Science.gov

Sample records for solar probe space

  1. MARINER 8 SPACE PROBE'S SOLAR ARRAYS ARE INSTALLED

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Technicians prepare to install a solar panel on the Mariner H spacecraft in preparation for its launch to Mars, no earlier than May 7, 1971. The spacecraft will be launched aboard an Atlas Centaur space vehicle from Cape Kennedy's Complex 36A, and will go into orbit around Mars at the completion of a seven-month journey from Earth. It is designed to operate 90 days and return data about the planet's atmospheric and surface characteristics. Following launch, the spacecraft will be designated Mariner 8. A second Mariner Mars spacecraft is scheduled to be launched 10 days later.

  2. MARINER 8 SPACE PROBE UNDERGOES INSTALLATION OF SOLAR ARRAYS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Technicians install solar panels aboard the mariner H spacecraft in a cleanroom facility at Cape Kennedy. The spacecraft will orbit Mars following a seven-month journey from Earth. Designed to function 90 days, the spacecraft, which will be designated Mariner 8 following launch, will provide data about the Red Planet's atmospheric and surface characteristics. Mariner Mars H will be launched aboard an Atlas-Centaur space vehicle no earlier than May 7, 1971, from Cape Kennedy's Launch Complex 36A. A second Mariner Mars spacecraft will be launched 10 days later.

  3. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  4. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  5. Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  6. Interaction of the solar wind with Venus. [plasma measurements by Mariner space probes

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Lazarus, A. J.; Siscoe, G. L.; Hartle, R. E.; Ogilvie, K. W.; Scudder, J. D.; Yeates, C. M.

    1976-01-01

    Two topics related to the interaction of the solar wind with Venus are considered. First, a short review of the experimental evidence with particular attention to plasma measurements carried out on Mariner-5 and Mariner-10 is given. Secondly, the results of some recent theoretical work on the interaction of the solar wind with the ionosphere of Venus are summarized.

  7. The Solar Probe Mission Study: 2004

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Solar Probe Science and Technology Definition STDT* Team

    2004-05-01

    Solar Probe will experience first hand the processes and conditions in the solar atmosphere that ultimately impact our planet and shape the harsh solar system environment. It will be humanity's first visit to a star and will explore a previously inaccessible region of the inner heliosphere. The 2003 Space Science Enterprise Strategy called for study of a Solar Probe to "fly through the solar atmosphere to answer fundamental questions that can be answered in no other way." The mission received highest priority in the National Academy of Sciences' decadal research strategy in solar and space physics in 2002. Significant advances have been made in the areas of solar and solar wind science, instrument technology, mission resources, and the mission environment since the previous Solar Probe Science Definition Team reports of 1989, 1995, and 1999. Therefore, with the strong support from the international community, NASA's Office of Space Science (OSS) has formed a new Science and Technology Definition Team (STDT) to develop an exciting and achievable new mission concept for a Solar Probe mission. It is hoped that this study will be completed this fall with a final report by the end of 2004. This talk provides an update on the progress of the STDT's efforts. *Solar Probe Science and Technology Definition Team (STDT): Loren Acton, Marianne Balat, Volker Bothmer, Ray Dirling, Bill Feldman, George Gloeckler, Shadia Habbal, Don Hassler, Geoffrey Landis, Ingrid Mann, Bill Matthaeus, Dave McComas, Ralph McNutt, Dick Mewaldt, Neil Murphy, Leon Ofman, Ed Sittler, Chuck Smith, Marco Velli, and Thomas Zurbuchen

  8. Accurate Navigation of Deep Space Probes using Multifrequency Links: the Cassini Breakthrough during Solar Conjunction Experiments

    NASA Astrophysics Data System (ADS)

    Tortora, P.; Iess, L.; Ekelund, J. E.

    2002-01-01

    (1) transponders, used for both range and range-rate estimation. These devices are characterized by a frequency stability (measured by the Allan deviation) whose typical value never falls below the limit of 10-13, which broadly reflects in a range rate accuracy of about 15.10-4 cm/s. Moreover, for missions in the ecliptic plane, a critical phase is represented by the solar conjunctions which, depending on the spacecraft trajectory, can last up to two weeks. In such conditions the radio data are inherently corrupted by solar plasma noise, which causes a dramatic decay of the obtainable navigation accuracy. As a matter of fact, in the orbit determination process, radio data collected when the line of sight falls within 40 solar radii are usually discarded, leading to long time spans during which navigation cannot rely on actual data. and 2001 solar conjunctions were removed for navigation purposes. While this strategy is widely acceptable and proven during the cruise flight, it is not recommended during critical mission phases, when frequent ground-commanded maneuvers are executed. maneuver, scheduled on July 1st 2004, a few days before a solar conjunction. A significant improvement of the navigation accuracy would be achieved using, for the Orbit Determination process, all radio data collected up to the SOI. science experiments (RSE). The on-board configuration is based on a X/X transponder, which generates a reference signal to the Ka-Band Exciter (KEX) for the X/Ka link; furthermore a coherent frequency translator (KaT) is used for the Ka/Ka link. With this configuration, the sky frequencies in the three bands (X/X, X/Ka, Ka/Ka) can be coherently combined to remove the effects of the solar plasma, the major noise source in the Doppler observable. plasma calibration scheme, has shown an improvement of a factor of 8 over the noise of the bare Ka/Ka observable and a factor of 100 over X/X data. At an impact parameter of about 25 solar radii, the Allan deviation is as

  9. A tracking polarimeter for measuring solar and ionospheric Faraday rotation of signals from deep space probes

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.; Levy, G. S.; Stelzried, C. T.

    1974-01-01

    A tracking polarimeter implemented on the 64-m NASA/JPL paraboloid antenna at Goldstone, Calif., is described. Its performance is analyzed and compared with measurements. The system was developed to measure Faraday rotation in the solar corona of the telemetry carrier from the Pioneer VI spacecraft as it was occulted by the sun. It also measures rotation in the earth's ionosphere and is an accurate method of determining spacecraft orientation. The new feature of this system is its use of a pair of quarter-wave plates to allow the synthesis of a rotating feed system, while requiring the rotation of only a single section of waveguide. Since the polarization sensing is done at RF and the receiver operates essentially as a null detector, the system's accuracy is superior to other polarization tracking schemes. In addition, the antenna size and maser preamplifier provide unsurpassed sensitivity. The associated instrumentation used in the Pioneer VI experiment is also described.

  10. Probing Seismic Solar Analogues Through Observations With The NASA Kepler Space Telescope and Hermes High-Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Beck, P. G.; Salabert, D.; Garcia, R. A.; do Nascimento, J., Jr.; Duarte, T. S. S.; Mathis, S.; Regulo, C.; Ballot, J.; Egeland, R.; Castro, M.; Pérez-Herńandez, F.,; Creevey, O.; Tkachenko, A.; van Reeth, T.; Bigot, L.; Corsaro, E.; Metcalfe, T.; Mathur, S.; Palle, P. L.; Allende Prieto, C.; Montes, D.; Johnston, C.; Andersen, M. F.; van Winckel, H.

    2016-11-01

    Stars similar to the Sun, known as solar analogues, provide an excellent opportunity to study the preceding and following evolutionary phases of our host star. The unprecedented quality of photometric data collected by the Kepler NASA mission allows us to characterise solar-like stars through asteroseismology and study diagnostics of stellar evolution, such as variation of magnetic activity, rotation and the surface lithium abundance. In this project, presented in a series of papers by Salabert et al (2016ab) and Beck et al. (2016ab), we investigate the link between stellar activity, rotation, lithium abundance and oscillations in a group of 18 solar-analogue stars through space photometry, obtained with the NASA Kepler space telescope and from currently 50+ hours of ground-based, high-resolution spectroscopy with the Hermes instrument. In these proceedings, we first discuss the selection of the stars in the sample, observations and calibrations and then summarise the main results of the project. By investigating the chromospheric and photospheric activity of the solar analogues in this sample, it was shown that for a large fraction of these stars the measured activity levels are compatible to levels of the 11-year solar activity cycle 23. A clear correlation between the lithium abundance and surface rotation was found for rotation periods shorter than the solar value. Comparing the lithium abundance measured in the solar analogues to evolutionary models with the Toulouse-Geneva Evolutionary Code (TGEC), we found that the solar models calibrated to the Sun also correctly describe the set of solar/stellar analogs showing that they share the same internal mixing physics. Finally, the star KIC3241581 and KIC10644353 are discussed in more detail.

  11. The navigation of space probes

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Ohandley, D. A.; Zielenbach, J. W.

    1974-01-01

    A new navigational method combining electronic measurement procedures and celestial mechanics makes it possible to conduct a space probe very close to a desired point in the neighborhood of a remote planet. Approaches for the determination of the position of the space probe in space are discussed, giving attention to the effects of errors in the employed data. The application of the navigational methods in a number of space missions is also considered.

  12. Space solar cell research

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1989-01-01

    A brief overview is given of the scope of the NASA space solar cell research and development program. Silicon cells, gallium arsenide cells, indium phosphide cells, and superlattice solar cells are addressed, indicating the state of the art of each type in outer space and their advantages and drawbacks for use in outer space. Contrasts between efficiency in space and on earth are pointed out.

  13. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  14. Employment of Asteroids for Movement Space Ship and Probes

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    At present, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet. However, there are only 9 planets in our solar system and they are separated by great distances. There are tens of millions of asteroids in outer space. The author offers a revolutionary method for changing the trajectory of space probes. This method uses the kinetic or rotary energy of asteroids, meteorites or other space bodies (small planets, natural planet satellites, etc.). to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to get any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.

  15. Space solar power systems

    NASA Technical Reports Server (NTRS)

    Toliver, C.

    1977-01-01

    Studies were done on the feasibility of placing a solar power station called POwersat, in space. A general description of the engineering features are given as well as a brief discussion of the economic considerations.

  16. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  17. Solar Probe thermal shield design and testing

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Miyake, Robert N.; Rainen, Richard A.

    1992-01-01

    This paper discusses the major thermal shield subsystem development activities in support of the Solar Probe study being conducted at JPL. The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center to perform fundamental experiments in space physics. Exposure to 2900 earth suns at perihelion requires the spacecraft to be protected within the shadow envelope of a protective shield. In addition, the mass loss rate off of the shield at elevated temperature must comply with plasma instrument requirements and has become the driver of the shield design. This paper will focus on the analytical design work to size the shield and control the shield mass loss rate for the various spacecraft options under study, the application of carbon-carbon materials for shield components, development and preparation of carbon-carbon samples for materials testing, and a materials testing program for carbon-carbon and tungsten alloys to investigate thermal/optical properties, mass loss (carbon-carbon only), material integrity, and high velocity impact behavior.

  18. Probing Stellar Dynamics With Space Photometry

    NASA Astrophysics Data System (ADS)

    García, Rafael A.; Salabert, D.; Ballot, J.; Beck, P. G.; Bigot, L.; Corsaro, E.; Creevey, O.; Egeland, R.; Jiménez, A.; Mathur, S.; Metcalfe, T.; do Nascimento, J.; Pallé, P. L.; Pérez Hernández, F.; Regulo, C.

    2016-08-01

    The surface magnetic field has substantial influence on various stellar properties that can be probed through various techniques. With the advent of new space-borne facilities such as CoRoT and Kepler, uninterrupted long high-precision photometry is available for hundred of thousand of stars. This number will substantially grow through the forthcoming TESS and PLATO missions. The unique Kepler observations -covering up to 4 years with a 30-min cadence- allows studying stellar variability with different origins such as pulsations, convection, surface rotation, or magnetism at several time scales from hours to years. We study the photospheric magnetic activity of solar-like stars by means of the variability induced in the observed signal by starspots crossing the visible disk. We constructed a solar photometric magnetic activity proxy, Sph from SPM/VIRGO/SoHO, as if the Sun was a distant star and we compare it with several solar well-known magnetic proxies. The results validate this approach. Thus, we compute the Sph proxy for a set of CoRoT and Kepler solar-like stars for which pulsations were already detected. After characterizing the rotation and the magnetic properties of 300 solar-like stars, we use their seismic properties to characterize 18 solar analogs for which we study their magnetism. This allows us to put the Sun into context of its siblings.

  19. Interaction of solar wind with Mercury and its magnetic field. [as observed by Mariner 10 space probe

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1976-01-01

    A brief review is presented of magnetic field and solar wind electron observations by Mariner 10 spacecraft. The intrinsic magnetic field of the planet Mercury and the implications of such a field for the planetary interior are also discussed.

  20. Distributed Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to assess the feasibility of safely collecting solar power at geostationary orbit and delivering it to earth. A strategy which could harness a small fraction of the millions of gigawatts of sunlight passing near earth could adequately supply the power needs of earth and those of space exploration far into the future. Light collected and enhanced both spatially and temporally in space and beamed to earth provides probably the only practical means of safe and efficient delivery of this space solar power to earth. In particular, we analyzed the feasibility of delivering power to sites on earth at a comparable intensity, after conversion to a usable form, to existing power needs. Two major obstacles in the delivery of space solar power to earth are safety and the development of a source suitable for space. We focused our approach on: (1) identifying system requirements and designing a strategy satisfying current eye and skin safety requirements; and (2) identifying a concept for a potential space-based source for producing the enhanced light.

  1. On the accuracy of the relativistic parameters beta, gamma, and the solar oblateness coefficient J2, as deduced from ranging data of a drag-free space probe

    NASA Technical Reports Server (NTRS)

    Roth, E. A.

    1971-01-01

    Motion in the general gravity field is described mathematically. A covariance analysis, based on two simple models, is presented. Two drag-free space probes were considered, for which the orbital elements are given.

  2. Gravity Probe B Completed With Solar Arrays

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is completed during the solar array installation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  3. Gravity Probe B Space Vehicle

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  4. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  5. Status of Solar Sail Propulsion: Moving Toward an Interstellar Probe

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    NASA's In-Space Propulsion Technology Program has developed the first-generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first-generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams-per-square meter. A rigorous, multiyear technology development effort culminated last year in the testing of two different 20-meter solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding, and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails, including one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. The proposed mission is called the Interstellar Probe. The Interstellar Probe might be accomplished in several ways. A 200-meter sail, with an areal density approaching 1 gram-per-square meter, could accelerate a robotic probe to the very edge of the solar system in just under 20 years from launch. A sail using the technology just demonstrated could make the same mission, but take significantly longer. Conventional chemical propulsion systems would require

  6. Demonstrated Performance of the Solar Probe Cup

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Daigneau, P.; Freeman, M.; Caldwell, D.; Gauron, T.; Wright, K. H.; Bergner, H.; Cirtain, J. W.; Larson, D.; Brodu, E.; Balat-Pichelin, M.

    2013-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup being developed for the Solar Probe Plus (SPP) mission. SPP will be the first spacecraft to directly measure the solar environment near the Alfven point in the atmosphere of the Sun, approaching to within 10 solar radii of the center of the Sun. In order to make the observations of radially flowing solar wind needed to address questions of coronal and solar wind heating and acceleration, SPC must operate while looking directly at the Sun. As a result, SPC will face a harsh and unprecidented environment, with component temperatures exceeding 1000C at closest approach. SPC is similar in design and operation to the two Faraday Cup instruments on the Wind spacecraft, which have been making stable measurements of the solar wind near Earth for two decades, with two key differences. SPC must survive and operate at extreme temperatures due to the levels of solar flux near the Sun, and it must record the solar wind approximately one thousand times faster than the instruments on Wind to keep up with the rapid variations expected near the Sun. We present results of a demonstration model of SPC operated in laboratory reproductions of the near-Sun environment. In the last year, SPC has been exposed to simulated encounter solar fluxes and resulting temperature profiles using a vaccum chamber and modified IMAX film projectors. In addition, SPC has been exposed to realistic ion beams. We show that SPC can operate in these environments, and make the measurements required for the sucess of the Solar Probe mission. Based on the performance of our prototype, the expected cadence and sensitivity of SPC will be discussed, with a focus on its ability to distinguish between models of heating in the solar corona.

  7. Space Probes Program Status Report

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Brief of Progress: A. Preparations for the 26 November launching of ABLE-4 ATLAS are proceeding as scheduled, with no problems apparent at this time. Many of the electrical tests and subsystems checks have been completed. Minor modifications have been made to the solar paddle tie-down and release mechanism, after an extensive testing program; B. Work toward the 10 December launching of ABLE-4 THOR is also progressing on schedule. Subsystem checks have been started, and mechanical fit checks have been completed; C. During the month of October, a total of 136 tests were performed on components and assemblies related to the ABLE program. These included acceptance tests, type tests, R&D tests, etc. Of this total, only three failures occurred, all of which have been corrected; D. The Space Physics Data Library, Los Angeles, California, is now in operation. Data reduction gear in the Library is in breadboard operation with completion of the installation expected by mid-November. Analysis of ABLE-3 data is progressing satisfactorily at the Library.

  8. Space Exploration; Power Sources for Deep Space Probes

    DTIC Science & Technology

    1998-05-01

    are Europa Orbiter, Pluto Express, Solar Probe, Interstellar Probe, Europa Lander, Io Volcanic Observer, Titan Organic Explorer, and Neptune Orbiter...example, the new nuclear-fueled generator that NASA studied for use on the Pluto Express spacecraft is projected to need less than 10 pounds of

  9. Payload requirements for the Solar Probe

    NASA Astrophysics Data System (ADS)

    Marsch, E.; Roux, A.

    The scientific goals and objectives for a Solar Probe determine the requirements for a model payload and concepts for the instruments. To accomplish the main aim, which is to make in-situ measurements of particles and fields in the solar corona and wind, the strawman payload must include a magnetometer and plasma wave instrument, fast three-dimensional plasma anlyzers to measure ions and electrons, and detectors for suprathermal and solar energetic particles. In addition a light-weight dust detector is required to probe the dust environment in the outer corona. Tight constraints are to be placed on all instruments concerning mass, power and telemetry in order to keep the expected costs and complexity to a bare minimum. This will require further developments of existing instruments or innovative concepts, allowing the objectives to be met with a payload of only 20 to 25 kg. All instruments have to be acommodated on a three-axis stabilized probe and should be capable of measuring particle fluxes that might vary by many orders of magnitude. The plasma experiments are central to the mission and very demanding because of the wide dynamic ranges required for the spatial, temporal, and particle-species energy, mass and charge state measurements. Furthermore, ion velocity distributions are expected to range from subsonic to supersonic in the Sun's frame of reference and are to be measured from a spacecraft with speed of about 300 km/s near perihelion at 4 R_solar. Also shapes and heat flux tails of the distributions must be resolved, as they carry information crucial to the determination of coronal heating and solar wind acceleration mechanisms. The wave experiments must identify the wave modes and spectral intensities, which are essential for quantifying the wave effects on particles and their energization.

  10. The Evolving Space Weather System—Van Allen Probes Contribution

    NASA Astrophysics Data System (ADS)

    Zanetti, L. J.; Mauk, B. H.; Fox, N. J.; Barnes, R. J.; Weiss, M.; Sotirelis, T. S.; Raouafi, N.-E.; Kessel, R. L.; Becker, H. N.

    2014-10-01

    The overarching goal and purpose of the study of space weather is clear—to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800s to modern day disturbances of the electric power grid, communications and navigation, human spaceflight and spacecraft systems. The last two items in this list, and specifically the effects of penetrating radiation, were the impetus for the space weather broadcast implemented on NASA's Van Allen Probes' twin pair of satellites, launched in August of 2012 and orbiting directly through Earth's severe radiation belts. The Van Allen Probes mission, formerly the Radiation Belt Storm Probes (RBSP), was renamed soon after launch to honor the discoverer of Earth's radiation belts at the beginning of the space age, the late James Van Allen (the spacecraft themselves are still referred to as RBSP-A and RBSP-B). The Van Allen Probes are one part of NASA's Living With a Star program formulated to advance the scientific understanding of the connection between solar disturbances, the resulting heliospheric conditions, and their effects on the geospace and Earth environment.

  11. Saturn Probe: Revealing Solar System Origins

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2015-12-01

    Comparative studies of the gas giant and ice giant planets are needed to reliably discriminate among competing theories of the origin and evolution of giant planets and the solar system, but we lack critical measurements. A Saturn atmospheric entry probe mission would fill a vital part of that gap, allowing comparative studies of Jupiter and Saturn, providing the basis for later comparisons with the ice giants Uranus and Neptune, and informing studies of extrasolar planetary systems now being characterized. The Galileo Probe mission provided the first in situ studies of Jupiter's atmosphere. Similar measurements at Saturn, Uranus and Neptune would provide an important comparative planetology context for the Galileo results. Cassini's "Proximal Orbits" in 2017 will reveal Saturn's internal structure to complement the Juno mission's similar measurements at Jupiter. A Saturn entry probe, complementing the Galileo Probe investigations at Jupiter, would complete a solid basis for improved understanding of both Jupiter and Saturn, an important stepping stone to understanding Uranus and Neptune and solar system formation and evolution. The 2012 Decadal Survey ("DS") added Saturn Probe science objectives to NASA's New Frontiers Program: highest-priority Tier 1 objectives any New Frontiers implementation must achieve, and Tier 2, high priority but lower than Tier 1. A DS mission concept study using extremely conservative assumptions concluded that a Saturn Probe project could fit within New Frontiers resource constraints, giving a PI confidence that they could pursue some Tier 2 objectives, customizing for the proper balance of science return, science team composition, procured or contributed instruments, etc. Contributed instruments could significantly enhance the payload and the science team for greater science return. They also provide international collaboration opportunities, with science benefits well demonstrated by missions such as Cassini-Huygens and Rosetta.

  12. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  13. Solar Eclipse from Space

    NASA Video Gallery

    While flying at about 240 statute miles above Earth, NASA Astronaut Don Pettit captured the rare solar eclipse as the moon casted its dark shadow across the planet below as it lined up between Eart...

  14. A thermal shield concept for the Solar Probe mission

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.

    1991-01-01

    The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.

  15. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  16. Gravitational experiments on a solar probe mission: Scientific objectives and technology considerations

    NASA Technical Reports Server (NTRS)

    Anderson, John D.

    1989-01-01

    The concept of a solar impact probe (either solar plunger or sun grazer) led to the initiation of a NASA study at JPL in 1978 on the engineering and scientific feasibility of a Solar Probe Mission, named Starprobe, in which a spacecraft is placed in a high eccentricity orbit with a perihelion near 4 solar radii. The Starprobe study showed that the concept was feasible and in fact preliminary mission and spacecraft designs were developed. In the early stages of the Solar Probe studies the emphasis was placed on gravitational science, but by the time of a workshop at Caltech in May 1978 (Neugebauer and Davies, 1978) there was about an equal division of interest between heliospheric physics and gravitation. The last of the gravitational studies for Solar Probe was conducted at JPL in 1983. Since that time, the Committee on Solar and Space Physics (CSSP) of the National Academy of Sciences has recommended the pursuit of a focused mission, featuring fields and particles instrumentation and emphasizing studies of the solar wind source region. Such a solar probe mission is currently listed as the 1994 Major New Star candidate. In the remainder of this review, the unique gravitational science that can be accomplished with a solar probe mission is reviewed. In addition the technology issues that were identified in 1980 by the ad hoc working group for Gravity and Relativity Science are addressed.

  17. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  18. Active probing of space plasmas

    NASA Astrophysics Data System (ADS)

    Chan, Chang; Silevitch, Michael B.; Villalon, Elena

    1989-09-01

    During the course of the research period our efforts were focused on the following areas: (1) An examination of stochastic acceleration mechanisms in the ionosphere; (2) A study of nonequilibrium dynamics of the coupled magnetosphere - ionosphere system; and (3) Laboratory studies of active space experiments. Reprints include: Dynamics of charged particles in the near wake of a very negatively charged body -- Laboratory experiment and numerical simulation; Laboratory study of the electron temperature in the near wake of a conducting body; New model for auroral breakup during substorms; Substorm breakup on closed field lines; New model for substorm on sets -- The pre-breakup and triggering regimes; Model of the westward traveling surge and the generation of Pi 2 pulsations; Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances; Relativistic particle acceleration by obliquely propagating electromagnetic fields; Some consequences of intense electromagnetic wave injection into space plasmas.

  19. The Solar Mass Ejection Imager (SMEI) Space Experiment

    DTIC Science & Technology

    2015-01-30

    SoloHI for Solar Orbiter [84] and WISPR for Solar Probe Plus [85]) that are scheduled for launch near the end of the decade. In addition, other more...Halain, J- P., and Lamy, P. L., “The Solar and Heliospheric Imager (SoloHI) Instrument for the Solar Orbiter Mission,” Proc. SPIE, 8862, Sep 2013...AFRL-RV-PS- AFRL-RV-PS- TR-2014-0197 TR-2014-0197 THE SOLAR MASS EJECTION IMAGER (SMEI) SPACE EXPERIMENT Richard R. Radick 30 January 2015

  20. Solar Power in Space?

    DTIC Science & Technology

    2012-01-01

    report, a document intended to be visionary and covering the same period of time. (See author’s correction at end of article .) The difference between...goals—such as human travel to the moon, Mars, or an asteroid , which only obliquely contrib- ute to national security space—a national SBSP program...The Future of Space Exploration,” video of speech, http:// www.bu.edu/pardee/space-abdul-kalam/. 33. See various articles and videos by Dr. Kalam

  1. Probing planetary pollution from space

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1991-01-01

    The data sets obtained from instruments that have measured carbon monoxide and tropospheric ozone from space are reviewed. These instruments include a gas cell correlation radiometer named MAPS (Measurement of Air Pollution from Satellites), the Total Ozone Mapping Spectrometer, and the Stratospheric Aerosol and Gas Experiment. Particular attention is given to differential absorption lidar technology which can determine the vertical distribution of aerosols and selected trace gases with considerably more resolution than passive remote sensing techniques. The current plans for monitoring pollution from spaceborne platforms are also discussed.

  2. Gravitational wave detection with the solar probe: I. Motivation

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    Questions are posed and answered through discussion of gravitational wave detection with the Solar Probe. Discussed are: (1) what a gravitational wave is; (2) why wave detection is important; (3) what astrophysical information might be learned from these waves; (4) status of attempts to detect these waves; (5) why the Solar Probe is a special mission for detecting these waves; (6) how the Solar Probe's expected sensitivity compares with the strength of predicted gravitational waves; and (7) what gravity wave searchers will do after the Solar Probe.

  3. Solar extreme ultraviolet sensor and advanced langmuir probe

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1992-01-01

    For more than two decades, the staff of the Space Physics Research Laboratory (SPRL) has collaborated with the Goddard Space Flight Center (GSFC) in the design and implementation of Langmuir probes (LP). This program of probe development under the direction of Larry Brace of GSFC has evolved methodically with innovations to: improve measurement precision, increase the speed of measurement, and reduce the weight, size, power consumption and data rate of the instrument. Under contract NAG5-419 these improvements were implemented and are what characterize the Advanced Langmuir Probe (ALP). Using data from the Langmuir Probe on the Pioneer Venus Orbiter, Brace and Walter Hoegy of GSFC demonstrated a novel method of monitoring the solar extreme ultraviolet (EUV) flux. This led to the idea of developing a sensor similar to a Langmuir probe specifically designed to measure solar EUV (SEUV) that uses a similar electronics package. Under this contract, a combined instrument package of the ALP and SEUV sensor was to be designed, constructed, and laboratory tested. Finally the instrument was to be flight tested as part of sounding rocket experiment to acquire the necessary data to validate this method for possible use in future earth and planetary aeronomy missions. The primary purpose of this contract was to develop the electronics hardware and software for this instrument, since the actual sensors were suppied by GSFC. Due to budget constraints, only a flight model was constructed. These electronics were tested and calibrated in the laboratory, and then the instrument was integrated into the rocket payload at Wallops Flight Facility where it underwent environmental testing. After instrument recalibration at SPRL, the payload was reintegrated and launched from the Poker Flat Research Range near Fairbanks Alaska. The payload was successfully recovered and after refurbishment underwent further testing and developing to improve its performance for future use.

  4. Encounter with Jupiter. [Pioneer 10 space probe

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 10 space probe's encounter with the Jupiter is discussed in detail. Tables are presented which include data on the distances during the encounter, times of crossing satellite orbits, important events in the flight near Jupiter, and time of experiments. Educational study projects are also included.

  5. Graphitic heat shields for solar probe missions

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.

    1981-01-01

    The feasibility of using a graphitic heat-shield system on a solar probe going to within 4 solar radii of the center of the sun is investigated. An analysis of graphite vaporization, with commonly used vaporization coefficients, indicates that the maximum mass-loss rate from a conical shield as large as 4 m in diameter can be kept low enough to avoid interference with measurements of the solar environment. In addition to the mass-loss problem, the problem of protecting the payload from the high-temperature (up to 2300 K) primary shield must be solved. An analysis of radiation exchange between concentric disks provides a technique for designing the intermediate shielding. The technique is applied to the design of a system for the Starprobe spacecraft, and it is found that a system with 10 shields and a payload surface temperature of 600 K will have a payload diameter of 2.45 m. Since this is 61% of the 4-m diameter of the primary shield, it is concluded that a graphitic heat-shield system is feasible for the Starprobe mission.

  6. Compression of Space for Low Visibility Probes.

    PubMed

    Born, Sabine; Krüger, Hannah M; Zimmermann, Eckart; Cavanagh, Patrick

    2016-01-01

    Stimuli briefly flashed just before a saccade are perceived closer to the saccade target, a phenomenon known as perisaccadic compression of space (Ross et al., 1997). More recently, we have demonstrated that brief probes are attracted towards a visual reference when followed by a mask, even in the absence of saccades (Zimmermann et al., 2014a). Here, we ask whether spatial compression depends on the transient disruptions of the visual input stream caused by either a mask or a saccade. Both of these degrade the probe visibility but we show that low probe visibility alone causes compression in the absence of any disruption. In a first experiment, we varied the regions of the screen covered by a transient mask, including areas where no stimulus was presented and a condition without masking. In all conditions, we adjusted probe contrast to make the probe equally hard to detect. Compression effects were found in all conditions. To obtain compression without a mask, the probe had to be presented at much lower contrasts than with masking. Comparing mislocalizations at different probe detection rates across masking, saccades and low contrast conditions without mask or saccade, Experiment 2 confirmed this observation and showed a strong influence of probe contrast on compression. Finally, in Experiment 3, we found that compression decreased as probe duration increased both for masks and saccades although here we did find some evidence that factors other than simply visibility as we measured it contribute to compression. Our experiments suggest that compression reflects how the visual system localizes weak targets in the context of highly visible stimuli.

  7. Compression of Space for Low Visibility Probes

    PubMed Central

    Born, Sabine; Krüger, Hannah M.; Zimmermann, Eckart; Cavanagh, Patrick

    2016-01-01

    Stimuli briefly flashed just before a saccade are perceived closer to the saccade target, a phenomenon known as perisaccadic compression of space (Ross et al., 1997). More recently, we have demonstrated that brief probes are attracted towards a visual reference when followed by a mask, even in the absence of saccades (Zimmermann et al., 2014a). Here, we ask whether spatial compression depends on the transient disruptions of the visual input stream caused by either a mask or a saccade. Both of these degrade the probe visibility but we show that low probe visibility alone causes compression in the absence of any disruption. In a first experiment, we varied the regions of the screen covered by a transient mask, including areas where no stimulus was presented and a condition without masking. In all conditions, we adjusted probe contrast to make the probe equally hard to detect. Compression effects were found in all conditions. To obtain compression without a mask, the probe had to be presented at much lower contrasts than with masking. Comparing mislocalizations at different probe detection rates across masking, saccades and low contrast conditions without mask or saccade, Experiment 2 confirmed this observation and showed a strong influence of probe contrast on compression. Finally, in Experiment 3, we found that compression decreased as probe duration increased both for masks and saccades although here we did find some evidence that factors other than simply visibility as we measured it contribute to compression. Our experiments suggest that compression reflects how the visual system localizes weak targets in the context of highly visible stimuli. PMID:27013989

  8. Space Weather: The Solar Perspective

    NASA Astrophysics Data System (ADS)

    Schwenn, Rainer

    2006-12-01

    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  9. A Study of the Structure of the Source Region of the Solar Wind in Support of a Solar Probe Mission

    NASA Technical Reports Server (NTRS)

    Habbal , Shadia R.

    1998-01-01

    Despite the richness of the information about the physical properties and the structure of the solar wind provided by the Ulysses and SOHO observations, fundamental questions regarding the nature of the coronal heating mechanisms, their source, and the manifestations of the fast and slow solar wind, still remain unanswered. The last unexplored frontier to establish the connection between the structure and dynamics of the solar atmosphere, its extension into interplanetary space, and the mechanisms responsible for the evolution of the solar wind, is the corona between 1 and 30 R(sub s). A Solar Probe mission offers an unprecedented opportunity to explore this frontier. The uniqueness of this mission stems from its trajectory in a plane perpendicular to the ecliptic which reaches within 9 R(sub s), of the solar surface over the poles and 3 - 9 R(sub s), at the equator. With a complement of simultaneous in situ and remote sensing observations, this mission is destined to have a significant impact on our understanding of the fundamental processes that heat the corona and drive the solar wind. The Solar Probe should be able to detect remnants and signatures of the processes which heat the corona and accelerate the solar wind. The primary objective of this proposal was to explore the structure of the different source regions of the solar wind through complementary observational and theoretical studies in support of a Solar Probe mission.

  10. Scanning Probe Microscopy of Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than tr

  11. Solar Probe Plus: Mission design challenges and trades

    NASA Astrophysics Data System (ADS)

    Guo, Yanping

    2010-11-01

    NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravity assist from Jupiter it was extremely difficult to get to the Sun, so designing a trajectory to reach the Sun that is technically feasible under the new mission guidelines became a key enabler to this highly challenging mission. Mission design requirements and challenges unique to this mission are reviewed and discussed, including various mission scenarios and six different trajectory designs utilizing various planetary gravity assists that were considered. The V 5GA trajectory design using five Venus gravity assists achieves a perihelion of 11.8 solar radii ( RS) in 3.3 years without any deep space maneuver (DSM). The V 7GA trajectory design reaches a perihelion of 9.5 RS using seven Venus gravity assists in 6.39 years without any DSM. With nine Venus gravity assists, the V 9GA trajectory design shows a solar orbit at inclination as high as 37.9° from the ecliptic plane can be achieved with the time of flight of 5.8 years. Using combined Earth and Venus gravity assists, as close as 9 RS from the Sun can be achieved in less than 10 years of flight time at moderate launch C3. Ultimately the V 7GA trajectory was chosen as the new baseline mission trajectory. Its design allowing for science investigation right after launch and continuing for nearly 7 years is unprecedented for interplanetary missions. The redesigned Solar Probe Plus mission is not only feasible under the new guidelines but also significantly outperforms the original mission concept

  12. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  13. Proposed Solar Probe telecommunications system concept

    NASA Technical Reports Server (NTRS)

    Kellogg, K.; Devereaux, A.; Vacchione, J.; Kapoor, V.; Crist, R.

    1992-01-01

    A proposed telecommunications system concept for NASA's Solar Probe mission is described. Key system requirements include 70 kbps data rate at perihelion and operation at X-band (uplink/downlink) and Ka-band (downlink). A design control table is presented to demonstrate design compliance with telecommunication needs. The Ka-band feed is to be a hexagonal array of 37 active elements, each containing 1/4W HEMT amplifiers. The array is located at the Cassegrain point of a 0.75-m reflector. When compared to the TWTA-based system, the Ka-band active array feed provides advantages of reduced mass, increased dc power efficiency, enhanced reliability, graceful degradation, and reduced volume requirements.

  14. Beyond Sedna: Probing the Distant Solar System

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.

    This thesis presents studies in observational planetary astronomy probing the structure of the Kuiper belt and beyond. The discovery of Sedna on a highly eccentric orbit beyond Neptune challenges our understanding of the solar system and suggests the presence of a population of icy bodies residing past the Kuiper belt. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna's aphelion at ˜1000 AU is too far from the edge of the solar system to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Sedna must have been emplaced in its orbit at an earlier time when massive unknown bodies were present in or near the solar system. The orbits of distant Sedna-like bodies are dynamically frozen and serve as the relics of their formation process. We have performed two surveys to search for additional members of the Sedna population. In order to find the largest and brightest Sedna-like bodies we have searched ˜12,000 deg² within +/-30 degrees of the ecliptic to a limiting R magnitude of 21.3 using the QUEST camera on the 1.2m Samuel Oschin Telescope. To search for the fainter, more common members of this distant class of solar system bodies, we have performed an deep survey using the Subaru Prime Focus Camera on the 8.2m Subaru telescope covering 43 deg² to a limiting R magnitude of 25.3. Searching over a two-night baseline, we were sensitive to motions out to distances of approximately 1000 AU. We present the results of these surveys. We discuss the implications for a distant Sedna-like population beyond the Kuiper belt and discuss future prospects for detecting and studying these distant bodies, focusing in particular on the constraints we can place on the embedded stellar cluster environment the early Sun may have been born in, where the location and distribution of Sedna-like orbits sculpted by

  15. Exploring the Galaxy using space probes

    NASA Astrophysics Data System (ADS)

    Bjørk, R.

    2007-04-01

    This paper investigates the possible use of space probes to explore the Milky Way, as a means both of finding life elsewhere in the Galaxy and as finding an answer to the Fermi paradox. Exploration of the Galaxy is simulated by first examining how long time it takes a given number of space probes to explore 40000 stars in a box from -300 to 300 pc above the Galactic thin disc, as a function of Galactic radius. The Galaxy is then modelled to consist of 260000 of these 40000 stellar systems all located in a defined Galactic Habitable Zone and how long a time it takes to explore this zone is shown. The result is that with eight probes, each with eight subprobes, 4% of the Galaxy can be explored in 2.92x10^8 years. Increasing the number of probes to 200, still with eight subprobes each, reduces the exploration time to 1.52x10^7 years.

  16. The FIELDS experiment for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Bale, S.; Spp/Fields Team

    2010-12-01

    Many of our basic ideas on the plasma physics of acceleration, energy flow, and dissipation, and structure of the solar wind have never been rigorously confronted by direct experimental measurements in the region where these processes are actually occurring. Although Alfven waves, shocks, and magnetic reconnection are often invoked as heating mechanisms, there have never been any direct measurements of Alfvenic waves nor the associated Poynting flux nor any measurements of ion or electron kinetic energy flux in the region from 10 R_s to 30 R_s where the final stages of wind acceleration are believed to occur. The radial profiles of both slow and fast solar wind acceleration are based on remote-sensing measurements and have been obtained for only a few selected events. Thus, the spatial radial and perpendicular scales of the acceleration process have been averaged by line-of-sight effects and the possibility of intense localized acceleration cannot be ruled out. The Solar Probe Plus (SPP) mission calls for the high quality fields and particles measurements required to solve the coronal heating and wind acceleration problem. The SPP 'FIELDS' experiment measures the electric and magnetic fields fundamental to the plasma physics of the structured and turbulent solar wind, flux ropes, collisionless shocks, and magnetic reconnection. FIELDS will make the first-ever measurements of the DC/Low-Frequency electric field inside of 1 AU allowing for in situ, high cadence measurements of the Poynting vector, the Elsasser variables, and E/B diagnostics of the wave spectrum to fce in the solar wind. SPP/FIELDS measures the radio wave (type III and II) signatures of microflares, energized electrons, and CME propagation. SPP/ FIELDS measures the plasma electron density to ~2% accuracy and the core electron temperature to ~5-10% accuracy more than 90% of the time at perihelion. FIELDS will also measure the in situ density fluctuation spectrum and structures at a very high cadence (

  17. Space Solar Power Program. Final report

    SciTech Connect

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O'brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  18. Solar Physics in the Space Age.

