Sample records for solar pv array

  1. Progressing Deployment of Solar Photovoltaic Installations in the United States

    NASA Astrophysics Data System (ADS)

    Kwan, Calvin Lee

    2011-07-01

    This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables. Using the same model, predicted residential solar PV shares were generated and illustrated using GIS software. The results of this model indicate that solar insolation, state energy deregulation and cost of electricity are statistically significant factors positively correlated with the adoption of residential solar PV arrays. With this information, policymakers at the towns and cities level can establish effective solar PV promoting policies and regulations for their respective locations.

  2. Effect of wind speed on performance of a solar-pv array

    USDA-ARS?s Scientific Manuscript database

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  3. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less

  4. NREL Adds Solar Array Field to Help Inform Consumers | NREL

    Science.gov Websites

    PV modules at NREL's new solar array field. Workers install PV modules just north of the NREL parking be Added Each Year Once completed, the new solar array field will house four rows of PV modules. The the lifetime of a PV system, and that increases the per-kilowatt-hour cost of generating solar

  5. Space Station Freedom solar array panels plasma interaction test facility

    NASA Technical Reports Server (NTRS)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  6. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  7. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.

  8. Impacts of Solar PV Arrays on Physicochemical Properties of Soil

    NASA Astrophysics Data System (ADS)

    Cagle, A.; Choi, C. S.; Macknick, J.; Ravi, S.; Bickhart, R.

    2017-12-01

    The deployment of renewable energy technologies, such as solar photovoltaics (PV), is rapidly escalating. While PV can provide clean, renewable energy, there is uncertainty regarding its potential positive and/or negative impacts on the local environment. Specifically, its effects on the physicochemical properties of the underlying soil have not been systematically quantified. This study facilitates the discussion on the effects of PV installations related to the following questions: i. How do soil moisture, infiltration rates, total organic carbon, and nitrogen contents vary spatially under a PV array? ii. How do these physicochemical properties compare to undisturbed and adjacent land covered in native vegetation? iii. Are these variations statistically significant to provide insight on whether PV installations have beneficial or detrimental impacts on soil? We address these questions through field measurements of soil moisture, infiltration, grain particle size distribution, total organic carbon, and nitrogen content at a 1-MW solar PV array located at the National Renewable Energy Laboratory in Golden, Colorado. We collect data via multiple transects underneath the PV array as as well as in an adjacent plot of undisturbed native vegetation. Measurements are taken at four positions under the solar panels; the east-facing edge, center area under the panel, west-facing edge, and interspace between panel rows to capture differences in sun exposure as well as precipitation runoff of panels. Measurements are collected before and after a precipitation event to capture differences in soil moisture and infiltration rates. Results of this work can provide insights for research fields associated with the co-location of agriculture and PV installations as well as the long term ecological impacts of solar energy development. Trends in physicochemical properties under and between solar panels can affect the viability of co-location of commercial crops in PV arrays, the ability to grow native vegetation groundcover, and also the revegetation of a solar PV landscape after decommissioning. This study helps to illuminate the range of physicochemical properties of soils underlying solar PV arrays, addressing a key research gap and encouraging further research in the area.

  9. Conjunction of Photovoltaic and Thermophotovoltaic Power Production in Spacecraft Power Systems

    DTIC Science & Technology

    2015-09-01

    photovoltaic ( PV ) arrays, which draw electrical energy from the most prominent power source in our solar system, the Sun. These arrays are large, and pose...freemaps/1000px/dni/SolarGIS- Solar -map-DNI-World- map-en.png By contrast, spacecraft PV power production systems are not so limited. With the...operating parameters for a given solar cell, and PMax is generally the described Pout from which the PV cell’s efficiency is calculated. A PV cell’s

  10. Flat-plate solar array project of the US Department of Energy's National Photovoltaics Program: Ten years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.

  11. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    DTIC Science & Technology

    2012-12-01

    photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array

  12. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    PubMed Central

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-01-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592

  13. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  14. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification.

    PubMed

    Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard

    2016-12-06

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  15. Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Duc

    Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research will focus on the development of an adaptable solar array that is able to optimize power output, reconfigure itself when solar cells are damaged and create controllable output voltages and currents. This study will be a technological advancement over the existing technology of solar PV. Presently solar arrays are fixed arrays that require external device to control their output. In this research, the solar array will be able to self-reconfigure, leading to the following advantages: (1) Higher efficiency because no external devices are used. (2) Can reach maximum possible output power that is much higher than the maximum power of fixed solar arrays by arranging the solar cells in optimized connections. (3) Elimination of the hot spot effects. The proposed research has the following goals: First, to create a modeling and computing algorithm, which is able to simulate and analyze the effects of non-uniform changing shadows on the output power of solar PV arrays. Our model will be able to determine the power losses in each solar cell and the collective hot spots of an array. Second, to propose new methods, which are able to predict the performance of solar PV arrays under shadow conditions for long term (days, months, years). Finally, to develop adaptive reconfiguration algorithms to reconfigure connections within solar PV arrays in real time, under shadow conditions, in order to optimize output power.

  16. Assessment of the biophysical impacts of utility-scale photovoltaics through observations and modelling

    NASA Astrophysics Data System (ADS)

    Broadbent, A. M.; Georgescu, M.; Krayenhoff, E. S.; Sailor, D.

    2017-12-01

    Utility-scale solar power plants are a rapidly growing component of the solar energy sector. Utility-scale photovoltaic (PV) solar power generation in the United States has increased by 867% since 2012 (EIA, 2016). This expansion is likely to continue as the cost PV technologies decrease. While most agree that solar power can decrease greenhouse gas emissions, the biophysical effects of PV systems on surface energy balance (SEB), and implications for surface climate, are not well understood. To our knowledge, there has never been a detailed observational study of SEB at a utility-scale solar array. This study presents data from an eddy covariance observational tower, temporarily placed above a utility-scale PV array in Southern Arizona. Comparison of PV SEB with a reference (unmodified) site, shows that solar panels can alter the SEB and near surface climate. SEB observations are used to develop and validate a new and more complete SEB PV model. In addition, the PV model is compared to simpler PV modelling methods. The simpler PV models produce differing results to our newly developed model and cannot capture the more complex processes that influence PV SEB. Finally, hypothetical scenarios of PV expansion across the continental United States (CONUS) were developed using various spatial mapping criteria. CONUS simulations of PV expansion reveal regional variability in biophysical effects of PV expansion. The study presents the first rigorous and validated simulations of the biophysical effects of utility-scale PV arrays.

  17. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    NASA Astrophysics Data System (ADS)

    Irtaza, Hassan; Agarwal, Ashish

    2018-06-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  18. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    NASA Astrophysics Data System (ADS)

    Irtaza, Hassan; Agarwal, Ashish

    2018-02-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  19. Power Management System Design for Solar-Powered UAS

    DTIC Science & Technology

    2015-12-01

    PV cells would have their own MPPT modules, which would enable two major advantages. The first can be considered more important to land-based solar ...The efficiency of the PV array is represented by ηpv. R represents the solar irradiance, and θ represents the angle between the array and the sun...SYSTEM DESIGN FOR SOLAR -POWERED UAS by Robert T. Fauci III December 2015 Thesis Advisor: Alejandro Hernandez Co-Advisor: Kevin Jones

  20. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-06-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  1. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  2. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  3. P6 Truss solar array, SABB and PV Radiator seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    Photograph documenting the P6 Truss Solar Array Wing (SAW), Mast Canisters, Photovoltaic (PV) Radiator and Solar Array Blanket Boxes (SABB) as seen by the STS-114 crew during the third of three Extravehicular Activities (EVAs) of the mission. Part of the orbiter Discovery's nosecone is visible in the upper right of the frame.

  4. Optimal Solar PV Arrays Integration for Distributed Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introducemore » quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.« less

  5. Photovoltaics | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Photovoltaics Photovoltaics Solar photovoltaics (PV) is a mature, commercially available technology arrays. Campus Solar Energy Options A PV system requires periodic maintenance, but upkeep averages two to undertaking a solar energy assessment or PV installation. Solar Energy Resources Solar energy production

  6. A simplified solar cell array modelling program

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.

  7. Optimal Configuration of PV System with Different Solar Cell Arrays

    NASA Astrophysics Data System (ADS)

    Machida, Sadayuki; Tani, Tatsuo

    Photovoltaic (PV) power generation is spreading steadily, and the dispersed PV array system is increasing from the architectural restrictions. In the case of dispersed array system, if the arrays are installed in a different azimuth or if the module that constitutes array is different, mismatching loss will be generated when a single inverter is used to convert the output of arrays, because of the difference of optimal operating voltage. The loss is related to the array configuration. However the relation between array configuration and power generation output is not clear. In order to avoid generation of mismatching loss, introducing a distributed inverter system such as string inverter system or AC modules system is considered. However it is not clear which is more advantageous between a distributed system and a concentrated system. In this paper, we verified the output characteristics of two different solar cell arrays with various strings, azimuths and tilt angles, and clarified the relation between array configuration and power generation output by the computer simulations. We also compared the distributed inverter system with the concentrated inverter system, and clarified the optimal configuration of PV system with different solar cell arrays.

  8. Improving Photovoltaic Energy Production with Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Berli, M.

    2014-12-01

    The efficiency of solar photovoltaic (PV) generators declines sharply with increased temperatures. Peak solar exposure often occurs at the same time as peak temperatures, but solar PV installations are typically designed based on solar angle. In temperate areas, the peak temperatures may not be high enough to induce significant efficiency losses. In some of the areas with the greatest potential for solar development, however, summer air temperatures regularly reach 45 °C and PV panel temperatures exceed the air temperatures. Here we present a preliminary model of a PV array intended to optimize solar production in a hot and arid environment. The model begins with the diurnal and seasonal cycles in the angle and elevation of the sun, but also includes a meteorology-driven energy balance to project the temperatures of the PV panels and supporting structure. The model will be calibrated and parameterized using a solar array at the Desert Research Institute's (DRI) Renewable Energy Deployment and Display (REDD) facility in Reno, Nevada, and validated with a similar array at DRI's Las Vegas campus. Optical fibers will be installed on the PV panels and structural supports and interrogated by a distributed temperature sensor (DTS) to record the spatial and temporal variations in temperature. Combining the simulated panel temperatures, the efficiency-temperature relationship for the panels, and the known solar cycles at a site will allow us to optimize the design of future PV collectors (i.e., the aspect and angle of panels) for given production goals.

  9. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  10. An Economic Basis for Littoral Land-Based Production of Low Carbon Fuel from Renewable Electrical Energy and Seawater for Naval Use: Diego Garcia Evaluation

    DTIC Science & Technology

    2015-08-13

    installed is $1.54 billion. Table 3 provides the cost breakdown of the various major components ( solar PV arrays, the carbon/hydrogen production units...barges or modular floats made from high density polymer HDP (Jet Dock and Versa Dock). These floats could support the entire solar PV array process...the restricted area is reached. Since the capital cost of the wind turbines is half that of the solar PV per Watt ($2.40/watt), the total cost

  11. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    NASA Astrophysics Data System (ADS)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  12. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    DTIC Science & Technology

    2016-09-18

    ability to control the generation has become more difficult with the increase of renewable energy systems such as solar photovoltaics ( PV ) and wind... PV and Inverter Room Building 6311 Rooftop Solar PV 30kW 232kW STC PV Array B5-PS2T33 Pad Switchboard ZnBr Energy Storage System (ESS) PowerBoxEnergy...Agreement • 1.5 MW of Photovoltaic • PV Parking lot lights • 24 Solar Thermal systems including the Combat Training Tank (Pool) Energy/Water Efficiency

  13. Experimental investigation of solar powered diaphragm and helical pumps

    USDA-ARS?s Scientific Manuscript database

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  14. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  15. A photovoltaic-powered water electrolyzer - Its performance and economics

    NASA Technical Reports Server (NTRS)

    Hancock, O. G., Jr.

    1986-01-01

    A prototype water electrolyzer designed to operate from a solar photovoltaic (PV) array without power conditioning was operated for three months at the Florida Solar Energy Center. A 1 kWpk PV array was used to operate the electrolyzer at internal gas pressure from 0 to 40 psig. Performance of the elecrolyzer/PV array was measured and characterized in terms of charge efficiency and power efficiency calculated from the operation data. The economics of residential production of hydrogen for energy purposes were calculated and summarized. While the near-term outlook for this energy storage technique was not found to be favorable, the long-term outlook was encouraging.

  16. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    PubMed

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  17. Sustainability/Logistics-Basing Science and Technology Objective - Demonstration; Demonstration #2 - 300-Person Camp Demonstration

    DTIC Science & Technology

    2017-09-04

    10 years @ 90% depth of discharge o Weight – 170 lb/374 kg  PV panels: 12 panels with a 3.36 kW solar array capacity  Generator: 10 kW TQG...lightweight thin-film PV panels ( solar modules or “ solar blankets”). These solar blankets were Door Sensor Figure 92: Temperature and Humidity Tripod...collected by various PV panels, and charging times for BB2590 batteries. 4.5.2 Operational Script The experimental nano-coated solar panel

  18. Energy Systems Integration Newsletter - January 2017 | Energy Systems

    Science.gov Websites

    ) project with PV manufacturer First Solar and NREL, First Solar designed an advanced plant-level controller relatively long history of interconnecting solar photovoltaic (PV) systems to its electric grid, with state Photo of a solar array. Tests Show Large Solar Plants Can Balance a Low-Carbon Grid In recent years

  19. 75 FR 19990 - Notice of Availability of the Draft Environmental Impact Statement for the NextLight Renewable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... to construct a solar photovoltaic (PV) plant facility approximately two miles southeast of Primm... action alternatives would use solar PV technology, although the specific types of arrays and trackers... Statement for the NextLight Renewable Power, LLC, Silver State Solar Project, Primm, NV AGENCY: Bureau of...

  20. NREL at 40: It All Started With a Desire to Harness the Sun | News | NREL

    Science.gov Websites

    (PV) industry. Their job was to ultimately develop new solar technology and to chart a path toward its of reliability for PV modules and systems, helping bolster consumer and investor confidence in solar With a Desire to Harness the Sun July 5, 2017 Photo of PV panels under a bright blue sky. A PV array on

  1. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    NASA Astrophysics Data System (ADS)

    Kaplanis, S.; Kaplani, E.

    2014-10-01

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m2°C/W for free standing PV arrays at strong wind speeds, vW>7m/s, up to around 0.05 m2°C/W for the case of flexible PV modules which make part of the roof in a BIPV system.

  2. Reverse bias protected solar array with integrated bypass battery

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A (Inventor)

    2012-01-01

    A method for protecting the photovoltaic cells in a photovoltaic (PV) array from reverse bias damage by utilizing a rechargeable battery for bypassing current from a shaded photovoltaic cell or group of cells, avoiding the need for a bypass diode. Further, the method mitigates the voltage degradation of a PV array caused by shaded cells.

  3. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, Brenda; Macknick, Jordan; McCall, James

    Construction activities at most large-scale ground installations of photovoltaic (PV) arrays are preceded by land clearing and re-grading to uniform slope and smooth surface conditions to facilitate convenient construction access and facility operations. The impact to original vegetation is usually total eradication followed by installation of a gravel cover kept clear of vegetation by use of herbicides. The degree to which that total loss can be mitigated by some form of revegetation is a subject in its infancy, and most vegetation studies at PV development sites only address weed control and the impact of tall plants on the efficiency ofmore » the solar collectors from shading.This study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established.« less

  4. 75 FR 65306 - Notice of Intent To Prepare an Environmental Impact Statement for a Proposed Federal Loan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... installation of about nine million photovoltaic (PV) solar modules within approximately 437 arrays and... final project design. The proposed Project would consist of: A solar field of ground-mounted PV modules... Federal Loan Guarantee To Support Construction of the Topaz Solar Farm, San Luis Obispo County, CA AGENCY...

  5. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  6. P6 Truss, Photovoltaic (PV) Solar Array Wing (SAW)

    NASA Image and Video Library

    2000-12-07

    STS097-376-019 (7 December 2000) --- A close-up view of the P6 solar array on the International Space Station (ISS), backdropped against the blackness of space and the Earth’s horizon. The P6 solar array is the first of eight sets of solar arrays that at the completion of the space station construction in 2006, will comprise the station’s electrical power system, converting sunlight to electricity.

  7. P6 Truss, Photovoltaic (PV) Solar Array Wing (SAW)

    NASA Image and Video Library

    2000-12-07

    STS097-376-006 (7 Dec 2000) --- A close-up view of the P6 solar array on the International Space Station (ISS), backdropped against the blackness of space and the Earth?s horizon. The P6 solar array is the first of eight sets of solar arrays that at the completion of the space station construction in 2006, will comprise the station?s electrical power system, converting sunlight to electricity.

  8. Development of a Real-Time Hardware-in-the-Loop Power Systems Simulation Platform to Evaluate Commercial Microgrid Controllers

    DTIC Science & Technology

    2016-02-19

    power converter, a solar photovoltaic ( PV ) system with inverter, and eighteen breakers. (Future work will require either validation of these models...custom control software. (For this project, this was done for the energy storage, solar PV , and breakers.) Implement several relay protection functions...for the PV array is given in Section A.3. This profile was generated by applying a decimation/interpolation filter to the signal from a solar flux

  9. TR-1203: Development of a Real-Time Hardware-in-the-Loop Power Systems Simulation Platform to Evaluate Commercial Microgrid Controllers

    DTIC Science & Technology

    2016-02-23

    power converter, a solar photovoltaic ( PV ) system with inverter, and eighteen breakers. (Future work will require either validation of these models or...control software. (For this project, this was done for the energy storage, solar PV , and breakers.) Implement several relay protection functions to...the PV array is given in Section A.3. This profile was generated by applying a decimation/interpolation filter to the signal from a solar flux point

  10. Computer Modelling and Simulation of Solar PV Array Characteristics

    NASA Astrophysics Data System (ADS)

    Gautam, Nalin Kumar

    2003-02-01

    The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to the mismatches due to manufacturer's tolerances in cell characteristics, shadowing, soiling and aging of solar cells. The current-voltage curves and the values of energy yield characterized by maximum-power points and fill factors for these arrays were also obtained. Two different mathematical models, one for smaller size arrays and the other for the larger size arrays, were developed. The first model takes account of the partial differential equations with boundary value conditions, whereas the second one involves the simple linear programming concept. Based on the initial information on the values of short-circuit current and open-circuit voltage of thirty-six single-crystalline silicon solar cells provided by a manufacturer, the values of these parameters for up to 14,400 solar cells were generated randomly. Thus, the investigations were done for three different cases of array sizes, i.e., (6 x 6), (36 x 8) and (720 x 20), for each configuration. The operational lifetimes of different interconnected solar PV arrays and the improvement in their life properties through different interconnection and modularized configurations were investigated using a reliability-index model. Under normal conditions, the efficiency of a solar cell degrades in an exponential manner, and its operational life above a lowest admissible efficiency may be considered as the upper bound of its lifetime. Under field conditions, the solar cell may fail any time due to environmental stresses, or it may function up to the end of its expected lifetime. In view of this, the lifetime of a solar cell in an array was represented by an exponentially distributed random variable. At any instant of time t, this random variable was considered to have two states: (i) the cell functioned till time t, or (ii) the cell failed within time t. It was considered that the functioning of the solar cell included its operation at an efficiency decaying with time under normal conditions. It was assumed that the lifetime of a solar cell had lack of memory or aging property, which meant that no matter how long (say, t) the cell had been operational, the probability that it would last an additional time ?t was independent of t. The operational life of the solar cell above a lowest admissible efficiency was considered as the upper bound of its expected lifetime. The value of the upper bound on the expected life of solar cell was evaluated using the information provided by the manufacturers of the single-crystalline silicon solar cells. Then on the basis of these lifetimes, the expected operational lifetimes of the array systems were obtained. Since the investigations of the effects of collector orientation on the performance of an array require the continuous values of global solar radiation on a surface, a method to estimate the global solar radiation on a surface (horizontal or tilted) was also proposed. The cloudiness index was defined as the fraction of extraterrestrial radiation that reached the earth's surface when the sky above the location of interest was obscured by the cloud cover. The cloud cover at the location of interest during any time interval of a day was assumed to follow the fuzzy random phenomenon. The cloudiness index, therefore, was considered as a fuzzy random variable that accounted for the cloud cover at the location of interest during any time interval of a day. This variable was assumed to depend on four other fuzzy random variables that, respectively, accounted for the cloud cover corresponding to the 1) type of cloud group, 2) climatic region, 3) season with most of the precipitation, and 4) type of precipitation at the location of interest during any time interval. All possible types of cloud covers were categorized into five types of cloud groups. Each cloud group was considered to be a fuzzy subset. In this model, the cloud cover at the location of interest during a time interval was considered to be the clouds that obscure the sky above the location. The cloud covers, with all possible types of clouds having transmissivities corresponding to values in the membership range of a fuzzy subset (i.e., a type of cloud group), were considered to be the membership elements of that fuzzy subset. The transmissivities of different types of cloud covers in a cloud group corresponded to the values in the membership range of that cloud group. Predicate logic (i.e., if---then---, else---, conditions) was used to set the relationship between all the fuzzy random variables. The values of the above-mentioned fuzzy random variables were evaluated to provide the value of cloudiness index for each time interval at the location of interest. For each case of the fuzzy random variable, heuristic approach was used to identify subjectively the range ([a, b], where a and b were real numbers with in [0, 1] such that a

  11. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  12. Comparison of photovoltaic energy systems for the solar village

    NASA Astrophysics Data System (ADS)

    Piercefrench, Eric C.

    1988-08-01

    Three different solar photovoltaic (PV) energy systems are compared to determine if the electrical needs of a solar village could be supplied more economically by electricity generated by the sun than by existing utility companies. The solar village, a one square mile community of 900 homes and 50 businesses, would be located in a semi-remote area of the Arizona desert. A load survey is conducted and information on the solar PV industry is reviewed for equipment specifications, availability, and cost. Three specific PV designs, designated as Stand-Alone, Stand-Alone with interconnection, and Central Solar Plant, were created and then economically compared through present worth analysis against utility supplied electrical costs. A variety of technical issues, such as array protection, system configuration and operation, and practicability, are discussed for each design. The present worth analysis conclusively shows none of the solar PV designs could supply electricity to the solar village for less cost than utility supplied electricity, all other factors being equal. No construction on a solar village should begin until the cost of solar generated electricity is more competitive with electricity generated by coal, oil, and nuclear energy. However, research on ways to reduce solar PV equipment costs and on ways to complement solar PV energy, such as the use of solar thermal ponds for heating and cooling, should continue.

  13. Comparison of modeled and experimental PV array temperature profiles for accurate interpretation of module performance and degradation

    NASA Astrophysics Data System (ADS)

    Elwood, Teri; Simmons-Potter, Kelly

    2017-08-01

    Quantification of the effect of temperature on photovoltaic (PV) module efficiency is vital to the correct interpretation of PV module performance under varied environmental conditions. However, previous work has demonstrated that PV module arrays in the field are subject to significant location-based temperature variations associated with, for example, local heating/cooling and array edge effects. Such thermal non-uniformity can potentially lead to under-prediction or over-prediction of PV array performance due to an incorrect interpretation of individual module temperature de-rating. In the current work, a simulated method for modeling the thermal profile of an extended PV array has been investigated through extensive computational modeling utilizing ANSYS, a high-performance computational fluid dynamics (CFD) software tool. Using the local wind speed as an input, simulations were run to determine the velocity at particular points along modular strings corresponding to the locations of temperature sensors along strings in the field. The point velocities were utilized along with laminar flow theories in order to calculate Nusselt's number for each point. These calculations produced a heat flux profile which, when combined with local thermal and solar radiation profiles, were used as inputs in an ANSYS Thermal Transient model that generated a solar string operating temperature profile. A comparison of the data collected during field testing, and the data fabricated by ANSYS simulations, will be discussed in order to authenticate the accuracy of the model.

  14. A photovoltaic catenary-tent array for the Martian surface

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Colozza, Anthony J.; Appelbaum, J.

    1993-01-01

    To provide electrical power during an exploration mission to Mars, a deployable tent-shaped structure with a flexible photovoltaic (PV) blanket is proposed. The array is designed with a self-deploying mechanism utilizing pressurized gas expansion. The structural design for the array uses a combination of cables, beams, and columns to support and deploy the PV blanket. Under the force of gravity a cable carrying a uniform load will take the shape of a catenary curve. A catenary-tent collector is self shadowing which must be taken into account in the solar radiation calculation. The shape and the area of the shadow on the array was calculated and used in the determination of the global radiation on the array. The PV blanket shape and structure dimension were optimized to achieve a configuration which maximizes the specific power (W/kg). The optimization was performed for four types of PV blankets (Si, GaAs/Ge, GaAs CLEFT, and amorphous Si) and four types of structure materials (Carbon composite, Aramid Fiber composite, Aluminum, and Magnesium). The results show that the catenary shape of the PV blanket, which produces the highest specific power, corresponds to zero end angle at the base with respect to the horizontal. The tent angle is determined by the combined effect of the array structure specific mass and the PV blanket output power. The combination of carbon composite structural material and GaAs CLEFT solar cells produce the highest specific power. The study was carried out for two sites on Mars corresponding to the Viking Lander locations. The designs were also compared for summer, winter, and yearly operation.

  15. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jaime

    2012-12-14

    To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.

  16. Photovoltaic-Model-Based Solar Irradiance Estimators: Performance Comparison and Application to Maximum Power Forecasting

    NASA Astrophysics Data System (ADS)

    Scolari, Enrica; Sossan, Fabrizio; Paolone, Mario

    2018-01-01

    Due to the increasing proportion of distributed photovoltaic (PV) production in the generation mix, the knowledge of the PV generation capacity has become a key factor. In this work, we propose to compute the PV plant maximum power starting from the indirectly-estimated irradiance. Three estimators are compared in terms of i) ability to compute the PV plant maximum power, ii) bandwidth and iii) robustness against measurements noise. The approaches rely on measurements of the DC voltage, current, and cell temperature and on a model of the PV array. We show that the considered methods can accurately reconstruct the PV maximum generation even during curtailment periods, i.e. when the measured PV power is not representative of the maximum potential of the PV array. Performance evaluation is carried out by using a dedicated experimental setup on a 14.3 kWp rooftop PV installation. Results also proved that the analyzed methods can outperform pyranometer-based estimations, with a less complex sensing system. We show how the obtained PV maximum power values can be applied to train time series-based solar maximum power forecasting techniques. This is beneficial when the measured power values, commonly used as training, are not representative of the maximum PV potential.

  17. Design of DSP-based high-power digital solar array simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  18. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  19. Costs of solar and wind power variability for reducing CO2 emissions.

    PubMed

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  20. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.

  1. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  2. Meteorological Sensor Array (MSA) - Phase I Volume 1 (Proof of Concept Overview)

    DTIC Science & Technology

    2014-09-01

    ND250QCS 250W) solar photovoltaic (PV) panel. The PV panel charged the batteries during the day. A Cotek S300-112 Pure Sine Wave l DC to AC power ...around a large Solar Photovoltaic Farm in southern NM; b) measurements of pressure, temperature (2 m/10 m), relative humidity (2 m), insolation (2 m...and winds (2 m/10 m); c) solar- powered instrumentation; and d) wireless data download, monitoring, and time synchronization. The MSA data processing

  3. Evolution of integrated panel structural design and interfaces for PV power plants

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Anderson, A. J.; Robertson, R. E.

