, and decarboxylation and nitration step. The combined DBD/photo-Fenton-induced process was found to be the most efficient in the elimination of BPA in aqueous solutions and DBD alone.

  15. Photo-Fenton degradation of a herbicide (2,4-D) in groundwater for conditions of natural pH and presence of inorganic anions.

    PubMed

    Conte, Leandro O; Schenone, Agustina V; Giménez, Bárbara N; Alfano, Orlando M

    2018-04-05

    The effects of four inorganic anions (Cl - , SO 4 2 -, HCO 3 - , NO 3 - ) usually present in groundwater were investigated on the photo-Fenton degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). A kinetic model derived from a reaction sequence is proposed using the ferrioxalate complex as iron source at pH close to natural conditions (pH = 5). It was demonstrated that oxalate not only maintained iron in solution for the natural groundwater system, but also increased the photochemical activation of the process. Results showed that the minimum conversion of 2,4-D for the simulated groundwater after 180 min was 63.80%. This value was only 14.1% lower than the conversion achieved without anions. However, with all anions together, the consumption of hydrogen peroxide (HP) per mole of herbicide showed an increase with respect to the test without anions. Only one kinetic parameter was estimated for each anion applying a nonlinear regression method. Subsequently, these optimized kinetic constants were used to simulate the system behaviour, considering the influence of all the studied anions together. A good agreement between kinetic model predictions and experimental data was observed, with the following errors: RMSE 2,4-D  = 3.98 × 10 -3 mM, RMSE HP  = 1.83 × 10 -1  mM, RMSE OX  = 1.39 × 10 -2  mM, and RMSE 2,4-DCP  = 5.59 × 10 -3   mM. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Influence of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid.

    PubMed

    Cihanoğlu, Aydın; Gündüz, Gönül; Dükkancı, Meral

    2017-11-01

    The main objective of this study is to investigate the effect of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid, which is one of the most resistant carboxylic acids to oxidation. For this purpose, firstly, the degradation of acetic acid was examined by using ultrasound alone and the effects of different parameters such as: type of sonication system, ultrasonic power, and addition of H 2 O 2 were investigated on the degradation of acetic acid. There was no chemical oxygen demand (COD) reduction in the presence of sonication alone. In the presence of the heterogeneous Fenton-like oxidation process alone, at 303 K, COD reduction reached only 7.1% after 2 h of reaction. However, the combination of the heterogeneous Fenton-like oxidation process with ultrasound increased the COD reduction from 7.1% to 25.5% after 2 h of reaction in an ultrasonic bath operated at 40 kHz, while the COD reduction only increased from 7.1% to 8.9% in the ultrasonic reactor operated at 850 kHz. This result indicates that the hybrid process of ultrasound and heterogeneous Fenton-like oxidation is a promising process to degrade acetic acid.

  17. Sequential application of Fenton and ozone-based oxidation process for the abatement of Ni-EDTA containing nickel plating effluents.

    PubMed

    Zhao, Zilong; Liu, Zekun; Wang, Hongjie; Dong, Wenyi; Wang, Wei

    2018-07-01

    Treatment of Ni-EDTA in industrial nickel plating effluents was investigated by integrated application of Fenton and ozone-based oxidation processes. Determination of integrated sequence found that Fenton oxidation presented higher apparent kinetic rate constant of Ni-EDTA oxidation and capacity for contamination load than ozone-based oxidation process, the latter, however, was favorable to guarantee the further mineralization of organic substances, especially at a low concentration. Serial-connection mode of two oxidation processes was appraised, Fenton effluent after treated by hydroxide precipitation and filtration negatively affected the overall performance of the sequential system, as evidenced by the removal efficiencies of Ni 2+ and TOC dropping from 99.8% to 98.7%, and from 74.8% to 66.6%, respectively. As a comparison, O 3 /Fe 2+ oxidation process was proved to be more effective than other processes (e.g. O 3 -Fe 2+ , O 3 /H 2 O 2 /Fe 2+ , O 3 /H 2 O 2 -Fe 2+ ), and the final effluent Ni 2+ concentration could satisfied the discharge standard (<0.1 mg L -1 , China) under the optimal conditions (H 2 O 2 dosage of 1.0 mL L -1 , Fe 2+ : H 2 O 2 mole ratio of 1.46, and reaction time of 10 min for Fenton reaction, initial influent pH of 3.0, O 3 dosage of 252 mg L -1 , Fe 2+ of 150 mg L -1 , and reaction time of 30 min for O 3 /Fe 2+ oxidation). Furthermore, pilot-scale test was carried out to study the practical treatability towards the real nickel plating effluent, revealing the effective removal of some other co-existence contaminations. And Fenton reaction has contributed most, with the percentage ranging from 72.41% to 93.76%. The economic cost advantage made it a promising alternative to the continuous Fenton oxidation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna.

    PubMed

    Na, Joorim; Yoo, Jisu; Nam, Gwiwoong; Jung, Jinho

    2017-09-20

    This study aimed to identify the source of toxicity in textile dyeing effluent collected from February to July 2016, using Daphnia magna as a test organism. Toxicity identification evaluation (TIE) procedures were used to identify the toxicants in textile dyeing effluent, and Jar testing to simulate the Fenton process was conducted to identify the source of toxicants. Textile dyeing effluent was acutely toxic to D. magna [from 1.5 to 9.7 toxic units (TU)] during the study period. TIE results showed that Zn derived from the Fenton process was a key toxicant in textile dyeing effluent. Additionally, Jar testing revealed that low-purity Fenton reagents (FeCl 2 and FeSO 4 ), which contained large amounts of Zn (89 838 and 610 mg L -1 , respectively), were the source of toxicity. Although we were unable to conclusively identify the residual toxicity (approx. 1.4 TU of 9.71 TU) attributable to unknown toxicants in textile dyeing effluent, the findings of this study suggest that careful operation of the Fenton treatment process could contribute to eliminating its unintended toxic effects on aquatic organisms.

  19. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2013-09-01

    In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition.

    PubMed

    He, Pin-Jing; Zheng, Zhong; Zhang, Hua; Shao, Li-Ming; Tang, Qiong-Yao

    2009-08-15

    An increasing attention has been paid to the trace endocrine disrupting compounds (EDCs) in landfill leachate. In this paper, the removal of EDCs including phthalic acid esters (PAEs) and bisphenol A (BPA) from the fresh and mature landfill leachate by Fenton treatment was studied. More than 40% of PAEs and about 62% of BPA were removed from the raw mature leachate while only 20% of PAEs and 37% of BPA in the raw fresh leachate were reduced, respectively. After the fresh and mature leachates were spiked with PAEs to 1.5 mg L(-1) and BPA to 0.08 mg L(-1), the removal efficiencies of BPA and PAEs increased to more than 88%. The results indicated that the removing efficiencies of the EDCs in the leachate had a relationship with their concentrations, and that the trace levels of EDCs in leachate challenged the treatment capacity of the Fenton process. Most of the EDCs in the enriched leachate were removed by oxidation, which had no clear correlation with the hydrophobicity of the EDCs. The flocculation played an important role in the removal of di-(2-ethylhexyl) phthalate that could not be completely oxidized in the Fenton process, in that the EDCs with high n-octanol/water partition coefficient inclined to precipitate after the Fenton process. The dissolved organic matter (DOM) in the fresh leachate inhibited the EDCs removal more than the DOM in the mature leachate did. Both the composition of the leachate DOM and the characteristics of the EDCs determined the removing efficiencies of the EDCs in the Fenton process.

  1. Mn(2+)-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions.

    PubMed

    Li, Yifan; Sun, Jianhui; Sun, Sheng-Peng

    2016-08-05

    In this work, we report a novel Mn(2+)-mediated Fenton-like process based on Fe(III)-NTA complex that is super-efficient at circumneutral pH range. Kinetics experiments showed that the presence of Mn(2+) significantly enhanced the effectiveness of Fe(III)-NTA complex catalyzed Fenton-like reaction. The degradation rate constant of crotamiton (CRMT), a model compound, by the Fe(III)- NTA_Mn(2+) Fenton-like process was at least 1.6 orders of magnitude larger than that in the absence of Mn(2+). Other metal ions such as Ca(2+), Mg(2+), Co(2+) and Cu(2+) had no impacts or little inhibitory effect on the Fe(III)-NTA complex catalyzed Fenton-like reaction. The generation of hydroxyl radical (HO) and superoxide radical anion (O2(-)) in the Fe(III)-NTA_Mn(2+) Fenton-like process were suggested by radicals scavenging experiments. The degradation efficiency of CRMT was inhibited significantly (approximately 92%) by the addition of HO scavenger 2-propanol, while the addition of O2(-) scavenger chloroform resulted in 68% inhibition. Moreover, the results showed that other chelating agents such as EDTA- and s,s-EDDS-Fe(III) catalyzed Fenton-like reactions were also enhanced significantly by the presence of Mn(2+). The mechanism involves an enhanced generation of O2(-) from the reactions of Mn(2+)-chelates with H2O2, indirectly promoting the generation of HO by accelerating the reduction rate of Fe(III)-chelates to Fe(II)- chelates. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater.

    PubMed

    Perdigón-Melón, J A; Carbajo, J B; Petre, A L; Rosal, R; García-Calvo, E

    2010-09-15

    A coupled coagulation-Fenton process was applied for the treatment of cosmetic industry effluents. In a first step, FeSO(4) was used as coagulant and the non-precipitated Fe(2+) remaining in dissolution was used as catalyst in the further Fenton process. In the coagulation process a huge decrease in total organic carbon (TOC) was achieved, but the high concentration of phenol derivatives was not diminished. The decrease in TOC in the coagulation step significantly reduces the amount of H(2)O(2) required in the Fenton process for phenol depletion. The coupled process, using a H(2)O(2) dose of only 2 g l(-1), reduced TOC and total phenol to values lower than 40 and 0.10 mg l(-1), respectively. The short reaction period (less than 15 min) in TOC and phenol degradation bodes well for improving treatment in a continuous regime. The combination of both processes significantly reduced the ecotoxicity of raw effluent and markedly increased its biodegradability, thus allowing easier treatment by the conventional biological units in conventional sewage treatment plants (STPs). Copyright 2010 Elsevier B.V. All rights reserved.

  3. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluation of the mercaptobenzothiazole degradation by combined adsorption process and Fenton reaction using iron mining residue.

    PubMed

    Martins, Adriana Lau da Silva; Teixeira, Luís Alberto César; da Fonseca, Fabiana Valéria; Yokoyama, Lídia

    2017-08-01

    The present study investigated the degradation of mercaptobenzothiazole (MBT), evaluating homogeneous and heterogeneous systems. An iron mineral residue from the desliming step of iron mining was used as a source in the Fenton-like reaction (advanced oxidation process). A granulometric analysis of the residue was performed and yielded fractions with high hematite (Fe 2 O 3 ) and low quartz content in sieves from 74 to below 44 mm. In this particle size range, the hematite content from 58.9% to 67.4% and the Brunauer-Emmett-Teller area from 0.1345 to 1.3137 m 2  g -1 were obtained. The zeta potential curves as a function of pH were obtained for the residue, the MBT solution and mixtures thereof. The adsorption of MBT in the residue and its degradation through the Fenton-like reaction were investigated. Adsorption tests and the Fenton-like reaction were carried out, where the MBT species and the residue are oppositely charged, yielding, respectively, 10% MBT adsorption on the surface of the residue and 100% MBT degradation by the Fenton-like reaction at pH 3, hydrogen peroxide concentration of 25 mg L -1 , residue concentration of 3 g L -1 , 200 rpm and 25°C, from a 100 mg L -1 MBT solution. MBT degradation was found to occur mainly by the heterogeneous Fenton-like process.

  5. Notable light-free catalytic activity for pollutant destruction over flower-like BiOI microspheres by a dual-reaction-center Fenton-like process.

    PubMed

    Wang, Liang; Yan, Dengbiao; Lyu, Lai; Hu, Chun; Jiang, Ning; Zhang, Lili

    2018-10-01

    BiOI is widely used as photocatalysts for pollutant removal, water splitting, CO 2 reduction and organic transformation due to its excellent photoelectric properties. Here, we report for the first time that a light-free catalyst consisting of the flower-like BiOI microspheres (f-BiOI MSs) exposing (1 0 1) and (1 1 0) crystal planes prepared by a hydrothermal method in ethylene glycol environment can rapidly eliminate the refractory BPA within only ∼3 min through a Fenton-like process. The reaction activity is ∼190 times higher than that of the conventional Fenton catalyst Fe 2 O 3 . A series of characterizations and experiments reveal the formation of the dual reaction centers on f-BiOI MSs. The electron-rich O centers efficiently reduce H 2 O 2 to OH, while the electron-poor oxygen vacancies capture electrons from the adsorbed pollutants and divert them to the electron-rich area during the Fenton-like reactions. By these processes, pollutants are degraded and mineralized quickly in a wide pH range. Our findings address the problems of the classical Fenton reaction and are useful for the development of efficient Fenton-like catalysts through constructing dual reaction centers. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Influence of operational parameters on electro-Fenton degradation of organic pollutants from soil.

    PubMed

    Rosales, E; Pazos, M; Longo, M A; Sanroman, M A

    2009-09-01

    The combination of the Fenton's reagent with electrochemistry (the electro-Fenton process) represents an efficient method for wastewater treatment. This study describes the use of this process to clean soil or clay contaminated by organic compounds. Model soil of kaolinite clay polluted with the dye Lissamine Green B (LGB) was used to evaluate the capability of the electro-Fenton process. The effects of operating parameters such as electrode material and dye concentration were investigated. Operating in an electrochemical cell under optimized conditions while using electrodes of graphite, a constant potential difference of 5 V, pH 3, 0.2 mM FeSO(4). 7H(2)O, and electrolyte 0.1 M Na(2)SO(4), around 80% of the LGB dye on kaolinite clay was decolorized after 3 hours with an electric power consumption around 0.15 W h g(-1). Furthermore, the efficiency of this process for the remediation of a real soil polluted with phenanthrene, a typical polycyclic aromatic hydrocarbon, has been demonstrated.

  7. Aerobic SMBR/reverse osmosis system enhanced by Fenton oxidation for advanced treatment of old municipal landfill leachate.

    PubMed

    Zhang, Guoliang; Qin, Lei; Meng, Qin; Fan, Zheng; Wu, Dexin

    2013-08-01

    A novel combined process of Fenton oxidation, submerged membrane bioreactor (SMBR) and reverse osmosis (RO) was applied as an appropriate option for old municipal landfill leachate treatment. Fenton process was designed to intensively solve the problem of non-biodegradable organic pollutant removal and low biodegradability of leachate, although the removal of ammonia-nitrogen was similar to 10%. After SMBR treatment, it not only presented a higher removal efficiency of organics, but also exhibited high ammonia-nitrogen removal of 80% on average. The variation of extracellular polymeric substance (EPS) content, zeta potential, and particle size of flocs after Fenton effluent continually fed in SMBR was found to be benefit for alleviating membrane fouling. Finally, three kinds of RO membranes (RE, CPA, and BW) were applied to treat SMBR effluents and successfully met wastewater re-utilization requirement. Compared with simple RO process, the troublesome membrane fouling can be effectively reduced in the combined process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Treatment of Actual Chemical Wastewater by a Heterogeneous Fenton Process Using Natural Pyrite

    PubMed Central

    Sun, Liang; Li, Yan; Li, Aimin

    2015-01-01

    Wastewater from chemical plants has remarkable antibiotic effects on the microorganisms in traditional biological treatment processes. An enhanced Fenton system catalyzed by natural pyrite was developed to degrade this kind of wastewater. Approximately 30% chemical oxygen demand (COD) was removed within 120 min when 50 mmol/L H2O2 and 10 g/L natural pyrite were used at initial pH from 1.8 to 7. A BOD5/COD enhancement efficiency of 210% and an acute biotoxicity removal efficiency of 84% were achieved. The COD removal efficiency was less sensitive to initial pH than was the classic Fenton process. Excessive amounts of pyrite and H2O2 did not negatively affect the pyrite Fenton system. The amount of aniline generated indicated that nitrobenzene reduction by pyrite was promoted using a low initial concentration of H2O2 (<5 mmol/L). Fluorescence excitation emission matrix analyses illustrated that H2O2 facilitated the reduction by natural pyrite of organic molecules containing an electron-withdrawing group to electron-donating group. Thus, the Fenton-like process catalyzed by pyrite can remediate wastewater containing organic pollutants under mild reaction conditions and provide an alternative environmentally friendly method by which to reuse natural pyrite. PMID:26516893

  9. Insights into the Role of Humic Acid on Pd-catalytic Electro-Fenton Transformation of Toluene in Groundwater

    PubMed Central

    Liao, Peng; Al-Ani, Yasir; Malik Ismael, Zainab; Wu, Xiaohui

    2015-01-01

    A recently developed Pd-based electro-Fenton (E-Fenton) process enables efficient in situ remediation of organic contaminants in groundwater. In the process, H2O2, Fe(II), and acidic conditions (~pH 3) are produced in situ to facilitate the decontamination, but the role of ubiquitous natural organic matters (NOM) remain unclear. This study investigated the effect of Aldrich humic acid (HA) on the transformation of toluene by the Pd-based E-Fenton process. At pH 3 with 50 mA current, the presence of HA promoted the efficiency of toluene transformation, with pseudo-first-order rate constants increase from 0.01 to 0.016 as the HA concentration increases from 0 to 20 mg/L. The HA-enhanced toluene transformation was attributed to the accelerated thermal reduction of Fe(III) to Fe(II), which led to production of more hydroxyl radicals. The correlation of the rate constants of toluene transformation and HA decomposition validated hydroxyl radical (·OH) as the predominant reactive species for HA decomposition. The finding of this study highlighted that application of the novel Pd-based E-Fenton process in groundwater remediation may not be concerned by the fouling from humic substances. PMID:25783864

  10. Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater.

    PubMed

    Liao, Peng; Al-Ani, Yasir; Malik Ismael, Zainab; Wu, Xiaohui

    2015-03-18

    A recently developed Pd-based electro-Fenton (E-Fenton) process enables efficient in situ remediation of organic contaminants in groundwater. In the process, H₂O₂, Fe(II), and acidic conditions (~pH 3) are produced in situ to facilitate the decontamination, but the role of ubiquitous natural organic matters (NOM) remain unclear. This study investigated the effect of Aldrich humic acid (HA) on the transformation of toluene by the Pd-based E-Fenton process. At pH 3 with 50 mA current, the presence of HA promoted the efficiency of toluene transformation, with pseudo-first-order rate constants increase from 0.01 to 0.016 as the HA concentration increases from 0 to 20 mg/L. The HA-enhanced toluene transformation was attributed to the accelerated thermal reduction of Fe(III) to Fe(II), which led to production of more hydroxyl radicals. The correlation of the rate constants of toluene transformation and HA decomposition validated hydroxyl radical (·OH) as the predominant reactive species for HA decomposition. The finding of this study highlighted that application of the novel Pd-based E-Fenton process in groundwater remediation may not be concerned by the fouling from humic substances.

  11. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    PubMed

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique.

    PubMed

    Zhang, Yuanyuan; Shang, Jiaobo; Song, Yanqun; Rong, Chuan; Wang, Yinghui; Huang, Wenyu; Yu, Kefu

    2017-02-01

    A facile strategy to increase the selectivity of heterogeneous Fenton oxidation is investigated. The increase was reached by increasing selective adsorption of heterogeneous Fenton catalyst to a target pollutant. The heterogeneous Fenton catalyst was prepared by a two-step process. First, zeolite particles were imprinted by the target pollutant, methylene blue (MB), in their aggregations, and second, iron ions were loaded on the zeolite aggregations to form the molecule imprinted Fe-zeolites (MI-FZ) Fenton catalyst. Its adsorption amount for MB reached as high as 44.6 mg g -1 while the adsorption amount of un-imprinted Fe-zeolites (FZ) is only 15.6 mg g -1 . Fenton removal efficiency of MI-FZ for MB was 87.7%, being 33.9% higher than that of FZ. The selective Fenton oxidation of MI-FZ for MB was further confirmed by its removal performance for the mixed MB and bisphenol A (BPA) in solution. The removal efficiency of MB was 44.7% while that of BPA was only 14.9%. This fact shows that molecular imprinting is suitable to prepare the Fe-zeolites (FZ)-based Fenton catalyst with high selectivity for removal of target pollutants, at least MB.

  13. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton.