    ERIC Educational Resources Information Center

    Dittmer, Phil D.; And Others

    This amply illustrated booklet provides a physical description of the sun as well as present and future tasks for solar physics study. The first chapter, an introduction, describes the history of solar study, solar study in space, and the relevance of solar study. The second chapter describes the five heliographic domains including the interior,…

  19. Galileo Space Probe News Conference. Part 1

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Kennedy Space Center (KSC) video release presents Part 1 of a press conference regarding the successful entry of the Galileo Space Probe into Jupiter's atmosphere. The press conference panel is comprised of twelve principal investigators and project scientists that oversee the Galileo mission. Among these panelists, William J. O'Neil (Jet Propulsion Lab.) begins the video praising all of the scientists that worked on the orbiter mission. He then presents a visual overview of Galileo's overall mission trajectory and schedule. Marcie Smith (NASA Ames Research Center) then describes the Galileo Probe mission and the overall engineering and data acquisition aspects of the Probe's Jupiter atmospheric entry. Dr. Richard Young (NASA Ames Research Center) follows with a brief scientific overview, describing the measurements of the atmospheric composition as well as the instruments that were used to gather the data. Atmospheric pressure, temperature, density, and radiation levels of Jupiter were among the most important parameters measured. It is explained that these measurements would be helpful in determining among other things, the overall dynamic meteorology of Jupiter. A question and answer period follows the individual presentations. Atmospheric thermal structure, water abundances, wind profiles, radiation, cloud structure, chemical composition, and electricity are among the topics discussed. Parts 2 and 3 of the press conference can be found in document numbers NONP-NASA-VT-2000001074, and NONP-NASA-VT-2000001075.

  20. Project Helios-A. [mission planning for solar probe

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Helios-A solar probe which will fly within 28 million miles of the sun is described as a joint American and German project. The spacecraft and instrument designs, planned experiments, and mission are briefly discussed.

  1. Commercialization of solar space power

    NASA Astrophysics Data System (ADS)

    Pant, Alok; Sera, Gary

    1995-01-01

    The objective of this research is to help U.S. companies commercialize renewable energy in India, with a special focus on solar energy. The National Aeronautics and Space Administration (NASA) Mid-Continent Technology Transfer Center (MCTTC) is working with ENTECH, Inc., a solar photovoltaic (SPV) systems manufacturer to form partnerships with Indian companies. MCTTC has conducted both secondary and primary market research and obtained travel funding to meet potential Indian partners face to face. MCTTC and ENTECH traveled to India during June 2-20, 1994, and visited New Delhi, Bombay, Pune and Calcutta. Meetings were held with several key government officials and premier Indian business houses and entrepreneurs in the area of solar energy. A firsthand knowledge of India's renewable energy industry was gained, and companies were qualified in terms of capabilities and commitment to the SPV business. The World Bank has awarded India with 280 million to commercialize renewable energies, including 55 million for SPV. There is a market in India for both small-scale (kW) and large SPV (MW) applications. Each U.S. company needs to form a joint venture with an Indian firm and let the latter identify the states and projects with the greatest business potential. Several big Indian companies and entrepreneurs are planning to enter the SPV business, and they currently are seeking foreign technology partners. Since the lager companies have adopted a more conservative approach, however, partnerships with entrepreneurs might offer the quickest route to market entry in India.

  2. Solar physics in the space age

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A concise and brief review is given of the solar physics' domain, and how its study has been affected by NASA Space programs which have enabled space based observations. The observations have greatly increased the knowledge of solar physics by proving some theories and challenging others. Many questions remain unanswered. To exploit coming opportunities like the Space Station, solar physics must continue its advances in instrument development, observational techniques, and basic theory. Even with the Advance Solar Observatory, other space based observation will still be required for the sure to be ensuing questions.

  3. Solar Energy Monitor In Space (SEMIS)

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1974-01-01

    Measurements made at high altitudes from aircraft have resulted in the establishment of standard values of the solar constant and extraterrestrial solar spectral irradiance. These standard values and other solar spectral curves are described. The problem of possible variations of the solar constant and solar spectrum and their influence on the earth-atmosphere system and weather related phenomena is examined. It is shown that the solar energy input parameters should be determined with considerably greater accuracy and precision than has been possible. An instrument package designed as a compact, low weight solar energy monitor in space (SEMIS) is described.

  4. Solar probe mission: close encounter with the sun

    NASA Astrophysics Data System (ADS)

    Sittler, E. C., Jr.; McComas, D. J.; McNutt, R. L., Jr.; Stdt Team

    The Solar Probe Science and Technology Definition Team (STDT) recently completed a detailed study of the Solar Probe Mission based on an earliest launch date of October 2014. Solar Probe, when implemented, will be the first close encounter by a spacecraft with a star (i.e., 3 RS above the Sun's photosphere). The report and its executive summary were published by NASA (NASA/TM-2005-212786) in September 2005 and can be found at the website http://solarprobe.gsfc.nasa.gov/. A description of the science will appear in Reviews of Geophysics article led by D. J. McComas. For this talk, we presented the consensus view of the STDT including a brief description of the scientific goals, a description of the overall mission, including trajectory scenarios, spacecraft description and proposed scientific payload. We will discuss all these topics and the importance of flying the Solar Probe mission both with regard to understanding fundamental issues of solar wind acceleration and coronal heating near the Sun and Solar Probe's unique role in understanding the acceleration of Solar Energetic Particles (SEPs), which is critical to future Human Exploration.

  5. Solar Probe Plus: A Scientific Investigation Sixty Years in the Making

    NASA Astrophysics Data System (ADS)

    McNutt, R. L., Jr.

    2015-12-01

    The in situ measurment of the conditions near the Sun's corona, responsible for coronal heating, solar wind acceleration, and energetic particle production and transport has been a high priority, but elusive, scientific goal since the beginning of the Space Age. The first proposal for a solar probe was from the six-man Fields and Particles Group (Committee 8 of the Space Science Board (SSB)) chaired by John Simpson of the University of Chicago. In their interim report of 24 Octobr 1958, the Group suggested a variety of missions, including "a solar probe to pass inside the orbit of Mercury to study the particles and fields in the vicinity of the Sun...". The exteme thermal and propulsive requirements were immediately recognized. Following initial trajectory studies using a variety of gravity-assist stategies, in the mid-1970's detailed mission and engineering studies for such a mission were carried out in the U.S. by the Jet Propulsion Laboratory (JPL) and in Europe by the European Space Agency (ESA). The mission rationale did not change substantially since the 1978 workshop at which Harold Glaser, then head of NASA's Solar Terrestrial Program office asked the attendees "What can Solar Probe do that no other mission can do?" Answers provided at the workshop included solar energetic particle propagation effects, acceleration of the solar wind, and testing "the validity of the many models now in use for interpretation of remotely observed solar phenomena and interplanetary phenomena observed near 1 AU." Studies in the 1980's emphasized a comprehensive payload passing to within 4 solar radii of the Sun's center. Budgetary concerns led to a "minimal mission" concept in 1995, followed by a more robust concept studied in 1999. A renewed study in 2005 was followed by a non-nucelar "Solar Probe Lite." The requirment to use solar power eliminated the use of a Jupiter gravity assist and a polar pass as close as 4 solar radii. However, the substitute of using multiple Venus

  6. Solar Probe Plus: A NASA Mission to Touch the Sun

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Bale, S. D.; Decker, R. B.; Howard, R.; Kasper, J. C.; McComas, D. J.; Szabo, A.; Velli, M. M.

    2013-12-01

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this poster, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  7. Solar Energetic Particles and Space Weather

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.

    2001-01-01

    The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of greater than ten MeV protons occur at an average rate of approx. 13 per year near solar maximum and several events with high intensities of > 100 McV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the 'streaming limit.' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a 'delayed' radiation hazard, even for protons with energies up to approx. one GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral 'knee'. The location of the proton spectral knee can vary from approx. ten MeV to approx. one GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars.

  8. Flexibility in space solar cell production

    NASA Technical Reports Server (NTRS)

    Khemthong, Scott; Iles, Peter A.

    1989-01-01

    The wide range of cells that must be available from present-day production lines for space solar cells are described. After over thirty years of space-cell use, there is very little standardization in solar cell design. It is not generally recognized what a wide range of designs must remain available on cell production lines. This range of designs is surveyed.

  9. Solar Magnetic Drivers of Space Weather

    DTIC Science & Technology

    1998-01-01

    and Sheeley), the Air Force Phillips Lab (Space Effects Division - Webb and Kahler ), the NOAA Space Environment Center (Rapid Prototyping Center...Solar Physics, eds. K. S. Balasubramaniam, J. Harvey, D. Rabin , ASP Conf. Ser. 140, 155-160. Harvey, J. and Worden, J. 1998, “Calibrating Solar Polar

  10. Sungrazing comets: Probing the inner extremes of the Solar System

    NASA Astrophysics Data System (ADS)

    Knight, M.

    2014-07-01

    Comet ISON (C/2012 S1) gained much notoriety as the first known dynamically new sungrazing comet, and was observed extensively leading up to its perihelion passage in November 2013. While ISON's destruction near perihelion was disappointing, its intense study will yield unprecedented insight into the behavior of sungrazing comets. In light of this heightened interest in sungrazing comets, I will present a brief overview of the populations of sungrazing comets and review what their study has revealed about the solar system. Our knowledge of the near-Sun environment has been revolutionized over the last few decades by the discovery of thousands of faint comets on sungrazing orbits. The vast majority of these objects are seen only by the telescopes onboard SOlar and Heliospheric Observatory (SOHO) and/or Solar-TErrestrial RElations Observatory (STEREO), with observations typically spanning hours to a few days. About 85 % are dynamically related to each other as members of the Kreutz group, whose members were likely produced by cascading fragmentation from a single parent in the last few thousand years. The Kreutz group was the only group of sungrazing comets known prior to the modern space-based coronagraphic era, and includes such spectacular naked eye objects as Ikeya-Seki (1965f = C/1965 S1) and Lovejoy (C/2011 W3). Kreutz comets are seen in SOHO and STEREO images on average every few days and all but the largest historical comets are destroyed during the tiny perihelion passage (1--2 solar radii). At least three additional groups of near-Sun comets, sometimes termed ''sunskirting'' due to their moderately larger perihelion distances (8--12 solar radii) have been discovered in SOHO and STEREO images. As a result of the decreased insolation and tidal forces sustained during their perihelion passages, many sunskirters survive perihelion. Two sunskirting groups, the Marsden and Kracht groups have short (4--6 yr) orbital periods and are dynamically related to comet 96P

  11. In-Space Transportation for Geo Space Solar Satellites

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Donahue, Benjamin B.; Lawrence, Schuyler C.; McClanahan, James A.; Carrington, Connie (Technical Monitor)

    2000-01-01

    Space solar power satellites have the potential to provide abundant quantities of electricity for use on Earth. One concept, the Sun Tower, can be assembled in geostationary orbit from pieces transferred from Earth. The cost of transportation from Earth is one of the major hurdles to space solar power. This study found that a two-stage rocket launch vehicle with autonomous solar-electric transfer can provide the transportation at prices close to the goal of $800/kg

  12. Space Qualification Test of a-Silicon Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.

    2004-01-01

    The basic requirements of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore, this qualifications test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs. Parameters that were evaluated included performance dependence on: illuminating angles, terrestrial temperatures, lifetime, as well as impact landing conditions. Our qualification efforts were limited to these most critical areas of concern. Most of the tested solar cell modules have met the requirements of the program except the impact tests. Surprisingly, one of the two single PIN 2 x 1 amorphous solar cell modules continued to function even after the 80000G impact tests. The output power parameters, Pout, FF, Isc and Voc, of the single PIN amorphous solar cell module were found to be 3.14 mW, 0.40, 9.98 mA and 0.78 V, respectively. These parameters are good enough to consider the solar module as a possible power source for the microprobe seismometer. Some recommendations were made to improve the usefulness of the amorphous silicon solar cell modules in space terrestrial applications, based on the results obtained from the intensive short term lab test effort.

  13. Magnetic probing of the solar interior

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Estes, R. H.

    1985-01-01

    The magnetic field patterns in the region beneath the solar photosphere is determined. An approximate method for downward extrapolation of line of sight magnetic field measurements taken at the solar photosphere was developed. It utilizes the mean field theory of electromagnetism in a form thought to be appropriate for the solar convection zone. A way to test that theory is proposed. The straightforward application of the lowest order theory with the complete model fit to these data does not indicate the existence of any reasonable depth at which flux conservation is achieved.

  14. A Solar Dynamic Power Option for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.

  15. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  16. Space solar power - An energy alternative

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  17. Space Station Freedom solar array design development

    NASA Technical Reports Server (NTRS)

    Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo

    1989-01-01

    The Space Station Freedom solar array program is required to provide a 75-kW power module that uses eight solar array (SA) wings over a four-year period in low earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-yr design point. The design of flexible-substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years is discussed. The tradeoff study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.

  18. Emerging US Space Launch, Trends and Space Solar Power

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2015-01-01

    Reviews the state of the art of emerging US space launch and spacecraft. Reviews the NASA budget ascontext, while providing example scenarios. Connects what has been learned in space systems commercial partnershipsto a potential path for consideration by the space solar power community.

  19. Space Station Freedom Solar Array design development

    NASA Technical Reports Server (NTRS)

    Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo R.

    1989-01-01

    The Space Station Freedom Solar Array Program is required to provide a 75 kW power module that uses eight solar array (SA) wings over a four-year period in low Earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-year design point. Lockheed Missles and Space Company, Inc. (LMSC) is providing the flexible substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years. Trade studies and development testing, important for evolving any design to maturity, are presently underway at LMSC on the flexible solar array. The trade study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.

  20. Solar Energy for Space Heating & Hot Water.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  1. Alternative Architecture for Commercial Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth

    2000-01-01

    This presentation discuss the space solar power (SSP) concept. It takes us step by step through the process: the use of sunlight and solar cells to create power, the conversion of the sunlight into electricity, the conversion of electricity to microwaves, and finally the from microwaves back to electricity by the Rectennas on Earth.

  2. Space Solar Power Management and Distribution (PMAD)

    NASA Technical Reports Server (NTRS)

    Lynch, Thomas H.

    2000-01-01

    This paper presents, in viewgraph form, SSP PMAD (Space Solar Power Management and Distribution). The topics include: 1) Architecture; 2) Backside Thermal View; 3) Solar Array Interface; 4) Transformer design and risks; 5) Twelve phase rectifier; 6) Antenna (80V) Converters; 7) Distribution Cables; 8) Weight Analysis; and 9) PMAD Summary.

  3. The FIELDS Instrument Suite for Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Farrell, W. M.; Klimchuk, J. A.; Odom, J.; Oliverson, R.; Sheppard, D. A.; Szabo, A.

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  4. Preliminary Results from the Space Probe Pioneer V

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Meyer, P.; Simpson, J. A.

    1960-01-01

    The space probe Pioneer V was launched March 11, 1960, into an orbit around the sun and inside the orbit of earth. The scientific apparatus included instruments identical with the University of Chicago apparatus used on Explorer VI [Fan, Meyer, and Simpson, 1960b], namely, energetic particle detectors which measure fluxes of protons with energies greater than 75 Mev, electrons with energies greater than 15 Mev, and the bremsstrahlung from electrons and y rays of lower energy. Simultaneously with the measurements in Pioneer V a series of four neutron monitor piles were recording the changes in cosmic radiation intensity at the earth. We report here on some preliminary results obtained from the Chicago experiments during the time within which Pioneer V traveled to a distance of approximately 8 x 10 km from earth. Beginning on March 20, solar activity rapidly increased with many solar flares, radio noise bursts, etc., over a period of 10 days. Most of our results relate to this period. The preliminary data are given in Figures 1 and 2.

  5. In-Space Transportation for GEO Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Donnahue, Benjamin B.; Henley, Mark W.

    1999-01-01

    This report summarizes results of study tasks to evaluate design options for in-space transportation of geostationary Space Solar Power Satellites. Referring to the end-to-end architecture studies performed in 1988, this current activity focuses on transportation of Sun Tower satellite segments from an initial low Earth orbit altitude to a final position in geostationary orbit (GEO; i.e., 35,786 km altitude, circular, equatorial orbit). This report encompasses study activity for In-Space Transportation of GEO Space Solar Power (SSP) Satellites including: 1) assessment of requirements, 2) design of system concepts, 3) comparison of alternative system options, and 4) assessment of potential derivatives.

  6. Space Systems Failures: Disasters and Rescues of Satellites, Rocket and Space Probes

    NASA Astrophysics Data System (ADS)

    Harland, David M.; Lorenz, Ralph

    In the 1960s and 1970s deep space missions were dispatched in pairs in case one was lost in launch or failed during its journey. Following the triumphs of the Viking landings on Mars in 1976 and both Voyagers spacecraft successfully surveying the outer giant planets of the Solar System, it was decided by NASA to cut costs and send out just a single probe. Although Magellan successfully mapped Venus by radar, it suffered from problems during the flight. Then came the loss of Mars Observer, whose engine exploded as it was preparing to enter Mars' orbit because it was using technology designed for Earth's satellites and the engine was not suited to spending several months in space.

  7. Space solar cell research - Problems and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1986-01-01

    The value of a passive, maintenance-free, renewable energy source was immediately recognized in the early days of the space program, and the silicon solar cell, despite its infancy, was quickly pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved because of a variety of factors, ranging from improvements in silicon single crystal material, to better device designs, to a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. This paper will give a brief overview of some of the opportunities and challenges for space photovoltaic applications, and will discuss some of the current reseach directed at achieving high efficiency and controlling the effects of radiation damage in space solar cells.

  8. Space solar cell research: Problems and potential

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.

  9. Studying the Sun: Solar Probe Plus

    NASA Video Gallery

    Dr. Jonathan Cirtain, an astrophysicist at NASA's Marshall Space Flight Center in Huntsville, Ala., and his science team have secured a proposal award of $8.2 million to help build an instrument fo...

  10. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; SWEAP Investigation Team

    2010-12-01

    The NASA Solar Probe Plus mission will be humanity’s first direct visit to the atmosphere of our Sun. The spacecraft will close to within nine solar radii (about four million miles) of the solar surface in order to observe the heating of the corona and the acceleration of the solar wind first hand. A key requirement for Solar Probe Plus is the ability to make continuous, accurate, and fast measurements of the electrons and ionized helium (alpha-particles) and hydrogen (protons) that constitute the bulk of the solar wind. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation is a two-instrument suite that provides these observations. The purpose of this talk is to describe the science motivation for SWEAP, the instrument designs, and the expected data products. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SWEAP measurements enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, high-energy particle acceleration, and the interaction between solar wind and the dust environment of the inner heliosphere. SPC is a Faraday Cup (FC) that looks at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). SPAN-A and -B are rotated 90 degrees relative to one another so their broad FOV combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution at 0.5-16 Hz and flow angles and fluxes at 128 Hz. Continuous buffering provides triggered burst observations during shocks, reconnection events, and other transient structures with no changes to the instrument operating mode.

  11. Solar Magnetic Drivers of Space Weather

    DTIC Science & Technology

    1997-09-30

    Solar Physics Branch (Code 7660, Wang and Sheeley), the Air Force Phillips Lab (Space Effects Division, Kahler and Webb), NOAA Space Environment...eds. K. Balasubramaniam, J. Harvey, D. Rabin , ASP Conf. Ser. (San Francisco: ASP), in press. Y. M. Wang, N. R. Sheeley, Jr., K. P. Dere, R. T. Duffin

  12. Solar Sources of Severe Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Shibasaki, K.

    2012-01-01

    Severe space weather is characterized by intense particle radiation from the Sun and severe geomagnetic storm caused by magnetized solar plasma arriving at Earth. Intense particle radiation is almost always caused by coronal mass ejections (CMEs) traveling from the Sun at super-Alfvenic speeds leading to fast-mode MHD shocks and particle acceleration by the shocks. When a CME arrives at Earth, it can interact with Earth's magnetopause resulting in solar plasma entry into the magnetosphere and a geomagnetic storm depending on the magnetic structure of the CME. Particle radiation starts affecting geospace as soon as the CMEs leave the Sun and the geospace may be immersed in the radiation for several days. On the other hand, the geomagnetic storm happens only upon arrival of the CME at Earth. The requirements for the production of particles and magnetic storms by CMEs are different in a number of respects: solar source location, CME magnetic structure, conditions in the ambient solar wind, and shock-driving ability of CMEs. Occasionally, intense geomagnetic storms are caused by corotating interaction regions (CIRs) that form in the interplanetary space when the fast solar wind from coronal holes overtakes the slow wind from the quiet regions. CIRs also accelerate particles, but when they reach several AU from the Sun, so their impact on Earth's space environment is not significant. In addition to these plasma effects, solar flares that accompany CMEs also produce excess ionization in the ionosphere causing sudden ionospheric disturbances. This paper highlights these space weather effects using space weather events observed by space and ground based instruments during of solar cycles 23 and 24.

  13. Collecting Samples of Coronal and Solar Wind Plasma with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; Solar Wind Electrons Alphas; Protons (Sweap) Team

    2011-12-01

    The primary science objective of the NASA Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field and to understand how the corona and solar wind are heated and accelerated and how energetic particles are produced and evolve. To accomplish this, the spacecraft carries a broad payload of in situ and remote sensing instruments and uses a sequence of Venus gravitational assists to dive within 8.5 solar radii of the surface of the Sun, making it the first spacecraft to enter the sub-Alfvénic solar corona. This talk will focus on measurements of the thermal ions and electrons that constitute the bulk of the solar corona and solar wind, covering open questions related to the structure, heating, and acceleration of the solar corona and solar wind. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus will be presented, including a description of how measurements from electrostatic analyzers behind the heat shield and a Sun-viewing Faraday Cup are combined to ensure continuous and comprehensive sampling of the corona and wind throughout each encounter. Opportunities for coordinated observations with other spacecraft and ground-based observatories will be presented, along with a discussion of possible contributions from the theory and modeling communities, and from existing observations, as we prepare for this historic mission.

  14. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1992-01-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  15. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission

    NASA Astrophysics Data System (ADS)

    Damé, Luc

    2013-05-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018.

  16. The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission

    PubMed Central

    Damé, Luc; Meftah, Mustapha; Hauchecorne, Alain; Keckhut, Philippe; Sarkissian, Alain; Marchand, Marion; Irbah, Abdenour; Quémerais, Éric; Bekki, Slimane; Foujols, Thomas; Kretzschmar, Matthieu; Cessateur, Gaël; Shapiro, Alexander; Schmutz, Werner; Kuzin, Sergey; Slemzin, Vladimir; Urnov, Alexander; Bogachev, Sergey; Merayo, José; Brauer, Peter; Tsinganos, Kanaris; Paschalis, Antonis; Mahrous, Ayman; Khaled, Safinaz; Ghitas, Ahmed; Marzouk, Besheir; Zaki, Amal; Hady, Ahmed A.; Kariyappa, Rangaiah

    2013-01-01

    We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200–220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017–2018. PMID:25685424

  17. Seismic probes of solar interior magnetic structure.

    PubMed

    Hanasoge, Shravan; Birch, Aaron; Gizon, Laurent; Tromp, Jeroen

    2012-09-07

    Sun spots are prominent manifestations of solar magnetoconvection, and imaging their subsurface structure is an outstanding problem of wide physical importance. Travel times of seismic waves that propagate through these structures are typically used as inputs to inversions. Despite the presence of strongly anisotropic magnetic waveguides, these measurements have always been interpreted in terms of changes to isotropic wave speeds and flow-advection-related Doppler shifts. Here, we employ partial-differential-equation-constrained optimization to determine the appropriate parametrization of the structural properties of the magnetic interior. Seven different wave speeds fully characterize helioseismic wave propagation: the isotropic sound speed, a Doppler-shifting flow-advection velocity, and an anisotropic magnetic velocity. The structure of magnetic media is sensed by magnetoacoustic slow and fast modes and Alfvén waves, each of which propagates at a different wave speed. We show that even in the case of weak magnetic fields, significant errors may be incurred if these anisotropies are not accounted for in inversions. Translation invariance is demonstrably lost. These developments render plausible the accurate seismic imaging of magnetoconvection in the Sun.

  18. Coordinated science with the Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT missions

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan; Vourlidas, Angelos; Zimovets, Ivan; Velli, Marco; Zhukov, Andrei; Kuznetsov, Vladimir; Liu, Ying; Bale, Stuart; Ming, Xiong

    The concurrent science operations of the ESA Solar Orbiter (SO), NASA Solar Probe Plus (SPP), Russian Interhelioprobe (IHP) and Chinese SPORT missions will offer a truly unique epoch in heliospheric science. While each mission will achieve its own important science objectives, taken together the four missions will be capable of doing the multi-point measurements required to address many problems in Heliophysics such as the coronal origin of the solar wind plasma and magnetic field or the way the Solar transients drive the heliospheric variability. In this presentation, we discuss the capabilities of the four missions and the Science synergy that will be realized by concurrent operations

  19. New directions for space solar power

    NASA Astrophysics Data System (ADS)

    Mankins, John C.

    2009-07-01

    Several of the central issues associated with the eventual realization of the vision of solar power from space for terrestrial markets resolve around the expect costs associated with the assembly, inspection, maintenance and repair of future solar power satellite (SPS) stations. In past studies (for example, NASA's "Fresh Look Study", c. 1995-1997) efforts were made to reduce both the scale and mass of large, systems-level interfaces (e.g., the power management and distribution (PMAD) system) and on-orbit fixed infrastructures through the use of modular systems strategies. These efforts have had mixed success (as reflected in the projected on-orbit mass of various systems concepts. However, the author remains convinced of the importance of modular strategies for exceptionally large space systems in eventually realizing the vision of power from space. This paper will introduce some of the key issues associated with cost-competitive space solar power in terrestrial markets. It will examine some of the relevant SPS concepts and will assess the 'pros and cons' of each in terms of space assembly, maintenance and servicing (SAMS) requirements. The paper discusses at a high level some relevant concepts and technologies that may play r role in the eventual, successful resolution of these challenges. The paper concludes with an example of the kind of novel architectural approach for space solar power that is needed.

  20. Solar Power Beaming: From Space to Earth

    SciTech Connect

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  1. Direct solar heating for Space Station application

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    Early investigations have shown that a large percentage of the power generated on the Space Station will be needed in the form of high-temperature thermal energy. The most efficient method of satisfying this requirement is through direct utilization of available solar energy. A system concept for the direct use of solar energy on the Space Station, including its benefits to customers, technologists, and designers of the station, is described. After a brief discussion of energy requirements and some possible applications, results of selective tradeoff studies are discussed, showing area reduction benefits and some possible configurations for the practical use of direct solar heating. Following this is a description of system elements and required technologies. Finally, an assessment of available contributive technologies is presented, and a Space Shuttle Orbiter flight experiment is proposed.

  2. A Study of the Structure of the Source Region of the Solar Wind in Support of a Solar Probe Mission

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Forman, M. A. (Technical Monitor)

    2001-01-01

    Despite the richness of the information about the physical properties and the structure of the solar wind provided by the Ulysses and SOHO (Solar and Heliospheric Observatory) observations, fundamental questions regarding the nature of the coronal heating mechanisms, their source, and the manifestations of the fast and slow solar wind, still remain unanswered. The last unexplored frontier to establish the connection between the structure and dynamics of the solar atmosphere, its extension into interplanetary space, and the mechanisms responsible for the evolution of the solar wind, is the corona between 1 and 30 R(sub s). A Solar Probe mission offers an unprecedented opportunity to explore this frontier. Its uniqueness stems from its trajectory in a plane perpendicular to the ecliptic which reaches within 9 R(sub s) of the solar surface over the poles and 3 - 9 R(sub s) at the equator. With a complement of simultaneous in situ and remote sensing observations, this mission is destined to detect remnants and signatures of the processes which heat the corona and accelerate the solar wind. In support of this mission, we fulfilled the following two long-term projects: (1) Study of the evolution of waves and turbulence in the solar wind (2) Exploration of signatures of physical processes and structures in the corona. A summary of the tasks achieved in support of these projects are given below. In addition, funds were provided to support the Solar Wind 9 International Conference which was held in October 1998. A brief report on the conference is also described in what follows.

  3. Predicting Inner Heliospheric Solar Wind Conditions in Advance of Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Cohen, O.; Salem, C. S.; Halekas, J. S.; Larson, D. E.; Maruca, B. A.

    2012-12-01

    In advance of the upcoming inner heliospheric missions (Solar Orbiter and Solar Probe Plus) it is vital to have an accurate prediction of the range of solar wind conditions that occur between 9.5Rs and 0.7AU. These conditions will place constraints on instrument design and the operational modes that are used. In this paper, we discuss and compare different methods of predicting the solar wind bulk plasma parameters. One method uses observed 1AU conditions observed with the Wind spacecraft combined with scaling laws derived from Helios observations. We extend this simple model by using a more realistic solar wind velocity profile in addition to the Wind and Helios observations. Another method uses 3D MHD simulations from which solar wind conditions along a spacecraft trajectory can be extracted. We discuss some implications of these models in the design of the Solar Wind Electrons Alphas and Protons investigation, a suite of solar wind instruments being designed to fly on Solar Probe Plus.

  4. On the detection of a cometary mass distribution. [by perturbations on space probe orbits

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Peale, S. J.

    1976-01-01

    The problem of detecting a possible cometary distribution on the fringes of the solar system is examined. The acceleration of a space probe due to a hypothetical cometary mass distribution with the surface density rising to a maximum and subsequently falling off with increasing distance from the sun is analyzed. The total minimum detectable cometary mass for the Pioneer and Mariner spacecraft is estimated on the basis of this model to be on the order of 1000 earth masses. Precision tracking of deep space probes is less sensitive by three orders of magnitude for the detection of an unseen cometary mass distribution at the fringes of the solar system than are the secular perturbations of long-period comets.

  5. Solar dynamic space power system heat rejection

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Gustafson, E.; Mclallin, K. L.

    1986-01-01

    A radiator system concept is described that meets the heat rejection requirements of the NASA Space Station solar dynamic power modules. The heat pipe radiator is a high-reliability, high-performance approach that is capable of erection in space and is maintainable on orbit. Results are present of trade studies that compare the radiator system area and weight estimates for candidate advanced high performance heat pipes. The results indicate the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight-reduction potential over the range of temperatures to be encountered in the solar dynamic heat rejection systems.

  6. Floating Potential Probe Deployed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2001-01-01

    In the spring and summer of 2000, at the request of the International Space Station (ISS) Program Office, a Plasma Contactor Unit Tiger Team was set up to investigate the threat of the ISS arcing in the event of a plasma contactor outage. Modeling and ground tests done under that effort showed that it is possible for the external structure of the ISS to become electrically charged to as much as -160 V under some conditions. Much of this work was done in anticipation of the deployment of the first large ISS solar array in November 2000. It was recognized that, with this deployment, the power system would be energized to its full voltage and that the predicted charging would pose an immediate threat to crewmembers involved in extravehicular activities (EVA's), as well as long-term damage to the station structure, were the ISS plasma contactors to be turned off or stop functioning. The Floating Potential Probe was conceived, designed, built, and deployed in record time by a crack team of scientists and engineers led by the NASA Glenn Research Center in response to ISS concerns about crew safety.

  7. Update on the Fire (solar probe) mission study

    NASA Technical Reports Server (NTRS)

    Jones, W. Veron; Forman, Miriam A.

    1995-01-01

    Since mid-1994 the U.S. and Russia have been studying the technical feasibility of a joint solar probe mission as part of the 'Fire and Ice' concept to explore close to the Sun, and Pluto, together. In the current concept of the 'Fire' mission, separate spacecraft built by each country would be launched together, fly by Jupiter to shed orbital angular momentum and achieve a solar polar orbit, and arrive 3.6 years later at 4 and 10 R(sub s). The Fire mission would measure basic parameters of the modes of energy and momentum flow and transfer to the coronal plasma that are not observable remotely. Specifically, measurement of magnetic fields, waves, suprathermal particles, and critical features of the plasma particle composition and distribution function would be made from 4 to 30 R(sub s) where the solar wind is known to be accelerated. In addition, the Fire spacecraft should image coronal structures unambiguously and relate the underlying and flown-through structures to plasma characteristics measured in situ. Each country is developing a backup plan to pursue the solar probe objectives alone if the other side is unable to carry out its mission.

  8. The Wide-Field Imager for Solar Probe Plus (WISPR)

    NASA Astrophysics Data System (ADS)

    Vourlidas, Angelos; Howard, Russell A.; Plunkett, Simon P.; Korendyke, Clarence M.; Thernisien, Arnaud F. R.; Wang, Dennis; Rich, Nathan; Carter, Michael T.; Chua, Damien H.; Socker, Dennis G.; Linton, Mark G.; Morrill, Jeff S.; Lynch, Sean; Thurn, Adam; Van Duyne, Peter; Hagood, Robert; Clifford, Greg; Grey, Phares J.; Velli, Marco; Liewer, Paulett C.; Hall, Jeffrey R.; DeJong, Eric M.; Mikic, Zoran; Rochus, Pierre; Mazy, Emanuel; Bothmer, Volker; Rodmann, Jens

    2016-12-01

    The Wide-field Imager for Solar PRobe Plus (WISPR) is the sole imager aboard the Solar Probe Plus (SPP) mission scheduled for launch in 2018. SPP will be a unique mission designed to orbit as close as 7 million km (9.86 solar radii) from Sun center. WISPR employs a 95∘ radial by 58∘ transverse field of view to image the fine-scale structure of the solar corona, derive the 3D structure of the large-scale corona, and determine whether a dust-free zone exists near the Sun. WISPR is the smallest heliospheric imager to date yet it comprises two nested wide-field telescopes with large-format (2 K × 2 K) APS CMOS detectors to optimize the performance for their respective fields of view and to minimize the risk of dust damage, which may be considerable close to the Sun. The WISPR electronics are very flexible allowing the collection of individual images at cadences up to 1 second at perihelion or the summing of multiple images to increase the signal-to-noise when the spacecraft is further from the Sun. The dependency of the Thomson scattering emission of the corona on the imaging geometry dictates that WISPR will be very sensitive to the emission from plasma close to the spacecraft in contrast to the situation for imaging from Earth orbit. WISPR will be the first `local' imager providing a crucial link between the large-scale corona and the in-situ measurements.

  9. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  10. Solar thematic maps for space weather operations

    NASA Astrophysics Data System (ADS)

    Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.

    2012-08-01

    Thematic maps are arrays of labels, or "themes," associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ˜2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.

  11. Solar thematic maps for space weather operations

    USGS Publications Warehouse

    Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.

    2012-01-01

    Thematic maps are arrays of labels, or "themes", associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ~2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.

  12. Study of the Solar Cycle from Space

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The objectives of and benefits to be derived from a program of solar cycle research are discussed with emphasis on the role space observations will play in this venture. The strategy to be employed in the coming decade is considered as well as crucial missions, experiments, and the theoretical advances required.

  13. Large area space solar cell assemblies

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Nowlan, M. J.

    1982-01-01

    Development of a large area space solar cell assembly is presented. The assembly consists of an ion implanted silicon cell and glass cover. The important attributes of fabrication are (1) use of a back surface field which is compatible with a back surface reflector, and (2) integration of coverglass application and call fabrication.

  14. Probing Solar Wind Turbulence with the Jansky Very Large Array

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Bastian, T. S.; Betti, S.

    2016-04-01

    The solar wind offers an extraordinary laboratory for studying MHD turbulence, turbulent dissipation, and heating. Radio propagation phenomena can be exploited as probes of the solar wind in regions that are generally inaccessible to in situ spacecraft measurements. Here, we have undertaken a study with the Jansky Very Large Array (VLA) to observe point-like sources drawn from the JVAS catalog, and 3 VLA calibrator sources, to trans-illuminate the outer corona/inner solar wind. In doing so, we will exploit angular broadening and refractive scintillation to deduce properties of the solar wind along ≍23 lines of sight within 7 solar radii of the Sun and a wide range of position angles. By fitting the complex visibilities using well-known techniques we can deduce or constrain a number of key parameters. In particular, we fit the visibilities to a function of the known source flux, displacement of the source due to refraction, source broadening due to an elliptical structure function, spectral slope of the turbulence, and the coherence scale. Of particular interest is α, the spectral slope of the turbulence which we probe at both small (km to 10s of km) and large (thousands of km) scales. This will help us determine the presence and evolution of an inner scale, measure the degree of anisotropy, and constrain the topology of the global coronal magnetic field. The inner scale is of particular interest for constraining current theories of turbulence dissipation and heating. Initial analysis show the visibilities vary notably on timescales of individual integrations (2 seconds) and that the source is not uniformly broadened. All sources appear to preferentially broaden perpendicular to the magnetic field, consistent with theories of kinetic Alfvén waves. This type of observation will also help to interpret data from the upcoming Solar Probe Plus and Solar Orbiter missions. A full set of results and analysis is forthcoming. More details on previous results can be found

  15. MARINER 10 SPACE PROBE UNDERGOES ENCAPSULATION

    NASA Technical Reports Server (NTRS)

    1973-01-01

    After complete check out, technicians prepare to encapsulate Mariner 10, the spacecraft that will be launched toward the planets Venus and Mercury in early November. The Mariner 10 project includes two first: First use of one planet's (Venus') gravitational field to propel a spacecraft onto another; and first exploration of Mercury. The spacecraft weighs 1,100 pounds, including 170 pounds of scientific equipment. Two television cameras aboard Mariner 10 are expected to take 8,000 pictures of the two planets, and six scientific experiments will return information on solar wind, magnetic fields, charged particles, temperature emissions, radio signals, and atmospheric conditions. Mariner will be launched atop Atlas/Centaur 34, from NASA Complex 36B at Cape Kennedy, Fla.

  16. Space Solar Power Demonstrations: Challenges and Progress

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)

    2002-01-01

    The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).

  17. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.

    PubMed

    Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S

    2016-09-20

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of

  18. PROBING THE SOLAR SURFACE: THE OBLATENESS AND ASTROPHYSICAL CONSEQUENCES

    SciTech Connect

    Rozelot, J. P.; Damiani, C.; Pireaux, S. E-mail: damiani@obspm.f

    2009-10-01

    Based on historical records, the Sun's dimensions are temporally dependent. Until the recent past, varying dimensions were keenly disputed. Recent accurate observations have removed the doubt, whether from direct limb observations or from helioseismology f-modes analysis. A shrinking or an expanding shape is ultimately linked to solar activity, as even a small variation in the solar radius causes variations in gravitational energy. Based on accurate space- and ground-based observations, we will argue that the oblateness of the Sun is time dependent. Indeed, considering the first two shape coefficients, we can interpret such a temporal variation as a change in the relative importance of the hexadecapolar term, i.e., at the time of high activity, only the dipolar moment c {sub 2} has a significant effect, but at the time of low activity, c {sub 4} is predominant; this results in a decrease of the total value of the oblateness. The combination of the two terms leads to a solar oblateness varying along with solar activity. More studies are needed to get accurate measurements from space, which will provide us with the unique opportunity to study detailed changes of global solar properties.

  19. Future studies of planetary rings by space probes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1984-01-01

    Recent space probe observations of the rings of Jupiter and Saturn have furnished a substantial enhancement of the current understanding of the outer planets' rings. Voyager 2 offers further opportunities for the study of the Neptune and Uranus ring systems. The Galileo mission to Jupiter furnishes the first opportunity for long term space probe studies of a planetary ring system. It is suggested that an appropriately instrumented Saturn orbiter would not only provide a similar opportunity for the study of the Saturn rings, but may also be the only means by which to adequately address the nature of the diverse phenomena displayed by this prototypical planetary ring system.

  20. Space-charge limits of ion sensitive probes

    NASA Astrophysics Data System (ADS)

    Brunner, D.; LaBombard, B.; Ochoukov, R.; Sullivan, R.; Whyte, D.