    1983-01-01

    The evolution of integrated photovoltaic (PV) panel design at ARCO Solar is discussed. Historically, framed PV modules of about 1 x 4-ft size were individually mounted in the field on fixed support structures and interconnected electrically with cables to build higher-power arrays. When ARCO Solar saw the opportunity in 1982 to marry its PV modules with state-of-the-art heliostat trackers developed by ARCO Power Systems, it became obvious that mounting individual modules was impractical. For this project, the framed modules were factory-assembled into panels and interconnected with cables before being mounted on the trackers. Since then, ARCO Solar made considerable progress and gained substantial experience in the design and fabrication of large PV panels. Constraints and criteria considered in these design activities included static and dynamic loads; assembly and transportation equipment and logistics, structural and electrical interfaces, and safety and grounding concerns.

  4. PV modules for ground testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The main objective was to design and build a minimum of three photovoltaic test panels for plasma interaction experiments. These experiments are intended to provide data on the interactions between high-voltage solar arrays and the space plasma environment. Data gathered will significantly contribute to the development of design criteria for the space station solar arrays. Electrical isolation between the solar cell strings and the module mounting plate is required for high-voltage bias.

  5. PV_LIB Toolbox v. 1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system's plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.

  6. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  7. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance

    PubMed Central

    Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima

    2015-01-01

    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013. PMID:26275303

  8. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    NASA Astrophysics Data System (ADS)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  9. Flat-plate solar array project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Callaghan, W.; Mcdonald, R.

    1986-01-01

    In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.

  10. SAVANT: Solar Array Verification and Analysis Tool Demonstrated

    NASA Technical Reports Server (NTRS)

    Chock, Ricaurte

    2000-01-01

    The photovoltaics (PV) industry is now being held to strict specifications, such as end-oflife power requirements, that force them to overengineer their products to avoid contractual penalties. Such overengineering has been the only reliable way to meet such specifications. Unfortunately, it also results in a more costly process than is probably necessary. In our conversations with the PV industry, the issue of cost has been raised again and again. Consequently, the Photovoltaics and Space Environment Effects branch at the NASA Glenn Research Center at Lewis Field has been developing a software tool to address this problem. SAVANT, Glenn's tool for solar array verification and analysis is in the technology demonstration phase. Ongoing work has proven that more efficient and less costly PV designs should be possible by using SAVANT to predict the on-orbit life-cycle performance. The ultimate goal of the SAVANT project is to provide a user-friendly computer tool to predict PV on-orbit life-cycle performance. This should greatly simplify the tasks of scaling and designing the PV power component of any given flight or mission. By being able to predict how a particular PV article will perform, designers will be able to balance mission power requirements (both beginning-of-life and end-of-life) with survivability concerns such as power degradation due to radiation and/or contamination. Recent comparisons with actual flight data from the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) mission validate this approach.

  11. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    NASA Astrophysics Data System (ADS)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.

  12. Managing PV Power on Mars - MER Rovers

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard

    2009-01-01

    The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance

  13. Lightweight IMM PV Flexible Blanket Assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  14. Evaluation of the PV energy production after 12-years of operating

    NASA Astrophysics Data System (ADS)

    Bouchakour, Salim; Arab, Amar Hadj; Abdeladim, Kamel; Boulahchiche, Saliha; Amrouche, Said Ould; Razagui, Abdelhak

    2018-05-01

    This paper presents a simple way to approximately evaluate the photovoltaic (PV) array performance degradation, the studied PV arrays are connected to the local electric grid at the Centre de Developpement des Energies Renouvelables (CDER) in Algiers, Algeria, since June 2004. The used PV module model takes in consideration the module temperature and the effective solar radiance, the electrical characteristics provided by the manufacturer data sheet and the evaluation of the performance coefficient. For the dynamic behavior we use the Linear Reoriented Coordinates Method (LRCM) to estimate the maximum power point (MPP). The performance coefficient is evaluated on the one hand under STC conditions to estimate the dc energy according to the manufacturer data. On the other hand, under real conditions using both the monitored data and the LM optimization algorithm, allowing a good degree of accuracy of estimated dc energy. The application of the developed modeling procedure to the analysis of the monitored data is expected to improve understanding and assessment of the PV performance degradation of the PV arrays after 12 years of operation.

  15. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  16. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  17. Solar panel cleaning robot

    NASA Astrophysics Data System (ADS)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  18. Efficient Cells Cut the Cost of Solar Power

    NASA Technical Reports Server (NTRS)

    2013-01-01

    If you visit Glenn Research Center, you might encounter a photovoltaic (PV) array that looks unlike anything you've ever seen. In fact, what one would normally identify as the panel is actually a series of curved mirrors called solar concentrators, engineered to reflect sunlight rather than absorb it. These concentrators gather, intensify, and focus sun beams upward, aiming at a fixture containing specialized silicon concentrated PV chips the actual solar cells. If you stay by the array for a while, you'll notice that the solar concentrators follow the path of the sun throughout the day, changing position to best capture and utilize the sunlight. The specialized chips that make the technology possible are the brainchild of Bernard Sater, an engineer who had worked at Glenn since the early 1960s before retiring to pursue his unique ideas for harnessing solar power. Sater contributed to multiple PV projects in the latter part of his career at the Center, including research and development on the International Space Station s solar arrays. In his spare time, he enjoyed tinkering with new approaches to solar power, experiments that resulted in the system installed at Glenn today. Sater s basic idea had two components. First, he wanted to create a silicon cell that was smaller, more efficient, and much lower cost than those available at the time. To ensure that the potential of such a chip could be realized, he also planned on pairing it with a system that could concentrate sunlight and focus it directly on the cell. When he retired from Glenn in 1994 to focus on researching and developing the technology full time, Sater found that NASA was interested in the concept and ready to provide funding, facilities, and expertise in order to assist in its development.

  19. Flux concentrations on solar dynamic components due to mispointing

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.

    1992-01-01

    Mispointing of the solar dynamic (SD) concentrator designed for use on Space Station Freedom (SSF) causes the optical axis of the concentrator to be nonparallel to the incoming rays from the Sun. This causes solar flux not to be focused into the aperture hole of the receiver and may position the flux on other SSF components. A Rocketdyne analysis has determined the thermal impact of off-axis radiation due to mispointing on elements of the SD module and photovoltaic (PV) arrays. The conclusion was that flux distributions on some of the radiator components, the two-axis gimbal rings, the truss, and the PV arrays could present problems. The OFFSET computer code was used at Lewis Research Center to further investigate these flux distributions incident on components. The Lewis study included distributions for a greater range of mispoint angles than the Rocketdyne study.

  20. Multiple Solutions for Reconfiguration to Address Partial Shading Losses in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna

    2018-03-01

    Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.

  1. Reduction of solar photovoltaic resources due to air pollution in China

    PubMed Central

    Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L.

    2017-01-01

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003–2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth’s Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20–25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. PMID:29078360

  2. Reduction of solar photovoltaic resources due to air pollution in China.

    PubMed

    Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L

    2017-11-07

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.

  3. 76 FR 80961 - Notice of Availability of the Record of Decision for the Sonoran Solar Energy Project, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... following major components or systems: PV modules/arrays; solar trackers and/or fixed support structures; an...;AZA34187] Notice of Availability of the Record of Decision for the Sonoran Solar Energy Project, Arizona... Management (BLM) announces the availability of the Record of Decision (ROD) for the Sonoran Solar Energy...

  4. Application of Distributed DC/DC Electronics in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Kabala, Michael

    In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.

  5. Solar Electricity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  6. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    NASA Astrophysics Data System (ADS)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  7. Workshop I: Systems/Standards/Arrays

    NASA Technical Reports Server (NTRS)

    Piszczor, Mike; Reed, Brad

    2007-01-01

    Workshop Format: 1) 1:00 - 3:00 to cover various topics as appropriate; 2) At last SPRAT, conducted Workshop topic on solar cell and array qualification standards. Brad Reed will present update on status of that effort; 3) Second workshop topic: The Future of PV Research within NASA. 4) Any time remaining, specific topics from participants. 5) Reminder for IAPG Members! RECWG today 3:00-5:00 in Federal Room, 2nd Floor OAI. a chart is presented showing: Evaluation of Solar Array Technology Readiness Levels.

  8. Overview of Photovoltaic Calibration and Measurement Standards at GRC

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo; Snyder, David; Brinker, David; Bailey, Sheila; Curtis, Henry; Scheiman, David; Jenkins, Phillip

    2002-01-01

    Photovoltaic (PV) systems (cells and arrays) for spacecraft power have become an international market. This market demands accurate prediction of the solar array power output in space throughout the mission life of the spacecraft. Since the beginning of space flight, space-faring nations have independently developed methods to calibrate solar cells for power output in low Earth orbit (LEO). These methods rely on terrestrial, laboratory, or extraterrestrial light sources to simulate or approximate the air mass zero (AM0) solar intensity and spectrum.

  9. REopt Improves the Operations of Alcatraz's Solar PV-Battery-Diesel Hybrid System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olis, Daniel R; Walker, H. A; Van Geet, Otto D

    This poster identifies operations improvement strategies for a photovoltaic (PV)-battery-diesel hybrid system at the National Park Service's Alcatraz Island using NREL's REopt analysis tool. The current 'cycle charging' strategy results in significant curtailing of energy production from the PV array, requiring excessive diesel use, while also incurring high wear on batteries without benefit of improved efficiency. A simple 'load following' strategy results in near optimal operating cost reduction.

  10. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  11. Solar and Wind Forecasting | Grid Modernization | NREL

    Science.gov Websites

    and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry

  12. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  13. Adaptive smart simulator for characterization and MPPT construction of PV array

    NASA Astrophysics Data System (ADS)

    Ouada, Mehdi; Meridjet, Mohamed Salah; Dib, Djalel

    2016-07-01

    Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and has a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.

  14. Estimation of solar energy resources for low salinity water desalination in several regions of Russia

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. B.; Kiseleva, S. V.; Shakun, V. P.; Gabderakhmanova, T. S.

    2018-01-01

    This paper focuses on estimation of demanded photovoltaic (PV) array areas and capital expenses to feed a reverse osmosis desalination unit (1 m3/day fresh water production rate). The investigation have been made for different climatic conditions of Russia using regional data on ground water salinity from different sources and empirical dependence of specific energy consumption on salinity and temperature. The most optimal results were obtained for Krasnodar, Volgograd, Crimea Republic and some other southern regions. Combination of salinity, temperature and solar radiation level there makes reverse osmosis coupled with photovoltaics very attractive to solve infrastructure problems in rural areas. Estimation results are represented as maps showing PV array areas and capital expenses for selected regions.

  15. P6 Truss, starboard PV solar array wing deployment

    NASA Image and Video Library

    2000-12-03

    STS097-373-005 (3 December 2000) --- Backdropped against the blackness of space, the deployment of International Space Station (ISS) solar array was photographed with a 35mm camera by astronaut Carlos I. Noriega, mission specialist. Part of the extravehicular mobility unit (EMU) attached to astronaut Joseph R. Tanner, mission specialist, is visible at bottom center. Tanner and Noriega went on to participate together in three separate space walks.

  16. Electric power - Photovoltaic or solar dynamic?

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.

    1985-01-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  17. Analysis of Solar Census Remote Solar Access Value Calculation Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nangle, J.; Dean, J.; Van Geet, O.

    2015-03-01

    The costs of photovoltaic (PV) system hardware (PV panels, inverters, racking, etc.) have fallen dramatically over the past few years. Nonhardware (soft) costs, however, have failed to keep pace with the decrease in hardware costs, and soft costs have become a major driver of U.S. PV system prices. Upfront or 'sunken' customer acquisition costs make up a portion of an installation's soft costs and can be addressed through software solutions that aim to streamline sales and system design aspects of customer acquisition. One of the key soft costs associated with sales and system design is collecting information on solar accessmore » for a particular site. Solar access, reported in solar access values (SAVs), is a measurement of the available clear sky over a site and is used to characterize the impacts of local shading objects. Historically, onsite shading studies have been required to characterize the SAV of the proposed array and determine the potential energy production of a photovoltaic system.« less

  18. FACT, Mega-ROSA, SOLAROSA

    NASA Technical Reports Server (NTRS)

    Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark

    2012-01-01

    The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.

  19. Adaptive smart simulator for characterization and MPPT construction of PV array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouada, Mehdi, E-mail: mehdi.ouada@univ-annaba.org; Meridjet, Mohamed Salah; Dib, Djalel

    2016-07-25

    Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and hasmore » a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.« less

  20. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  1. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  2. Lightweight, Flexible Solar Cells on Stainless Steel Foil and Polymer for Space and Stratospheric Applications

    NASA Technical Reports Server (NTRS)

    Beernink, Kevin; Guha, Subhendu; Yang, Jeff; Banerjee, Arindam; Lord, Ken; DeMaggio, Greg; Liu, Frank; Pietka, Ginger; Johnson, Todd; Reinhout, Melanie; hide

    2007-01-01

    The availability of low-cost, lightweight and reliable photovoltaic (PV) modules is an important component in reducing the cost of satellites and spacecraft. In addition, future high-power spacecraft will require lightweight PV arrays with reduced stowage volume. In terms of the requirements for low mass, reduced stowage volume, and the harsh space environment, thin film amorphous silicon (a-Si) alloy cells have several advantages over other material technologies (1). The deposition process is relatively simple, inexpensive, and applicable to large area, lightweight, flexible substrates. The temperature coefficient has been found to be between -0.2 and -0.3 %/degC for high-efficiency triple-junction a-Si alloy cells, which is superior for high temperature operation compared to crystalline Si and triple-junction GaAs/InGaP/Ge devices at 0.53 %/degC and 0.45 %/degC, respectively (2). As a result, the reduction in efficiency at high temperature typical in space conditions is less for a-Si alloy cells than for their crystalline counterparts. Additionally, the a-Si alloy cells are relatively insensitive to electron and proton bombardment. We have shown that defects that are created by electrons with energies between 0.2 to 2 MeV with fluence up to 1x10(exp 15) e/sq cm and by protons with energy in the range 0.3 MeV to 5 MeV with fluence up to 1x10(exp 13) p/sq cm can be annealed out at 70 C in less than 50 hours (1). Further, modules incorporating United Solar s a-Si alloy cells have been tested on the MIR space station for 19 months with only minimal degradation (3). For stratospheric applications, such as the high altitude airship, the required PV arrays are typically of considerably higher power than current space arrays. Airships typically have a large area available for the PV, but weight is of critical importance. As a result, low cost and high specific power (W/kg) are key factors for airship PV arrays. Again, thin-film a-Si alloy solar cell technology is well suited to such applications.

  3. Three junction holographic micro-scale PV system

    NASA Astrophysics Data System (ADS)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Kostuk, Raymond K.

    2016-09-01

    In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.

  4. EMI from solar panels and inverters

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Results are given of an exploratory investigation to ascertain the potential of electromagnetic interference (EMI) caused by radiation from photovoltaic (PV) systems. This includes a determination of the appropriate parameters to be measured and a review of present standards with emphasis on the FCC docket on incidental radiators. It also includes small residential installations having roof-mounted PV arrays. The results will be used to make recommendations as to what further work, if any, is needed to ensure that EMI from a PV system is negligible. Measured data so far show that the inverters in the solar-panel system tested caused severe EMI problems in the AM broadcast band (0.5 to 1.6 MH2), while FM and television reception was not significantly affected.

  5. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  6. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  7. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Astrophysics Data System (ADS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-10-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  8. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  9. KSC-00dig067

    NASA Image and Video Library

    2000-10-31

    After repair of a cracked cleat on the crawler-transporter, Space Shuttle Endeavour finally rests on Launch Pad 39B. To the left is the Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  10. KSC-00padig104

    NASA Image and Video Library

    2000-11-28

    STS-97 Mission Specialist Carlos Noriega gets help with his boots from suit technician Shelly Grick-Agrella during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  11. KSC-00padig108

    NASA Image and Video Library

    2000-11-28

    During pre-pack and fit check in the Operations and Checkout Building, STS-97 Commander Brent Jett gets help with his gloves from suit technician Bill Todd. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  12. KSC-00padig103

    NASA Image and Video Library

    2000-11-28

    STS-97 Mission Specialist Joseph Tanner gets help with his boots from suit technician Erin Canlon during check pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  13. KSC-00padig106

    NASA Image and Video Library

    2000-11-28

    STS-97 Pilot Michael Bloomfield gets help with his boots from suit technician Steve Clendenin during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  14. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents amore » standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.« less

  15. Investigating dye-sensitised solar cells

    NASA Astrophysics Data System (ADS)

    Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

    2010-05-01

    At present there is considerable global concern in relation to environmental issues and future energy supplies, for instance climate change (global warming) and the rapid depletion of fossil fuel resources. This trepidation has initiated a more critical investigation into alternative and renewable sources of power such as geothermal, biomass, hydropower, wind and solar energy. The immense dependence on electrical power in today's society has prompted the manufacturing of devices such as photovoltaic (PV) cells to help alleviate and replace current electrical demands of the power grid. The most popular and commercially available PV cells are silicon solar cells which have to date the greatest efficiencies for PV cells. The drawback however is that the manufacturing of these cells is complex and costly due to the expense and difficulty of producing and processing pure silicon. One relatively inexpensive alternative to silicon PV cells that we are currently studying are dye-sensitised solar cells (DSSC or Grätzel Cells). DSSC are biomimetic solar cells which are based on the process of photosynthesis. The SFI Strategic Research Centre for Solar Energy Conversion is a research cluster based in Ireland formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific research area is in DSSC and their electrical properties. We are currently developing testing equipment for arrays of DSSC and developing optoelectronic models which todescribe the performance and behaviour of DSSCs.

  16. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Singer, S.

    1989-01-01

    Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

  17. Analysis of mismatch and shading effects in a photovoltaic array using different technologies

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Muñoz, Y.; Ibáñez, F.; Ospino, A.

    2014-06-01

    In this paper, we analyze the performance of a photovoltaic array implemented in the Universidad Politécnica de Valencia which consists of modules of different technologies and power, connected in series, in order to quantify the energy losses due to mismatch and the effect of the shadows. To do this, the performance of the modules was measured in operation under ambient conditions with field measurement equipment (AMPROBE Solar Analyzer, Solar - 4000), which allows the extrapolation of measures to standard conditions STC. For the data validation, measures under controlled conditions were taken to some modules in the flash test laboratory of the Institute of Energy Technology ITE of Valencia in Spain. Subsequently the array curves measured were validated with a photovoltaic array model developed in MATLAB-Simulink for the same conditions and technologies. The results of this particular array are lost up to 20% of the energy supplied due to the modules mismatch. The study shows the curves and the energy loss due to shadows modules. This result opens scenarios for conceivable modifications to the PV field configurations today, chosen during the design stage and unchangeable during the operating stage; and gives greater importance to the energy loss by mismatch in the PV array.

  18. High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station.

    PubMed

    Boyd, Matthew T

    2017-06-01

    Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.

  19. High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station

    PubMed Central

    Boyd, Matthew T.

    2017-01-01

    Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation. PMID:28670044

  20. Design description of the Tangaye Village photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Martz, J. E.; Ratajczak, A. F.

    1982-06-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  1. Design description of the Tangaye Village photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Ratajczak, A. F.

    1982-01-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  2. Cleaning Robot for Solar Panels in Solar Power Station

    NASA Astrophysics Data System (ADS)

    Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan

    2016-05-01

    The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.

  3. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  4. Will we exceed 50% efficiency in photovoltaics?

    NASA Astrophysics Data System (ADS)

    Luque, Antonio

    2011-08-01

    Solar energy is the most abundant and reliable source of energy we have to provide for the multi-terawatt challenge we are facing. Although huge, this resource is relatively dispersed. High conversion efficiency is probably necessary for cost effectiveness. Solar cell efficiencies above 40% have been achieved with multijunction (MJ) solar cells. These achievements are here described. Possible paths for improvement are hinted at including third generation photovoltaics concepts. It is concluded that it is very likely that the target of 50% will eventually be achieved. This high efficiency requires operating under concentrated sunlight, partly because concentration helps increase the efficiency but mainly because the cost of the sophisticated cells needed can only be paid by extracting as much electric power form each cell as possible. The optical challenges associated with the concentrator optics and the tools for overcoming them, in particular non-imaging optics, are briefly discussed and the results and trends are described. It is probable that optical efficiency over 90% will be possible in the future. This would lead to a module efficiency of 45%. The manufacturing of a concentrator has to be addressed at three levels of integration: module, array, and photovoltaic (PV) subfield. The PV plant as a whole is very similar than a flat module PV plant with two-axes tracking. At the module level, the development of tools for easy manufacturing and quality control is an important topic. Furthermore, they can accommodate in different position cells with different spectral sensitivities so complementing the effort in manufacturing MJ cells. At the array level, a proper definition of the nameplate watts, since the diffuse light is not used, is under discussion. The cost of installation of arrays in the field can be very much reduced by self aligning tracking control strategies. At the subfield level, aspects such as the self shadowing of arrays causes the CPV subfields to be sparsely packed leading to a ground efficiency, in the range of 10%, that in some cases will be below that of fixed modules of much lower cell efficiency. All this taken into account, High Concentration PV (HCPV) has the opportunity to become the cheapest of the PV technologies and beat the prevalent electricity generation technologies. Of course the way will be paved with challenges, and success is not guaranteed.

  5. KSC-00padig107

    NASA Image and Video Library

    2000-11-28

    During pre-pack and fit check in the Operations and Checkout Building, STS-97 Mission Specialist Marc Garneau waves after getting his helmet on. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  6. KSC-00pp1758

    NASA Image and Video Library

    2000-11-27

    After arriving at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Pilot Michael Bloomfield. Behind him can be seen Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  7. KSC-00padig055

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour approaches the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  8. KSC00padig055

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour approaches the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  9. KSC-00padig105

    NASA Image and Video Library

    2000-11-28

    STS-97 Mission Specialist Marc Garneau gets help with his boots from suit technician Tommy McDonald during pre-pack and fit check. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  10. STS-97 Mission Specialist Tanner during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Joseph Tanner gets help with his boots from suit technician Erin Canlon during check pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  11. STS-97 Mission Specialist Noriega during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Carlos Noriega gets help with his boots from suit technician Shelly Grick-Agrella during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  12. Modeling and Implementing a Digitally Embedded Maximum Power Point Tracking Algorithm and a Series-Loaded Resonant DC-DC Converter to Integrate a Photovoltaic Array with a Micro-Grid

    DTIC Science & Technology

    2014-09-01

    These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources, photovoltaic (PV) arrays...renewable energy source [1]. These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources...26, May 2011. [6] H. G. Xu, J. P. He, Y. Qin, and Y. H. Li, “Energy management and control strategy for DC micro-grid in data center,” China

  13. NREL Center for Photovoltaics

    ScienceCinema

    None

    2017-12-09

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%—about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%.

  14. Environmental Assessment for the Solar Photovoltaic Array at Eglin Air Force Base, Florida

    DTIC Science & Technology

    2014-01-24

    design changes. The Proposed Action also includes construction of the solar PV system , construction of a perimeter fence, and routine site maintenance...Department of Environmental Protection (FDEP) National Pollutant Discharge Elimination System (NPDES) Permit ● Environmental Resource Permit...Management Actions Soils ● Describe slopes, drainage patterns, areas of soil disturbance, areas where stabilization practices will occur, water

  15. Environmental Assessment for the Solar Photovoltaic Array, Eglin Air Force Base, Florida

    DTIC Science & Technology

    2014-01-24

    changes. The Proposed Action also includes construction of the solar PV system , construction of a perimeter fence, and routine site maintenance...Department of Environmental Protection (FDEP) National Pollutant Discharge Elimination System (NPDES) Permit ● Environmental Resource Permit...Management Actions Soils ● Describe slopes, drainage patterns, areas of soil disturbance, areas where stabilization practices will occur, water locations

  16. Wide-Bandgap CIAS Thin-film Photovoltaics with Transparent Back Contacts for Next-Generation Single and Multijunction Devices

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine

    2005-01-01

    Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.

  17. One-power IC with MPPT design

    NASA Astrophysics Data System (ADS)

    Xu, Shengzhi; Chu, Ian; Zhao, Gengshen; Wang, Qingzhang

    2008-03-01

    When proceed photovoltaic power system design, engineer needs prepared model of PV cells to evaluate system response, capability performance, and stability, the DC model is not enough, but an accuracy AC model plays a big role. This paper talks first about the AC model of PV cells, and DC model is also introduced in simple. There is a PV controller example explaining the steps to do system simulation in this paper. Two equivalent circuit models are implemented with mixed-signal language verilog-a, one hardware language easy to use and having good speed and high accuracy. Both of two models include solar cell arrays, one buck switched mode DC-DC converter, and the maximum power point tracking algorithm. The difference between them is that Solar cell in one of two models is with ac small signal parameter, another is without. The simulation result is given in comparison. This paper's work shows that ac parameter plays large role in switch-mode PV power system, especially when the switch frequency is higher than 100kHz.

  18. Coating Processes Boost Performance of Solar Cells

    NASA Technical Reports Server (NTRS)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  19. Design and operation of grid-interactive thin-film silicon PV systems

    NASA Astrophysics Data System (ADS)

    Marion, Bill; Atmaram, Gobind; Lashway, Clin; Strachan, John W.

    Results are described from the operation of 11 thin-film amorphous silicon photovoltaic systems at three test facilities: the Florida Solar Energy Center, the New Mexico Solar Energy Institute, and Sandia National Laboratories. Commercially available modules from four US manufacturers are used in these systems, with array sizes from 133 to 750 W peak. Measured array efficiencies are from 3.1 to 4.8 percent. Except for one manufacturer, array peak power is in agreement with the calculated design ratings. For certain grid-connected systems, nonoptimal operation exists because the array peak power voltage is below the lower voltage limit of the power conditioning system. Reliability problems are found in two manufacturers' modules when shorts to ground and terminal corrosion occur. Array leakage current data are presented.

  20. The Status and Outlook for the Photovoltaics Industry

    NASA Astrophysics Data System (ADS)

    Carlson, David

    2006-03-01

    The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.

  1. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    NASA Astrophysics Data System (ADS)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  2. Intermediate photovoltaic system application experiment operational performance report: Volume 5, for Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.

  3. Feasibility study of solar energy in residential electricity generation

    NASA Astrophysics Data System (ADS)

    Solanki, Divyangsinh G.

    With the increasing demand for energy and the concerns about the global environment, along with the steady progress in the field of renewable energy technologies, new opportunities and possibilities are opening up for an efficient utilization of renewable energy sources. Solar energy is undoubtedly the most clean, inexhaustible and abundant source of renewable energy. Photovoltaic (PV) technology is one of the most efficient mean to utilize solar power. The focus of this study was to establish economics of a residential photovoltaic system for a typical home in south Texas. The PV system serves the needs of a typical mid-size home inhibited by a typical family. Assumptions are made for the typical daily energy consumption, and the necessary equipments like solar arrays, batteries, inverter, etc. are sized and evaluated optimally so as to reduce the life cycle cost (LCC) of the system. Calculations are done taking into consideration the economic parameters concerned with the system.