    PubMed

    Sirés, Ignasi; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

    2007-01-01

    Acidic aqueous solutions of clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid), the bioactive metabolite of various lipid-regulating drugs, have been degraded by indirect electrooxidation methods such as electro-Fenton and photoelectro-Fenton with Fe(2+) as catalyst using an undivided electrolytic cell with a Pt anode and an O(2)-diffusion cathode able to electrogenerate H(2)O(2). At pH 3.0 about 80% of mineralization is achieved with the electro-Fenton method due to the efficient production of oxidant hydroxyl radical from Fenton's reaction between Fe(2+) and H(2)O(2), but stable Fe(3+) complexes are formed. The photoelectro-Fenton method favors the photodecomposition of these species under UVA irradiation, reaching more than 96% of decontamination. The mineralization current efficiency increases with rising metabolite concentration up to saturation and with decreasing current density. The photoelectro-Fenton method is then viable for treating acidic wastewaters containing this pollutant. Comparative degradation by anodic oxidation (without Fe(2+)) yields poor decontamination. Chloride ion is released during all degradation processes. The decay kinetics of clofibric acid always follows a pseudo-first-order reaction, with a similar rate constant in electro-Fenton and photoelectro-Fenton that increases with rising current density, but decreases at greater metabolite concentration. 4-Chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol, along with carboxylic acids such as 2-hydroxyisobutyric, tartronic, maleic, fumaric, formic and oxalic, are detected as intermediates. The ultimate product is oxalic acid, which forms very stable Fe(3+)-oxalato complexes under electro-Fenton conditions. These complexes are efficiently photodecarboxylated in photoelectro-Fenton under the action of UVA light.

  14. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    PubMed Central

    Fernández de Dios, Maria Ángeles; Iglesias, Olaia; Pazos, Marta; Sanromán, Maria Ángeles

    2014-01-01

    The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption. PMID:24723828

  15. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    PubMed

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  16. Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries.

    PubMed

    Giannakis, Stefanos; Rtimi, Sami; Pulgarin, Cesar

    2017-06-26

    In this work, the issue of hospital and urban wastewater treatment is studied in two different contexts, in Switzerland and in developing countries (Ivory Coast and Colombia). For this purpose, the treatment of municipal wastewater effluents is studied, simulating the developed countries' context, while cheap and sustainable solutions are proposed for the developing countries, to form a barrier between effluents and receiving water bodies. In order to propose proper methods for each case, the characteristics of the matrices and the targets are described here in detail. In both contexts, the use of Advanced Oxidation Processes (AOPs) is implemented, focusing on UV-based and solar-supported ones, in the respective target areas. A list of emerging contaminants and bacteria are firstly studied to provide operational and engineering details on their removal by AOPs. Fundamental mechanistic insights are also provided on the degradation of the effluent wastewater organic matter. The use of viruses and yeasts as potential model pathogens is also accounted for, treated by the photo-Fenton process. In addition, two pharmaceutically active compound (PhAC) models of hospital and/or industrial origin are studied in wastewater and urine, treated by all accounted AOPs, as a proposed method to effectively control concentrated point-source pollution from hospital wastewaters. Their elimination was modeled and the degradation pathway was elucidated by the use of state-of-the-art analytical techniques. In conclusion, the use of light-supported AOPs was proven to be effective in degrading the respective target and further insights were provided by each application, which could facilitate their divulgation and potential application in the field.

  17. Comparative study on the removal of COD from POME by electrocoagulation and electro-Fenton methods: Process optimization

    NASA Astrophysics Data System (ADS)

    Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi

    2018-03-01

    This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.

  18. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    PubMed

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  19. Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation.

    PubMed

    Jung, Chanil; Deng, Yang; Zhao, Renzun; Torrens, Kevin

    2017-01-01

    UV-quenching substance (UVQS), as an emerging municipal solid waste (MSW)-derived leachate contaminant, has a potential to interfere with UV disinfection when leachate is disposed of at publicly owned treatment works (POTWs). The objective of this study was to evaluate and compare two chemical oxidation processes under different operational conditions, i.e. Fenton process and ozonation, for alleviation of UV 254 absorbance of a biologically pre-treated landfill leachate. Results showed that leachate UV 254 absorbance was reduced due to the UVQS decomposition by hydroxyl radicals (·OH) during Fenton treatment, or by ozone (O 3 ) and ·OH during ozonation. Fenton process exhibited a better treatment performance than ozonation under their respective optimal conditions, because ·OH could effectively decompose both hydrophobic and hydrophilic dissolved organic matter (DOM), but O 3 tended to selectively oxidize hydrophobic compounds alone. Different analytical techniques, including molecular weight (MW) fractionation, hydrophobic/hydrophilic isolation, UV spectra scanning, parallel factor (PARAFAC) analysis, and fluorescence excitation-emission matrix spectrophotometry, were used to characterize UVQS. After either oxidation treatment, residual UVQS was more hydrophilic with a higher fraction of low MW molecules. It should be noted that the removed UV 254 absorbance (ΔUV 254 ) was directly proportional to the removed COD (ΔCOD) for the both treatments (Fenton process: ΔUV 254  = 0.011ΔCOD; ozonation: ΔUV 254  = 0.016ΔCOD). A greater ΔUV 254 /ΔCOD was observed for ozonation, suggesting that oxidant was more efficiently utilized during ozonation than in Fenton treatment for mitigation of the UV absorbance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review.

    PubMed

    Poza-Nogueiras, Verónica; Rosales, Emilio; Pazos, Marta; Sanromán, M Ángeles

    2018-06-01

    Over the last decades, advanced oxidation processes have often been used alone, or combined with other techniques, for remediation of ground and surface water pollutants. The application of heterogeneous catalysis to electrochemical advanced oxidation processes is especially useful due to its efficiency and environmental safety. Among those processes, electro-Fenton stands out as the one in which heterogeneous catalysis has been broadly applied. Thus, this review has introduced an up-to-date collation of the current knowledge of the heterogeneous electro-Fenton process, highlighting recent advances in the use of different catalysts such as iron minerals (pyrite, magnetite or goethite), prepared catalysts by the load of metals in inorganic and organic materials, nanoparticles, and the inclusion of catalysts on the cathode. The effects of physical-chemical parameters as well as the mechanisms involved are critically assessed. Finally, although the utilization of this process to remediation of wastewater overwhelmingly outnumber other utilities, several applications have been described in the context of regeneration of adsorbent or the remediation of soils as clear examples of the feasibility of the electro-Fenton process to solve different environmental problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Addition of Hydrogen Peroxide to Groundwater with Natural Iron Induces Water Disinfection by Photo-Fenton at Circumneutral pH and other Photochemical Events.

    PubMed

    Gutiérrez-Zapata, Héctor Mario; Alvear-Daza, John Jairo; Rengifo-Herrera, Julián Andrés; Sanabria, Janeth

    2017-10-01

    Samples of natural groundwater (with low turbidity, neutral pH and 0.3 mg L -1 iron concentration) inoculated with Escherichia coli K-12 were exposed to simulated solar light both in the presence and in the absence 10 mg L -1 of H 2 O 2. Results demonstrated that the viability of E. coli (by DVC-FISH) was grounded to zero after 360 min of irradiation. This abatement could be caused by the oxidative stress induced by ·OH radicals or another photo-induced reactive oxygen species. Two 2 3 factorial experimental designs enabled the evaluation of the effects of chemical factors on the inactivation of E. coli. The first experimental design considered the pH, iron and H 2 O 2 , while the second evaluated the ions fluoride, carbonate and phosphate found in groundwater. pH was found to play a key role in the inactivation of E. coli. The best reduction in viability was obtained at the lower pH (6.75), while a nonsignificant effect was observed when iron or H 2 O 2 concentrations were raised. At higher concentrations, anions, such as carbonate and phosphate, negatively affected the E. coli abatement. However, a higher concentration of fluoride accelerated it. In all experiments, the pH was observed to rise to values higher than 8.0 units after 360 min of treatment. © 2017 The American Society of Photobiology.

  2. Applying fenton process in acrylic fiber wastewater treatment and practice teaching

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Jiang, Shan

    2018-02-01

    Acrylic fiber manufacturing wastewater, containing a wider range of pollutants, high concentration of refractory organics, poisonous and harmful matters, was significant to treat from the effluents of wastewater treatment plants (WWTPs). In this work, a Fenton reactor was employed for advanced treatment of the WWTP effluents. An orthogonal test and a parametric study were carried out to determine the effect of the main operating conditions and the Fenton process attain excellent performance on the degradation of pollutants under an optimal condition of ferrous dosage was 6.25 mM, hydrogen peroxide was 75 mM and initial pH value was 3.0 in 90 min reaction time. The removal efficiency of COD, TOC, NH4 +-N and TN reached from 45% to 69%. Lastly, as a teaching advice, the Fenton reactor was used in practicing teaching nicely.

  3. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.

    PubMed

    Gomathi Devi, L; Girish Kumar, S; Mohan Reddy, K; Munikrishnappa, C

    2009-05-30

    Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The efficiency of various processes for the de colorization of MO dye is of the following order: Fe(0)/H(2)O(2)/UV>Fe(0)/H(2)O(2)/dark>Fe(0)/APS/UV>Fe(0)/UV>Fe(0)/APS/dark>H(2)O(2)/UV approximately Fe(0)/dark>APS/UV. Dye resisted to degradation in the presence of oxidizing agent in dark. The degradation process was followed by UV-vis and GC-MS spectroscopic techniques. Based on the intermediates obtained probable degradation mechanism has been proposed. The result suggests that complete degradation of the dye was achieved in the presence of oxidizing agent when the system was amended with iron powder under UV light illumination. The concentration of Fe(2+) ions leached at the end of the optimized degradation experiment is found to be 2.78 x 10(-3)M. With optimization, the degradation using Fe(0) can be effective way to treat azo dyes in aqueous solution.

  4. Altitude distribution of electron concentration in ionospheric D-region in presence of time-varying solar radiation flux

    NASA Astrophysics Data System (ADS)

    Nina, A.; Čadež, V.; Srećković, V.; Šulić, D.

    2012-05-01

    In this paper, we study the influence of solar flares on electron concentration in the terrestrial ionospheric D-region by analyzing the amplitude and phase time variations of very low frequency (VLF) radio waves emitted by DHO transmitter (Germany) and recorded by the AWESOME receiver in Belgrade (Serbia) in real time. The rise of photo-ionization rate in the ionospheric D-region is a typical consequence of solar flare activity as recorded by GOES-15 satellite for the event on March 24, 2011 between 12:01 UT and 12:11 UT. At altitudes around 70 km, the photo-ionization and recombination are the dominant electron gain and electron loss processes, respectively. We analyze the relative contribution of each of these two processes in the resulting electron concentration variation in perturbed ionosphere.

  5. Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction.

    PubMed

    Zhang, Teng; Zhu, Ming-Jun

    2016-08-01

    A study on the synergistic pretreatment of sugarcane bagasse (SCB) using Fenton reaction and NaOH extraction was conducted. The optimized process conditions for Fenton pretreatment were 10% (w/w) of H2O2, 20mM of Fe(2+), pH 2.5, pretreatment time 6h, and pretreatment temperature 55°C. Sequential pretreatments were performed in combination with NaOH extraction (NaOH 1% (w/w), 80°C, 5% of solid loading, 1h). Among all the pretreatments, Fenton pretreatment followed by NaOH extraction had the highest efficiency of 64.7% and 108.3% for enzymolysis and simultaneous saccharification fermentation (SSF) with an ethanol concentration of 17.44g/L. The analyses by the scanning electron microscopy, X-ray diffraction and confocal laser scanning microscopy revealed that Fenton pretreatment disrupts the structure of SCB to facilitate the degradation of lignin by NaOH. The overall data suggest that this combinatorial strategy is a promising process for SCB pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Spent caustic oxidation using electro-generated Fenton's reagent in a batch reactor.

    PubMed

    Rodriguez, Nicolas; Hansen, Henrik K; Nunez, Patricio; Guzman, Jaime

    2008-07-01

    This work shows the results of four Electro-Fenton laboratory tests to reduce the chemical oxygen demand (COD) in spent caustic solutions. The treatment consisted of (i) a pH reduction followed by (ii) an Electro-Fenton process, which was analyzed in this work. The Fenton's reagent was produced in a specially designed reactor, where the waste stream flowed through a labyrinth made by ferrous plates. These plates acted as sacrificial anodes-releasing Fe(2 +) cations to the solution, where H(2)O(2) was also added. The Electro-Fenton process was analyzed varying the ferrous ion concentration ([Fe(+ 2)]), the spent caustic's initial temperature and the initial pH. Close to 95% removal of COD (from 8800 mg L(- 1)) was achieved at a pH of 4, a temperature of 40 degrees C and 100 mg L(- 1) of Fe(+ 2) (applying 1 A). Two models were considered to simulate the behavior of the reactor considering (i) axial dispersion and (ii) kinetic rate, respectively. The model that was based on kinetics, proved to be the slightly closest fit to the experimental values.

  7. Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol.

    PubMed

    Saritha, P; Aparna, C; Himabindu, V; Anjaneyulu, Y

    2007-11-19

    In the present study an attempt is made efficiently to degrade USEPA listed 4-chloro-2-nitrophenol (4C-2-NP), widely available in bulk drug and pesticide wastes using various advanced oxidation processes (AOPs). A comparative assessment using various AOPs (UV, H(2)O(2,) UV/H(2)O(2), Fenton, UV/Fenton and UV/TiO(2)) was attempted after initial optimization studies, viz., varying pH, peroxide concentration, iron concentration, and TiO(2) loading. The degradation of the study compound was estimated using chemical oxygen demand (COD) reduction and compound reduction using spectrophotometric methods and further validated with high performance liquid chromatography (HPLC). The degradation trends followed the order: UV/Fenton > UV/TiO(2) > UV/H(2)O(2) > Fenton > H(2)O(2) > UV(.) It can be inferred from the studies that UV/Fenton was the most effective in partial mineralization of 4C-2-NP. However, lower costs were obtained with H(2)O(2). Kinetic constants were evaluated using first order equations to determine the rate constant K.

  8. Integrating Fenton's process and ion exchange for olive mill wastewater treatment and iron recovery.

    PubMed

    Reis, Patrícia M; Martins, Pedro J M; Martins, Rui C; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2018-02-01

    A novel integrated methodology involving Fenton's process followed by ion exchange (IE) was proposed for the treatment of olive mill wastewater. Fenton's process was optimized and it was able to remove up to 81% of chemical oxygen demand when pH 3.5, reaction time 1 h, [Fe 2+ ] = 50 mg L -1 and [Fe 2+ ]/[H 2 O 2 ] = 0.002 were applied. In spite of the potential of this treatment approach, final iron removal from the liquid typically entails pH increase and iron sludge production. The integration of an IE procedure using Lewatit TP 207 resin was found to be able to overcome this important environmental shortcoming. The resin showed higher affinity toward Fe 3+ than to Fe 2+ . However, the iron removal efficiency of an effluent coming from Fenton's was independent of the type of the initial iron used in the process. The presence of organic matter had no significant effect over the resin iron removal efficiency. Even if some efficiency decrease was observed when a high initial iron load was applied, the adsorbent mass quantity can be easily adapted to reach the desired iron removal. The use of IE is an interesting industrial approach able to surpass Fenton's peroxidation drawback and will surely boost its full-scale application in the treatment of bio-refractory effluents.

  9. Performance Limits of Non-Line-of-Sight Optical Communications

    DTIC Science & Technology

    2015-05-01

    high efficiency solar blind photo detectors. In this project, we address the main challenges towards optimizing the UV communication system...LEDs), solar blind filters, and high efficiency solar blind photo detectors. In this project, we address the main challenges towards optimizing the UV...solar blind filters, and high efficiency solar blind photo detectors. In this project, we address the main challenges towards optimizing the UV

  10. Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater.

    PubMed

    Mackuľak, Tomáš; Mosný, Michal; Grabic, Roman; Golovko, Oksana; Koba, Olga; Birošová, Lucia

    2015-03-01

    We analyzed 13 psychoactive pharmaceuticals, illicit drugs and their metabolites in wastewater treatment plant influent and effluent and the possibility of their degradation by biological and chemical processes. Tramadol (413-853 ng/L) and methamphetamine (460-682 ng/L) were the most concentrated compounds in the wastewater in winter and summer, respectively. A significant decrease in the concentration of tramadol in wastewater was measured during the summer. The lowest efficiency was observed for tramadol, venlafaxine, citalopram and oxazepam (∼ 10%) and the highest efficiency was observed for amphetamine and THC-COOH (∼ 80%). The efficiency of compound degradation via the Fenton reaction, a modified Fenton reaction and different degradation (by algae, wood-rotting fungi and enzymes at influent versus effluent) was determined. The Fenton reaction and its modification were efficient at eliminating these substances in comparison with the tested biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes.

    PubMed

    Wang, Shizong; Wang, Jianlong

    2018-01-01

    Trimethoprim is a pollutant ubiquitous in the environment due to its extensive application, and it cannot be effectively removed by conventional wastewater treatment processes. In this study, the Fenton and the Fe(II)-activated persulfate processes were employed to degrade trimethoprim in an aqueous solution. The results showed that the concentration of persulfate, H 2 O 2 and Fe(II) a had significant influence on the degradation of trimethoprim in both processes. De-ionized water spiked with trimethoprim resulted in the complete degradation of trimethoprim (0.05 mM) by the mineralization of 54.9% of Fenton's reagent when the concentrations of H 2 O 2 and Fe(II) were 1 mM and 0.05 mM, respectively. In contrast, 73.4% of trimethoprim was degraded by the mineralization of 40.5% of the Fe(II)-activated persulfate process when the concentration of persulfate and Fe(II) were each 4 mM. Intermediate compounds with different m/z were detected for the Fenton and the Fe(II)-activated persulfate processes, indicating alternative degradation pathways. In the actual wastewater spiked with trimethoprim, the removal efficiency of trimethoprim decreased to 35.8% and 43.6%, respectively, for the Fenton and the Fe(II)-activated persulfate processes. In addition, the decomposition efficiencies for hydrogen peroxide and persulfate were 43.8% and 92.5%, respectively, which was lower than those in the de-ionized water system. These results demonstrated that wastewater components had a negative influence on trimethoprim degradation and the decomposition of the oxidants (persulfate and H 2 O 2 ). In summary, the Fe(II)-activated persulfate process could be used as an alternative technology for treating trimethoprim-containing wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. FENTON-DRIVEN CHEMICAL REGENERATION OF MTBE-SPENT GAC

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was chemically regenerated utilizing the Fenton mechanism. Two successive GAC regeneration cycles were performed involving iterative adsorption and oxidation processes: MTBE was adsorbed to the GAC, oxidized, r...

  13. The Janus face of iron on anoxic worlds: iron oxides are both protective and destructive to life on the early Earth and present-day Mars.

    PubMed

    Wadsworth, Jennifer; Cockell, Charles S

    2017-05-01

    The surface of the early Earth was probably subjected to a higher flux of ultraviolet (UV) radiation than today. UV radiation is known to severely damage DNA and other key molecules of life. Using a liquid culture and a rock analogue system, we investigated the interplay of protective and deleterious effects of iron oxides under UV radiation on the viability of the model organism, Bacillus subtilis. In the presence of hydrogen peroxide, there exists a fine balance between iron oxide's protective effects against this radiation and its deleterious effects caused by Photo-Fenton reactions. The maximum damage was caused by a concentration of hematite of ∼1 mg/mL. Concentrations above this confer increasing protection by physical blockage of the UV radiation, concentrations below this cause less effective UV radiation blockage, but also a correspondingly less effective Photo-Fenton reaction, providing an overall advantage. These results show that on anoxic worlds, surface habitability under a high UV flux leaves life precariously poised between the beneficial and deleterious effects of iron oxides. These results have relevance to the Archean Earth, but also the habitability of the Martian surface, where high levels of UV radiation in combination with iron oxides and hydrogen peroxide can be found. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

    PubMed

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-05-22

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.

  15. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system

    PubMed Central

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-01-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe3+ can be achieved to regenerate Fe2+. Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe2+ and Fe3+. All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds. PMID:26000975

  16. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review.

    PubMed

    Kanakaraju, Devagi; Glass, Beverley D; Oelgemöller, Michael

    2018-08-01

    Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose on-going and potential health and environmental risks. To tackle these emerging contaminants, advanced oxidation processes (AOPs) such as photo-Fenton, sonolysis, electrochemical oxidation, radiation and ozonation etc. have been applied to remove pharmaceuticals. These processes utilize the high reactivity of hydroxyl radicals to progressively oxidize organic compounds to innocuous products. This review provides an overview of the findings from recent studies, which have applied AOPs to degrade pharmaceutical compounds. Included is a discussion that links various factors of TiO 2 -mediated photocatalytic treatment to its effectiveness in degrading pharmaceutical residues. This review furthermore highlights the success of AOPs in the removal of pharmaceuticals from different water matrices and recommendations for future studies are outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates.

    PubMed

    de Morais, Josmaria Lopes; Zamora, Patricio Peralta

    2005-08-31

    Two advanced oxidative processes (Fe2+/H2O2/UV and H2O2/UV systems) were used for the pre-treatment of mature landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. At optimized experimental conditions (2000 mgL(-1) of H2O2 and 10 mgL(-1) of Fe2+ for the photo-Fenton system, and 3000 mgL(-1) of H2O2 for the H2O2/UV system), both methods showed suitability for partial removal of chemical oxygen demand (COD), total organic carbon (TOC) and color. The biodegradability was significantly improved (BOD5/COD from 0.13 to 0.37 or 0.42) which allowed an almost total removal of COD and color by a sequential activated sludge process. In addition, gel permeation chromatography (GPC) has showed a substantial agreement on the cleavage of large organic compound into smaller ones.