    2013-12-01

    Ion sensitive probes (ISPs) are used to measure ion temperature and plasma potential in magnetized plasmas. Their operation relies on the difference in electron and ion Larmor radii to preferentially collect the ion species on a recessed electrode. Because of their simple two-electrode construction and optimal geometry for heat flux handling they are an attractive probe to use in the high heat flux boundary of magnetic confinement fusion experiments. However, the integrity of its measurements is rarely, if ever, checked under such conditions. Recent measurements with an ISP in the Alcator C-Mod tokamak have shown that its ion current is space-charge limited and thus its current-voltage (I-V) response does not contain information on the ion temperature. We numerically solve a 1D Vlasov-Poisson model of ion collection to determine how much bias is needed to overcome space-charge effects and regain the classic I-V characteristic with an exponential decay. Prompted by the observations of space charge in C-Mod, we have performed a survey of ISP measurements reported in the literature. Evidence of space-charge limited current collection is found on many probes, with few authors noting its presence. Some probes are able to apparently exceed the classic 1D space-charge limit because electrons can E × B drift into the probe volume, partially reducing the net ion charge; it is argued that this does not, however, change the basic problem that space charge compromises the measurement of ion temperature. Guidance is given for design of ISPs to minimize the effects of space charge.

  1. Data Inversion Techniques for SONNE: a Fast Neutron Spectrometer for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Mallik, Procheta; MacKinnon, A. L.; Ryan, J. M.; Woolf, R. S.; Bloser, P. F.; Bravar, U.; Legere, J. S.; McConnell, M. L.; Flueckiger, E. O.; Pirard, B.

    2010-05-01

    SONNE, the SOlar NeutroN Experiment proposed for Solar Probe Plus and developed at the University of New Hampshire (UNH), is designed to measure solar neutrons from 1-20 MeV and solar gammas from 0.5-10 MeV. SONNE is a double scatter instrument that employs imaging to maximise its signal-to-noise ratio by rejecting neutral particles from non-solar directions. It is intended for an inner heliosphere space mission to detect solar neutrons close enough to the Sun (0.2-0.4 AU), where these lower-energy neutrons exist in sufficient numbers. Using laboratory and simulated data, we produce an instrument response matrix for FNIT that we are then able to test. A crucial aspect for the inversion of data from such an instrument is identifying suitable regularisation techniques needed to deconvolve the data it produces. Here we shall present work done to test the FNIT response matrix by employing Tikhonov regularisation. Using simulated `fake' data, we show that zeroth-order Tikhonov regularisation produces the most encouraging reconstruction of the incident spectrum. First- and second-order Tikhonov regularisation produce unsatisfactory results because the choice of the smoothing parameter - essential for the deconvolution - cannot be determined automatically because the Picard condition is not met for the higher order regularisations. Hence zeroth-order Tikhonov regularisation seems to be the most suitable deconvolution technique for FNIT's needs.

  2. Sandwich module testing for space solar power

    NASA Astrophysics Data System (ADS)

    Jaffe, Paul

    Solar power satellites have been envisioned as a means to provide electricity for terrestrial use. The approach entails collection of solar energy in space and its wireless transmission to the earth. This potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the Modular Symmetrical Concentrator and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. The research described herein details efforts in the development and testing of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for 2.45 GHz microwave-based “ sandwich” module prototypes. Prototypes were designed, fabricated, and subjected to the challenging conditions inherent in the space environment, including the solar concentration levels in which an array of modules might be required to operate.

  3. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  4. Solar Terrestrial Observatory Space Station Workshop Report

    NASA Technical Reports Server (NTRS)

    Roberts, W. T. (Editor)

    1986-01-01

    In response to a need to develop and document requirements of the Solar Terrestrial Observatory at an early time, a mini-workshop was organized and held on June 6, 1985. The participants at this workshop set as their goal the preliminary definition of the following areas: (1) instrument descriptions; (2) placement of instrumentation on the IOC Space Station; (3) servicing and repair assessment; and (4) operational scenarios. This report provides a synopsis of the results of that workshop.

  5. Large area space solar cell assemblies

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.; Spitzer, M. B.

    1982-01-01

    Results of the development of a 34.3 sq cm space solar cell and integral glass cover are presented. Average AM(0) cell efficiency is 14 percent. The cell design includes a high performance back surface reflector yielding a thermal alpha of approximately 0.66. A novel process is described which integrates cell fabrication and encapsulation thereby achieving a reduction of encapsulation cost. Test results indicate the potential of this new technology.

  6. Mission to Jupiter. [Pioneer 10 and 11 space probes

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Pioneer 10 and Pioneer 11 space probes and their missions to Jupiter are discussed along with the experiments and investigations which will be conducted onboard. Jupiter's atmosphere, its magnetic fields, radiation belts, the spacecraft instruments, and the Jovian system will be investigated. Educational study projects are also included.

  7. Investigation of interplanetary dust from out-of-ecliptic space probes. [astronomical models of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Fechtig, H.; Giese, R. H.; Hanner, M. S.; Zook, H. A.

    1976-01-01

    Measurements of interplanetary dust via zodiacal light observations and direct detection are discussed for an out-of-ecliptic space probe. Particle fluxes and zodiacal light brightnesses were predicted for three models of the dust distribution. These models predict that most of the information will be obtained at space probe distances less than 1 A.U. from the ecliptic plane. Joint interpretation of the direct particle measurements and the zodiacal light data can yield the best knowledge of the three-dimensional particle dynamics, spatial distribution, and physical characteristics of the interplanetary dust. Such measurements are important for an understanding of the origin and role of the dust in relation to meteoroids, asteroids, and comets, as well as the interaction of the dust with solar forces.

  8. Probing dense granular materials by space-time dependent perturbations.

    PubMed

    Kondic, L; Dybenko, O M; Behringer, R P

    2009-04-01

    The manner in which signals propagate through dense granular systems in both space and time is not well understood. In order to probe this process, we carry out discrete element simulations of the system response to excitations where we control the driving frequency and wavelength independently. Fourier analysis shows that properties of the signal depend strongly on the space-time scales of the perturbation. The features of the response provide a test bed for models that predict statistical and continuum space-time properties. We illustrate this connection between microscale physics and macroscale behavior by comparing the system response to a simple elastic model with damping.

  9. Optical Amplifier Based Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to design a safe optical power beaming system for use in space. Research was focused on identification of strategies and structures that would enable achievement near diffraction limited optical beam quality, highly efficient electrical to optical conversion, and high average power in combination in a single system. Efforts centered on producing high efficiency, low mass of the overall system, low operating temperature, precision pointing and tracking capability, compatibility with useful satellite orbits, component and system reliability, and long component and system life in space. A system based on increasing the power handled by each individual module to an optimum and the number of modules in the complete structure was planned. We were concerned with identifying the most economical and rapid path to commercially viable safe space solar power.

  10. Solar dynamic power for the Space Station

    NASA Technical Reports Server (NTRS)

    Archer, J. S.; Diamant, E. S.

    1986-01-01

    This paper describes a computer code which provides a significant advance in the systems analysis capabilities of solar dynamic power modules. While the code can be used to advantage in the preliminary analysis of terrestrial solar dynamic modules its real value lies in the adaptions which make it particularly useful for the conceptualization of optimized power modules for space applications. In particular, as illustrated in the paper, the code can be used to establish optimum values of concentrator diameter, concentrator surface roughness, concentrator rim angle and receiver aperture corresponding to the main heat cycle options - Organic Rankine and Brayton - and for certain receiver design options. The code can also be used to establish system sizing margins to account for the loss of reflectivity in orbit or the seasonal variation of insolation. By the simulation of the interactions among the major components of a solar dynamic module and through simplified formulations of the major thermal-optic-thermodynamic interactions the code adds a powerful, efficient and economic analytical tool to the repertory of techniques available for the design of advanced space power systems.

  11. Space solar cells: High efficiency and radiation damage

    NASA Technical Reports Server (NTRS)

    Brandhorst, H., Jr.; Bernatowicz, D. T.

    1980-01-01

    The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance and radiation damage and 30 percent devices are discussed.

  12. Science Planning for the Solar Probe Plus NASA Mission

    NASA Astrophysics Data System (ADS)

    Kusterer, M. B.; Fox, N. J.; Turner, F. S.; Vandegriff, J. D.

    2015-12-01

    With a planned launch in 2018, there are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus mission. The geometry of the celestial bodies and the spacecraft during some of the Solar Probe Plus mission orbits cause limited uplink and downlink opportunities. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. The aim is to write the instrument data to the spacecraft SSR for downlink before a set of data downlink opportunities large enough to get the data to the ground and before the start of another data collection cycle. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To add further complexity, two of the spacecraft payloads have the capability to write a large volumes of data to their internal payload SSR while sending a smaller "survey" portion of the data to the spacecraft SSR for downlink. The instrument scientists would then view the survey data on the ground, determine the most interesting data from their payload SSR, send commands to transfer that data from their payload SSR to the spacecraft SSR for downlink. The timing required for downlink and analysis of the survey data, identifying uplink opportunities for commanding data transfers, and downlink opportunities big enough for the selected data within the data collection period is critical. To solve these challenges, the Solar Probe Plus Science Working Group has designed a orbit-type optimized data file priority downlink scheme to downlink high priority survey data quickly. This file priority scheme would maximize the reaction time that the payload teams have to perform the survey and selected data method on orbits where the downlink and uplink availability will support using this method. An interactive display and analysis science planning tool is being designed for the SPT to use as an aid to planning. The

  13. Space Station Solar Array Joint Repair

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Allmon, Curtis; Reznik, Carter; McFatter, Justin; Davis, Robert E.

    2015-01-01

    In Oct 2007 the International Space Station (ISS) crew noticed a vibrating camera in the vicinity of Starboard Solar Alpha Rotary Joint (SARJ). It had less than 5 months of run time when the anomaly was observed. This approximately 3.2 meter diameter bearing joint supports solar arrays that power the station critical to its operation. The crew performed an EVA to identify what was causing the vibration. It was discovered that one of the 3 bearing tracks of this unconventional bearing had significant spalling damage. This paper discusses the SARJ's unique bearing design and the vulnerability in its design leading to the observed anomaly. The design of a SARJ vacuum test rig is also described along with the results of a life test that validated the proposed repair should extend the life of the SARJ a minimum of 18 years on-orbit.

  14. Space solar power for powering a space elevator

    SciTech Connect

    Laubscher, B. E.; Kellum, M. J.

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe a Space Solar Power (SSP) system capable of powering the climbers of an SE. The initial SE will use laser power beaming from floating platforms near the SE platform. This study outlines an SSP system, based near the SE at geosynchronous altitude (GEO), which powers the climbers traversing the elevator. Such a system would reduce the SE system's dependence on fuel supply from land for its power beaming facilities. Moreover, since deploying SSP systems is anticipated to be a major use for SE's, SSP's could represent an elegant solution to the problem of SE energy consumption. SSP systems for sending usable power to Earth have been designed for well over 30 years. Technologies pertinent to SSP systems are continually evolving. This slightly different application carries the added requirements of aiming the beamed power at a moving target and sending the power in a form the climbers can use. Systems considered include beaming power to the climbers directly from a traditional SSP and reflecting sunlight onto the climbers. One of our designs includes a very new technology, optical rectennas. Mars SEs are conceived as having space-based power systems. Therefore, it is important to consider the problems that will be encountered in these types of applications.

  15. Solar Eruptions, CMEs and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from the Sun and propagate far into the interplanetary medium. CMEs represent energy output from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of solar storms.

  16. Van Allen Probes Science Gateway and Space Weather Data Processing

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2014-12-01

    The Van Allen Probes Science Gateway acts as a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the VAP Space Weather data to users. Over the past year, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes summary and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including simple time series, data plotted as a function of orbital location, and time versus L-Shell. We discuss the new Van Allen Probes Science Gateway and the Space Weather Data Pipeline.

  17. Solar Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  18. Economic Evaluation of Space Solar Power System

    NASA Astrophysics Data System (ADS)

    Matsuoka, L.

    2004-12-01

    In this paper, we evaluate the value that the solar panels will be set on the orbit from the economic standpoint and consider the necessity of the Space Solar Power System (SSPS). In order to these evaluations, we compare the SSPS with the photovoltaic power system on the ground (PVPSG). Firstly, we examined the generation cost of the PVPSG. When the PVPSG do not have some storage system and can not supply the electricity for the base-load power, the cost of generating power calculated is about 8.1 yen/kWh in the minimum cost cases, the cost of the equipments around the solar cell is the predictive values. The SSPS is expensive slightly than it of the PVPSG in this future scenario. Secondary, we suppose the case that the PVPSG have to have some storage system in order that the PVPSG need to send the electricity stably. The pumped hydropower, the lead battery and the fuel cell are assumed as the storages in this paper. In these cases, the costs of generating power become expensive over 30 yen/kWh. It is possible that the SSPS is not expensive than it with some cost reductions about the transportation cost to the earth orbit.

  19. Construction of Gallium Arsenide Solar Concentrator for Space Use.

    DTIC Science & Technology

    1988-03-01

    configurations. Both of these configurations are effective. 4. Solar Eclipse The solar eclipse has the quickest and the most pronounced effect on the output of the...SCA in the space environment. The majority of spacecraft in low earth orbit (LEO) will experience a solar eclipse . When the spacecraft goes into the... Solar eclipses also have an effect on the operating temperature of the solar cell. The lowest operating temperature of the ce/lis reached when the SCA

  20. Optimization and performance of Space Station Freedom solar cells

    NASA Technical Reports Server (NTRS)

    Khemthong, S.; Hansen, N.; Bower, M.

    1991-01-01

    High efficiency, large area and low cost solar cells are the drivers for Space Station solar array designs. The manufacturing throughput, process complexity, yield of the cells, and array manufacturing technique determine the economics of the solar array design. The cell efficiency optimization of large area (8 x 8 m), dielectric wrapthrough contact solar cells are described. The results of the optimization are reported and the solar cell performance of limited production runs is reported.

  1. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Christian, E. R.; Wiedenbeck, M. E.; McNutt, R. L.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Mewaldt, R. A.; Krimigis, SA. M.; Livi, S. A.; Mitchell, D. G.; Matthaeus, W. H.; Roelof, E. C.; Stone, E. C.; Schwardron, N. A.; vonRosenvinge, T. T.

    2011-01-01

    One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.

  2. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.

    PubMed

    Matthaeus, W H; Weygand, J M; Dasso, S

    2016-06-17

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

  3. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Weygand, J. M.; Dasso, S.

    2016-06-01

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

  4. Solar Wind Plasma and UV effects on Surfaces in Space

    NASA Astrophysics Data System (ADS)

    Horanyi, M.

    2011-12-01

    Dust plasma interactions on airless bodies in space affect both the exposed surfaces and the plasma flow around them. For example, charging, evaporation, and sputtering can shape the spatial and size distributions of small dust particles, and simultaneously alter the composition and energy distribution of the solar wind flow. Recent Ulysses observations of the temporal variability of the flux and direction of the interstellar dust flow show that the dynamics of submicron sized interplanetary and interstellar dust is determined by their charge and interactions with the large-scale structure of the heliospheric magnetic fields. Future observations by the Solar Probe Plus mission near the Sun are expected to identify pick-up ions from the evaporation and sputtering of dust and the effects of mass-loading on the solar wind. Charging of surfaces, combined with near-surface electric fields can lead to the mobilization and transport of small charged dust particles on all airless bodies in the solar system. Halley's comet showed large brightness fluctuations on very short time-scales at distances well beyond 8 AU. Surface charging due to intermittent high-speed solar wind streams have been suggested to be responsible for lofting small grains, increasing the effective surface area of the dormant nucleus. Images taken of the surface of asteroid Eros indicated the accumulation of fine dust in craters, possibly due to electrostatic dust transport. Remote sensing and in situ observations indicating dust transport on the Moon date back to the Apollo era and remain highly controversial. This presentation, motivated by existing observations, will describe a series of small-scale laboratory experiments and supporting theory to investigate dust charging, the properties of photoelectron sheaths, and the emergence of intense electric fields near boundaries of lit and dark surfaces, and regions shielded and exposed to the solar wind plasma flow. The Moon is the nearest place where

  5. Hinode ``a new solar observatory in space''

    NASA Astrophysics Data System (ADS)

    Tsuneta, S.; Harra, L. K.; Masuda, S.

    2009-05-01

    Since its launch in September 2006, the Japan-US-UK solar physics satellite, Hinode, has continued its observation of the sun, sending back solar images of unprecedented clarity every day. Hinode is equipped with three telescopes, a visible light telescope, an X-ray telescope, and an extreme ultraviolet imaging spectrometer. The Hinode optical telescope has a large primary mirror measuring 50 centimeters in diameter and is the world's largest space telescope for observing the sun and its vector magnetic fields. The impact of Hinode as an optical telescope on solar physics is comparable to that of the Hubble Space Telescope on optical astronomy. While the optical telescope observes the sun's surface, the Hinode X-ray telescope captures images of the corona and the high-temperature flares that range between several million and several tens of millions of degrees. The telescope has captured coronal structures that are clearer than ever. The Hinode EUV imaging spectrometer possesses approximately ten times the sensitivity and four times the resolution of a similar instrument on the SOHO satellite. The source of energy for the sun is in the nuclear fusion reaction that takes place at its core. Here temperature drops closer to the surface, where the temperature measures about 6,000 degrees. Mysteriously, the temperature starts rising again above the surface, and the temperature of the corona is exceptionally high, several millions of degrees. It is as if water were boiling fiercely in a kettle placed on a stove with no fire, inconceivable as it may sound. The phenomenon is referred to as the coronal heating problem, and it is one of the major astronomical mysteries. The Hinode observatory was designed to solve this mystery. It is expected that Hinode would also provide clues to unraveling why strong magnetic fields are formed and how solar flares are triggered. An overview on the initial results from Hinode is presented. Dynamic video pictures captured by Hinode can be

  6. Spacecraft-environment interaction model cross comparison applied to Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Deca, J.; Markidis, S.; Marchand, R.; Guillemant, S.; Matéo Vélez, J.; Miyake, Y.; Usui, H.; Ergun, R.; Sturner, A. P.

    2013-12-01

    Given that our society becomes increasingly dependent on space technology, it is imperative to develop a good understanding of spacecraft-plasma interactions. Two main issues are important. First, one needs to be able to design a reliable spacecraft that can survive in the harsh solar wind conditions, and second a very good knowledge of the behaviour and plasma structure around the spacecraft is required to be able to interpret and correct measurements from onboard instruments and science experiments. In this work we present the results of a cross-comparison study between five spacecraft-plasma models (EMSES, iPic3D, LASP, PTetra, SPIS) used to simulate the interaction of the Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. The purpose of this cross-comparison is to assess the consistency and validity of the different numerical approaches from the similarities and differences of their predictions under well defined conditions, with attention to the implicit PIC code iPic3D, which has never been used for spacecraft-environment interaction studies before. The physical effects considered are spacecraft charging, photoelectron and secondary electron emission, the presence of a background magnetic field and density variations. The latter of which can cause the floating potential of SPP to go from negative to positive or visa versa, depending on the solar wind conditions, and spacecraft material properties. Simulation results are presented and compared with increasing levels of complexity in the physics to evaluate the sensitivity of the model predictions to certain physical effects. The comparisons focus particularly on spacecraft floating potential, detailed contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. Model predictions obtained with our different computational approaches are found to be in good agreement

  7. Future exploration of the asteroids. [by space probes

    NASA Technical Reports Server (NTRS)

    Morrison, D.; Niehoff, J.

    1979-01-01

    Future possibilities for the further study of the asteroids are reviewed, with particular attention paid to space missions for their direct exploration. The role of traditional ground-based and earth orbiting techniques is examined briefly, and it is concluded that although astronomical techniques are presently at their peak, and despite the opportunities provided by the Infrared Astronomical satellite, the Space Telescope and Spacelab Infrared Telescope Facility, the next major step will require direct exploration by space probes to obtain information on asteroid surface chemistry, geology and bulk properties. Various mission modes and propulsion systems for a first multi-target asteroid mission are discussed, including flyby, rendezvous, landing and sample return, and ion-drive propulsion systems. Science payloads for a basic rendezvous mission are considered, and target selection for multi-asteroid flyby tours and rendezvous tours is discussed. Consideration is also given to sample return missions for the evaluation of the asteroid as potential resources.

  8. A Space Based Solar Power Satellite System

    NASA Astrophysics Data System (ADS)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  9. Deep Space Network Capabilities for Receiving Weak Probe Signals

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Johnston, Doug; Preston, Robert

    2005-01-01

    Planetary probes can encounter mission scenarios where communication is not favorable during critical maneuvers or emergencies. Launch, initial acquisition, landing, trajectory corrections, safing. Communication challenges due to sub-optimum antenna pointing or transmitted power, amplitude/frequency dynamics, etc. Prevent lock-up on signal and extraction of telemetry. Examples: loss of Mars Observer, nutation of Ulysses, Galileo antenna, Mars Pathfinder and Mars Exploration Rovers Entry, Descent, and Landing, and the Cassini Saturn Orbit Insertion. A Deep Space Network capability to handle such cases has been used successfully to receive signals to characterize the scenario. This paper will describe the capability and highlight the cases of the critical communications for the Mars rovers and Saturn Orbit Insertion and preparation radio tracking of the Huygens probe at (non-DSN) radio telescopes.

  10. Welded Titanium Case for Space-Probe Rocket Motor

    NASA Technical Reports Server (NTRS)

    Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.

    1959-01-01

    The high strength-to-weight ratio of titanium alloys suggests their use for solid-propellant rocket-motor cases for high-performance orbiting or space-probe vehicles. The paper describes the fabrication of a 6-in.-diam., 0.025-in.-wall rocket-motor from the 6A1-4V titanium alloy. The rocket-motor case, used in the fourth stage of a successful JPL-NASA lunar-probe flight, was constructed using a design previously proven satisfactory for Type 410 stainless steel. The nature and scope of the problems peculiar to the use of the titanium alloy, which effected an average weight saving of 34%, are described.

  11. Origins Space Telescope: Solar System Science

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.In the Solar System, OST will provide km/sec resolution on lines from planet, moons and comets. OST will measure molecular abundances and isotope ratios in planets and comets. OST will be able to do continuum surveys for faint moving sources such as Kuiper Belt Objects, enabling a census of smaller objects in the Kuiper Belt. If the putative Planet IX is massive enough to be self-luminous, then OST will be able to detect it out to thousands of AU from the Sun.

  12. Electroluminescence Imaging Of Space Solar Cells

    NASA Astrophysics Data System (ADS)

    Zimmermann, C. G.

    2011-10-01

    Space solar power is one of the few applications where large area III-V devices are used. Therefore there is great potential for a spatially resolved technique in the inspection, failure investigation and characterization of these devices. Mechanical defects can be identified by electroluminescence imaging unambiguously. The impact of a cell crack on the current distribution in the cell is modeled and the electroluminescence signature of a cell crack is derived. Another qualitative application is failure investigation of cells that suffer degradation, for example in environmental testing. Series resistance problems can be visualized and the location of an environmental attack can be pinpointed on a μm length scale. Finally under the appropriate simplifications, even a quantitative cell characterization can be attempted. Maps of the open circuit voltage and the current at the operating voltage identify shunts quantitatively.

  13. Solar terrestrial coupling through space plasma processes

    SciTech Connect

    Birn, J.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations.

  14. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  15. Design investigation of solar powered lasers for space applications

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Bruzzone, C.; Quimby, D.; Nelson, L.; Christiansen, W.; Neice, S.; Cassady, P.; Pindroh, A.

    1979-01-01

    The feasibility of solar powered lasers for continuous operation in space power transmission was investigated. Laser power transmission in space over distances of 10 to 100 thousand kilometers appears possible. A variety of lasers was considered, including solar-powered GDLs and EDLs, and solar-pumped lasers. An indirect solar-pumped laser was investigated which uses a solar-heated black body cavity to pump the lasant. Efficiencies in the range of 10 to 20 percent are projected for these indirect optically pumped lasers.

  16. SOSPAC- SOLAR SPACE POWER ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1994-01-01

    The Solar Space Power Analysis Code, SOSPAC, was developed to examine the solar thermal and photovoltaic power generation options available for a satellite or spacecraft in low earth orbit. SOSPAC is a preliminary systems analysis tool and enables the engineer to compare the areas, weights, and costs of several candidate electric and thermal power systems. The configurations studied include photovoltaic arrays and parabolic dish systems to produce electricity only, and in various combinations to provide both thermal and electric power. SOSPAC has been used for comparison and parametric studies of proposed power systems for the NASA Space Station. The initial requirements are projected to be about 40 kW of electrical power, and a similar amount of thermal power with temperatures above 1000 degrees Centigrade. For objects in low earth orbit, the aerodynamic drag caused by suitably large photovoltaic arrays is very substantial. Smaller parabolic dishes can provide thermal energy at a collection efficiency of about 80%, but at increased cost. SOSPAC allows an analysis of cost and performance factors of five hybrid power generating systems. Input includes electrical and thermal power requirements, sun and shade durations for the satellite, and unit weight and cost for subsystems and components. Performance equations of the five configurations are derived, and the output tabulates total weights of the power plant assemblies, area of the arrays, efficiencies, and costs. SOSPAC is written in FORTRAN IV for batch execution and has been implemented on an IBM PC computer operating under DOS with a central memory requirement of approximately 60K of 8 bit bytes. This program was developed in 1985.

  17. Solar dynamic power for space station freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on Earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  18. Solar dynamic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Secunde, Richard R.; Lovely, Ronald G.

    1989-01-01

    The Space Station Freedom Program is presently planned to consist of two phases. At the completion of Phase 1, Freedom's manned base will consist of a transverse boom with attached manned modules and 75 kW of available electric power supplied by photovoltaic (PV) power sources. In Phase 2, electric power available to the manned base will be increased to 125 kW by the addition of two solar dynamic (SD) power modules, one at each end of the transverse boom. Power for manned base growth beyond Phase 2 will be supplied by additional SD modules. Studies show that SD power for the growth eras will result in life cycle cost savings of $3 to $4 billion when compared to PV-supplied power. In the SD power modules for Space Station Freedom, an offset parabolic concentrator collects and focuses solar energy into a heat receiver. To allow full power operation over the entire orbit, the receiver includes integral thermal energy storage by means of the heat of fusion of a salt mixture. Thermal energy is removed from the receiver and converted to electrical energy by a power conversion unit (PCU) which includes a closed brayton cycle (CBC) heat engine and an alternator. The receiver/PCU/radiator combination will be completely assembled and charged with gas and cooling fluid on earth before launch to orbit. The concentrator subassemblies will be pre-aligned and stowed in the orbiter bay before launch. On orbit, the receiver/PCU/radiator assembly will be installed as a unit. The pre-aligned concentrator panels will then be latched together and the total concentrator attached to the receiver/PCU/radiator by the astronauts. After final electric connections are made and checkout is complete, the SD power module will be ready for operation.

  19. [Solar cosmic radiation and the radiation hazard of space flight].

    PubMed

    Miroshnichenko, L I

    1983-01-01

    Present-day data on the spectrum of solar radiation in the source and near the Earth are discussed as applied to the radiation safety of crewmembers and electronics onboard manned and unmanned spacecraft. It is shown that the slope of the solar radiation spectrum changes (flattens) in the low energy range. Quantitative information about absolute solar radiation fluxes near the Earth is summarized in relation to the most significant flares of 1956--1978. The time-related evolution of the solar radiation spectrum in the interplanetary space is described in quantitative terms (as illustrated by the solar flare of 28 September 1961). It is indicated that the nonmonotonic energy dependence of the transport path of solar radiation in the interplanetary space should be taken into consideration. It is demonstrated that the diffusion model of propagation can be verified using solar radiation measurements in space flights.

  20. A close-up of the sun. [solar probe mission planning conference

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Davies, R. W. (Editor)

    1978-01-01

    NASA's long-range plan for the study of solar-terrestrial relations includes a Solar Probe Mission in which a spacecraft is put into an eccentric orbit with perihelion near 4 solar radii (0.02 AU). The scientific experiments which might be done with such a mission are discussed. Topics include the distribution of mass within the Sun, solar angular momentum, the fine structure of the solar surface and corona, the acceleration of the solar wind and energetic particles, and the evolution of interplanetary dust. The mission could also contribute to high-accuracy tests of general relativity and the search for cosmic gravitational radiation.

  1. Evaluation of solar cells for potential space satellite power applications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.

  2. Orbital synthesis for deep space probes at the Institute of Space and Astronautical Science

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Junichiro

    The orbital design for the deep space probes is presented with the analysis of parking orbit and earth trajectory. The patched conic method and gravity assist are discussed in the framework of the powered swingby theory. The trajectories for the Sakegake extended mission are examined, and computer software for orbital design and the orbital control system is discussed.

  3. Extracting the Injection History of Solar Energetic Particles on Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Hill, M. E.

    2013-05-01

    Studies over the last Solar Cycle of nearly scatter-free solar energetic particle propagation during magnetically well-connected impulsive events established that the particle injection history could be extracted directly from the anisotropy histories of beam-like events (without requiring the solution of a full propagation equation). However, the limitation of observations at 1AU was that the particles back-scattered from beyond 1AU began to arrive before the maximum intensity of out-going particles, thus partially obscuring the remainder of the injection history (which usually extended well beyond the event maximum). Fortunately, as Solar Probe Plus moves inward towards its perihelion, the arrival of the back-scattered component (which still must travel inward from beyond 1 AU) will likely be delayed until well after the injection maximum, giving the ISIS/EPI-Lo & EPI-Hi instruments a much clearer diagnostic of the entire injection process. Examples of intensity histories for such events well inside 1 AU will be constructed (based on beam-like events observed at 1 AU by ACE/EPAM and SOHO/ERNE), using the functional equation directly relating the scatter-free and the back-scatter propagation (Roelof, AIP Conf. Proc., 1039, pp. 174-183, 2008).

  4. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy.

    PubMed

    Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W

    2016-07-20

    The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.

  5. Out-of-ecliptic studies of coronal holes and their relation to the solar wind. [project planning for solar probes to study solar activity

    NASA Technical Reports Server (NTRS)

    Noyes, R. W.

    1976-01-01

    The advantages of observing coronal holes of the sun above the solar ecliptic plane by a solar probe are discussed. Also discussed are the size of coronal holes, their temperature, and magnetic fields associated with the holes. The role of coronal holes in contributing to the solar wind is examined. Data and observations on coronal holes from Skylab and OSO are treated. It is concluded that an out-of-the-ecliptic solar probe mission would greatly add to the understanding of coronal holes (at high latitudes) thus adding a new perspective to the observation of these phenomena. (Photographs of the sun taken by Skylab are shown).

  6. Langmuir probe measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Asenovski, S.; Bachvarov, D.; Boneva, A.; Grushin, V.; Georgieva, K.; Klimov, S. I.

    2016-12-01

    In the current work we describe the Langmuir Probe (LP) and its operation on board the International Space Station. This instrument is a part of the scientific complex "Ostonovka". The main goal of the complex is to establish, on one hand how such big body as the International Space Station affects the ambient plasma and on the other how Space Weather factors influence the Station. The LP was designed and developed at BAS-SRTI. With this instrument we measure the thermal plasma parameters-electron temperature Te, electron and ion concentration, respectively Ne and Ni, and also the potential at the Station's surface. The instrument is positioned at around 1.5 meters from the surface of the Station, at the Russian module "Zvezda", located at the farthermost point of the Space Station, considering the velocity vector. The Multi- Purpose Laboratory (MLM) module is providing additional shielding for our instrument, from the oncoming plasma flow (with respect to the velocity vector). Measurements show that in this area, the plasma concentration is two orders of magnitude lower, in comparison with the unperturbed areas. The surface potential fluctuates between-3 and-25 volts with respect to the ambient plasma. Fast upsurges in the surface potential are detected when passing over the twilight zone and the Equatorial anomaly.

  7. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels partially extended.

  8. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels completely extended.

  9. Scattering Effects of Solar Panels on Space Station Antenna Performance

    NASA Technical Reports Server (NTRS)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  10. Observations of the White Light Corona from Solar Orbiter and Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Howard, R. A.; Thernisien, A. F.; Vourlidas, A.; Plunkett, S. P.; Korendyke, C. M.; Sheeley, N. R.; Morrill, J. S.; Socker, D. G.; Linton, M. G.; Liewer, P. C.; De Jong, E. M.; Velli, M. M.; Mikic, Z.; Bothmer, V.; Lamy, P. L.

    2011-12-01

    The SoloHI instrument on Solar Orbiter and the WISPR instrument on Solar Probe+ will make white light coronagraphic images of the corona as the two spacecraft orbit the Sun. The minimum perihelia for Solar Orbiter is about 60 Rsun and for SP+ is 9.5 Rsun. The wide field of view of the WISPR instrument (about 105 degrees radially) corresponds to viewing the corona from 2.2 Rsun to 20 Rsun. Thus the entire Thomson hemisphere is contained within the telescope's field and we need to think of the instrument as being a traditional remote sensing instrument and then transitioning to a local in-situ instrument. The local behavior derives from the fact that the maximum Thomson scattering will favor the electron plasma close to the spacecraft - exactly what the in-situ instruments will be sampling. SoloHI and WISPR will also observe scattered light from dust in the inner heliosphere, which will be an entirely new spatial regime for dust observations from a coronagraph, which we assume to arise from dust in the general neighborhood of about half way between the observer and the Sun. As the dust grains approach the Sun, they evaporate and do not contribute to the scattering. A dust free zone has been postulated to exist somewhere inside of 5 Rsun where all dust is evaporated, but this has never been observed. The radial position where the evaporation occurs will depend on the precise molecular composition of the individual grains. The orbital plane of Solar Orbiter will gradually increase up to about 35 degrees, enabling a very different view through the zodiacal dust cloud to test the models generated from in-ecliptic observations. In this paper we will explore some of the issues associated with the observation of the dust and will present a simple model to explore the sensitivity of the instrument to observe such evaporations.

  11. KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

    SciTech Connect

    Isenberg, Philip A.; Vasquez, Bernard J.

    2015-08-01

    We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating to inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.

  12. Launch Vehicle Assessment for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    A recently completed study at Georgia Tech examined various launch vehicle options for deploying a future constellation of Space Solar Power satellites of the Suntower configuration. One of the motivations of the study was to determine whether the aggressive $400/kg launch price goal established for SSP package delivery would result in an attractive economic scenario for a future RLV developer. That is, would the potential revenue and traffic to be derived from a large scale SSP project be enough of an economic "carrot" to attract an RLV company into developing a new, low cost launch vehicle to address this market. Preliminary results presented in the attached charts show that there is enough economic reward for RLV developers, specifically in the case of the latest large GEO-based Suntower constellations (over 15,500 MT per year delivery for 30 years). For that SSP model, internal rates of return for the 30 year economic scenario exceed 22%. However, up-front government assistance to the RLV developer in terms of ground facilities, operations technologies, guaranteed low-interest rate loans, and partial offsets of some vehicle development expenses is necessary to achieve these positive results. This white paper is meant to serve as a companion to the data supplied in the accompanying charts. It's purpose is to provide more detail on the vehicles and design processes used, to highlight key decisions and issues, and to emphasize key results from each phase of the Georgia Tech study.

  13. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; McGuire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2015-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  14. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  15. Solar technology assessment project. Volume 3: Active space heating and hot water supply with solar energy

    NASA Astrophysics Data System (ADS)

    Karaki, S.; Loef, G. O. G.

    1981-04-01

    Several types of solar water heaters are described and assessed. These include thermosiphon water heaters and pump circulation water heaters. Auxiliary water heating is briefly discussed, and new and retrofit systems are compared. Liquid-based space heating systems and solar air heaters are described and assessed, auxiliary space heating are discussed, and new and retrofit solar space heating systems are compared. The status of flat plate collectors, evacuated tube collectors, and thermal storage systems is examined. Systems improvements, reliability, durability and maintenance are discussed. The economic assessment of space and water heating systems includes a comparison of new systems costs with conventional fuels, and sales history and projections. The variety of participants in the solar industry and users of solar heat is discussed, and various incentives and barriers to solar heating are examined. Several policy implications are discussed, and specific government actions are recommended.

  16. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    NASA Technical Reports Server (NTRS)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  17. Goddard Space Flight Center solar array missions, requirements and directions

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward; Day, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

  18. Advantages of thin silicon solar cells for use in space

    NASA Technical Reports Server (NTRS)

    Denman, O. S.

    1978-01-01

    A system definition study on the Solar Power Satellite System showed that a thin, 50 micrometers, silicon solar cell has significant advantages. The advantages include a significantly lower performance degradation in a radiation environment and high power-to-mass ratios. The advantages of such cells for an employment in space is further investigated. Basic questions concerning the operation of solar cells are considered along with aspects of radiation induced performance degradation. The question arose in this connection how thin a silicon solar cell had to be to achieve resistance to radiation degradation and still have good initial performance. It was found that single-crystal silicon solar cells could be as thin as 50 micrometers and still develop high conversion efficiencies. It is concluded that the use of 50 micrometer silicon solar cells in space-based photovoltaic power systems would be advantageous.

  19. Preliminary space station solar array structural design study

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    1984-01-01

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  20. Cost study of solar cell space power systems

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    Historical costs for solar cell space power systems were evaluated. The study covered thirteen missions that represented a broad cross section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization reduce costs.

  1. Concept development for a space solar power station

    NASA Astrophysics Data System (ADS)

    Sysoev, V. K.; Pichkhadze, K. M.; Feldman, L. I.; Arapov, E. A.; Luzyanin, A. S.

    2012-12-01

    This paper introduces a concept for the development of a space solar power station, starting from the manufacture of a photoemissive panel to the creation of a prototype of an industrial power plant. Balloon systems play a special role both in the testing of the power plant and in the operation of prototypes of solar power stations.

  2. Space Moves: Adding Movement to Solar System Lessons

    ERIC Educational Resources Information Center

    Jenkins, Deborah Bainer; Heidorn, Brent

    2009-01-01

    Earth and space science figure prominently in the National Science Education Standards for levels 5-8 (NRC 1996). The Earth in the Solar System standard focuses on students' ability to understand (1) the composition of the solar system (Earth, Moon, Sun, planets with their moons, and smaller objects like asteroids and comets) and (2) that…

  3. The Solar-Sail Launched Interstellar Probe: Pre-Perihelion Trajectories and Application of Holography

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.

    2002-01-01

    Design of missions beyond our solar system presents many challenges. Here, we consider certain aspects of the solar-sail launched interstellar probe (ISP), a spacecraft slated for launch in the 2010 time period that is planned to reach the heliopause, at 200 Astronomical Units (AU) from the Sun after a flight of about 20-years duration. The baseline mission under consideration by NASA / JPL has a sail radius of 200 m, a science payload of 25 kg, a spacecraft areal mass thickness of about two grams per square meter and is accelerated out of the solar system at about 14 AU per year after performing a perihelion pass of about 0.25 AU. In current plans, the sail is to be dropped near Jupiter's orbit (5.2 AU from the Sun) on the outbound trajectory leg. One aspect of this study is application of a realistic model of sail thermo-optics to sail kinematics that includes diffuse / specular reflectance and sail roughness. The effects of solar-wind degradation of sail material, based on recent measurements at the NASA MSFC (Marshall Space Flight Center) Space Environment Facility were incorporated in the kinematical model. After setting initial and final conditions for the spacecraft, trajectory was optimized using the provision of variable sail aspect angle. The second phase of the study included consideration of rainbow holography as a medium for a message plaque that would be carried aboard the ISP in the spirit of the message plaques aboard Pioneer 10 /11 and Voyager 1 /2. A prototype holographic message plaque was designed and created by artist C. Bangs with the assistance of Ana Maria Nicholson and Dan Schweitzer of the Center for Holographic Arts in Long Island City, NY. The piece was framed by Simon Liu Inc. of Brooklyn, NY. Concurrent to the creation of the prototype message plaque, we explored the potential of this medium to transmit large amounts of visual information to any extraterrestrial civilization that might detect and intercept ISP. It was also necessary to

  4. Evaluation of space station solar array technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.

  5. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this video clip is an animated illustration of the Solar-B Spacecraft in earth orbit.

  6. Light as a probe of the structure of space-time

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    2016-05-01

    Light is an intrinsically relativistic probe and when used in an adequately sized array of ring lasers it is sensible to the curvature and to the chirality of space-time. On this basis the GINGER experiment is being implemented at the underground National Laboratories at Gran Sasso. The experiment, whose objective is the measurement of the terrestrial frame dragging effect or deviations from it, will be presented and discussed in its foundation. Furthermore, at a bigger scale, the possibilities given by the under way GAIA mission and the proposed AGP, will be analyzed with a special attention paied to the possibility of extracting information concerning the angular momenta of the sun and the main bodies of the solar system.