  4. Experimental grid connected PV system power analysis

    NASA Astrophysics Data System (ADS)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  5. Practice of Meteorological Services in Turpan Solar Eco-City in China (Invited)

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Chang, R.; He, X.; Jiang, Y.; Zhao, D.; Ma, J.

    2013-12-01

    Turpan Solar Eco-City is located in Gobi in Northwest China, which is one of the National New Energy Demonstration Urban. The city was planed and designed from October of 2008 and constructed from May of 2010, and the first phase of the project has been completed by October of 2013. Energy supply in Turpan Solar Eco-City is mainly from PV power, which is installed in all of the roof and the total capacity is 13.4MW. During the planning and designing of the city, and the running of the smart grid, meteorological services have played an important role. 1) Solar Energy Resource Assessment during Planning Phase. According to the observed data from meteorological stations in recent 30 years, solar energy resource was assessed and available PV power generation capacity was calculated. The results showed that PV power generation capacity is 1.3 times the power consumption, that is, solar energy resource in Turpan is rich. 2) Key Meteorological Parameters Determination for Architectural Design. A professional solar energy resource station was constructed and the observational items included Global Horizontal Irradiance, Inclined Total Solar Irradiance at 30 degree, Inclined Total Solar Irradiance at local latitude, and so on. According these measured data, the optical inclined angle for PV array was determined, that is, 30 degree. The results indicated that the annual irradiation on inclined plane with optimal angle is 1.4% higher than the inclined surface with latitude angle, and 23.16% higher than the horizontal plane. The diffuse ratio and annual variation of the solar elevation angle are two major factors that influence the irradiation on inclined plane. 3) Solar Energy Resource Forecast for Smart Grid. Weather Research Forecast (WRF) model was used to forecast the hourly solar radiation of future 72 hours and the measured irradiance data was used to forecast the minutely solar radiation of future 4 hours. The forecast results were submitted to smart grid and used to regulate the local grid and the city gird.

  6. KSC-00padig063

    NASA Image and Video Library

    2000-10-31

    A repair crew works to repair the broken cleat on the crawler-transporter, found as it was moving up the incline on Launch Pad 39B. The Shuttle retreated to level ground so the broken cleat could be repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  7. KSC-00pp1622

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is ready to move from the Vehicle Assembly Building into the light of early morning on its rollout to Launch Pad 39B. The Space Shuttle sits atop the Mobile Launcher Platform (MLP). Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  8. KSC-00pp1630

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- A repair crew works to remove a broken cleat (shoe) on the crawler-transporter moving the Space Shuttle Endeavour to Launch Pad 39B. The crack was noticed as the crawler-transporter started up the incline to the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  9. KSC00pp1632

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Workers stand by while the broken cleat (shoe) on the crawler-transporter is removed. The crack was noticed as the crawler-transporter, moving Space Shuttle Endeavour to Launch Pad 39B, started up the incline to the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  10. KSC00pp1631

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- A worker adjusts equipment to remove a broken cleat (shoe) on the crawler-transporter moving the Space Shuttle Endeavour to Launch Pad 39B. The crack was noticed as the crawler-transporter started up the incline to the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  11. KSC00pp1630

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- A repair crew works to remove a broken cleat (shoe) on the crawler-transporter moving the Space Shuttle Endeavour to Launch Pad 39B. The crack was noticed as the crawler-transporter started up the incline to the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  12. KSC-00pp1632

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Workers stand by while the broken cleat (shoe) on the crawler-transporter is removed. The crack was noticed as the crawler-transporter, moving Space Shuttle Endeavour to Launch Pad 39B, started up the incline to the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  13. KSC00pp1622

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is ready to move from the Vehicle Assembly Building into the light of early morning on its rollout to Launch Pad 39B. The Space Shuttle sits atop the Mobile Launcher Platform (MLP). Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  14. KSC-00pp1631

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- A worker adjusts equipment to remove a broken cleat (shoe) on the crawler-transporter moving the Space Shuttle Endeavour to Launch Pad 39B. The crack was noticed as the crawler-transporter started up the incline to the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  15. A repair crew works on crawler-transporter

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A repair crew works to repair the broken cleat on the crawler- transporter, found as it was moving up the incline on Launch Pad 39B. The Shuttle retreated to level ground so the broken cleat could be repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections.

  16. STS-97 Mission Specialist Garneau with full launch and entry suit during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-97 Commander Brent Jett gets help with his gloves from suit technician Bill Todd. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  17. STS-97 Mission Specialist Garneau during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau gets help with his boots from suit technician Tommy McDonald during pre-pack and fit check. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  18. Practical aspects of photovoltaic technology, applications and cost (revised)

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.

    1985-01-01

    The purpose of this text is to provide the reader with the background, understanding, and computational tools needed to master the practical aspects of photovoltaic (PV) technology, application, and cost. The focus is on stand-alone, silicon solar cell, flat-plate systems in the range of 1 to 25 kWh/day output. Technology topics covered include operation and performance of each of the major system components (e.g., modules, array, battery, regulators, controls, and instrumentation), safety, installation, operation and maintenance, and electrical loads. Application experience and trends are presented. Indices of electrical service performance - reliability, availability, and voltage control - are discussed, and the known service performance of central station electric grid, diesel-generator, and PV stand-alone systems are compared. PV system sizing methods are reviewed and compared, and a procedure for rapid sizing is described and illustrated by the use of several sample cases. The rapid sizing procedure yields an array and battery size that corresponds to a minimum cost system for a given load requirement, insulation condition, and desired level of service performance. PV system capital cost and levelized energy cost are derived as functions of service performance and insulation. Estimates of future trends in PV system costs are made.

  19. Hybrid micro-scale photovoltaics for enhanced energy conversion across all irradiation conditions

    NASA Astrophysics Data System (ADS)

    Agrawal, Gautam

    A novel hybrid photovoltaics (HPV) architecture is presented that integrates high-performance micro-optics-based concentrator photovoltaics (CPV) array technology with a 1-sun photovoltaic (PV) cell within a low-profile panel structure. The approach simultaneously captures the direct solar radiation components with arrayed high-efficiency CPV cells and the diffuse solar components with an underlying wide-area PV cell. Performance analyses predict that the hybrid approach will significantly enhance the average energy produced per unit area for the full range of diffuse/direct radiation patterns across the USA. Furthermore, cost analyses indicate that the hybrid concept may be financially attractive for a wide range of locations. Indoor and outdoor experimental evaluation of a micro-optical system designed for use in a hybrid architecture verified that a large proportion of the direct radiation component was concentrated onto emulated micro-cell regions while most of the diffuse radiation and the remaining direct radiation was collected in the 1-sun cell area.

  20. Comparing energy payback and simple payback period for solar photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kessler, Will

    2017-11-01

    Installing a solar photovoltaic (PV) array is both an environmental and a financial decision. The financial arguments often take priority over the environmental because installing solar is capital-intensive. The Simple Payback period (SPB) is often assessed prior to the adoption of solar PV at a residence or a business. Although it better describes the value of solar PV electricity in terms of sustainability, the Energy Payback period (EPB) is seldom used to gauge the merits of an installation. Using published estimates of embodied energies, EPB was calculated for four solar PV plants utilizing crystalline-Si technology: three being actual commercial installations located in the northeastern U.S., and a fourth installation based on a simulated 20-kilowatt roof-mounted system, in Wrocław, Poland. Simple Payback was calculated based on initial capital cost, and on the availability of avoided electricity costs based on net-metering tariffs, which at present in the U.S. are 1:1 credit ratio, and in Poland is 1:0.7 credit ratio. For all projects, the EPB time was estimated at between 1.9 and 2.6 years. In contrast, the SPB for installed systems in the northeastern U.S. ranged from 13.3 to 14.6 years, and was estimated at 13.5 years for the example system in Lower Silesia, Poland. The comparison between SPB and EPB shows a disparity between motivational time frames, in which the wait for financial return is considerably longer than the wait for net energy harvest and the start of sustainable power production.

  1. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  2. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    NASA Astrophysics Data System (ADS)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.

  3. Solar Access to Public Capital (SAPC) Working Group: Best Practices in PV System Installation; Version 1.0, March 2015; Period of Performance, October 2014 - September 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, C.; Truitt, A.; Inda, D.

    The following Photovoltaics Installation Best Practices Guide is one of several work products developed by the Solar Access to Public Capital (SAPC) working group, which works to open capital market investment. SAPC membership includes over 450 leading solar developers, financiers and capital managers, law firms, rating agencies, accounting and engineering firms, and other stakeholders engaged in solar asset deployment. SAPC activities are directed toward foundational elements necessary to pool project cash flows into tradable securities: standardization of power purchase and lease contracts for residential and commercial end customers; development of performance and credit data sets to facilitate investor due diligencemore » activities; comprehension of risk perceived by rating agencies; and the development of best practice guides for PV system installation and operations and maintenance (O&M) in order to encourage high-quality system deployment and operation that may improve lifetime project performance and energy production. This PV Installation Best Practices Guide was developed through the SAPC Installation Best Practices subcommittee, a subgroup of SAPC comprised of a wide array of solar industry leaders in numerous fields of practice. The guide was developed over roughly one year and eight months of direct engagement by the subcommittee and two working group comment periods.« less

  4. Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.

  5. An Aluminum Salvage Station for the External Tank (ASSET)

    DTIC Science & Technology

    1990-12-01

    34 High Efficiency GaAs-Ge Tandem Solar Cells Grown by MOCVD." In NASA Conference Publication 3030, Space Photovoltaic Re- search and Technology 1988...Solar Dynamic vs. PV Array Comparisons .... ............ C-8 E.1. ASSET Thermal Model Results ...... .................. E-16 G.I. Scenario I CER...during the salvage operation. A thermal model is developed and the thermal impacts of on-orbit salvage are included in all scenarios. A probabilistic

  6. Electrical power system WP-04

    NASA Astrophysics Data System (ADS)

    Nored, Donald L.

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  7. Electrical power system WP-04

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  8. Evaluation of Data-Driven Models for Predicting Solar Photovoltaics Power Output

    DOE PAGES

    Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas

    2017-09-10

    This research was undertaken to evaluate different inverse models for predicting power output of solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated whether PV power output prediction accuracy can be improved if module/cell temperature was measured in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar irradiation is not measured on the plane of array but only on a horizontal surface. We have also investigated the significance of different independent or regressor variables, such as wind velocity and incident angle modifier in predicting PV power output and cell temperature.more » The inverse regression model forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are used. Depending on what type of measured climatic and PV performance data is available, different scenarios have been identified and the corresponding appropriate modeling pathways have been proposed. The corresponding models are to be implemented on a controller platform for optimum operational planning of microgrids and integrated energy systems.« less

  9. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hanak, J. J.; Kaschmitter, J. L.

    1991-05-01

    An ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) has been identified as a potential low-cost power source for small satellites. We have conducted a survey of the status of the a-Si PV array technology with respect to present and future performance, availability, cost and risks. For existing, experimental array 'blankets' made of commercial cell material, utilizing metal foil substrates, the BOL performance at AM0 and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated EOL power output after 10 years in a nominal low-earth orbit would be 80 percent of BOL, the degradation being due to largely light-induced effects (minus 10 to minus 15 percent) and in part (minus 5 percent) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing US national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long-range development program toward developing of this important power source for space. One new US developer has emerged as a future potential supplier of a-Si PV devices on thin, polyimide substrates.

  10. Solar Power System Analyses for Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Gefert, Leon P.

    1999-01-01

    Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 sq m. An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 sq m.

  11. Harmonic analysis and suppression in hybrid wind & PV solar system

    NASA Astrophysics Data System (ADS)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  12. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    NASA Astrophysics Data System (ADS)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  13. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  14. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    NASA Astrophysics Data System (ADS)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  15. KSC-00dig069

    NASA Image and Video Library

    2000-10-31

    Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was stalled several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  16. KSC-00padig057

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour passes through the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. To the left is the Fixed Service Structure and Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  17. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  18. KSC-00padig100

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Carlos Noriega. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  19. KSC-00pp1633

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Removal and replacement of the cracked cleat (shoe) on the crawler-transporter (seen here with the Mobile Launcher Platform and Space Shuttle Endeavour on top) is nearly complete. The cracked cleat was noticed during rollout of Endeavour to Launch Pad 39B. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  20. KSC-00padig056

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour is nearly through the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. To the left is the Fixed Service Structure and Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  1. KSC00pp1753

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, Center Director Roy Bridges (left) greets STS-97 Commander Brent Jett on his arrival at KSC for the mission launch. At right is Mission Specialist Carlos Noriega. Jett and Noriega traveled from Johnson Space Center, Houston, Texas, in the T-38 jet aircraft behind them. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  2. KSC-00padig064

    NASA Image and Video Library

    2000-10-31

    This close-up shows the crawler-transporter’s broken cleat (center left, with a yellow ribbon around it) that caused the backward trek of Space Shuttle Endeavour from Launch Pad 39B. The Shuttle retreated to level ground so the broken cleat could be repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  3. KSC-00pp1753

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, Center Director Roy Bridges (left) greets STS-97 Commander Brent Jett on his arrival at KSC for the mission launch. At right is Mission Specialist Carlos Noriega. Jett and Noriega traveled from Johnson Space Center, Houston, Texas, in the T-38 jet aircraft behind them. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  4. KSC00padig060

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour is nearly through the gate on its backward trek from Launch Pad 39B. A broken cleat on the crawler-transporter forced the reverse movement so the cleat could be repaired before moving up the incline to the top of the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  5. KSC-00pp1759

    NASA Image and Video Library

    2000-11-27

    After arriving at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him can be seen Mission Specialists Joseph Tanner (left) and Carlos Noriega. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  6. KSC-00dig068

    NASA Image and Video Library

    2000-10-31

    Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was stalled several hours to fix a broken cleat on the crawler-transporter. To the left is the Rotating Service Structure. The Orbiter Access Arm is already extended from the Fixed Service Structure to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  7. KSC-00padig062

    NASA Image and Video Library

    2000-10-31

    This close-up shows the crawler-transporter’s broken cleat (center foreground, with a yellow ribbon around it) that caused the backward trek of Space Shuttle Endeavour from Launch Pad 39B. The Shuttle retreated to level ground so the broken cleat could be repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  8. KSC-00padig102

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  9. KSC-00padig101

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Joseph Tanner. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Marc Garneau, who is with the Canadian Space Agency, and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  10. KSC-00padig061

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is again on level ground after its backward trek from Launch Pad 39B. A broken cleat on the crawler-transporter forced the reverse movement so the cleat could be repaired before moving up the incline to the top of the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  11. KSC00padig057

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour passes through the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. To the left is the Fixed Service Structure and Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  12. KSC-00padig099

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Pilot Michael Bloomfield. Behind him stand Commander Brent Jett and Mission Specialists Joseph Tanner, Carolos Noriega and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  13. KSC-00padig089

    NASA Image and Video Library

    2000-11-08

    STS-97 Mission Specialist Joe Tanner settles into his seat in Space Shuttle Endeavour on Launch Pad 39B. He and the rest of the crew are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  14. KSC00pp1633

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Removal and replacement of the cracked cleat (shoe) on the crawler-transporter (seen here with the Mobile Launcher Platform and Space Shuttle Endeavour on top) is nearly complete. The cracked cleat was noticed during rollout of Endeavour to Launch Pad 39B. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  15. KSC00padig056

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Perched atop the Mobile Launcher Platform, Space Shuttle Endeavour is nearly through the gate to Launch Pad 39B. To the right of the pad is a 290-foot tall water tower. To the left is the Fixed Service Structure and Rotating Service Structure. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  16. KSC00padig061

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is again on level ground after its backward trek from Launch Pad 39B. A broken cleat on the crawler-transporter forced the reverse movement so the cleat could be repaired before moving up the incline to the top of the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  17. KSC-00padig060

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour is nearly through the gate on its backward trek from Launch Pad 39B. A broken cleat on the crawler-transporter forced the reverse movement so the cleat could be repaired before moving up the incline to the top of the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  18. A closeup of the broken cleat on the crawler-transporter

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This closeup shows the crawler-transporter's broken cleat (center foreground, with a yellow ribbon around it) that caused the backward trek of Space Shuttle Endeavour from Launch Pad 39B. The Shuttle retreated to level ground so the broken cleat could be repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections.

  19. A closeup of the broken cleat on the crawler-transporter

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This closeup shows the crawler-transporter's broken cleat (center left, with a yellow ribbon around it) that caused the backward trek of Space Shuttle Endeavour from Launch Pad 39B. The Shuttle retreated to level ground so the broken cleat could be repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections.

  20. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  1. Solar electric power for instruments at remote sites

    USGS Publications Warehouse

    McChesney, P.J.

    2000-01-01

    Small photovoltaic (PV) systems are the preferred method to power instruments operating at permanent locations away from the electric power grid. The low-power PV power system consists of a solar panel or small array of panels, lead-acid batteries, and a charge controller. Even though the small PV power system is simple, the job of supplying power at a remote site can be very demanding. The equipment is often exposed to harsh conditions. The site may be inaccessible part of the year or difficult and expensive to reach at any time. Yet the system must provide uninterrupted power with minimum maintenance at low cost. This requires good design. Successful small PV systems often require modifications by a knowledgeable fieldworker to adapt to conditions at the site. Much information is available in many places about solar panels, lead-acid batteries, and charging systems but very little of it applies directly to low power instrument sites. The discussion here aims to close some of the gap. Each of the major components is described in terms of this application with particular attention paid to batteries. Site problems are investigated. Finally, maintenance and test procedures are given. This document assumes that the reader is engaged in planning or maintaining low-power PV sites and has basic electrical and electronic knowledge. The area covered by the discussion is broad. To help the reader with the many terms and acronyms used, they are shown in bold when first used and a glossary is provided at the end of the paper.

  2. Space Station Power Generation in Support of the Beta Gimbal Anomaly Resolution

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Propp, Timothy W.

    2003-01-01

    The International Space Station (ISS) is the largest and most complex spacecraft ever assembled and operated in orbit. The first U.S. photovoltaic (PV) module, containing two solar arrays, was launched, installed, and activated in early December 2000. After the first week of continuously rotating the U.S. solar arrays, engineering personnel in the ISS Mission Evaluation Room (MER) observed higher than expected electrical currents on the drive motor in one of the Beta Gimbal Assemblies (BGA), the mechanism used to maneuver a U.S. solar array. The magnitude of the motor currents continued to increase over time on both BGA's, creating concerns about the ability of the gimbals to continue pointing the solar arrays towards the sun, a function critical for continued assembly of the ISS. A number of engineering disciplines convened in May 2001 to address this on-orbit hardware anomaly. This paper reviews the ISS electrical power system (EPS) analyses performed to develop viable operational workarounds that would minimize BGA use while maintaining sufficient solar array power to continue assembly of the ISS. Additionally, EPS analyses performed in support of on-orbit BGA troubleshooting exercises is reviewed. EPS capability analyses were performed using SPACE, a computer code developed by NASA Glenn Research Center (GRC) for the ISS program office.

  3. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    NASA Astrophysics Data System (ADS)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  4. Solar 2 Green Energy, Arts & Education Center. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paquette, Jamie C; Collins, Christopher J

    The Solar 2 Green Energy, Arts and Education Center is an 8,000 sq.ft. demonstration project that will be constructed to Platinum LEED certification and will be the first carbon-neutral, net-zero energy use public building in New York City, giving it local and national appeal. Employing green building features and holistic engineering practices throughout its international award-winning design, Solar 2 will be powered by a 90kW photovoltaic (PV) array in conjunction with a geothermal heating and cooling system and a high efficient design that seeks to reduce the overall energy load of the building. Solar 2 will replace our current 500more » sq.ft. prototype facility - known as Solar 1 - as the educational and cultural centerpiece of a five-block public greenway on the East River in Stuyvesant Cove Park, located along two acres of public riverfront on a newly reclaimed, former brownfield in lower Manhattan. Designed as a public-use complex for year-round environmental education exhibits and onsite activities for all ages and backgrounds, Solar 2 will demonstrate energy-efficiency technologies and sustainable environmental practices available now to all urban residents, eco-tourists, teachers, and students alike. Showcasing one of Solar 2's most striking design elements is the PV roof array with a cafe and river vistas for miles of New York City's skylines. Capping the building as a solar-powered landmark, and visible from the FDR Drive, the PV array is also designed to provide visitors below a view of the solar roof when standing outside, as well as directly underneath it. Recognized by an international jury of architects, civil engineers and urban designers by the Swiss-based Holcim Foundation, the Solar 2 design was awarded the prestigious Holcim North American 2008 Gold Award for Sustainable Construction for innovative, future-oriented and tangible sustainable construction projects, selected from more than 1900 entries. Funding from the Department of Energy was provided to assist with the ongoing design work of Solar 2, including architecture, engineering and the development of construction specifications. The work performed during the project period brought this process as far along as it could go pending the raising of funds to begin construction of the building. Once those funds are secured, we will finalize any additional details needed before beginning the bidding process and then moving into construction. DOE's funding was extremely valuable in helping Solar One determine the feasibility of a net-zero construction on the site and allowed for the design to project to meet the high standards necessary for LEED Platinum status.« less

  5. The Evolving Market Structure of the U.S. Residential Solar PV Installation

    Science.gov Websites

    Solar PV Installation Industry, 2000-2016 The Evolving Market Structure of the U.S. Residential Solar PV residential solar photovoltaic (PV) system and that the residential PV installation industry has become more concentrated over time. From 2000 to 2016, the U.S. residential solar photovoltaic (PV) installation industry

  6. On-line monitoring system of PV array based on internet of things technology

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  7. Stabilized PV system

    DOEpatents

    Dinwoodie, Thomas L.

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  8. A new concept of space solar power satellite

    NASA Astrophysics Data System (ADS)

    Li, Xun; Duan, Baoyan; Song, Liwei; Yang, Yang; Zhang, Yiqun; Wang, Dongxu

    2017-07-01

    Space solar power satellite (SSPS) is a tremendous energy system that collects and converts solar power to electric power in space, and then transmits the electric power to earth wirelessly. In this paper, a novel SSPS concept based on ε-near-zero (ENZ) metamaterial is proposed. A spherical condenser made of ENZ metamaterial is developed, by using the refractive property of the ENZ metamaterial sunlight can be captured and redirected to its center. To make the geometric concentration ratio of the PV array reasonable, a hemispherical one located at the center is used to collect and convert the normal-incidence sunlight to DC power, then through a phased array transmitting antenna the DC power is beamed down to the rectenna on the ground. Detailed design of the proposed concept is presented.

  9. Complex Systems Analysis | Energy Analysis | NREL

    Science.gov Websites

    Generators, Transmission Infrastructure. A Power Plant drawing is above the text boxes. Solar Arrays drawing Flexibility and Storage. An Industry plant drawing and a house with the label Monitor Energy Use is connected to Transmission Infrastructure. A Geothermal Power Plant drawing and a Rooftop PV drawing is connect

  10. NREL Provides PV Holiday Lights for Christmas Tree

    Science.gov Websites

    annual holiday event that began in 1913. The solar array generates electricity during the day by converting sunlight directly into electricity. The electricity is fed directly to the local electrical small part of the electricity used by the Pageant each night, but it's an excellent public demonstration

  11. An Operating Method Using Prediction of Photovoltaic Power for a Photovoltaic-Diesel Hybrid Power Generation System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigehiro; Sumi, Kazuyoshi; Nishikawa, Eiichi; Hashimoto, Takeshi

    This paper describes a novel operating method using prediction of photovoltaic (PV) power for a photovoltaic-diesel hybrid power generation system. The system is composed of a PV array, a storage battery, a bi-directional inverter and a diesel engine generator (DG). The proposed method enables the system to save fuel consumption by using PV energy effectively, reducing charge and discharge energy of the storage battery, and avoiding low-load operation of the DG. The PV power is simply predicted from a theoretical equation of solar radiation and the observed PV energy for a constant time before the prediction. The amount of fuel consumption of the proposed method is compared with that of other methods by a simulation based on measurement data of the PV power at an actual PV generation system for one year. The simulation results indicate that the amount of fuel consumption of the proposed method is smaller than that of any other methods, and is close to that of the ideal operation of the DG.

  12. Solar Plus: A Holistic Approach to Distributed Solar PV | Solar Research |

    Science.gov Websites

    NREL Plus: A Holistic Approach to Distributed Solar PV Solar Plus: A Holistic Approach to Distributed Solar PV A new NREL report analyzes "solar plus," an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize

  13. 2015 PV Solar Resource Workshop | Photovoltaic Research | NREL

    Science.gov Websites

    PV Solar Resource Workshop 2015 PV Solar Resource Workshop Friday, February 27, 2015 Chairs understand the solar resource available to PV plants and opportunities for the community to improve over the as Adobe Acrobat PDFs. Solar Resource Needs for Prediction and Monitoring of PV Performance

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas

    This research was undertaken to evaluate different inverse models for predicting power output of solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated whether PV power output prediction accuracy can be improved if module/cell temperature was measured in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar irradiation is not measured on the plane of array but only on a horizontal surface. We have also investigated the significance of different independent or regressor variables, such as wind velocity and incident angle modifier in predicting PV power output and cell temperature.more » The inverse regression model forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are used. Depending on what type of measured climatic and PV performance data is available, different scenarios have been identified and the corresponding appropriate modeling pathways have been proposed. The corresponding models are to be implemented on a controller platform for optimum operational planning of microgrids and integrated energy systems.« less

  15. Reliability of hybrid photovoltaic DC micro-grid systems for emergency shelters and other applications

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Schleith, Susan

    2014-10-01

    Improvement of energy efficiency in the SunSmart Schools Emergency Shelters requires new methods for optimizing the energy consumption within the shelters. One major limitation in current systems is the requirement of converting direct current (DC) power generated from the PV array into alternating current (AC) power which is distributed throughout the shelters. Oftentimes, this AC power is then converted back to DC to run certain appliances throughout the shelters resulting in a significant waste of energy due to DC to AC and then again AC to DC conversion. This paper seeks to extract the maximum value out of PV systems by directly powering essential load components within the shelters that already run on DC power without the use of an inverter and above all to make the system reliable and durable. Furthermore, additional DC applications such as LED lighting, televisions, computers and fans operated with DC brushless motors will be installed as replacements to traditional devices in order to improve efficiency and reduce energy consumption. Cost of energy storage technologies continue to decline as new technologies scale up and new incentives are put in place. This will provide a cost effective way to stabilize the energy generation of a PV system as well as to provide continuous energy during night hours. It is planned to develop a pilot program of an integrated system that can provide uninterrupted DC power to essential base load appliances (heating, cooling, lighting, etc.) at the Florida Solar Energy Center (FSEC) command center for disaster management. PV arrays are proposed to be installed on energy efficient test houses at FSEC as well as at private homes having PV arrays where the owners volunteer to participate in the program. It is also planned to monitor the performance of the PV arrays and functioning of the appliances with the aim to improve their reliability and durability. After a successful demonstration of the hybrid DC microgrid based emergency shelter together with the monitoring system, it is planned to replicate it at other schools in Florida and elsewhere to provide continuous power for essential applications, maximizing the value of PV generation systems.