  18. Improving Software Quality and Management Through Use of Service Level Agreements

    DTIC Science & Technology

    2005-03-01

    many who believe that the quality of the development process is the best predictor of software product quality. ( Fenton ) Repeatable software processes...reduced errors per KLOC for small projects ( Fenton ), and the quality management metric (QMM) (Machniak, Osmundson). There are also numerous IEEE 14...attention to cosmetic user interface issues and any problems that may arise with the prototype. (Sawyer) The validation process is also another check

  19. A comparison of the environmental impact of different AOPs: risk indexes.

    PubMed

    Giménez, Jaime; Bayarri, Bernardí; González, Óscar; Malato, Sixto; Peral, José; Esplugas, Santiago

    2014-12-31

    Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air or soil) and on materials and energy consumption. An Environmental Risk Index (E), constructed from numerical criteria provided, is presented for environmental comparison of processes and/or operations. The Operation Environmental Risk Index (EOi) for each of the unit operations involved in the process and the Aspects Environmental Risk Index (EAj) for process conditions were also estimated. Relative indexes were calculated to evaluate the risk of each operation (E/NOP) or aspect (E/NAS) involved in the process, and the percentage of the maximum achievable for each operation and aspect was found. A practical application of the method is presented for two AOPs: photo-Fenton and heterogeneous photocatalysis with suspended TiO2 in Solarbox. The results report the environmental risks associated with each process, so that AOPs tested and the operations involved with them can be compared.

  20. Synthesis and characterization of Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} pyrochlore sun-light-responsive photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naceur, Benhadria, E-mail: nacer1974@yahoo.fr; Abdelkader, Elaziouti, E-mail: elaziouti_a@yahoo.com; Dr Moulay Tahar University, Saida

    2016-02-15

    Graphical abstract: Heterogeneous photo Fenton process with dye sensitized mechanism of RhB by Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} compound. - Highlights: • Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} (BSCO) catalyst was synthesized by improved solid state reaction method. • BSCO/H{sub 2}O{sub 2}/UVA and BSCO/H{sub 2}O{sub 2}/SL catalyst systems exhibit excellent photocatalytic activities for rhodamine B. • The photocatalytic degradation was preceded via heterogeneous photo Fenton mechanism process. • ·OH radicals are the main reactive species for the degradation of RhB. - Abstract: Novel nanostructure pyrochlore Bi{sub 1.56}Sb{sub 1.48}Co{sub 0.96}O{sub 7} was successfully synthesized via solid state reaction method in air. Themore » as-synthesized photocatalyst was characterized by X-ray diffraction, Scanning electron microscopy and UV–vis diffuse reflectance spectroscopy techniques. The results showed that the BSCO was crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The average particle size and band gap for BSCO were D = 76.29 nm and E{sub g} = 1.50 eV respectively. Under the optimum conditions for discoloration of the dye: initial concentration of 20 mg L{sup −1} RhB, pH 7, 25 °C, 0.5 mL H{sub 2}O{sub 2} and BSCO/dye mass ration of 1 g L{sup −1}, 97.77 and 90.16% of RhB were removed with BSCO/H{sub 2}O{sub 2} photocatalytic system within 60 min of irradiation time under UVA- and SL irradiations respectively. Pseudo-second-order kinetic model gave the best fit, with highest correlation coefficients (R{sup 2} ≥ 0.99). On the base of these results, the mechanism of the enhancement of the discoloration efficiency was discussed. .« less

  1. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate.

    PubMed

    Labiadh, Lazhar; Fernandes, Annabel; Ciríaco, Lurdes; Pacheco, Maria José; Gadri, Abdellatif; Ammar, Salah; Lopes, Ana

    2016-10-01

    Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst.

    PubMed

    Liu, Yucan; Zhang, Guangming; Fang, Shunyan; Chong, Shan; Zhu, Jia

    2016-11-01

    A Ni-Fe oxalate complex catalyst was synthesized and characterized by means of Brunauer-Emmet-Teller (BET) method, scanning electron microscope (SEM) and X-ray photo-electron spectroscopy (XPS). The catalyst showed good catalytic activity for aniline degradation by heterogeneous Fenton's reaction, in which the synergetic index was 9.3. The effects of reaction temperature, catalyst dosage, hydrogen peroxide concentration and initial pH were investigated. Under the optimum conditions (T = 293 K, catalyst dosage = 0.2 g/L, H2O2 concentration = 4 mmol/L and initial pH = 5.4), 100% aniline could be removed within 35 min, and approximately 88% deamination efficiency was achieved in 60 min. The aniline degradation process followed the pseudo-first-order kinetic (k = 0.177 min(-1)) with activation energy (Ea) of 49.4 kJ mol(-1). Aniline could be removed in a broad initial pH (3-8) due to the excellent pH-tolerance property of the catalyst. The detected ammonium ion indicated that deamination occurred during aniline degradation. It was proposed that deamination synchronized with aniline removal, and aniline was attacked by free radicals to generate benzoquinonimine and phenol. This system is promising for the removal of aniline from water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process.

    PubMed

    Bremner, David H; Carlo, Stefano Di; Chakinala, Anand G; Cravotto, Giancarlo

    2008-04-01

    The mineralisation of 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of zero-valent iron and hydrogen peroxide (the advanced Fenton process--AFP) whilst being subjected to acoustic or hydrodynamic cavitation is reported. If the reaction is merely stirred then there is 57% removal of TOC whilst on irradiation the figure is 64% although the latter reaction is more rapid. Use of ultrasound alone results in only 11% TOC removal in 60 min of treatment time. Addition of iron powder marginally enhances the extent of degradation but an appreciable increase is observed in the presence of hydrogen peroxide which acts as a source for hydroxyl radicals by Fenton chemistry as well as by dissociation in the presence of ultrasound. The use of hydrodynamic cavitation in conjunction with the advanced Fenton process has also been found to be a useful tool for continuous remediation of water contaminated with 2,4-D. After 20 min of treatment the residual TOC is reduced to 30% and this probably represents the remaining highly recalcitrant small organic molecules.

  4. Transformation characteristics of refractory pollutants in plugboard wastewater by an optimal electrocoagulation and electro-Fenton process.

    PubMed

    Zhao, Xu; Zhang, Baofeng; Liu, Huijuan; Chen, Fayuan; Li, Angzhen; Qu, Jiuhui

    2012-05-01

    The treatment of the plugboard wastewater was performed by an optimal electrocoagulation and electro-Fenton. The organic components with suspended fractions accounting for 30% COD were preferably removed via electrocoagulation at initial 5 min. In contrast, the removal efficiency was increased to 76% with the addition of H(2)O(2). The electrogenerated Fe(2+) reacts with H(2)O(2) and leads to the generation of (·)OH, which is responsible for the higher COD removal. However, overdosage H(2)O(2) will consume (·)OH generated in the electro-Fenton process and lead to the low COD removal. The COD removal efficiency decreased with the increased pH. The concentration of Fe(2+) ions was dependent on the solution pH, H(2)O(2) dosage and current density. The changes of organic characteristics in coagulation and oxidation process were differenced and evaluated using gel permeation chromatography, fluorescence excitation-emission scans and Fourier transform infrared spectroscopy. The fraction of the wastewater with aromatic structure and large molecular weight was decomposed into aliphatic structure and small molecular weight fraction in the electro-Fenton process. Copyright © 2012. Published by Elsevier Ltd.

  5. Advanced oxidation processes for treatment of effluents from a detergent industry.

    PubMed

    Martins, Rui C; Silva, Adrián M T; Castro-Silva, Sérgio; Garção-Nunes, Paulo; Quinta-Ferreira, Rosa M

    2011-07-01

    Ozonation, catalytic ozonation, Fenton's and heterogeneous Fenton-like processes were investigated as possible pretreatments of a low biodegradable and highly toxic wastewater produced by a detergent industry. The presence of a Mn-Ce-O catalyst in ozonation enhances the biodegradability and improves the degradation at low pH values. However, a high content of carbonyl compounds adsorbed on the recovered solid indicates some limitations for real-scale application. A commercial Fe2O3-MnOx catalyst shows higher activity as well as higher stability concerning carbon adsorption, but the leaching of metals is larger than for Mn-Ce-O. Regarding the heterogeneous Fenton-like route with an Fe-Ce-O catalyst, even though a high activity and stability are attained, the intermediates are less biodegradable than the original compounds, indicating that the resulting effluent cannot be conducted to an activated sludge post-treatment. The highest enhancement of effluent biodegradability is obtained with the classic homogeneous Fenton's process, with the BOD5/COD ratio increasing from 0.32 to 0.80. This process was scaled up and the treated effluent is now safely directed to a municipal wastewater treatment plant.

  6. Sequential pretreatment for cell disintegration of municipal sludge in a neutral Bio-electro-Fenton system.

    PubMed

    Yu, Qilin; Jin, Xiaochen; Zhang, Yaobin

    2018-05-15

    Sludge cell disruption was generally considered as the rate-limiting step for the anaerobic digestion of waste activated sludge (WAS). Advanced oxidation processes and bio-electro-chemical systems were recently reported to enhance the hydrolysis of WAS and sludge cell disruption, while the cell-breaking processes of these systems remain unclear yet. In this study, an innovative Bio-electro-Fenton system was developed to pretreat the WAS sequentially with cathode Fenton process and anode anaerobic digestion. Significant cell disruption and dissolution intracellular organics were founded after the treatment. X-ray photoelectron spectroscopy (XPS) analysis and fourier transform infrared spectroscopy (FT-IR) spectra indicated that Gram-negative bacteria were more sensitive to free radicals yielded in cathode to induce a chain reaction that destroyed the lipid-contained outer membrane, while Gram-positive bacteria with thick peptidoglycan layer were liable to be biologically decomposed in the anode. Compared with the oxidation of organic matters in the cathode Fenton, the secretion of enzyme increased in the anode which was beneficial to break down the complex matters (peptidoglycans) into simples that were available for anode oxidation by exoelectrogens. The results also showed a possible prospect for the application of this sequential pretreatment in bio-electro-Fenton systems to disrupt sludge cells and enhance the anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: Evaluation of operational parameters.

    PubMed

    Fernandes, Annabel; Labiadh, Lazhar; Ciríaco, Lurdes; Pacheco, Maria José; Gadri, Abdellatif; Ammar, Salah; Lopes, Ana

    2017-10-01

    The electro-Fenton oxidation of a concentrate from reverse osmosis of a sanitary landfill leachate, with an initial chemical oxygen demand (COD) of 42 g L -1 , was carried out using a carbon-felt cathode and a boron doped diamond anode. The influence of the applied current intensity, initial pH and dissolved iron initial concentration on the electro-Fenton process was assessed. For the experimental conditions used, results showed that the initial pH is the parameter that more strongly influences the current efficiency of the electro-Fenton process, being this influence more pronounced on the oxidation rate than on the mineralization rate of the organic matter. The increase in iron initial concentration was found to be detrimental, since the natural amount of iron present in the effluent, 73 mg L -1 of total iron and 61 mg L -1 of dissolved iron, was sufficient to ensure the electro-Fenton process at the applied intensities - 0.2-1.4 A. For the more favourable conditions studied, initial pH of 3 and natural iron concentration, it was found an increase in the organic load and nitrogen removals with the applied current intensity. For the highest current intensity applied, a COD removal of 16.7 g L -1 was achieved after 8-h experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Use of Both Anode and Cathode Reactions in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Brillas, Enric; Sirés, Ignasi; Cabot, Pere LluíS.

    Here, we describe the fundamentals, laboratory experiments, and environmental applications of indirect electrooxidation methods based on H2O2 electrogeneration such as electro-Fenton, photoelectro-Fenton and peroxicoagulation for the treatment of acidic wastewaters containing toxic and recalcitrant organics. These methods are electrochemical advanced oxidation processes that can be used in divided and undivided electrolytic cells in which pollutants are oxidized by hydroxyl radical (•OH) produced from anode and/or cathode reactions. H2O2 is generated from the two-electron reduction of O2 at reticulated vitreous carbon, graphite, carbon-felt, and O2-diffusion cathodes. The most usual method is electro-Fenton where Fe2 + added to the wastewater reacts with electrogenerated H2O2 to yield •OH and Fe3 + from Fenton's reaction. An advantage of this technique is that Fe2 + is continuously regenerated from cathodic reduction of Fe3 +. The characteristics of different electro-Fenton systems where pollutants are simultaneously destroyed by •OH formed in the medium from Fenton's reaction and at the anode surface from water oxidation are explained. The effect of the anode [Pt or boron-doped diamond (BDD)] and cathode (carbon-felt or O2-diffusion) on the degradation rate of persistent industrial by-products, herbicides, pharmaceuticals, dyes, etc. is examined. Initial pollutants react much more rapidly with •OH formed in the medium and their degradation sequences are discussed from aromatic intermediates and finally short aliphatic acids are detected. The synergetic positive catalytic effect of Cu2 + on the electro-Fenton process is evidenced. The photoelectro-Fenton method involves the irradiation of the wastewater with UVA light that rapidly photodecomposes complexes of Fe3 + with final carboxylic acids enhancing total decontamination. The peroxicoagulation method uses a sacrificial Fe anode that is continuously oxidized to Fe2 + and organics are either mineralized with •OH formed from both electrogenerated Fe2 + and H2O2 or removed by parallel coagulation with the FeOH3 precipitate formed from the excess of Fe3 + generated from Fenton's reaction.

  9. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies.

    PubMed

    Karthikeyan, S; Ezhil Priya, M; Boopathy, R; Velan, M; Mandal, A B; Sekaran, G

    2012-06-01

    BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. Ferrous sulfate (FeSO(4)·7H(2)O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van't Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV-visible spectroscopy, and cyclic voltammetry. The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time-4 h, and H(2)O(2)/FeSO(4)·7H(2)O in the molar ratio of 2:1.

  10. Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 Heterostructures under natural indoor light.

    PubMed

    Yao, Yunjin; Wu, Guodong; Lu, Fang; Wang, Shaobin; Hu, Yi; Zhang, Jie; Huang, Wanzheng; Wei, Fengyu

    2016-11-01

    Low-cost catalysts with high activity and stability toward producing strongly oxidative species are extremely desirable, but their development still remains a big challenge. Here, we report a novel strategy for the synthesis of a magnetic CoFe 2 O 4 /C 3 N 4 hybrid via a simple self-assembly method. The CoFe 2 O 4 /C 3 N 4 was utilized as a photo-Fenton-like catalyst for degradation of organic dyes in the presence of H 2 O 2 under natural indoor light irradiation, a green and energy-saving approach for environmental cleaning. It was found the CoFe 2 O 4 /C 3 N 4 hybrid with a CoFe 2 O 4 : g-C 3 N 4 mass ratio of 2:1 can completely degrade Rhodamine B nearly 100 % within 210 min under room-light irradiation. The effects of the amount of H 2 O 2 (0.01-0.5 M), initial dye concentration (5-20 mg/L), solution pH (3.08-10.09), fulvic acid concentration (5-50 mg/L), different dyes and catalyst stability on the organic dye degradation were investigated. The introduction of CoFe 2 O 4 on g-C 3 N 4 produced an enhanced separation efficiency of photogenerated electron - hole pairs by a Z-scheme mechanism between the interfaces of g-C 3 N 4 and CoFe 2 O 4 , leading to an excellent activity as compared with either g-C 3 N 4 or CoFe 2 O 4 and their mixture. This study demonstrates an efficient way to construct the low-cost magnetic CoFe 2 O 4 /C 3 N 4 heterojunction as a typical Z-scheme system in environmental remediation.

  11. Solar Accuracy to the 3/10000 Degree - Continuum Magazine | NREL

    Science.gov Websites

    Laboratory, where he has developed Solar Position Algorithm software. Photo by Dennis Schroeder, NREL Solar -Pyrheliometer Comparison (NPC), on the deck of NREL's Solar Radiation Research Laboratory. Photo by Dennis

  12. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale.

  13. Application of Fenton process to remove organic matter and PCBs from waste (fuller's earth) contaminated with insulating oil.

    PubMed

    da Silva, Milady Renata Apolinário; Rodrigues, Eduardo de Oliveira; Espanhol-Soares, Melina; Silva, Flavio Soares; Kondo, Márcia Matiko; Gimenes, Rossano

    2018-01-09

    Polychlorinated biphenyls (PCBs) are carcinogenic to humans and can be found in fuller's earth used for the treatment of used transformer oil. This work describes an optimization of the Fenton process for the removal of contaminants from fuller's earth. The effects of pH (2.5 and 4.0), [H 2 O 2 ] (1.47 and 2.07 mol L -1 ), and [Fe 2+ ] (1.7 and 40 mmol L -1 ) were studied. The Fenton process efficiency was monitored using the decreases in the chemical oxygen demand (COD) and the concentrations of oil and grease, total carbon (TC), PCBs, and H 2 O 2 . The fuller's earth contaminated with insulating oil presented 35% (w/w) of TC, 34% (w/w) of oil and grease, 297.0 g L -1 COD, and 64 mg of PCBs per kg. The material could therefore be considered a dangerous waste. After Fenton treatment, using a slurry mode, there was a removal of 55% of COD, 20% of oil and grease, and 20% of TC, achieved at pH 2.5 using 2.07 mol L -1 of H 2 O 2 and 40.0 mmol L -1 of Fe 2+ . No PCBs were detected in the samples after the Fenton treatment, even using smaller amounts of Fenton reagents (1.47 mol L -1 of H 2 O 2 , 1.7 mmol L -1 of Fe 2+ , pH 2.5). The results indicated that the treated fuller's earth was free from PCB residues and could be disposed of in a simple landfill, in accordance with Brazilian PCB regulations.

  14. Improving degradation of paracetamol by integrating gamma radiation and Fenton processes.

    PubMed

    Cruz-González, Germán; Rivas-Ortiz, Iram B; González-Labrada, Katia; Rapado-Paneque, Manuel; Chávez-Ardanza, Armando; Nuevas-Paz, Lauro; Jáuregui-Haza, Ulises J

    2016-10-14

    Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters.

  15. DEGRADATION OF MTBE INTERMEDIATES USING FENTON'S REAGENT

    EPA Science Inventory

    In a previous study, the chemical oxidation of MTBE at low concentrations in water using the Fenton's reagent (FR) was investigated. At certain reaction conditions the process achieved 99.99% degradation of MTBE but it did not result in complete MTBE mineralization. In the pres...

  16. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    PubMed

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  17. Hydroxylamine Promoted Goethite Surface Fenton Degradation of Organic Pollutants.

    PubMed

    Hou, Xiaojing; Huang, Xiaopeng; Jia, Falong; Ai, Zhihui; Zhao, Jincai; Zhang, Lizhi

    2017-05-02

    In this study, we construct a surface Fenton system with hydroxylamine (NH 2 OH), goethite (α-FeOOH), and H 2 O 2 (α-FeOOH-HA/H 2 O 2 ) to degrade various organic pollutants including dyes (methyl orange, methylene blue, and rhodamine B), pesticides (pentachlorophenol, alachlor, and atrazine), and antibiotics (tetracycline, chloramphenicol, and lincomycin) at pH 5.0. In this surface Fenton system, the presence of NH 2 OH could greatly promote the H 2 O 2 decomposition on the α-FeOOH surface to produce ·OH without releasing any detectable iron ions during the alachlor degradation, which was different from some previously reported heterogeneous Fenton counterparts. Moreover, the ·OH generation rate constant of this surface Fenton system was 10 2 -10 4 times those of previous heterogeneous Fenton processes. The interaction between α-FeOOH and NH 2 OH was investigated with using attenuated total reflectance Fourier transform infrared spectroscopy and density functional theory calculations. The effective degradation of organic pollutants in this surface Fenton system was ascribed to the efficient Fe(III)/Fe(II) cycle on the α-FeOOH surface promoted by NH 2 OH, which was confirmed by X-ray photoelectron spectroscopy analysis. The degradation intermediates and mineralization of alachlor in this surface Fenton system were then systematically investigated using total organic carbon and ion chromatography, liquid chromatography-mass spectrometry, and gas chromatography-mass spectrometry. This study offers a new strategy to degrade organic pollutants and also sheds light on the environmental effects of goethite.

  18. Bio-wave change photo-voltages of the solar cells at same changed rate by probability effect of spacetime structure

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    In our experiment, when light (of ``lamp LED'' 3W, 20cm away from the solar cells) simultaneous radiated on four solar cells, they would produce their photo-voltages which are called as background photo-voltages. And then, the author used thought wave to remotely (wireless) act on the four solar cells and increase four background photo-voltages at the same rates which is about 64%. After that, Adding the other light (of ``lamp CFL'') to simultaneous radiate on the four solar cells to changed their background photo-voltages. But there are different changed rates which will appear in the general experiments because the luminous sensitivities of the solar cell are different and the photo-voltages is a nonlinear function. The probability effects of the spacetime structure (of Confined Structural non-Newtonian Fluids) of brain wave (because the wave is spacetime) to change a balance structure between Electron Clouds and electron holes of P-N Junction, and change the background photo-voltages of the solar cells. In the experiments, the consciousness effect, and the relationship between brain wave and consciousness effect will be considered. After the decade of the brain research and the ``BRAIN'' Initiative, a decade of the consciousness need be taken. http://meetings.aps.org/Meeting/APR16/Session/M13.8 AEEA.