  7. RECON - A new system for probing the outer solar system with stellar occultations

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Keller, J. M.; Wasserman, L. H.

    2015-10-01

    The Research and Education Collaborative Occultation Network (RECON) is a new system for coordinated occultation observations of outer solar system objects. Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited duration of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations too small to be resolved directly. Our system takes the new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from the International Occultation Timing Association. At our minimum size, two stations will record an event while the other stations will be probing for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We have successfully completed our first TNO observation which is presented in the compainion paper by G. Rossi et al (this conference).

  8. Solar cell experiments for space: past, present and future

    NASA Astrophysics Data System (ADS)

    Hoheisel, R.; Messenger, S. R.; Lumb, M. P.; Gonzalez, M.; Bailey, C. G.; Scheiman, D. A.; Maximenko, S.; Jenkins, P. P.; Walters, R. J.

    2013-03-01

    Since the early beginnings of the space age in the 1950s, solar cells have been considered as the primary choice for long term electrical power generation of satellites and space systems. This is mainly due to their high power/mass ratio and the good scalability of solar modules according to the power requirements of a space mission. During the last decades, detailed solar cell material studies including the non-trivial interaction with high-energy space particles have led to continuous and significant improvements in device efficiency. This allowed the powering of advanced space systems like the International Space Station, rovers on the Martian surface as well as satellites which have helped to understand the universe and our planet. It is noteworthy that in addition to their success in space, these photovoltaic technologies have also broken ground for the application of photovoltaic systems in terrestrial systems. This paper discusses the development of space solar cells, gives insight into related experiments like the analysis of the interaction with space particles and provides an overview on challenges and requirements for future space missions.

  9. Probing the equinoctial hypothesis over recent solar cycles

    NASA Astrophysics Data System (ADS)

    Farrugia, C.; Miyoshi, Y.; Jordanova, V.

    2003-04-01

    According to Russell and McPherron (1973), stronger and more frequent storms are induced on a half-annual cadence due to the tilt of the Earth's dipole. We carry out a statistical investigation of this using 1-hour averaged Dst index values as a measure of the strength of geomagnetic storms over the period 1969-2001 (3 solar cycles), and energetic electron and proton fluxes measured BY NOAA/TIROS typical of the inner ring current and radiation belts, respectively for the last 2 cycles in the interval 1979-2001. We subdivide the data sets into ascending (sunpsot number > 50) and descending phases (< 50 ), and the storm strengths into two categories: peak hourly Dst < -60 nT, and hourly peak Dst < -100 nT. The variation equinox / solstice is evident in both Dst measurments and energetic particles fluxes. The number of storms falls off exponentially with storm strength both at equinox and solstice. There is practically no difference in the average storm strength at equinox/solstice. However, the storm frequency of both categories is larger at equinox. Exceptional cases like the Bastille day (July 2000) form a large-scale deviation from this pattern. The aim of this study is to understand the effects of the orientation of the Earth's dipole on geomagnetic strom dynamics and to reveal systematics which will be useful for the development of space weather predictions. C. T. Russell and R. L. MCPherron, JGR, 78, 92, 1973 Work supported in part by NASA GRANT NAG 5-10883.

  10. Probing the solar plasma with Mariner radio tracking data

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Callahan, P. S.; Zygielbaum, A. I.

    1971-01-01

    The range and Doppler radio tracking close to the sun made it possible to measure solar plasma dynamics. These were measured by means of a method known as differenced range versus integrated Doppler, which exploits the opposite change of group and phase velocity as the plasma density changes along the radio raypath. A simple solar plasma propagation model is proposed.

  11. The Solar System in the Age of Space Exploration

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2011-06-01

    We are celebrating the 50th anniversary of the launch of Sputnik, which began the space age. Though the manned exploration of the solar system has been limited to the Moon, in NASA's Apollo Program that ended over 35 years ago, robotic exploration of the solar system continues to be very successful. This paper explores the latest space mission and other observations of each planet and of each type of solar-system object, including dwarf planets, asteroids, and comets, as well as the sun.

  12. Influence of solar-probe inherent atmosphere on in-situ observations

    SciTech Connect

    Hassanein, A.; Konkashbaev, A.I.; Konkashbaev, I.K.; Nikandrov, L.B.

    1998-08-01

    The solar corona is the source of the solar wind, which is responsible for the heliosphere and plays a crucial role in solar/terrestrial phenomena. A comprehensive understanding of these phenomena can be established only by directly measuring ion and electron velocity distributions, plasma waves, and fluxes of energetic particles near the sun. The problem resulting from the inherent atmosphere of a spacecraft moving in the vicinity of the sun and the influence of this atmosphere on in-situ measurements of the solar corona plasma is key to the realization and success of any solar probe mission. To evaluate the influence of the probe-inherent atmosphere on in-situ observations, the authors have developed comprehensive radiation hydrodynamic models. The physics of plasma/probe/vapor interaction are also being developed in a self-consistent model to predict the effect of probe inherent atmosphere on in-situ measurements of corona parameters during solar flares. Interaction of the ionized atmosphere with the ambient natural plasma will create a turbulent shock wave that can affect in-situ measurements and must be taken into account in designing the spacecraft and its scientific components.

  13. The solar power satellite concept - A space program perspective

    NASA Technical Reports Server (NTRS)

    Kraft, C. C., Jr.

    1978-01-01

    The Space Shuttle will reduce the cost of transportation to space from thousands of dollars per pound to hundreds of dollars per pound. Studies of future systems indicate that these costs may be further reduced to tens of dollars per pound by using large space freighters, which would be required to build solar power satellites. It is pointed out that the Space Shuttle will provide a versatile tool in the 1980's to support the exploration of the solar power satellite concept as well as other space programs of the future. Three apparently different applications, related to materials processing in space, advanced satellite communications, and solar power satellites, have a number of common requirements. These include the need for large solar power arrays in space and/or the need to construct large systems in space. Consequently, a space program which includes development of the techniques for large power supplies and structural systems provides the basis for selecting and implementing any or all of these promising applications.

  14. Simulated space environment tests on cadmium sulfide solar cells

    NASA Technical Reports Server (NTRS)

    Clarke, D. R.; Oman, H.

    1971-01-01

    Cadmium sulfide (Cu2s - CdS) solar cells were tested under simulated space environmental conditions. Some cells were thermally cycled with illumination from a Xenon-arc solar simulator. A cycle was one hour of illumination followed immediately with one-half hour of darkness. In the light, the cells reached an equilibrium temperature of 60 C (333 K) and in the dark the cell temperature dropped to -120 C (153 K). Other cells were constantly illuminated with a Xenon-arc solar simulator. The equilibrium temperature of these cells was 55 C (328 K). The black vacuum chamber walls were cooled with liquid nitrogen to simulate a space heat sink. Chamber pressure was maintained at 0.000001 torr or less. Almost all of the solar cells tested degraded in power when exposed to a simulated space environment of either thermal cycling or constant illumination. The cells tested the longest were exposed to 10.050 thermal cycles.

  15. Recently Deployed Solar Arrays on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  16. Optical measurements pertaining to Space Station solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Holly, S.; Springer, T.; Jefferies, K. S.

    1987-01-01

    The Space Station solar dynamic power system is a hybrid of solar photovoltaic and solar dynamic systems, the latter of which uses a parabolic reflector to collect solar energy. This paper describes analytical results of an off-axis solar illumination on the intensity distribution in arbitrary target planes perpendicular to the axis of a parabolic reflector. Such computational capability would make it possible to predict optical intensity distributions resulting from off-axis angles of incident radiation on such target planes. To validate the computer code, experimental optical measurements were performed on the multifaceted paraboloidal collecor at the Solar Dynamic Test Facility at Rockedyne's Santa Susana Field Laboratory. The experimental data compared reasonably well with the calculated values.

  17. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell.

    PubMed

    Bergmann, Victor W; Weber, Stefan A L; Javier Ramos, F; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Li, Dan; Domanski, Anna L; Lieberwirth, Ingo; Ahmad, Shahzada; Berger, Rüdiger

    2014-09-22

    Perovskite-sensitized solar cells have reached power conversion efficiencies comparable to commercially available solar cells used for example in solar farms. In contrast to silicon solar cells, perovskite-sensitized solar cells can be made by solution processes from inexpensive materials. The power conversion efficiency of these cells depends substantially on the charge transfer at interfaces. Here we use Kelvin probe force microscopy to study the real-space cross-sectional distribution of the internal potential within high efficiency mesoscopic methylammonium lead tri-iodide solar cells. We show that the electric field is homogeneous through these devices, similar to that of a p-i-n type junction. On illumination under short-circuit conditions, holes accumulate in front of the hole-transport layer as a consequence of unbalanced charge transport in the device. After light illumination, we find that trapped charges remain inside the active device layers. Removing these traps and the unbalanced charge injection could enable further improvements in performance of perovskite-sensitized solar cells.

  18. Silicon space solar cells: progression and radiation-resistance analysis

    NASA Astrophysics Data System (ADS)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  19. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  20. Space-Based Solar Power System Architecture

    DTIC Science & Technology

    2012-12-01

    ULA) and Space Exploration Technologies Corporation ( SpaceX ), five launch vehicles capable of sending large payloads to both LEO and GEO were selected...within the right order of magnitude. The NSSO examined the launch vehicle market as it existed in 2007, before the emergence of SpaceX and the Falcon 9...introduction of SpaceX and the Falcon 9 Heavy into the market. It does not appear as though SpaceX has made enough of a cost savings to turn this endeavor

  1. Geoengineering Vision-Application for Space Solar Power

    NASA Astrophysics Data System (ADS)

    Eastlund, B. J.; Jenkins, L. M.

    2004-12-01

    The continued extreme use of fossil fuels to meet world energy needs is putting the Earth at risk for significant climate change. In an uncontrolled experiment, the buildup of carbon dioxide and other greenhouse gases is apparently affecting the Earth's climate. The global climate is warming and severe storms such as hurricanes and tornadoes are getting worse. Alternatives to fossil fuels may reduce the addition of carbon dioxide to the atmosphere. Space Solar Power, from orbiting satellites, provides an option for clean, renewable energy that will reduce the pressure on the Earth's environmental system. Uncertainty in the cost of commercial power from space has been the principal issue inhibiting investment support by the power companies. Geoengineering is defined as the use of technology to interact with the global environment. A Solar Power Satellite represents a capability for considering geoengineering concepts. The Thunderstorm Solar Power Satellite (TSPS) is a concept for interacting with thunderstorms to prevent formation of tornadoes. Before weather modification can be safely attempted, the fine structure of thunderstorms must be computer simulated and related to tornadogenesis. TSPS benefits are saving lives and reducing property. These benefits are not as sensitive to the system economics as the commercial solar power satellite and can be used to justify government investment in space solar power. The TSPS can develop and demonstrate the technology and operations critical to understanding the cost of space solar power. Consequently, there is no direct competition with fossil fuel based power supplies until SSP technology and operations have been demonstrated.

  2. Solar dynamic power system development for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.

  3. Space Station Freedom solar array panels plasma interaction test facility

    NASA Technical Reports Server (NTRS)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  4. Space Environmental Effects on Candidate Solar Sail Materials

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  5. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  6. Comparative values of advanced space solar cells

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1982-01-01

    A methodology for deriving a first order dollar value estimate for advanced solar cells which consists of defining scenarios for solar array production and launch to orbit and the associated costs for typical spacecraft, determining that portion affected by cell design and performance and determining the attributable cost differences is presented. Break even values are calculated for a variety of cells; confirming that efficiency and related effects of radiation resistance and temperature coefficient are major factors; array tare mass, packaging and packing factor are important; but cell mass is of lesser significance. Associated dollar values provide a means of comparison.

  7. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  8. Space Weather and the Ground-Level Solar Proton Events of the 23rd Solar Cycle

    NASA Astrophysics Data System (ADS)

    Shea, M. A.; Smart, D. F.

    2012-10-01

    Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth's surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.

  9. Probing the solar corona with very long baseline interferometry

    PubMed Central

    Soja, B.; Heinkelmann, R.; Schuh, H.

    2014-01-01

    Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun’s corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial–temporal samplings over a complete solar cycle. PMID:24946791

  10. Probing the solar corona with very long baseline interferometry.

    PubMed

    Soja, B; Heinkelmann, R; Schuh, H

    2014-06-20

    Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun's corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial-temporal samplings over a complete solar cycle.

  11. Research on solar energy utilization in space

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshihiro; Ogiwara, Sachio; Eguchi, Kunihisa

    The solar concentrator should be used for many engineering missions, and will be mounted on a pointing mechanism nominated as a common utility facility on the Japanese Experiment Module (JEM). The concentrator has an off-set reflector of 2.5 m in diameter, consisting of spherical surface mirror segments which are arranged to approximate a parabolic surface. The use of spherical mirrors can largely reduce the manufacturing cost of the reflector as compared with fabrication of concentration performance because of spherical aberration. One of the most important interfaces between the concentrator and its user apparatus is the concentrated energy flux distribution. An analysis on the distribution is made for the reflector of a 2.5 m focal length by assuming ideal spherical surface segments. The maximum energy flux and the size of the solar image at the focal plane depend on the number and size of the used segments. The analysis shows that the reflector segmented with mirrors of 50 cm in diameter yields a solar image of about 8 cm in diameter and the maximum concentration of 7,000 for a reflectivity of 0.9. Use of 30 cm diameter segments improves the solar concentration performance by about 20%, although the number of mirrors increases from 31 to 85.

  12. Magnetically Insulated Baffled Probe Measurement of Unfiltered Fluctuating Space Potential in the Texas Helimak

    NASA Astrophysics Data System (ADS)

    Koepke, M. E.; Nogami, S. H.; Demidov, V. I.; Williams, C. B.; Gentle, K.

    2016-10-01

    Success is reported in employing magnetically insulated baffled (MIB) probes for the measurement of fluctuating space potential in the Texas Helimak. The combination of the MIB probe and an unbaffled probe provides the necessary ingredients for determining cross-field transport without contamination between fluctuating space potential and electron temperature. The performance of the MIB probe is quantified by its ability to produce a probe characteristic with partially reduced magnitude of electron saturation current. The baffled probe employed in the 2016 experiments performed optimally (i.e., the magnitude of the electron saturation current is equal to the magnitude of the ion saturation current), meaning there is no difference between the probe floating potential and the space potential. The performance of the baffled probe is compared to the performance of the plug probe, tested in 2015 on the Texas Helimak. Recent radial scans at the plasma edge of unfiltered fluctuating space potential are presented. Travel support from a Big XII Faculty Fellowship is gratefully acknowledged. Collaboration in probe construction with and experimental assistance by K. Carter are gratefully acknowledged.

  13. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980s

    NASA Astrophysics Data System (ADS)

    Launius, Roger D.

    2014-03-01

    The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.

  14. Space Station Freedom solar array containment box mechanisms

    NASA Astrophysics Data System (ADS)

    Johnson, Mark E.; Haugen, Bert; Anderson, Grant

    1994-05-01

    Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.

  15. Space Station Freedom solar array containment box mechanisms

    NASA Technical Reports Server (NTRS)

    Johnson, Mark E.; Haugen, Bert; Anderson, Grant

    1994-01-01

    Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.

  16. Illumination from space with orbiting solar-reflector spacecraft

    NASA Technical Reports Server (NTRS)

    Canady, J. E., Jr.; Allen, J. L., Jr.

    1982-01-01

    The feasibility of using orbiting mirrors to reflect sunlight to Earth for several illumination applications is studied. A constellation of sixteen 1 km solar reflector spacecraft in geosynchronous orbit can illuminate a region 333 km in diameter to 8 lux, which is brighter than most existing expressway lighting systems. This constellation can serve one region all night long or can provide illumination during mornings and evenings to five regions across the United States. Preliminary cost estimates indicate such an endeavor is economically feasible. The studies also explain how two solar reflectors can illuminate the in-orbit nighttime operations of Space Shuttle. An unfurlable, 1 km diameter solar reflector spacecraft design concept was derived. This spacecraft can be packaged in the Space, Shuttle, transported to low Earth orbit, unfurled, and solar sailed to operational orbits up to geosynchronous. The necessary technical studies and improvements in technology are described, and potential environmental concerns are discussed.

  17. Langmuir Probes for Obstanovka Experiment Aboard the Russian Segment of the International Space Station

    DTIC Science & Technology

    2010-08-04

    charged due to the operation of so many instruments, solar batteries, life supporting devices, etc. The present grant is for the elaboration and tests of...sensors (in RKK “ Energia ” – Moscow)  Updating of the technological instruments - a new power supply block (PSB) was elaborated, which made it possible to...depending on space weather, Year of Astronomy: Solar and Solar - Terrestrial Physics 2009, Proceedings of the All-Russian Yearly Conference on Solar

  18. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    DTIC Science & Technology

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  19. Ion implanted junctions for silicon space solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Sanfacon, M. M.; Wolfson, R. G.

    1983-01-01

    This paper reviews the application of ion implantation to emitter and back surface field formation in silicon space solar cells. Experiments based on 2 ohm-cm boron-doped silicon are presented. It is shown that the implantation process is particularly compatible with formation of a high-quality back surface reflector. Large area solar cells with AM0 efficiency greater than 14 percent are reported.

  20. An advanced concentrator for solar dynamic power systems in space

    NASA Technical Reports Server (NTRS)

    Beninga, Kelly; Davenport, Roger

    1989-01-01

    Solar concentrators based on rigidized stretched-membrane technology, which have been shown to be a possible alternative to rigid segmented concentrators for solar dynamic power applications in space, are discussed. Membrane concentrators offer an advantage in weight, efficiency of structure use, deployability, and cost. Predeployment packaging and subsequent deployment of a prototype membrane concentrator has been demonstrated. Attractive membrane fabrication techniques have been identified and demonstrated. The concept is described, and materials selection and membrane fabrication are examined.

  1. Space Station Freedom Solar Array tension mechanism development

    NASA Technical Reports Server (NTRS)

    Allmon, Curtis; Haugen, Bert

    1994-01-01

    A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.

  2. Lunar regolith as a probe of solar history --Abstract only

    NASA Astrophysics Data System (ADS)

    Kerridge, J. F.

    1994-06-01

    Several long-term variations in elements of apparently solar origin, implanted in lunar regolith over roughly 4Gyr, have been inferred from analysis of Apollo samples. These include: (1) A decrease by a factor of a few, in the overall solar-wind flux; (2) An approximately 40% increase in the ratio N-15/N-14; (3) A decrease of about 50% in the proportions of Xe and He relative to other noble gases; (4) A roughly 20% increase in the ratio He-3/He-4; (5) An increase of about 3% in the ratio Ne-20/Ne-22. The actual time dependence of these changes is presently uncertain; for N the variation is apparently a complex function of time. In addition, systematic isotopic differences, of about 20% /amu apparently as a function of implantation energy, have been observed for solar-derived N and Ne. Further study employing both improved lunar surface and/or spacecraft experiments and specifically selected samples from future lunar missions is needed to elucidate the solar physics responsible for these phenomena, none of which are currently well understood.

  3. Characterization of production GaAs solar cells for space

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1988-01-01

    The electrical performance of GaAs solar cells was characterized as a function of irradiation with protons and electrons with the underlying goal of producing solar cells suitable for use in space. Proton energies used varied between 50 keV and 10 MeV, and damage coefficients were derived for liquid phase epitaxy GaAs solar cells. Electron energies varied between 0.7 and 2.4 MeV. Cells from recent production runs were characterized as a function of electron and proton irradiation. These same cells were also characterized as a function of solar intensity and operating temperature, both before and after the electron irradiations. The long term stability of GaAs cells during photon exposure was examined. Some cells were found to degrade with photon exposure and some did not. Calibration standards were made for GaAs/Ge solar cells by flight on a high altitude balloon.

  4. Analysis of Direct Solar Illumination on the Backside of Space Station Solar Cells

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Kerslake, Thomas W.; Scheiman, David A.

    1999-01-01

    The International Space Station (ISS) is a complex spacecraft that will take several years to assemble in orbit. During many of the assembly and maintenance procedures, the space station's large solar arrays must he locked, which can significantly reduce power generation. To date, power generation analyses have not included power generation from the backside of the solar cells in a desire to produce a conservative analysis. This paper describes the testing of ISS solar cell backside power generation, analytical modeling and analysis results on an ISS assembly mission.

  5. A Deep Space Multi-Hop Power Grid Infrastructure Using Space Solar Power Satellites

    NASA Astrophysics Data System (ADS)

    Bergsrud, C. M.; Straub, J.

    2014-06-01

    A system utilizing multiple space solar power satellites to support a tortile-style orbit highway from the Earth to the Moon and/or Mars is presented. This reduces spacecraft mass and volume via removing large solar panels lowering mission costs.

  6. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  7. Cost study of solar cell space power systems.

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    A study of historical costs for solar cell space power systems was made by a NASA ad hoc study group. The study covered thirteen missions that represented a broad cross-section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization would reduce costs.

  8. Investigation of small solar system objects with the space telescope

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1979-01-01

    The application of the space telescope (ST) to study small objects in the solar system in order to understand the birth and the early evolution of the solar system is discussed. The upper size limit of the small bodies is defined as approximately 5000 km and includes planetary satellites, planetary rings, asteroids, and comets.The use of the astronomical instruments aboard the ST, such as the faint object camera, ultraviolet and infrared spectrometers, and spectrophotometers, to study the small solar system objects is discussed.

  9. The James Webb Space Telescope: Solar System Science

    NASA Astrophysics Data System (ADS)

    Hines, Dean C.; Hammel, H. B.; Lunine, J. I.; Milam, S. N.; Kalirai, J. S.; Sonneborn, G.

    2013-01-01

    The James Webb Space Telescope (JWST) is poised to revolutionize many areas of astrophysical research including Solar System Science. Scheduled for launch in 2018, JWST is ~100 times more powerful than the Hubble and Spitzer observatories. It has greater sensitivity, higher spatial resolution in the infrared, and significantly higher spectral resolution in the mid infrared. Imaging and spectroscopy (both long-slit and integral-field) will be available across the entire 0.6 - 28.5 micron wavelength range. Herein, we discuss the capabilities of the four science instruments with a focus on Solar System Science, including instrument modes that enable observations over the huge range of brightness presented by objects within the Solar System. The telescope is being built by Northrop Grumman Aerospace Systems for NASA, ESA, and CSA. JWST development is led by NASA's Goddard Space Flight Center. The Space Telescope Science Institute (STScI) is the Science and Operations Center (S&OC) for JWST.

  10. Early Results from Solar Dynamic Space Power System Testing

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1996-01-01

    A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.

  11. Basic Questions About the Solar System: The Need for Probes

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2005-01-01

    Probes are an essential element in the scientific study of planets with atmospheres. In-situ measurements provide the most accurate determination of composition, winds, temperatures, clouds, and radiative fluxes. They address fundamental NASA objectives concerning volatile compounds, climate, and the origin of life. Probes also deliver landers and aerobots that help in the study of planetary surfaces. This talk focuses on Venus, Titan, and the giant planets. I review the basic science questions and discuss the recommended missions. I stress the need for a balanced program that includes an array of missions that increase in size by factors of two. Gaps in this array lead to failures and cancellations that are harmful to the program and to scientific exploration.

  12. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1991-01-01

    Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  13. Multi-height spectroscopy for probing the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Wiśniewska, A.; Roth, M.; Staiger, J.

    We present preliminary results from multi-height observations, taken with the HELLRIDE (HELioseismic Large Region Interferometric DEvice) instrument at the VTT (Vacuum Tower Telescope) in Izaña, Tenerife. The goal of this work is to study solar oscillations at different atmospheric heights. The data was obtained in May 2014 for 10 different wavelengths with high spatial, spectral and temporal resolution. In this paper we discuss the results from quiet sun measurements. The region was selected in such a way to be near to the disk center. Using spectral and cross-spectral analysis methods we derive phase differences of waves propagating between the atmospheric layers. The formation heights of the photospheric spectral lines were calculated by τ^c_{5000} = 1 in agreement with an LTE approximation and chromospheric lines with an NLTE method, respectively. We find that the acoustic cut-off frequency is a function of height in the solar atmosphere.

  14. Probing the Fundamental Physics of the Solar Corona with Lunar Solar Occultation Observations

    NASA Astrophysics Data System (ADS)

    Habbal, S. Rifai; Morgan, H.; Druckmüller, M.; Ding, A.; Cooper, J. F.; Daw, A.; Sittler, E. C.

    2013-07-01

    Imaging and spectroscopy of the solar corona, coupled with polarimetry, are the only tools available at present to capture signatures of physical processes responsible for coronal heating and solar wind acceleration within the first few solar radii above the solar limb. With the recent advent of improved detector technology and image processing techniques, broad-band white light and narrow-band multi-wavelength observations of coronal forbidden lines, made during total solar eclipses, have started to yield new views about the thermodynamic and magnetic properties of coronal structures. This paper outlines these unique capabilities, which until present, have been feasible primarily with observations during natural total solar eclipses. This work also draws attention to the exciting possibility of greatly increasing the frequency and duration of solar eclipse observations with Moon orbiting observatories utilizing lunar limb occultation of the solar disk for coronal measurements.

  15. Integration between solar and space science data for space weather forecast using web services

    NASA Astrophysics Data System (ADS)

    Kato, S.

    2007-08-01

    As the technology develops, the opportunity that the human beings behave in space, and it is still understood that the solar activities (especially the solar flare) influence the airlines communication, the ship communication and the power generator of the electric power company, etc. Forecasting the effects of the solar activities is becoming very important because there is such a background. Our goal is that constructs the detailed model from the Sun to the magnetosphere of the earth and simulates the solar activities and the effects. We try to integrate the existing observational data including the ground observational data and satellite observational data using by web service technology as a base to construct the model. We introduce our activity to combine the solar and space science data in Japan. Methods Generally, it is difficult to develop the virtual common database, but web service makes interconnection among different databases comparatively easy. We try to connect some databases in the portal site. Each different data objects is aggregated to a common data object. We can develop more complex services. We use RELAX NG in order to develop these applications easily. We begin the trial of the interconnection among the solar and space science data in Japan. In the case of solar observational data, we find the activity such as VO, for example, VSO and EGSO, but space science data seems to be very complex. In addition to this, there is time lag that solar activity has an effect on the magnetosphere of the Earth. We discuss these characteristic in the data analysis between the solar and space data. This work was supported by the Grant-in-Aid for Creative Scientific Research `The Basic Study of Space Weather Prediction' (17GS0208) from the Ministry of Education, Science, Sports, Technology, and Culture of Japan

  16. Application of high stability oscillators to radio science experiments using deep space probes

    NASA Technical Reports Server (NTRS)

    Kursinski, Emil R.

    1990-01-01

    The microwave telecommunication links between the earth and deep space probes have long been used to conduct radio science experiments which take advantage of the phase coherency and stability of these links. These experiments measure changes in the phase delay of the signals to infer electrical, magnetic and gravitational properties of the solar system environment and beyond through which the spacecraft and radio signals pass. The precision oscillators, from which the phase of the microwave signals are derived, play a key role in the stability of these links and therefore the sensitivity of these measurements. These experiments have become a driving force behind recent and future improvements in the Deep Space Network and spacecraft oscillators and frequency and time distribution systems. Three such experiments which are key to these improvements are briefly discussed and relationship between their sensitivity and the signal phase stability is described. The first is the remote sensing of planetary atmospheres by occultation in which the radio signal passes through the atmosphere and is refracted causing the signal pathlength to change from which the pressure and the temperature of the atmosphere can be derived. The second experiment is determination of the opacity of planetary rings by passage of the radio signals through the rings. The third experiment is the research for very low frequency gravitational radiation. The fractional frequency variation of the signal is comparable to the spatial strain amplitude the system is capable of detecting. A summary of past results and future possibilities for these experiments are presented.

  17. Space Weathering on Icy Satellites in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  18. Deep Space Network capabilities for receiving weak probe signals

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Johnston, Doug; Preston, Robert

    2004-01-01

    This paper will describe the capability and highlight the cases of the critical communications for the Mars rovers and Saturn Orbit Insertion and preparation radio tracking of the Huygens probe at (non-DSN) radio telescopes.

  19. Space Weathering in the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.

    2010-01-01

    "Space weathering" is the term given to the cumulative effects incurred by surfaces which are exposed to the harsh environment of space. Lunar sample studies over the last decade or so have produced a clear picture of space weathering processes in the lunar environment. By combining laboratory and remote spectra with microanalytical methods (scanning and transmission electron microscopy), we have begun to unravel the various processes (irradiation, micrometeorite bombardment, etc) that contribute to space weathering and the physical and optical consequences of those processes on the Moon. Using the understanding gleaned from lunar samples, it is possible to extrapolate weathering processes to other airless bodies from which we have not yet returned samples (i.e. Mercury, asteroids). Through experiments which simulate various components of weathering, the expected differences in environment (impact rate, distance from Sun, presence of a magnetic field, reduced or enhanced gravity, etc) and composition (particularly iron content) can be explored to understand how space weathering will manifest on a given body.

  20. Development of a model of space station solar array

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.

    1990-01-01

    Space structures, such as the space station solar arrays, must be extremely lightweight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a control system. The tension preload in the blanket of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomena known as grounding, or false stiffening, of the stiffness matrix occurs during rigid body rotation. The grounding phenomena is examined in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. Various techniques are used for developing new stiffness matrices from the rigorous solutions of the differential equations, including the solution of the directed force problem. A new directed force stiffness matrix developed by the author provides all the rigid body capabilities for the beam in space.

  1. Overview of Solar Seismology: Oscillations as Probes of Internal Structure and Dynamics in the Sun

    NASA Technical Reports Server (NTRS)

    Toomre, J.

    1984-01-01

    The physical nature of solar oscillations is reviewed. The nomenclature of the subject and the techniques used to interpret the oscillations are discussed. Many of the acoustic and gravity waves that can be observed in the atmosphere of the Sun are actually resonant or standing modes of the interior; precise measurements of the frequencies of such modes allow deductions of the internal structure and dynamics of this star. The scientific objectives of such studies of solar seismic disturbances, or of solar seismology, are outlined. The reasons why it would be very beneficial to carry out further observations of solar oscillations both from ground based networks and from space will be discussed.

  2. Economics of geothermal, solar, and conventional space heating

    SciTech Connect

    Fassbender, L.L.; Bloomster, C.H.; Price, B.A.

    1980-01-01

    The competitive outlook for geothermal and solar heating changed dramatically during the past year. With the recent sharp price increases in imported oil and natural gas and the planned decontrol of domestic prices, geothermal and solar energy will become competitive for space heating throughout most of the country. Under these new conditions, geothermal energy could competitively provide about 40% of the national demand for space heat and domestic hot water (about 7 quads based on 1980 demands). Nearly all of the geothermal energy demand would be in high-population-density areas. Solar energy could competitively provide about 50% (about 9 quads) of the annual demand. Most of the solar energy demand would be concentrated in suburban and rural areas. Conventional energy should remain competitive for about 30% (about 5 quads) of the annual demand. Conventional energy demand would be concentrated in the South and as supplemental energy for solar/conventional systems. Geothermal, solar, and conventional energy would be equally competitive for about 20% of the annual demand, which is why the individual market shares add to 120%.

  3. Probing Solar Eruption by Tracking Magnetic Cavities and Filaments

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Johnson, J. R.; Moore, R. L.; Gibson, S. E.

    2015-12-01

    A solar eruption is a tremendous explosion on the Sun that happens when energy stored in twisted (or distorted) magnetic fields is suddenly released. When this field is viewed along the axis of the twist in projection at the limb, e.g. in EUV or white-light coronal images, the outer portions of the pre-eruption magnetic structure sometimes appears as a region of weaker emission, called a "coronal cavity," surrounded by a brighter envelope. Often a chromospheric filament resides near the base of the cavity and parallel to the cavity's central axis. Typically, both the cavity and filament move outward from the Sun at the start of an eruption of the magnetic field in which the cavity and filament reside. Studying properties the cavities and filaments just prior to and during eruption can help constrain models that attempt to explain why and how the eruptions occur. In this study, we examined six different at-limb solar eruptions using images from the Extreme Ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). For four of these eruptions we observed both cavities and filaments, while for the remaining two eruptions, one had only a cavity and the other only a filament visible in EIT images. All six eruptions were in comparatively-quiet solar regions, with one in the neighborhood of the polar crown. We measured the height and velocities of the cavities and filaments just prior to and during the start of their fast-eruption onsets. Our results support that the filament and cavity are integral parts of a single large-scale erupting magnetic-field system. We examined whether the eruption-onset heights were correlated with the expected magnetic field strengths of the eruption-source regions, but no clear correlation was found. We discuss possible reasons for this lack of correlation, and we also discuss future research directions. The research performed was supported by the National Science Foundation under Grant No. AGS-1460767; J

  4. Simulated Space Environment Effects on a Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  5. New space value of the solar oblateness obtained with PICARD

    SciTech Connect

    Irbah, Abdanour; Meftah, Mustapha; Hauchecorne, Alain; Bocquier, Maxime; Cisse, E. Momar; Djafer, Djelloul; Corbard, Thierry

    2014-04-20

    The PICARD spacecraft was launched on 2010 June 15 with the scientific objective of studying the geometry of the Sun. It is difficult to measure solar oblateness because images are affected by optical distortion. Rolling the satellite, as done in previous space missions, determines the contribution of the telescope by assuming that the geometry of the Sun is constant during the observations. The optical response of the telescope is considered to be time-invariant during the roll operations. This is not the case for PICARD because an orbital signature is clearly observed in the solar radius computed from its images. We take this effect into account and provide the new space value of solar oblateness from PICARD images recorded in the solar continuum at 535.7 nm on 2011 July 4-5. The equator-pole radius difference is 8.4 ± 0.5 mas, which corresponds to an absolute radius difference of 6.1 km. This coincides with the mean value of all solar oblateness measurements obtained during the last two decades from the ground, balloons, and space. It is also consistent with values determined from models using helioseismology data.

  6. Solar EUV measurements at Venus based on photoelectron emission from the Pioneer Venus Langmuir Probe

    SciTech Connect

    Brace, L.H.; Hoegy, W.R.; Theis, R.F. )

    1988-07-01

    The photoelectron current from the Pioneer Venus Langmuir probe has provided measurements of the solar extreme ultraviolet flux at Venus since 1979. This current is the product of the photoelectric yield of the collector and the solar spectrum at wavelengths short enough to cause emission. Calculations show that approximately 51% of the emission is due to Lyman {alpha} (1,216 {angstrom}), 46% is produced by wavelengths between 550 and 1,100 {angstrom}, and less than 3% is due to wavelengths longer than Lyman {alpha}. Thus, the Langmuir probe provides a direct measure of the total solar EUV flux, including most of the wavelengths that produce the Venus ionosphere and heat and excite neutrals in the thermosphere. The measurement technique is described, and the daily average measurements of photocurrent obtained between 1979 and 1987 are presented. The photocurrents exhibit variations related to the solar cycle and solar rotation, as well as a major 7.2-month periodicity. The authors present three indices of EUV based on the measurements: (1) the photoemission current itself, (2) the total EUV flux, and (3) an F{sub 10.7}-like solar index. These are compared with related measurements made simultaneously at Earth. These data may also help solar physicists track the intensity of EUV emission regions on the Sun while they are not visible from the Earth. The EUV flux profile of a solar flare event is also illustrated. In the future the method also could be applied on a comet mission to obtain the incident solar EUV flux, to measure the EUV extinction profiles of the cometary atmosphere, and to sample directly the dust and gas environment of the comet through the ionization the dust and gas produce when they impact the collector.

  7. Probing Critical Surfaces in Momentum Space Using Real-Space Entanglement Entropy: Bose versus Fermi

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Lai, Hsin-Hua

    A co-dimension one critical surface in the momentum space can be either a familiar Fermi surface, which separates occupied states from empty ones in the non-interacting fermion case, or a novel Bose surface, where gapless bosonic excitations are anchored. Their presence gives rise to logarithmic violation of entanglement entropy area law. When they are convex, we show that the shape of these critical surfaces can be determined by inspecting the leading logarithmic term of real space entanglement entropy. The fundamental difference between a Fermi surface and a Bose surface is revealed by the fact that the logarithmic terms in entanglement entropies differ by a factor of two: SlogBose = 2SlogFermi , even when they have identical geometry. Our method has remarkable similarity with determining Fermi surface shape using quantum oscillation. We also discuss possible probes of concave critical surfaces in momentum space. HHL and KY acknowledge the National Science Foundation through Grants No. DMR-1004545, DMR-1157490, No. DMR-1442366, and State of Florida. HHL is also partially supported by NSF Grant No. DMR-1309531, and the Smalley Postdoctoral Fellowship in Quantum Ma.

  8. A Study of Defense Applications of Space Solar Power

    NASA Astrophysics Data System (ADS)

    Jaffe, Paul

    2010-01-01

    Space solar power (SSP) is generally considered to be the collection in space of energy from the sun and its wireless transmission from space for use on earth. It has been observed that the implementation of such a system could offer energy security, environmental, and technological advantages to those who would undertake its development. A study conducted by the Naval Research Laboratory (NRL) sought to determine if unique, cost effective, and efficient approaches exist for supplying significant power on demand for Navy, Marine Corps, or other Department of Defense applications by employing a space-based solar power system. The study was initiated by and prepared for top NRL management in part as a result of the publication of the National Security Space Office's (NSSO) report "Space-Based Solar Power as an Opportunity for Strategic Security." The NSSO report's recommendations included statements calling for the U.S. Government to conduct analyses, retire technical risk, and become an early demonstrator for SBSP. It should be noted that the principal objective of the NRL study differed significantly from that of the multitude of previous studies performed in reference to SBSP in that it focused on defense rather than utility grid applications.

  9. Where no dust instrument has gone before: Dust science with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Rodmann, Jens; Bothmer, Volker; Thernisien, Arnaud

    2015-04-01

    Solar Probe Plus will be a ground-breaking mission to explore the innermost regions of the solar system. By flying down to less than 10 solar radii (~0.05 AU), the mission will greatly enhance our knowledge of the Near-Sun dust environment. This region is governed by a poorly understood interplay of dust delivery by sungrazing comets and radiation forces, the destruction of dust by sublimation, and interactions of dust particles with the ambient coronal plasma. We will focus on two Solar Probe Plus instruments relevant for dust: (1) the Wide-field Imager for SolarPRobe (WISPR), a white-light heliospheric imager dedicated to study the solar wind, coronal mass ejections, and dust-plasma interactions; (2) the FIELDS Experiment aimed at electric and magnetic field measurements in the solar wind, that can also detect telltale voltage signatures of dust-particle impacts on the spacecraft. We will highlight recent simulations of the scattered-light emission from dust particles (F-corona) in order to assess the capabilities of the WISPR instrument to image the dust-free zone around the Sun. We will test whether dust density enhancements as predicted by dynamical simulations can be identified and resolved. Furthermore, we will discuss whether WISPR imagery will allow us to separate composition-dependent sublimation fronts, e.g. for silicates or carbonaceous dust. For FIELDS, we will present predictions for count rates and impact velocities of micron-sized dust particle hits expected over the 7-year mission.

  10. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  11. Solar System Observations with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  12. Solar Seismology from Space. a Conference at Snowmass, Colorado

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Harvey, J.; Rhodes, E. J., Jr.; Toomre, J.

    1984-01-01

    The quality of the ground based observing environment suffers from several degrading factors: diurnal interruptions and thermal variations, atmospheric seeing and transparency fluctuations and adverse weather interruptions are among the chief difficulties. The limited fraction of the solar surface observable from only one vantage point is also a potential limitation to the quality of the data available without going to space. Primary conference goals were to discuss in depth the scientific return from current observations and analyses of solar oscillations, to discuss the instrumental and site requirements for realizing the full potential of the seismic analysis method, and to help bring new workers into the field by collecting and summarizing the key background theory. At the conclusion of the conference there was a clear consensus that ground based observation would not be able to provide data of the quality required to permit a substantial analysis of the solar convection zone dynamics or to permit a full deduction of the solar interior structure.