  16. STS-97 crew arrives at KSC for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  17. KSC-00pp1756

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  18. KSC-00pp1754

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Pilot Michael Bloomfield climbs out of the cockpit of a T-38 jet aircraft he flew from Johnson Space Center. He and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  19. KSC00pp1629

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- A repair crew begin working on replacing a broken cleat on this track of the crawler-transporter. The crack was noticed as the crawler-transporter was moving Space Shuttle Endeavour to Launch Pad 39B. Rollout was delayed until the cleat could be replaced. The Space Shuttle was hard down on the pad several hours later. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  20. KSC-00dig065

    NASA Image and Video Library

    2000-10-31

    The cracked cleat on the crawler-transporter track that stalled the rollout of Space Shuttle Endeavour lies on the ground near Launch Pad 39B. The cracked cleat forced the reverse of the rollout back outside the pad gate so the cleat could be repaired on flat ground before moving up the incline to the top of the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  1. KSC-00pp1650

    NASA Image and Video Library

    2000-11-07

    STS-97 Mission Specialist Marc Garneau (right) answers a question from the media. At left is Mission Specialist Joe Tanner. They and the other crew members are meeting with the media before beginning emergency egress training at Launch Pad 39B. The training is part of Terminal Countdown Demonstration Test activities that include a simulated launch countdown. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  2. KSC00pp1757

    NASA Image and Video Library

    2000-11-27

    After arriving at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone, Commander Brent Jett praises the efforts of the KSC workers to get ready for the launch. Behind Jett are Pilot Michael Bloomfield and Mission Specialists Joseph Tanner, Carlos Noriega and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  3. KSC-00padig051

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- With the early morning light behind it, Space Shuttle Endeavour appears to fill the opening in the Vehicle Assembly Building as it begins rollout to Launch Pad 39B on the Mobile Launcher Platform (MLP). At the bottom can be seen the crawler-transporter that moves the combined Shuttle and MLP. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  4. KSC00pp1756

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  5. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  6. KSC-00padig098

    NASA Image and Video Library

    2000-11-27

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone, Commander Brent Jett praises the efforts of the KSC workers to get ready for the launch. Behind Jett are Pilot Michael Bloomfield and Mission Specialists Joseph Tanner, Carolos Noriega and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  7. KSC-00pp1628

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- A yellow tag identifies the crawler-transporter cleat that has a crack. The crack was noticed as the crawler-transporter was moving Space Shuttle Endeavour to Launch Pad 39B. Rollout was delayed until the cleat could be replaced. The Space Shuttle was hard down on the pad several hours later. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  8. KSC-00pp1635

    NASA Image and Video Library

    2000-10-31

    A new cleat, or shoe, for one of the tracks on the crawler-transporter sits on the ground near the vehicle (in the background). A cracked cleat was noticed on the crawler as it was rolling Space Shuttle Endeavour and the Mobile Launcher Platform out to Launch Pad 39B. The rollout is being suspended while the cleat is replaced. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  9. KSC-00pp1629

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- A repair crew begin working on replacing a broken cleat on this track of the crawler-transporter. The crack was noticed as the crawler-transporter was moving Space Shuttle Endeavour to Launch Pad 39B. Rollout was delayed until the cleat could be replaced. The Space Shuttle was hard down on the pad several hours later. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  10. KSC-00pp1634

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour, atop the Mobile Launcher Platform, moves through the gate a second time to Launch Pad 39B. After a cracked cleat was noticed on one of the eight tracks on the crawler-transporter, the vehicle reversed direction to level ground where the cleat is being replaced. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  11. KSC00pp1637

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was delayed several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  12. KSC00pp1634

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour, atop the Mobile Launcher Platform, moves through the gate a second time to Launch Pad 39B. After a cracked cleat was noticed on one of the eight tracks on the crawler-transporter, the vehicle reversed direction to level ground where the cleat is being replaced. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  13. KSC-00pp1757

    NASA Image and Video Library

    2000-11-27

    After arriving at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone, Commander Brent Jett praises the efforts of the KSC workers to get ready for the launch. Behind Jett are Pilot Michael Bloomfield and Mission Specialists Joseph Tanner, Carlos Noriega and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  14. KSC-00padig087

    NASA Image and Video Library

    2000-11-08

    STS-97 Mission Specialist Carlos Noriega settles into his seat in Space Shuttle Endeavour on Launch Pad 39B. He and the rest of the crew are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST

  15. KSC00pp1754

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Pilot Michael Bloomfield climbs out of the cockpit of a T-38 jet aircraft he flew from Johnson Space Center. He and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  16. KSC-00padig093

    NASA Image and Video Library

    2000-11-08

    The STS-97 crew poses on the 215-foot level of the Fixed Service Structure during Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload and a simulated launch countdown. From left, they are Mission Specialist Carlos Noriega, Commander Brent Jett, Pilot Mike Bloomfield, and Mission Specialists Marc Garneau and Joe Tanner. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  17. KSC-00pp1663

    NASA Image and Video Library

    2000-11-07

    In the Space Station Processing Facility, workers applaud the turnover of the P6 Integrated Truss Structure by International Space Station ground operations to the NASA shuttle integration team in a special ceremony. Standing in front are STS-97 Mission Specialists Joe Tanner and Carlos Noriega plus Pilot Mike Broomfield. Behind and left of Tanner is Mission Specialist Marc Garneau. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  18. KSC-00padig088

    NASA Image and Video Library

    2000-11-08

    STS-97 Mission Specialist Marc Garneau, who is with the Canadian Space Agency, settles into his seat in Space Shuttle Endeavour on Launch Pad 39B. He and the rest of the crew are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST

  19. KSC00padig051

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- With the early morning light behind it, Space Shuttle Endeavour appears to fill the opening in the Vehicle Assembly Building as it begins rollout to Launch Pad 39B on the Mobile Launcher Platform (MLP). At the bottom can be seen the crawler-transporter that moves the combined Shuttle and MLP. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  20. KSC-00pp1637

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was delayed several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  1. KSC00pp1628

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- A yellow tag identifies the crawler-transporter cleat that has a crack. The crack was noticed as the crawler-transporter was moving Space Shuttle Endeavour to Launch Pad 39B. Rollout was delayed until the cleat could be replaced. The Space Shuttle was hard down on the pad several hours later. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  2. STS-97 Mission Specialist Noriega talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Carlos Noriega. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  3. STS-97 Mission Specialist Tanner talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Joseph Tanner. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Marc Garneau, who is with the Canadian Space Agency, and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  4. STS-97 Mission Specialist Garneau talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  5. The possibility of developing hybrid PV/T solar system

    NASA Astrophysics Data System (ADS)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  6. Using the Spatial Distribution of Installers to Define Solar Photovoltaic Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Nemet, Gregory F.; Darghouth, Naim

    2016-09-01

    Solar PV market research to date has largely relied on arbitrary jurisdictional boundaries, such as counties, to study solar PV market dynamics. This paper seeks to improve solar PV market research by developing a methodology to define solar PV markets. The methodology is based on the spatial distribution of solar PV installers. An algorithm is developed and applied to a rich dataset of solar PV installations to study the outcomes of the installer-based market definitions. The installer-based approach exhibits several desirable properties. Specifically, the higher market granularity of the installer-based approach will allow future PV market research to study themore » relationship between market dynamics and pricing with more precision.« less

  7. Enhancement of photovoltaic cell performance using periodic triangular gratings

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Dey, Rajat

    2014-01-01

    The solar energy industry strives to produce more efficient and yet cost effective solar panels each consisting of an array of photovoltaic (PV) cells. The goal of this study was to enhance the performance of PV cells through increasing the cells' optical efficiency defined as a percentage of surface incident light that reaches the PV material. This was achieved through the reduction of waveguide decoupling loss and Fresnel reflection losses by integrating specific nonimaging micro-optical structures on the top surface of existing PV cells. Due to this integration, optical efficiency and performance were increased through the enhancement of light trapping, light guiding, and in-coupling functionalities. Periodic triangular gratings (PTGs) were designed, nonsequentially modeled, optimized, and fabricated in polydimethylsiloxane as proposed micro-optical structures. Then the performance of PV cells with and without integrated PTGs was evaluated and compared. Initial optical simulation results show that an original PV cell (without PTG) exhibits an average optical efficiency of 32.7% over a range of incident light angles between 15 and 90 deg. Integration of the PTG allows the capture of incoming sunlight by total internal reflection (TIR), whence it is reflected back onto the PV cell for multiple consecutive chances for absorption and PV conversion. Geometry of the PTG was optimized with respect to an angle of light incidence of {15, 30, 45, 60, 75, 90} deg. Optical efficiency of the geometrically optimized PTGs was then analyzed under the same set of incident light angles and a maximum optical efficiency of 54.1% was observed for a PV cell with integrated PTG optimized at 90 deg. This is a 53.3% relative improvement in optical performance when compared to an original PV cell. Functional PTG prototypes were then fabricated with optical surface quality (below 10 nm Ra) and integrated with PV cells demonstrating an increase in maximum power by 1.08 mW/cm (7.6% improvement in PV performance) and in short circuit current by 2.39 mA/cm (6.4% improvement).

  8. Multi objective decision making in hybrid energy system design

    NASA Astrophysics Data System (ADS)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component, dominated when the 'Environment' objective or the 'User/System compatibility' objectives were more important than the 'Financial' objectives and they also dominated when the three criteria were considered equally important.

  9. Photovoltaic Manufacturing Consortium (PVMC) – Enabling America’s Solar Revolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metacarpa, David

    The U.S. Photovoltaic Manufacturing Consortium (US-PVMC) is an industry-led consortium which was created with the mission to accelerate the research, development, manufacturing, field testing, commercialization, and deployment of next-generation solar photovoltaic technologies. Formed as part of the U.S. Department of Energy's (DOE) SunShot initiative, and headquartered in New York State, PVMC is managed by the State University of New York Polytechnic Institute (SUNY Poly) at the Colleges of Nanoscale Science and Engineering. PVMC is a hybrid of industry-led consortium and manufacturing development facility, with capabilities for collaborative and proprietary industry engagement. Through its technology development programs, advanced manufacturing development facilities,more » system demonstrations, and reliability and testing capabilities, PVMC has demonstrated itself to be a recognized proving ground for innovative solar technologies and system designs. PVMC comprises multiple locations, with the core manufacturing and deployment support activities conducted at the Solar Energy Development Center (SEDC), and the core Si wafering and metrology technologies being headed out of the University of Central Florida. The SEDC provides a pilot line for proof-of-concept prototyping, offering critical opportunities to demonstrate emerging concepts in PV manufacturing, such as evaluations of innovative materials, system components, and PV system designs. The facility, located in Halfmoon NY, encompasses 40,000 square feet of dedicated PV development space. The infrastructure and capabilities housed at PVMC includes PV system level testing at the Prototype Demonstration Facility (PDF), manufacturing scale cell & module fabrication at the Manufacturing Development Facility (MDF), cell and module testing, reliability equipment on its PV pilot line, all integrated with a PV performance database and analytical characterizations for PVMC and its partners test and commercial arrays. Additional development and deployment support are also housed at the SEDC, such as cost modeling and cost model based development activities for PV and thin film modules, components, and system level designs for reduced LCOE through lower installation hardware costs, labor reductions, soft costs and reduced operations and maintenance costs. The progression of the consortium activities started with infrastructure and capabilities build out focused on CIGS thin film photovoltaics, with a particular focus on flexible cell and module production. As marketplace changes and partners objectives shifted, the consortium shifted heavily towards deployment and market pull activities including Balance of System, cost modeling, and installation cost reduction efforts along with impacts to performance and DER operational costs. The consortium consisted of a wide array of PV supply chain companies from equipment and component suppliers through national developers and installers with a particular focus on commercial scale deployments (typically 25 to 2MW installations). With DOE funding ending after the fifth budget period, the advantages and disadvantages of such a consortium is detailed along with potential avenues for self-sustainability is reviewed.« less

  10. Golden Rays - July 2017 | Solar Research | Solar Research | NREL

    Science.gov Websites

    Operator, First Solar, and NREL tested a 300-MW PV plant to demonstrate that, with proper controls, PV can technique to measure charge-carrier transport in PV materials. Solar Plus: A Holistic Approach to Distribution Solar PV By optimizing how PV interacts with other electricity loads at the household- and grid

  11. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    PubMed Central

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331

  12. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  13. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.

    PubMed

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A

    2016-12-20

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  14. A circuit-based photovoltaic module simulator with shadow and fault settings

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Chao, Yuan-Wei; Chen, Jyun-Ping

    2016-03-01

    The main purpose of this study was to develop a photovoltaic (PV) module simulator. The proposed simulator, using electrical parameters from solar cells, could simulate output characteristics not only during normal operational conditions, but also during conditions of partial shadow and fault conditions. Such a simulator should possess the advantages of low cost, small size and being easily realizable. Experiments have shown that results from a proposed PV simulator of this kind are very close to that from simulation software during partial shadow conditions, and with negligible differences during fault occurrence. Meanwhile, the PV module simulator, as developed, could be used on various types of series-parallel connections to form PV arrays, to conduct experiments on partial shadow and fault events occurring in some of the modules. Such experiments are designed to explore the impact of shadow and fault conditions on the output characteristics of the system as a whole.

  15. Start It up: Flywheel Energy Storage Efficiency

    ERIC Educational Resources Information Center

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  16. Distributed Storage Inverter and Legacy Generator Integration Plus Renewable Solution for Microgrids

    DTIC Science & Technology

    2015-07-01

    24 6.6 DEMONSTRATION 6: PV + STORAGE SUPPORT MANAGING VARIABLE SOLAR ...Table 2. Energy generated by solar PV for 1 month. .......................................................... 23 Table 3. NG generators energy...saving with solar PV . ........................................................ 24 Table 4. NG generators fuel saving with solar PV

  17. Optimal placement and sizing of wind / solar based DG sources in distribution system

    NASA Astrophysics Data System (ADS)

    Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng

    2017-06-01

    Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.

  18. Distributed solar radiation fast dynamic measurement for PV cells

    NASA Astrophysics Data System (ADS)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the need of complex local installations, configuring of our SRMA system is very easy. Lora also provides SRMA a means to overcome the short communication distance and weather signal propagation decline such as in ZigBee and WiFi. The host computer in SRMA system uses the low power single-board PC EMB-3870 which was produced by NORCO. Wind direction sensor SM5386B and wind-force sensor SM5387B are installed to host computer through RS-485 bus for wind reference data collection. And Davis 6450 solar radiation sensor, which is a precision instrument that detects radiation at wavelengths of 300 to 1100 nanometers, allow host computer to follow real-time solar radiation. A LoRa polling scheme is adopt for the communication between host computer and terminal nodes in SRMA. An experimental SRMA has been established. This system was tested in Ganyu, Jiangshu province from May to August, 2016. In the test, the distances between the nodes and the host computer were between 100m and 1900m. At work, SRMA system showed higher reliability. Terminal nodes could follow the instructions from host computer and collect solar radiation data of distributed PV cells effectively. And the host computer managed the SRAM and achieves reference parameters well. Communications between the host computer and terminal nodes were almost unaffected by the weather. In conclusion, the testing results show that SRMA could be a capable method for fast dynamic measuring about solar radiation and related PV cell operating characteristics.

  19. Implementing Solar Photovoltaic Projects on Historic Buildings and in Historic Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.; Hotchkiss, E.; Walker, A.

    2011-01-01

    Despite a global recession, the number of photovoltaic (PV) installations in the United States grew 30% from 2008 to 2009. A number of trends point toward continued growth of new PV installations. The efficiency of solar panels is increasing, while installation costs are going down. At the same time, federal, state, and local regulations are requiring that greater amounts of energy must come from renewable sources. Incentives for solar power technology implementation are being created and regulatory barriers removed. Corporations and governments are focusing on solar power to demonstrate leadership in environmental sustainability and resource conservation. Architects and builders aremore » including PV arrays as a way to meet green building standards and property owners are seeking PV as a way to reduce their utility bills, as well as their carbon footprints. This publication focuses on the implementation of PV systems on historic properties. Many private property owners, as well as local, state, and national government entities, are seeking guidance on how best to integrate solar PV installations on historic buildings. Historic preservationists maintain that preserving, reusing, and maintaining historic structures is a key sustainable design strategy while also recognizing the importance of accommodating renewable energy technologies where they are appropriate. In some cases, however, conflicts have arisen over the installation of PV panels on historic properties. Addressing these conflicts and providing guidance regarding solutions and best practices is an important step toward resolving or eliminating barriers. Historic properties and districts in the United States provide tangible connections to the nation's past. Thousands of buildings, sites, districts, structures, and objects have been recognized for their historic and architectural significance. Local, state, and national designations of historic properties provide recognition, protection, and incentives that help to preserve those properties for future generations. At the national level, the National Register of Historic Places includes more than 86,000 listings, which encompass a total of more than 1.6 million historic resources. State registers of historic places also provide recognition and protection for historic sites and districts. Locally, more than 2,400 communities have established historic preservation ordinances. Typically implemented through zoning overlays, these local land use regulations manage changes to hundreds of thousands of historic properties. Over a period of 2 years (2007 and 2008) the U.S. Department of Energy (DOE) designated 25 major U.S. cities as Solar America Cities. DOE provided financial and technical assistance to help the cities develop comprehensive approaches to accelerate the adoption of solar energy technologies. The Solar America Cities partnerships represent the foundation of DOE's larger Solar America Communities program. As a part of this program, DOE identified the implementation of solar projects on historic properties and in historic districts as one area to address. A workshop titled 'Implementing Solar Projects on Historic Buildings and in Historic Districts' was held in Denver, Colorado, in June of 2010. Participants included representatives from the solar industry as well as historic preservationists from nonprofit organizations and government agencies at the local, state, and national levels. The workshop provided an opportunity to gain a common understanding of solar technologies and historic preservation procedures and priorities. The workshop participants also discussed some of the challenges involved in locating PV systems on historic properties and identified potential solutions. This publication is based on the discussions that occurred at this workshop and the recommendations that were developed by participants. Ideas expressed by participants in the workshop, and included in this document, do not necessarily reflect the opinion of any government council, agency, or entity.« less

  20. 77 FR 73018 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ...., Ltd. (Chengdu) PV Module Co., Ltd. Canadian Solar International Canadian Solar 24.48 Limited..... Chint Solar (Zhejiang) 24.48 Co., Ltd. Suzhou Shenglong PV-Tech Co., Ltd Suzhou Shenglong PV-TECH 24.48.... Jetion Solar (China) Co., Ltd.... Jetion Solar (China) 24.48 Co., Ltd. Jiangsu Green Power PV Co., Ltd...

  1. Research | Photovoltaic Research | NREL

    Science.gov Websites

    -V cells Hybrid tandems Polycrystalline Thin-Film PV CdTe solar cells CIGS solar cells Perovskites and Organic PV Perovskite solar cells Organic PV solar cells Advanced Materials, Devices, and Science Interfacial and Surface Science Reliability and Engineering Real-Time PV and Solar Resource

  2. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov Websites

    2017-2030 | Solar Research | NREL Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 This report Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying

  3. The Value of Transparency in Distributed Solar PV Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J; Zamzam, Ahmed S

    Market transparency refers to the degree of customer awareness of product options and fair market prices for a given good. In The Value of Transparency in Distributed Solar PV Markets, we use residential solar photovoltaic (PV) quote data to study the value of transparency in distributed solar PV markets. We find that improved market transparency results in lower installation offer prices. Further, the results of this study suggest that PV customers benefit from gaining access to more PV quotes.

  4. KSC-00pp1626

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at KSC, Space Shuttle Endeavour inches its way to Launch Pad 39B via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is on the Mobile Launcher Platform (MLP) which is atop the crawler-transporter, moving on four double-tracked crawlers. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  5. KSC-00padig090

    NASA Image and Video Library

    2000-11-08

    Commander Brent Jett looks toward Pilot Mike Broomfield, on his right, as they get comfortable in their seats in the cockpit of Space Shuttle Endeavour on Launch Pad 39B. Along with the rest of the crew, they are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST

  6. KSC00padig053

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Viewed across the turn basin from the Press mound, Space Shuttle Endeavour inches its way to Launch Pad 39B (on the horizon) via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is on the Mobile Launcher Platform (MLP) which is atop the crawler-transporter, moving on four double-tracked crawlers. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  7. KSC-00pp1659

    NASA Image and Video Library

    2000-11-07

    STS-97 Pilot Mike Bloomfield stands in a slidewire basket at the landing zone on Launch Pad 39B while a trainer explains its use. The emergency egress training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities for the crew to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  8. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau (right) answers a question from the media. At left is Mission Specialist Joe Tanner. They and the other crew members are meeting with the media before beginning emergency egress training at Launch Pad 39B. The training is part of Terminal Countdown Demonstration Test activities that include a simulated launch countdown. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  9. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    DOE PAGES

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less

  10. Fort Yukon, Alaska DOE Implementation Grant Gwich'in Solar and Energy Efficiency in the Arctic Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadzow, Janet; Messier, Dave

    Gwichyaa Zhee Gwich’in Tribal Government (GZGTG) applied for funding in 2014 under the U.S. Department of Energy Office of Indian Energy Deployment of Clean Energy on Tribal Lands funding opportunity. They were awarded 50% of the project costs for the construction of an 18kW, grid-tied solar PV array on the fort Yukon Tribal Hall, the construction of a 3kW solar PV array on the tribally owned greenhouse, the replacement of inefficient florescent lighting fixtures in the tribal hall to higher efficiency LED lights and the addition of blow in cellulose insulation to the attic of the tribal hall to assistmore » with heat retention. Total DOE Funding for the project was $124,735. Total GZGTG funding for the project was $133,321 for a total project cost of $258,056. The Project was completed with 100% local labor on the tribal hall solar PV installation, the LED lighting retrofit and the insulation on the tribal hall. Based on the results at the tribal hall/office, the tribe also used their own tribal funding to retrofit the lighting in the community hall from florescent to LED lights. The resulting project was completed by the end of Sept 2016 and results have shown a decrease in fuel used at the tribal hall/office of 35% and a decrease in electric costs at the tribal hall of 68%. The total energy costs before the project were approximately $28,000 a year and the energy equivalent of 385 MMBTU/yr. After the project the total energy costs decreased to $11,200/yr. and an energy equivalent of only 242 MMBTU. This represents an overall decrease in energy use of 38%. All in all the tribe and the community regard this project as a huge success!« less

  11. The Value of Transparency in Distributed Solar PV Markets | Solar Research

    Science.gov Websites

    | NREL The Value of Transparency in Distributed Solar PV Markets The Value of Transparency in Distributed Solar PV Markets NREL research analyzes data from a U.S. quote aggregator to study the effects of transparency on distributed solar photovoltaic (PV) markets. The study shows lower prices in more transparent

  12. Catalysts for Lightweight Solar Fuels Generation

    DTIC Science & Technology

    2017-03-10

    single bandgap solar cells to OER catalysts could lead to very high solar -to-fuel efficiencies. Figure 3 illustrates a PV -EC utilizing a PV , an...3- or 4 -single junction c-Si solar cells connected in series. Considering a PV -EC device based on commercially available single junction-Si solar ...30.8%) with open circuit voltage and short circuit current density ; total plot area is scaled to incident solar power (100 mW cm–2). The PV -EC

  13. Materials and Devices | Photovoltaic Research | NREL

    Science.gov Websites

    Polycrystalline Thin-Film PV Cadmium telluride (CdTe) solar cells Copper indium gallium diselenide (CIGS) solar cells Perovskite and Organic PV Perovskite solar cells Perovskite Patent Portfolio Organic PV (OPV ) solar cells Advanced Materials, Devices, and Concepts We explore new PV materials using high-throughput

  14. New Solar PV Tool Accurately Calculates Degradation Rates, Saving Money and

    Science.gov Websites

    Guiding Business Decisions | News | NREL New Solar PV Tool Accurately Calculates Degradation Rates, Saving Money and Guiding Business Decisions News Release: New Solar PV Tool Accurately Calculates ; said Dirk Jordan, engineer and solar PV researcher at NREL. "We spent years building consensus in

  15. Low Illumination Light (LIL) Solar Cells: Indoor and Monochromatic Light Harvesting

    DTIC Science & Technology

    2015-11-01

    photovoltaic ( PV ) solar cells under low intensity and narrow light spectrum conditions has not been clearly examined. PV operating values under 1 sun...3. PV Fundamental Losses under Low-Light Conditions 5 4. Experiment Setup 9 4.1 Materials 9 4.1.1 Light Sources and Spectra 9 4.1.2 PV Solar ...http://www.mjinc.com/newsArticle2012_Mar15.html ..........................4 Fig. 4 Three energy and power densities ranges for PV solar cells

  16. Power System Mass Analysis for Hydrogen Reduction Oxygen Production on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2009-01-01

    The production of oxygen from the lunar regolith requires both thermal and electrical power in roughly similar proportions. This unique power requirement is unlike most applications on the lunar surface. To efficiently meet these requirements, both solar PV array and solar concentrator systems were evaluated. The mass of various types of photovoltaic and concentrator based systems were calculated to determine the type of power system that provided the highest specific power. These were compared over a range of oxygen production rates. Also a hybrid type power system was also considered. This system utilized a photovoltaic array to produce the electrical power and a concentrator to provide the thermal power. For a single source system the three systems with the highest specific power were a flexible concentrator/Stirling engine system, a rigid concentrator/Stirling engine system and a tracking triple junction solar array system. These systems had specific power values of 43, 34, and 33 W/kg, respectively. The hybrid power system provided much higher specific power values then the single source systems. The best hybrid combinations were the triple junction solar array with the flexible concentrator and the rigid concentrator. These systems had a specific power of 81 and 68 W/kg, respectively.

  17. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    NASA Astrophysics Data System (ADS)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  18. You're a What? Solar Photovoltaic Installer

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  19. 77 FR 63791 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled into Modules, from the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ...., Jiangsu Sunlink PV Technology Co., Ltd., and JA Solar Technology Yangzhou Co., Ltd. On June 25, 2012, Wuxi... (Chengdu) PV Tianwei New Energy 25.96 Module Co., Ltd. (Chengdu) PV Module Co., Ltd. Canadian Solar.... Chint Solar (Zhejiang) Co., Ltd Chint Solar (Zhejiang) 25.96 Co., Ltd. Suzhou Shenglong PV-Tech Co...

  20. How Is Solar PV Performing in Hurricane-struck Locations? | State, Local,

    Science.gov Websites

    and Tribal Governments | NREL How Is Solar PV Performing in Hurricane-struck Locations? How Is Solar PV Performing in Hurricane-struck Locations? October 24, 2017 by Eliza Hotchkiss The ongoing 2017 the surface about how solar photovoltaic (PV) systems have fared in the various locations. It's been

  1. Glass light pipes for solar concentration

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.

    2018-02-01

    Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.

  2. Modeling of high efficiency solar cells under laser pulse for power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-01-01

    Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

  3. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature;more » (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.« less

  4. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  5. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Astrophysics Data System (ADS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-04-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  6. Solar Plus: A Holistic Approach to Distributed Solar PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J.; Ardani, Kristen B.; Cutler, Dylan S.