  19. Cytotoxicity of Doxycycline Effluent Generated by the Fenton Process

    PubMed Central

    Borghi, Alexandre Augusto; Stephano, Marco Antônio; Monteiro de Souza, Paula; Alves Palma, Mauri Sérgio

    2014-01-01

    This study aims at determining the Minimum Inhibitory Concentration with Escherichia coli ATCC 25922 and cytotoxicity to L929 cells (ATCC CCL-1) of the waste generated by doxycycline degradation by the Fenton process. This process has shown promise in this treatment thanks mainly to the fact that the waste did not show any relevant inhibitory effect on the test organism and no cytotoxicity to L-929 cells, thus demonstrating that the antibiotic properties were inactivated. PMID:25379532

  20. Electro-Fenton as a feasible advanced treatment process to produce reclaimed water.

    PubMed

    Durán Moreno, A; Frontana-Uribe, B A; Ramírez Zamora, R M

    2004-01-01

    The feasibility of the electro-Fenton process to generate simultaneously both of the Fenton's reagent species (Fe2+/H2O2), was assessed as a potentially more economical alternative to the classical Fenton's reaction to produce reclaimed water. An air-saturated combined wastewater (mixture of municipal and laboratory effluents) was treated in discontinuous and continuous reactors at pH = 3.5. The discontinuous reactor was a 2 L electrochemical laboratory cell fitted with concentric graphite and iron electrodes. The continuous reactor tests used a pilot treatment system comprising the aforementioned electrochemical cell, two clarifiers and one sand filter. Several tests were carried out at different conditions of reaction time (0-60 min) and electrical current values (0.2-1.0 A) in the discontinuous reactor. The best operating conditions were 60 min and 1 A without filtration of effluents. At these conditions, in discontinuous and continuous reactors with filtration, the COD, turbidity and color removal were 65-74.8%, 77-92.3% and 80-100%, respectively. Fecal and total coliforms, Escherichia coli, Shigella and Salmonella sp. were not detected at the end of the pilot treatment system. Electrogeneration of the Fenton's reagent is also economical; its cost is one-fifth the cost reported for Advanced Primary Treatment.

  1. Novel arrangement for an electro-Fenton reactor that does not require addition of iron, acid and a final neutralization stage. Towards the development of a cost-effective technology for the treatment of wastewater.

    PubMed

    Fernández, Dennys; Robles, Irma; Rodríguez-Valadez, Francisco J; Godínez, Luis A

    2018-05-01

    A novel arrangement for an electro-Fenton reactor aimed to treat neutral wastewater is presented. The arrangement consists on three-compartments in series, two of them packed with a cation exchange resin and one positioned between these, containing a polarized activated carbon column where the electrochemical generation of the Fenton reagent takes place. While the hydroxyl radicals electrochemically produced in-situ, react with the pollutant species adsorbed on the activated carbon cathode, the resin compartments administrate and collect the iron cation and the hydrated proton species in alternating flow direction cycles. The resulting process is a system that does not require acid or iron chemical addition to the process while at the same time, renders decontaminated water free of iron-dissolved species at neutral pH. The proposed electrochemical reactor arrangement is therefore the basis for the design of commercially viable electro-Fenton reactors in which the addition and subsequent removal of acid and iron chemicals is avoided; two of the currently most limiting features for the development of electro-Fenton technology for treating wastewater. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst.

    PubMed

    Zhao, Binxia; Mele, Giuseppe; Pio, Iolanda; Li, Jun; Palmisano, Leonardo; Vasapollo, Giuseppe

    2010-04-15

    Photocatalytic degradation of 4-nitrophenol was investigated using Fe-doped (1, 3, 5 and 8 wt.% Fe) TiO(2) catalysts under UV light irradiation in aqueous dispersions in the presence of H(2)O(2). Photocatalysts with the lowest Fe content (1%) showed a considerably better behavior with respect to the unloaded TiO(2) and the catalysts with higher Fe contents. Photocatalytic degradation was studied under different conditions such as amounts of 1% Fe-TiO(2) catalyst, H(2)O(2) dose and initial pH of 4-NP solution. The results indicated that about 67.53% total organic carbon of a solution containing 20 mg L(-1) 4-NP was removed at pH 6.17 by using 4.9 mM of H(2)O(2) and 0.4 g L(-1) of the catalyst in a 2-L batch photo-reactor, the complete degradation of 4-NP occurring after 60 min. It was also observed that catalytic behavior could be reproduced in consecutive experiments without a considerable decrease of the UV/Fe-TiO(2)/H(2)O(2) process efficiency. 2009 Elsevier B.V. All rights reserved.

  3. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation.

    PubMed

    Contreras, David; Rodríguez, Jaime; Freer, Juanita; Schwederski, Brigitte; Kaim, Wolfgang

    2007-09-01

    Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (.OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring .OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of .OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the .OH production was observed, suggesting participation of such complexes in the radical production.

  4. Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents.

    PubMed

    Martínez, Susana Silva; Bahena, Cristina Lizama

    2009-01-01

    The removal of low concentration of chlorbromuron herbicide in aqueous systems was carried out by electro-Fenton process comprised of three-electrode divided and undivided cell with a reticulated vitreous carbon cathode and platinum anode. The electro-Fenton was also carried out in a two-electrode undivided cell in which ferrous ion forms from a sacrificial iron anode. It was observed that the total organic carbon (TOC) removal efficiency was influenced by the cell voltage, the pH of the solution and initial herbicide concentration during the electro-Fenton treatment with a stainless steel anode. The Fe(2+)/Fe(3+) activity in the Fenton chemistry (regardless if it is hydroxyl radical or ferryl ion) was improved by the electrochemical catalysis leading to a TOC analysis below the detection limit (0.2 mg l(-1)) corresponding to a TOC removal over 98%. It was found that TOC removal during chlorbromuron degradation followed apparent first order kinetics. The rate constant was increased by decreasing the initial concentration of chlorbromuron.

  5. Treatment of laundrette wastewater using Starbon and Fenton's reagent.

    PubMed

    Tony, Maha A; Parker, Helen L; Clark, James H

    2016-09-18

    The use of grey water for a variety of purposes is gaining increased popularity as a means of preserving scarce freshwater resources. In this work, catalytic oxidation over Fenton's reagent and adsorption techniques using Starbon (mesoporous material derived from polysaccharides) has been applied. These novel techniques are used as an alternative to already studied treatments of grey water such as filtration and/or biological processes. In this study, grey water, collected from a commercial laundrette, has been used. Treatment efficiency was determined by changes in the chemical oxygen demand (COD) of the grey water. Experiments using Fenton's reagent at optimum conditions of Fe(3+) = 40 mg L(-1); H2O2 = 400 mg L(-1) and pH 3 were very successful, resulting in a 95% COD removal after 15 min. Treatment with Starbon adsorption was also effective, reaching up to 81% COD removal at pH 3 within 1 h. The combined treatment with Fenton's reagent and Starbon resulted in a 93% COD removal at a significantly reduced concentration of Fenton's reagent compared to the treatment with solo Fenton's reagent. This lower chemical dose has the advantage of reducing costs and lowering sludge generation.

  6. Hybrid bio-photo-electro-chemical cells for solar water splitting

    PubMed Central

    Pinhassi, Roy I.; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-01-01

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm−2. Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel. PMID:27550091

  7. Hybrid bio-photo-electro-chemical cells for solar water splitting.

    PubMed

    Pinhassi, Roy I; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-08-23

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm(-2). Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel.

  8. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    PubMed

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Use of Enzymatic Bio-Fenton as a New Approach in Decolorization of Malachite Green

    PubMed Central

    Karimi, Afzal; Aghbolaghy, Mostafa; Khataee, Alireza; Shoa Bargh, Shabnam

    2012-01-01

    An enzymatic reaction using glucose oxidase was applied for in situ production of hydrogen peroxide for use in simultaneously Fenton's reaction in decolorization of malachite green. It was found that decolorization rate increased by increasing of glucose concentration from 0.2 g/L to 1.5 g/L. Decolorization rate showed different behaviors versus temperature changes. Initial rate of decolorization process was increased by increasing of temperature; after 30 minutes, especially at temperatures above 30°C, the decolorization rate was gradually reduced. The pH value in the reaction media was decreased from natural to about pH = 3 which had synergic effect on the Fenton process by stabilizing of Fe2+ ions. PMID:22649310

  10. Electro-Fenton for control and removal of micropollutants - process optimization and energy efficiency.

    PubMed

    Mousset, E; Wang, Z; Lefebvre, O

    2016-11-01

    The removal of micropollutants is an important environmental and health issue. Electro-Fenton offers an electrochemical advanced treatment that is particularly effective for the breakdown of aromatic contaminants. Due to the wide variety of chemicals, it is preferable to analyze model contaminants, such as phenol, when optimizing and assessing the efficacy of a novel treatment process. In this study, we therefore made use of innovative types of electrode material and optimized operating parameters (current density and aeration rate) for the removal of phenol by electro-Fenton, with a view to maximize the energy efficiency of the process. By determining the best current density (1.25 mA cm -2 ), frequency of aeration (continuous) and by using a boron-doped diamond (BDD) anode, it was possible to achieve over 98.5% phenol (1 mM) removal within 1.5 h. BDD further outcompeted platinum as anode material in terms of mineralization rate and yield, and displayed low energy consumption of 0.08 kWh (g-TOC) -1 , about one order of magnitude lower than other advanced oxidation processes, such as UV/TiO 2 and UV/O 3 . Furthermore, a carbon cloth anode proved even more cost-effective than BDD if the end goal is the removal of phenol by electro-Fenton instead of complete mineralization.

  11. IRON OPTIMIZATION FOR FENTON-DRIVEN OXIDATION OF MTBE-SPENT GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton-driven chemical regeneration of granular activated carbon (GAC) is accomplished through the addition of H2O2 and iron (Fe) to spent GAC. The overall objective of this treatment process is to transform target contaminants into less toxic byproducts, re-establish the sorpti...

  12. Municipal Leachate Treatment by Fenton Process: Effect of Some Variable and Kinetics

    PubMed Central

    Ahmadian, Mohammad; Reshadat, Sohyla; Yousefi, Nader; Mirhossieni, Seyed Hamed; Zare, Mohammad Reza; Ghasemi, Seyed Ramin; Rajabi Gilan, Nader; Khamutian, Razieh; Fatehizadeh, Ali

    2013-01-01

    Due to complex composition of leachate, the comprehensive leachate treatment methods have been not demonstrated. Moreover, the improper management of leachate can lead to many environmental problems. The aim of this study was application of Fenton process for decreasing the major pollutants of landfill leachate on Kermanshah city. The leachate was collected from Kermanshah landfill site and treated by Fenton process. The effect of various parameters including solution pH, Fe2+ and H2O2 dosage, Fe2+/H2O2 molar ratio, and reaction time was investigated. The result showed that with increasing Fe2+ and H2O2 dosage, Fe2+/H2O2 molar ratio, and reaction time, the COD, TOC, TSS, and color removal increased. The maximum COD, TOC, TSS, and color removal were obtained at low pH (pH: 3). The kinetic data were analyzed in term of zero-order, first-order, and second-order expressions. First-order kinetic model described the removal of COD, TOC, TSS, and color from leachate better than two other kinetic models. In spite of extremely difficulty of leachate treatment, the previous results seem rather encouraging on the application of Fenton's oxidation. PMID:23840229

  13. The study of a pilot-scale aerobic/Fenton/anoxic/aerobic process system for the treatment of landfill leachate.

    PubMed

    Hu, Wenyong; Zhou, Yu; Min, Xiaobo; Liu, Jingyi; Li, Xinyu; Luo, Lin; Zhang, Jiachao; Mao, Qiming; Chai, Liyuan; Zhou, YaoYu

    2017-06-29

    In this study, a combined aerobic-Fenton-anoxic/aerobic system was designed for the remediation of raw landfill leachate in a pilot-scale experiment. This system included (i) a granular sludge biological oxidation procedure that achieves the accumulation of nitrite nitrogen ([Formula: see text]) under aerobic conditions; (ii) a Fenton process that improves the biodegradability of the biotreated leachate and (iii) an activated sludge biological oxidation component under anoxic and aerobic conditions. Additionally, a shortcut nitrification and denitrification pathway was achieved. The effects of free ammonia, temperature and pH on nitrite accumulation were discussed. The change in the biochemical oxygen demand/chemical oxygen demand ratio of the effluent after shortcut nitrification was also analysed. The microbial community in the reactor were also investigated. The problem of the lack of carbon source in the denitrification process can be solved by the Fenton reagent method. Moreover, it was beneficial to achieving nitrogen removal as well as the more extensive removal of organic matter. The treatment strategy employed in this study exhibited good results and provided the potential practical application for treating landfill leachate.

  14. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION ...

    EPA Pesticide Factsheets

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the commercial-scale data. Performance and cost data is summarized for various APO processes, including vacuum ultraviolet (VUV) photolysis, ultraviolet (UV)/oxidation, photo-Fenton, and dye- or semiconductor-sensitized APO processes. This handbook is intended to assist engineering practitioners in evaluating the applicability of APO processes and in selecting one or more such processes for site-specific evaluation.APO has been shown to be effective in treating contaminated water and air. Regarding contaminated water treatment, UV/oxidation has been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest. Regarding contaminated air treatment, the sensitized APO processes have been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest.APO processes for treating contaminated solids generally involve treatment of contaminated slurry or leachate generated using an extraction process such as soil washing. APO has been shown to be effective in treating contaminated solids, primarily at the bench-scale level. Information

  15. Preparation and photo Fenton-like activities of high crystalline CuO fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; He, Jing; Shi, Ruixia; Yang, Ping

    2017-11-01

    CuO fibers were successfully fabricated by a simple electrospinning method, followed by calcination. Some experimental parameters such as the content of Cu(NO3)2•3H2O, the content of PVP, the stirring time, the applied voltage, as well the calcination temperature were investigated, respectively, and their influences on the morphologies of fibers and the spinnability of precursor solution were analyzed. The CuO fibers calcined at 550 °C consisted of numerous CuO grains exhibited a well-crystalline structure. Furthermore, the CuO fibers demonstrated effective photo-Fenton degradation to methyl orange with the assist of H2O2 and the adding volume of H2O2 affects the degradation activities greatly. The degradation rate of methyl orange by the CuO fibers in the presence of 238.8 mmol/L H2O2 is 3.8 times as much as one by P25 alone under the irradiation of Xe lamp. The degradation ratio of methyl orange could achieve 83% in 180 min. The enhanced photocatalytic activities of the CuO fibers were attributed to two aspects: one is the well-crystalline of CuO fibers; the other is that H2O2 accepted the photogenerated electrons and holes effectively, which not only prevented the recombination of charge carriers but also produced additional rad OH. In this work, the formation and photocatalysis mechanisms of CuO fibers were also investigated.

  16. Facile synthesis of magnetic ZnFe2O4-reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation.

    PubMed

    Yao, Yunjin; Qin, Jiacheng; Cai, Yunmu; Wei, Fengyu; Lu, Fang; Wang, Shaobin

    2014-06-01

    A magnetic ZnFe2O4-reduced graphene oxide (rGO) hybrid was successfully developed as a heterogeneous catalyst for photo-Fenton-like decolorization of various dyes using peroxymonosulfate (PMS) as an oxidant under visible light irradiation. Through an in situ chemical deposition and reduction, ZnFe2O4 nanoparticles (NPs) with an average size of 23.7 nm were anchored uniformly on rGO sheets to form a ZnFe2O4-rGO hybrid. The catalytic activities in oxidative decomposition of organic dyes were evaluated. The reaction kinetics, effect of ion species and strength, catalytic stability, degradation mechanism, as well as the roles of ZnFe2O4 and graphene were also studied. ZnFe2O4-rGO showed to be a promising photocatalyst with magnetism for the oxidative degradation of aqueous organic pollutants and simple separation. The combination of ZnFe2O4 NPs with graphene sheets leads to a much higher catalytic activity than pure ZnFe2O4. Graphene acted as not only a support and stabilizer for ZnFe2O4 to prevent them from aggregation, largely improving the charge separation in the hybrid material, but also a catalyst for activating PMS to produce sulfate radicals at the same time. The ZnFe2O4-rGO hybrid exhibited stable performance without losing activity after five successive runs.

  17. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes.

    PubMed

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe(2+)/H2O2) and UV/H2O2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H2O2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H2O2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe(2+)/H2O2 had a molar ratio of 0.1 and a H2O2 concentration of 0.01molL(-1) with a pH of 3.0 and reaction time of 2h, 2.58-3.79 logs of target genes were removed. Under the initial effluent pH condition (pH=7.0), the removal was 2.26-3.35 logs. For the UV/H2O2 process, when the pH was 3.5 with a H2O2 concentration of 0.01molL(-1) accompanied by 30min of UV irradiation, all ARGs could achieve a reduction of 2.8-3.5 logs, and 1.55-2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H2O2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe(2+)/H2O2 molar ratios, H2O2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Molecular diodes in optical rectennas

    NASA Astrophysics Data System (ADS)

    Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic

    2016-09-01

    The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.

  19. Iron crystallization in a fluidized-bed Fenton process.

    PubMed

    Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin

    2011-05-01

    The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Factors affecting degradation of dimethyl sulfoxide (DMSO) by fluidized-bed Fenton process.

    PubMed

    Bellotindos, Luzvisminda M; Lu, Meng-Hsuan; Methatham, Thanakorn; Lu, Ming-Chun

    2014-12-01

    In this study, the target compound is dimethyl sulfoxide (DMSO), which is used as a photoresist stripping solvent in the semiconductor and thin-film transistor liquid crystal display (TFT-LCD) manufacturing processes. The effects of the operating parameters (pH, Fe(2+) and H2O2 concentrations) on the degradation of DMSO in the fluidized-bed Fenton process were examined. This study used the Box-Behnken design (BBD) to investigate the optimum conditions of DMSO degradation. The highest DMSO removal was 98 % for pH 3, when the H2O2 to Fe(2+) molar ratio was 12. At pH 2 and 4, the highest DMSO removal was 82 %, when the H2O2 to Fe(2+) molar ratio was 6.5. The correlation of DMSO removal showed that the effect of the parameters on DMSO removal followed the order Fe(2+) > H2O2 > pH. From the BBD prediction, the optimum conditions were pH 3, 5 mM of Fe(2+), and 60 mM of H2O2. The difference between the experimental value (98 %) and the predicted value (96 %) was not significant. The removal efficiencies of DMSO, chemical oxygen demand (COD), total organic carbon (TOC), and iron in the fluidized-bed Fenton process were higher than those in the traditional Fenton process.

  1. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yan; Zhang, Chao; He, Ai

    Membrane fouling is one of the most severe problems restricting membrane separation technology for wastewater treatment. This work reports a photocatalytic nanofiltration membrane (NFM) with self-cleaning property fabricated using a facile biomimetic mineralization process. In this strategy, a polydopamine (PDA)/polyethyleneimine (PEI) intermediate layer is fabricated on an ultrafiltration membrane via a co-deposition method followed by mineralization of a photocatalytic layer consisting of beta-FeOOH nanorods. The PDA-PEI layer acts both as a nanofiltration selective layer and an intermediate layer for anchoring the beta-FeOOH nanorods via strong coordination complexes between Fe3+ and catechol groups. In visible light, the beta-(F)eOOH layer exhibits efficientmore » photocatalytic activity for degrading dyes through the photo-Fenton reaction in the presence of hydrogen peroxide, endowing the NFM concurrently with effective nanofiltration performance and self-cleaning capability. Moreover, the mineralized NFMs exhibit satisfactory stability under simultaneous filtration and photocatalysis processing, showing great potential in advanced wastewater treatment.« less

  2. AOX removal from industrial wastewaters using advanced oxidation processes: assessment of a combined chemical-biological oxidation.

    PubMed

    Luyten, J; Sniegowski, K; Van Eyck, K; Maertens, D; Timmermans, S; Liers, Sven; Braeken, L

    2013-01-01

    In this paper, the abatement of adsorbable halogenated organic compounds (AOX) from an industrial wastewater containing relatively high chloride concentrations by a combined chemical and biological oxidation is assessed. For chemical oxidation, the O(3)/UV, H(2)O(2)/UV and photo-Fenton processes are evaluated on pilot scale. Biological oxidation is simulated in a 4 h respirometry experiment with periodic aeration. The results show that a selective degradation of AOX with respect to the matrix compounds (expressed as chemical oxygen demand) could be achieved. For O(3)/UV, lowering the ratio of O(3) dosage to UV intensity leads to a better selectivity for AOX. During O(3)-based experiments, the AOX removal is generally less than during the H(2)O(2)-based experiments. However, after biological oxidation, the AOX levels are comparable. For H(2)O(2)/UV, optimal operating parameters for UV and H(2)O(2) dosage are next determined in a second run with another wastewater sample.