  13. Relativistic solar proton events before the space era

    NASA Astrophysics Data System (ADS)

    Shea, Margaret

    In the study of large solar proton events that have occurred in the last two solar cycles (cycles 22 and 23), the events before the space era (1942-1965) are often forgotten. The first four events were identified by the Forbush ionization chambers that responded to particles above approximately 4 GV. The event in July 1946 associated with solar activity near the central meridian of the sun has not been equaled. The event on 23 February 1956, with its 4500% increase recorded by the Leeds neutron monitor, represents the highest 15-minute increase in cosmic radiation since that time. The >30 MeV fluence of the November 12-15, 1960 events has been estimated to be higher than the Bastille Day event in July 2000. We present a review and little known facts associated with these early ground-level events and compare some of these events with those of the more recent solar cycles.

  14. Solar Space and Water Heating for School -- Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  15. Advanced Thin Film Solar Arrays for Space: The Terrestrial Legacy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Hepp, Aloysius; Raffaelle, Ryne; Flood, Dennis

    2001-01-01

    As in the case for single crystal solar cells, the first serious thin film solar cells were developed for space applications with the promise of better power to weight ratios and lower cost. Future science, military, and commercial space missions are incredibly diverse. Military and commercial missions encompass both hundreds of kilowatt arrays to tens of watt arrays in various earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near sun missions and planetary exploration including orbiters, landers, and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. High power missions are particularly attractive for thin film utilization. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the Moon or Mars, space based lasers or radar, or large Earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or potentially beaming power to the Earth itself. This paper will discuss the current state of the art of thin film solar cells and the synergy with terrestrial thin film photovoltaic evolution. It will also address some of the technology development issues required to make thin film photovoltaics a viable choice for future space power systems.

  16. Solar Heated Space Systems. A Unit of Instruction.

    ERIC Educational Resources Information Center

    Hutchinson, John; Weber, Robert D.

    Designed for use in vocational education programs, this unit on solar space heating contains information and suggestions for teaching at the secondary school level. It focuses on heating, ventilating, and air conditioning programs. Educational objectives and educational objectives with instructional strategies are provided for each of the eight…

  17. The NASA Lewis Research Center program in space solar cell research and technology. [efficient silicon solar cell development program

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1979-01-01

    Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.

  18. Helioseismology: A probe of the solar interior, atmosphere, and activity cycle

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.

    1995-01-01

    Helioseismology began in earnest in the mid 1970's. In the two decades which have elapsed since that time this branch of solar physics has become a mature field of research. Helioseismology has demonstrated that the solar convection zone is about twice as deep as was generally thought to be the case before 1977. Helioseismology has also provided measurements of the solar internal angular velocity over much of the sun's interior. Helioseismology has also ruled out models which would solve the solar neutrino problem by a lowering of the temperature of the core. Recently, some of the seismic properties of the sun have been demonstrated to vary with changing levels of solar activity. Also, helioseismology has recently provided evidence for helical flow patterns in the shallow, sub-photosphere layers. The techniques of helioseismology are also expanding to include seismic probes of solar active regions. Some work is also being conducted into the possible contributions of the solar acoustic models to the heating of the solar atmosphere. In this talk I will highlight a few of the above results and concentrate on current areas of research in the field.

  19. Early Results from the Floating Potential Probe on the International Space Station

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Ferguson, Dale C.

    2001-01-01

    This viewgraph presentation provides information on the Floating Potential Probe (FPP) on the International Space Station (ISS). The FPP measures the body voltage (electric potential) of the, and the measurements are then transmitted to Earth.

  20. Getting together in deep space - The Rosetta space probe's long trek to Comet 67/P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    2004-02-01

    The countdown to Rosetta’s rendezvous in space began on 1 March 1997. At the end of February 2004, seven years and not a few headaches later, the European Space Agency (ESA) probe will at last be setting off on its journey to meet Comet Churyumov-Gerasimenko. The long-planned get-together will not however take place until the middle of 2014. A few months after arriving at the comet, Rosetta will release a small lander onto its surface. Then, for almost two years it will investigate Churyumov-Gerasimenko from close up. Dr Gerhard Schwehm, lead scientist for the Rosetta project, explains that, “With this mission we will be breaking new ground - this will be the first protracted cometary encounter.” The trip to the meeting place in space will certainly be a long one, located as it is some 4.5 astronomical units from the Sun, which translates into something like 675 million kilometres. Rosetta will be on the road for ten years, during which time it will clock up in excess of five billion kilometres. Launch in February 2004 Rosetta will be waved off on 26 February when it lifts off from the space centre in Kourou, French Guiana, aboard an Ariane 5 launcher. Shortly after the spacecraft’s release, its solar panels will be deployed and turned towards the Sun to build up the necessary power reserves. Its various systems and experiments will be gradually brought into operation and tested. Just three months into the mission the first active phase will be over, followed by final testing of the experiments in October 2004. Rosetta will then spend the following years flying a lonely path to the comet, passing by the Earth, Mars, the Earth and the Earth again. There is no alternative to this detour, for even Ariane 5, the most powerful launcher on the market today, lacks the power to hurl the probe on a direct route to the comet. To get the required momentum, it will rely on swing-by manœuvres, using the gravitation pull of Mars (in 2007) and the Earth (three times, in

  1. Probing other solar systems with current and future adaptive optics

    SciTech Connect

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  2. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  3. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  4. Solar Cycle Variation and Application to the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William

    1999-01-01

    The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.

  5. Alenia Spazio: Space Programs for Solar System Exploration .

    NASA Astrophysics Data System (ADS)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  6. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Monolithic and mechanically stacked tandem solar cells have been fabricated with encouraging AM0 efficiencies summarized as: monolithic GaAs/Ge: 19.1 percent (28 C, 4 sq cm); monolithic InP/Ga0.47In0.53As: 22.2 percent (25 C, 0.296 sq cm); monolithic AlGaAs/GaAs/InGaAs: 27.6 percent (80 C, 0.2 sq cm, 100 X); mechanically stacked GaAs/GaSb: 30.8 percent (25 C, 0.049 sq cm, 100 X); and mechanically stacked GaAs/CuInSe2: 23.1 percent (25 C, 4 sq cm). Significant improvement in tandem cell efficiencies nearing to theoretical predictions has been projected with the improvement in cell material quality and processing. Thin-film cells offer improved specific power. It is pointed out that both the monolithic and mechanically stacked cells have their own problems as to size, processing, current-voltage matching, weight, etc. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full spectrum range simulators are required to measure efficiencies correctly.

  7. Space Weather Research in Greece: The Solar Energetic Particle Perspective

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga E.

    2015-03-01

    Space Weather Research carried out in the National Observatory of Athens (NOA), within the SEPServer and COMESEP projects under the Seventh Framework Programme (FP7-SPACE) of the European Union (EU) is presented. Results and services that these projects provide to the whole scientific community as well as stakeholders are underlined. NOA strongly contributes in terms of crucial Solar Energetic Particle (SEP) dataset provided, data analysis and SEP catalogue items provided as well as comparative results of the various components of the project server, greatly facilitating the investigation of SEPs and their origin. SEP research highlights carried out at NOA are also presented, used to test and validate the particle SEP model developed and incorporated within the SEP forecasting tools of the COronal Mass Ejections and Solar Energetic Particles (COMESEP) Space Weather Alert System, i.e. the First European Alert System for geomagnetic storms and SEP radiation hazards.

  8. Data link relay design. [space probe with entry at Uranus

    NASA Technical Reports Server (NTRS)

    Parsons, P.

    1974-01-01

    The data link for the Ames baseline probe as applied to the MJU spacecraft specifically with an entry at Uranus is analyzed. A frequency analysis, a trajectory analysis, and a discussion of the effects on the spacecraft design by the data link are presented. The possibilities of a two-way link are considered.

  9. New developments in SOLAR2000 for space research and operations

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Bouwer, S. Dave

    The SOLAR2000 (S2K) project provides solar spectral irradiances and integrated solar irradiance proxies for space researchers as well as ground- and space-based operational users. The S2K model currently represents empirical solar irradiances and integrated irradiance proxies covering the spectral range from the X-rays through the far infrared and has evolved through 23 version releases since October 1999. Variability is provided for time frames ranging from 1947 to 2052. The combination of variability through multiple time periods with spectral formats ranging from resolved emission lines through integrated irradiance proxies is a unique feature that provides researchers and operational users the same solar energy for a given day but in formats suitable for their distinctly different applications. We report on new developments in the SOLAR2000 version 2.24 model. There are several models and reference spectra now included in SOLAR2000 including the S2K extreme ultraviolet (EUV) irradiance model provided by Tobiska (S2K: 1 121 nm), the vacuum ultraviolet (VUV) model provided by Woods (VUV2002: 1 420 nm), and the ASTM-E490 reference spectrum (122 1,000,000 nm). Improved model accuracy in the XUV EUV spectral regions is obtained with the inclusion of the new TIMED SEE version 7 dataset. We report on integrated irradiance products including some revisions to previously reported proxies, E10.7, QEUV, Peuv, T∞, RSN, and S, and an introduction to seven new integrated irradiance proxies. They include E1_40, XE10.7, Xb10, Xhf, X10.7, ESRC, and ESRB. The Schatten solar dynamo model output is included in the S2K Operational Grade model and provides forecast proxies out to five solar cycles. The SOLAR2000 Research Grade (RG) model provides historical irradiances and proxies for space research and is freely available, via web download, to users of any platform through the use of an IDL virtual machine (VM) graphic user interface (GUI) application. The SOLAR2000 Professional

  10. Automated Solar Feature Detection for Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Pérez-Suárez, David; Higgins, Paul A.; Bloomfield, D. Shaun; McAteer, R. T. James; Krista, Larisza D.; Byrne, Jason P.; Gallagher, Peter. T.

    2011-03-01

    The solar surface and atmosphere are highly dynamic plasma environments, which evolve over a wide range of temporal and spatial scales. Large-scale eruptions, such as coronal mass ejections, can be accelerated to millions of kilometres per hour in a matter of minutes, making their automated detection and characterisation challenging. Additionally, there are numerous faint solar features, such as coronal holes and coronal dimmings, which are important for space weather monitoring and forecasting, but their low intensity and sometimes transient nature makes them problematic to detect using traditional image processing techniques. These difficulties are compounded by advances in ground- and space- based instrumentation, which have increased the volume of data that solar physicists are confronted with on a minute-by-minute basis; NASA's Solar Dynamics Observatory for example is returning many thousands of images per hour (~1.5 TB/day). This chapter reviews recent advances in the application of images processing techniques to the automated detection of active regions, coronal holes, filaments, CMEs, and coronal dimmings for the purposes of space weather monitoring and prediction.

  11. Sandwich module prototype progress for space solar power

    NASA Astrophysics Data System (ADS)

    Jaffe, Paul; Hodkin, Jason; Harrington, Forest; Person, Clark; Nurnberger, Michael; Nguyen, Bang; LaCava, Susie; Scheiman, Dave; Stewart, Grant; Han, Andrew; Hettwer, Ethan; Rhoades, Daniel

    2014-02-01

    Space solar power (SSP) has been broadly defined as the collection of solar energy in space and its wireless transmission for use on earth. This approach potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the modular symmetrical concentrator (MSC) and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. While prototypes of such modules have been designed and developed previously by several groups, none have been subjected to the challenging conditions inherent to the space environment and the possible solar concentration levels in which an array of modules might be required to operate. The research described herein details our team's efforts in the development of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for microwave-based "sandwich" module prototypes. The implementation status and testing results of the prototypes are reviewed.

  12. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  13. Space science education in Egypt and the 2006 solar eclipse

    NASA Astrophysics Data System (ADS)

    Hady, A. A.

    2008-12-01

    The space science research has been started in Egypt since 1910 by measuring the solar constant as indication of solar radiation at Helwan Observatory. The solar sunspot studies and its influence on the Nile flooding was erected and operated at Helwan as a first solar station in Egypt during 1957. Zeiss-Coude' refractor was installed in 1964. Astronomy and space science educations started in Egypt at the university level since 1936 at Department of Astronomy and Meteorology of Cairo University. Undergraduate and graduate education in Egypt will be discussed in this work. The total solar eclipse observations on 25th February, 1952 in Khartoum have been done by on Egyptian-French group by using the Worthington Camera. Several international groups observed the total solar eclipse on 29 March 2006, in El-Saloum (Egypt). A coordinated effort partly undertaken in the frame of the French-Egyptian scientific cooperation permitted joined simultaneous eclipse observations of the solar corona. Several Ground base instrumental set-up has been prepared. Spaceborne quasi-simultaneous EIT and Lasco observations of SoHO have been used as well as TRACE observations in Lyman-alpha of HI. W-L images taken with and without a radial filter are processed to show the magnetic structure of the corona. Polarization analysis is performed to study the F-corona in the outer corona. Several filters have been obtained to show the distribution of the emission measures of the inner and middle corona. Spectra were obtained over several emission lines.

  14. In situ measurement requirements for a solar probe

    SciTech Connect

    Roberts, D.A.; Gosling, J.T.

    1996-09-01

    The authors present the rationale and in situ measurement requirements for a near-Sun mission intended to answer the central questions of the heating of the corona and the acceleration of the solar wind. These conclusions are based on panel discussions and presentations at the Marlboro workshop. They have in mind not a minimum mission, but rather one that is constrained but feasible within the current mass and telemetry rate restrictions. To distinguish between thermal, wave-driven, and microflare-driven models, the measurements must determine wave levels in a broad range of frequencies, resolve fine-scale structures, find the energetic particle content and its variations, and determine the bulk properties of a few species with detailed distributions for at least electrons and protons. They find that the in situ measurements needed to answer the main questions are similar to those proposed previously (magnetic field, plasma, high-energy particles, and plasma wave instruments) but without neutron and dust experiments. Telemetry and mass constraints will be significant but should not be prohibitive.

  15. Performance and economics of residential solar space heating

    NASA Astrophysics Data System (ADS)

    Zehr, F. J.; Vineyard, T. A.; Barnes, R. W.; Oneal, D. L.

    1982-11-01

    The performance and economics of residential solar space heating were studied for various locations in the contiguous United States. Common types of active and passive solar heating systems were analyzed with respect to an average-size, single-family house designed to meet or exceed the thermal requirements of the Department of Housing and Urban Development Minimum Property Standards (HUD-MPS). The solar systems were evaluated in seventeen cities to provide a broad range of climatic conditions. Active systems evaluated consist of air and liquid flat plate collectors with single- and double-glazing: passive systems include Trombe wall, water wall, direct gain, and sunspace systems. The active system solar heating performance was computed using the University of Wisconsin's F-CHART computer program. The Los Alamos Scientific Laboratory's Solar Load Ratio (SLR) method was employed to compute solar heating performance for the passive systems. Heating costs were computed with gas, oil, and electricity as backups and as conventional heating system fuels.

  16. Large area low-cost space solar cell development

    NASA Technical Reports Server (NTRS)

    Barona, C. R.; Cioni, J. L.

    1982-01-01

    A development program to produce 5.9 x 5.9 cm space quality silicon solar cells with a cost goal of 30 $/W is described. Cell types investigated include wraparound dielectric, mechanical wraparound and conventional contact configurations with combinations of 2 or 10 ohm/cm resistivity, back surface reflectors and/or fields, and diffused or ion implanted junctions. A single step process to cut cell and cover glass simultaneously is being developed. Results for cell and array tests are given. Large solar arrays that might use cells of this type are discussed.

  17. In-Space Propulsion Solar Electric Propulsion Technology Overview

    NASA Astrophysics Data System (ADS)

    Dankanich, John W.

    2006-12-01

    NASA’s In-space Propulsion Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The solar electric propulsion technology area has been investing in NASA’s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk and cost of NASA planetary science missions. Current status and expected capabilities of the solar electric propulsion technologies will be discussed.

  18. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary

    2016-12-01

    The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes

  19. Kinetic Models of Fast Solar Wind Driven by Imbalanced Ion Cyclotron Dissipation - What Will Solar Probe See?

    NASA Astrophysics Data System (ADS)

    Isenberg, P. A.; Vasquez, B. J.

    2012-12-01

    In previous work (e.g. Isenberg & Vasquez, ApJ, 731, 88, 2011), we have shown that resonant dissipation of a turbulently maintained power-law spectrum of ion cyclotron waves can produce a reasonable fast solar wind flow. Kinetic modeling of this ion heating in the expanding collisionless coronal hole must also take into account the effects of gravity, charge-separation electric field, mirror force, inertial force in the accelerating plasma, and ponderomotive Alfvén wave pressure. The combined action of all these processes leads to a characteristic evolution of the proton distribution function, some aspects of which may be independent of the actual mechanism for the perpendicular heating. Our previous model used resonant wave intensities that were "balanced" in that we took the power in outward-propagating waves and sunward-propagating waves to be equal. We also were limited by computational considerations to heliocentric radial positions < 6 Rs. Here, we consider imbalanced cases where the outward-propagating intensities of resonant waves are larger than the sunward intensities, as would be expected from reflection models of turbulent evolution in the solar atmosphere. We also extend our computations to beyond the Alfvenic critical point, into the radial range to be explored by Solar Probe Plus. We will present model results for the solar wind speeds and temperatures as functions of heliocentric radius for various ratios of sunward-to-outward wave intensities. We will also show detailed shapes of the proton distribution function and discuss their radial evolution with particular emphasis on the region accessible to the planned Solar Probe Plus mission.

  20. Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather

    DTIC Science & Technology

    2013-05-01

    Aschwanden, M. J. 2005, Physics of the Solar Corona . An Introduction with Problems and Solutions (2nd edition), ed. Aschwanden, M. J. Balasubramaniam, K...AFRL-OSR-VA-TR-2013-0020 Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity...Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather 5a. CONTRACT NUMBER FA9550-09

  1. MARINER 9 SPACE PROBE UNDERGOES FINAL CHECKS PRIOR TO ENCAPSULATION

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A technician checks the Mariner I spacecraft prior to its encapsulation for launch to Mars. An Atlas-Centaur rocket successfully launched the mars-bound spacecraft from Cape Kennedy at 6:23 p.m. EDT, May 30, 1971. Designated Mariner 9 following launch, the probe will arrive at Mars in mid-November. It will transmit scientific data about that planet's surface and atmosphere.

  2. Novel Passivating/Antireflective Coatings for Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Faur, H. M.; Mateescu, C. G.; Alterovitz, S. A.; Scheiman, D.; Jenkins, P. P.; Brinker, D. J.

    2005-01-01

    We are developing a novel process to grow passivating/antireflective (AR) coatings for terrestrial and space solar cells. Our approach involves a Room Temperature Wet Chemical Growth (RTWCG) process, which was pioneered, and is under development at SPECMAT, Inc., under a Reimbursable Space Act Agreement with NASA Glenn Research Center. The RTWCG passivating/AR coatings with graded index of refraction are applied in one easy step on finished (bare) cells. The RTWCG coatings grown on planar, textured and porous Si, as well as on poly-Si, CuInSe2, and III-V substrates, show excellent uniformity irrespective of surface topography, crystal orientation, size and shape. In this paper we present some preliminary results of the RTWCG coatings on Si and III-V substrates that show very good potential for use as a passivation/AR coating for space solar cell applications. Compared to coatings grown using conventional techniques, the RTWCG coatings have the potential to reduce reflection losses and improve current collection near the illuminated surface of space solar cells, while reducing the fabrication costs.

  3. Mechanical and Electrical Behavior of Organic Solar Cells Probed Through Detailed Morphological Control

    NASA Astrophysics Data System (ADS)

    Awartani, Omar Marwan

    One of the main advantages of organic solar cells is their potential to be used in flexible or even stretchable applications. Most research in the field of organic solar cells is focused on materials synthesis, device physics, and the relationship between morphology and the optoelectronic performance. In order for this technology to be commercially competitive, especially for flexible applications, a more complete picture that explores the mechanical properties of organic materials and how they relate to their optoelectronic properties is necessary. This thesis consists of two main research tracks: The first track focuses mainly on the effect of morphology on the mechanical, electrical and optical performance of organic solar cells controlled through varying processing conditions. Two mechanical properties are investigated including the elastic modulus and crack onset strain of P3HT, PCBM and blend (BHJ) films. The second track utilizes the high achievable ductility of organic semiconducting films that is investigated in the first track of the thesis, to create novel solar cell device architectures and to gain insight into the performance and recombination losses of organic solar cells. Processing ductile BHJ films is used to create organic solar cells with controlled level of polarization with both opaque and semi-transparent architectures. Moreover, using the strain-alignment method the efficiency of low and high order P3HT aggregates is probed within the same film to show similar internal quantum efficiency for the two different morphological P3HT domains. This selective probing technique provides significant insight into performance loss mechanisms in organic solar cells.

  4. Space manufacturing in the construction of solar power satellites

    NASA Astrophysics Data System (ADS)

    Ruth, J.; Westphal, W.

    This paper deals with ongoing research work concerning energy budget and cost of the solar Satellite Power System (SPS). The fundamental model of such a total system including ground and space facilities, transportation vehicles, power satellites and rectennas is presented. The main purpose of this model is to examine the applicability of different construction scenarios to allow comparison under nearly identical constraints. Using this model in a first attempt the blankets—meaning the main part of the space segment by weight, energy investment needs and cost—are chosen representatively for the energy and cost comparison of two construction alternatives of the same SPS concept. These construction alternatives are defined just by ground and space based manufacturing of the solar blankets, while all other subsystems, operations and the transportation profiles are considered to be kept the same. It can be shown that the energy "payback" time does not only depend on the SPS concept selected but also very much on the construction and implementation scenario. The cost comparison of these alternative approaches presents not very significant differences but advantages for the space manufacturing option with potential higher differences for a less conservative approach which may apply benefits of space manufacturing meaning, for example, considerable mass savings in space. Some preliminary results are discussed and an outlook is given over the next steps to be investigated, comprising the extension of the fundamental model to include use of lunar raw materials.

  5. Preliminary results of a gamma-ray burst study in the Konus experiment on the Venera-11 and Venera-12 space probes

    NASA Technical Reports Server (NTRS)

    Mazets, Y. P.; Golentskiy, S. V.; Ilinskiy, V. N.; Panov, V. N.; Aptekar, R. L.; Guryan, Y. A.; Sokolov, I. A.; Sokolova, Z. Y.; Kharitonova, T. V.

    1979-01-01

    Twenty-one gamma-ray bursts and 68 solar flares in the hard X-ray range were detected on Venera-11 and Venera-12 space probes during the initial 50-day observation period. Major characteristics of the equipment used and preliminary data on the temporal structure and energy spectra of the gamma-ray bursts are considered. The pattern of gamma-ray burst frequency distribution vs. intensity, N(S), is established.

  6. Solar energetic particles as probes of the structures of magnetic clouds

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1990-01-01

    Two possible closed magnetic topologies are considered for clouds: an elongated bottle with field lines rooted at both ends in the sun and a magnetic bubble or plasmoid consisting of closed field lines. Solar energetic particles (SEPs) are used as probes of the cloud topologies. The rapid access of SEPs to clouds in many events indicates that the cloud field lines extend back to the sun.

  7. Visualization of Photoexcited Carrier Responses in a Solar Cell Using Optical Pump—Terahertz Emission Probe Technique

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hidetoshi; Ito, Akira; Takayama, Kazuhisa; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2016-05-01

    We observed photoexcited carrier responses in solar cells excited by femtosecond laser pulses with spatial and temporal resolution using an optical pump-terahertz emission probe technique. We visualized the ultrafast local variation of the intensity of terahertz emission from a polycrystalline silicon solar cell using this technique and clearly observed the change in signals between a grain boundary and the inside of a grain in the solar cell. Further, the time evolution of the pump-probe signals of the polycrystalline and monocrystalline silicon solar cells was observed, and the relaxation times of photoexcited carriers in the emitter layers of crystalline silicon solar cells were estimated using this technique. The estimated relaxation time was consistent with the lifetime of the Auger recombination process that was dominant in heavily doped silicon used as an emitter layer for the silicon solar cells, which is difficult to obtain with photoluminescence method commonly used for the evaluation of solar cells.

  8. Performance and lifetime of solar mirror foils in space

    SciTech Connect

    Fink, D.; Biersack, J.P.; Staedele, M.

    1985-01-01

    The results of a Monte Carlo computer analysis of the long term effects of space radiation on the surfaces of giant orbiting mirrors are presented. The mirrors, thin surfaced and made of substances like, e.g., Mylar and Hostephan, which are polymers, would reflect solar radiation to earth and be of a size equivalent to that of the area they would illumine. Possible applications are the warming of cities, melting of icebergs in shipping lanes and the illumination of solar power plants. Attention was focused on the changes produced in the reflective surface by solar wind particle bombardment. It was found that an Al covering at least 0.1 mm thick would be needed for protection. Nevertheless, the surface would be destroyed by blistering and foil carbonization within 10 yr and would then require replacement. 12 references.

  9. Large area low-cost space solar cell development

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Cioni, J. L.

    1982-01-01

    A development program to produce large-area (5.9 x 5.9 cm) space quality silicon solar cells with a cost goal of 30 $/watt is descibed. Five cell types under investigation include wraparound dielectric, mechanical wraparound and conventional contact configurations with combinations of 2 or 10 ohm-cm resistivity, back surface reflectors and/or fields, and diffused or ion implanted junctions. A single step process to cut cell and cover-glass simultaneously is being developed. A description of cell developments by Applied Solar Energy Corp., Spectrolab and Spire is included. Results are given for cell and array tests, performed by Lockheed, TRW and NASA. Future large solar arrays that might use cells of this type are discussed.

  10. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  11. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  12. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  13. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  14. Solar concentrator technology development for space based applications, volume 2

    NASA Astrophysics Data System (ADS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-12-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  15. Solar Selective Coatings Developed for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is envisioned for space power applications on minisatellites. A high solar absorptance is needed to collect as much of the incident solar radiation as possible and a low infrared emittance is needed to minimize radiant energy losses. A lightweight material having a high thermal conductivity is needed to transport the absorbed energy to where it is needed. Such a solar collector may be used with a low temperature-differential heat engine to provide electric power to the minisatellite components or as a source of thermal energy for a thermal bus that would heat remote regions of the spacecraft. The key to such a collector is the use of cermet coatings. Cermet coatings are composed of molecular islands of metal embedded in a three-dimensional matrix of dielectric. Recent research on molecular mixtures of aluminum and aluminum oxide at the NASA Glenn Research Center has yielded cermet coatings with a solar absorptance a of 0.797 and an infrared emittance epsilon of 0.131, yielding an alpha/epsilon ratio of 6. Although additional work is needed to further increase the alpha/epsilon ratio, these coatings are attractive owing to their potential durability in the space environment. The aluminum oxide surface should provide substantial protection from the atomic oxygen found in low Earth orbit. To help minimize emittance, these coatings are deposited on a smooth surface. The selected surface is aluminum that has been diamond turned to a mirror finish. Cermet coatings are manufactured by sputter deposition. To achieve the desired variable composition, Glenn's researchers implemented a novel approach using a cylindrical target composed of aluminum and aluminum oxide. Rotating the cylinder during the deposition process yields a coating of variable composition. A photograph of the custom-made aluminum and aluminum oxide cylindrical target installed

  16. Solar concentrator technology development for space based applications, volume 1

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  17. Solar concentrator technology development for space based applications, volume 2

    NASA Technical Reports Server (NTRS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  18. Solar concentrator technology development for space based applications, volume 1

    NASA Astrophysics Data System (ADS)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-12-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  19. Plasma Interaction with International Space Station High Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Heard, John W.

    2002-01-01

    The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.

  20. Reagent based DOS: a "Click, Click, Cyclize" strategy to probe chemical space.

    PubMed

    Rolfe, Alan; Lushington, Gerald H; Hanson, Paul R

    2010-05-07

    The synthesis of small organic molecules as probes for discovering new therapeutic agents has been an important aspect of chemical-biology. Herein we report a reagent-based, diversity-oriented synthetic (DOS) strategy to probe chemical and biological space via a "Click, Click, Cyclize" protocol. In this DOS approach, three sulfonamide linchpins underwent cyclization protocols with a variety of reagents to yield a collection of structurally diverse S-heterocycles. In silico analysis is utilized to evaluate the diversity of the compound collection against chemical space (PC analysis), shape space (PMI) and polar surface area (PSA) calculations.

  1. Visible solar-ray supply system for space station

    NASA Astrophysics Data System (ADS)

    Mori, Kei; Tanatsugu, Nobuhiko; Yamashita, Masamichi

    The solar-ray supply system presented here will mainly provide the visible solar ray necessary for the various activities in the space station, such as cultivation experiments on plants, fishes, birds and animals, room lighting for modules, and crew sun-bathing. Even natural solar rays reaching earth surface contain harmful rays for human beings, animals, higher plants and algae: Ultraviolet rays of medium (UV-B) and long wavelength (UV-A), infrared and heat rays, are all harmful to life. On a space station, the most dangerous short-wavelength ultraviolet (UB-C), X-ray and gamma-ray are additionally included, besides those cited above in markedly higher intensity. The range of rays useful and harmless to life is the visible band of wavelengths. No conclusive studies have been conducted concerning the unexpected powerful effects on the growth of plants and algae that can be brought by pure visible solar rays, in comparison with the corresponding effects of other kinds of artificial light source.

  2. Coronal Radio Occultation Experiments with the Helios Solar Probes: Correlation/Spectral Analysis of Faraday Rotation Fluctuations

    NASA Astrophysics Data System (ADS)

    Efimov, A. I.; Lukanina, L. A.; Rogashkova, A. I.; Samoznaev, L. N.; Chashei, I. V.; Bird, M. K.; Pätzold, M.

    2015-09-01

    The coronal Faraday rotation (FR) experiments using the linearly polarized signals of the Helios-1 and Helios-2 interplanetary probes remain a unique investigation of the magnetic field of the solar corona and its aperiodic and quasi-periodic variations. The unexpectedly long lifetime of these spacecraft (1974 - 1986) enabled studies from very deep solar-activity minimum (1975 - 1976) into the strong activity maximum (1979). Important experimental data were also obtained for the rising (1977 - 1978) and declining (1980 - 1984) branches of the solar-activity cycle. Previous publications have presented results of the initial experimental data only for coronal-sounding experiments performed during individual solar-conjunction opportunities. This report is a more detailed analysis of the Helios FR measurements for the entire period 1975 - 1984. Radial profiles of the FR fluctuation (FRF) intensity recorded during the deepest solar-activity minimum in 1975 - 1976 are shown to differ distinctly from those during the strong solar-activity maximum in 1979. In particular, the decrease of the FRF intensity with solar-offset distance is substantially steeper in 1979 than in 1975/1976. In all cases, however, the FR data reveal quasi-periodic wave-like fluctuations in addition to the random background with a power-law spectrum. The dominant period of these fluctuations, recorded during 35 % of the total measurement time, is found to be close to five minutes. Large-scale FR variations at considerably longer periods (1.1 - 2.7 hours) were observed during 20 % of the measurement time. Knowing the intrinsic motion of the radio ray path from spacecraft to Earth and making a reasonable assumption about the solar-wind velocity, FRF observations at widely spaced ground stations have been used to estimate the velocity of coronal Alfvén waves. The velocity values range between 290 and 550 km s-1 at heliocentric distances between 3.5 and 4.5 R⊙ and are marginally lower (150 - 450 km s

  3. Probing the solar magnetic field with a Sun-grazing comet.

    PubMed

    Downs, Cooper; Linker, Jon A; Mikií, Zoran; Riley, Pete; Schrijver, Carolus J; Saint-Hilaire, Pascal

    2013-06-07

    On 15 and 16 December 2011, Sun-grazing comet C/2011 W3 (Lovejoy) passed deep within the solar corona, effectively probing a region that has never been visited by spacecraft. Imaged from multiple perspectives, extreme ultraviolet observations of Lovejoy's tail showed substantial changes in direction, intensity, magnitude, and persistence. To understand this unique signature, we combined a state-of-the-art magnetohydrodynamic model of the solar corona and a model for the motion of emitting cometary tail ions in an embedded plasma. The observed tail motions reveal the inhomogeneous magnetic field of the solar corona. We show how these motions constrain field and plasma properties along the trajectory, and how they can be used to meaningfully distinguish between two classes of magnetic field models.

  4. Solar Pumped High Power Solid State Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  5. New frontiers in solar and space weather radiophysics

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2002-05-01

    While not recognized at the time or for many years following, the earliest evidence for the impact of solar-terrestrial processes on technical systems appeared in the first half of the 19th century with the installation of the first practical electrical telegraph communication systems. The growth of wireless communications after Marconi's trans-Atlantic demonstration in 1901 of its long-distance feasibility was rapid. However, it was soon recognized that solar-induced disturbances also could disrupt this new technology: ``... times of bad fading [of radio signals occur in] the same time periods when cables and land [communication] lines experience difficulties ...." (Marconi, 1928). Bursts of solar radio emissions were first recognized (though not immediately) through their jamming of the early radar that were developed during the Second World War. Such solar radio phenomena remain an important concern for certain military technologies to date, as well as for newer civilian wireless technologies. This talk will present a broad overview of the history of the impacts of solar-terrestrial processes on human technologies and will address a number of contemporary issues in what has become to be known as ``space weather."

  6. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  7. Space power using solar photovoltaic panels: costs and limitations

    SciTech Connect

    Williams, K.A.

    1986-03-01

    Solar photovoltaic panels (SPPs) have been suggested as a possible prime space power source for multi-kilowatt applications within a ballistic missile defense (BMD) system. As a first step in an attempt to assess the affordability of possible BMD space power sources, the limitations and costs of space power satellites using SSPs in conjunction with an electrochemical energy storage system have been investigated. Both high and low earth orbital missions are considered. An extensive literature search was conducted to determine values for the principal technology-driven performance and cost figures of merit. A small computer code was then developed to evaluate the total power cost, including launch, in dollars per watt of desired space power load. The unit costs obtained were found to be heavily influenced by the nature of the mission (altitude) and the attainable specific power for the two major system components.

  8. Thin-film Solar Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Lush, Gregory B.

    2003-01-01

    The proposed work supports MURED goals by fostering research and development activities at Fisk and UTEP which contribute substantially to NASA's mission, preparing faculty and students at Fisk and UTEP to successfully participate in the conventional, competitive research and education process, and increasing the number of students to successfully complete degrees in NASA related fields. The project also addresses directly a core need of NASA for space power and is consistent with the Core Responsibilities of the John Glenn Space Center. Current orbital missions are limited by radiation from high energy particles trapped in the Van Allen Belt because that solar radiation degrades cell performance by damaging the crystalline lattice. Some potential orbits have been inaccessible because the radiation is too severe. Thin-film solar cells, if they can be adapted for use in the unfriendly space environment, could open new orbits to satellites by providing a radiation hard source of power. The manned mission to Mars requires photovoltaic devices for both the trip there and as a power supply on the surface. Solar arrays using thin films offer a low power/weight ratio solution that provides reliable photovoltaic power.

  9. Solar absorptance measurements in space on operational spacecraft

    NASA Astrophysics Data System (ADS)

    Babel, Hank W.; Jones, Cherie A.; Wilkes, Donald R.; Linton, Roger C.

    1995-07-01

    Spacecraft hardware such as radiators requires the maintenance of solar absorptance within tight bounds for their design life. Such hardware is sized in part based on the beginning- and end-of-life absorptance. It has been difficult to make accurate end-of-life determinations based on either ground based data or flight data. The synergistic effect of atomic oxygen, ultraviolet radiation, and contamination has made it difficult to duplicate space exposures in the laboratory. The absorptance of flight exposed samples brought back to earth are not representative of the conditions in space because of changes brought about by exposure to air. This paper proposes to augment the current in-space monitoring techniques with periodic, in- space, direct measurements of the solar absorptance on operational hardware. NASA funded AZ Technology to develop a portable, space-rated device similar to the LPSR-200 portable spectroreflectometer, a space portable spectroreflectometer (SPSR). This instrument is robotically compatible and can be run using spacecraft power or batteries. The instrument also has measurement storage capacity for later retrieval and evaluation. Although extensive development work has already been completed, authorization to build a unit for a flight experiment has not been received. The Russians have expressed an interest in having absorptance measurements made on their MIR I Space Station as part of the NASA/MIR flight experiments. Proposals are currently being made to obtain authorization for the construction and use of SPSR on NASA/MIR flight experiments, to help mitigate potential problems for the International Space Station Alpha (ISSA).

  10. Reconnection-Driven Solar Polar Jets to be Encountered by Solar Probe Plus: Simulated In Situ Measurements and Data Analysis

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Roberts, M. A.; Karpen, J. T.; DeVore, C. R.

    2015-12-01

    Solar polar jets are observed to originate in regions within the open field of solar coronal holes. These so called "anemone" regions are associated with an embedded dipole topology, consisting of a fan-separatrix and a spine line emanating from a null point occurring at the top of the dome shaped fan surface (Antiochos 1996). In this study, we analyze simulations using the Adaptively Refined MHD Solver (ARMS) that take into account gravity, solar wind, and spherical geometry to generate polar jets by reconnection between a twisted embedded bipole and the surrounding open field (Karpen et al. 2015). These simulations confirm and extend previous Cartesian studies of polar jets based on this mechanism (Pariat et al. 2009, 2010, 2015), as well as extending the analyses from our previous work (Roberts et al. 2014,2015) out to radial distances that will be sampled by Solar Probe Plus. Focusing on the plasma density, velocity, magnetic field, and current density, we interpolate the adaptively gridded simulation data onto a regular grid, and analyze the signatures that the jet produces as it propagates outward from the solar surface into the inner heliosphere. We also conduct simulated spacecraft fly-throughs of the jet in several different velocity regimes, illustrating the signatures that Solar Probe Plus may encounter in situ as the jet propagates into the heliosphere. The trans-Alfvénic nature of the jet front is confirmed by temporally differencing the plasma mass density and comparing the result with the local Alfvén speed. Our analysis confirms the presence of a reconnection driven magnetic turbulence in the simulated plasma jet, finding spatial correlations of magnetic fluctuations inside the jet to be in agreement with the scaling model of MHD turbulence. The turbulence cascade is supported by multiscale current sheets combined with filamentary structures representing fluid vorticies. The spatial orientation of these current sheets, combined with the anisotropy

  11. Probing chemical space with alkaloid-inspired libraries

    NASA Astrophysics Data System (ADS)

    McLeod, Michael C.; Singh, Gurpreet; Plampin, James N.; Rane, Digamber; Wang, Jenna L.; Day, Victor W.; Aubé, Jeffrey

    2014-02-01

    Screening of small-molecule libraries is an important aspect of probe and drug discovery science. Numerous authors have suggested that bioactive natural products are attractive starting points for such libraries because of their structural complexity and sp3-rich character. Here, we describe the construction of a screening library based on representative members of four families of biologically active alkaloids (Stemonaceae, the structurally related cyclindricine and lepadiformine families, lupin and Amaryllidaceae). In each case, scaffolds were based on structures of the naturally occurring compounds or a close derivative. Scaffold preparation was pursued following the development of appropriate enabling chemical methods. Diversification provided 686 new compounds suitable for screening. The libraries thus prepared had structural characteristics, including sp3 content, comparable to a basis set of representative natural products and were highly rule-of-five compliant.

  12. Probing chemical space with alkaloid-inspired libraries.

    PubMed

    McLeod, Michael C; Singh, Gurpreet; Plampin, James N; Rane, Digamber; Wang, Jenna L; Day, Victor W; Aubé, Jeffrey

    2014-02-01

    Screening of small-molecule libraries is an important aspect of probe and drug discovery science. Numerous authors have suggested that bioactive natural products are attractive starting points for such libraries because of their structural complexity and sp(3)-rich character. Here, we describe the construction of a screening library based on representative members of four families of biologically active alkaloids (Stemonaceae, the structurally related cyclindricine and lepadiformine families, lupin and Amaryllidaceae). In each case, scaffolds were based on structures of the naturally occurring compounds or a close derivative. Scaffold preparation was pursued following the development of appropriate enabling chemical methods. Diversification provided 686 new compounds suitable for screening. The libraries thus prepared had structural characteristics, including sp(3) content, comparable to a basis set of representative natural products and were highly rule-of-five compliant.