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less

  7. Solar Photovoltaic Technology Basics | NREL

    Science.gov Websites

    For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the

  8. Computer Drawing Method for Operating Characteristic Curve of PV Power Plant Array Unit

    NASA Astrophysics Data System (ADS)

    Tan, Jianbin

    2018-02-01

    According to the engineering design of large-scale grid-connected photovoltaic power stations and the research and development of many simulation and analysis systems, it is necessary to draw a good computer graphics of the operating characteristic curves of photovoltaic array elements and to propose a good segmentation non-linear interpolation algorithm. In the calculation method, Component performance parameters as the main design basis, the computer can get 5 PV module performances. At the same time, combined with the PV array series and parallel connection, the computer drawing of the performance curve of the PV array unit can be realized. At the same time, the specific data onto the module of PV development software can be calculated, and the good operation of PV array unit can be improved on practical application.

  9. Organic Photovoltaic Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Organic Photovoltaic Solar Cells Organic Photovoltaic Solar Cells The National Center for Photovoltaics (NCPV) at NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic PV Advanced PV

  10. Photovoltaic Lifetime Project | Photovoltaic Research | NREL

    Science.gov Websites

    PV & Solar Resource Testing Accelerated Testing & Analysis Systems Engineering Project Sandia National Laboratories' PV Performance Modeling Collaborative website. Jinko Solar. PV systems mounted on the ground. Jinko Solar PV Lifetime installation at NREL. need-alt Light-induced degradation

  11. Top Five Large-Scale Solar Myths | State, Local, and Tribal Governments |

    Science.gov Websites

    of large-scale photovoltaic (PV) facilities or solar farms tend to include a myriad of misperceptions technologies do use mirrors which can cause glare, most solar farms use PV modules to generate electricity. PV panels in order to convert solar energy into electricity. PV modules are generally less reflective than

  12. Solar Newsletter | Solar Research | NREL

    Science.gov Websites

    , General Electric Optimize Voltage Control for Utility-Scale PV As utilities increasingly add solar power components that may be used to integrate distributed solar PV onto distribution systems. More than 335 data Innovation Award for Grid Reliability PV Demonstration First Solar, the California Independent System

  13. Eric O'Shaughnessy | NREL

    Science.gov Websites

    of residential solar PV markets. Eric leads the lab's solar data partnerships program. Eric's current green power market research. Research Interests Economic analysis, econometrics, distributed solar PV . Ardani, R. Margolis. 2018. Solar plus: Optimization of distributed solar PV through battery storage and

  14. Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Ying; Zhang, Yi-Chen; Xiao, Lan; Shen, Zu-Guo

    2018-07-01

    The performance of solar photovoltaic-thermoelectric generation hybrid system (PV-TGS) and solar photovoltaic-thermoelectric cooling hybrid system (PV-TCS) under different conditions were theoretically analysed and compared. To test the practicality of these two hybrid systems, the performance of stand-alone PV system was also studied. The results show that PV-TGS and PV-TCS in most cases will result in the system with a better performance than stand-alone PV system. The advantage of PV-TGS is emphasised in total output power and conversion efficiency which is even poorer in PV-TCS than that in stand-alone PV system at the ambient wind speed uw being below 3 m/s. However, PV-TCS has obvious advantage on lowering the temperature of PV cell. There is an obvious increase in tendency on the performance of PV-TGS and PV-TCS when the cooling capacity of two hybrid systems varies from around 0.06 to 0.3 W/K. And it is also proved that not just a-Si in PV-TGS can produce a better performance than the stand-alone PV system alone at most cases.

  15. KSC-00padig058

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Inside the gate to Launch Pad 39B, Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start up the incline to the top of the pad. The crawler-transporter beneath the MLP, which moves the Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  16. KSC00pp1623

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour appears dwarfed by the structures inside the Vehicle Assembly Building as it begins rollout to Launch Pad 39B. The Shuttle rests on top of the Mobile Launcher Platform (MLP). Underneath (bottom of photo) is the crawler-transporter that will move the Shuttle and MLP to the pad on four double-tracked crawlers. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  17. KSC-00pp1674

    NASA Image and Video Library

    2000-11-08

    The STS-97 crew heads for the Astrovan and a ride to Launch Pad 39B as they continue Terminal Countdown Demonstration Test (TCDT) activities. Seen left to right are Mission Specialists Joe Tanner, Carlos Noriega and Marc Garneau; Pilot Mike Bloomfield; and Commander Brent Jett. The TCDT provides emergency egress training, a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  18. KSC00pp1625

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour appears to be framed by palms in this view across the turn basin at KSC. Endeavour is inching its way to Launch Pad 39B via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is on the Mobile Launcher Platform (MLP) which is atop the crawler-transporter, moving on four double-tracked crawlers. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  19. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  20. Application of carbon nanotubes in perovskite solar cells: A review

    NASA Astrophysics Data System (ADS)

    Oo, Thet Tin; Debnath, Sujan

    2017-11-01

    Solar power, as alternative renewable energy source, has gained momentum in global energy generation in recent time. Solar photovoltaics (PV) systems now fulfill a significant portion of electricity demand and the capacity of solar PV capacity is growing every year. PV cells efficiency has improved significantly following decades of research, evolving into third generations of PV cells. These third generation PV cells are set out to provide low-cost and efficient PV systems, further improving the commercial competitiveness of solar energy generation. Among these latest generations of PV cells, perovskite solar cells have gained attraction due to the simple manufacturing process and the immense growth in PV efficiency in a short period of research and development. Despite these advantages, perovskite solar cells are known for the weak stability and decomposition in exposure to humidity and high temperature, hindering the possibility of commercialization. This paper will discuss the role of carbon nanotubes (CNTs) in improving the efficiency and stability of perovskite solar cells, in various components such as perovskite layer and hole transport layer, as well as the application of CNTs in unique aspects. These includes the use of CNTs fiber in making the perovskite solar cells flexible, as well as simplification of perovskite PV production by using CNT flash evaporation printing process. Despite these advances, challenges remain in incorporation CNTs into perovskite such as lower conversion efficiency compared to rare earth metals and improvements need to be made. Thus, the paper will be also highlighting the CNTs materials suggested for further research and improvement of perovskite solar cells.

  1. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    NASA Astrophysics Data System (ADS)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  2. PV technology and success of solar electricity in Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dung, T.Q.

    1997-12-31

    Since 1990 the PV Technology and the Solar electricity have been strongly developed in Vietnam. The PV experts of Solarlab have studied and set up an appropriate PV Technology responding to local Market needs. It has not only stood well but has been also transferred to Mali Republic and Lao P.D.R. The PV off grid systems of Solarlab demonstrate good efficiency and low prices. Over 60 solar stations and villages have been built to provide solar lighting for about 3000 families along the country in remote, mountainous areas and islands. 400 families are using stand-alone Solar Home Systems. The Solarmore » electricity has been chosen for Rural Electrification and National Telecommunication Network in remote and mountainous regions. Many International projects in cooperation with FONDEM-France, SELF USA and Governmental PV projects have been realized by Solarlab. The experiences of maintenance, management and finance about PV development in Vietnam are also mentioned.« less

  3. Engineering design for a large scale renewable energy network installation in an urban environment

    NASA Astrophysics Data System (ADS)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Spencer, L.; Brown, M. B.

    2016-12-01

    Humanity's current avid consumption of resources cannot be maintained and the use of renewable energy is a significant approach towards sustainable energy future. Alberta is the largest greenhouse gas-producing province in Canada (per capita) and Climate change is expected to impact Alberta with warmer temperatures, intense floods, and earlier snow melting. However, as one of the sunniest and windiest places in Canada, Alberta is poised to become one of Canada's leader provinces in utilizing renewable energies. This research has four main objectives. First, to determine the feasibility of implementing solar and wind energy systems at the University of Lethbridge campus. Second, to quantify rooftop and parking lot solar photovoltaic potential for the city of Lethbridge. Third, to determine the available rooftop area for PV deployment in a large scale region (Province of Alberta). Forth, to investigate different strategies for correlating solar PV array production with electricity demand in the province of Alberta. The proposed work addresses the need for Alberta reductions to fossil fuel pollution that drives climate change, and degrades our air, water and land resources.

  4. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  5. Colorado State University: A Midscale Market Solar Customer Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, Alison; Chernyakhovskiy, Ilya

    Despite substantial increases in solar photovoltaic (PV) deployment between 2005 and 2015, a large untapped market for solar PV deployment still exists in midscale market investments by universities. Recent estimates show that if all universities in the United States installed enough solar PV to meet 25% of their annual electricity consumption, this would cumulatively result in just over 16 gigawatts (GW) of additional installed PV capacity. Within this context, midscale market projects - loosely defined as solar PV installations ranging from 100 kilowatts (kW) to 2 megawatts (MW), but more broadly representing installations not captured in the residential or utility-scalemore » sectors - could be an attractive option for universities. This case study focuses on one university solar customer, Colorado State University (CSU), to provide a detailed example of the challenges, solutions, and opportunities associated with university solar power procurement. Between 2009 and 2015, a combined 6,754 kW of both ground-mounted and rooftop solar PV was installed across multiple CSU campuses in Fort Collins, Colorado. This case study highlights CSU's decision-making process, campus engagement strategies, and relationships with state, local, and utility partners, which have culminated in significant on-campus PV deployment.« less

  6. 75 FR 52322 - Nationwide Limited Public Interest Waiver Under Section 1605 (Buy American) of the American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... ancillary solar Photovoltaic (PV) equipment, when this equipment is utilized in solar installations... following solar PV equipment: (1) Domestically- manufactured modules containing foreign-manufactured cells... effect. Solar cells are the basic building block of PV technologies. The cells are functional...

  7. Exploration of CIGAS Alloy System for Thin-Film Photovoltaics on Novel Lightweight and Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Ribelin, Rosine

    2007-01-01

    Thin-film photovoltaics (TFPV) on lightweight and flexible substrates offer the potential for very high solar array specific power (W/kg). ITN Energy Systems, Inc. (ITN) is developing flexible TFPV blanket technology that has potential for specific power greater than 2000 W/kg (including space coatings) that could result in solar array specific power between 150 and 500 W/kg, depending on array size, when mated with mechanical support structures specifically designed to take advantage of the lightweight and flexible substrates.(1) This level of specific power would far exceed the current state of the art for spacecraft PV power generation, and meet the needs for future spacecraft missions.(2) Furthermore the high specific power would also enable unmanned aircraft applications and balloon or high-altitude airship (HAA) applications, in addition to modular and quick deploying tents for surface assets or lunar base power, as a result of the high power density (W/sq m) and ability to be integrated into the balloon, HAA or tent fabric. ITN plans to achieve the high specific power by developing single-junction and two-terminal monolithic tandem-junction PV cells using thin-films of high-efficiency and radiation resistant CuInSe2 (CIS) partnered with bandgap-tunable CIS-alloys with Ga (CIGS) or Al (CIAS) on novel lightweight and flexible substrates. Of the various thin-film technologies, single-junction and radiation resistant CIS and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of TFPV device performance, with the best efficiency reaching 19.5% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys will achieve the highest levels of thin-film space and HAA solar array performance.

  8. Chemical Bonding Technology: Direct Investigation of Interfacial Bonds

    NASA Technical Reports Server (NTRS)

    Koenig, J. L.; Boerio, F. J.; Plueddemann, E. P.; Miller, J.; Willis, P. B.; Cuddihy, E. F.

    1986-01-01

    This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described.

  9. Recent advances in the PV-CSP hybrid solar power technology

    NASA Astrophysics Data System (ADS)

    Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin

    2017-06-01

    Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.

  10. McClellan PV system installation provides key lessons

    NASA Astrophysics Data System (ADS)

    Kauffman, W. R.

    Design features and lessons learned in the installation of a 40 kWp solar cell array to supply power to a market on an airbase are outlined. The fixed-position modules interface with an inverter, ac and dc switchgear, controls, instrumentation, and an energy management system. The power control unit has a peak power tracking feature to maximize output from the 1142 cell modules. The inverter has functioned at over 98 percent efficiency near the 25 kW design range of the array. Moisture sealing to prevent ground faults was found necessary during the installation of the underground cabling.

  11. Land-Use Requirements for Solar Power Plants in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.; Campbell, C.; Denholm, P.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As ofmore » the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.« less

  12. Innovative Ballasted Flat Roof Solar PV Racking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peek, Richard T.

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction ofmore » the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.« less

  13. DGIC Interconnection Insights | Distributed Generation Interconnection

    Science.gov Websites

    Power Association (SEPA), produced a webinar Utility Participation in the Roof Top Solar PV Market with ). These leaders are pioneering utility-owned rooftop solar programs to broaden the reach of solar PV utility hired solar PV developers who, representing CPS Energy, will install, own, and maintain solar

  14. Power Generation Potential and Cost of a Roof Top Solar PV System in Kathmandu, Nepal

    NASA Astrophysics Data System (ADS)

    Sanjel, N.; Zhand, A.

    2017-12-01

    The paper presents a comparative study of the 3 most used solar PV module technologies in Nepal, which are Si-mono-crystalline, Si-poly-crystalline and Si-amorphous. The aim of the paper is to present and discuss the recorded Global Solar Radiation, received in the Kathmandu valley by three different, Si-mono-crystalline, Si-poly-crystalline and Si-amorphous calibrated solar cell pyranometers and to propose the best-suited solar PV module technology for roof top solar PV systems inside the Kathmandu valley. Data recorded over the course of seven months, thus covering most of the seasonal meteorological conditions determining Kathmandu valley's global solar radiation reception are presented. The results indicate that the Si-amorphous pyranometer captured 1.56% more global solar radiation than the Si-mono-crystalline and 18.4% more than Si-poly-crystalline pyranometer over the course of seven months. Among the three pyranometer technologies the maximum and minimum cell temperature was measured by the Si-mono-crystalline pyranometer. Following the technical data and discussion, an economical analysis, using the versatile software tool PVSYST V5.01is used to calculate the life cycle costs of a 1kW roof top solar PV RAPS system, with battery storage, and a 1kW roof top solar PV grid connected system with no energy storage facility, through simulations, using average recorded global solar radiation data for the KTM valley and investigated market values for each solar PV module and peripheral equipment costs.

  15. Design description of the Schuchuli Village photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Vasicek, R. W.; Delombard, R.

    1981-01-01

    A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV array, 2380 ampere-hours of battery storage, an electrical equipment building, a 120 V (d.c.) electrical distribution network, and equipment and automatic controls to provide control power for pumping water into an existing water system; operating 15 refrigerators, a clothes washing machine, a sewing machine, and lights for each of the homes and communal buildings. A solar hot water heater supplies hot water for the washing machine and communal laundry. Automatic control systems provide voltage control by limiting the number of PV strings supplying power during system operation and battery charging, and load management for operating high priority at the expense of low priority loads as the main battery becomes depleted.

  16. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    NASA Astrophysics Data System (ADS)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first milestone considers thermal analysis for antennas, and the second milestone compares commercial off-the-shelve high frequency substrates for thermal, and outgassing characteristics. Since the design of the rectenna system is centralized around the diode component, a diode analysis was conducted for the third milestone. Next, to efficiently transfer power between the different parts of the rectenna system a coplanar stripline was consider for the fourth milestone. The fifth milestone is a balanced-to-unbalanced transition structure that is needed to properly feed and measure different systems of the rectenna. The last milestone proposes laboratory measurement setups. Each of these milestones is a separate research question that is answered in this dissertation. The results of these rectenna milestones can be integrated into a HPGU.

  17. 76 FR 9766 - Nationwide Limited Public Interest Waiver Under Section 1605 (Buy American) of the American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... interest waiver), with respect to the following solar photo-voltaic (PV) equipment: (1) Domestically... utilized in a solar installation involving a U.S. manufactured PV module, or a module manufactured abroad... incidental and/or ancillary solar Photovoltaic (PV) equipment, when this equipment is utilized in solar...

  18. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... solar photovoltaic (``PV'') panel systems contain both U.S. and foreign-origin raw materials and... of origin of the solar PV panel system described above for the purposes of U.S. government... transformation has occurred; however, no one factor is determinative. In this case, the solar PV systems are...

  19. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  20. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    NASA Astrophysics Data System (ADS)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  1. Charting the Emergence of Corporate Procurement of Utility-Scale PV |

    Science.gov Websites

    Jeffrey J. Cook Though most large-scale solar photovoltaic (PV) deployment has been driven by utility corporate interest in renewables as more companies are recognizing that solar PV can provide clean United States highlighting states with utility-scale solar PV purchasing options Figure 2. States with

  2. Photovoltaic (PV) Systems Comparison at Fort Hood

    DTIC Science & Technology

    2010-06-01

    Monocrystalline PV panels • Energy Photovoltaics, EPV-42 Solar Modules: Thin film PV panels • OutBack Flexware PV Advanced Photovoltaic Combiner...energy for an administrative building – Compare the performance between two different PV technologies: thin film and crystalline PV panels • Demo Team...Center for Energy and Environment PV Technology • Monocrystalline silicon1 • Thin film2 1 “About Solar,” DBK Corporation, http://www.dbksolar.com

  3. Evolution of consumer information preferences with market maturity in solar PV adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, D. Cale; Rai, Varun; Margolis, Robert

    Residential adoption of solar photovoltaics (PV) is spreading rapidly, supported by policy initiatives at the federal, state, and local levels. Potential adopters navigate increasingly complex decision-making landscapes in their path to adoption. Much is known about the individual-level drivers of solar PV diffusion that steer adopters through this process, but relatively little is known about the evolution of these drivers as solar PV markets mature. By understanding the evolution of emerging solar PV markets over time, stakeholders in the diffusion of solar PV can increase policy effectiveness and reduce costs. This analysis uses survey data to compare two adjacent marketsmore » across a range of relevant characteristics, then models changes in the importance of local vs cosmopolitan information sources by combining theory relating market maturity to adopter behavior with event-history techniques. In younger markets, earlier, innovative adoptions that are tied to a preference for cosmopolitan information sources are more prevalent than expected, suggesting a frustrated demand for solar PV that segues into adoptions fueled by local information preferences contemporary with similar adoptions in older markets. Furthermore, the analysis concludes with policy recommendations to leverage changing consumer information preferences as markets mature.« less

  4. Evolution of consumer information preferences with market maturity in solar PV adoption

    DOE PAGES

    Reeves, D. Cale; Rai, Varun; Margolis, Robert

    2017-07-04

    Residential adoption of solar photovoltaics (PV) is spreading rapidly, supported by policy initiatives at the federal, state, and local levels. Potential adopters navigate increasingly complex decision-making landscapes in their path to adoption. Much is known about the individual-level drivers of solar PV diffusion that steer adopters through this process, but relatively little is known about the evolution of these drivers as solar PV markets mature. By understanding the evolution of emerging solar PV markets over time, stakeholders in the diffusion of solar PV can increase policy effectiveness and reduce costs. This analysis uses survey data to compare two adjacent marketsmore » across a range of relevant characteristics, then models changes in the importance of local vs cosmopolitan information sources by combining theory relating market maturity to adopter behavior with event-history techniques. In younger markets, earlier, innovative adoptions that are tied to a preference for cosmopolitan information sources are more prevalent than expected, suggesting a frustrated demand for solar PV that segues into adoptions fueled by local information preferences contemporary with similar adoptions in older markets. Furthermore, the analysis concludes with policy recommendations to leverage changing consumer information preferences as markets mature.« less

  5. Evolution of consumer information preferences with market maturity in solar PV adoption

    NASA Astrophysics Data System (ADS)

    Cale Reeves, D.; Rai, Varun; Margolis, Robert

    2017-07-01

    Residential adoption of solar photovoltaics (PV) is spreading rapidly, supported by policy initiatives at the federal, state, and local levels. Potential adopters navigate increasingly complex decision-making landscapes in their path to adoption. Much is known about the individual-level drivers of solar PV diffusion that steer adopters through this process, but relatively little is known about the evolution of these drivers as solar PV markets mature. By understanding the evolution of emerging solar PV markets over time, stakeholders in the diffusion of solar PV can increase policy effectiveness and reduce costs. This analysis uses survey data to compare two adjacent markets across a range of relevant characteristics, then models changes in the importance of local vs cosmopolitan information sources by combining theory relating market maturity to adopter behavior with event-history techniques. In younger markets, earlier, innovative adoptions that are tied to a preference for cosmopolitan information sources are more prevalent than expected, suggesting a frustrated demand for solar PV that segues into adoptions fueled by local information preferences contemporary with similar adoptions in older markets. The analysis concludes with policy recommendations to leverage changing consumer information preferences as markets mature.

  6. Solar STAT Blog | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    energy bills and purchasing other necessities. In some circumstances, solar photovoltaics (PV) can reduce productive lifetime and degradation rate of solar PV panels. Continue reading Focusing the Sun: State seen robust growth through the expansion of rooftop photovoltaic (PV) and community solar projects

  7. Reducing Energy Burden with Solar: Colorado's Strategy and a Roadmap for

    Science.gov Websites

    purchasing other necessities. In some circumstances, solar photovoltaics (PV) can reduce this energy burden -income community solar demonstration projects Incorporating PV into its weatherization program Promoting utility investment in low-income PV programs. In 2015, CEO launched its low-income community solar program

  8. 2014 NREL Photovoltaic Reliability Workshops | Photovoltaic Research | NREL

    Science.gov Websites

    Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard-Peter McNutt, NREL Data Determining PV System's Degradation Rate and the Impact of Data Filters-Wilson Zexu Zhang, REC Solar Pte. Ltd " Test in Qualifying Solar PV Inverters-Dutch Uselton, Lennox IND System Reliability for Utility PV

  9. KSC-00padig081

    NASA Image and Video Library

    2000-11-06

    The STS-97 crew pose for a photo on the parking area of the Shuttle Landing Facility after their arrival in the T-38 jet aircraft behind them. From left, they are Mission Specialist Carlos Noriega, Joe Tanner and Marc Garneau (with the Canadian Space Agency); Commander Brent Jett; and Pilot Mike Bloomfield. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST

  10. KSC00pp1624

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour inches its way to Launch Pad 39B via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is on the Mobile Launcher Platform (MLP) which is atop the crawler-transporter, moving on four double-tracked crawlers. The maximum speed of the loaded transporter is 1 mph. To the left and right of the Space Shuttle can be seen both launch pads, 39B and 39A respectively. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  11. KSC-00pp1624

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour inches its way to Launch Pad 39B via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is on the Mobile Launcher Platform (MLP) which is atop the crawler-transporter, moving on four double-tracked crawlers. The maximum speed of the loaded transporter is 1 mph. To the left and right of the Space Shuttle can be seen both launch pads, 39B and 39A respectively. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  12. KSC-00pp1636

    NASA Image and Video Library

    2000-10-31

    The crack in the crawler-transporter cleat that delayed rollout of Space Shuttle Endeavour can be seen as a white dotted line on the top-center and running down the right side. The cleat rests on the ground near Launch Pad 39B. The cracked cleat forced the reverse of the rollout back outside the pad gate so the cleat could be replaced on flat ground before moving up the incline to the top of the pad. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  13. KSC-00pp1647

    NASA Image and Video Library

    2000-11-07

    KENNEDY SPACE CENTER, Fla. -- STS-97 Commander Brent Jett listens to a question from a reporter during a media session near Launch Pad 39B. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. The other crew members are Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST

  14. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Commander Brent Jett listens to a question from a reporter during a media session near Launch Pad 39B. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. The other crew members are Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  15. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, the STS-97 crew pause in the White Room at Launch Pad 39B for a photo. At left is Commander Brent Jett and crouching in front is Pilot Mike Bloomfield. Standing behind him are Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. . Garneau is with the Canadian Space Agency. The TCDT includes emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  16. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Miller, William A; Childs, Phillip W

    2011-01-01

    Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7.more » The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.« less

  17. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less

  18. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    DOE PAGES

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...

    2016-12-05

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less

  19. Self-Cleaning Microcavity Array for Photovoltaic Modules.

    PubMed

    Vüllers, Felix; Fritz, Benjamin; Roslizar, Aiman; Striegel, Andreas; Guttmann, Markus; Richards, Bryce S; Hölscher, Hendrik; Gomard, Guillaume; Klampaftis, Efthymios; Kavalenka, Maryna N

    2018-01-24

    Development of self-cleaning coatings is of great interest for the photovoltaic (PV) industry, as soiling of the modules can significantly reduce their electrical output and increase operational costs. We fabricated flexible polymeric films with novel disordered microcavity array (MCA) topography from fluorinated ethylene propylene (FEP) by hot embossing. Because of their superhydrophobicity with water contact angles above 150° and roll-off angles below 5°, the films possess self-cleaning properties over a wide range of tilt angles, starting at 10°, and contaminant sizes (30-900 μm). Droplets that impact the FEP MCA surface with velocities of the same order of magnitude as that of rain bounce off the surface without impairing its wetting properties. Additionally, the disordered MCA topography of the films enhances the performance of PV devices by improving light incoupling. Optical coupling of the FEP MCA films to a glass-encapsulated multicrystalline silicon solar cell results in 4.6% enhancement of the electrical output compared to that of an uncoated device.

  20. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

  1. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE PAGES

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; ...

    2018-01-11

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crago, Christine Lasco; Chernyakhovskiy, Ilya

    State incentives for solar power have grown significantly in the past several years. This paper examines the effectiveness of policy incentives to increase residential solar photovoltaic (PV) capacity. We use county-level panel data and control for demographic characteristics, solar resources, and pro-environmental preferences. Results show that among financial incentives, rebates have the most impact with an additional $1 per watt rebate increasing annual PV capacity additions by close to 50%. Factors that affect financial returns to solar PV such as electricity price and solar insolation are also found to be significant. Results also point to a significant positive relationship betweenmore » hybrid vehicle sales and residential PV capacity growth, indicating the importance of pro-environmental preferences as a predictor of solar PV demand. Back of the envelope calculations suggest that the cost of carbon mitigation through rebates is around $184 per ton of CO2.« less

  3. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  4. Conceptual approach on harvesting PV dissipated heat for enhancing water evaporation

    NASA Astrophysics Data System (ADS)

    Latiff, N. Abdul; Ya'acob, M. E.; Yunos, Khairul Faezah Md.

    2017-09-01

    The fluctuating sun radiation in tropical climate conditions has significantly affected the output performance of the PV array and also processes related to direct-sun drying. Apart from this, the dissipated heat under PV array projected from photonic effects of generating electricity is currently wasted to the environment. This study shares some conceptual idea on a new approach for harvesting the dissipated heat energy from PV arrays for the purpose of enhancing water evaporation process. Field measurements for ambient temperature (Ta) and PV bottom surface temperature (FFb) are measured and recorded for calculating the evaporation rates at different condition in real time. The waste heat dissipated in this condition is proposed as a medium to increase evaporation thru speeding up the water condensation process. The significant increase of water evaporation rate based on Penman equation supports the idea of integration with landed PV array structures.