  3. Organic solar cells: understanding the role of Förster resonance energy transfer.

    PubMed

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  4. Decades After Developing Technology, NREL Sets New Solar-to-Hydrogen Record

    Science.gov Websites

    recently achieved 16.2% solar-to-hydrogen conversion efficiency. Photo by Dennis Schroeder Innovation is to split water into hydrogen and oxygen. Photo by Dennis Schroeder Photo shows a photoelectrochemical device to split water into hydrogen and oxygen. Photo by Dennis Schroeder Second Look Leads to Record

  5. Pathway for recovery of photo-degraded polymer solar cells by post degradation thermal anneal

    DOE PAGES

    Bhattacharya, J.; Joshi, P. H.; Biswas, Rana; ...

    2017-02-16

    The photo-degradation of polymer solar cells is a critical challenge preventing its commercial deployment. We experimentally fabricate organic solar cells and characterize their degradation under solar simulators in an environmental chamber under nitrogen flow, without exposure to oxygen and moisture. We have developed a thermally stable inverted organic solar cell architecture in which light induced degradation of device characteristics can be reversibly annealed to the pristine values. The stable inverted cells utilized MoO x layers that are thermally treated immediately after their deposition on the organic layer, and before metal cathode deposition. Organic solar cells that are photo-degraded in themore » presence of oxygen, however show irreversible degradation that cannot be thermally recovered. The decrease of organic solar cell characteristics correlates with increases in mid-gap electronic states, measured using capacitance spectroscopy and dark current. It is likely the photo-induced defect states caused by local H motion from the alkyl chains to the aromatic backbone, can be reversibly annealed at elevated temperatures after photo-degradation. Finally, our results provide a pathway for improving the stability of organic photovoltaics.« less

  6. Pathway for recovery of photo-degraded polymer solar cells by post degradation thermal anneal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, J.; Joshi, P. H.; Biswas, Rana

    The photo-degradation of polymer solar cells is a critical challenge preventing its commercial deployment. We experimentally fabricate organic solar cells and characterize their degradation under solar simulators in an environmental chamber under nitrogen flow, without exposure to oxygen and moisture. We have developed a thermally stable inverted organic solar cell architecture in which light induced degradation of device characteristics can be reversibly annealed to the pristine values. The stable inverted cells utilized MoO x layers that are thermally treated immediately after their deposition on the organic layer, and before metal cathode deposition. Organic solar cells that are photo-degraded in themore » presence of oxygen, however show irreversible degradation that cannot be thermally recovered. The decrease of organic solar cell characteristics correlates with increases in mid-gap electronic states, measured using capacitance spectroscopy and dark current. It is likely the photo-induced defect states caused by local H motion from the alkyl chains to the aromatic backbone, can be reversibly annealed at elevated temperatures after photo-degradation. Finally, our results provide a pathway for improving the stability of organic photovoltaics.« less

  7. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  8. Winery wastewater treatment by a combined process: long term aerated storage and Fenton's reagent.

    PubMed

    Lucas, Marco S; Mouta, Maria; Pirra, António; Peres, José A

    2009-01-01

    The degradation of the organic pollutants present in winery wastewater was carried out by the combination of two successive steps: an aerobic biological process followed by a chemical oxidation process using Fenton's reagent. The main goal of this study was to evaluate the temporal characteristics of solids and chemical oxygen demand (COD) present in winery wastewater in a long term aerated storage bioreactor. The performance of different air dosage daily supplied to the biologic reactor, in laboratory and pilot scale, were examined. The long term hydraulic retention time, 11 weeks, contributed remarkably to the reduction of COD (about 90%) and the combination with the Fenton's reagent led to a high overall COD reduction that reached 99.5% when the mass ratio (R = H(2)O(2)/COD) used was equal to 2.5, maintaining constant the molar ratio H(2)O(2)/Fe(2+)=15.

  9. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell.

    PubMed

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-03-01

    Development of sustainable technologies for treatment of azo dyes containing wastewaters has long been of great interest. In this study, we proposed an innovative concept of using microbial reverse-electrodialysis electrolysis cell (MREC) based Fenton process to treat azo dye wastewater. In such MREC-Fenton integrated process, the production of H 2 O 2 which is the key reactant of fenton-reaction was driven by the electrons harvested from the exoelectrogens and salinity-gradient between sea water and fresh water in MREC. Complete decolorization and mineralization of 400mgL -1 Orange G was achieved with apparent first order rate constants of 1.15±0.06 and 0.26±0.03h -1 , respectively. Furthermore, the initial concentration of orange G, initial solution pH, catholyte concentration, high and low concentration salt water flow rate and air flow rate were all found to significantly affect the dye degradation. This study provides an efficient and cost-effective system for the degradation of non-biodegradable pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community.

    PubMed

    Zhao, Huanhuan; Kong, Chui-Hua

    2018-06-01

    The elimination of pyraclostrobin by simultaneous microbial degradation and Fenton oxidation was achieved in a microbial fuel cell (MFC) system. After 12 h of incubation, the removal rate of pyraclostrobin was 1.4 mg/L/h at the anode and 1.7 mg/L/h at the cathode. The pyraclostrobin concentration was less than the detection limit (0.1 mg/L) after 72 h at the anode and 24 h at the cathode. The air flow rate, temperature, and pH of the catholyte had significant effects on the generation of H 2 O 2 . The maximum production of H 2 O 2 was 1.2 mg/L after reaction for 20 h during the Fenton process. Microbial community analysis indicated that functional bacteria in the genera Chryseobacterium, Stenotrophomonas, Arcobacter, and Comamonas were predominant in the anodic biofilm. In conclusion, the MFC-Fenton system provides an effective approach for treating environmental contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass.

    PubMed

    Zhang, Kejing; Si, Mengying; Liu, Dan; Zhuo, Shengnan; Liu, Mingren; Liu, Hui; Yan, Xu; Shi, Yan

    2018-01-01

    The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilensis B-8 (here after B-8) to pretreat the rice straw (RS) by mimicking the natural fungal invasion process. Here, we also elaborated the mechanism through conducting a systematic study of physicochemical changes before and after pretreatment. After synergistic Fenton and B-8 pretreatment, the reducing sugar yield was increased by 15.6-56.6% over Fenton pretreatment alone and 2.7-5.2 times over untreated RS (98 mg g -1 ). Morphological analysis revealed that pretreatment changed the surface morphology of the RS, and the increase in roughness and hydrophilic sites enhanced lignocellulose bioavailability. Chemical components analyses showed that B-8 removed part of the lignin and hemicellulose which caused the cellulose content to increase. In addition, the important chemical modifications also occurred in lignin, 2D NMR analysis of the lignin in residues indicated that the Fenton pretreatment caused partial depolymerization of lignin mainly by cleaving the β- O -4 linkages and by demethoxylation to remove the syringyl (S) and guaiacyl (G) units. B-8 could depolymerize amount of the G units by cleaving the β-5 linkages that interconnect the lignin subunits. A biomimetic system with a biochemical Fenton reaction and lignocellulose-degrading bacteria was confirmed to be able for the pretreatment of RS to enhance enzymatic hydrolysis under mild conditions. The high digestibility was attributed to the destruction of the lignin structure, partial hydrolysis of the hemicellulose and partial surface oxidation of the cellulose. The mechanism of synergistic Fenton and B-8 pretreatment was also explored to understand the change in the RS and the bacterial effects on enzymatic hydrolysis. Furthermore, this biomimetic system offers new insights into the pretreatment of lignocellulosic biomass.

  12. Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: removal and conversion of organic pollutants as well as estimation of operational costs.

    PubMed

    Cheng, Yunqin; Chen, Yunlu; Lu, Juncheng; Nie, Jianxin; Liu, Yan

    2018-04-01

    The Fenton process is used as a tertiary treatment to remove organic pollutants from the effluent of bio-treated pharmaceutical wastewater (EBPW). The optimal and most appropriate Fenton conditions were determined by an orthogonal array test and single-factor experiments. The removal of chemical oxygen demand (COD) was influenced by the following factors in a descending order: H 2 O 2 /Fe(II) molar ratio > H 2 O 2 dosage > reaction time. Under the most appropriate Fenton conditions (H 2 O 2 /Fe(II) molar ratio of 1:1, H 2 O 2 dosage of 120 mg L -1 and reaction time of 10 min), the COD and dissolved organic carbon (DOC) were removed with efficiencies of 62 and 53%, respectively, which met the national discharge standard (GB 21903-2008) for the Lake Tai Basin, China. However, the Fenton treatment was inadequate for removal of N compounds, and the removal of organic nitrogen led to an increment in N-NH 3 from 3.28 to 19.71 mg L -1 . Proteins and polysaccharides were completely removed, and humic acids (HAs) were partly removed with an efficiency of 55%. Three-dimensional excitation/emission matrix spectra (3DEEMs) indicated complete removal of fulvic acid-like substances and 90% reduction in the florescence intensity of humic acid-like substances. Organic pollutants with molecular weights (MW) > 10 kDa were completely removed, MW 5-10 kDa were degraded into smaller MW ones, and some low molecular weight acids (MW 0.1-1 kDa) were mineralized during the Fenton process. Some species, including pharmaceutical intermediates and solvents were detected by gas chromatography-mass spectrometry (GC-MS). The operational costs of the Fenton's treatment were estimated to be 0.58 yuan RMB/m 3 EBPW based on reagent usage and iron sludge treatment and disposal.

  13. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  14. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    PubMed Central

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  15. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.

    PubMed

    Meng, Xianguang; Liu, Lequan; Ouyang, Shuxin; Xu, Hua; Wang, Defa; Zhao, Naiqin; Ye, Jinhua

    2016-08-01

    Nanometal materials play very important roles in solar-to-chemical energy conversion due to their unique catalytic and optical characteristics. They have found wide applications from semiconductor photocatalysis to rapidly growing surface plasmon-mediated heterogeneous catalysis. The recent research achievements of nanometals are reviewed here, with regard to applications in semiconductor photocatalysis, plasmonic photocatalysis, and plasmonic photo-thermocatalysis. As the first important topic discussed here, the latest progress in the design of nanometal cocatalysts and their applications in semiconductor photocatalysis are introduced. Then, plasmonic photocatalysis and plasmonic photo-thermocatalysis are discussed. A better understanding of electron-driven and temperature-driven catalytic behaviors over plasmonic nanometals is helpful to bridge the present gap between the communities of photocatalysis and conventional catalysis controlled by temperature. The objective here is to provide instructive information on how to take the advantages of the unique functions of nanometals in different types of catalytic processes to improve the efficiency of solar-energy utilization for more practical artificial photosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monte Carlo random walk simulation of electron transport in confined porous TiO{sub 2} as a promising candidate for photo-electrode of nano-crystalline solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javadi, M.; Abdi, Y., E-mail: y.abdi@ut.ac.ir

    2015-08-14

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO{sub 2}. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO{sub 2} used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, wemore » demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm{sup 2} and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.« less

  17. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    NASA Astrophysics Data System (ADS)

    Javadi, M.; Abdi, Y.

    2015-08-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO2. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ˜1 μm2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  18. Photo annealing effect on p-doped inverted organic solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafalce, Evan; Toglia, Patrick; Lewis, Jason E.

    2014-06-28

    We report the transient positive photo annealing effect in which over 600% boost of power conversion efficiency was observed in inverted organic photovoltaic devices (OPV) made from P3HT/PCBM by spray method, after 2 hrs of constant solar AM 1.5 irradiation at low temperature. This is opposite to usual photodegradation of OPV, and cannot be explained by thermal activation alone since the mere temperature effect could only account for 30% of the enhancement. We have investigated the temperature dependence, cell geometry, oxygen influence, and conclude that, for p-doped active layer at room temperature, the predominant mechanism is photo-desorption of O{sub 2}, whichmore » eliminates electron traps and reduces space charge screening. As temperature decreases, thermal activation and deep trap-state filling start to show noticeable effect on the enhancement of photocurrent at intermediate low temperature (T = 125 K). At very low temperature, the dominant mechanism for photo annealing is trap-filling, which significantly reduces recombination between free and trapped carriers. At all temperature, photo annealing effect depends on illumination direction from cathode or anode. We also explained the large fluctuation of photocurrent by the capture/reemit of trapped electrons from shallow electron traps of O{sub 2}{sup -} generated by photo-doping. Our study has demonstrated the dynamic process of photo-doping and photo-desorption, and shown that photo annealing in vacuum can be an efficient method to improve OPV device efficiency.« less

  19. Magnetite/Fe-Al-montmorillonite as a Fenton catalyst with efficient degradation of phenol.

    PubMed

    Wei, Xipeng; Wu, Honghai; Sun, Feng

    2017-10-15

    A Fe-Al-MPM material assembled from nanosized magnetite and Fe-Al-pillared montmorillonite (Fe-Al-Mt) was characterized by XRD, XPS, BET, SEM and TEM. Fe-Al-Mt was proven to be capable of facilitating the dispersion of magnetite nanoparticles and inhibiting their aggregation. The coupling of Fe-Al-Mt with magnetite in Fe-Al-MPM improved its Fenton catalytic activity. Complete conversion of phenol within 80min with a high TOC removal rate (>78%) was achieved using Fe-Al-MPM as a heterogeneous Fenton catalyst under optimized conditions. The Fenton process first underwent a slow induction reaction, followed by the rapid oxidative decomposition of phenol. The existence of the induction reaction period was attributed to the need for activation of the iron species on the catalyst surfaces, and the duration depended on the solution temperature, pH and catalyst's nature. More importantly, Fe-Al-MPM showed high stability, with a low iron-release even after it was recycled 5 times. The minimal iron-leaching from Fe-Al-MPM was ascribed to the competitive adsorption of the incorporated aluminum and all the iron species for the residual (low ecotoxicity) organic ligands. These organic acids were among the main products that remained at the end of the Fenton process. Also important was the ease of separation of Fe-Al-MPM under a magnetic field. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Ma, Wencheng; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2015-07-01

    Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application. Copyright © 2015. Published by Elsevier B.V.

  1. Hydroxyl radical production by a heterogeneous Fenton reaction supported in insoluble tannin from bark of Pinus radiata.

    PubMed

    Romero, Romina; Contreras, David; Segura, Cristina; Schwederski, Brigitte; Kaim, Wolfgang

    2017-03-01

    Fenton reactions driven by dihydroxybenzenes (DHBs) have been used for pollutant removal via advanced oxidation processes (AOPs), but such systems have the disadvantage of DHB release into the aqueous phase. In this work, insoluble tannins from bark can be used to drive Fenton reactions and as a heterogeneous support. This avoids the release of DHBs into the aqueous phase and can be used for AOPs. The production of ·OH was investigated using a spin-trapping electron paramagnetic resonance technique (5-dimethyl-1-pyrroline-N-oxide/·OH) in the first minute of the reaction and a high-performance liquid chromatography-fluorescence technique (coumarin/7-hydroxycoumarin) for 20 min. The ·OH yield achieved using insoluble tannins from Pinus radiata bark was higher than that achieved using catechin to drive the Fenton reaction. The Fenton-like system driven by insoluble tannins achieved 92.6 ± 0.3 % degradation of atrazine in 30 min. The degradation kinetics of atrazine was linearly correlated with ·OH production. The increased reactivity in ·OH production and insolubility of the ligand are promising for the development of a new technique for degradation of pollutants in wastewater using heterogeneous Fenton systems.

  2. Electrokinetic-Fenton remediation of organochlorine pesticides from historically polluted soil.

    PubMed

    Ni, Maofei; Tian, Shulei; Huang, Qifei; Yang, Yanmei

    2018-04-01

    Soil contamination by persistent organic pollutants (POPs) poses a great threat to historically polluted soil worldwide. In this study, soils were characterized, and organochlorine pesticides contained in the soils were identified and quantified. Individual electrokinetic (IE), EK-Fenton-coupled technologies (EF), and enhanced EK-Fenton treatment (E-1, E-2, and E-3) were applied to remediate soils contaminated with hexachloro-cyclohexane soprocide (HCH) and dichloro-diphenyl-trichloroethane (DDT). Variation of pH, electrical conductivity, and electroosmotic flow was evaluated during the EK-Fenton process. The IE treatment showed low removal efficiency for HCHs (30.5%) and DDTs (25.9%). In the EF treatment, the highest removal level (60.9%) was obtained for α-HCH, whereas P,P-DDT was the lowest (40.0%). Low solubility of pollutants impeded the HCH and DDT removal. After enhanced EK-Fenton treatment, final removal of pollutants decreased as follows: β-HCH (82.6%) > γ-HCH (81.6%) > α-HCH (81.2%) > δ-HCH (80.0%) > P,P-DDD (73.8%) > P,P-DDE (73.1%) > P,P-DDT (72.6%) > O,P-DDT (71.5%). The results demonstrate that EK-Fenton is a promising technology for POP removal in historically polluted soil.

  3. Electron production by solar Ly-α line radiation in the ionospheric D-region

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.

    2014-10-01

    The hydrogen Ly-α line has a dominant influence in photo-ionization processes in the unperturbed terrestrial ionospheric D region. In this paper, we present a procedure of calculating the rate of photo-ionization induced by Ly-α photons based on relaxation of electron density after intensive perturbations like those caused by solar X flares. This theory is applied to the ends of relaxation periods following three cases of solar X flares from May 5, 2010, February 18, 2011 and March 24, 2011. The necessary data on low ionospheric plasma parameters were collected by the very low frequency (VLF) radio-wave techniques. The electron concentration is calculated from the amplitude and phase of the VLF signal emitted by the DHO transmitter in Germany and recorded by a receiver located in Serbia.

  4. KSC-97PC1236

    NASA Image and Video Library

    1997-08-12

    The Advanced Composition Explorer (ACE) undergoes final prelaunch processing in KSC’s Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being transported to Pad A at Launch Complex 17, Cape Canaveral Air Station, for mating to the Delta II launch vehicle. This photo was taken during a news media opportunity. The worker at right is installing protective covering over one of the spacecraft’s solar arrays. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. Launch is targeted for Aug. 24

  5. Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants.

    PubMed

    Hou, Xiaojing; Huang, Xiaopeng; Ai, Zhihui; Zhao, Jincai; Zhang, Lizhi

    2016-06-05

    In this study, we demonstrate that the combination of ascorbic acid and Fe@Fe2O3 core-shell nanowires (AA/Fe@Fe2O3) offers a highly efficient Fenton reagent. This combined Fenton reagent exhibited extremely high activity on the decomposition of H2O2 to produce OH for the degradation of various organic contaminants, including rhodamine B, methylene blue, alachlor, atrazine, siduron, lincomycin, and chloroamphenicol. The contaminant degradation constants in the AA/Fe@Fe2O3/H2O2 Fenton systems were 38-53 times higher than those in the conventional homogeneous Fenton system (Fe(II)/H2O2) at pH 3.8. Moreover, the OH generation rate constant in the AA/Fe@Fe2O3/H2O2 Fenton system was 1-3 orders of magnitudes greater than those of heterogeneous Fenton systems developed with other iron-containing materials (α-FeOOH, α-Fe2O3, FeOCl, and so on). The high activity of AA/Fe@Fe2O3 was attributed to the effective Fe(III)/Fe(II) cycle and the iron-ascorbate complex formation to stabilize ferrous ions with desirable and steady concentrations. During the AA/Fe@Fe2O3/H2O2 Fenton process, ascorbic acid served as a reducing and complexing reagent, enabling the reuse of Fe@Fe2O3 nanowires. We systematically investigated the alachlor and ascorbic acid degradation and found that they could be effectively degraded in the AA/Fe@Fe2O3/H2O2 system, accompanying with 100% of dechlorination and 92% of denitrification. This study sheds light on the importance of Fe(III)/Fe(II) cycle for the design of high efficient Fenton system and provides an alternative pathway for the organic contaminants removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe2O3 core-shell nanomaterials.

    PubMed

    Liu, Jingyi; Hu, Wenyong; Sun, Maogui; Xiong, Ouyang; Yu, Haibin; Feng, Haopeng; Wu, Xuan; Tang, Lin; Zhou, Yaoyu

    2018-06-13

    The degradation of norfloxacin by Fenton reagent with core-shell Fe@Fe 2 O 3 nanomaterials was studied under neutral conditions in a closed batch system. Norfloxacin was significantly degraded (90%) in the Fenton system with Fe@Fe 2 O 3 in 30 min at the initial pH 7.0, but slightly degraded in Fenton system without Fe@Fe 2 O 3 under the same experimental conditions. The intermediate products were investigated by gas chromatography-mass spectrometry, and the possible Fenton oxidation pathway of norfloxacin in the presence of Fe@Fe 2 O 3 nanowires was proposed. Electron spin resonance spectroscopy was used to identify and characterize the free radicals generated, and the mechanism for norfloxacin degradation was also revealed. Finally, the reusability and the stability of Fe@Fe 2 O 3 nanomaterials were studied using x-ray diffraction and scanning electron microscope, which indicated that Fe@Fe 2 O 3 is a stable catalyst and can be used repetitively in environmental pollution control.