  13. Orbits design for LEO space based solar power satellite system

    NASA Astrophysics Data System (ADS)

    Addanki, Neelima Krishna Murthy

    2011-12-01

    Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, radiowave or laser beams to corresponding receivers (ground stations). These traditionally are large structures orbiting around earth at the geo-synchronous altitude. This thesis introduces a new architecture for a Space Based Solar Power satellite constellation. The proposed concept reduces the high cost involved in the construction of the space satellite and in the multiple launches to the geo-synchronous altitude. The proposed concept is a constellation of Low Earth Orbit satellites that are smaller in size than the conventional system. 7For this application a Repeated Sun-Synchronous Track Circular Orbit is considered (RSSTO). In these orbits, the spacecraft re-visits the same locations on earth periodically every given desired number of days with the line of nodes of the spacecraft's orbit fixed relative to the Sun. A wide range of solutions are studied, and, in this thesis, a two-orbit constellation design is chosen and simulated. The number of satellites is chosen based on the electric power demands in a given set of global cities. The orbits of the satellites are designed such that their ground tracks visit a maximum number of ground stations during the revisit period. In the simulation, the locations of the ground stations are chosen close to big cities, in USA and worldwide, so that the space power constellation beams down power directly to locations of high electric power demands. The j2 perturbations are included in the mathematical model used in orbit design. The Coverage time of each spacecraft over a ground site and the gap time between two consecutive spacecrafts visiting a ground site are simulated in order to evaluate the coverage continuity of the proposed solar power constellation. It has been observed from simulations that there always periods in which s spacecraft does not communicate with any

  14. The Slow and Fast Solar Wind Boundary, Corotating Interaction Regions, and Coronal Mass Ejection observations with Solar Probe Plus and Solar Orbiter (Invited)

    NASA Astrophysics Data System (ADS)

    Velli, M. M.

    2013-12-01

    The Solar Probe Plus and Solar Orbiter missions have as part of their goals to understand the source regions of the solar wind and of the heliospheric magnetic field. In the heliosphere, the solar wind is made up of interacting fast and slow solar wind streams as well as a clearly intermittent source of flow and field, arising from coronal mass ejections (CMEs). In this presentation a summary of the questions associated with the distibution of wind speeds and magnetic fields in the inner heliosphere and their origin on the sun will be summarized. Where and how does the sharp gradient in speeds develop close to the Sun? Is the wind source for fast and slow the same, and is there a steady component or is its origin always intermittent in nature? Where does the heliospheric current sheet form and how stable is it close to the Sun? What is the distribution of CME origins and is there a continuum from large CMEs to small blobs of plasma? We will describe our current knowledge and discuss how SPP and SO will contribute to a more comprehensive understanding of the sources of the solar wind and magnetic fields in the heliosphere.

  15. Probing Planckian physics in de Sitter space with quantum correlations

    SciTech Connect

    Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng; Sun, Cheng-Yi; Yang, Wen-Li

    2014-12-15

    We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, we construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points H{sub c} of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved. - Highlights: • Quantum correlation and quantum channel in de Sitter space are studied. • Gibbons–Hawking effect causes entanglement degradation for static observer. • Planckian physics causes extra decrement on quantum correlation. • Convergent feature of negativity relies on the choice of alpha-vacua. • Link between negativity convergence and quantum channel capacity is given.

  16. Solar Powered Propulsion for Space. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the design, development, and performance of solar propulsion systems. Solar electric propulsion and solar thermal propulsion are reviewed. Topics include solar power satellites, nuclear electric propulsion, solar-powered orbit transfer vehicles, and solar dynamic and bimodal power systems. References also discuss atmospheric pollution control, telephone services, space commercialization, interplanetary missions, and lunar and Mars exploration. (Contains 50-250 citations and includes a subject term index and title list.)

  17. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  18. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed Central

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0–20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary. PMID:27973530

  19. MARINER 10 SPACE PROBE IS PREPARED FOR ENCAPSULATION

    NASA Technical Reports Server (NTRS)

    1973-01-01

    After complete check out, technicians prepare to encapsulate Mariner 10, the spacecraft that will be launched toward the planets Venus and Mercury in early November. The Mariner 10 project includes two first: First use of one planet's (Venus') gravitational field to propel a spacecraft onto another; and first exploration of Mercury. The spacecraft weighs 1,100 pounds, including 170 pounds of scientific equipment. Two television cameras aboard Mariner 10 are expected to take 8,000 pictures of the two planets, and six scientific experiments will return information on solar wind, magnetic fields, charged particles, temperature emissions, radio signals, and atmospheric conditions. Mariner will be launched atop Atlas/Centaur 34, from NASA Complex 36B at Cape Kennedy, Fla.

  20. Impacts of Stratospheric Dynamics on Atmospheric Behavior from the Ground to Space Solar Minimum and Solar Maximum

    DTIC Science & Technology

    2015-12-15

    Constant solar and magnetospheric energy inputs are used so that day-to-day changes will arise only from lower atmospheric forcing. The simulated...from the ground to space solar minimum and solar maximum 5a. CONTRACT NUMBER BAA-76-11-01 5b. GRANT NUMBER N00173-12-1G010 5c. PROGRAM ELEMENT...atmospheric behavior from the ground to space under solar minimum and solar maximum conditions (Contract No.: N00173-12-1-G010 NRL) Project Summary

  1. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Henley, Mark; Potter, Seth; Howell, Joseph; Mankins, John

    2002-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this paper two basic WPT options, using radio waves and light waves, are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term, we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class 'Power Plug' Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in near-term space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth.

  2. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Henley, Mark; Potter, Seth; Howell, Joseph; Mankins, John

    2007-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this presentation, two basic WPT options, using radio waves an d light waves, are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term, we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in nearterm space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth.

  3. Generation of a Solar Wind Ensemble for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Hassan, E.; Morley, S.; Steinberg, J. T.

    2015-12-01

    Knowing the upstream solar wind conditions is essential in forecasting the variations in the geomangetic field and the status of the Earth's ionosphere. Most data-driven simulations or data-assimilation codes, used for space weather forecasting, are based on the solar wind measurements at 1 AU, or more specifically at the first Lagrangian orbit (L1), such as observations from the Advanced Composition Explorer (ACE). However, L1 measurements may not represent the solar wind conditions just outside the magnetosphere. As a result, time-series measurements from L1 by themselves are not adequate to run simulations to derive probabilistic forecasts of the magnetosphere and ionosphere. To obtain confidence levels and uncertainty estimates, a solar wind ensemble data set is desirable. Therefore we used three years of measurements atACE advected using the flat delay method to the Interplanetary Monitoring Platform (IMP8) spacecraft location. Then, we compared both measurements to establish Kernel Density Estimation (KDE) functions for IMP8 measurements based on ACE measurements. In addition, we used a 4-categorization scheme to sort the incoming solar wind into ejecta, coronal-hole-origin, sector-reversal-regions, and streamer-belt-origin categories at both ACE and IMP8. We established the KDE functions for each category and compared with the uncategorized KDE functions. The location of the IMP8 spacecraft allows us to use these KDE functions to generate ensemble of solar wind data close to Earth's magnetopause. The ensemble can then be used to forecast the state of the geomagnetic field and the ionosphere.

  4. Space Weather data processing and Science Gateway for the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2013-12-01

    A near real-time data processing pipeline for the Space Weather broadcast data from the Van Allen Probes is presented. The Van Allen Probes broadcasts a sub-set of the science data in real-time when not downlinking the principal science data. This broadcast is received by several ground stations and relayed to APL in near real time to be ingested into the space weather processing pipeline. This pipeline processes the available level zero space weather data into higher level science data products. These products are made available to the public via the Van Allen Probes Science Gateway website (http://athena.jhuapl.edu). The website acts as pivotal point though which all other instrument SOC's can be accessed. Several other data products (e.g KP/DST indices) and tools (e.g orbit calculator) are made also available to the general public.

  5. The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter

    2010-01-01

    NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.

  6. Synergies between Solar Power Supply from Space and Passenger Space Travel

    NASA Astrophysics Data System (ADS)

    Collins, P.

    2004-12-01

    Energy supply from space, as proposed by Peter Glaser in 1968, requires low launch costs in order to be economic, which can only be achieved through large-scale operations of reusable launch vehicles. From market research and feasibility studies performed over the past decade, passenger space travel services, which also require low launch costs, and appear to have the potential to develop into an industry as large as passenger air travel. The paper discusses the synergistic relationship between power supply from space and passenger space travel, whereby each may require the other for its realisation. While governments have been slow to adopt energy policies needed to avoid energy shortages and environmental destruction, the need for new industries to reduce record levels of unemployment world-wide may stimulate the development of passenger space travel - which could in turn stimulate the development of space-based solar power supply systems.

  7. The cavity heat pipe Stirling receiver for space solar dynamics

    NASA Technical Reports Server (NTRS)

    Kesseli, James B.; Lacy, Dovie E.

    1989-01-01

    The receiver/storage unit for the low-earth-orbiting Stirling system is discussed. The design, referred to as the cavity heat pipe (CHP), has been optimized for minimum specific mass and volume width. A specific version of this design at the 7-kWe level has been compared to the space station Brayton solar dynamic design. The space station design utilizes a eutectic mixture of LiF and CaF2. Using the same phase change material, the CHP has been shown to have a specific mass of 40 percent and a volume of 5 percent of that of the space station Brayton at the same power level. Additionally, it complements the free-piston Stirling engine in that it also maintains a relatively flat specific mass down to at least 1 kWe. The technical requirements, tradeoff studies, critical issues, and critical technology experiments are discussed.

  8. Future L5 Missions for Solar Physics and Space Weather

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Gopalswamy, Nat

    Coronal mass ejections (CMEs) and corotating interaction regions (CIR) are the sources of intense space weather in the heliosphere. Most of the current knowledge on CMEs accumulated over the past few decades has been derived from observations made from the Sun-Earth line, which is not the ideal vantage point to observe Earth-affecting CMEs (Gopalswamy et al., 2011a,b). In this paper, the advantages of remote-sensing and in-situ observations from the Sun-Earth L5 point are discussed. Locating a mission at Sun-Earth L5 has several key benefits for solar physics and space weather: (1) off the Sun-Earth line view is critical in observing Earth-arriving parts of CMEs, (2) L5 coronagraphic observations can also provide near-Sun space speed of CMEs, which is an important input to models that forecast Earth-arrival time of CMEs, (3) backside and frontside CMEs can be readily distinguished even without inner coronal imagers, (4) preceding CMEs in the path of Earth-affecting CMEs can be identified for a better estimate of the travel time, (5) CIRs reach the L5 point a few days before they arrive at Earth, and hence provide significant lead time before CIR arrival, (6) L5 observations can provide advance knowledge of CME and CIR source regions (coronal holes) rotating to Earth view, and (7) magnetograms obtained from L5 can improve the surface magnetic field distribution used as input to MHD models that predict the background solar wind. The paper also discusses L5 mission concepts that can be achieved in the near future. References Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., Hoeksema, J. T., Maksimovic, M., MacDowall, R. J., Szabo, A., Collier, M. R. (2011a), Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5 JASTP 73, 658-663, DOI: 10.1016/j.jastp.2011.01.013 Gopalswamy, N., Davila, J. M., Auchère, F., Schou, J., Korendyke, C. M. Shih, A., Johnston, J. C

  9. Human exposure to large solar particle events in space

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Curtis, S. B.

    1992-01-01

    Whenever energetic solar protons produced by solar particle events traverse bulk matter, they undergo various nuclear and atomic collision processes which significantly alter the physical characteristics and biologically important properties of their transported radiation fields. These physical interactions and their effect on the resulting radiation field within matter are described within the context of a recently developed deterministic, coupled neutron-proton space radiation transport computer code (BRYNTRN). Using this computer code, estimates of human exposure in interplanetary space, behind nominal (2 g/sq cm) and storm shelter (20 g/sq cm) thicknesses of aluminum shielding, are made for the large solar proton event of August 1972. Included in these calculations are estimates of cumulative exposures to the skin, ocular lens, and bone marrow as a function of time during the event. Risk assessment in terms of absorbed dose and dose equivalent is discussed for these organs. Also presented are estimates of organ exposures for hypothetical, worst-case flare scenarios. The rate of dose equivalent accumulation places this situation in an interesting region of dose rate between the very low values of usual concern in terrestrial radiation environments and the high-dose-rate values prevalent in radiation therapy.

  10. Space-based solar power conversion and delivery systems study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Even at reduced rates of growth, the demand for electric power is expected to more than triple between now and 1995, and to triple again over the period 1995-2020. Without the development of new power sources and advanced transmission technologies, it may not be possible to supply electric energy at prices that are conductive to generalized economic welfare. Solar power is renewable and its conversion and transmission from space may be advantageous. The goal of this study is to assess the economic merit of space-based photovoltaic systems for power generation and a power relay satellite for power transmission. In this study, satellite solar power generation and transmission systems, as represented by current configurations of the Satellite Solar Station (SSPS) and the Power Relay Satellite (PRS), are compared with current and future terrestrial power generation and transmission systems to determine their technical and economic suitability for meeting power demands in the period of 1990 and beyond while meeting ever-increasing environmental and social constraints.

  11. Solar Microwave and Geomagnetic Field Pulsations as Space Weather Factors

    NASA Astrophysics Data System (ADS)

    Snegirev, S. D.; Fridman, V. M.; Sheiner, O. A.

    The procedure of short-term prediction of main solar flares was created on the basis of temporal behavior of long-period microwave pulsations [Kobrin et al., 1997]. At the same time it was shown that before these flares one could observe long-period (T > 20 min) pulsations of geomagnetic field [Kobrin et al, 1985]. The resemblance between microwave and geomagnetic pulsations (duration and temporal behaviour) allows us to propose the common nature of these variations: the reflection of solar energy accumulation and instabilities in solar centers of activity. To be an important factor of Space Weather above mentioned pulsations can be useful for constructing the procedures to predict the near Earth's conditions. This work was supported by the Russian Foundation for Fundamental Research and Russian Federal Programm "Astronomy" (grant N 1.5.5.5). Kobrin M.M, Malygin V.I., Snegirev S.D. Plan. Space Sci., 33, N11, p. 1251 (1985). Kobrin M.M., Pakhomov V.V., Snegirev S.D., Fridman V.M., Sheiner O.A. Proc. Workshop `STPW-96', Tokyo: RCW, p. 200 (1997).

  12. Human exposure to large solar particle events in space

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Curtis, S. B.

    Whenever energetic solar protons produced by solar particle events traverse bulk matter, they undergo various nuclear and atomic collision processes which significantly alter the physical characteristics and biologically important properties of their transported radiation fields. These physical interactions and their effect on the resulting radiation field within matter are described within the context of a recently developed deterministic, coupled neutron-proton space radiation transport computer code (BRYNTRN). Using this computer code, estimates of human exposure in interplanetary space, behind nominal (2 g/cm2) and storm shelter (20 g/cm2) thicknesses of aluminum shielding, are made for the large solar proton event of August 1972. Included in these calculations are estimates of cumulative exposures to the skin, ocular lens, and bone marrow as a function of time during the event. Risk assessment in terms of absorbed dose and dose equivalent is discussed for these organs. Also presented are estimates of organ exposures for hypothetical, worst-case flare scenarios. The rate of dose equivalent accumulation places this situation in an interesting region of dose rate between the very low values of usual concern in terrestrial radiation environments and the high dose rate values prevalent in radiation therapy.

  13. Reliability models applicable to space telescope solar array assembly system

    NASA Technical Reports Server (NTRS)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  14. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M. K.; McComas, D. J.; Raouafi, N. E.; Szabo, A.

    2016-12-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP's main science goal is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASA's Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPP's perihelion from 35 solar radii (RS) for the first orbit to {<}10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions

  15. Testing the Solar Probe Cup, an Instrument Designed to Touch the Sun

    NASA Technical Reports Server (NTRS)

    Whittlesey, Phyllis L.; Case, Anthony W.; Kasper, Justin Christophe; Wright, Kenneth H., Jr.; Alterman, Ben; Cirtain, Jonathan W.; Bookbinder, Jay; Korreck, Kelly E.; Stevens, Michael Louis

    2014-01-01

    Solar Probe Plus will be the first, fastest, and closest mission to the sun, providing the first direct sampling of the sub-Alfvenic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  16. Testing the Solar Probe Cup, An Instrument Designed to Touch The Sun

    NASA Technical Reports Server (NTRS)

    Whittlesey, Phyllis; Case, Anthony; Kasper, Justin; Wright, Kenneth; Alterman, Benjamin; Cirtain, Jonathan; Bookbinder, Jay; Korreck, Kelly; Stevens, Michael; Schneider, Todd; Vaughn, Jason

    2014-01-01

    Abstract: Solar Probe Plus will be the first, fastest, and closest mission to the Sun, providing the first direct sampling of the sub-Alfvénic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests are created for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight-like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  17. Solar and Space Physics: A Science for a Technological Society

    NASA Technical Reports Server (NTRS)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  18. Probing the face-space of individuals with prosopagnosia.

    PubMed

    Nishimura, Mayu; Doyle, Jaime; Humphreys, Kate; Behrmann, Marlene

    2010-05-01

    A useful framework for understanding the mental representation of facial identity is face-space (Valentine, 1991), a multi-dimensional cognitive map in which individual faces are coded relative to the average of previously encountered faces, and in which the distance among faces represents their perceived similarity. We examined whether individuals with prosopagnosia, a disorder characterized by an inability to recognize familiar faces despite normal visual acuity and intellectual abilities, evince behavior consistent with this underlying representational schema. To do so, we compared the performance of 6 individuals with congenital prosopagnosia (CP), with a group of age- and gender-matched control participants in a series of experiments involving judgments of facial identity. We used digital images of male and female faces and morphed them to varying degrees relative to an average face, to create caricatures, anti-caricatures, and anti-faces (i.e. faces of the opposite identity). Across 5 behavioral tasks, CP individuals' performance was similar to that of the control group and consistent with the face-space framework. As a test of the sensitivity of our measures in revealing face processing abnormalities, we also tested a single acquired prosopagnosic (AP) individual, whose performance on the same tasks deviated significantly from the control and CP groups. The findings suggest that, despite an inability to recognize individual identities, CPs perceive faces in a manner consistent with norm-based coding of facial identity, although their representation is likely supported by a feature-based strategy. We suggest that the apparently normal posterior cortical regions, including the fusiform face area, serve as the neural substrate for at least a coarse, feature-based face-space map in CP and that their face recognition impairment arises from the disconnection between these regions and more anterior cortical sites.

  19. Space probe/satellite ejection apparatus for spacecraft

    NASA Technical Reports Server (NTRS)

    Smyly, H. M.; Miller, C. D.; Cloyd, R. A.; Heller, C. (Inventor)

    1984-01-01

    An ejection apparatus for spinning and propelling objects for ejection from a spacecraft at a desired velocity and rotational speed is discussed. The apparatus includes a launch cradle on which the space object to be ejected rests. The cradle is rotatably supported by a central hub secured to the upper end of the pneumatic cylinder piston shaft. Release mechanisms consisting of a retractable pin and locking lug is utilized to hold the cradle and object to be ejected. The release mechanism has a fixed barrier member which holds the retractable pin in engagement with the locking lug until release by upward movement of the launch cradle beyond the barrier height.

  20. Space probe/satellite ejection apparatus for spacecraft

    NASA Technical Reports Server (NTRS)

    Smyly, H. M.; Miller, C. D.; Cloyd, R. A.; Heller, C. (Inventor)

    1985-01-01

    An ejection apparatus for spinning and propelling objects for ejection from a spacecraft at a desired velocity and rotational speed is discussed. The apparatus includes a launch cradle on which the space object to be ejected rests. The cradle is rotatably supported by a central hub secured to the upper end of the pneumatic cylinder piston shaft. Release mechanisms consisting of a retractable pin and locking lug is utilized to hold the cradle and object to be ejected. The release mechanism has a fixed barrier member which holds the retractable pin in engagement with the locking lug until release by upward movement of the launch cradle beyond the barrier height.

  1. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  2. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis and test data to date. A description of the LMSC performance model future test plans and predicted performance ranges are also given.

  3. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large Photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis, and test data to date. A description of the LMSC performance model, future test plans, and predicted performance ranges are also given.

  4. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2014-01-01

    On-orbit measurements of new photovoltaic (PV) technologies for space power are an essential step in the development and qualification of advanced solar cells. NASA Glenn Research Center will fly and measure several solar cells attached to NASA Goddards Robotic Refueling Mission (RRM), expected to be launched in 2014. Industry and government partners have provided advanced PV devices for evaluation of performance and environmental durability. The experiment is completely self-contained, providing its own power and internal data storage. Several new cell technologies including Inverted Metamorphic Multi-junction and four-junction cells will be tested.

  5. GaAs solar cells for concentrator systems in space

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Knechtli, R. C.; Kamath, G. S.

    1983-01-01

    Cells for operation in space up to more than 100 suns were made, and an AMO efficiency of 21% at 100 suns with these cells was obtained. The increased efficiency resulted not only from the higher open circuit voltage associated with the higher light intensity (higher short circuit current); it also benefitted from the increase in fill factor caused by the lower relative contribution of the generation recombination current to the forward bias current when the cell's operating current density is increased. The experimental cells exhibited an AMO efficiency close to 16% at 200 C. The prospect of exploiting this capability for the continuous annealing of radiation damage or for high temperature missions (e.g., near Sun missions) remains therefore open. Space systems with concentration ratios on the order of 100 suns are presently under development. The tradeoff between increased concentration ratio and increased loss due to the cell's series resistance remains attractive even for space applications at a solar concentrator ratio of 100 suns. In the design of contact configuration with low enough series resistance for such solar concentration ratios, the shallow junction depth needed for good radiation hardness and the thin AlGaAs layer thickness needed to avoid excessive optical absorption losses have to be retained.

  6. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Henley, Mark; Davis, Dean; Born, Andrew; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near-term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 15 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  7. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  8. On the Prediction of Solar Cell Degradation in Space

    NASA Astrophysics Data System (ADS)

    Bourgoin, J. C.; Boizot, B.; Khirouni, K.; Khorenko, V.

    2014-08-01

    We discuss the validity of the procedure which is used to predict End Of Life performances of a solar cell in space. This procedure consists to measure the performances of the cell after it has been irradiated at the EOL fluence during a time ti very short compared to the duration tm of the mission in space, i.e. with a considerably larger flux. We show that this procedure is valid only when the defects created by the irradiation do not anneal (thermally or by carrier injection) with a time constant shorter than tm or larger than ti. This can be a common situation since annealing of irradiation induced defects occurs in all type of cells, at least in specific conditions (temperature, intensity of illumination, flux and nature of irradiating particles). Using modeling, we illustrate the effect of injection or thermal annealing on EOL prediction in the case GaInP, material at the heart of modern high efficiency space solar cells.

  9. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques.

    PubMed

    Müller-Buschbaum, Peter

    2014-12-10

    Grazing incidence X-ray scattering (GIXS) provides unique insights into the morphology of active materials and thin film layers used in organic photovoltaic devices. With grazing incidence wide angle X-ray scattering (GIWAXS) the molecular arrangement of the material is probed. GIWAXS is sensitive to the crystalline parts and allows for the determination of the crystal structure and the orientation of the crystalline regions with respect to the electrodes. With grazing incidence small angle X-ray scattering (GISAXS) the nano-scale structure inside the films is probed. As GISAXS is sensitive to length scales from nanometers to several hundred nanometers, all relevant length scales of organic solar cells are detectable. After an introduction to GISAXS and GIWAXS, selected examples for application of both techniques to active layer materials are reviewed. The particular focus is on conjugated polymers, such as poly(3-hexylthiophene) (P3HT).

  10. Correlation tracking study for meter-class solar telescope on space shuttle. [solar granulation

    NASA Technical Reports Server (NTRS)

    Smithson, R. C.; Tarbell, T. D.

    1977-01-01

    The theory and expected performance level of correlation trackers used to control the pointing of a solar telescope in space using white light granulation as a target were studied. Three specific trackers were modeled and their performance levels predicted for telescopes of various apertures. The performance of the computer model trackers on computer enhanced granulation photographs was evaluated. Parametric equations for predicting tracker performance are presented.

  11. Welded Titanium Case for Space-Probe Rocket Motor

    NASA Technical Reports Server (NTRS)

    Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.

    1959-01-01

    Early in 1958, the Jet Propulsion Laboratory of the California Institute of Technology was requested to participate in a lunar-probe mission code-named Juno II which would place a 15-lb Instrumented payload (Pioneer IV) in the vicinity of the moon. The vehicle was to use the same high-speed upper-stage assembly as flown on the successful Jupiter-C configuration; however, the first-stage booster was to be a Jupiter rather than a Redstone. An analysis of the intended flight and payload configuration Indicated that the feasibility of accomplishing the mission was questionable and that additional performance would have to be obtained if the mission was to be feasible. Since the most efficient way of Increasing the performance of a staged vehicle is to increase the performance of the last stage, a study of possible ways of doing this was made.. Because of the time schedule placed on this effort It was decided to reduce the weight of the fourth-stage rocket-motor case by substituting the annealed 6Al--4V titanium alloy for the Type 410 stainless steel. Although this introduced an unfamiliar material, It reduced the changes in design and fabrication techniques. This particular titanium alloy was chosen on the basis of previous tests which proved the suitability of the alloy as a pressure-vessel material when used at an annealed yield strength of about 120, 000 psi. The titanium-case fourth stage of Juno U is shown with the payload and on the missile in Fig. 1; the stainless-steel motor cases used in the Jupiter-C vehicle are shown in Fig. 2. The fourth-stage motor case has a diameter of 6 in., a length of approximately 38 in. center dot and a nominal cylindrical wall thickness of 0.025 in. As shown in Fig. 1, the case serves as the structural support of the payload and is aligned to the upper stage assembly through an alignment ring. The nozzle is threaded into the end of the motor case, and is of the ceramic-coated steel design. Figure 3 shows a comparison of the

  12. A perspective about the total solar eclipse observation from future space settlements and a review of Indonesian space researches

    NASA Astrophysics Data System (ADS)

    Sastradipradja, D.; Dwivany, F. M.; Swandjaja, L.

    2016-11-01

    Viewing astronomy objects from space is superior to that from Earth due to the absence of terrestrial atmospheric disturbances. Since decades ago, there has been an idea of building gigantic spaceships to live in, i.e., low earth orbit (LEO) settlement. In the context of solar eclipse, the presuming space settlements will accommodate future solar eclipse chasers (amateur or professional astronomers) to observe solar eclipse from space. Not only for scientific purpose, human personal observation from space is also needed for getting aesthetical mental impression. Furthermore, since space science indirectly aids solar eclipse observation, we will discuss the related history and development of Indonesian space experiments. Space science is an essential knowledge to be mastered by all nations.

  13. Developing Techniques for Spacecraft Noise Removal in Preparation for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Bowen, T. A.; Bale, S. D.

    2015-12-01

    Many satellite magnetometers easily observe non-environmental fields generated by spacecraft electronics and mechanisms. The dominant sources of spacecraft noise differ between various missions. Accordingly, a variety of techniques are employed in removing such noise from science-level magnetic field data. We present several example sources of spacecraft noise, including reaction wheels and instrument power supplies, as well as the accompanying observational signatures present in the magnetic field data. Several potential algorithms are proposed to remove this contaminant noise. These algorithms demonstrate the effect of spacecraft noise on interpreting high precision magnetic field measurements. These noise sources and algorithms are highly relevant to future missions such as Solar Probe Plus and Solar Orbiter.

  14. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells.

    PubMed

    Song, Zhaoning; Werner, Jérémie; Shrestha, Niraj; Sahli, Florent; De Wolf, Stefaan; Niesen, Björn; Watthage, Suneth C; Phillips, Adam B; Ballif, Christophe; Ellingson, Randy J; Heben, Michael J

    2016-12-15

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  15. Studies of acceleration processes in the corona using ion measurements on the solar probe mission

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1978-01-01

    The energy spectra and composition of particles escaping from the Sun provide essential information on mechanisms responsible for their acceleration, and may also be used to characterize the regions where they are accelerated and confined and through which they propagate. The suprathermal energy range, which extends from solar wind energies (approximately 1 KeV) to about 1 MeV/nucleon, is of special interest to studies of nonthermal acceleration processes because a large fraction of particles is likely to be accelerated into this energy range. Data obtained from near earth observations of particles in the suprathermal energy range are reviewed. The necessary capabilities of an a ion composition experiment in the solar probe mission and the required ion measurements are discussed. A possible configuration of an instrument consisting of an electrostatic deflection system, modest post acceleration, and a time of flight versus energy system is described as well as its possible location on the spacecraft.

  16. Dropouts, spreading, and squeezing of solar particle distributions and space weather variability

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Ruffolo, D. J.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.

    2015-12-01

    In the past 15 years, observations and theories concerning dropouts of solar energetic particles have made it clear that the lateral spread of field lines and particles from a given location near the Sun is not a purely diffusive process. Particles of low energy from impulsive solar events exhibit abrupt changes in flux (dropouts) due to filamentation of magnetic connection from the Sun, indicating that magnetic flux tube-like structures at least partially persist to Earth orbit. Our simulations based on a corresponding spherical two-component model of Alfvénic (slab) and 2D magnetic fluctuations indicate that such particles mostly follow field lines, which spread over ˜25° at Earth orbit, and exhibit dropout features. On the other hand, gradual solar events are of practical interest because they can produce greatly enhanced high-energy ion fluxes, which can cause radiation damage to satellites, spacecraft, and astronauts. While gradual events do not exhibit dropouts in the above sense, we show that the distribution of high-energy (E≥1 GeV) protons is squeezed toward magnetic flux tube-like structures with a specific polarity due to the structures' conical shape. Since it is difficult to observationally determine what polarity of flux structure the Earth is in at a given time, this transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction. Partially supported by the Thailand Research Fund (Grant BRG5880009), a Postdoctoral Fellowship from the Thailand Center of Excellence in Physics, a Research Fellowship from the Faculty of Science at Mahidol University, the U.S. NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX14AI63G, and LWS NNX15AB88G), and the Solar Probe Plus/ISIS project (D99031L).

  17. Improved performance design of gallium arsenide solar cells for space

    NASA Technical Reports Server (NTRS)

    Parekh, R. H.; Barnett, A. M.

    1984-01-01

    An improved design, shallow junction heteroface, n-p, gallium arsenide solar cell for space applications is reported, with a predicted AM0 efficiency in the 21.9 to 23.0 percent range. The optimized n-p structure, while slightly more efficient, has the added advantage of being less susceptible to radiation-induced degradation by virtue of this thin top junction layer. Detailed spectral response curves and an analysis of the loss mechanisms are reported. The details of the design are readily measurable. The optimized designs were reached by quantifying the dominant loss mechanisms and then minimizing them by using computer simulations.

  18. Space borne photometry perturbations from solar light scatterd by debris

    NASA Astrophysics Data System (ADS)

    Mandeville, Jean-Claude; Perrin, Jean-Marie; Vuillemin, André

    2001-10-01

    We study the possible impairment of the solar light scattered by small debris, measured by high photometric quality instrument, during space borne observations. We compute the contribution of the fragments released on orbit by the host satellite and of the debris already present in the background. Preliminary results show that these spurious fluxes can reach the level of the collected Zodiacal Light: there are the main components of the noise level which affect the scientific signal. On the future, threats on high sensitivity photometric missions should rise with the increasing launches of satellite constellations if no legislation controls the design of satellites.

  19. METEOSPACE, solar monitoring and space weather at Calern observatory

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Malherbe, J.-M.; Crussaire, D.; Morand, F.; Ruty, F.; Biree, L.; Aboudarham, J.; Fuller, N.; Renaud, C.; Meftah, M.

    2016-12-01

    METEOSPACE is a new partnership project between the Paris Observatory (OP), the Observatoire de la Côte d'Azur (OCA), the French Air Force and a service company (LUNA technology) for the development and operation of a set of small telescopes Hα / Ca II K / Ca II H / G band to be installed at on the Calern plateau (OCA). The objective is to monitor solar activity for both research and its applications in space weather through continuous optical observations of the dynamic phenomena that are visible in the chromosphere: eruptions, destabilization of the filaments triggering coronal mass ejections and associated Moreton waves.

  20. Means to remove electrode contamination effect of Langmuir probe measurement in space

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  1. Means to remove electrode contamination effect of Langmuir probe measurement in space.

    PubMed

    Oyama, K-I; Lee, C H; Fang, H K; Cheng, C Z

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  2. Means to remove electrode contamination effect of Langmuir probe measurement in space

    SciTech Connect

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  3. Material Development of Faraday Cup Grids for the Solar Probe Plus Mission

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Wright, K. H.; Cirtain, J. W.; Lee, R.; Kasper, J. C.

    2011-01-01

    The Solar Probe Plus mission will launch a spacecraft to the Sun to study it's outer atmosphere. One of the instruments on board will be a Faraday Cup (FC) sensor. The FC will determine solar wind properties by measuring the current produced by ions striking a metal collector plate. It will be directly exposed to the Sun and will be subject to the temperature and radiation environment that exist within 10 solar radii. Conducting grids within the FC are biased up to 10 kV and are used to selectively transmit particles based on their energy to charge ratio. We report on the development of SiC grids. Tests were done on nitrogen-doped SiC starting disks obtained from several vendors, including annealing under vacuum at 1400 C and measurement of their electrical properties. SiC grids were manufactured using a photolithographic and plasma-etching process. The grids were incorporated into a prototype FC and tested in a simulated solar wind chamber. The energy cutoffs were measured for both proton and electron fluxes and met the anticipated sensor requirements.

  4. Vital phase of space science. [solar terrestrial interactions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1994-01-01

    Space science began with the indirect phase where the activity in space was inferred from such terrestrial phenomena as geomagnetic storms, ionospheric variations, and fluctuations in the cosmic ray intensity. The direct phase was initiated with spaceflight placing instruments directly in space and permitting the direct observation of UV and X rays, as well as precision observations of solar luminosity variations. The evidence from these many direct studies, together with the historical record of terrestrial conditions, shows that the variations of the luminosity of the Sun affect the terrestrial atmosphere at all levels, with devastating changes in climate tracking the major changes in the activity level and luminosity of the Sun. The quantification and understanding of this vital connection should be the first priority of space science and geophysics, from oceans and atmosphere through the ionosphere, magnetosphere, and all the way to the convective zone of the Sun. It becomes the vital phase of space science, focused on the basic science of the changing habitability of Earth.

  5. The Solar System: Recent Exploration Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The solar system has been visited by space probes, ranging from the Mariner Mercury-Venus mission exploring inward toward the sun, and continuing through the Voyager probes out into interstellar space and (on its way now) the New Horizons probe to Pluto and the Kuiper belt. This talk examines what we know of the planets of the solar system from probes, and talks about where we will go from here.

  6. Simulating satellite and space probe motion at high school with spreadsheets

    NASA Astrophysics Data System (ADS)

    Benacka, Jan

    2017-01-01

    This paper gives an account of an experiment in which thirty-three high school students of ages 17-19 developed spreadsheet numerical models of satellite and space probe motion. The models are free to download. A survey was carried out to find out the students’ opinion of the lessons.

  7. Launch summary for 1978 - 1982. [sounding rockets, space probes, and satellites

    NASA Technical Reports Server (NTRS)

    Hills, H. K.

    1984-01-01

    Data pertinent to the launching of space probes, soundings rockets, and satellites presented in tables include launch date, time, and site; agency rocket identification; sponsoring country or countries; instruments carried for experiments; the peak altitude achieved by the rockets; and the apoapsis and periapsis for satellites. The experimenter or institution involved in the launching is also cited.

  8. Space Environmental Testing of Dye-Sensitized Solar Cells

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Anglin, Emily J.; Hepp, Aloysius F.; Bailey, Sheila G.; Scheiman, David A.; Castro, Stephenie L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent advances in nanocrystalline dye-sensitized solar cells has lead NASA to investigate the potential of these devices for space power generation, Reported here is the first space environment characterization of these type of photovoltaic devices. Cells containing liquid electrolytes were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AMO) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6% loss in efficiency as a result of the thermal cycling,

  9. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  10. High-efficiency heteroepitaxial solar cells for space power applications

    NASA Technical Reports Server (NTRS)

    Vernon, S. M.; Tobin, S. P.; Keavney, C. J.; Wojtczuk, S. J.

    1989-01-01

    The experimental results for several technical approaches aimed at achieving highly efficient solar cells for space-power applications are reported. Efficiencies of up to 24.5 percent (170X, AM0) and 21.7 percent (1X, AM0) have been achieved with homoepitaxial GaAs p/n cells. This one-sun AM0 efficiency value is believed to be the highest reported to date. Tandem solar cells utilizing GaAs-on-Ge structures have been fabricated and shown to have efficiencies up to 21.3 percent (1X, AM0), and a GaAs-on-Si cell at 15.2 percent (1X, AM0) is reported. Homoepitaxial n/p InP cells with an efficiency of 18.8 percent (1X, AM0) are also reported. The fabrication of heteroepitaxial InP solar cells with one-sun AM0 efficiency values of 9.4 percent (on GaAs) and 7.2 percent (on Si) is described.

  11. Shape control of slack space reflectors using modulated solar pressure.

    PubMed

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R

    2015-07-08

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.

  12. Shape control of slack space reflectors using modulated solar pressure

    PubMed Central

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.

    2015-01-01

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes. PMID:26345083

  13. Solar and space weather phenomenological forecasting using pattern recognition operators

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Ramos, F.; Vijaykumar, N.; Andrade, M.; Fernandes, F.; Cecatto, J.; Sharma, A.; Sawant, H.

    Yohkoh, SOHO and HESSI satellites have shown morphological change of the coronal magnetic structures in several scales. Particularly, the soft X ray images- have revealed the existence of dynamic structures with magnetic field configuration varying from regular to complex patterns. In order to characterize the spatio- temporal evolution of such structures, a methodology is proposed in terms of matrix computational operators to quantify the amount of symmetry breaking along the gradient field evolution of the sequence of images. Characterization of symmetry breaking in the gradient field of the energy envelope has been an useful tool to understand complex plasma regimes. In this paper we introduce the application of the Gradient Pattern Analysis (GPA) technique as a new matrix computational operator for spatio-temporal plasma gradient field analysis. This operator yields a measure of the symmetry breaking and phase disorder parameters responding to the active region plasma regimes. In order to characterize the GPA performance into the context of solar physics, we apply this technique on X-ray emission measurement from solar coronal plasma observed by means of Yohkoh satellite. The preliminary results and interpretations suggest a new phenomenological approach for the spatio- temporal evolution of soft X ray active regions, mainly those whose morphology- goes from a regular to a complex magnetic configuration a companied by thec increase of the dissipated energy. We discuss the importance of this semi-empirical modelling for space weather forecasting into the context of solar-terrestrial relationship.

  14. Ultralightweight Fresnel Lens Solar Concentrators for Space Power

    NASA Technical Reports Server (NTRS)

    ONeill, M. J.; McDanal, A. J.

    2000-01-01

    The first phase of this project was completed in March 2000, and included the successful technology demonstration of a new ultralightweight photovoltaic concentrator array at the fully functional panel level. The new array is called the Stretched Lens Aurora (SLA) array, and uses deployable, flexible, thin-film silicone rubber Fresnel lenses to focus sunlight onto high efficiency multijunction solar cells, which are mounted to a composite radiator surface for waste heat dissipation. A prototype panel was delivered to NASA Marshall in March 2000, and comprised four side-by-side lenses focussing sunlight onto four side-by-side photovoltaic receivers. This prototype panel was tested by NASA Glenn prior to delivery to NASA Marshall. The best of the four lens/receiver modules achieved 27.4% efficiency at room temperature in the NASA Glenn solar simulator tests. This performance equates to 375 W/sq.m. areal power and 378 W/kg specific power at the fully functional panel level. We believe this to be the first space solar array of any kind to simulataneously meet the two long-standing NASA goals of 300 W/sq.m. and 300 W/kg at the functional panel level. Key results for the first phase of the program have been documented by ENTECH in a Draft Final Technical Report, which is presently being reviewed by NASA, and which should be published in the near future.