  5. Photovoltaics on Landfills in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salasovich, J.; Mosey, G.

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation.more » The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.« less

  6. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  7. Floating Solar Photovoltaics Gaining Ground | State, Local, and Tribal

    Science.gov Websites

    Gaining Ground January 24, 2017 by Alison Holm Floating solar photovoltaic (PV) systems, so-called flotovoltaics (a trademarked term) or floating solar, represent an emerging application in which PV panels are sited on bodies of water. The PV panel technology used for floating solar applications is very similar

  8. Golden Rays - November 2016 | Solar Research | NREL

    Science.gov Websites

    develop PV module materials for reliable, low-cost solar electricity. Photo of three individuals behind quantum dots. Photo of a man inside a room with manufacturing equipment NREL Report Shows U.S. Solar PV sustained economic competitiveness of solar PV for the industry across all three sectors. Must Reads

  9. Cadmium Telluride Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Cadmium Telluride Solar Cells Cadmium Telluride Solar Cells Photovoltaic (PV) solar cells based on leadership. The United States is the leader in CdTe PV manufacturing, and NREL has been at the forefront of research and development (R&D) in this area. PV Research Other Materials & Devices pages: High

  10. 76 FR 55892 - Nationwide Limited Public Interest Waiver Under Section 1605 (Buy American) of the American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... following solar photo-voltaic (PV) equipment: (1) Domestically-manufactured modules containing foreign... inconsistent with the public interest for incidental and/or ancillary solar Photovoltaic (PV) equipment, when this equipment is utilized in solar installations containing domestically manufactured PV cells or...

  11. Silicon nanowires for photovoltaic solar energy conversion.

    PubMed

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  12. Photovoltaic roofing tile systems

    NASA Astrophysics Data System (ADS)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  13. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J.

    This study uses data on over 900,000 solar PV installations to summarize the evolving market structure of the U.S. residential solar PV installation industry. Over 8,000 companies have installed residential PV systems in the United States. The vast majority of these installers are small local companies. At the same time, a subset of national-scale high-volume PV installation companies hold high market shares. This study examines the factors behind these trends in market concentration, including the role of customer financing options.

  14. New York Solar Smart DG Hub-Resilient Solar Project: Economic and Resiliency Impact of PV and Storage on New York Critical Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Kate; Burman, Kari; Simpkins, Travis

    Resilient PV, which is solar paired with storage ('solar-plus-storage'), provides value both during normal grid operation and power outages as opposed to traditional solar PV, which functions only when the electric grid is operating. During normal grid operations, resilient PV systems help host sites generate revenue and/or reduce electricity bill charges. During grid outages, resilient PV provides critical emergency power that can help people in need and ease demand on emergency fuel supplies. The combination of grid interruptions during recent storms, the proliferation of solar PV, and the growing deployment of battery storage technologies has generated significant interest in usingmore » these assets for both economic and resiliency benefits. This report analyzes the technical and economic viability for resilient PV on three critical infrastructure sites in New York City (NYC): a school that is part of a coastal storm shelter system, a fire station, and a NYCHA senior center that serves as a cooling center during heat emergencies. This analysis differs from previous solar-plus-storage studies by placing a monetary value on resiliency and thus, in essence, modeling a new revenue stream for the avoided cost of a power outage. Analysis results show that resilient PV is economically viable for NYC's critical infrastructure and that it may be similarly beneficial to other commercial buildings across the city. This report will help city building owners, managers, and policymakers better understand the economic and resiliency benefits of resilient PV. As NYC fortifies its building stock against future storms of increasing severity, resilient PV can play an important role in disaster response and recovery while also supporting city greenhouse gas emission reduction targets and relieving stress to the electric grid from growing power demands.« less

  15. Design and optimization of a self-deploying PV tent array

    NASA Astrophysics Data System (ADS)

    Colozza, Anthony J.

    A study was performed to design a self-deploying tent shaped PV (photovoltaic) array and optimize the design for maximum specific power. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces it would be subjected to. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both Lunar and Martian environmental conditions. The performance specifications for the array at both locations and with various PV blankets were determined.

  16. Distributed Storage Inverter and Legacy Generator Integration Plus Renewables Solution for Microgrids

    DTIC Science & Technology

    2015-07-01

    Reactive kVAR Kilo Watts kW Lithium Ion Li Ion Lithium-Titanate Oxide nLTO Natural gas NG Performance Objectives PO Photovoltaic PV Power ...cloud covered) periods. The demonstration features a large (relative to the overall system power requirements) photovoltaic solar array, whose inverter...microgrid with less expensive power storage instead of large scale energy storage and that the renewable energy with small-scale power storage can

  17. Fabrication of nanostructured CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Wang, Fang; Parry, James; Perera, Samanthe; Zeng, Hao

    2012-02-01

    We present the work on Cu(In,Ga)(Se,S)2 based nanostructured solar cells based on nanowire arrays. CIGS as the light absorber for thin-film solar cells has been widely studied recently, due to its high absorption coefficient, long-term stability, and low-cost of fabrication. Recently, solution phase processed CIGS thin film solar cells attracted great attention due to their extremely low fabrication cost. However, the performance is lower than vacuum based thin films possibly due to higher density of defects and lower carrier mobility. On the other hand, one dimensional ordered nanostructures such as nanowires and nanorods can be used to make redial junction solar cells, where the orthogonality between light absorption and charge carrier separation can lead to enhanced PV performance. Since the charge carriers only need to traverse a short distance in the radial direction before they are separated at the heterojunction interface, the radial junction scheme can be more defect tolerant than their planar junction scheme. In this work, a wide band gap nanowire or nanotube array such as TiO2 is used as a scaffold where CIGS is conformally coated using solution phase to obtain a radial heterojunction solar cell. Their performance is compared that of the planar thin film solar cells fabricated with the same materials.

  18. High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative (SUNGRIN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeker, Rick; Steurer, Mischa; Faruque, MD Omar

    The report provides results from the Sunshine State Solar Grid Initiative (SUNGRIN) high penetration solar PV deployment project led by Florida State University’s (FSU) Center for Advanced Power Systems (CAPS). FSU CAPS and industry and university partners have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation. SUNGRIN has made significant contributions in the development of simulation-assisted techniques, tools, insight and understanding associated with solar PV effects on electric power system (EPS) operation and the evaluation of mitigation options for maintaining reliable operation. An important element of the project was themore » partnership and participation of six major Florida utilities and the Florida Reliability Coordinating Council (FRCC). Utilities provided details and data associated with actual distribution circuits having high-penetration PV to use as case studies. The project also conducted foundational work supporting future investigations of effects at the transmission / bulk power system level. In the final phase of the project, four open-use models with built-in case studies were developed and released, along with synthetic solar PV data sets, and tools and techniques for model reduction and in-depth parametric studies of solar PV impact on distribution circuits. Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation.« less

  19. The impact of short-term stochastic variability in solar irradiance on optimal microgrid design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schittekatte, Tim; Stadler, Michael; Cardoso, Gonçalo

    2016-07-01

    This paper proposes a new methodology to capture the impact of fast moving clouds on utility power demand charges observed in microgrids with photovoltaic (PV) arrays, generators, and electrochemical energy storage. It consists of a statistical approach to introduce sub-hourly events in the hourly economic accounting process. The methodology is implemented in the Distributed Energy Resources Customer Adoption Model (DER-CAM), a state of the art mixed integer linear model used to optimally size DER in decentralized energy systems. Results suggest that previous iterations of DER-CAM could undersize battery capacities. The improved model depicts more accurately the economic value of PVmore » as well as the synergistic benefits of pairing PV with storage.« less

  20. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Bryan J.; Hoffman, Michael G.; Chvala, William D.

    Pacific Northwest National Laboratory provided assistance to Fort Hunter Liggett to determine the opportunities for solar energy development on the site. Increasing use of renewable energy is mandated by several executive orders and legislation. Fort Hunter Liggett has many attributes that enhance its suitability for renewable energy development. First, the site is located south of San Francisco in a remote portion of the costal foothills. Brush and forest fires are frequent and often result in power outages, which subsequently impacts the site’s training mission. In addition, the site’s blended electric rate during fiscal year (FY) 2010 was high at 12more » ¢/kWh. Lastly, the solar resource is moderately high; the site receives nearly 5.7 kWh/m2/day on a south facing, latitude-tilted surface. In light of these factors, the site is a clear candidate for a solar photovoltaic array. Prior to Pacific Northwest National Laboratory’s (PNNL) involvement, the site secured funding for a 1 megawatt (MW) photovoltaic (PV) array that will also provide shading for site vehicles. To best implement this project, PNNL conducted a site visit and was tasked with providing the site technical guidance and support regarding module selection, array siting, and other ancillary issues.« less

  2. The Value of Transparency in Distributed Solar PV Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J.; Margolis, Robert M.

    Distributed solar photovoltaic (PV) markets are relatively non-transparent: PV price and product information is not readily available, searching for this information is costly (in terms of time and effort), and customers are mostly unfamiliar with the new technology. Quote aggregation, where third-party companies collect PV quotes on behalf of customers, may be one way to increase PV market transparency. In this paper, quote aggregation data are analyzed to study the value of transparency for distributed solar PV markets. The results suggest that easier access to more quotes results in lower prices. We find that installers tend to offer lower pricesmore » in more competitive market environments. We supplement the empirical analysis with key findings from interviews of residential PV installers.« less

  3. Golden Rays - May 2017 | Solar Research | NREL

    Science.gov Websites

    , the energy reported by micro-inverters on existing PV systems can be used to back-solve for the solar future PV systems, the results matched those based on solar resource measurements from top-of-the-line the solar resource using data from 100 PV systems in five metropolitan areas. More Than 200 Attend

  4. Driving Solar Innovations from Laboratory to Marketplace - Continuum

    Science.gov Websites

    . military-funded core technologies would someday lead to the internet. Or that a solar photovoltaics (PV more than a dozen start-up thin-film PV companies. This ultimately led to the creation of First Solar build a large-scale solar PV module plant in Colorado. As it has matured, CdTe technology has achieved

  5. Energy 101: Solar PV

    ScienceCinema

    None

    2018-01-08

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  6. Design and Analysis of Photovoltaic (PV) Power Plant at Different Locations in Malaysia

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.

    2018-05-01

    Power generation from sun oriented vitality through a photovoltaic (PV) system is ended up prevalent over the world due to clean innovation. Geographical location of Malaysia is very favorable for PV power generation system. The Malaysian government has also taken different steps to increase the use of solar energy especially by emphasizing on building integrated PV (BIPV) system. Comparative study on the feasibility of BIPV installation at the different location of Malaysia is rarely found. On the other hand, solar cell temperature has a negative impact on the electricity generation. So in this study cost effectiveness and initial investment cost of building integrated grid connected solar PV power plant in different regions of Malaysia have been carried. The effect of PV solar cell temperature on the payback period (PBP) is also investigated. Highest PBP is 12.38 years at Selangor and lowest PBP is 9.70 years at Sabah (Kota Kinabalu). Solar cell temperature significantly increases the PBP of PV plant and highest 14.64% and lowest 13.20% raise of PBP are encountered at Penang and Sarawak respectively.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Ardani, Kristen; Cutler, Dylan

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less

  8. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  9. Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as amore » guide for future development of physics-based transposition models.« less

  10. Diagnosing Model Errors in Simulation of Solar Radiation on Inclined Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    2016-11-21

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models with one substantially underestimating the diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study canmore » be used as a guide for future development of physics-based transposition models.« less

  11. Facilities | Photovoltaic Research | NREL

    Science.gov Websites

    Centers (RTCs) The Department of Energy Regional Test Centers for solar technologies serve to validate PV development to provide foundational support for the photovoltaic (PV) industry and PV users. Photo of the Solar Research Energy Facility. Solar Energy Research Facility (SERF) The SERF houses various

  12. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.

  13. Climate, Air Quality, and Human Health Benefits of Various Solar Photovoltaic Development Scenarios in China in 2030

    NASA Astrophysics Data System (ADS)

    Yang, J.; Mauzerall, D. L.; Wagner, F.; Li, X.

    2016-12-01

    Solar photovoltaic (PV) technology can greatly reduce both air pollution and GHG emissions from the power sector. The Chinese government has plans to scale up solar PV installation between now and 2030. However, there is little analysis of how deployment strategies will influence the range of benefits. Here we conduct the first integrated assessment study that quantifies the climate, air quality, and related human health benefits of various solar PV development strategies in 2030 China. Our results indicate that both the location of PV deployment, which coal power plants are replaced, and the extent of inter-provincial transmission greatly influence the co-benefits. We compare CO2 and PM2.5 reductions from two PV installation scenarios both with the 2030 government target of 400 GW national installed capacity. First, we assume all solar PV is utilized within the province in which it is generated and that it can not exceed 30% of total provincial electricity generation. We find that deploying more solar PV in locations near load centers via distributed PV systems has larger benefits and could lead to approximately 20,500 (between 8000 - 32,400, high and low bounds) annual avoided premature deaths, 15% more than building utility-scale solar PV plants in the sunny, yet sparsely populated northwest. The difference occurs because in the northwest a lower population and cleaner air leads to smaller reductions in air pollution related premature mortalities. Also greater potential for PV curtailment exists in the west. In terms of CO2 reduction, deploying PV near load centers leads to 12% greater reductions in CO2 emissions from the power sector - approximately 5% of China's total CO2 emission in 2030. Second, we enable inter-provincial transmission of PV electricity within each of China's six regional grids which allows greater use of abundant sunlight in the northwest. Our results for 2030 show that by expanding to the regional grid, curtailment rates in the northwest would drop from 25% to 14%, and additional reductions of 30% SO2 and 25% NOxfrom the power sector would result. Thus our study demonstrates substantial air quality and climate co-benefits of developing solar PV in China. We also find that expanding inter-provincial electricity transmission would both reduce curtailment and increase air quality benefits.

  14. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    PubMed

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  15. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    NASA Astrophysics Data System (ADS)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  16. Cost Estimates Of Concentrated Photovoltaic Heat Sink Production

    DTIC Science & Technology

    2016-06-01

    steady year-round sunshine and in many cases high levels of direct normal irradiance (DNI). Beyond traditional PV , some climates favor rooftop solar ...water heating, but the majority of installed solar systems, are PV (EIA, 2015). Solar power generation has great benefits for the DON considering the...systems concentrate and focus sunlight onto a smaller focal point in order to take advantage of the highly efficient solar cells. Generally, PV

  17. The Effectiveness of Warranties in the Solar Photovoltaic and Automobile Industries

    NASA Astrophysics Data System (ADS)

    Formica, Tyler J.

    A warranty is an agreement outlined by a manufacturer to a customer that defines performance requirements for a product or service. Although long warranty periods are a useful marketing tool, in 2011 the warranty claims expense was 2.6% of total sales for computer original equipment manufacturers (OEMs) and is over 2% of total sales in many other industries today. Solar PV systems offer inverters with 5-15 year warranties and PV modules with 25-year performance warranties. This is problematic for the return on investment (ROI) of solar PV systems when the modules are still productive and covered under warranty but inverter failures occur due to degradation of electronic components after their warranty has expired. Out-of-warranty inverter failures during the lifetime of solar panels decrease the ROI of solar PV systems significantly and can cause the annual ROI to actually be negative 15-25 years into the lifetime of the system. This thesis analyzes the factors that contribute to designing an optimal warranty period and the relationship between reliability and warranty periods using General Motors (GM) and the solar PV industry as case studies. A return on investment of a solar photovoltaic system is also conducted and the effect of reliability, changing tax credit structures, and failure areas of solar PV systems are analyzed.

  18. Hybrid photovoltaic and thermoelectric module for high concentration solar system

    NASA Astrophysics Data System (ADS)

    Tamaki, Ryo; Toyoda, Takeshi; Tamura, Yoichi; Matoba, Akinari; Minamikawa, Toshiharu; Tokuda, Masayuki; Masui, Megumi; Okada, Yoshitaka

    2017-09-01

    A photovoltaic (PV) and thermoelectric (TE) hybrid module was developed for application to high concentration solar systems. The waste heat from the solar cells under concentrated light illumination was utilized to generate additional electricity by assembling TE devices below the multi-junction solar cells (MJSCs). Considering the high operating temperature of the PV and TE hybrid module compared with conventional concentrator PV modules, the TE device could compensate a part of the MJSC efficiency degradation at high temperature. The performance investigation clarified the feasibility of the hybrid PV and TE module under highly concentrated sunlight illumination.

  19. Supported PV module assembly

    DOEpatents

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  20. The Abacus/Reflector and Integrated Symmetrical Concentrator: Concepts for Space Solar Power Collection and Transmission

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Fikes, John; Gerry, Mark; Perkinson, Don

    2000-01-01

    New energy sources are vital for the development of emerging nations, and the growth of industry in developed economies. Also vital is the need for these energy sources to be clean and renewable. For the past several years, NASA has been taking a new look at collecting solar energy in space and transmitting it to Earth, to planetary surfaces, and to orbiting spacecraft. Several innovative concepts are being studied for the space segment component of solar power beaming. One is the Abacus/Reflector, a large sun-oriented array structure fixed to the transmitter, and a rotating RF reflector that tracks a receiving rectenna on Earth. This concept eliminates the need for power-conducting slip rings in rotating joints between the solar collectors and the transmitter. Another concept is the Integrated Symmetrical Concentrator (ISC), composed of two very large segmented reflectors which rotate to collect and reflect the incident sunlight onto two centrally-located photovoltaic arrays. Adjacent to the PV arrays is the RF transmitter, which as a unit track the receiving rectenna, again eliminating power-conducting joints, and in addition reducing the cable lengths between the arrays and transmitter. The metering structure to maintain the position of the reflectors is a long mast, oriented perpendicular to the equatorial orbit plane. This paper presents a status of ongoing systems studies and configurations for the Abacus/Reflector and the ISC concepts, and a top-level study of packaging for launch and assembly.

  1. KSC00pp1657

    NASA Image and Video Library

    2000-11-07

    The STS-97 crew listens to a trainer explain use of the slidewire basket (right) for emergency egress from the Fixed Service Structure. Second from left is Mission Specialist Joe Tanner; next to him in the cap is Capt. George Hoggard, safety trainer with the KSC Fire Department; Pilot Mike Bloomfield; Mission Specialist Carlos Noriega; Commander Brent Jett; and Mission Specialist Marc Garneau. The training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  2. KSC-00pp1657

    NASA Image and Video Library

    2000-11-07

    The STS-97 crew listens to a trainer explain use of the slidewire basket (right) for emergency egress from the Fixed Service Structure. Second from left is Mission Specialist Joe Tanner; next to him in the cap is Capt. George Hoggard, safety trainer with the KSC Fire Department; Pilot Mike Bloomfield; Mission Specialist Carlos Noriega; Commander Brent Jett; and Mission Specialist Marc Garneau. The training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  3. KSC-00pp1680

    NASA Image and Video Library

    2000-11-08

    During Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39B, the STS-97 crew poses for a photo at the 215-foot level. From left, they are Mission Specialist Carlos Noriega, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Marc Garneau and Joe Tanner. Behind them at left can be seen the top of the solid rocket booster and external tank on Space Shuttle Endeavour. The TCDT includes emergency egress training, opportunities to inspect the mission payloads in the orbiter’s payload bay and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  4. KSC-00pp1675

    NASA Image and Video Library

    2000-11-08

    The STS-97 crew get a taste of the excitement of launch day as they exit the O&C Building to head for Launch Pad 39B. They are taking part in Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a simulated launch countdown. On the left (front to back) are Mission Specialists Carlos Noriega and Joe Tanner; on the right (front to back) are Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialist Marc Garneau, who is a Canadian astronaut. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  5. KSC-00pp1654

    NASA Image and Video Library

    2000-11-07

    Mission Specialist Carlos Noriega (front) gets ready to take the wheel of an M-113. In the rear can be seen Mission Specialists Marc Garneau (left) and Joe Tanner (right). Learning to drive the armored vehicle is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT, also includes a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  6. KSC-00padig052

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- As the early morning sky lights up, Space Shuttle Endeavour inches its way to Launch Pad 39B (on the horizon) via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is atop the Mobile Launcher Platform (MLP). Visible beneath the MLP is the crawler-transporter, which moves on four double-tracked crawlers. Each shoe on the crawler track weighs a ton. Unloaded, the transporter weighs 6 million pounds and moves at 2 mph. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  7. KSC00padig052

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, Fla. -- As the early morning sky lights up, Space Shuttle Endeavour inches its way to Launch Pad 39B (on the horizon) via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is atop the Mobile Launcher Platform (MLP). Visible beneath the MLP is the crawler-transporter, which moves on four double-tracked crawlers. Each shoe on the crawler track weighs a ton. Unloaded, the transporter weighs 6 million pounds and moves at 2 mph. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  8. PV Reliability Development Lessons from JPL's Flat Plate Solar Array Project

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.

    2013-01-01

    Key reliability and engineering lessons learned from the 20-year history of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and thin film module reliability research activities are presented and analyzed. Particular emphasis is placed on lessons applicable to evolving new module technologies and the organizations involved with these technologies. The user-specific demand for reliability is a strong function of the application, its location, and its expected duration. Lessons relative to effective means of specifying reliability are described, and commonly used test requirements are assessed from the standpoint of which are the most troublesome to pass, and which correlate best with field experience. Module design lessons are also summarized, including the significance of the most frequently encountered failure mechanisms and the role of encapsulate and cell reliability in determining module reliability. Lessons pertaining to research, design, and test approaches include the historical role and usefulness of qualification tests and field tests.

  9. KSC-00pp1655

    NASA Image and Video Library

    2000-11-07

    The STS-97 crew gets instruction on use of the slidewire basket during emergency egress training on the 195-foot level at Launch Pad 39B. On the left are Mission Specialists Joe Tanner and Marc Garneau and Pilot Mike Bloomfield. On the right are Commander Brent Jett (foreground) and Mission Specialist Carlos Noriega (behind Jett). The training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  10. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.; Henry, P. K.

    1984-01-01

    The Flat-Plate Solar Array Project (FSA), sponsored by the U.S. Department of Energy (DOE) and managed by the Jet Propulsion Laboratory (JPL), has achieved progress in a broad range of technical activities since that reported at the Fourth European Communities Conference. A particularly important analysis has been completed recently which confirms the adoption into practice by the U.S. Photovoltaic (PV Industry, of all the low-cost module technology elements proposed at the 16th Project Integration Meeting for a $2.80/Wp (1980 U.S. Dollars) design approach in the fall of 1980. This work presents along with a projection, using the same techniques, for what is believed to be a very credible ribbon-based module design for less that $0.55/Wp (1980 U.S. Dollars). Other areas to be reported upon include low-cost Si feedstock refinement; ribbon growth; process sequence development for cells; environmental isolation; engineering science investigations; and module testing progress.

  11. STS-97 crew poses for photo on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39B, the STS-97 crew poses for a photo at the 215-foot level. From left, they are Mission Specialist Carlos Noriega, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Marc Garneau and Joe Tanner. Behind them at left can be seen the top of the solid rocket booster and external tank on Space Shuttle Endeavour. The TCDT includes emergency egress training, opportunities to inspect the mission payloads in the orbiter'''s payload bay and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  12. KSC-00pp1664

    NASA Image and Video Library

    2000-11-07

    Workers in the Space Station Processing Facility gather with the crew of mission STS-97, who are holding the symbolic key representing the turnover of the P6 Integrated Truss Structure, part of the payload on their mission. During the ceremony the P6 truss segment was transferred from International Space Station ground operations to the NASA shuttle integration team. Commander Brent Jett (second from right) received the key in the ceremony. Standing with him are (left to right) Mission Specialists Marc Garneau, Joe Tanner and Carlos Noriega, at left; and Pilot Mike Bloomfield, at right. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  13. The STS-97 crew leaves O&C for Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew leaves the O&C Building on their way to Launch Pad 39B for a simulated launch countdown. Commander Brent Jett (right) leads the way with Pilot Mike Bloomfield behind him. Taking up the rear are (left) Mission Specialists Carlos Noriega, Joe Tanner and (right) Marc Garneau, who is with the Canadian Space Agency. The crew is taking part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and the simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  14. The STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew pose for photographers at the base of Launch Pad 39B. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Carlos Noriega, Marc Garneau and Joe Tanner. Garneau is with the Canadian Space Agency. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  15. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Carlos Noriega (at right, with microphone) describes the mission for the media. Next to him are Mission Specialists Joe Tanner (left) and Marc Garneau (center). The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. The other crew members are Commander Brent Jett and Pilot Mike Bloomfield. Mission STS- 97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  16. A sunny future: expert elicitation of China's solar photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  17. Design, optimization, and analysis of a self-deploying PV tent array

    NASA Astrophysics Data System (ADS)

    Collozza, Anthony J.

    1991-06-01

    A tent shaped PV array was designed and the design was optimized for maximum specific power. In order to minimize output power variation a tent angle of 60 deg was chosen. Based on the chosen tent angle an array structure was designed. The design considerations were minimal deployment time, high reliability, and small stowage volume. To meet these considerations the array was chosen to be self-deployable, form a compact storage configuration, using a passive pressurized gas deployment mechanism. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces to which it would be subjected. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both lunar and Martian environmental conditions. Other factors such as PV blanket types, structural material, and wind velocity (for Mars array), were varied to determine what influence they had on the design point. The performance specifications for the array at both locations and with each type of PV blanket were determined. These specifications were calculated using the Arimid fiber composite as the structural material. The four PV blanket types considered were silicon, GaAs/Ge, GaAsCLEFT, and amorphous silicon. The specifications used for each blanket represented either present day or near term technology. For both the Moon and Mars the amorphous silicon arrays produced the highest specific power.

  18. 77 FR 4368 - Advanced Energy Industries, Inc., Including On-Site Leased Workers From Mid Oregon Personnel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Unemployment Insurance (UI) Wages Are Reported Through PV Powered, Currently Known as AE Solar Energy, Inc... Energy Industries purchased PV Powered, currently known as AE Solar Energy, Inc. in May 2010. Some... separate unemployment insurance (UI) tax account under the name PV Powered, currently known as AE Solar...