  7. 4-Phenoxyphenol-Functionalized Reduced Graphene Oxide Nanosheets: A Metal-Free Fenton-Like Catalyst for Pollutant Destruction.

    PubMed

    Lyu, Lai; Yu, Guangfei; Zhang, Lili; Hu, Chun; Sun, Yong

    2018-01-16

    Metal-containing Fenton catalysts have been widely investigated. Here, we report for the first time a highly effective stable metal-free Fenton-like catalyst with dual reaction centers consisting of 4-phenoxyphenol-functionalized reduced graphene oxide nanosheets (POP-rGO NSs) prepared through surface complexation and copolymerization. Experimental and theoretical studies verified that dual reaction centers are formed on the C-O-C bridge of POP-rGO NSs. The electron-rich center around O is responsible for the efficient reduction of H 2 O 2 to • OH, while the electron-poor center around C captures electrons from the adsorbed pollutants and diverts them to the electron-rich area via the C-O-C bridge. By these processes, pollutants are degraded and mineralized quickly in a wide pH range, and a higher H 2 O 2 utilization efficiency is achieved. Our findings address the problems of the classical Fenton reaction and are useful for the development of efficient Fenton-like catalysts using organic polymers for different fields.

  8. Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process.

    PubMed

    Torabi Angaji, Mahmood; Ghiaee, Reza

    2015-03-01

    A pilot scale hydrodynamic cavitation (HC) reactor, using iron metal blades, as the heterogeneous catalyst, with no external source of H₂O₂ was developed for catalytic decontamination of unsymmetrical dimethylhydrazine (UDMH) waste water. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The effects of the applied catalyst, pH of the initial solution (1.0-9.7), initial UDMH concentration (2-15 mg/l), inlet pressure (5.5-7.8bar), and downstream pressure (2-6 bar), have been investigated. The results showed that the highest cavitation yield can be obtained at pH 3 and initial UDMH concentration of 10mg/l. Also, an increase in the inlet pressure would lead to an increase in the extent of UDMH degradation. In addition, the optimum value of 3 bar was determined for the downstream pressure that resulted to 98.6% degradation of UDMH after 120 min of processing time. Neither n-nitrosodimethylamine (NDMA) nor any other toxic byproduct (/end-product) was observed in the investigated samples. Formic acid and acetic acid, as well as nitromethane, were identified as oxidation by-products. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of UDMH. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Treatment of olefin plant spent caustic by combination of neutralization and Fenton reaction.

    PubMed

    Sheu, S H; Weng, H S

    2001-06-01

    Spent caustic from olefin plants contains much H2S and some mercaptans, phenols and oil. A new treatment process of spent caustic by neutralization followed by oxidation with Fenton's reagent (Fe2+/H2O2) was successfully developed. Over 90% of dissolved H2S were converted to gas phase by neutralization at pH = 5 and T = 70 degrees, and the vent gas stream could be introduced to sulfur recovery plant. The neutralized liquid was oxidized with OH. free radical, which was provided by a Fenton's reagent. The residual sulfides in the neutralized spent caustic were oxidized to less than 0.1 mg/L. The total COD removal of spent caustic is over 99.5% and the final COD value of the effluent can be lower than 100 mg/L under the following oxidation conditions: reaction time = 50 min, T = 90 degrees, Fe2+ = 100 mg/L, and a stoichiometric H2O2/COD = 1.1. The value is better than the 800 mg/L value obtained by common WAO process. The optimum pH of the Fenton reaction is around 2 for this process, and the oxidation step can maintain a pH value in the range of 1.8-2.4. Moreover, the iron catalyst can be recycled without affecting process effectiveness thus preventing secondary pollution.

  10. Photo current generation in RGO - CdS nanorod thin film device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Koushik; Chakrabarty, Sankalpita; Ibrahim, Sk.

    2016-05-23

    Herein, we report the synthesis and characterization of reduced graphene oxide (RGO) - cadmium sulfide (CdS) nanocomposite materials. The reduction of GO, formation of CdS and decoration of CdS onto RGO sheets were done in a one- pot solvothermal process. We have observed that the PL intensity for CdS nanorods remarkably quenched after the attachment of RGO, which established the photo induced charge transformation from the CdS nanorod to RGO sheets through the RGO-CdS interface. The optoelectronic transport properties of our fabricated large area thin film device exhibits excellent photo induced charge generation under simulated solar light illumination. The photomore » sensitivity of the device increases linearly with the increase of illuminated light intensity. The RGO-CdS composite exhibits enhance photocatalytic dye degradation efficiency in compare to control CdS under simulated solar light illumination.« less

  11. Magnetic multi-metal co-doped magnesium ferrite nanoparticles: An efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore.

    PubMed

    Diao, Yifei; Yan, Zhikai; Guo, Min; Wang, Xidong

    2018-02-15

    Magnetic nanoparticles of multi-metal co-doped magnesium ferrite (MgFe 2 O 4 ) were synthesized from saprolite laterite ore by a hydrothermal method, and firstly proposed as a heterogeneous photon-Fenton-like catalyst for degradation of Rhodamine B (RhB). The factors that influence the degradation reaction including pH value, the concentration of H 2 O 2 and the amount of catalyst, were systematically investigated. The doped MgFe 2 O 4 exhibited a degradation efficiency up to 96.8%, and the chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies about 85.6% and 68.3%, respectively, under visible light illumination for 180min. The high activity is mainly attributed to the high specific surface area of the catalyst and the synergistic interaction between photo-catalytic oxidation and Fenton-like oxidation. Moreover, the catalyst also showed good stability and recycling performance for degrading RhB. After five consecutive degradation cycles, the activity decayed no more than 10%. Compared to other catalysts prepared from pure chemical agents, the multi-metal co-doped MgFe 2 O 4 is more competitive due to its high activity, good stability, ease of recollection, and especially the use of saprolite laterite ore as precursor. This work may provide a new avenue to synthesize efficient ferrite catalysts for degrading organic pollutants in wastewater by using natural minerals. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fenton process combined with coagulation for the treatment of black liquor from bioethanol wastewater

    NASA Astrophysics Data System (ADS)

    Muryanto, Muryanto; Hanifah, Ummu; Amriani, Feni; Ibadurrahman, Ahmad Faiz; Sari, Ajeng Arum

    2017-11-01

    High amounts of black liquor are generated from bioethanol production by using oil palm empty fruit bunches. The black liquor is waste from alkaline pretreatment, it contains high amount of an alkaline solution (NaOH). The black liquor wastewater was highly contaminated with organic materials, and quite toxic for aquatic ecosystems if discharged directly into waters. This study aimed to determine ability of Fenton process combined with coagulation to treat black liquor. The addition 5% of polyaluminium chloride (PAC) could decolorized black liquor, degraded lignin, and produced sludge 70.64%, 68.28%, and 2.76 gram, respectively. Decolorization of black liquor was in line with degradation of black liquor because lignin is the main compound in black liquor. SEM images after addition of PAC of 5% indicated fragmentation of structure. Fenton reagent consist of 0.7 M FeSO4+ 3M H2O2 has able to decolorize black liquor, degrade lignin, and produce sludge 51.67% and 25.44%, and 0.44 gram, respectively. It was concluded that black liquor wastewater from bioethanol can be treated by using Fenton process combined with coagulation. However, these methods still need improvement to obtain the higher degradation rate, and coagulation sludge needs further consideration.

  13. Self-Propelled Micromotors for Cleaning Polluted Water

    PubMed Central

    2013-01-01

    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623

  14. Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes

    NASA Astrophysics Data System (ADS)

    Efrati, Ariel; Lu, Chun-Hua; Michaeli, Dorit; Nechushtai, Rachel; Alsaoub, Sabine; Schuhmann, Wolfgang; Willner, Itamar

    2016-02-01

    The design of photo-bioelectrochemical cells based on native photosynthetic reaction centres is attracting substantial recent interest as a means for the conversion of solar light energy into electrical power. In the natural photosynthetic apparatus, the photosynthetic reaction centres are coupled to biocatalytic transformations leading to CO2 fixation and O2 evolution. Although significant progress in the integration of native photosystems with electrodes for light-to-electrical energy conversion has been achieved, the conjugation of the photosystems to enzymes to yield photo-bioelectrocatalytic solar cells remains a challenge. Here we demonstrate the assembly of integrated photosystem I/glucose oxidase or glucose dehydrogenase photo-bioelectrochemical electrodes. We highlight the photonic wiring of the biocatalysts by means of photosystem I using glucose as fuel. Our results provide a general approach to assemble photo-bioelectrochemical solar cells with wide implications for solar energy conversion, bioelectrocatalysis and sensing.

  15. Efficient treatment of an electroplating wastewater containing heavy metal ions, cyanide, and organics by H2O2 oxidation followed by the anodic Fenton process.

    PubMed

    Zhao, Xu; Wang, Haidong; Chen, Fayuan; Mao, Ran; Liu, Huijuan; Qu, Jiuhui

    2013-01-01

    A real electroplating wastewater, containing heavy metals, cyanide, and organic contaminants, was treated by electrocoagulation (EC), H2O2 oxidation, H2O2 pre-oxidation followed by EC, and the anodic Fenton process and the efficacy of the processes was compared. Concentration of cyanide, Cu, Ni, Zn, and Cr was largely decreased by EC within 5 min. When the reaction time was extended, removal of residual cyanide, Cu, and Ni was limited. In H2O2 oxidation, the concentration of cyanide decreased from initial 75 to 12 mg L(-1) in 30 min. The effluents from the H2O2 oxidation were further treated by EC or anodic Fenton. In EC, the concentration of total cyanide, Ni, and Cu decreased to below 0.3, 0.5, and 1.5 mg L(-1), respectively. Removal efficiency of chemical oxygen demand by EC was less than 20.0%. By contrast, there was 73.5% reduction by the anodic Fenton process with 5 mM H2O2 at 30 min; this can be attributed to the oxidation induced by hydroxyl radicals generated by the reaction of H2O2 with the electrogenerated Fe(2+). Meanwhile, residual cyanide, Cu, and Ni can also be efficiently removed. Transformation of organic components in various processes was analyzed using UV-visible and fluorescence excitation-emission spectra.

  16. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process.

    PubMed

    Guo, Jin-Song; Abbas, Abdulhussain A; Chen, You-Peng; Liu, Zhi-Ping; Fang, Fang; Chen, Peng

    2010-06-15

    The leachate from Changshengqiao landfill (Chongqing, China) was characterized and submitted to a combined process of air stripping, Fenton, sequencing batch reactor (SBR), and coagulation. Optimum operating conditions for each process were identified. The performance of the treatment was assessed by monitoring the removal of organic matter (COD and BOD(5)) and ammonia nitrogen (NH(3)-N). It has been confirmed that air stripping (at pH 11.0 and aeration time 18h) effectively removed 96.6% of the ammonia. The Fenton process was investigated under optimum conditions (pH 3.0, FeSO(4).7H(2)O of 20 g l(-1) and H(2)O(2) of 20 ml l(-1)), COD removal of up to 60.8% was achieved. Biodegradability (BOD(5)/COD ratio) increased from 0.18 to 0.38. Thereafter the Fenton effluent was mixed with sewage at dilutions to a ratio of 1:3 before it was subjected to the SBR reactor; under the optimum aeration time of 20 h, up to 82.8% BOD(5) removal and 83.1% COD removal were achieved. The optimum coagulant (Fe(2)(SO(4))(3)) was a dosage of 800 mg l(-1) at pH of 5.0, which reduced COD to an amount of 280 mg l(-1). These combined processes were successfully employed and very effectively decreased pollutant loading. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  17. Solar process water heat for the IRIS images custom color photo lab

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.

  18. Fenton process on single and mixture components of phenothiazine pharmaceuticals: Assessment of intermediaries, fate, and preliminary ecotoxicity.

    PubMed

    Wilde, Marcelo L; Schneider, Mandy; Kümmerer, Klaus

    2017-04-01

    Pharmaceuticals do not occur isolated in the environment but in multi-component mixtures and may exhibit antagonist, synergistic or additive behavior. Knowledge on this is still scarce. The situation is even more complicated if effluents or potable water is treated by oxidative processes or such transformations occur in the environment. Thus, determining the fate and effects of parent compounds, metabolites and transformation products (TPs) formed by transformation and degradation processes in the environment is needed. This study investigated the fate and preliminary ecotoxicity of the phenothiazine pharmaceuticals, Promazine (PRO), Promethazine (PRM), Chlorpromazine (CPR), and Thioridazine (THI) as single and as components of the resulting mixtures obtained from their treatment by Fenton process. The Fenton process was carried out at pH7 and by using 0.5-2mgL -1 of [Fe 2+ ] 0 and 1-12.5mgL -1 of [H 2 O 2 ] 0 at the fixed ratio [Fe 2+ ] 0 :[H 2 O 2 ] 0 of 1:10 (w:w). No complete mineralization was achieved. Constitutional isomers and some metabolite-like TPs formed were suggested based on their UHPLC-HRMS n data. A degradation pathway was proposed considering interconnected mechanisms such as sulfoxidation, hydroxylation, N-dealkylation, and dechlorination steps. Aerobic biodegradation tests (OECD 301 D and OECD 301 F) were applied to the parent compounds separately, to the mixture of parent compounds, and for the cocktail of TPs present after the treatment by Fenton process. The samples were not readily biodegradable. However, LC-MS analysis revealed that abiotic transformations, such hydrolysis, and autocatalytic transformations occurred. The initial ecotoxicity tested towards Vibrio fischeri as individual compounds featured a reduction in toxicity of PRM and CPR by the treatment process, whereas PRO showed an increase in acute luminescence inhibition and THI a stable luminescence inhibition. Concerning effects of the mixture components, reduction in toxicity by the Fenton process was predicted by concentration addition and independent action models. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    PubMed Central

    Feron, Krishna; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2012-01-01

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Förster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Förster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells. PMID:23235328

  20. Investigation of advanced nanostructured multijunction photoanodes for enhanced solar hydrogen generation via water splitting

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidetaka

    As the worldwide demand for fossil-based fuel increases every day and the fossil reserve continues to be depleted, the need for alternative/renewable energy sources has gained momentum. Electric, hybrid, and hydrogen cars have been at the center of discussion lately among consumers, automobile manufacturers, and politicians, alike. The development of a fuel-cell based engine using hydrogen has been an ambitious research area over the last few decades-ever since Fujishima showed that hydrogen can be generated via the solar-energy driven photo-electrolytic splitting of water. Such solar cells are known as Photo-Electro-Chemical (PEC) solar cells. In order to commercialize this technology, various challenges associated with photo-conversion efficiency, chemical corrosion resistance, and longevity need to be overcome. In general, metal oxide semiconductors such as titanium dioxide (TiO 2, titania) are excellent candidates for PEC solar cells. Titania nanotubes have several advantages, including biocompatibility and higher chemical stability. Nevertheless, they can absorb only 5-7% of the solar spectrum which makes it difficult to achieve the higher photo-conversion efficiency required for successful commercial applications. A two-prong approach was employed to enhance photo-conversion efficiency: 1) surface modification of titania nanotubes using plasma treatment and 2) nano-capping of the titania nanotubes using titanium disilicide. The plasma surface treatment with N2 was found to improve the photo-current efficiency of titania nanotubes by 55%. Similarly, a facile, novel approach of nano-capping titania nanotubes to enhance their photocurrent response was also investigated. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using RF magnetron sputtering technique. The optical properties of titania nanotubes were not found to change due to the capping; however, a considerable increase (40%) in the photocurrent density was observed for the nano-capped titania nanotubes due to the enhanced charge transfer process. Similarly, another metal oxide semiconductor was investigated tungsten trioxide (WO3), which has a much higher absorption capability (12%) in the solar spectrum. The WO3 porous nanostructures suffered from surface corrosion resulting in a large reduction in the photocurrent density as a function of time in the alkaline electrolytes. However, with a protective coating of Indium Tin Oxide (100 nm), the surface corrosion of WO3 porous nanostructures was reduced. A large increase in the photocurrent density of as much as 340% was observed after the ITO was applied to the WO3 porous nanostructures

  1. Ambulatory Phlebectomy

    MedlinePlus

    ... of Mitchel Goldman Before and after - IPL - face solar lentigenes, melasma, brown spots Photo courtesy of Mitchel ... Mitchel Goldman Before and after - IPL: face, rosacea, solar lentigenes, and photodamage Photo courtesy of Mitchel Goldman ...

  2. Golden Rays - November 2016 | Solar Research | NREL

    Science.gov Websites

    develop PV module materials for reliable, low-cost solar electricity. Photo of three individuals behind quantum dots. Photo of a man inside a room with manufacturing equipment NREL Report Shows U.S. Solar PV sustained economic competitiveness of solar PV for the industry across all three sectors. Must Reads

  3. Soluble organic substances extracted from compost as amendments for Fenton-like oxidation of contaminated sites.

    PubMed

    Zingaretti, Daniela; Lombardi, Francesco; Baciocchi, Renato

    2018-04-01

    The Fenton process is a well known treatment that proved to be effective for the remediation of sites contaminated by a wide range of organic pollutants. Its application to soil-water systems typically requires the addition of a stabilizer, in order to increase the H 2 O 2 lifetime and thus the radius of influence of the treatment, and a chelating agent, aimed to extract and maintain in solution the iron present in the soil. However, as the use of these compounds has been debated for their environmental impact, efforts have been placed to test new "greener" amendments. Namely, in line with the concept of circular economy introduced by the European Council, in this study we have tested the use of humic acids extracted from compost as amendment in a Fenton-like process. These substances are of potential interest as can form complexes with metal ions and act as sorbents for hydrophobic organic compounds. Fenton-like lab-scale tests with the extracted humic acids were performed on a soil-water system artificially contaminated by chlorophenol. The obtained results were compared with those achieved applying commercial humic acids or traditional amendments (i.e. KH 2 PO 4 or EDTA) used as reference. The humic acids extracted from compost allowed to achieve a H 2 O 2 lifetime close to the one obtained with traditional stabilizing agent; besides, humic acids proved also effective in removing chlorophenol, with performance close to the one achieved using a traditional chelating agent. These findings hence suggest that the use of the humic acids extracted from wastes in a Fenton-like process could allow to replace at the same time the H 2 O 2 stabilizer and the chelating agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes.

    PubMed

    Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di

    2016-05-01

    Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  6. Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater.

    PubMed

    Li, Yangang; Hsieh, Wen-Pin; Mahmudov, Rovshan; Wei, Xiaomei; Huang, C P

    2013-01-15

    A wastewater collected from a regional ammunition process site was treated with combined US-Fenton process. Factors such as pH, temperature, reaction time, US energy intensity, initial TOC concentration, and the molar ratio of iron to hydrogen peroxide that might affect the treatment efficiency were investigated. The removal of TOC, COD, and color increased with decreasing pH and increasing temperature and US intensity. Color was removed rapidly reaching 85% in 10 min; whereas TOC and COD were removed slowly, only about 20% for both in 10 min and approaching 65 and 92% removal in 120 min, respectively. The optimal molar ratio of Fe(II) to H(2)O(2) for TOC and COD removal was 500. The results showed that the change in the average carbon oxidation number (ACON) was parallel to that of the removal efficiency of TOC, COD, and color. The toxicity of treated wastewater was reduced as assessed by the respiration rate of Escherichia coli. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Protective effect of red orange extract supplementation against UV-induced skin damages: photoaging and solar lentigines.

    PubMed

    Puglia, Carmelo; Offerta, Alessia; Saija, Antonella; Trombetta, Domenico; Venera, Cardile

    2014-06-01

    Exposure of the skin to solar ultraviolet (UV) radiations causes important oxidative damages that result in clinical and hystopathological changes, contributing to premature skin aging. Hyperpigmented lesions, also known as age spots, are one of the most visible alterations in skin photoaging. Skin is naturally equipped with antioxidant systems against UV-induced ROS generation; however, these antioxidant defenses are not completely efficient during exposure to sunlight. Oral antioxidants are able to counteract the harmful effects of UV radiation and to strengthen the physiological skin antioxidant defenses. The present study was performed to evaluate the in vivo skin photo-protecting and anti-aging effects of a red orange (Citrus sinensis varieties Moro, Tarocco and Sanguinello) extract supplementation. Previous studies showed that red orange extracts possess strong in vitro free radical scavenging/antioxidant activity and photo-protective effects on human skin. The photo-protective effects of red orange extract intake against UV-induced skin erythema and melanin production in solar lentigo was evaluated on healthy volunteers by an objective instrumental method (reflectance spectrophotometry). Data obtained from in vivo studies showed that supplementation of red orange extract (100 mg/daily) for 15 days brought a significant reduction in the UV-induced skin erythema degree. Moreover, skin age spots pigmentation (melanin content) decreased from 27% to 7% when subjects were exposed to solar lamp during red orange extract supplementation. Red orange extract intake can strengthen physiological antioxidant skin defenses, protecting skin from the damaging processes involved in photo-aging and leading to an improvement in skin appearance and pigmentation. © 2014 Wiley Periodicals, Inc.