  15. Development of advanced silicon solar cells for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lillington, David R.

    1990-01-01

    This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.

  16. First Solar System Results of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    VanCleve, J.; Cruikshank, D. P.; Stansberry, J. A.; Burgdorf, M. J.; Devost, D.; Emery, J. P.; Fazio, G.; Fernandez, Y. R.; Glaccum, W.; Grillmair, C.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is now operational and delivers unprecedented sensitivity for the observation of Solar System targets. Spitzer's capabilities and first general results were presented at the January 2004 AAS meeting. In this poster, we focus on Spitzer's performance for moving targets, and the first Solar System results. Spitzer has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 m, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 m. MIPS (Multiband Imaging Photometer for SIRTF) does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. Guaranteed Time Observer (GTO) programs include the moons of the outer Solar System, Pluto, Centaurs, Kuiper Belt Objects, and comets

  17. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Potter, Seth D.; Howell, J.; Mankins, J. C.; Fikes, John C. (Technical Monitor)

    2002-01-01

    Space Solar Power (SSP). combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this paper WPT options using radio waves and light waves are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even from the moon. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term. we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class 'Power Plug' Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in near-term space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth. Power Relay Satellites are also considered as a potential near- to mid-term means to transmit power from Earth to Space and back to distant receiving sites on Earth. This paper briefly considers microwave and laser beaming for an initial Power Relay Satellite system, and concludes that anticipated advancements in laser technology make laser-based concepts more attractive than microwave-based concepts. Social and economic considerations are briefly discussed, and a conceptual description for a laser-based system is offered for illustrative purposes. Continuing technological advances are needed if laser-based systems are to become practical and efficient or near- and far-term applications.

  18. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  19. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  20. Design concepts of solar thermoelectric generators in space applications

    NASA Technical Reports Server (NTRS)

    Raag, V.; Hankins, L.; Swerdling, M.

    1978-01-01

    Several thermoelectric technologies have been examined as to their suitability for use in a solar thermoelectric generator (STG) as a nonpropulsive power source for space applications. The results show that of all the presently available thermoelectric technologies, i.e., lead telluride, bismuth telluride, selenide, and silicon-germanium alloys, the latter type provides the optimum STG. Detailed results are presented on the performance and configurational characteristics of various silicon-germanium alloy STGs, including the performance of such STGs as a function of time in a Mercury orbit and the orbit of Mercury around the sun. It is shown that an STG design based on the use of silicon germanium alloy thermoelectric material, using multiple high voltage thermopiles with individual solar concentrators, presents the optimum combination of technology and configuration for minimizing power source mass. Additional concepts studied and discussed are the flat plate individual thermopile type and single concentrator compact thermopile type. The STG possesses an attractive potential for this application and represents a useful addition to the family of power sources for consideration in various space applications.

  1. Solar System Observations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Lunine, J.; Sonneborn, G.; Rieke, G.; Rieke, M.; Stansberry, J.; Schaller, E.; Orton, G.; Isaacs, J.

    2010-10-01

    The James Webb Space Telescope is a large infrared space telescope currently scheduled for launch in 2014. Webb will reside in a elliptical orbit about the semi-stable second Lagrange point (L2). Its 6.5-meter primary mirror is designed to work primarily in the infrared, with some capability in the visible (i.e., from 0.6 to 27 microns). Webb has four science instruments: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRSpec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor Tunable Filter Camera (FGS-TFI). One of Webb's science themes is "Planetary Systems and the Origins of Life" which includes observations of Solar System objects; the telescope will be able to track moving targets with rates up to 0.030 arcseconds per second. Its combination of broad wavelength range, high sensitivity, and near-diffraction limited imaging around 2 microns make it a superb facility for a variety of Solar System programs. In this poster, we present an overview of Webb's scientific capabilities and their relevance to current topics in planetary science.

  2. Recent progress of Spectrolab high-efficiency space solar cells

    NASA Astrophysics Data System (ADS)

    Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.

    2013-09-01

    Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.

  3. International Space Station Solar Array Bifacial Electrical Performance Model Developed

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Kerslake, Thomas W.

    2003-01-01

    The first U.S. photovoltaic array (PVA) was activated on the International Space Station (ISS) in December 2000. Though normally Sun-tracking, U.S. ISS arrays are held stationary to minimize plume impingement from the space shuttle during docking and undocking, as well as during ISS assembly operations. Because of these operational constraints, it is not always possible to point the front side of the arrays at the Sun. In these cases, sunlight directly illuminates the backside of the PVA as well as albedo illumination on either the front or the back. Since the solar cells are mounted on a thin, solar transparent substrate, appreciable backside power (about one-third of the front-side power) is produced. To provide a more detailed assessment of the ISS power production capability, researchers at the NASA Glenn Research Center developed a PVA electrical performance model applicable to generalized bifacial illumination conditions. The model validation was done using on-orbit PVA performance.

  4. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  5. Cross-comparison of spacecraft-environment interaction model predictions applied to Solar Probe Plus near perihelion

    SciTech Connect

    Marchand, R.; Miyake, Y.; Usui, H.; Deca, J.; Lapenta, G.; Matéo-Vélez, J. C.; Ergun, R. E.; Sturner, A.; Génot, V.; Hilgers, A.; Markidis, S.

    2014-06-15

    Five spacecraft-plasma models are used to simulate the interaction of a simplified geometry Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. By considering similarities and differences between results obtained with different numerical approaches under well defined conditions, the consistency and validity of our models can be assessed. The impact on model predictions of physical effects of importance in the SPP mission is also considered by comparing results obtained with and without these effects. Simulation results are presented and compared with increasing levels of complexity in the physics of interaction between solar environment and the SPP spacecraft. The comparisons focus particularly on spacecraft floating potentials, contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. The physical effects considered include spacecraft charging, photoelectron and secondary electron emission, and the presence of a background magnetic field. Model predictions obtained with our different computational approaches are found to be in agreement within 2% when the same physical processes are taken into account and treated similarly. The comparisons thus indicate that, with the correct description of important physical effects, our simulation models should have the required skill to predict details of satellite-plasma interaction physics under relevant conditions, with a good level of confidence. Our models concur in predicting a negative floating potential V{sub fl}∼−10V for SPP at perihelion. They also predict a “saturated emission regime” whereby most emitted photo- and secondary electron will be reflected by a potential barrier near the surface, back to the spacecraft where they will be recollected.

  6. Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes 1958-2000

    NASA Technical Reports Server (NTRS)

    Siddiqi, Asif A.; Launius, Roger (Technical Monitor)

    2002-01-01

    This monograph contains brief descriptions of all robotic deep space missions attempted since the opening of the space age in 1957. The missions are listed strictly chronologically in order of launch date (not by planetary encounter).

  7. On Using Solar Radio Emission to Probe Interiors of Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Gary, D. E.; Sahr, J. D.; Asphaug, E. I.

    2015-12-01

    Asteroids, comets and other primitive solar system bodies are key sources of information on the early solar system, on volatiles and organics delivered to the terrestrial planets, and on processes of planetary formation now observed in operation around other stars. Whether asteroids (in various size classes) are rubble piles or monolithic, and whether any porosity or internal voids contain volatiles, are first-order questions for understanding the delivery of volatiles to the early Earth, and for assessing impact hazards. Information on bulk composition aids discrimination between types and origins of primitive bodies, .e.g., the degree of aqueous alteration and bound-water content of carbonaceous chondrite bodies, and the volatile mass fraction of comets. Radar and radio methods can provide direct information on bulk composition, micro- and macro-porosity, body-scale internal structure, and on whether voids in rocky materials are volatile- or vacuum-filled. Such methods therefore figure prominently in current missions to primitive bodies (e.g., CONSERT) and in a variety of proposed missions. Radio transmitters necessary for conventional methods, however, add considerably to spacecraft mass and power requirements. Moreover, at many wavelengths most useful for radio sounding, powerful radio emission from the Sun strongly interferes with conventional signals. Here we present initial results from an investigation of how solar radio emission could serve as a natural resource for probing interiors of primitive bodies, rather than as interference. We briefly review methods for using stochastic radio illumination (aka noise radar methods), and illustrate the characteristics of solar radio emission relevant to mission design (e.g., observed intervals between emission events of specified intensity for different points in the solar cycle). We then discuss methods for selecting and interpreting observations in terms of interior properties, for bodies is different size classes

  8. The Solar Umbrella: A Low-cost Demonstration of Scalable Space Based Solar Power

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Trease, Brian P.; Sherwood, Brent

    2013-01-01

    Within the past decade, the Space Solar Power (SSP) community has seen an influx of stakeholders willing to entertain the SSP prospect of potentially boundless, base-load solar energy. Interested parties affiliated with the Department of Defense (DoD), the private sector, and various international entities have all agreed that while the benefits of SSP are tremendous and potentially profitable, the risk associated with developing an efficient end to end SSP harvesting system is still very high. In an effort to reduce the implementation risk for future SSP architectures, this study proposes a system level design that is both low-cost and seeks to demonstrate the furthest transmission of wireless power to date. The overall concept is presented and each subsystem is explained in detail with best estimates of current implementable technologies. Basic cost models were constructed based on input from JPL subject matter experts and assume that the technology demonstration would be carried out by a federally funded entity. The main thrust of the architecture is to demonstrate that a usable amount of solar power can be safely and reliably transmitted from space to the Earth's surface; however, maximum power scalability limits and their cost implications are discussed.

  9. Next space solar observatory SOLAR-C: mission instruments and science objectives

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Watanabe, T.; Hara, H.; Ichimoto, K.; Kubo, M.; Kusano, K.; Sakao, T.; Shimizu, T.; Suematsu, Y.; Tsuneta, S.

    2012-12-01

    SOLAR-C, the fourth space solar mission in Japan, is under study with a launch target of fiscal year 2018. A key concept of the mission is to view the photosphere, chromosphere, and corona as one system coupled by magnetic fields along with resolving the size scale of fundamental physical processes connecting these atmospheric layers. It is especially important to study magnetic structure in the chromosphere as an interface layer between the photosphere and the corona. The SOLAR-C satellite is equipped with three telescopes, the Solar UV-Visible-IR Telescope (SUVIT), the EUV/FUV High Throughput Spectroscopic Telescope (EUVS/LEMUR), and the X-ray Imaging Telescope (XIT). Observations with SUVIT of photospheric and chromospheric magnetic fields make it possible to infer three dimensional magnetic structure extending from the photosphere to the chromosphere and corona.This helps to identify magnetic structures causing magnetic reconnection, and clarify how waves are propagated, reflected, and dissipated. Phenomena indicative of or byproducts of magnetic reconnection, such as flows and shocks, are to be captured by SUVIT and by spectroscopic observations using EUVS/LEMUR, while XIT observes rapid changes in temperature distribution of plasma heated by shock waves.

  10. Polarized Radiation Observables for Probing the Magnetism of the Outer Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, J.

    2014-10-01

    The basic idea of optical pumping, for which Alfred Kastler received the 1966 Nobel Prize in Physics, is that the absorption and scattering of anisotropic radiation can produce population imbalances and quantum coherence among the magnetic substates of atomic levels. The degree of this radiatively-induced atomic level polarization, which is very sensitive to the presence of magnetic fields, can be determined by observing the polarization of the scattered or transmitted spectral line radiation. The most important point for solar physics is that the outer solar atmosphere is an optically pumped vapor and that the polarization of the emergent spectral line radiation can be exploited to obtain quantitative information on the strength and/or geometry of magnetic fields within the chromosphere, transition region, and corona. Here we review some recent investigations of the polarization produced by optical pumping in selected IR, FUV, and EUV spectral lines, showing that their magnetic sensitivity is suitable for probing the magnetism of the outer solar atmosphere.

  11. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J. A.; Hammel, H. B.; Lunine, J. I.

    2014-01-01

    The James Webb Space Telescope (JWST) will provide important new capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. Integral-field spectroscopy is performed with apertures 3 to 7 arcsec square (spatial slices of 0.1 to 0.6 arcsec). JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This tracking capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST will observe in the solar elongation range of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During an observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using data from JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly fixed orientation relative to the ecliptic. This results from the fact that the Observatory's sunshield and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example

  12. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J.; Hammel, H. B.; Lunine, J. I.

    2013-10-01

    The James Webb Space Telescope (JWST) will provide breakthrough capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST can observe solar elongation of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During the observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly-fixed orientation relative to the ecliptic. This resultsfrom the fact that the Observatory's sun-shade and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example, to accommodate a Target of Opportunity - TOO). The event-driven operations system supports time-critical observations and TOOs. The minimum response

  13. Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather

    DTIC Science & Technology

    2012-07-06

    Ephemeral Brightening,” 2nd ATST – East Workshop In Solar Physics: Magnetic Fields From The Photosphere To The Corona , Washington D.C., Mar 2012. [6...AFRL-RV-PS- AFRL-RV-PS- TR-2012-0133 TR-2012-0133 AUTOMATIC RECOGNITION OF SOLAR FEATURES FOR DEVELOPING DATA DRIVEN PREDICTION MODELS OF... SOLAR ACTIVITY AND SPACE WEATHER Jason Jackiewicz New Mexico State University Department of Astronomy PO Box 30001, MSC 4500 Las

  14. Van Allen Probes observations of electromagnetic ion cyclotron waves triggered by enhanced solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Shin, D.-K.; Hwang, J.; Kim, K.-C.; Lee, J. J.; Choi, C. R.; Thaller, S.; Skoug, R.

    2016-10-01

    Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field (IMF) quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the plasmapause at postmidnight and near the equator (magnetic latitude (MLAT) -3°). Event 2 occurs by a sharp Pdyn pulse impact while Van Allen Probe-A is located inside the plasmapause in the dawn sector and rather away from the equator (MLAT 12°). Event 3 is characterized by amplification of a preexisting EMIC wave by a sharp Pdyn pulse impact while Van Allen Probe-A is located outside the plasmapause at noon and rather away from the equator (MLAT -15°). These three events represent various situations where EMIC waves can be triggered by Pdyn increases. Several common features are also found among the three events. (i) The strongest wave is found just above the He+ gyrofrequency. (ii) The waves are nearly linearly polarized with a rather oblique propagation direction ( 28° to 39° on average). (iii) The proton fluxes increase in immediate response to the Pdyn impact, most significantly in tens of keV energy, corresponding to the proton resonant energy. (iv) The temperature anisotropy with T⊥ > T|| is seen in the resonant energy for all the events, although its increase by the Pdyn impact is not necessarily always significant. The last two points (iii) and (iv) may imply that in addition to the temperature anisotropy, the increase of the resonant protons must have played a critical role in triggering the EMIC waves by the enhanced Pdyn impact.

  15. Space Solar Power Technical Interchange Meeting 2: SSP TIM 2

    NASA Technical Reports Server (NTRS)

    Sanders, Jim; Hawk, Clark W.

    1998-01-01

    The 2nd Space Solar Power Technical Interchange Meeting (SSP TIM 2) was conducted September 21st through 24th with the first part consisting of a Plenary session. The summary results of this Plenary session are contained in part one of this report. The attendees were then organized into Working Breakout Sessions and Integrated Product Team (IPT) Sessions for the purpose of conducting in-depth discussions in specific topic areas and developing a consensus as to appropriate study plans and actions to be taken. The Second part covers the Plenary Summary Session, which contains the summary results of the Working Breakout Sessions and IPT Sessions. The appendix contains the list of attendees. The ob'jective was to provide an update for the study teams and develop plans for subsequent study activities. This SSP TIM 2 was initiated and the results reported electronically over the Internet. The International Space Station (ISS) could provide the following opportunities for conducting research and technology (R&T) which are applicable to SSP: (1) Automation and Robotics, (2) Advanced Power Generation, (3) Advanced Power Management & Distribution (PMAD), (4) Communications Systems and Networks, (5) Energy Storage, (6) In Space Propulsion (ISP), (7) Structural Dynamics and Control, and Assembly and (8) Wireless Power Transmission.

  16. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    ERIC Educational Resources Information Center

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  17. The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.; Farrell, W. M.; Goldstein, M.; Klimchuk, J. A.; Odom, J.; Oliversen, R.; Sheppard, D. A.; Szabo, A.

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  18. The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  19. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  20. The Evolution and Space Weather Effects of Solar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Krista, Larisza; Gallagher, P.

    2011-05-01

    As solar activity is the foremost important aspect of space weather, the forecasting of flare and CME related transient geomagnetic storms has become a primary initiative. Minor magnetic storms caused by coronal holes (CHs) have also proven to be important due to their long-lasting and recurrent geomagnetic effects. In order to forecast CH related geomagnetic storms, the author developed the Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm to replace the user-dependent CH detection methods commonly used. CHARM uses an intensity thresholding method to identify low intensity regions in EUV or X-ray images. Since CHs are regions of "open” magnetic field and predominant polarity, magnetograms were used to differentiate CHs from other low intensity regions. The Coronal Hole Evolution (CHEVOL) algorithm was developed and used in conjunction with CHARM to study the boundary evolution of CHs. It is widely accepted that the short-term changes in CH boundaries are due to the interchange reconnection between the CH open field lines and small loops. We determined the magnetic reconnection rate and the diffusion coefficient at CH boundaries in order to test the interchange reconnection model. The author also developed the Minor Storm (MIST) package to link CHs to high-speed solar wind (HSSW) periods detected at Earth. Using the algorithm the relationship between CHs, the corresponding HSSW properties, and geomagnetic indices were studied between 2000-2009. The results showed a strong correlation between the velocity and HSSW proton plasma temperature, which indicates that the heating and acceleration of the solar wind plasma in CHs are closely related, and perhaps caused by the same mechanism. The research presented here includes analysis of CHs on small and large spatial/temporal scales, allowing us to further our understanding of CHs as a whole.

  1. Solar System Observing with the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Cleve, J. Van; Meadows, V. S.; Stansberry, J.

    2003-01-01

    SIRTF is NASA's Space Infrared Telescope Facility. Currently planned for launch on 15 Apr 2003, it is the final element in NASA's Great Observatories Program. SIRTF has an 85 cm diameter f/12 lightweight beryllium telescope, cooled to lekss than 5.5K. It is diffraction-limited at 6.5 microns, and has wavelengthcoverage from 3-180 microns. Its estimated lifetime (limited by cryogen) is 2.5 years at minimum, with a goal of 5+ years. SIRTF has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 microns, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 microns. MIPS (Multiband Imaging Photometer for SIRTF)} does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. The SIRTF Guaranteed Time Observers (GTOs) are planning to observe Outer Solar System satellites and planets, extinct comets and low-albedo asteroids, Centaurs and Kuiper Belt Objects, cometary dust trails, and a few active short-period comets. The GTO programs are listed in detail in the SIRTF Reserved Observations Catalog (ROC). We would like to emphasize that there remain many interesting subjects for the General Observers (GO). Proposal success for the planetary observer community in the first SIRTF GO proposal cycle (GO-1) determines expectations for future GO calls and Solar System use of SIRTF, so we would like promote a strong set of planetary GO-1 proposals. Towards that end, we present this poster, and we will convene a Solar System GO workshop 3.5 months after launch.

  2. A Modified Version of Taylor’s Hypothesis for Solar Probe Plus Observations

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher G.; Perez, Jean C.; Verscharen, Daniel; Mallet, Alfred; Chandran, Benjamin D. G.

    2015-03-01

    The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10 {{R}⊙ }. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor’s “frozen turbulence” hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfvén speed, and Taylor’s hypothesis in its usual form does not apply. In this paper, we show that under certain assumptions, a modified version of Taylor’s hypothesis can be recovered in the near-Sun region. We consider only the transverse, non-compressive component of the fluctuations at length scales exceeding the proton gyroradius, and we describe these fluctuations using an approximate theoretical framework developed by Heinemann and Olbert. We show that fluctuations propagating away from the Sun in the plasma frame obey a relation analogous to Taylor’s hypothesis when {{V}sc,\\bot }\\gg {{z}-} and {{z}+}\\gg {{z}-}, where {{V}sc,\\bot } is the component of the spacecraft velocity perpendicular to the mean magnetic field and {{{\\boldsymbol{z}} }+} ({{{\\boldsymbol{z}} }-}) is the Elsasser variable corresponding to transverse, non-compressive fluctuations propagating away from (toward) the Sun in the plasma frame. Observations and simulations suggest that, in the near-Sun solar wind, the above inequalities are satisfied and {{{\\boldsymbol{z}} }+} fluctuations account for most of the fluctuation energy. The modified form of Taylor’s hypothesis that we derive may thus make it possible to characterize the spatial structure of the energetically dominant component of the turbulence encountered by SPP.

  3. Interplanetary proton flux and solar wind conditions for different solar activities interacting with spacecraft and astronauts in space

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2014-01-01

    The goal of this research is to determine the interplanetary proton flux and solar wind conditions by using data from several satellites such as Advanced Composition Explorer (ACE), Geostationary Operational Environmental Satellites (GOES) in particular GOES 9, GOES 11, GOES 12, GOES 13, and Solar Heliospheric Observatory (SOHO) to determine proton flux in different solar wind conditions. The data from above satellites were used to determine space weather conditions in which the goals are to evaluate proton fluxes for four periods of solar cycle activity: a solar cycle 23/24 minimum (2008), close to a solar cycle 22/23 minimum (1997), with intermediate activity (2011) and for about maximum activity for the cycle 23 (2003), to compare data of two period of solar cycle in 2003 and 2008 (Max vs. Min), to compare data of two period of solar cycle in 1997 and 2008 (Min vs. Min), to compare soft X-ray flux from SOHO with proton 1-10 MeV flux from GOES 9 for strong flare in 1997. To conclude the above evaluations are being used to determine the interaction between the space weather conditions and the following consequences of these conditions important for astronautics and everyday human activity: 1- Satellite and Spacecraft charging, 2-Dangerous conditions for onboard electronics and astronauts during strong solar flare events, and 3- Total Electron Content (TEC), Global Positioning System (GPS), and radio communication problems related to solar activity.

  4. The Deep Space Network. An instrument for radio navigation of deep space probes

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Jordan, J. F.; Berman, A. L.; Wackley, J. A.; Yunck, T. P.

    1982-01-01

    The Deep Space Network (DSN) network configurations used to generate the navigation observables and the basic process of deep space spacecraft navigation, from data generation through flight path determination and correction are described. Special emphasis is placed on the DSN Systems which generate the navigation data: the DSN Tracking and VLBI Systems. In addition, auxiliary navigational support functions are described.

  5. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis was conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  6. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  7. Complex organics in space from Solar System to distant galaxies

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2016-02-01

    Recent observational and experimental evidence for the presence of complex organics in space is reviewed. Remote astronomical observations have detected ˜ 200 gas-phased molecules through their rotational and vibrational transitions. Many classes of organic molecules are represented in this list, including some precursors to biological molecules. A number of unidentified spectral phenomena observed in the interstellar medium are likely to have originated from complex organics. The observations of these features in distant galaxies suggests that organic synthesis had already taken place during the early epochs of the Universe. In the Solar System, almost all biologically relevant molecules can be found in the soluble component of carbonaceous meteorites. Complex organics of mixed aromatic and aliphatic structures are present in the insoluble component of meteorites. Hydrocarbons cover much of the surface of the planetary satellite Titan and complex organics are found in comets and interplanetary dust particles. The possibility that the early Solar System, or even the early Earth, have been enriched by interstellar organics is discussed.

  8. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  9. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A farreaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that the anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  10. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  11. FalconSAT-7: a membrane space solar telescope

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Asmolova, Olha; McHarg, Matthew G.; Quiller, Trey; Maldonado, Carlos

    2016-07-01

    The US Air Force Academy of Physics has built FalconSAT-7, a membrane solar telescope to be deployed from a 3U CubeSat in LEO. The primary optic is a 0.2m photon sieve - a diffractive element consisting of billions of tiny circular dimples etched into a Kapton sheet. The membrane its support structure, secondary optics, two imaging cameras and associated control, recording electronics are packaged within half the CubeSat volume. Once in space the supporting pantograph structure is deployed, extending out and pulling the membrane flat under tension. The telescope will then be directed at the Sun to gather images at H-alpha for transmission to the ground. We will present details of the optical configuration, operation and performance of the flight telescope which has been made ready for launch in early 2017.

  12. Solar Array Sails: Possible Space Plasma Environmental Effects

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    2005-01-01

    An examination of the interactions between proposed "solar sail" propulsion systems with photovoltaic energy generation capabilities and the space plasma environments. Major areas of interactions ere: Acting from high voltage arrays, ram and wake effects, V and B current loops and EMI. Preliminary analysis indicates that arcing will be a major risk factor for voltages greater than 300V. Electron temperature enhancement in the wake will be produce noise that can be transmitted via the wake echo process. In addition, V and B induced potential will generate sheath voltages with potential tether like breakage effects in the thin film sails. Advocacy of further attention to these processes is emphasized so that plasma environmental mitigation will be instituted in photovoltaic sail design.

  13. Space Solar Power System for Terrestrial Power Utilities

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Saito, T.; Ijichi, K.; Kanai, H.

    2004-12-01

    The Space Solar Power System (SSPS) can supply stable electricity regardless of weather conditions or daylight hours, and reduce the amount of carbon dioxide emission in generating electricity, therefore application of the SSPS will make a contribution to global environmental problems and energy security problems in Japan. Institute for Unmanned Space Experiment Free Flyer (USEF) organized a committee with a support of METI (Ministry of Economy, Trade and Industry) and performed the SSPS feasibility study during FY 2001 and 2002. An SSPS working committee was organized under the committee. The study team composed of the researchers from universities and national laboratories has made a conceptual study for practical SSPS. A solar power system in which a large flat panel with a capability of power generation and transmission is suspended by multi-wires, has been proposed as an innovative SSPS. The tethered SSPS concept is highly robust and potentially low cost, with special features in the integration, construction, attitude control, heat management, and evolutional development strategy. Towards the practical tethered SSPS of GW level in the future, a demonstration experiment satellite in the near future with the 100kW level on low earth orbit to verify the essential technology for SSPS has been investigated. The economic aspects for the practical SSPS including the construction cost, power generation cost and the electricity price has been estimated. The lifecycle carbon dioxide emission for the practical SSPS has been estimated. The result indicates that the carbon dioxide emission from the practical SSPS per unit of energy generated is almost the same as from nuclear power system and much less than fossil fuel power system. The roadmap to the practical SSPS has been proposed.

  14. Solar System Studies with the Space Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    SIRTF (Space Infrared Telescope Facility) is the final element in NASA's 'Great Observatories' program. It consists of an 85-cm cryogenically-cooled observatory for infrared astronomy from space. SIRTF is scheduled for launch in late 2001 or early 2002 on a Delta rocket into a heliocentric orbit trailing the Earth. Data from SIRTF will be processed and disseminated to the community through the SIRTF Science Center (SSC) located at the Infrared Processing and Analysis Center (IPAC) at Caltech. Some 80/% of the total observing time (estimated at a minimum of 7500 hours of integration time per year for the mission lifetime of about 4 years) will be available to the scientific community at large through a system of refereed proposals. Three basic instruments are located in the SIRTF focal plane. The Multiband Imaging Photometer (MIPS), the Infrared Array Camera (IRAC), and the Infrared Spectrometer (IRS), taken together, provide imaging and spectroscopy from 3.5 to 160 microns. Among the solar system studies suited to SIRTF are the following: 1) spectroscopy and radiometry of small bodies from the asteroid main belt, through the Trojan clouds, to the Kuiper Disk; 2) dust distribution in the zodiacal cloud and the Earth's heliocentric dust ring; 3) spectroscopy and radiometry of comets; and 4) spectroscopy and radiometry of planets and their satellites. Searches for, and studies of dust disks around other stars, brown dwarfs, and superplanets will also be conducted with SIRTF. The SORTIE web site (http://ssc.ipac.caltech.edu/sirtf) contains important details and documentation on the project, the spacecraft, the telescope, instruments, and observing procedures. A community-wide workshop for solar system studies with SIRTF is in the planning stages by the author and Martha S. Hanner for the summer of 1999.

  15. Space Solar Power Technology Demonstration for Lunar Polar Applications

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  16. Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.

    2003-01-01

    NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.

  17. Solar energy concentrator system for crystal growth and zone refining in space

    NASA Technical Reports Server (NTRS)

    Mcdermit, J. H.

    1975-01-01

    The technological feasibility of using solar concentrators for crystal growth and zone refining in space has been performed. Previous studies of space-deployed solar concentrators were reviewed for their applicability to materials processing and a new state-of-the-art concentrator-receiver radiation analysis was developed. The radiation analysis is in the form of a general purpose computer program. It was concluded from this effort that the technology for fabricating, orbiting and deploying large solar concentrators has been developed. It was also concluded that the technological feasibility of space processing materials in the focal region of a solar concentrator depends primarily on two factors: (1) the ability of a solar concentrator to provide sufficient thermal energy for the process and (2) the ability of a solar concentrator to provide a thermal environment that is conductive to the processes of interest. The analysis indicate that solar concentrators can satisfactorily provide both of these factors.

  18. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    PubMed

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  19. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy

    PubMed Central

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-01-01

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells. PMID:26679958

  20. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  1. The German Joint Project "Flexible CIGSe Thin Film Solar Cells for Space Flight

    NASA Astrophysics Data System (ADS)

    Zajac, Kai; Brunner, Sebastian; John, Ralf; Kaufmann, Christian A.; Otte, Karsten; Rahm, Andreas; Kessler, Friedrich

    2008-09-01

    The purpose of the presented joint project is the development and verification of a flexible, lightweight and highly efficient Cu(In,Ga)Se2 (CIGSe) thin film solar cell technology on polyimide foil substrate for use in space. Due to the worldwide leading present German activities on the field of chalcopyrite based thin film solar cells a harmonisation of resources shall push this development. Furthermore, this project supports the European Space Agency (ESA) program for the development of thin film solar cell technology for space applications. Recent results of substrate evaluation and CIGSe solar cell and module manufacturing on polyimide foil substrate are presented.

  2. The Space Launch System and Missions to the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Post, Kevin

    2015-11-01

    Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and

  3. Large area flexible solar array design for Space Shuttle application

    NASA Technical Reports Server (NTRS)

    Souza, C. J.

    1980-01-01

    A large area flexible solar array has been designed for Shuttle power augmentation. The solar array utilizes large area, low cost, weldable solar cells. The paper addresses how the unique requirements of this system are implemented into the design. Economic and reliability issues relating to the optimization of a large area, foldable solar array concomitant to the Shuttle/Orbiter system are reviewed.

  4. Physical limitations in sensors for a drag-free deep space probe

    NASA Technical Reports Server (NTRS)

    Juillerat, R.

    1971-01-01

    The inner perturbing forces acting on sensors were analyzed, taking into account the technological limitations imposed on the proof mass position pickup and proof mass acquisition system. The resulting perturbing accelerations are evaluated as a function of the drag-free sensor parameters. Perturbations included gravitational attraction, electrical action, magnetic action, pressure effects, radiation effects, and action of the position pickup. These data can be used to study the laws of guidance, providing an optimization of the space probe as a whole.

  5. Data analysis to separate particles of different speed regimes and charges. [lunar ejecta and meteorite experiment and pioneer space probe data

    NASA Technical Reports Server (NTRS)

    Wolf, H.

    1977-01-01

    Although the instruments on the lunar ejecta and meteorite experiment (LEAM) and the Pioneer 8 and 9 space probes were essentially similar, a comparison of their results indicates that different sets of particles caused the different responses. On Pioneer, the events were caused by the impact of cosmic dust, the so-called beta particles expelled from the vicinity of the sun by solar radiation pressure, augmented by extremely high energy but definitely identifiable interstellar grains. On the moon, the events were due to the impact of slowly moving, highly charged lunar dust being propelled electrostatically across the terminator. Both theoretical analysis and experimental testing confirming these conclusions are discussed.

  6. Effect of solar wind plasma parameters on space weather

    NASA Astrophysics Data System (ADS)

    Rathore, Balveer S.; Gupta, Dinesh C.; Kaushik, Subhash C.

    2015-01-01

    Today's challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field (IMF) conditions. Correlative studies between geomagnetic storms (GMSs) and the various interplanetary (IP) field/plasma parameters have been performed to search for the causes of geomagnetic activity and develop models for predicting the occurrence of GMSs, which are important for space weather predictions. We find a possible relation between GMSs and solar wind and IMF parameters in three different situations and also derived the linear relation for all parameters in three situations. On the basis of the present statistical study, we develop an empirical model. With the help of this model, we can predict all categories of GMSs. This model is based on the following fact: the total IMF Btotal can be used to trigger an alarm for GMSs, when sudden changes in total magnetic field Btotal occur. This is the first alarm condition for a storm's arrival. It is observed in the present study that the southward Bz component of the IMF is an important factor for describing GMSs. A result of the paper is that the magnitude of Bz is maximum neither during the initial phase (at the instant of the IP shock) nor during the main phase (at the instant of Disturbance storm time (Dst) minimum). It is seen in this study that there is a time delay between the maximum value of southward Bz and the Dst minimum, and this time delay can be used in the prediction of the intensity of a magnetic storm two-three hours before the main phase of a GMS. A linear relation has been derived between the maximum value of the southward component of Bz and the Dst, which is Dst = (-0.06) + (7.65) Bz +t. Some auxiliary conditions should be fulfilled with this, for example the speed of the solar wind should, on average, be 350 km s-1 to 750 km s-1, plasma β should be low and, most importantly, plasma temperature should be low for intense

  7. Using the MIL-STD-1553B to link up all subsystems of Solar Space Telesocpe.

    NASA Astrophysics Data System (ADS)

    Duan, Xiaochang

    1999-12-01

    From the 1980's, the use of MIL-STD-1553B in satellite programs has greatly increased. As an advanced satellite with numerous subsystems, Solar Space Telescope (SST) chooses this standard to meet its need for telemetry. This paper introduces some parts of MIL-STD-1553B that can be used in Solar Space Telescope.

  8. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  9. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  10. The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 2: The Study for the Distance 9.5Rs

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2010-01-01

    Our paper is a 2.5D and 3D numerical plasma models of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC). These results should be interpreted as a basic plasma model for which the derived SW interaction with spacecraft (SC) could have consequences for both plasma wave and electron plasma measurements on board SC in the inner heliosphere. We observe an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of the electromagnetic field oscillation about of (0.015-0.06) V/m. The compression waves and the jumps in an electric field with an amplitude of about 1.5 V/m and (12-18) V/m were also observed. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements, which were planned in future Solar Probe Plus mission.

  11. Viewing Radiation Signatures of Solar Energetic Particles in Interplanetary Space

    DTIC Science & Technology

    2009-01-01

    events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged...events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with...vol. CP858. AIP. New York, pp. 241-250, 2006. Morgan. II., Fineschi, S.. Habbal. S.R., Li. B. In situ spectroscopy of the solar corona . Astron

  12. Thin film, concentrator and multijunction space solar cells: Status and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1991-01-01

    Recent, rapid advances in a variety of solar cell technologies offer the potential for significantly enhancing, or enabling entirely new, mission capabilities. Thin film solar cells are of particular interest in that regard. A review is provided of the status of those thin film cell technologies of interest for space applications, and the issues to be resolved before mission planners can consider them. A short summary is also given of recent developments in concentrator and multijunction space solar cell and array technology.

  13. Thin film, concentrator, and multijunction space solar cells: Status and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1991-01-01

    Recent, rapid advances in a variety of solar cell technologies offer the potential for significantly enhancing, or enabling entirely new, mission capabilities. Thin film solar cells are of particular interest. A review is provided of the status of those thin film cell technologies of interest for space applications, and the issues to be resolved before mission planners can consider them. A short summary of recent developments in concentrator and multijunction space solar cell and array technology is given.

  14. Earth-to-Geostationary Orbit Transportation for Space Solar Power System Development

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Donahue, Benjamin B.; Lawrence, Schuyler C.; McClanahan, James A.; Carrington, Connie K. (Technical Monitor)

    2000-01-01

    Space solar power satellites have the potential to provide abundant quantities of electricity for use on Earth. One concept, the Sun Tower, can be assembled in geostationary orbit from pieces transferred from Earth. The cost of transportation is one of the major hurdles to space solar power. This study found that autonomous solar-electric transfer is a good choice for the transportation from LEO to GEO.

  15. An implementation plan for priorities in solar-system space physics

    NASA Technical Reports Server (NTRS)

    Krimigis, Stamatios M.; Athay, R. Grant; Baker, Daniel; Fisk, Lennard A.; Fredricks, Robert W.; Harvey, John W.; Jokipii, Jack R.; Kivelson, Margaret; Mendillo, Michael; Nagy, Andrew F.

    1985-01-01

    The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described.

  16. Positioning Space Solar Power (SSP) as the Next Logical Step after the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Charania, A.

    2002-01-01

    At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.

  17. HUBBLE SPACE TELESCOPE SPECTROPHOTOMETRY AND MODELS FOR SOLAR ANALOGS

    SciTech Connect

    Bohlin, R. C.

    2010-04-15

    Absolute flux distributions for seven solar analog stars are measured from 0.3 to 2.5 {mu}m by Hubble Space Telescope (HST) spectrophotometry. In order to predict the longer wavelength mid-IR fluxes that are required for James Webb Space Telescope calibration, the HST spectral energy distributions are fit with Castelli and Kurucz model atmospheres; and the results are compared with fits from the MARCS model grid. The rms residuals in 10 broadband bins are all <0.5% for the best fits from both model grids. However, the fits differ systematically: the MARCS fits are 40-100 K hotter in T {sub eff}, 0.25-0.80 higher in log g, 0.01-0.10 higher in log z, and 0.008-0.021 higher in the reddening E(B - V), probably because their specifications include different metal abundances. Despite these differences in the parameters of the fits, the predicted mid-IR fluxes differ by only {approx}1%; and the modeled flux distributions of these G stars have an estimated ensemble accuracy of 2% out to 30 {mu}m.

  18. Space Weather and Solar Wind Studies with OWFA

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Subrahmanya, C. R.; Chengalur, J. N.

    2017-03-01

    In this paper, we review the results of interplanetary scintillation (IPS) observations made with the legacy system of the Ooty Radio Telescope (ORT) and compare them with the possibilities opened by the upgraded ORT, the Ooty Wide Field Array (OWFA). The stability and the sensitivity of the legacy system of ORT allowed the regular monitoring of IPS on a grid of large number of radio sources and the results of these studies have been useful to understand the physical processes in the heliosphere and space weather events, such as coronal mass ejections, interaction regions and their propagation effects. In the case of OWFA, its wide bandwidth of 38 MHz, the large field-of-view of 27° and increased sensitivity provide a unique capability for the heliospheric science at 326.5 MHz. IPS observations with the OWFA would allow one to monitor more than 5000 sources per day. This, in turn, will lead to much improved studies of space weather events and solar wind plasma, overcoming the limitations faced with the legacy system. We also highlight some of the specific aspects of the OWFA, potentially relevant for the studies of coronal plasma and its turbulence characteristics.

  19. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    SciTech Connect

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative of a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.

  20. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    DOE PAGES

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; ...

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less

  1. Surveying the Inner Solar System with an Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Reitsema, Harold J.; Linfield, Roger P.