  19. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    NASA Astrophysics Data System (ADS)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  20. STAT FAQs Part 2: Lifetime of PV Panels | State, Local, and Tribal

    Science.gov Websites

    is the productive lifetime and degradation rate of solar PV panels. Question: What is the productive life of solar PV panels, and do they produce the same amount of electricity year-over-year? Answer: The Governments | NREL STAT FAQs Part 2: Lifetime of PV Panels STAT FAQs Part 2: Lifetime of PV

  1. Atmospheric Renewable Energy Research, Volume 4: Atmospheric Renewable Energy Field Study Number 2 (ARE2)

    DTIC Science & Technology

    2017-10-30

    these renewable energy commodities. For this report, we focus on solar power, gleaned from photovoltaic ( PV ) technology, as the renewable energy...optimized efficiency and effectiveness for the hybrid microgrid. Presuming solar energy is being extracted using photovoltaic ( PV ) panels (versus solar ...inhibitors of solar radiation traversing from space to the PV panels on or near the earth’s surface were categorized as hard and soft shadows. The

  2. Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit; Dooraghi, Mike

    Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less

  3. Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools

    DOE PAGES

    Xie, Yu; Sengupta, Manajit; Dooraghi, Mike

    2018-03-20

    Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less

  4. Heritage plaza parking lots improvement project- Solar PV installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooks, Todd

    The Agua Caliente Band of Cahuilla Indians (ACBCI or the “Tribe”) installed a 79.95 kW solar photovoltaic (PV) system to offset the energy usage costs of the Tribal Education and Family Services offices located at the Tribe's Heritage Plaza office building, 90I Tahquitz Way, Palm Springs, CA, 92262 (the "Project"). The installation of the Solar PV system was part of the larger Heritage Plaza Parking Lot Improvements Project and mounted on the two southern carport shade structures. The solar PV system will offset 99% of the approximately 115,000 kWh in electricity delivered annually by Southern California Edison (SCE) to themore » Tribal Education and Family Services offices at Heritage Plaza, reducing their annual energy costs from approximately $22,000 annually to approximately $200. The total cost of the proposed solar PV system is $240,000.« less

  5. Uncertainty Evaluation of Measurements with Pyranometers and Pyrheliometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konings, Jorgen; Habte, Aron

    2016-01-03

    Evaluating photovoltaic (PV) cells, modules, arrays and systems performance of solar energy relies on accurate measurement of the available solar radiation resources. Solar radiation resources are measured using radiometers such as pyranometers (global horizontal irradiance) and pyrheliometers (direct normal irradiance). The accuracy of solar radiation data measured by radiometers depends not only on the specification of the instrument but also on a) the calibration procedure, b) the measurement conditions and maintenance, and c) the environmental conditions. Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This paper providesmore » guidelines and recommended procedures for estimating the uncertainty in measurements by radiometers using the Guide to the Expression of Uncertainty (GUM) Method. Special attention is paid to the concept of data availability and its link to uncertainty evaluation.« less

  6. Preliminary Feasibility Study of a Hybrid Solar and Modular Pumped Storage Hydro System at Biosphere 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansey, Kevin; Hortsman, Chris

    2016-10-01

    In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybridmore » system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.« less

  7. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Jeff; Murphy, Sean

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which usemore » private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV have developed. The U.S. Department of Energy’s Building Technologies Office supported this research.« less

  8. Solar Market Research and Analysis Projects | Solar Research | NREL

    Science.gov Websites

    increase the effectiveness and reduce the variability and cost of PV operations and maintenance (O&M significantly drive up the cost of electricity for PV systems. To help reduce PV O&M costs and improve PV -Storage: Reducing Barriers Through Cost-Optimization and Market Characterization While falling costs have

  9. Experiences of a grid connected solar array energy production

    NASA Astrophysics Data System (ADS)

    Hagymássy, Zoltán; Vántus, András

    2015-04-01

    Solar energy possibilities of Hungary are higher than in Central Europe generally. The Institute for Land Utilisation, Technology and Regional Development of the University of Debrecen installed a photovoltaic (PV) system. The PV system is structured into 3 subsystems (fields). The first subsystem has 24 pieces of Kyocera KC 120 W type modules, the second subsystem has 72 pieces of Siemens ST 40W, and the remaining has 72 pieces of Dunasolar DS 40W In order to be operable independently of each other three inverter modules (SB 2500) had been installed. The recorder can be connected directly to a desktop PC. Operating and meteorological dates are recorded by MS Excel every 15 minutes. The power plant is connected to a weather station, which contents a PT 100 type temperature and humidity combined measuring instrument, a CM 11 pyranometer, and a wind speed measuring instrument. The produced DC, and AC power, together with the produced energy are as well, and the efficiency can be determined for each used PV technology. The measured operating and meteorological dates are collected by Sunny Boy Control, produced by the SMA. The energy productions of the subsystems are measured continually and the subsystems are measured separately. As an expected, the produced energy of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. It is well known that energy analysis is more suitable for energy balance when we design a system. The air temperature and the temperature of the panels and the global irradiation conditions were measured. In summertime the panel temperature reaches 60-80 degrees in a sunny day. The panel temperatures are in a spring sunny day approximately 30-40 degrees. It can be concluded that the global irradiation is a major impact feature to influence the amount of energy produced. The efficiency depends on several parameters (spectral distribution of the incoming light, temperature values, etc.). The energy efficiency of a PV system in general can be defined as the ratio of the output energy of the system to the input energy received on the photovoltaic surface. As an expected, the energy efficiencies of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. Based on our study, in general it can be concluded that the energy efficiency is lower than theoretical.

  10. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  11. Studying the Impact of Distributed Solar PV on Power Systems using Integrated Transmission and Distribution Models: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Himanshu; Palmintier, Bryan S; Krad, Ibrahim

    This paper presents the results of a distributed solar PV impact assessment study that was performed using a synthetic integrated transmission (T) and distribution (D) model. The primary objective of the study was to present a new approach for distributed solar PV impact assessment, where along with detailed models of transmission and distribution networks, consumer loads were modeled using the physics of end-use equipment, and distributed solar PV was geographically dispersed and connected to the secondary distribution networks. The highlights of the study results were (i) increase in the Area Control Error (ACE) at high penetration levels of distributed solarmore » PV; and (ii) differences in distribution voltages profiles and voltage regulator operations between integrated T&D and distribution only simulations.« less

  12. Midscale Commercial Solar Market | Solar Research | NREL

    Science.gov Websites

    analysis to expand the midscale solar market. The midscale market for solar photovoltaics (PV), loosely than other PV market segments in recent years. Featured Analysis Midmarket Solar Policies in the United Midscale Commercial Solar Market Midscale Commercial Solar Market NREL experts are providing

  13. NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last

    Science.gov Websites

    Year | NREL | News | NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last Year News Release: NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last Year September 12, 2017 Record-low costs enabled by decline in module and inverter prices The installed cost of

  14. NREL Report Shows U.S. Solar Photovoltaic Costs Continuing to Fall in 2016

    Science.gov Websites

    chart of solar pv costs from q4 2009 to q1 2016 NREL U.S. PV system cost benchmarks, from the fourth (NREL). Driving the cost reductions were lower module and inverter prices, increased competition, lower ;The continuing total cost decline of solar PV systems demonstrates the sustained economic

  15. 76 FR 17408 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... WDT SERV AG PHOTON SOLAR DOMINGUEZ PV 1 PROJECT to be effective 5/18/2011. Filed Date: 03/18/2011... Company submits tariff filing per 35.13(a)(2)(iii: SGIA WDT SERV AG PHOTON SOLAR MID COUNTIES PV 5 PROJECT...)(2)(iii: SGIA WDT SERV AG PHOTON SOLAR INDUSTRY PV 1 PROJECT to be effective 5/18/2011. Filed Date...

  16. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  17. 78 FR 63276 - Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    .... Background There is growing interest in installing solar photovoltaic (PV) and solar hot water (SHW) systems on airports. While solar PV or SHW systems (henceforth referred to as solar energy systems) are... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Interim Policy, FAA Review of Solar...

  18. Comparison of four MPPT techniques for PV systems

    NASA Astrophysics Data System (ADS)

    Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.

    2016-07-01

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.

  19. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  20. Solar Research | NREL

    Science.gov Websites

    the System Advisor Model (SAM) PV engineering PV performance reliability and safety Solar resource Research Photo of a city landscape with a sun in the background. Solar energy research at NREL includes photovoltaics, concentrating solar power, solar grid and systems integration, and market research

  1. Boosting CSP Production with Thermal Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less

  2. PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters

    DOE PAGES

    Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...

    2015-08-25

    As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less

  3. Holographic spectrum-splitting optical systems for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.

  4. Sarah Kurtz | NREL

    Science.gov Websites

    next stage of growth for the PV industry. Participated in the demonstration of the GaInP/GaAs solar photovoltaics (PV), concentrator PV, and PV reliability. Kurtz and NREL colleague Jerry Olson championed the early use of multi-junction solar cells by showing that a top cell of gallium indium phosphide (GaInP

  5. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  6. Ten Years of Analyzing the Duck Chart: How an NREL Discovery in 2008 Is

    Science.gov Websites

    examined how to plan for future large-scale integration of solar photovoltaic (PV) generation on the result, PV was deployed more widely, and system operators became increasingly concerned about how solar emerging energy and environmental policy initiatives pushing for higher levels of solar PV deployment. As a

  7. Module 1: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    bonus module is on using solar PV for resilience. And, as Jenny and Harrison both mentioned, if you do working definition. To simply resilience and to incorporate solutions like on-site solar PV, NREL has into solar PV projects. Energy resilience can only be achieved by understanding energy needs and

  8. Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD

    NASA Technical Reports Server (NTRS)

    Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  9. Advanced photovoltaic power system technology for lunar base applications

    NASA Astrophysics Data System (ADS)

    Brinker, David J.; Flood, Dennis J.

    1992-09-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  10. 77 FR 56871 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... date 81,801 Schott Solar CSP, Inc., Albuquerque, NM......... July 12, 2011. Schott Solar AG, Manpower Professional. 81,801A Schott Solar PV, Inc., Schott Albuquerque, NM......... July 12, 2011. Solar AG, Manpower Professional. 81,801B Schott Solar PV, Inc., Schott Santa Clara, CA......... July 12, 2011. Solar AG, Remote...

  11. Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branz, Howard M.; Regan, William; Gerst, Kacy J.

    Photovoltaic (PV) solar energy systems are being deployed at an accelerating rate to supply low-carbon electricity worldwide. However, PV is unlikely to economically supply much more than 10% of the world's electricity unless there is a dramatic reduction in the cost of electricity storage. There is an important scientific and technological opportunity to address the storage challenge by developing inexpensive hybrid solar converters that collect solar heat at temperatures between about 200 and 600 °C and also incorporate PV. Since heat can be stored and converted to electricity at relatively low cost, collection of high exergy content (high temperature) solarmore » heat can provide energy that is dispatchable on demand to meet loads that are not well matched to solar insolation. However, PV cells can collect and convert much of the solar spectrum to electricity more efficiently and inexpensively than solar thermal systems. Advances in spectrum-splitting optics, high-temperature PV cells, thermal management and system design are needed for transformational hybrid converters. We propose that maximizing the exergy output from the solar converters while minimizing the cost of exergy can help propel solar energy toward a higher contribution to carbon-free electricity in the long term than the prevailing paradigm of maximizing the energy output while minimizing the cost of energy« less

  12. Opportunities for co-location of solar PV with agriculture for cost reductions and carbon, water, and energy footprint mitigation in the tropics

    NASA Astrophysics Data System (ADS)

    Choi, C. S.; Macknick, J.; Ravi, S.

    2017-12-01

    Recently, co-locating the production of agricultural crops or biofuels with solar photovoltaics (PV) installations has been studied as a possible strategy to mitigate the environmental impacts and the high cost of solar PV in arid and semi-arid regions. Co-located PV and agricultural systems can provide multiple benefits in these areas related to water savings, erosion control, energy access, and rural economic development. However, such studies have been rare for water-rich, land-limited tropical countries, where ideal agricultural growing conditions can be substantially different from those in arid regions. We consider a case study in Indonesia to address this research gap. As the fourth most populous nation with an ever-growing energy demand and high vulnerability to the effects of climate change, Indonesia is being prompted to develop means to electrify approximately one-fifth of its population that still lacks access to the grid without incurring increases in its carbon footprint. We address the following questions to explore the feasibility and the benefits of co-location of solar PV with patchouli cultivation and essential oil production: i) How do the lifetime carbon, water, and energy footprints per unit land area of co-located solar PV/patchouli compare to those of standalone diesel microgrid, solar PV or patchouli cultivation? ii) Does energy production from standalone solar PV, diesel/solar PV microgrid, or co-located solar PV/patchouli systems satisfy energy demands of a typical rural Indonesian village? iii) How does the net economic return of the co-located system compare to each standalone land use? iv) How can surplus energy from the co-located system benefit rural socioeconomics? To answer these questions, life cycle assessment and economic analysis are performed for each of the standalone and the co-located land uses utilizing known values and data collected from a field visit to the island of Java in Indonesia. Then, sensitivity analyses and Monte Carlo simulations are performed to examine the range of possible economic outcomes and net carbon, water, and energy footprints per unit area. Interviews and existing case studies are used to examine the rural socioeconomic outcomes and opportunities of the surplus energy.

  13. Systems Engineering | Photovoltaic Research | NREL

    Science.gov Websites

    Research Other Reliability & Engineering pages: Real-Time PV & Solar Resource Testing Accelerated community toward developing comprehensive PV standards. Each year, NREL researchers, along with solar Engineering Systems Engineering We provide engineering testing and evaluation of photovoltaic (PV

  14. 78 FR 45268 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... decommission the Ocotillo Sol Solar Project, a solar photovoltaic (PV) power plant facility, on approximately... Applicant's Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final Environmental...

  15. Real-Time Photovoltaic and Solar Resource Testing | Photovoltaic Research |

    Science.gov Websites

    community toward developing comprehensive PV standards. Each year, NCPV researchers, along with solar performance Bill Marion: Solar radiation resource information, and PV module and system performance modeling NREL Real-Time Photovoltaic and Solar Resource Testing Real-Time Photovoltaic and Solar

  16. Pyramid solar micro-grid

    NASA Astrophysics Data System (ADS)

    Huang, Bin-Juine; Hsu, Po-Chien; Wang, Yi-Hung; Tang, Tzu-Chiao; Wang, Jia-Wei; Dong, Xin-Hong; Hsu, Hsin-Yi; Li, Kang; Lee, Kung-Yen

    2018-03-01

    A novel pyramid solar micro-grid is proposed in the present study. All the members within the micro-grid can mutually share excess solar PV power each other through a binary-connection hierarchy. The test results of a 2+2 pyramid solar micro-grid consisting of 4 individual solar PV systems for self-consumption are reported.

  17. 76 FR 47235 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Stateline Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...) application for the Stateline Solar Farm (Stateline), a 300- Megawatt (MW) photovoltaic (PV) Solar electricity... authorization to construct, operate, maintain, and decommission the 300-MW PV Stateline solar energy project...] Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Stateline Solar Farm, San...

  18. Restructured Freedom configuration characteristics

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.

    1991-01-01

    In Jan. 1991, the LaRc SSFO performed an assessment of the configuration characteristics of the proposed pre-integrated Space Station Freedom (SSF) concept. Of particular concern was the relationship of solar array operation and orientation with respect to spacecraft controllability. For the man-tended configuration (MTC), it was determined that torque equilibrium attitude (TEA) seeking Control Moment Gyroscope (CMG) control laws could not always maintain attitude. The control problems occurred when the solar arrays were tracking the sun to produce full power while flying in an arrow or gravity gradient flight mode. The large solar array articulations that sometimes result from having the functions of the alpha and beta joints reversed on MTC induced large product of inertia changes that can invalidate the control system gains during an orbit. Several modified sun tracking techniques were evaluated with respect to producing a controllable configuration requiring no modifications to the CMG control algorithms. Another assessment involved the permanently manned configuration (PMC) which has a third asymmetric PV unit on one side of the transverse boom. Recommendations include constraining alpha rotations for MTC in the arrow and gravity gradient flight modes and perhaps developing new non-TEA seeking control laws. Recommendations for PMC include raising the operational altitude and moving to a symmetric configuration as soon as possible.

  19. Radiative Effects of Atmospheric Aerosols and Impacts on Solar Photovoltaic Electricity Generation

    NASA Astrophysics Data System (ADS)

    Lund, Cory Christopher

    Atmospheric aerosols, by scattering and absorbing radiation, perturbs the Earth's energy balance and reduces the amount of insolation reaching the surface. This dissertation first studies the radiative effects of aerosols by analyzing the internal mixing of various aerosol species. It then examines the aerosol impact on solar PV efficiency and the resulting influence on power systems, including both atmospheric aerosols and deposition of particulate matter (PM) on PV surfaces,. Chapter 2 studies the radiative effects of black carbon (BC), sulfate and organic carbon (OC) internal mixing using a simple radiative transfer model. I find that internal mixing may not result in a positive radiative forcing compared to external mixing, but blocks additional shortwave radiation from the surface, enhancing the surface dimming effect. Chapter 3 estimates the impact of atmospheric aerosol attenuation on solar PV resources in China using a PV performance model with satellite-derived long-term surface irradiance data. I find that, in Eastern China, annual average reductions of solar resources due to aerosols are more than 20%, with comparable impacts to clouds in winter. Improving air quality in China would increase efficiency of solar PV generation. As a positive feedback, increased PV efficiency and deployment would further reduce air pollutant emissions too. Chapter 4 further quantifies the total aerosol impact on PV efficiency globally, including both atmospheric aerosols and the deposition of PM on PV surfaces. I find that, if panels are uncleaned and soiling is only removed by precipitation, deposition of PM accounts for more than two-thirds of the total aerosol impact in most regions. Cleaning the panels, even every few months, would largely increase PV efficiency in resource-abundant regions. Chapter 5 takes a further step to evaluate the impact of PV generation reduction due to aerosols on a projected 2030 power system in China with 400GW of PV. I find that aerosols reduce PV generation by 22% and increase baseload power generation, with almost no additional capacity needed. Due to intermittency of solar generation, 160 GW of backup power is needed to maintain grid stability. However, storage provides an opportunity to reduce the backup power capacity by 66%.

  20. Indiana | Solar Research | NREL

    Science.gov Websites

    Incentive Programs Indiana exempts solar PV modules, racking, and inverter from state sales and use taxes . The entire solar generating system is exempt from property taxation. Utility Incentive Programs Utility Incentive Limitations Northern Indiana Public Service Company (Solar PV feed-in-tariff) $0.1564

  1. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    da Silva, R.M.; Fernandes, J.L.M.

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recentlymore » it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)« less

  2. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  3. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N.; Sweatt, William C.; Okandan, Murat

    2017-09-12

    A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.

  4. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  5. Accelerated Testing and Analysis | Photovoltaic Research | NREL

    Science.gov Websites

    & Engineering pages: Real-Time PV & Solar Resource Testing Systems Engineering Systems PV standards. Each year, NCPV researchers, along with solar companies and other national lab Accelerated Testing and Analysis Accelerated Testing and Analysis PV Research Other Reliability

  6. Solar Access: Issues and Policy Options | State, Local, and Tribal

    Science.gov Websites

    : approximately 2,580 megawatts (MW) of new residential solar photovoltaic (PV) capacity was brought online in home with rooftop solar Figure 1. Example of a residential solar PV system. NREL 00565 The existing Governments | NREL Solar Access: Issues and Policy Options Solar Access: Issues and Policy

  7. Measures for diffusion of solar PV in selected African countries

    NASA Astrophysics Data System (ADS)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon; Pedersen, Mathilde Brix

    2017-08-01

    This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called 'technology action plans (TAPs)', which were main outputs of the Technology Needs Assessment project implemented in 10 African countries from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donor-led market for institutional systems). The paper finds that governments' strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include support to: local production; financing schemes; tax exemptions; establishment and reinforcement of standards; technical training; and research and development.

  8. Rooftop solar photovoltaic potential in cities: how scalable are assessment approaches?

    NASA Astrophysics Data System (ADS)

    Castellanos, Sergio; Sunter, Deborah A.; Kammen, Daniel M.

    2017-12-01

    Distributed photovoltaics (PV) have played a critical role in the deployment of solar energy, currently making up roughly half of the global PV installed capacity. However, there remains significant unused economically beneficial potential. Estimates of the total technical potential for rooftop PV systems in the United States calculate a generation comparable to approximately 40% of the 2016 total national electric-sector sales. To best take advantage of the rooftop PV potential, effective analytic tools that support deployment strategies and aggressive local, state, and national policies to reduce the soft cost of solar energy are vital. A key step is the low-cost automation of data analysis and business case presentation for structure-integrated solar energy. In this paper, the scalability and resolution of various methods to assess the urban rooftop PV potential are compared, concluding with suggestions for future work in bridging methodologies to better assist policy makers.

  9. Interdigitated Back-Surface-Contact Solar Cell Modeling Using Silvaco Atlas

    DTIC Science & Technology

    2015-06-01

    11 2. Solar Spectrum ...................................................................................13 3. PV Cell Efficiency...Figure 10. Spectrum of solar radiance, from [12]. 14 3. PV Cell Efficiency There are many factors that affect the efficiency of a solar cell. Metal...BACK-SURFACE-CONTACT SOLAR CELL MODELING USING SILVACO ATLAS by Shawn E. Green June 2015 Thesis Advisor: Sherif Michael Second Reader

  10. Space Environment Testing of Photovoltaic Array Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry.

  11. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovativemore » concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)« less

  12. Synergistic effects of ultraviolet radiation, thermal cycling and atomic oxygen on altered and coated Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine their durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  13. Synergistic effects of ultraviolet radiation, thermal cycling, and atomic oxygen on altered and coated Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low Earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine there durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  14. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J

    Market structure refers to the number of firms and the distribution of market shares among firms within an industry. In The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016, we examine market structure in the context of residential solar PV. We find that over 8,000 companies have installed at least one residential PV system, with about 2,900 companies active in 2016. The majority of residential PV installers are relatively small companies, with about half of installers installing fewer than five systems. At the same time, a subset of high-volume installers accumulated market share, especially beginning aroundmore » 2010 with the emergence of alternative customer financing options.« less

  15. Three-dimensional carbon nanotube based photovoltaics

    NASA Astrophysics Data System (ADS)

    Flicker, Jack

    2011-12-01

    Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values in the range of 2 to 122mV. These figures of merit are low for CdTe cells, so planar cells without CNTs and planar cells with unpatterned CNTs were developed. The planar cells had figures of merit about the same as the 3DCNTPV cells, indicating that the low efficiency of the 3DCNTPV cell is due to processing and not inherent to the 3D structure. CNTs were successfully grown directly on an Ag underlayer, but the growth reproducibility and the CNT height was not sufficient for use in 3DCNTPV devices. Therefore, CNTs were grown on a SiO2 passivated Si wafer and then metallized. This eliminated the CNTs as the back contact and used them only as a structure to provide the 3D morphology. These cells exhibited low shunt resistances on the order of 300O, causing a straight line IV curve. This shunting was found to be caused by the ion assisted deposition of ITO. This plasma process etched away semiconducting layers and caused pinholes in the CdTe/CdS film. Many different strategies were utilized to try and eliminate this shunt and induce curvature in the IV curve, including adding sacrificial metal layers before the ITO deposition, using electron beam evaporated ITO, and using RF sputtered ITO. The addition of metal layers before ITO deposition did not result in cells which could reliably demonstrate both photocurrent and IV curvature. Electron beam deposition of ITO resulted in cells with excellent IV curvature, but the ITO deposited in this manner was too resistive and absorptive to create well functioning cells. The output power of the cells at varying incident angles of light was measured. The cells show an increase in the normalized power output compared to similar planar cells when the solar ux is at off-normal angles. The power output vs. incident angle curve takes an inverted C-type curve as predicted by the theory developed here. The complete theory of 3DCNTPV presented in this work describes the power output vs. incident angle of a 3DCNTPV cell based only on cell morphology. The experimental power output vs. zenith angle was compared to the theoretically calculated power output with very good agreement between the two. (Abstract shortened by UMI.)

  16. Comparison of four MPPT techniques for PV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T.; Université de Lorraine, LMOPS, EA 4423, 57070 Metz

    2016-07-25

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, formore » all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.« less

  17. A feasibility study of stationary and dual-axis tracking grid-connected photovoltaic systems in the Upper Midwest

    NASA Astrophysics Data System (ADS)

    Warren, Ryan Duwain

    Three primary objectives were defined for this work. The first objective was to determine, assess, and compare the performance, heat transfer characteristics, economics, and feasibility of real-world stationary and dual-axis tracking grid-connected photovoltaic (PV) systems in the Upper Midwest. This objective was achieved by installing two grid-connected PV systems with different mounting schemes in central Iowa, implementing extensive data acquisition systems, monitoring operation of the PV systems for one full year, and performing detailed experimental performance and economic studies. The two PV systems that were installed, monitored, and analyzed included a 4.59 kWp roof-mounted stationary system oriented for maximum annual energy production, and a 1.02 kWp pole-mounted actively controlled dual-axis tracking system. The second objective was to demonstrate the actual use and performance of real-world stationary and dual-axis tracking grid-connected PV systems used for building energy generation applications. This objective was achieved by offering the installed PV systems to the public for demonstration purposes and through the development of three computer-based tools: a software interface that has the ability to display real-time and historical performance and meteorological data of both systems side-by-side, a software interface that shows real-time and historical video and photographs of each system, and a calculator that can predict performance and economics of stationary and dual-axis tracking grid-connected PV systems at various locations in the United States. The final objective was to disseminate this work to social, professional, scientific, and academic communities in a way that is applicable, objective, accurate, accessible, and comprehensible. This final objective will be addressed by publishing the results of this work and making the computer-based tools available on a public website (www.energy.iastate.edu/Renewable/solar). Detailed experimental performance analyses were performed for both systems; results were quantified and compared between systems, focusing on measures of solar resource, energy generation, power production, and efficiency. This work also presents heat transfer characteristics of both arrays and quantifies the affects of operating temperature on PV system performance in terms of overall heat transfer coefficients and temperature coefficients for power. To assess potential performance of PV in the Upper Midwest, models were built to predict performance of the PV systems operating at lower temperatures. Economic analyses were performed for both systems focusing on measures of life-cycle cost, payback period, internal rate of return, and average incremental cost of solar energy. The potential economic feasibility of grid-connected stationary PV systems used for building energy generation in the Upper Midwest was assessed under assumptions of higher utility energy costs, lower initial installed costs, and different metering agreements. The annual average daily solar insolation seen by the stationary and dual-axis tracking systems was found to be 4.37 and 5.95 kWh/m2, respectively. In terms of energy generation, the tracking system outperformed the stationary system on annual, monthly, and often daily bases; normalized annual energy generation for the tracking and stationary systems were found to be 1,779 and 1,264 kWh/kWp, respectively. The annual average conversion efficiencies of the tracking and stationary systems were found to be approximately 11 and 10.7 percent, respectively. Annual performance ratio values of the tracking and stationary system were found to be 0.819 and 0.792, respectively. The net present values of both systems under all assumed discount rates were determined to be negative. Further, neither system was found to have a payback period less than the assumed system life of 25 years. The rate-of-return of the stationary and tracking systems were found to be -3.3 and -4.9 percent, respectively. Furthermore, the average incremental cost of energy provided by the stationary and dual-axis tracking systems over their assumed useful life is projected to be 0.31 and 0.37 dollars per kWh, respectively. Results of this study suggest that grid-connected PV systems used for building energy generation in the Upper Midwest are not yet economically feasible when compared to a range of alternative investments; however, PV systems could show feasibility under more favorable economic scenarios. Throughout the year of monitoring, array operating temperatures ranged from -24.7°C (-12.4°F) to 61.7°C (143.1°F) for the stationary system and -23.9 °C (-11°F) to 52.7°C (126.9°F) for the dual-axis tracking system during periods of system operation. The hourly average overall heat transfer coefficients for solar irradiance levels greater than 200 W/m 2 for the stationary and dual-axis tracking systems were found to be 20.8 and 29.4 W/m2°C, respectively. The experimental temperature coefficients for power for the stationary and dual-axis tracking systems at a solar irradiance level of 1,000 W/m2 were -0.30 and -0.38 %/°C, respectively. Simulations of the stationary and dual-axis tracking systems operating at lower temperatures suggest that annual conversion efficiencies could potentially be increased by to up 4.3 and 4.6 percent, respectively.