  8. Investigation of potential genotoxic activity using the SOS Chromotest for real paracetamol wastewater and the wastewater treated by the Fenton process.

    PubMed

    Kocak, Emel

    2015-01-01

    The potential genotoxic activity associated with high strength real paracetamol (PCT) wastewater (COD = 40,000 mg/L, TOC = 12,000 mg/L, BOD5 = 19,320 mg/L) from a large-scale drug-producing plant in the Marmara Region, was investigated in pre- and post- treated wastewater by the Fenton process (COD = 2,920 mg/L, TOC = 880 mg/L; BOD5 = 870 mg/L). The SOS Chromotest, which is based on Escherichia coli PQ37 activities, was used for the assessment of genotoxicity. The corrected induction factors (CIF) values used as quantitative measurements of the genotoxic activity were obtained from a total of four different dilutions (100, 50, 6.25, and 0.078 % v/v.) for two samples, in triplicate, to detect potentially genotoxic activities with the SOS Chromotest. The results of the SOS Chromotest demonstrated CIFmax value of 1.24, indicating that the PCT effluent (non-treated) is genotoxic. The results of the SOS Chromotest showed an CIFmax value of 1.72, indicating that the wastewater treated by Fenton process is genotoxic. The findings of this study clearly reveal that the PCT wastewater (non-treated) samples have a potentially hazardous impact on the aquatic environment before treatment, and in the wastewater that was treated by the Fenton process, genotoxicity generally increased.

  9. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.

    PubMed

    Highfield, James

    2015-04-15

    In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered.

  10. Design for the fabrication of high efficiency solar cells

    DOEpatents

    Simmons, Joseph H.

    1998-01-01

    A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

  11. Optimization of Acid Orange 7 Degradation in Heterogeneous Fenton-like Reaction Using Fe3-xCoxO4 Catalyst

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. Z.; Alrozi, R.; Zubir, N. A.; Bashah, N. A.; Ali, S. A. Md; Ibrahim, N.

    2018-05-01

    The oxidation process such as heterogeneous Fenton and/or Fenton-like reactions is considered as an effective and efficient method for treatment of dye degradation. In this study, the degradation of Acid Orange 7 (AO7) was investigated by using Fe3-xCoxO4 as a heterogeneous Fenton-like catalyst. Response surface methodology (RSM) was used to optimize the operational parameters condition and the interaction of two or more parameters. The parameter studies were catalyst dosage (X1 ), pH (X2 ) and H2O2 concentration (X3 ) towards AO7 degradation. Based on analysis of variance (ANOVA), the derived quadratic polynomial model was significant whereby the predicted values matched the experimental values with regression coefficient of R2 = 0.9399. The optimum condition for AO7 degradation was obtained at catalyst dosage of 0.84 g/L, pH of 3 and H2O2 concentration of 46.70 mM which resulted in 86.30% removal of AO7 dye. These findings present new insights into the influence of operational parameters in the heterogeneous Fenton-like oxidation of AO7 using Fe3-xCoxO4 catalyst.

  12. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    PubMed

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.

  13. Heterogeneous fenton catalysts based on activated carbon and related materials.

    PubMed

    Navalon, Sergio; Dhakshinamoorthy, Amarajothi; Alvaro, Mercedes; Garcia, Hermenegildo

    2011-12-16

    The Fenton reaction is widely used for remediation of waste water and for the degradation of organic pollutants in water. Currently, there is considerable interest to convert the classical Fenton reaction, which consumes stoichiometric amounts of iron(II) salts, into a catalytic process that is promoted by a solid. This review describes the work that has used carbonaceous materials either directly as catalysts or, more frequently, as a large-area support for catalytically activated transition metals or metal-oxide nanoparticles. The interest in this type of catalyst derives from the wide use of carbon in conventional water treatments and the wide applicability of the Fenton reaction. After two general sections that illustrate the scope and background of Fenton chemistry, the review describes the activity of activated carbon in the absence or presence of metal-containing particles. The last sections of the review focus on different types of carbonaceous materials, such as carbon nanotubes and diamond nanoparticles. The review concludes with a section that anticipates future developments in this area, which are aimed at overcoming the current limitations of low activity and occurrence of metal leaching. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. Themore » system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.« less

  15. An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation.

    PubMed

    Modestino, Miguel A; Haussener, Sophia

    2015-01-01

    Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.

  16. A new framework to increase the efficiency of large-scale solar power plants.

    NASA Astrophysics Data System (ADS)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  17. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1.

    PubMed

    Ma, Jiangshan; Zhang, Keke; Huang, Mei; Hector, Stanton B; Liu, Bin; Tong, Chunyi; Liu, Qian; Zeng, Jiarui; Gao, Yan; Xu, Ting; Liu, Ying; Liu, Xuanming; Zhu, Yonghua

    2016-01-01

    Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe 2+  + H 2 O 2  + H +  → Fe 3+  + OH· + H 2 O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline ( P  < 0.001) in rice straw degradation. Pyrolysis gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy analysis revealed the consistency of chemical changes of rice straw components that exists between P. ananatis Sd-1 and Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe 3+ -reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P  < 0.01) in rice straw cultures. Higher activities of GMC oxidoreductase and less hydrogen peroxide concentration in rice straw cultures relative to glucose cultures may be responsible for increasing rice straw degradation, which includes Fenton-like reactions. Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.

  18. Application of Fenton oxidation to cosmetic wastewaters treatment.

    PubMed

    Bautista, P; Mohedano, A F; Gilarranz, M A; Casas, J A; Rodriguez, J J

    2007-05-08

    The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.

  19. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    PubMed

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    PubMed

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  1. Degradation of folic acid wastewater by electro-Fenton with three-dimensional electrode and its kinetic study

    PubMed Central

    Xiaochao, Gu; Jin, Tian; Xiaoyun, Li; Bin, Zhou; Xujing, Zheng; Jin, Xu

    2018-01-01

    The three-dimensional electro-Fenton method was used in the folic acid wastewater pretreatment process. In this study, we researched the degradation of folic acid and the effects of different parameters such as the air sparging rate, current density, pH and reaction time on chemical oxygen demand (COD) removal in folic acid wastewater. A four-level and four-factor orthogonal test was designed and optimal reaction conditions to pretreat folic acid wastewater by three-dimensional electrode were determined: air sparge rate 0.75 l min−1, current density 10.26 mA cm−2, pH 5 and reaction time 90 min. Under these conditions, the removal of COD reached 94.87%. LC-MS results showed that the electro-Fenton method led to an initial folic acid decomposition into p-aminobenzoyl-glutamic acid (PGA) and xanthopterin (XA); then part of the XA was oxidized to pterine-6-carboxylic acid (PCA) and the remaining part of XA was converted to pterin and carbon dioxide. The kinetics analysis of the folic acid degradation process during pretreatment was carried out by using simulated folic acid wastewater, and it could be proved that the degradation of folic acid by using the three-dimensional electro-Fenton method was a second-order reaction process. This study provided a reference for industrial folic acid treatment. PMID:29410807

  2. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line.

    PubMed

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy

    2016-04-15

    Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    PubMed

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  4. NREL Research Pushes Perovskites Closer to Market | News | NREL

    Science.gov Websites

    cell. Photo by Dennis Schroeder/NREL Kai Zhu, a researcher at the U.S. Department of Energy's National Kai Zhu has been conducting perovskite research at NREL since 2012. Photo by Dennis Schroeder/NREL , creating a solar cell. Photo by Dennis Schroeder/NREL Pioneering Cutting-Edge Research In a solar cell

  5. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime.

    PubMed

    Yu, Wenbo; Yang, Jiakuan; Shi, Yafei; Song, Jian; Shi, Yao; Xiao, Jun; Li, Chao; Xu, Xinyu; He, Shu; Liang, Sha; Wu, Xu; Hu, Jingping

    2016-05-15

    Conditioning sewage sludge with Fenton's reagent could effectively improve its dewaterability. However, drawbacks of conditioning with Fenton's reagent are requirement of acidic conditions to prevent iron precipitation and subsequent neutralization with alkaline additive to obtain the pH of the filtrate close to neutrality. In this study, roles of pH were thoroughly investigated in the acidification pretreatment, Fenton reaction, and the final filtrate after conditioning. Through the response surface methodology (RSM), the optimal dosages of H2SO4, Fe(2+), H2O2, and lime acted as a neutralizer were found to be 0 (no acidification), 47.9, 34.3 and 43.2 mg/g DS (dry solids). With those optimal doses, water content of the dewatered sludge cakes could be reduced to 55.8 ± 0.6 wt%, and pH of the final filtrate was 6.6 ± 0.2. Fenton conditioning without initial acidification can simplify the conditioning process and reduce the usage of lime. The Fe(3+) content in the sludge cakes showed a close correlation with the dewaterability of conditioned sludge, i.e., the water content of sludge cakes, SRF (specific resistance to filtration), CST (capillary suction time), bound water content, and specific surface area. It indicated that the coagulation by Fe(3+) species in Fenton reaction could play an important role, compared to traditional Fenton oxidation effect on sludge conditioning. Thus, a two-step mechanism of Fenton oxidation and Fe(III) coagulation was proposed in sewage sludge conditioning. The mechanisms include the following: (1) extracellular polymeric substances (EPS) were firstly degraded into dissolved organics by Fenton oxidation; (2) bound water was converted to free water due to degradation of EPS; (3) the sludge particles were disintegrated into small ones by oxidation; (4) Fe(3+) generated from Fenton reaction acted as a coagulant to agglomerate smaller sludge particles into larger dense particles with less bond water; (5) finally, the dewatered sludge cakes were obtained, with less small pores (1-10 nm) that contributed to water affinity, but with more large pores (>10 nm) that contributed to a permeable, rigid lattice structure. Morphology of the Fenton-conditioned sludge cake exhibited a porous structure. The estimated cost of the composite conditioner, Fenton's reagent and lime, is USD$ 43.8/t DS, which is less than that of ferric chloride and lime (USD$ 54/t DS). Furthermore, pH of the final filtrate using this composite conditioner is about 6.6. Comparatively, that using ferric chloride and lime is as high as 12.4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    EPA Science Inventory

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  7. Regulation of Electrochemically Generated H2O2 in Situ from a Novel CB-PTFE Cathode for Transformation of Chlorine Benzene in Groundwater

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Zhang, X.; Li, G.

    2014-12-01

    Fenton's reagents (H2O2 and Fe2+ catalyst commonly) have been widely used in soil and groundwater remediation. But the excessive H2O2 decomposition and the pH modification (acidification) problem have been limitations for Fenton based remediation strategies. The Electro-Fenton (E- Fenton) processes has been recently developed to solve the problems, in which Fe2+ or H2O2are generated in situ as continuing source of Fenton's reagents. In this study, a novel CB-PTFE cathode and a Fe cathode were employed to generate H2O2 and Fe2+ in situ simultaneously. The generated reactive oxidizing species, i.e., O2,H2O2 and hydroxyl radical (HO•), oxidized bio-refractory organics to nontoxic matters in groundwater. Automatic pH adjustments are achieved by appropriately arraying the electrodes. Laboratory batch tests and column tests for the E-Fenton oxidation and hybrid electrolysis system were conducted to evaluate the transformation efficiency of chlorine benzene. Results from batch experiments suggested the CB-PTFE cathode was effective for reducing O2 to H2O2. The H2O2 concentration reached 468 mg/L under the condition of pH 3.0 and 30mA/cm2 in 60 minutes, which was 5 and 10 times of that with a graphite and C-felt cathode. The removal efficiency of chlorine benzene reached 80% in 20 minutes. Both chlorine benzene degradation and H2O2 production increased with decreasing solution pH and increasing current density. The results from the columns tests proved that the in situ E-Fenton system is a feasible method for groundwater remediation.

  8. Photophysical and photochemical effects of UV and VUV photo-oxidation and photolysis on PET and PEN

    NASA Astrophysics Data System (ADS)

    Morgan, Andrew

    Polyethylene Terephthalate (PET) is a widely used polymer in the bottling, packaging, and clothing industry. In recent years an increasing global demand for PET has taken place due to the Solar Disinfection (SODIS) process. SODIS is a method of sterilizing fresh water into drinkable water. The PET bottles are used in the process to contain the water during solar irradiation due to its highly transparent optical property. Alongside PET, polyethylene 2,6-napthalate (PEN) is used in bottling and flexible electronic applications. The surface of PEN would need to be modified to control the hydrophilicity and the interaction it exudes as a substrate. The UV light absorption properties of PET and PEN are of great importance for many applications, and thus needs to be studied along with its photochemical resistance. The optical and chemical nature of PET was studied as it was treated by UV photo-oxidation, photo-ozonation, and photolysis under atmospheric pressure. Another investigation was also used to study PEN and PET as they are treated by vacuum UV (VUV) photo-oxidation, VUV photolysis, and remote oxygen reactions. The extent of the photoreactions' effect into the depth of the polymers is examined as treatment conditions are changed. The different experimental methods established the rate of several competing photoreactions on PET and PEN during irradiance, and their effect on the optical quality of the polymers.

  9. Research on the Treatment of Aluminum Alloy Chemical Milling Wastewater with Fenton Process

    NASA Astrophysics Data System (ADS)

    Zong-liang, Huang; Ru, Li; Peng, Luo; Jun-li, Gu

    2018-03-01

    The aluminum alloy chemical milling wastewater was treated by Fenton method. The effect of pH value, reaction time, rotational speed, H2O2 dosage, Fe2+ dosage and the molar ratio between H2O2 and Fe2+ on the COD removal rate of aluminum alloy chemical milling wastewater were investigated by single factor experiment and orthogonal experiment. The results showed that the optimum operating conditions for Fenton oxidation were as follows: the initial pH value was 3, the rotational speed was 250r/min, the molar ratio of H2O2 and Fe2+ was 8, the reaction time was 90 min. Under the optimum conditions, the removal rate of the wastewater’s COD is about 72.36%. In the reaction kinetics that aluminum alloy chemical milling wastewater was oxidized and degraded by Fenton method under the optimum conditions, the reaction sequence of the initial COD was 0.8204.

  10. Roles of free radicals in NO oxidation by Fenton system and the enhancement on NO oxidation and H2O2 utilization efficiency.

    PubMed

    Zhao, Haiqian; Dong, Ming; Wang, Zhonghua; Wang, Huaiyuan; Qi, Hanbing

    2018-06-20

    Low H 2 O 2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behavior of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of ·OH and HO 2 · on NO in Fenton system was compared and the useless consumption path of ·OH and HO 2 · that caused the low utilization efficiency of H 2 O 2 were studied. A method to enhance the oxidation ability and H 2 O 2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of ·OH and HO 2 · were active substances that oxidize NO. However, the oxidation ability of ·OH radicals was stronger. The vast majority of ·OH and HO 2 · was consumed by rapid reaction ·OH+HO 2 ·→H 2 O+O 2 , which was the primary reason for the low utilization efficiency of H 2 O 2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe 3+ to Fe 2+ , thereby increase the generation rate of ·OH and decrease the generation rate of HO 2 ·. As a result, the oxidation ability and H 2 O 2 utilization efficiency were enhanced.

  11. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    PubMed

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  12. Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies.

    PubMed

    Usman, M; Hanna, K; Haderlein, S

    2016-11-01

    Fenton oxidation constitutes a viable remediation strategy to remove polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. This review is intended to illustrate major limitations associated with this process like acidification, PAH unavailability, and deterioration of soil quality along with associated factors, followed by a critical description of various developments to overcome these constraints. Considering the limitation that its optimal pH is around 3, traditional Fenton treatment could be costly, impractical in soil due to the high buffering capacity of soils and associated hazardous effects. Use of various chelating agents (organic or inorganic) allowed oxidation at circumneutral pH but factors like higher oxidant demand, cost and toxicity should be considered. Another alternative is the use of iron minerals that can catalyze Fenton-like oxidation over a wide range of pH, but mobility of these particles in soils (i.e. saturated and unsaturated zones) should be investigated prior to in-situ applications. The PAH-unavailability is the crucial limitation hindering their effective degradation. Research data is compiled describing various strategies to address this issue like the use of availability enhancement agents, extraction or thermal pretreatment. Last section of this review is devoted to describe the effects of various developments in Fenton treatment onto soil quality and native microbiota. Finally, research gaps are discussed to suggest future directions in context of applying Fenton oxidation to remediate contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes.

    PubMed

    Zhao, Zilong; Dong, Wenyi; Wang, Hongjie; Chen, Guanhan; Tang, Junyi; Wu, Yang

    2018-05-15

    This research explored the application of electro-Fenton (E-Fenton) technique for the simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by using iron sacrificing electrodes. Standard discharge (0.3 mg L -1 for Cu and 0.1 mg L -1 for Ni in China) could be achieved after 30 min reaction under the optimum conditions (i.e. initial solution pH of 2.0, H 2 O 2 dosage of 6 mL L -1  h -1 , current density of 20 mA/cm 2 , inter-electrode distance of 2 cm, and sulfate electrolyte concentration of 2000 mg L -1 ). The distinct differences in apparent kinetic rate constants (k app ) and intermediate removal efficiencies corresponding to mere and blended systems indicated the mutual promotion effect toward the decomplexation between Cu(II) and Ni(II). Massive accumulation of Fe(Ⅲ) favored the further removal of Cu(II) and Ni(II) by metal ion substitution. Species distribution results demonstrated that the decomplexation of metal-EDTA in E-Fenton process was mainly contributed to the combination of various reactions, including Fenton reaction together with the anodic oxidation, electro-coagulation (E-coagulation) and electrodeposition. Unlike hypophosphite and citrate, the presence of chlorine ion displayed favorable effects on the removal efficiencies of Cu(II) and Ni(II) at low dosage, but facilitated the ammonia nitrogen (NH 4 + -N) removal only at high dosage. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Yibing; Lin, Yu; Meng, Yongming; Tu, Yongguang; Zhang, Xiaolong

    2015-07-01

    SnO2 nanoparticles were synthesized by hydrothermal method and applied to photo-electrodes of quantum dots-sensitized solar cells (QDSSCs). After sensitizing SnO2 films via CdS quantum dots, CdSe quantum dots was decorated on the surface of CdS/SnO2 photo-electrodes to further improve the power conversion efficiency. CdS and CdSe quantum dots were deposited by successive ionic layer absorption and reaction method (SILAR) and chemical bath deposition method (CBD) respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to identify the surface profile and crystal structure of SnO2 photo-electrodes before and after deposited quantum dots. After CdSe co-sensitized process, an overall power conversion efficiency of 1.78% was obtained in CdSe/CdS/SnO2 QDSSC, which showed 66.4% improvement than that of CdS/SnO2 QDSSC.

  15. Sonocatalytic-Fenton reaction for enhanced OH radical generation and its application to lignin degradation.

    PubMed

    Ninomiya, Kazuaki; Takamatsu, Hiromi; Onishi, Ayaka; Takahashi, Kenji; Shimizu, Nobuaki

    2013-07-01

    The present study demonstrated that the combined use of the sonocatalytic reaction (using ultrasound and titanium dioxide) and the Fenton reaction exhibited synergistically enhanced hydroxyl (OH) radical generation. Dihydroxybenzoic acid (DHBA) concentration as index of OH radical generation was 13 and 115 μM at 10 min in the sonocatalytic reaction and Fenton reaction, respectively. On the other hand, the DHBA concentration was 378 μM at 10 min in the sonocatalytic-Fenton reaction. The sonocatalytic-Fenton reaction was used for degradation of lignin. The lignin degradation ratio was 1.8%, 49.9%, and 60.0% at 180 min in the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Moreover, the sonocatalytic-Fenton reaction was applied to pretreatment of lignocellulosic biomass to enhance subsequent enzymatic saccharification. The cellulose saccharification ratio was 11%, 14%, 16% and 25% at 360 min of pretreatment by control reaction, the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle.

    PubMed

    Yatagai, Tomonori; Ohkawa, Yoshiko; Kubo, Daichi; Kawase, Yoshinori

    2017-01-02

    The hydroxyl radical generation in an electro-Fenton process with a gas-diffusion electrode which is strongly linked with electro-chemical generation of hydrogen peroxide and iron redox cycle was studied. The OH radical generation subsequent to electro-chemical generations of H 2 O 2 was examined under the constant potential in the range of Fe 2+ dosage from 0 to 1.0 mM. The amount of generated OH radical initially increased and gradually decreased after the maximum was reached. The initial rate of OH radical generation increased for the Fe 2+ dosage <0.25 mM and at higher Fe 2+ dosages remained constant. At higher Fe 2+ dosages the precipitation of Fe might inhibit the enhancement of OH radical generation. The experiments for decolorization and total organic carbon (TOC) removal of azo-dye Orange II by the electro-Fenton process were conducted and the quick decolorization and slow TOC removal of Orange II were found. To quantify the linkages of OH radical generation with dynamic behaviors of electro-chemically generated H 2 O 2 and iron redox cycle and to investigate effects of OH radical generation on the decolorization and TOC removal of Orange II, novel reaction kinetic models were developed. The proposed models could satisfactory clarify the linkages of OH radical generation with electro-chemically generated H 2 O 2 and iron redox cycle and simulate the decolorization and TOC removal of Orange II by the electro-Fenton process.