    2016-11-01

    We present an analysis of surveying the inner solar system for objects that may pose some threat to Earth. Most of the analysis is based on understanding the capability provided by Sentinel, a concept for an infrared space-based telescope placed in a heliocentric orbit near the distance of Venus. From this analysis, we show that (1) the size range being targeted can affect the survey design, (2) the orbit distribution of the target sample can affect the survey design, (3) minimum observational arc length during the survey is an important metric of survey performance, and (4) surveys must consider objects as small as D=15{--}30 m to meet the goal of identifying objects that have the potential to cause damage on Earth in the next 100 yr. Sentinel will be able to find 50% of all impactors larger than 40 m in a 6.5 yr survey. The Sentinel mission concept is shown to be as effective as any survey in finding objects bigger than D = 140 m but is more effective when applied to finding smaller objects on Earth-impacting orbits. Sentinel is also more effective at finding objects of interest for human exploration that benefit from lower propulsion requirements. To explore the interaction between space and ground search programs, we also study a case where Sentinel is combined with the Large Synoptic Survey Telescope (LSST) and show the benefit of placing a space-based observatory in an orbit that reduces the overlap in search regions with a ground-based telescope. In this case, Sentinel+LSST can find more than 70% of the impactors larger than 40 m assuming a 6.5 yr lifetime for Sentinel and 10 yr for LSST.

  2. How Will the Violation of Taylor's Hypothesis Alter the Turbulent Power Spectra Measured by Solar Probe Plus?

    NASA Astrophysics Data System (ADS)

    Klein, K. G.; Howes, G. G.; TenBarge, J.

    2013-12-01

    Frequency measurements of magnetized turbulence obtained from in situ solar wind observations are a convolution of two terms; a spatial contribution from the sweeping of the solar wind structure past the observing spacecraft and a temporal contribution arising from the frequency of fluctuations in the frame of the plasma. For most observations at 1 AU, the super-Alfvenic nature of the solar wind allows us to adopt Taylor's hypothesis and neglect the plasma frame contribution to the measured frequency. Upcoming missions to measure solar wind turbulence in the near Sun environment, including Solar Probe Plus and Solar Orbiter, will not be able to neglect the plasma frame fluctuation term when the solar wind speed drops to near or below the Alfven speed. Motivated by these forthcoming observations, we make predictions concerning the effect that the violation of Taylor's hypothesis will have on measured magnetic power spectra. Critically balanced Alfven waves are shown to have negligible impact on the observed power spectra for reasonable solar wind speeds, while higher frequency fast/whistler waves are shown to distort the spectra in a predictable manner. Combining these results with near Sun observations should help to constrain the mechanisms responsible for generating, sustaining, and terminating the turbulent cascade in the solar wind.

  3. Characterizing the local optoelectronic performance of organic solar cells with scanning-probe microscopy

    NASA Astrophysics Data System (ADS)

    Coffey, David C.

    2007-12-01

    Conjugated polymers, small molecules, and colloidal semiconductor nanocrystals are promising materials for use in low-cost, thin-film solar cells. The photovoltaic performance of these materials, however, is highly dependent on film structure, and directly correlating local film structures with device performance remains challenging. This dissertation describes several techniques we have developed to probe and control the local optoelectronic properties of organic semiconducting films. First, with an aim of rapidly fabricating photovoltaic films with varying morphology, we demonstrate that Dip-Pen Nanolithography (DPN) can be used to control nanoscale phase separation with sub-150 nm lateral resolution in polymer films that are 20--80 nm thick. This control is based on writing monolayer chemical templates that nucleate phase separation, and we use this technique to study heterogeneous nucleation in thin films. Second, we use time-resolved electrostatic force microscopy (trEFM) to measure photoexcited charge in polymer films with a resolution of 100 nm and 100 mus. We show that such data can predict the external quantum efficiencies of polymer photodiodes, and can thus link device performance with local optoelectronic properties. When applied to the study of blended polyfluorene films, we show that domain centers can buildup charge faster then domain interfaces, which indicates that polymer/polymer blend devices should be modeled as having impure donor/acceptor domains. Third, we use photoconductive atomic force microscopy (pcAFM) to map local photocurrents with 20 nm-resolution in polymer/fullerene solar cells- achieving an order of magnitude better resolution than previous techniques. We present photocurrent maps under short-circuit conditions (zero applied bias), as well as under various applied voltages. We find significant variations in the short-circuit current between regions that appear identical in AFM topography. These variations occur from one domain to

  4. PROBING THE SOLAR WIND ACCELERATION REGION WITH THE SUN-GRAZING COMET C/2002 S2

    SciTech Connect

    Giordano, S.; Raymond, J. C.; Lamy, P.; Uzzo, M.; Dobrzycka, D.

    2015-01-01

    Comet C/2002 S2, a member of the Kreutz family of sungrazing comets, was discovered in white-light images of the Large Angle and Spectromeric Coronagraph Experiment coronagraph on the Solar and Heliospheric Observatory (SOHO) on 2002 September 18 and observed in H I Lyα emission by the SOHO Ultraviolet Coronagraph Spectrometer (UVCS) instrument at four different heights as it approached the Sun. The H I Lyα line profiles detected by UVCS are analyzed to determine the spectral parameters: line intensity, width, and Doppler shift with respect to the coronal background. Two-dimensional comet images of these parameters are reconstructed at the different heights. A novel aspect of the observations of this sungrazing comet data is that, whereas the emission from most of the tail is blueshifted, that along one edge of the tail is redshifted. We attribute these shifts to a combination of solar wind speed and interaction with the magnetic field. In order to use the comet to probe the density, temperature, and speed of the corona and solar wind through which it passes, as well as to determine the outgassing rate of the comet, we develop a Monte Carlo simulation of the H I Lyα emission of a comet moving through a coronal plasma. From the outgassing rate, we estimate a nucleus diameter of about 9 m. This rate steadily increases as the comet approaches the Sun, while the optical brightness decreases by more than a factor of 10 and suddenly recovers. This indicates that the optical brightness is determined by the lifetimes of the grains, sodium atoms, and molecules produced by the comet.

  5. Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination.

    PubMed

    Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca

    2016-12-01

    Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.

  6. Electromagnetic plasma particle simulations on Solar Probe Plus spacecraft interaction with near-Sun plasma environment

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki

    It is necessary to predict the nature of spacecraft-plasma interactions in extreme plasma conditions such as in the near-Sun environment. The spacecraft environment immersed in the solar corona is characterized by the small Debye length due to dense (7000 mathrm{/cc}) plasmas and a large photo-/secondary electron emission current emitted from the spacecraft surfaces, which lead to distinctive nature of spacecraft-plasma interactions [1,2,3]. In the present study, electromagnetic field perturbation around the Solar Probe Plus (SPP) spacecraft is examined by using our original EM-PIC (electromagnetic particle-in-cell) plasma simulation code called EMSES. In the simulations, we consider the SPP spacecraft at perihelion (0.04 mathrm{AU} from the Sun) and important physical effects such as spacecraft charging, photoelectron and secondary electron emission, solar wind plasma flow including the effect of spacecraft orbital velocity, and the presence of a background magnetic field. Our preliminary results show that both photoelectrons and secondary electrons from the spacecraft are magnetized in a spatial scale of several meters, and make drift motion due the presence of the background convection electric field. This effect leads to non-axisymmetric distributions of the electron density and the resultant electric potential near the spacecraft. Our simulations predict that a strong (˜ 100 mathrm{mV/m}) spurious electric field can be observed by the probe measurement on the spacecraft due to such a non-axisymmetric effect. We also confirm that the large photo-/secondary electron current alters magnetic field intensity around the spacecraft, but the field variation is much smaller than the background magnetic field magnitude (a few mathrm{nT} compared to a few mathrm{mu T}). [1] Ergun et al., textit{Phys. Plasmas}, textbf{17}, 072903, 2010. [2] Guillemant et al., textit{Ann. Geophys.}, textbf{30}, 1075-1092, 2012. [3] Guillemant et al., textit{IEEE Trans. Plasma Sci

  7. Space: The New Frontier.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This document is designed primarily to describe the U.S. Space Program, its history, its current state of development, and its goals for the future. Chapter headings include: Space and You; The Early History of Space Flight; The Solar System; Space Probes and Satellites; Scientific Satellites and Sounding Rockets; Application Satellites, Unmanned…

  8. The deep space network. [tracking and communication support for space probes

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives, functions, and organization of the deep space network are summarized. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. Interface support for the Mariner Venus Mercury 1973 flight and Pioneer 10 and 11 missions is included.

  9. Summary of studies on space solar power systems of the National Space Development Agency of Japan

    NASA Astrophysics Data System (ADS)

    Mori, Masahiro; Nagayama, Hiroyuki; Saito, Yuka; Matsumoto, Hiroshi

    2004-03-01

    National Space Development Agency of Japan has examined studies on Space Solar Power Systems (SSPS) since FY1998 organizing a special committee and working group. The FY 1998 studies focused on creating a life cycle cost model of the SSPS which sends energy to the Earth using microwave beams (Microwave Power Transmission; MPT). With the use of this model, technological sensitivity was analyzed to identify key research issues that must be pursued in the future. In addition, a conceptual study was conducted on the SSPS using laser power transmission, with attention paid to fiber array lasers. The FY1999 studies examined a system concept of SSPS, and three types of configurations were proposed. We also proposed a draft of the engineering demonstration satellite while examining major element technology. The FY2000 studies surveyed maturity of major element technologies to exam SSPS system concept. Computer simulation of a direct solar pumping solid-state laser, 5.8 GHz microwave transmitter and receiver system and "sandwich module" integrated PV cell, microwave transmitter and antennas were examined as demonstration of element technology.

  10. Solar System Modeler: A Distributed, Virtual Environment for Space Visualization and GPS Navigation

    NASA Astrophysics Data System (ADS)

    Williams, Gary E.

    1996-12-01

    The Solar System Modeler (SM) extends the Space Modeler developed in 1994. It provides a virtual environment enabling an explorer to dynamically investigate near Earth satellites, deep space probes, planets, moons, and other celestial phenomena. The explorer navigates the virtual environment via mouse selected options from menu panels while wearing a tracked, head mounted display (HMD). Alternatively, a monitor may replace the HMD and keyboard controls replace head tracking. The SM's functionality is extended by the ability to broadcast simulated GPS satellite transmissions in compliance with Distributed Interactive Simulation (DIS) protocol standards. The transmissions include information found in true GPS broadcasts that is required for a receiver to determine its location. The Virtual GPS Receiver (VGPSR) receives the GPS transmissions from the SM and computes the receiver's position with a realistic error based on numerous variables simulating those encountered in the real GPS system. The VGPSR is designed as a plug-in module for simulations requiring virtual navigation. The receiver's client application provides the VGPSR with the simulation time and the true position of the receiver. In return, the application receives a GPS indicated position.

  11. SOHO celebrates its first year in space with new results on the solar wind

    NASA Astrophysics Data System (ADS)

    1996-12-01

    space, and sees it carrying intermittent bright patches corresponding with relatively dense concentrations of solar material. These gusts are milder than the occasional mass ejections also seen by LASCO, which accompany great convulsions in the solar magnetic field. SOHO's solar wind analyser CELIAS has detected many previously unrecorded elements and isotopes among the charged atoms of the solar wind. The solar wind mapper, SWAN, observes the widespread effects of solar wind particles as they interact with the atoms of an interstellar breeze blowing into the solar system. Yet the results on the solar wind represent only a fraction of SOHO's achievements so far, with twelve sets of instruments observing everything from oscillations deep inside the Sun, to the solar influence on energetic cosmic rays coming from the Galaxy. Stealing the show in helioseismology SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO and provides the ground stations and an operations centre at the Goddard Space Flight Center near Washington. SOHO has an uninterrupted view of the Sun from a halo orbit around Lagrangian Point N 1 where the gravity of the Sun and the Earth are in balance, 1,500,000 kilometres out on the sunward side of the Earth. The spacecraft's engineering has proved to be excellent and no practical difficulty is anticipated in keeping SOHO operational into the sunspot maximum expected in 2000-2001. SOHO was launched on 2 December 1995. Check-out observations with some instruments began just a few days later. SOHO attained its L1 halo orbit on 14 February 1996, and commissioning was formally completed on 16 April. Already the first results were showing unprecedented images of the solar atmosphere, of the heliosphere filled by the solar wind, and even of the Sun's interior as revealed by oscillations due to sound waves in the

  12. High efficiency solar cell research for space applications

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1985-01-01

    A review is given of NASA photovoltaic research with emphasis on the activities of the Lewis Research Center. High efficiency solar cell research is discussed, as well as solar arrays, multi-junction cell bandgaps, and plasmon coupling.

  13. Partial Solar Eclipse From Space - Feb. 21, 2012

    NASA Video Gallery

    On February 21, 2012, the Moon moved in between NASA’s Solar Dynamics Observatory (SDO) satellite and the Sun (seen here in extreme ultraviolet light) and produced a partial solar eclipse from sp...

  14. An Economic Analysis of Solar Water & Space Heating.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    Solar system designs for 13 cities were optimized so as to minimize the life cycle cost over the assumed 20-year lifetime of the solar energy systems. A number of major assumptions were made regarding the solar system, type and use of building, financial considerations, and economic environment used in the design optimization. Seven optimum…

  15. The SAMEX Vector Magnetograph: A Design Study for a Space-Based Solar Vector Magnetograph

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gary, G. A.; West, E. A.

    1988-01-01

    This report presents the results of a pre-phase A study performed by the Marshall Space Flight Center (MSFC) for the Air Force Geophysics Laboratory (AFGL) to develop a design concept for a space-based solar vector magnetograph and hydrogen-alpha telescope. These are two of the core instruments for a proposed Air Force mission, the Solar Activities Measurement Experiments (SAMEX). This mission is designed to study the processes which give rise to activity in the solar atmosphere and to develop techniques for predicting solar activity and its effects on the terrestrial environment.

  16. Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.

    PubMed

    Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N

    2015-06-01

    The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067.

  17. Space pruning monotonic search for the non-unique probe selection problem.

    PubMed

    Pappalardo, Elisa; Ozkok, Beyza Ahlatcioglu; Pardalos, Panos M

    2014-01-01

    Identification of targets, generally viruses or bacteria, in a biological sample is a relevant problem in medicine. Biologists can use hybridisation experiments to determine whether a specific DNA fragment, that represents the virus, is presented in a DNA solution. A probe is a segment of DNA or RNA, labelled with a radioactive isotope, dye or enzyme, used to find a specific target sequence on a DNA molecule by hybridisation. Selecting unique probes through hybridisation experiments is a difficult task, especially when targets have a high degree of similarity, for instance in a case of closely related viruses. After preliminary experiments, performed by a canonical Monte Carlo method with Heuristic Reduction (MCHR), a new combinatorial optimisation approach, the Space Pruning Monotonic Search (SPMS) method, is introduced. The experiments show that SPMS provides high quality solutions and outperforms the current state-of-the-art algorithms.

  18. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  19. Amorphous silicon thin films: The ultimate lightweight space solar cell

    NASA Technical Reports Server (NTRS)

    Vendura, G. J., Jr.; Kruer, M. A.; Schurig, H. H.; Bianchi, M. A.; Roth, J. A.

    1994-01-01

    Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared.

  20. Evaluation and Comparison of Space Solar Power Concepts

    NASA Astrophysics Data System (ADS)

    Feingold, Harvey

    2002-01-01

    The SSP Exploratory Research and Technology (SERT) program undertaken by NASA in the 1999- 2000 timeframe was the third in a recent series of NASA sponsored studies of Space Solar Power (SSP) that began with the 1995 SSP "Fresh Look" Study, and was followed by the SSP Concept Definition Study in 1998. In all three studies, a major focus has been on identifying system concepts, architectures and technologies that may ultimately produce a practical, economically viable source of electrical power to help satisfy the world's growing energy needs. As part of the SERT program, members of the study team developed several new and innovative SSP concepts that sprung from a desire to address the problem areas of previous system concepts with new technology and system solutions. In the previous SSP studies it has been shown that systems analyses and sensitivity studies are key to understanding the merits of different system concepts and technologies, particularly with respect to their impact on the mass and cost of space hardware and their ultimate economic impact on the cost of SSP-produced electricity. Enabled by analytical models and tools developed over the series of SSP studies, seven different system concepts as well as different technology choices within these concepts were quantitatively compared with one another on the basis of the mass and cost metrics suggested above. Accompanying sensitivity studies have permitted examination of how variations in the projected capabilities of different technologies could affect conclusions drawn from these analyses. This paper summarizes the results of these analytical efforts and from those results, identifies the most promising SSP concepts, including their key technologies and their comparative advantages and disadvantages.

  1. Evaluation and comparison of space solar power concepts

    NASA Astrophysics Data System (ADS)

    Feingold, Harvey; Carrington, Connie

    2003-08-01

    The SSP Exploratory Research and Technology (SERT) program undertaken by NASA in the 1999-2000 timeframe was the third in a recent series of NASA sponsored studies of Space Solar Power (SSP) that began with the 1995 SSP "Fresh Look" Study, and was followed by the SSP Concept Definition Study in 1998. In all three studies, a major focus has been on identifying system concepts, architectures and technologies that may ultimately produce a practical, economically viable source of electrical power to help satisfy the world's growing energy needs. As part of the SERT program, members of the study team developed several new and innovative SSP concepts that sprung from a desire to address the problem areas of previous system concepts with new technology and system solutions. In the previous SSP studies it has been shown that systems analyses and sensitivity studies are key to understanding the merits of different system concepts and technologies, particularly with respect to their impact on the mass and cost of space hardware and their ultimate economic impact on the cost of SSP-produced electricity. Enabled by analytical models and tools developed over the series of SSP studies, seven different system concepts as well as different technology choices within these concepts were quantitatively compared with one another on the basis of the mass and cost metrics suggested above. Accompanying sensitivity studies have permitted examination of how variations in the projected capabilities of different technologies could affect conclusions drawn from these analyses. This paper summarizes the results of these analytical efforts and from those results, identifies the most promising SSP concepts, including their key technologies and their comparative advantages and disadvantages.

  2. SPASE: The Connection Among Solar and Space Physics Data Centers

    NASA Technical Reports Server (NTRS)

    Thieman, James R.; King, Todd A.; Roberts, D. Aaron

    2011-01-01

    The Space Physics Archive Search and Extract (SPASE) project is an international collaboration among Heliophysics (solar and space physics) groups concerned with data acquisition and archiving. Within this community there are a variety of old and new data centers, resident archives, "virtual observatories", etc. acquiring, holding, and distributing data. A researcher interested in finding data of value for his or her study faces a complex data environment. The SPASE group has simplified the search for data through the development of the SPASE Data Model as a common method to describe data sets in the various archives. The data model is an XML-based schema and is now in operational use. There are both positives and negatives to this approach. The advantage is the common metadata language enabling wide-ranging searches across the archives, but it is difficult to inspire the data holders to spend the time necessary to describe their data using the Model. Software tools have helped, but the main motivational factor is wide-ranging use of the standard by the community. The use is expanding, but there are still other groups who could benefit from adopting SPASE. The SPASE Data Model is also being expanded in the sense of providing the means for more detailed description of data sets with the aim of enabling more automated ingestion and use of the data through detailed format descriptions. We will discuss the present state of SPASE usage and how we foresee development in the future. The evolution is based on a number of lessons learned - some unique to Heliophysics, but many common to the various data disciplines.

  3. The Space Science Lab: High School Student Solar Research Experience

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Whitworth, C.; Harris, B.; David, C.

    2007-12-01

    Native American, Hispanic, African American, and other underrepresented high school students in rural Western North Carolina have the unprecedented opportunity as researchers in the Space Science Lab to conduct visible and radio observations of the Sun. The program involves 90 students over a three year period. The primary goal is to reach students who otherwise would not have this opportunity, and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. We expect their enthusiasm for science will increase by experiencing research investigations that are fun and relevant to their understanding of the world around them. The students conduct their own research, and also interact with scientists around the world. A total of 54 students have spent a week at the Space Science Lab located on the campus of the Pisgah Astronomical Research Institute (PARI) during the Summers of 2006 and 2007. Students construct their own JOVE radio telescopes that they bring home to continue their observations during the academic year. They share their results during four follow-up sessions throughout the school year. The students also have Internet access to radio telescopes and solar monitoring equipment at PARI. We report on results from student evaluations from the first year in 2006 and current session student experiences. We gratefully acknowledge support from the Burroughs Wellcome Fund - Student Science Enrichment Program

  4. Amorphous silicon thin films: The ultimate lightweight space solar cell

    SciTech Connect

    Vendura, G.J. Jr.; Kruer, M.A.; Schurig, H.H.; Bianchi, M.A.; Roth, J.A.

    1994-09-01

    Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared.

  5. Probing the Depths of Space Weathering: A Cross-sectional View of Lunar Rock 76015

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; Keller, L. P.; Stroud, Rhonda

    2007-01-01

    The term "space weathering" refers to the cumulative effects of several processes operating at the surface of any solar system body not protected by a thick atmosphere. These processes include cosmic and solar ray irradiation, solar wind implantation and sputtering, as well as melting and vaporization due to micrometeorite bombardment. Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied using SEM and TEM. It is a noritic breccia with both "glazed" (smooth glassy) and "classic" (microcratered and pancake-bearing) patina coatings. Previous TEM work on 76015 relied on ultramicrotomy to prepare cross sections of the patina coating, but these sections were limited by the "chatter" and loss of material in these brittle samples. Here we have used a focused ion beam (FIB) instrument to prepare cross sections in which the delicate stratigraphy of the patina coating is beautifully preserved.

  6. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  7. Shielding from Solar Particle Event Exposures in Deep Space

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, F. A.; Shinn, J. L.; Simonsen, L. C.; Dubey, R. R.; Jordan, W. R.; Jones, T. D.; Chang, C. K.; Kim, M. Y.

    1999-01-01

    The physical composition and intensities of solar particle event exposures or sensitive astronaut tissues are examined under conditions approximating an astronaut in deep space. Response functions for conversion of particle fluence into dose and dose equivalent averaged over organ tissue, are used to establish significant fluence levels and the expected dose and dose rates of the most important events from past observations. The BRYNTRN transport code is used to evaluate the local environment experienced by sensitive tissues and used to evaluate bioresponse models developed for use in tactical nuclear warfare. The present results will help to the biophysical aspects of such exposure in the assessment of RBE and dose rate effects and their impact on design of protection systems for the astronauts. The use of polymers as shielding material in place of an equal mass of aluminum would prowide a large safety factor without increasing the vehicle mass. This safety factor is sufficient to provide adequate protection if a factor of two larger event than has ever been observed in fact occurs during the mission.

  8. Neural Network for Positioning Space Station Solar Arrays

    NASA Technical Reports Server (NTRS)

    Graham, Ronald E.; Lin, Paul P.

    1994-01-01

    As a shuttle approaches the Space Station Freedom for a rendezvous, the shuttle's reaction control jet firings pose a risk of excessive plume impingement loads on Freedom solar arrays. The current solution to this problem, in which the arrays are locked in a feathered position prior to the approach, may be neither accurate nor robust, and is also expensive. An alternative solution is proposed here: the active control of Freedom's beta gimbals during the approach, positioning the arrays dynamically in such a way that they remain feathered relative to the shuttle jet most likely to cause an impingement load. An artificial neural network is proposed as a means of determining the gimbal angles that would drive plume angle of attack to zero. Such a network would be both accurate and robust, and could be less expensive to implement than the current solution. A network was trained via backpropagation, and results, which compare favorably to the current solution as well as to some other alternatives, are presented. Other training options are currently being evaluated.

  9. Space radiation dose analysis for solar flare of August 1989

    SciTech Connect

    Nealy, J.E.; Simonsen, L.C.; Sauer, H.H.; Wilson, J.W.; Townsend, L.W.

    1990-12-01

    Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed.

  10. Static stability of the Space Station solar array FASTMast structure

    NASA Technical Reports Server (NTRS)

    Shaker, John F.; Acquaviva, Thomas H.

    1995-01-01

    The combined loads test of the 3-Bay FASTMast marks the end of the Lewis Research Center (LeRC) effort to characterize the behavior of the principal Space Station solar array support structure. The primary objective of this test and analysis effort was to develop a method to predict structural stability failure modes under flight-like applied loads. Included at the beginning of this report is a brief historical perspective of the hardware design development and FASTMast structural stability problem evolution. Once an understanding of the solution process has been established, test and analysis details are presented and related to the postulated failure theories. The combined load test series subjected the structure to a combination of transverse, moment, and torsion loads similar to that expected in the service environment. Nonlinear finite element (FE) models were developed and large displacement analyses were performed to support the test effort and failure mode predictions. Details of the test configuration as well as test and analysis results are presented. The results were then critiqued to establish valid and successful support of the failure mode assessments. Finally, study conclusions are drawn and recommendations for safe operation of the FASTMast structure are presented for consideration.

  11. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    NASA Astrophysics Data System (ADS)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  12. The space shuttle payload planning working groups. Volume 5: Solar physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Solar Physics working group of the space shuttle payload planning activity are presented. The areas to be investigated by the solar physics experiments are: (1) the production of mechanical energy in the subphotospheric layers and its transport and dissipation in the upper layers of the atmosphere, (2) the mass flux from the subphotospheric layers into the chromosphere and corona and beyond the solar wind, (3) solar activity and its relationship to magnetic fields, and (4) the production of solar flares. The approach to be followed in conducting the experiments and the equipment required are defined.

  13. OFFSET - RAY TRACING OPTICAL ANALYSIS OF OFFSET SOLAR COLLECTOR FOR SPACE STATION SOLAR DYNAMIC POWER SYSTEM

    NASA Technical Reports Server (NTRS)

    Jefferies, K.

    1994-01-01

    OFFSET is a ray tracing computer code for optical analysis of a solar collector. The code models the flux distributions within the receiver cavity produced by reflections from the solar collector. It was developed to model the offset solar collector of the solar dynamic electric power system being developed for Space Station Freedom. OFFSET has been used to improve the understanding of the collector-receiver interface and to guide the efforts of NASA contractors also researching the optical components of the power system. The collector for Space Station Freedom consists of 19 hexagonal panels each containing 24 triangular, reflective facets. Current research is geared toward optimizing flux distribution inside the receiver via changes in collector design and receiver orientation. OFFSET offers many options for experimenting with the design of the system. The offset parabolic collector model configuration is determined by an input file of facet corner coordinates. The user may choose other configurations by changing this file, but to simulate collectors that have other than 19 groups of 24 triangular facets would require modification of the FORTRAN code. Each of the roughly 500 facets in the assembled collector may be independently aimed to smooth out, or tailor, the flux distribution on the receiver's wall. OFFSET simulates the effects of design changes such as in receiver aperture location, tilt angle, and collector facet contour. Unique features of OFFSET include: 1) equations developed to pseudo-randomly select ray originating sources on the Sun which appear evenly distributed and include solar limb darkening; 2) Cone-optics technique used to add surface specular error to the ray originating sources to determine the apparent ray sources of the reflected sun; 3) choice of facet reflective surface contour -- spherical, ideal parabolic, or toroidal; 4) Gaussian distributions of radial and tangential components of surface slope error added to the surface normals at

  14. Predictions for Dusty Mass Loss from Asteroids During Close Encounters with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2016-11-01

    The Solar Probe Plus ( SPP) mission will explore the Sun's corona and innermost solar wind starting in 2018. The spacecraft will also come close to a number of Mercury-crossing asteroids with perihelia less than 0.3 AU. At small heliocentric distances, these objects may begin to lose mass, thus becoming "active asteroids" with comet-like comae or tails. This paper assembles a database of 97 known Mercury-crossing asteroids that may be encountered by SPP, and it presents estimates of their time-dependent visible-light fluxes and mass loss rates. Assuming a similar efficiency of sky background subtraction as was achieved by STEREO , we find that approximately 80 % of these asteroids are bright enough to be observed by the Wide-field Imager for SPP (WISPR). A model of gas/dust mass loss from these asteroids is developed and calibrated against existing observations. This model is used to estimate the visible-light fluxes and spatial extents of spherical comae. Observable dust clouds occur only when the asteroids approach the Sun closer than 0.2 AU. The model predicts that during the primary SPP mission between 2018 and 2025, there should be 113 discrete events (for 24 unique asteroids) during which the modeled comae have angular sizes resolvable by WISPR. The largest of these correspond to asteroids 3200 Phaethon, 137924, 155140, and 289227, all with angular sizes of roughly 15-30 arcminutes. We note that the SPP trajectory may still change, but no matter the details there should still be multiple opportunities for fruitful asteroid observations.

  15. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  16. Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Caprini, Chiara; Domcke, Valerie; Figueroa, Daniel G.; Garcia-Bellido, Juan; Chiara Guzzetti, Maria; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-12-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  17. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.

  18. Compressive Acceleration of Solar Energetic Particles within Coronal Mass Ejections: Observations and Theory Relevant to the Solar Probe Plus and Solar Orbiter Missions

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2015-12-01

    observational technique by which (divV) may be extracted directly from coronograph white-light movies of out-going CMEs, thus offering observational closure of the new theory for SEP acceleration/injection that should be relevant to the Solar Probe Plus and Solar Orbiter missions.

  19. Deep space telecommunications and the solar cycle: A reappraisal

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1978-01-01

    Observations of density enhancement in the near corona at solar cycle (sunspot) maximum have rather uncritically been interpreted to apply equally well to the extended corona, thus generating concern about the quality of outer planet navigational data at solar cycle maximum. Spacecraft have been deployed almost continuously during the recently completed solar cycle 20, providing two powerful new coronal investigatory data sources: (1) in-situ spacecraft plasma measurements at approximately 1 AU, and (2) plasma effects on monochromatic spacecraft signals at all signal closest approach points. A comprehensive review of these (solar cycle 20) data lead to the somewhat surprising conclusions that for the region of interest of navigational data, the highest levels of charged particle corruption of navigational data can be expected to occur at solar cycle minimum, rather than solar cycle maximum, as previously believed.

  20. Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.

  1. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  2. Space Environment Effects: Model for Emission of Solar Protons (ESP): Cumulative and Worst Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, E. A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  3. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  4. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  5. On the Transfer and Control of Space Probes Around the L1 Point of the Sun-Earth+Moon System

    NASA Astrophysics Data System (ADS)

    Hou, Xi-Yun; Liu, Lin

    2008-01-01

    The motion around the collinear libration points in the restricted three body problem is unstable. But there exist conditionally stable periodic orbits around these points. Special-purpose space probes located in the vicinity of these points (e.g., ISEE-3, SOHO) can benefit from this dynamical property, in regard to maintaining the orbit in position and the energy required of placing the probe in position. As an example, we study in this paper the launch and orbital control of a space probe around the L1 libration point in the system consisting of the Sun and the Earth-Moon. We present some theoretical and numerical simulations' results, which may serve as a basis for the realization of such a space probe in future.

  6. Toward space solar power: Wireless energy transmission experiments past, present and future

    NASA Astrophysics Data System (ADS)

    Little, Frank E.; McSpadden, James O.; Chang, Kai; Kaya, Nobuyuki

    1998-01-01

    Solar power is a reality. Today, increasing numbers of photovoltaic and other solar-powered installations are in service around the world and in space. These uses range from the primary electric power source for satellites, remote site scientific experiments and villages in developing countries to augmenting the commercial electric grid and providing partial power for individual businesses and homeowners in developed countries. In space, electricity generated by photovoltaic conversion of solar energy is the mainstay of power for low Earth and geostationary satellite constellations. Still, for all its acceptance as a benign and environmentally friendly energy source, terrestrial solar power has yet to be seriously considered a viable technology for providing base electrical generating capacity. The obvious reason is sunshine on Earth is too unreliable. In addition to the diurnal and seasonal cycles, inclement weather reduces the average daily period and intensity of insolation. However, the Sun shines constantly in space. The challenge is to harvest and transmit the energy from space to Earth. The concept of space solar power based on microwave wireless energy transmission was first put forth more than 25 years ago by Dr. Peter Glaser. We review historical experiments in wireless energy transmission which have brought the technology from a laboratory curiosity to its present status. Results from recent experiments and their implications for wireless energy transmission as an enabling technology for space solar power are reviewed. Current developments are discussed along with proposed terrestrial and space experiments.

  7. Charging of the International Space Station Due to Its High Voltage Solar Arrays

    NASA Astrophysics Data System (ADS)

    Ferguson, Dale C.

    2002-10-01

    The International Space Station (ISS) has the highest voltage solar arrays ever flown in Low Earth Orbit (LEO). The ISS power system (and structure) ground is at the negative end of the 160 V solar arrays. Due to plasma current collection balance that must be maintained in LEO, it is possible for a spacecraft to charge negative of the ambient plasma by up to its entire solar array voltage (-160 V for ISS).

  8. Charging of the International Space Station Due to Its High Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2002-01-01

    The International Space Station (ISS) has the highest voltage solar arrays ever flown in Low Earth Orbit (LEO). The ISS power system (and structure) ground is at the negative end of the 160 V solar arrays. Due to plasma current collection balance that must be maintained in LEO, it is possible for a spacecraft to charge negative of the ambient plasma by up to its entire solar array voltage (-160 V for ISS).

  9. The National Solar Observatory Digital Library - a resource for space weather studies

    NASA Astrophysics Data System (ADS)

    Hill, F.; Erdwurm, W.; Branston, D.; McGraw, R.

    2000-09-01

    We describe the National Solar Observatory Digital Library (NSODL), consisting of 200GB of on-line archived solar data, a RDBMS search engine, and an Internet HTML-form user interface. The NSODL is open to all users and provides simple access to solar physics data of basic importance for space weather research and forecasting, heliospheric research, and education. The NSODL can be accessed at the URL www.nso.noao.edu/diglib.

  10. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    PubMed

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-09

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates.

  11. Laser Induced Breakdown Spectroscopy of meteorites as a probe of the early solar system

    NASA Astrophysics Data System (ADS)

    Dell'Aglio, M.; De Giacomo, A.; Gaudiuso, R.; De Pascale, O.; Longo, S.

    2014-11-01

    This paper presents an evaluation of Laser Induced Breakdown Spectroscopy (LIBS) as a technique for gathering data relevant to Solar System geophysics. Two test cases were demonstrated: elemental analysis of chondrules in a chondrite meteorite, and space- resolved analysis of the interface between kamacite and taenite crystals in an octahedrite iron meteorite. In particular most major and minor elements (Fe, Mg, Si, Ti, Al, Cr, Mn, Ca, Fe, Ni, Co) in Sahara 98222 (chondrite) and its chondrules, as well as the profile of Ni content in Toluca (iron meteorite), were determined with the Calibration Free (CF) method. A special attention was devoted to exploring the possibilities offered by variants of the basic technique, such as the use of Fe I Boltzmann distribution as an intensity calibration method of the spectroscopic system, and the use of spatially resolved analysis.

  12. Solar-driven photoelectrochemical probing of nanodot/nanowire/cell interface.

    PubMed

    Tang, Jing; Zhang, Yueyu; Kong, Biao; Wang, Yongcheng; Da, Peimei; Li, Jun; Elzatahry, Ahmed A; Zhao, Dongyuan; Gong, Xingao; Zheng, Gengfeng

    2014-05-14

    We report a nitrogen-doped carbon nanodot (N-Cdot)/TiO2 nanowire photoanode for solar-driven, real-time, and sensitive photoelectrochemical probing of the cellular generation of H2S, an important endogenous gasotransmitter based on a tunable interfacial charge carrier transfer mechanism. Synthesized by a microwave-assisted solvothermal method and subsequent surface chemical conjugation, the obtained N-Cdot/TiO2 nanowire photoanode shows much enhanced photoelectrochemical photocurrent compared with pristine TiO2 nanowires. This photocurrent increase is attributed to the injection of photogenerated electrons from N-Cdots to TiO2 nanowires, confirmed by density functional theory simulation. In addition, the charge transfer efficiency is quenched by Cu(2+), whereas the introduction of H2S or S(2-) ions resets the charge transfer and subsequently the photocurrent, thus leading to sensitive photoelectrochemical recording of the H2S level in buffer and cellular environments. Moreover, this N-Cdot-TiO2 nanowire photoanode has been demonstrated for direct growth and interfacing of H9c2 cardiac myoblasts, with the capability of interrogating H2S cellular generation pathways by vascular endothelial growth factor stimulation as well as inhibition.

  13. Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.

    2011-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  14. Using Supra-Arcade Downflows as Probes of Particle Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2012-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial- and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. We provide measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  15. Accessing Solar Irradiance Data via LISIRD, the Laboratory for Atmospheric and Space Physics Interactive Solar Irradiance Datacenter

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Wilson, A.; Snow, M. A.; Lindholm, D. M.; Woods, T. N.; Traver, T.; Woodraska, D.

    2015-12-01

    The LASP Interactive Solar Irradiance Datacenter, LISIRD, http://lasp.colorado.edu/lisird, allows the science community and the public to explore and access solar irradiance and related data sets using convenient, interactive or scriptable, standards-based interfaces. LISIRD's interactive plotting allows users to investigate and download irradiance data sets from a variety of sources, including space missions, ground observatories, and modeling efforts. LISIRD's programmatic interfaces allow software-level data retrievals and facilitate automation. This presentation will describe the current state of LISIRD, provide details of the data sets it serves, outline data access methods, identify key technologies in-use, and address other related aspects of serving spectral and other time series data. We continue to improve LISIRD by integrating new data sets, and also by advancing its data management and presentation capabilities to meet evolving best practices and community needs. LISIRD is hosted and operated by the Laboratory for Atmospheric and Space Physics, LASP, which has been a leader in Atmospheric and Heliophysics science for over 60 years. LASP makes a variety of space-based measurements of solar irradiance, which provide crucial input for research and modeling in solar-terrestrial interactions, space physics, planetary, atmospheric, and climate sciences. These data sets consist of fundamental measurements, composite data sets, solar indices, space weather products, and models. Current data sets available through LISIRD originate from the SORCE, SDO (EVE), UARS (SOLSTICE), TIMED (SEE), and SME space missions, as well as several other space and ground-based projects. LISIRD leverages several technologies to provide flexible and standards-based access to the data holdings available through LISIRD. This includes internet-accessible interfaces that permit data access in a variety of formats, data subsetting, as well as program-level access from data analysis

  16. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  17. Utility of Thin-Film Solar Cells on Flexible Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Dickman, J. E.; Hepp, A. F.; Morel, D. L.; Ferekides, C. S.; Tuttle, J. R.; Hoffman, D. J.; Dhere, N. G.

    2004-01-01

    The thin-film solar cell program at NASA GRC is developing solar cell technologies for space applications which address two critical metrics: specific power (power per unit mass) and launch stowed volume. To be competitive for many space applications, an array using thin film solar cells must significantly increase specific power while reducing stowed volume when compared to the present baseline technology utilizing crystalline solar cells. The NASA GRC program is developing two approaches. Since the vast majority of the mass of a thin film solar cell is in the substrate, a thin film solar cell on a very lightweight flexible substrate (polymer or metal films) is being developed as the first approach. The second approach is the development of multijunction thin film solar cells. Total cell efficiency can be increased by stacking multiple cells having bandgaps tuned to convert the spectrum passing through the upper cells to the lower cells. Once developed, the two approaches will be merged to yield a multijunction, thin film solar cell on a very lightweight, flexible substrate. The ultimate utility of such solar cells in space require the development of monolithic interconnections, lightweight array structures, and ultra-lightweight support and deployment techniques.

  18. Design package for a complete residential solar space heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  19. Van Allen Probes Mission Space Academy: Educating middle school students about Earth's mysterious radiation belts

    NASA Astrophysics Data System (ADS)

    Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.

    2013-12-01

    How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of

  20. Assessment of the effects of space debris and meteoroids environment on the Space Station solar array assembly

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1988-01-01

    The methodology used to assess the probability of no impact of space debris and meteoroids on a spacecraft structure is applied to the Space Station solar array assembly. Starting with space debris and meteoroid flux models, the projected surface area of the solar cell string circuit of the solar array panel and the mast longeron, and the design lifetime, the possibility of no impact on the solar mast and solar cell string circuits was determined as a function of particle size. The probability of no impact on the cell string circuits was used to derive the probability of no open circuit panel. The probability of meeting a certain power requirement at the end of the design lifetime was then calculated as a function of impacting particle size. Coupled with a penetration and damage models/correlations which relate the particle size to penetration depth and damage, the results of this analysis can be used to determine the probability of meeting the lower power requirement given a degree of redundancy, and the probability of no impact on the solar array mast.