  18. 77 FR 28618 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... project, a solar photovoltaic (PV) power plant facility, on approximately 115 acres of BLM-administered... Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility on BLM...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft Environmental...

  19. Golden Rays - October 2017 | Solar Research | NREL

    Science.gov Websites

    generation of PV researchers. Boosting Solar in Low-Income Communities Most low-to-moderate income (LMI off-site solar purchasing in the United States. 2017 International PV Soiling Workshop Oct. 23-25 October 2017 Golden Rays - October 2017 The Solar Newsletter is an electronic newsletter that

  20. Solar Energy Prospecting in Remote Alaska: An Economic Analysis of Solar Photovoltaics in the Last Frontier State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, Paul

    2016-02-11

    This report provides a high-level examination of the potential economics of solar energy in rural Alaska across a geographically diverse sample of remote Alaska Native villages throughout the state. It analyzes at a high level what combination of diesel fuel prices, solar resource quality, and photovoltaic (PV) system costs could lead to an economically competitive moderate-scale PV installation at a remote village. The goal of this analysis is to provide a baseline economic assessment to highlight the possible economic opportunities for solar PV in rural Alaska for both the public and private sectors.

  1. Low concentrator PV optics optimization

    NASA Astrophysics Data System (ADS)

    Sharp, Leonard; Chang, Ben

    2008-08-01

    Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.

  2. Design of a Glenn Research Center Solar Field Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) designed, developed, and installed, a 37.5 kW DC photovoltaic (PV) Solar Field in the GRC West Area in the 1970s for the purpose of testing PV panels for various space and terrestrial applications. The PV panels are arranged to provide a nominal 120 VDC. The GRC Solar Field has been extremely successful in meeting its mission. The PV panels and the supporting electrical systems are all near their end of life. GRC has designed a 72 kW DC grid-tied PV power system to replace the existing GRC West Area Solar Field. The 72 kW DC grid-tied PV power system will provide DC solar power for GRC PV testing applications, and provide AC facility power for all times that research power is not required. A grid-tied system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility for use by all. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. The report concludes that the GRC West Area grid-tied PV power system design is viable for a reliable, maintenance free, long life power system that is of significant value to NASA and the community.

  3. Solar PV O&M Standards and Best Practices – Existing Gaps and Improvement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PVmore » systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.« less

  4. Solar PV O&M Standards and Best Practices - Existing Gaps and Improvement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PVmore » systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.« less

  5. Performance evaluation of solar photovoltaic panel driven refrigeration system

    NASA Astrophysics Data System (ADS)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  6. A Study Examining Photovoltaic (PV) Solar Power as an Alternative for the Rebuilding of the Iraqi Electrical Power Generation Infrastructure

    DTIC Science & Technology

    2005-06-01

    Logistics, BA-5590, BB- 390, BB-2590, PVPC, Iraq, Power Grid, Infrastructure, Cost Estimate, Photovoltaic Power Conversion (PVPC), MPPT 16. PRICE...the cost and feasibility of using photovoltaic (PV) solar power to assist in the rebuilding of the Iraqi electrical infrastructure. This project...cost and feasibility of using photovoltaic (PV) solar power to assist in the rebuilding of the Iraqi infrastructure. The project examines available

  7. Development of a Real-Time Hardware-in- the-Loop Power Systems Simulation Platform to Evaluate Commercial Microgrid Controllers

    DTIC Science & Technology

    2016-02-23

    52 A.3 Solar irradiance profile. 53 xi LIST OF TABLES Table Page No. 1 Cable Impedances 14 2 PV Component Specifications 25 3 ESS...of the physical DER devices, including gensets, a battery-based energy storage system with a bidirectional power converter, a solar photovoltaic ( PV ...this was done for the energy storage, solar PV , and breakers.) Implement several relay protection functions to actuate the breakers. Implement various

  8. Tritium-Powered Radiation Sensor Network

    DTIC Science & Technology

    2015-09-01

    unexpected low efficiency of the PV . Commercial vendors of PVs normally achieve >20% efficiency under 1 sun intensity (100 mW/cm2) solar spectrum...illumination. The 2 distinguishing factors that differ in our application from normal solar PV applications is 1) weak illumination (10–5 sun) and 2...efficiency solar spectrum single-junction PV could be made of Si with a lower band gap of 1.1 eV, but the larger photocurrent generated is limited by its low

  9. Starting characteristics of direct current motors powered by solar cells

    NASA Technical Reports Server (NTRS)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  10. Solar on the Rise: How Cost Declines and Grid Integration Shape Solar's Growth Potential in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J; Denholm, Paul L; Feldman, David J

    During the past decade, solar power has experienced transformative price declines, enabling it to become a viable electricity source that is supplying 1% of U.S. and world electricity. Further cost reductions are expected to enable substantially greater solar deployment, and new Department of Energy cost targets for utility-scale photovoltaics (PV) and concentrating solar thermal power are $0.03/kW h and $0.05/kW h by 2030, respectively. However, cost reductions are no longer the only significant challenge for PV - addressing grid integration challenges and increasing grid flexibility are critical as the penetration of PV electricity on the grid increases. The development ofmore » low cost energy storage is particularly synergistic with low cost PV, as cost declines in each technology are expected to support greater market opportunities for the other.« less

  11. KSC-00padig059

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start backing through the gate to Launch Pad 39B after a cracked cleat was discovered on the crawler-transporter. Workers near the pad (behind the crawler track) look at the cleats. The vehicle, which moves the MLP and Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. When the Shuttle-MLP are back on level ground, the crawler tracks will be inspected and the broken cleat repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  12. KSC00padig059

    NASA Image and Video Library

    2000-10-31

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start backing through the gate to Launch Pad 39B after a cracked cleat was discovered on the crawler-transporter. Workers near the pad (behind the crawler track) look at the cleats. The vehicle, which moves the MLP and Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. When the Shuttle-MLP are back on level ground, the crawler tracks will be inspected and the broken cleat repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections

  13. KSC-00pp1662

    NASA Image and Video Library

    2000-11-07

    The International Space Station ground operations officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key is presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to him are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  14. KSC00pp1662

    NASA Image and Video Library

    2000-11-07

    The International Space Station ground operations officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key is presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to him are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  15. KSC-00pp1661

    NASA Image and Video Library

    2000-11-07

    Boeing workers officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key will be presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to Jett are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  16. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Joe Tanner (center, with microphone) speaks to the press about his extravehicular activity (EVA) during the mission. With him are the rest of the crew, Commander Brent Jett and Pilot Mike Bloomfield on the left and Mission Specialists Marc Garneau and Carlos Noriega on the right. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  17. The STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Joe Tanner (center, with microphone) speaks to the press about his extravehicular activity (EVA) during the mission. With him are the rest of the crew, Commander Brent Jett and Pilot Mike Bloomfield on the left and Mission Specialists Marc Garneau and Carlos Noriega on the right. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  18. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Standing in the slidewire landing zone at Launch Pad 39B, the STS-97 crew respond to questions from the media. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. The nets suspended behind them are a braking system catch net for the slidewire baskets that provide emergency exit from the orbiter and Fixed Service Structure. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  19. Photothermal performance of an amorphous silicon photovoltaic panel integrated in a membrane structure

    NASA Astrophysics Data System (ADS)

    Zhao, Bing; Hu, Jianhui; Chen, Wujun; Qiu, Zhenyu; Zhou, Jinyu; Qu, Yegao; Ge, Binbin

    2016-10-01

    The amorphous silicon photovoltaic (a-Si PV) cells are widely used for electricity generation from solar energy. When the a-Si PV cells are integrated into building roofs, such as ETFE (ethylene-tetrafouoroethylene) cushions, the temperature characteristics are indispensible for evaluating the thermal performances of a-Si PV and its constructions. This temperature value is directly dependent on the solar irradiance, wind velocity, ambient temperature and installation form. This paper concerns the field experiments and numerical modeling on the temperature characteristics and temperature value of the a-Si PV integrated in a double-layer ETFE cushion structure. To this end, an experimental model composed of two a-Si PV cells and a double-layer ETFE cushion was developed, and the corresponding experiments were carried out under two typical weather conditions (summer sunny and summer cloudy). The theoretical thermal model was developed based on an energy balance equation taking the short wave radiation, long wave radiation, convection and generated power into account. The measured solar irradiance and air temperature were used as real weather conditions for the thermal model. The corresponding differential equation of the a-Si PV temperature varying with the solar irradiance and air temperature was solved by a newly developed program based on the numerical method. The measured results show that the influence of solar irradiance on the temperature is much more significant than the other parameters, and the maximum temperature variation under sunny conditions is greater than that under cloudy conditions. The comparative study between the experimental and numerical results shows the correct predictions of the a-Si PV temperature under the sunny and cloudy conditions. The maximum difference is 3.9 °C with the acceptable reasons of the solar irradiance fluctuation and the PV thermal response time. These findings will provide useful observations and explanations for evaluating the PV and building performances in relation to temperature.

  20. Integrating DC/DC Conversion with Possible Reconfiguration within Submodule Solar Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Huang, Peter Jen-Hung

    This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost converters are discussed.

  1. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    NASA Astrophysics Data System (ADS)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and subsequent high cost to ratepayers; policymakers' expectations that price declines accrue to consumers; and market structure characteristics that might contribute to incomplete pass-through. This analysis shows that incentive passthrough in the California residential solar PV programs was incomplete. Consumer prices declined 54 cents for every additional dollar of incentive received. A large share of the incentive is captured by the solar PV contractor or other actors in the solar PV supply chain. The finding of incomplete pass-through is persistent across specifications. The analysis also identifies a lower degree of incentive pass-through for consumers in the highest income zip codes. Whether expectations of incentives' pass-through align with reality is critically important in the beginning years of emerging clean energy technology programs since this can affect the likelihood of future government investments and public support. Given the often-held policy assumption that consumer prices are declining in response to incentives, it is useful for policymakers to understand the circumstances under which such an assumption may not hold. Paper 3, Testing the Boundaries of the Solar Photovoltaic Learning System, tests how the choice of experience curves' geographic and technology assumptions affect solar PV experience curve results. Historically, solar PV experience curves have assumed one experience curve represents both module and non-module learning and that this learning happens at a global scale. These assumptions may be inaccurate for solar PV since the learning system, and technology and geographic boundaries, are likely different between PV modules and non-module components. Using 2004 to 2008 PV system price data from 13 states, and a longer time series of PV price data for California, some evidence is found that cumulative capacity at the state level is a better predictor of non-module costs than U.S. or global capacity. This paper explores, but is unable to significantly determine, how knowledge spillovers from neighboring states can influence a state's non-module costs. Given data limitations, and limitations to the two-factor experience model methodology itself, it is not possible to conclusively determine the correct geographic boundary for the non-module learning system. Throughout the paper ways in which the experience curve model and data can be augmented to achieve a better estimation are discussed. 2.

  2. The geography of solar energy in the United States: Market definition, industry structure, and choice in solar PV adoption

    DOE PAGES

    O’Shaughnessy, Eric; Nemet, Gregory F.; Darghouth, Naïm

    2018-01-30

    The solar photovoltaic (PV) installation industry comprises thousands of firms around the world who collectively installed nearly 200 million panels in 2015. Spatial analysis of the emerging industry has received considerable attention from the literature, especially on the demand side concerning peer effects and adopter clustering. However this research area does not include similarly sophisticated spatial analysis on the supply side of the installation industry. The lack of understanding of the spatial structure of the PV installation industry leaves PV market research to rely on jurisdictional lines, such as counties, to define geographic PV markets. We develop an approach thatmore » uses the spatial distribution of installers' activity to define geographic boundaries for PV markets. Our method is useful for PV market research and applicable in the contexts of other industries. We use our approach to demonstrate that the PV industry in the United States is spatially heterogeneous. Despite the emergence of some national-scale PV installers, installers are largely local and installer communities are unique from one region to the next. The social implications of the spatial heterogeneity of the emerging PV industry involve improving understanding of issues such as market power, industry consolidation, and how much choice potential adopters have.« less

  3. The geography of solar energy in the United States: Market definition, industry structure, and choice in solar PV adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shaughnessy, Eric; Nemet, Gregory F.; Darghouth, Naïm

    The solar photovoltaic (PV) installation industry comprises thousands of firms around the world who collectively installed nearly 200 million panels in 2015. Spatial analysis of the emerging industry has received considerable attention from the literature, especially on the demand side concerning peer effects and adopter clustering. However this research area does not include similarly sophisticated spatial analysis on the supply side of the installation industry. The lack of understanding of the spatial structure of the PV installation industry leaves PV market research to rely on jurisdictional lines, such as counties, to define geographic PV markets. We develop an approach thatmore » uses the spatial distribution of installers' activity to define geographic boundaries for PV markets. Our method is useful for PV market research and applicable in the contexts of other industries. We use our approach to demonstrate that the PV industry in the United States is spatially heterogeneous. Despite the emergence of some national-scale PV installers, installers are largely local and installer communities are unique from one region to the next. The social implications of the spatial heterogeneity of the emerging PV industry involve improving understanding of issues such as market power, industry consolidation, and how much choice potential adopters have.« less

  4. Solar PV leasing in Singapore: enhancing return on investments with options

    NASA Astrophysics Data System (ADS)

    Song, Shuang; Poh, K. L.

    2017-05-01

    Renewable energy is getting more important nowadays as an alternative to traditional energies. Solar energy, according to Energy Market Authority, is the most viable in the context of Singapore compared to other renewable energy sources due to land constraints. In light of the increasing adoption of solar power in Singapore, this paper focuses on solar PV leasing using a case study. This paper assesses the prospect for solar PV leasing companies in Singapore through the lens of embedded real options. The recent news that solar power is becoming the cheapest form of new electricity presents the leasing company an option to expand the scale of solar PV system. Taking into account this option, the Net Present Value (NPV) of the investment increased significantly compared to the case without real options. Technological developments result in a continuously changing environment with uncertainties. Thus, decision makers need to be aware of the inherent risk associated and identify options to maximize NPV. This upside potential is realized by exercising the managerial flexibility and exploiting the uncertainty. The paper enables solar energy planners to consider possible managerial flexibilities under uncertainties, showing how option thinking can be incorporated in the valuation of solar energy.

  5. Can solar power deliver?

    PubMed

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  6. Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaics

    NASA Astrophysics Data System (ADS)

    Ristow, Alan H.

    2008-10-01

    Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.

  7. Unlocking Solar for Low- and Moderate-Income Residents: A Matrix of

    Science.gov Websites

    (PV) and community solar projects. However, low- and moderate-income (LMI) customers have been under are generally able to adopt either rooftop PV or community solar, while tenants may only be able to Promising Financing Options | State, Local, and Tribal Governments | NREL Unlocking Solar for

  8. 77 FR 23275 - Notice of Availability of the Draft enXco Desert Harvest Solar Farm Project Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...-way (ROW) authorization to construct, operate, maintain, and decommission a solar photovoltaic (PV... grant to construct, operate, and decommission a solar PV facility on public lands in compliance with... CACA49491] Notice of Availability of the Draft enXco Desert Harvest Solar Farm Project Environmental Impact...

  9. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Margolis, Robert

    2017-05-18

    We use residential solar photovoltaic (PV) quote data to study the role of firm size in PV installer pricing. We find that large installers (those that installed more than 1,000 PV systems in any year from 2013 to 2015) quote higher prices for customer-owned systems, on average, than do other installers. The results suggest that low prices are not the primary value proposition of large installers.

  10. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Margolis, Robert

    2017-05-19

    We use residential solar photovoltaic (PV) quote data to study the role of firm size in PV installer pricing. We find that large installers (those that installed more than 1,000 PV systems in any year from 2013 to 2015) quote higher prices for customer-owned systems, on average, than do other installers. The results suggest that low prices are not the primary value proposition of large installers.

  11. The SURE House (Solar Decathlon 2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nastasi, John; May, Edwin

    Coastal towns and cities across the Northeastern US, with their high population density, aged utility infrastructure, and unique geography, are increasingly vulnerable to climate change related storm events. In October 2012 superstorm Sandy highlighted the fragility of our current coastal building types and made clear the need for a new model of design and construction which works to understand and mitigate these weaknesses. Dramatic changes in public policy, championed by both The Federal Emergency Management Agency (FEMA) and the National Flood Insurance Program (NFIP) are driving the rebuilding of these shore communities, often resulting in costly renovations, un-sustainable neighborhood configurationsmore » and in direct conflict with concurrent government policies such as The American with Disabilities Act (ADA). The SURE HOUSE demonstrates a series of new design solutions to these conflicting public policies and environmental imperatives. At Stevens Institute of Technology, the 2015 Solar Decathlon started with the challenge: Can we design a home for coastal New Jersey that dramatically reduces its energy use while protecting itself from the realities of a changing, more extreme climate? The SURE HOUSE merges the iconic 20th century shore home with 21st century building science. Utilizing innovative renewable energy technologies, a ‘Passive House’ level building envelope, and rugged glass-fiber-composite materials to flood-proof the home, the SURE HOUSE is a high-performance, net-zero-energy home, armored against extreme weather, designed for the contemporary lifestyle of the Jersey Shore and other vulnerable coastal communities. SUSTAINABLE At Stevens, we recognize that energy use in the home and workplace is directly connected to the growing problem of climate change. Reducing our energy consumption by designing higher performing, compact homes that are both functional, comfortable and desirable is the first critical step towards a modern, sustainable architecture for New Jersey and beyond. This is what informed the architectural design of the house. Configured about a compact form, thickly insulated and air-sealed walls eliminate thermal bridging and minimize energy losses while advanced glazing brings in free solar heat during the winter months. As a result of these passive design strategies, the SURE HOUSE has a greatly reduced carbon footprint requiring 91% less energy than a typical New Jersey home. Photovoltaic (PV) arrays on both the rooftop and operable shutters easily provide energy in excess of the home’s modest demands. The Stevens team considers a truly sustainable home in the era of climate change, one that prioritizes low energy use, and integrates right-sized renewable generation to supply the home’s needs. Low consumption, low production. RESILIENT In October of 2012, Hurricane Sandy wreaked havoc along the east coast of the US. In New Jersey alone there was an estimated 29.4 billion dollars in damages, 346,000 homes affected, and almost two and a half million people left without power, in some cases for over 10 days. Recovery from this storm and associated flooding is ongoing to this day, as many New Jersey homeowners grapple with the large costs of rebuilding and struggle to adapt to complicated new home building regulations. Damage from this storm to Hoboken, the home of the Stevens Institute of Technology’s campus, and to the New Jersey shore was extensive and many students on the SURE HOUSE team were directly affected by this historic event. The Stevens design team recognizes that in a world of more frequent and stronger storms, the ability to absorb and adapt to change is more important than ever. Successfully weathering the next storm and its aftermath is one of the primary goals in the design of the SURE HOUSE prototype. The SURE HOUSE introduces unique ‘dry flood-proofing’ methods to residential construction. Innovative wall and floor flood-proofing, utilizing durable composite sheathing materials adapted from the boating industry, were developed by the student team to render the SURE House’s building envelope flood proof up to the FEMA AE 6/7 Zone (+ 6/7 feet of water above sea-level). Designed and fabricated utilizing glass-fiber composite materials, the custom storm shutter system serves to protect the large glazed openings of the home from both air-borne debris impact and water infiltration during a storm event while also providing deterrence from the vandalism that often occurs in the aftermath of a calamitous event. During extended power outages, a ‘resilient’ solar array is capable of supplying critical amounts of energy and hot water to the home, without the use of battery storage or grid infrastructure. PV Description AC GRID-TIED PV SYSTEM The SURE HOUSE solar system consists of two distinct arrays, the grid-tied rooftop array which produces AC Powerand the shutter-mounted array which converts DC power generated by the modules directly into usable heat for the domestic hot water (DHW). The roof-mounted AC grid-tied array is comprised of three strings, two 11 module strings connected to an SMA SB 5000TL-US-223 inverter and a single 10 module string equipped and an SMA SB 3000TL-US-22 central inverter. All modules for the rooftop AC array are LG MonoX 2804 watt solar panels, chosen for their durability and efficiency. Inverter sizing and string size are optimized to the electrical characteristics of the chosen PV modules and the desired energy production, see Appendix 5B. The SURE HOUSE is projected to produce 12,353 kWh per year to meet 6,157 kWh per year of estimated consumption. Solar modules for the two AC grid-tied sub arrays are mounted on the main roof surface of the SURE HOUSE with a 10 degree tilt angle using a partially-ballasted polyethylene roof mounting system made by Renusol, which is particularly suited to the corrosive salt air of a coastal environment. This method was chosen for its installation simplicity and to limit detrimental roof penetrations. The 10 degree tilt optimizes the energy generated per roof area at a lower price, see Appendix 5A, and ensures that there is minimal wind uplift. DC SOLAR ELECTRIC DOMESTIC HOT WATER The SURE HOUSE’s approach to sustainable and resilient domestic hot water (DHW) consists of a unique, custom engineered DC solar electric hot water system. Employing the use of Advanced Energy’s DC electric PV heater (DCPVH)5 to heat domestic water well beyond the draw temperature, the SURE HOUSE is able to obtain a remarkably high solar fraction of 75% or more. The custom modified 80 gallon Vaughn DHW tank acts as a large solar ‘battery’ that stores heat energy in the form of hot water at almost 150 degrees, harvesting energy when the sun is out for use later in the day or overnight. The system, which uses electricity rather than heated fluid, is distinct from traditional ‘solar thermal’ systems by eliminating the dangers and associated maintenance issues of fluid based systems. By forgoing the use of external fluid loops, overheated solar collectors and pipes are not an issue for the SURE HOUSE system which never needs any yearly or seasonal flushing. In weather conditions where the integrated DCPVH unit cannot produce enough hot water via solar energy alone, the Vaughn hot water tank comes factory made with an AC powered 2.6 COP heat pump and a AC heating coil that serve as back-up heating elements. The DCPVH is powered by a DC array consisting of 10 custom-made Solbian by PVilion 180 watt, monocrystalline, flexible solar modules6. The Solbian modules are directly mounted to the top half of the operable storm shutters on the south façade of the SURE HOUSE. The SURE HOUSE team worked closely with PVillion, a PV system designer specializing in flexible architectural photovoltaics, to design an adhesive system that works with the glass-fiber storm shutter surface in a reliable manner over an extended period. Because this system operates in DC-only mode and never connects to the municipal power grid, the system can continue to create hot water safely and effectively even during grid disruption events. This hot water, and the energy stored within it, could be used for a range of activities including washing and cooking to more elaborate hydronic heating systems as desired. See Appendix 6 for system engineering, sizing and modeling.« less

  12. A control strategy for PV stand-alone applications

    NASA Astrophysics Data System (ADS)

    Slouma, S.; Baccar, H.

    2015-04-01

    This paper proposes a stand-alone photovoltaic (PV) system study in domestic applications. Because of the decrease in power of photovoltaic module as a consequence of changes in solar radiation and temperature which affect the photovoltaic module performance, the design and control of DC-DC buck converter was proposed for providing power to the load from a photovoltaic source.In fact, the control of this converter is carried out with integrated MPPT (Maximum Power Point Tracking) algorithm which ensures a maximum energy generated by the PV arrays. Moreover, the output stage is composed by a battery energy storage system, dc-ac inverter, LCL filter which enables higher efficiency, low distortion ac waveforms and low leakage currents. The control strategy adopted is cascade control composed by two regulation loops.Simulations performed with PSIM software were able to validate the control system.The realization and testing of the photovoltaic system were achieved in the Photovoltaic laboratory of the Centre for Research and Energy Technologies at the Technopark Borj Cedria. Experimental results verify the effeciency of the proposed system.

  13. Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations

    DTIC Science & Technology

    2016-04-04

    solar photovoltaic ( PV ) energy from a novelty to a mainstream energy source represents another one of the biggest clean energy stories of the past...still slightly more expensive to install than utility-scale PV , distributed solar installation costs decreased in half since 2008, and this power source...capacity will increase in the coming years (See Figure 3)6 Figure 3: Solar PV (Utility Scale) Utility-Scale Median Sy5tem Price —12 10 6 Ibid. Ibid. 9 up

  14. PV Solar Electricity: From a Niche Market to One of the Most Important Mainstream Markets for Electricity

    NASA Astrophysics Data System (ADS)

    Hoffmann, W.; Waldmann, L.

    PV solar electricity is seen as one of the few booming markets, today and in the coming decades. This market has grown globally at a rate of about 40% per year over the past 10 years. Related industries have realized a two-digit, billion-dollar (U.S.) turnover worldwide. PV solar electricity is a high-tech industry with high performance potential in the coming decades, leaving even the electronics industries behind and approaching the automotive industry.

  15. NREL: International Activities - U.S.-China Renewable Energy Partnership

    Science.gov Websites

    Solar PV and TC88 Wind working groups. Renewable Energy Technology These projects enhance policies to Collaboration on innovative business models and financing solutions for solar PV deployment. Micrositing and O development. Current Projects Recommendations for photovoltaic (PV) and wind grid code updates. New energy

  16. Utility-interactive photovoltaic power conditioners - Effects of transformerless design and dc injection

    NASA Astrophysics Data System (ADS)

    Das, R.; Krauthamer, S.; Klein, J.

    It is shown that the use of isolation transformers to eliminate dc injection into the utility in utility-interactive photovoltaic (PV) systems can reduce the overall efficiency of the system. In order to improve PV efficiency, a transformerless power conditioning subsystem (PCS) is proposed for a grounded PV array having two and three connections to a utility. An additional transformerless PCS configuration is proposed for an ungrounded PV array. A detailed schematic drawing of the interconnections between the elements of a transformerless PCS is provided.

  17. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  18. Analysis of Aurora's Performance Simulation Engine for Three Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine; Simon, Joseph

    2015-07-07

    Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systemsmore » in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.« less

  19. Solar Energy a Path to India's Prosperity

    NASA Astrophysics Data System (ADS)

    Chandra, Yogender Pal; Singh, Arashdeep; Kannojiya, Vikas; Kesari, J. P.

    2018-05-01

    Solar energy technology has grabbed a worldwide interest and attention these days. India also, having a huge solar influx and potential, is not falling back to feed its energy demand through non-conventional energy sources such as concentrating solar power (CSP) and photovoltaic (PV). This work will try to add some comprehensive insight on solar energy framework, policy, outlook and socio-economic challenges of India. This includes its prominent areas of working such as grid independent and `utility-scale' power production using CSP or PV power plants, rural as well as urban electrification using PV, solar powered public transportation systems, solar power in agrarian society—water pumping, irrigation, waste management and so on and so forth. Despite the fact that, a vast legion of furtherance and advancement has been done during the last decade of solar energy maturation and proliferation, improvements could be suggested so as to augment the solar energy usage in contrast to conventional energy sources in India.

  20. Description and status of NASA-LeRC/DOE photovoltaic applications systems

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1978-01-01

    Designed, fabricated and installed were 16 geographically dispersed photovoltaic systems. These systems are powering a refrigerator, highway warning sign, forest lookout towers, remote weather stations, a water chiller at a visitor center, and insect survey traps. Each of these systems is described in terms of load requirements, solar array and battery size, and instrumentation and controls. Operational experience is described and present status is given for each system. The P/V power systems have proven to be highly reliable with almost no problems with modules and very few problems overall.

Top