  17. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    PubMed

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process.

    PubMed

    Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M

    2011-02-28

    The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters

    NASA Astrophysics Data System (ADS)

    Black, Frank J.; Poulin, Brett A.; Flegal, A. Russell

    2012-05-01

    Photo-decomposition is among the most important mechanisms responsible for degrading monomethylmercury (MMHg) in aquatic systems, but this process is not fully understood. We investigated the relative importance of different factors in controlling the rate of MMHg photo-decomposition in surface waters in experiments using DOM isolated from natural waters. We found no evidence of net abiotic production of MMHg in any dark or light exposed treatments. The average (mean ± s.d.) MMHg photo-decomposition rate constant for all light exposed samples using DOM concentrated from three coastal wetlands was 0.0099 ± 0.0020 E-1m2 (range of 0.006-0.015 E-1m2) when expressed in photon flux from 330-700 nm. This was roughly 3-fold higher than the average MMHg photo-decomposition rate constant in coastal seawater of 0.0032 ± 0.0010 E-1m2. MMHg photo-degradation was highly wavelength dependent. The ratio of MMHg photo-decomposition rate constants, with respect to photon flux, was 400:37:1 for UVB:UVA:PAR. However, when integrated across the entire water column over which MMHg photo-demethylation occurs, PAR was responsible for photo-degrading more MMHg than UVB and UVA combined in the three wetland sites because of the more rapid attenuation of UV light with depth. MMHg half-lives in the wetlands were calculated for the upper 250 cm where photo-degradation occurred, and ranged from 7.6 to 20 days under typical summer sunlight conditions at 37°N. Rates of MMHg photo-decomposition decreased with increasing salinity, and were 27% higher at a salinity of 5 than those at a salinity of 25. This difference could not be accounted for by changes in the complexation of MMHg by DOM and chloride. Differences in MMHg photo-degradation rate constants of up to 18% were measured between treatments using DOM concentrated from three different wetlands. Surprisingly, increasing DOM concentration from 1.5 to 11.3 mg OC L-1 had only a small (6%) effect on MMHg photo-decomposition, which was much smaller than the 34% decrease predicted due to the attenuation of light at the higher DOM levels. This suggests that DOM plays an important role in MMHg photo-decomposition apart from mediating light levels and MMHg complexation. Experiments employing various scavengers implied that singlet oxygen and hydroxyl radicals were not involved in the photo-degradation of MMHg in the natural waters used. Varying concentrations of Fe, Cu, and Mn had only small (⩽11%) effects on rates of MMHg photo-decomposition, and relatively high rates were measured in high purity water with no trace metals or DOM. These results demonstrate that MMHg photo-decomposition can occur via pathways not involving Fe, the photo-Fenton reaction, nitrate photolysis, or thiol complexation. Taken with previous studies, multiple reaction pathways appear to exist, and their importance varies as a function of water chemistry and light wavelength.

  20. Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction.

    PubMed

    Zeng, Xiangfeng; Twardowska, Irena; Wei, Shuhe; Sun, Lina; Wang, Jun; Zhu, Jianyu; Cai, Jianchao

    2015-05-15

    Bioleaching by Aspergillus niger strain SY1 combined with Fenton-like reaction was optimized to improve trace metal removal and dewaterability of dredged sediments. The major optimized parameters were the duration of bioleaching and H₂O₂ dose in Fenton-like process (5 days and 2g H₂O₂/L, respectively). Bioleaching resulted in the removal of ≈90% of Cd, ≈60% of Zn and Cu, ≈20% of Pb, and in decrease of sediment pH from 6.6 to 2.5 due to organic acids produced by A. niger. After addition of H₂O₂, Fenton-like reaction was initiated and further metal removal occurred. Overall efficiency of the combined process comprised: (i) reduction of Cd content in sediment by 99.5%, Cu and Zn by >70% and Pb by 39% as a result of metal release bound in all mobilizable fractions; (ii) decrease of sediment capillary suction time (CST) from 98.2s to 10.1s (by 89.8%) and specific resistance to filtration (SRF) from 37.4×10(12)m/kg to 6.2×10(12)m/kg (by 83.8%), due to reducing amount of extracellular polymeric substances (EPS) by 68.7% and bound water content by 79.1%. The combined process was found to be an efficient method to remove trace metals and improve dewaterability of contaminated dredged sediments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  2. View of coronal hole processed from television transmission of ATM

    NASA Image and Video Library

    1973-08-20

    S73-32883 (20 Aug. 1973) --- This false color isophote, processed from an Aug. 20, 1973 television transmission of Apollo Telescope Mount (ATM) experiments from Skylab 3, dramatically reveals a significant change in the coronal hole as compared to the previous day. Solar rotation accounts for the new location of the coronal hole. Photo credit: NASA

  3. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H2O2 coupled internal micro-electrolysis process.

    PubMed

    Zhou, Dongfang; Hu, Yongyou; Guo, Qian; Yuan, Weiguang; Deng, Jiefan; Dang, Yapan

    2016-12-29

    Internal micro-electrolysis (IE) coupled with Fenton oxidation (IEF) was a very effective technology for copper (Cu)-ethylenediaminetetraacetic acid (EDTA) wastewater treatment. However, the mechanisms of Cu 2+ removal and EDTA degradation were scarce and lack persuasion in the IEF process. In this paper, the decomplexation and removal efficiency of Cu-EDTA and the corresponding mechanisms during the IEF process were investigated by batch test. An empirical equation and the oxidation reduction potential (ORP) index were proposed to flexibly control IE and the Fenton process, respectively. The results showed that Cu 2+ , total organic carbon (TOC), and EDTA removal efficiencies were 99.6, 80.3, and 83.4%, respectively, under the proper operation conditions of iron dosage of 30 g/L, Fe/C of 3/1, initial pH of 3.0, Fe 2+ /H 2 O 2 molar ratio of 1/4, and reaction time of 20 min, respectively for IE and the Fenton process. The contributions of IE and Fenton to Cu 2+ removal were 91.2 and 8.4%, respectively, and those to TOC and EDTA removal were 23.3, 25.1, and 57, 58.3%, respectively. It was found that Fe 2+ -based replacement-precipitation and hydroxyl radical (•OH) were the most important effects during the IEF process. •OH played an important role in the degradation of EDTA, whose yield and productive rate were 3.13 mg/L and 0.157 mg/(L min -1 ), respectively. Based on the intermediates detected by GC-MS, including acetic acid, propionic acid, pentanoic acid, amino acetic acid, 3-(diethylamino)-1,2-propanediol, and nitrilotriacetic acid (NTA), a possible degradation pathway of Cu-EDTA in the IEF process was proposed. Graphical abstract The mechanism diagram of IEF process.

  4. Fenton mediated ultrasonic disintegration of sludge biomass: Biodegradability studies, energetic assessment, and its economic viability.

    PubMed

    Kavitha, S; Rajesh Banu, J; IvinShaju, C D; Kaliappan, S; Yeom, Ick Tae

    2016-12-01

    Mechanical disintegration of sludge through ultrasonication demands high energy and cost. Therefore, in the present study, a comprehensive investigation was performed to analyze the potential of a novel method, fenton mediated sonic disintegration (FSD). In FSD process, extracellular polymeric substance (EPS) of sludge was first removed via fenton treatment. It was subsequently disintegrated via ultrasonication. Energetic assessment and economic analysis were then performed using net energy and cost gain (spent) as key factor to evaluate the practical viability of the FSD process. FSD was found to be superior over sonic disintegration based on its higher sludge solubilization (34.4% vs. 23.2%) and methane production potential (0.3gCOD/gCOD vs. 0.2gCOD/gCOD). Both energy analysis and cost assessment of the present study revealed that FSD could reduce the energy demand of ultrasonication considerably with a positive net profit of about 44.93USD/Ton of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution.

    PubMed

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong

    2015-04-15

    We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Controlling the Properties of Matter with Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, Victor

    2017-03-22

    Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes. Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical. Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of “solar fuels”). The appeal of quantum dots comes from the unmatchedmore » tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots. At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.« less

  8. Potential active materials for photo-supercapacitor: A review

    NASA Astrophysics Data System (ADS)

    Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.

    2015-11-01

    The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.

  9. Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system.

    PubMed

    Ismail, Sherif; Tawfik, Ahmed

    2016-01-01

    Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL.

  10. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.

    PubMed

    Zhang, Ying; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Gamal El-Din, Mohamed

    2017-07-01

    Naphthenic acids (NAs) are a highly complex mixture of organic compounds naturally present in bitumen and identified as the primary toxic constituent of oil sands process-affected water (OSPW). This work investigated the degradation of cyclohexanoic acid (CHA), a model NA compound, and natural occurring NAs during the UV photolysis of Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton processes. The results indicated that in the UV-Fe(III)NTA process at pH 8, the CHA removal increased with increasing NTA dose (0.18, 0.36 and 0.72 mM), while it was independent of the Fe(III) dose (0.09, 0.18 and 0.36 mM). Moreover, the three Fe concentrations had no influence on the photolysis of the Fe(III)NTA complex. The main responsible species for the CHA degradation was hydroxyl radical (OH), and the role of dissolved O 2 in the OH generation was found to be negligible. Real OSPW was treated with the UV-Fe(III)NTA and UV-NTA-Fenton advanced oxidation processes (AOPs). The removals of classical NAs (O 2 -NAs), oxidized NAs with one additional oxygen atom (O 3 -NAs) and with two additional oxygen atoms (O 4 -NAs) were 44.5%, 21.3%, and 25.2% in the UV-Fe(III)NTA process, respectively, and 98.4%, 86.0%, and 81.0% in the UV-NTA-Fenton process, respectively. There was no influence of O 2 on the NA removal in these two processes. The results also confirmed the high reactivity of the O 2 -NA species with more carbons and increasing number of rings or double bond equivalents. This work opens a new window for the possible treatment of OSPW at natural pH using these AOPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Removal of refractory contaminants in municipal landfill leachate by hydrogen, oxygen and palladium: a novel approach of hydroxyl radical production.

    PubMed

    Yu, Yingjian; Chen, Zhulei; Guo, Zhiyuan; Liao, Zhuwei; Yang, Lie; Wang, Jia; Chen, Zhuqi

    2015-04-28

    Municipal solid waste (MSW) leachate contains various refractory pollutants that pose potential threats to both surface water and groundwater. This paper established a novel catalytic oxidation process for leachate treatment, in which OH is generated in situ by pumping both H2 and O2 in the presence of Pd catalyst and Fe(2+). Volatile fatty acids in the leachate were removed almost completely by aeration and/or mechanical mixing. In this approach, a maximum COD removal of 56.7% can be achieved after 4h when 200mg/L Fe(2+) and 1250mg/L Pd/Al2O3 (pH 3.0) are used as catalysts. After oxidation, the BOD/COD ratio in the proposed process increased from 0.03 to 0.25, indicating that the biodegradability of the leachate was improved. By comparing the efficiency on COD removal and economical aspect of the proposed Pd-based in-situ process with traditional Fenton, electro-Fenton and UV-Fenton for leachate treatments, the proposed Pd-based in-situ process has potential economic advantages over other advanced oxidation processes while the COD removal efficiency was maintained. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation.

    PubMed

    Wang, Aimin; Zhang, Yanyu; Zhong, Huihui; Chen, Yu; Tian, Xiujun; Li, Desheng; Li, Jiuyi

    2018-01-15

    In this study, a novel photoelectro-Fenton (PEF) process using microwave discharge electrodeless lamp (MDEL) as a UV irradiation source was developed for the removal of antibiotic ciprofloxacin (CIP) in water. Comparative degradation of 200mgL -1 CIP was studied by direct MDEL photolysis, anodic oxidation (AO), AO in presence of electrogenerated H 2 O 2 (AO-H 2 O 2 ), AO-H 2 O 2 under MDEL irradiation (MDEL-AO-H 2 O 2 ), electro-Fenton (EF) and MDEL-PEF processes. Higher oxidation power was found in the sequence: MDEL photolysis < AO < AO-H 2 O 2 < MDEL-AO-H 2 O 2 < EF < MDEL-PEF. Effects of current density, pH, initial Fe 2+ concentration and initial CIP concentration on TOC removal in MDEL-PEF process were examined, and the optimal conditions were ascertained. The releases of three inorganic ions (F - , NH 4 + and NO 3 - ) and two carboxylic acids (oxalic and formic acids) were qualified. Seven aromatic intermediates mainly generated from hydroxylation, dealkylation and defluorination of CIP were detected by UPLC-QTOF-MS/MS technology. Therefore, plausible degradation sequences for CIP degradation in MDEL-PEF process including all detected products were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Review of the photo-induced toxicity of environmental contaminants.

    PubMed

    Roberts, Aaron P; Alloy, Matthew M; Oris, James T

    2017-01-01

    Solar radiation is a vital component of ecosystem function. However, sunlight can also interact with certain xenobiotic compounds in a phenomenon known as photo-induced, photo-enhanced, photo-activated, or photo-toxicity. This phenomenon broadly refers to an interaction between a chemical and sunlight resulting in increased toxicity. Because most aquatic ecosystems receive some amount of sunlight, co-exposure to xenobiotic chemicals and solar radiation is likely to occur in the environment, and photo-induced toxicity may be an important factor impacting aquatic ecosystems. However, photo-induced toxicity is not likely to be relevant in all aquatic systems or exposure scenarios due to variation in important ecological factors as well as physiological adaptations of the species that reside there. Here, we provide an updated review of the state of the science of photo-induced toxicity in aquatic ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes.

    PubMed

    Komtchou, Simon; Dirany, Ahmad; Drogui, Patrick; Robert, Didier; Lafrance, Pierre

    2017-11-15

    Atrazine (ATZ) is one of the most common pesticides detected in surface water in Quebec (Canada). The present study was mainly focused on the degradation of ATZ and its by-products using electrochemical advanced oxidation processes such as photo-electro-Fenton (PEF), electro-Fenton (EF) and anodic-oxidation with simultaneous H 2 O 2 formation (AO - H 2 O 2 ). The comparison of these processes showed that PEF process was found to be the most effective process in removing ATZ and its by-products from both synthetic solution (ATZ 0  = 100 μg L -1 ) and real agricultural surface water enriched with ATZ (ATZ 0  = 10 μg L -1 ). Different operating parameters, including wavelength of the light, pH, current density and the presence of natural organic matter (humic acids) were investigated for PEF process using boron-doped diamond (BDD) anode and graphite cathode. The current density and the wavelength of the light were the most important parameters in the ATZ degradation efficiency. The best operating conditions were recorded for the synthetic samples at a current density of 18.2 mA cm -2 , a pH of 3.0 and treatment time of 45 min. Results showed that atrazine-desethyl-desisopropyl (DEDIA) was the most important by-product recorded. More than 99% of ATZ oxidation was recorded after 15 min of treatment and all the concentrations of major by-products were less than the limit of detection after 45 min of treatment. The PEF process was also tested for real surface water contaminated by ATZ: i) with and without addition of iron; ii) without pH adjustment (pH ∼ 6.7) and with pH adjustment (pH ∼ 3.1). In spite of the presence of radical scavenger and iron complexation the PEF process was more effective to remove ATZ from real surface water when the pH value was adjusted near to 3.0. The ATZ removal was 96.0% with 0.01 mM of iron (k app  = 0.13 min -1 ) and 100% with 0.1 mM of iron (k app  = 0.17 min -1 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Arsenic remediation from drinking water using Fenton's reagent with slow sand filter.

    PubMed

    Jasudkar, Dipali; Rakhunde, Rupali; Deshpande, Leena; Labhasetwar, Pawan; Juneja, H D

    2012-12-01

    This paper describes the development of a remediation approach based on the pre-oxidation using Fenton's reagent and the subsequent removal of arsenic (As) through sand filtration from drinking water. The efficiency of the process was carried out including As(III) and As(V) with various concentration ratios up to 3,000 ppb. Efficient removal of As was observed within WHO guideline value of 10 ppb. The recoveries of samples were found to be 98 % ± 2.5 %. The process was applied to field samples, where results show considerable reduction in As concentrations. This process is cost effective for treatment of drinking water with high concentration of As.

  16. Evaluation of humic substances removal from leachates originating from solid waste landfills in Rio de Janeiro State, Brazil.

    PubMed

    Lima, Letícia S M S; De Almeida, Ronei; Quintaes, Bianca R; Bila, Daniele M; Campos, Juacyara C

    2017-07-29

    This study aimed to evaluate the use of coagulation/flocculation and Fenton processes for the removal of the recalcitrant component, in particular humic substances, from two different leachates generated in the Gericinó and Gramacho landfills in Rio de Janeiro State (Brazil). A coagulation/flocculation process, using FeCl 3 ·6H 2 O as the coagulant, was applied to the two leachate samples. In the case of the leachate from Gericinó landfill, the treatment removed 93% of color, 71% of TOC, 69% of COD, 76% of HS, 73% of humic acids (HA) and 82% of fulvic acids (FA). In addition, there was a 75% reduction in the absorbance at 254 nm, using 3,000 mg L -1 of coagulant. In the case of the leachate from Gramacho landfill, the treatment removed 91% of color, 69% of TOC, 68% of COD, 77% of HS, 75% of HA and 80% of FA. In addition, there was a 70% reduction in the absorbance at 254 nm using the same concentration of coagulant (3,000 mg L -1 ). The Fenton processes, using FeSO 4 ·7H 2 O and H 2 O 2 in a ratio of 1:5, were also applied to the two leachate samples. In the case of the Gericinó leachate, the Fenton treatment removed 95% of color, 75% of TOC, 68% of COD, 82% of HS, 77% of HA and 93% of FA. In addition, there was a 93% reduction in the absorbance at 254 nm. In the case of the Gramacho leachate, the Fenton treatment removed 93% of color, 73% of TOC, 71% of COD, 81% of HS, 76% of HA, 90% of FA, and there was an 84% reduction in the absorbance at 254 nm. The results of humic substances, color, organic matter and aromatic organic matter (absorbance at 254 nm) demonstrate that the coagulation/flocculation and Fenton processes were efficient in the removal of recalcitrant organic matter from landfill leachates.

  17. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    NASA Astrophysics Data System (ADS)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  18. Ultrasonic application to boost hydroxyl radical formation during Fenton oxidation and release organic matter from sludge

    PubMed Central

    Gong, Changxiu; Jiang, Jianguo; Li, De’an; Tian, Sicong

    2015-01-01

    We examined the effects of ultrasound and Fenton reagent on ultrasonic coupling Fenton oxidation (U+F) pre-treatment processes for the disintegration of wastewater treatment plant sludge. The results demonstrated that U+F treatment could significantly increase soluble chemical oxygen demand (SCOD), total organic carbon (TOC), and extracellular polymeric substances (EPS) concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U+F treatment increased the release of SCOD by 2.1- and 1.4-fold compared with U and F alone, respectively. U+F treatment increased the release of EPS by 1.2-fold compared with U alone. After U+F treatment, sludge showed a considerably finer particle size and looser microstructure based on fluorescence microscopy, and the concentration of hydroxyl radicals (OH•) increased from 0.26 mM by F treatment to 0.43 mM by U+F treatment based on fluorescence spectrophotometer. This demonstrated that U+F treatment improves the release of organic matter from sludge. PMID:26066562

  19. The role of Fenton reaction in ROS-induced toxicity underlying atherosclerosis - modeled and analyzed using a Petri net-based approach.

    PubMed

    Formanowicz, Dorota; Radom, Marcin; Rybarczyk, Agnieszka; Formanowicz, Piotr

    2018-03-01

    The superoxide-driven Fenton reaction plays an important role in the transformation of poorly reactive radicals into highly reactive ones. These highly reactive species (ROS), especially hydroxyl radicals can lead to many disturbances contributing to the endothelial dysfunction being a starting point for atherosclerosis. Although, iron has been identified as a possible culprit influencing formation of ROS, its significance in this process is still debatable. To better understand this phenomenon, the influence of blockade of Fenton reaction in a proposed Petri net-based model of the selected aspects of the iron ROS-induced toxicity in atherosclerosis has been evaluated. As a result of the blockade of iron ions formation in the model, even up to 70% of the paths leading to the progression of atherosclerosis in this model has been blocked. In addition, after adding to the model, the blockade of the lipids peroxidation paths, progression of atherosclerotic plaque has been not observed. This allowed to conclude that the superoxide-driven Fenton reaction plays a significant role in the atherosclerosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Demonstration of the Fenton Reaction

    ERIC Educational Resources Information Center

    Luehrs, Dean C.; Roher, Alex E.

    2007-01-01

    The study demonstrates the Fenton reaction, which is carried out using the Fenton reagent that is used for groundwater and soil remediation. The Fenton reaction can be implicated in DNA damage, Alzheimer's disease, cardiovascular disease and ageing in general.

Top