Solar Energy Education. Reader, Part II. Sun story. [Includes glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-05-01
Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)
NASA Astrophysics Data System (ADS)
Rozanov, Vladimir V.; Vountas, Marco
2014-01-01
Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes-Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently.
Interdigitated Back-Surface-Contact Solar Cell Modeling Using Silvaco Atlas
2015-06-01
11 2. Solar Spectrum ...................................................................................13 3. PV Cell Efficiency...Figure 10. Spectrum of solar radiance, from [12]. 14 3. PV Cell Efficiency There are many factors that affect the efficiency of a solar cell. Metal...BACK-SURFACE-CONTACT SOLAR CELL MODELING USING SILVACO ATLAS by Shawn E. Green June 2015 Thesis Advisor: Sherif Michael Second Reader
Solar Energy Educational Material, Activities and Science Projects
;The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches Energy - Energy from the Sun DOE Documents with Activities/Projects: Web Pages Solar Energy Education , Part I. Energy, Society, and the Sun Solar Energy Education. Reader, Part II. Sun Story. [Includes
Sixty-Year Career in Solar Physics
NASA Astrophysics Data System (ADS)
Fang, C.
2018-05-01
This memoir reviews my academic career in solar physics for 60 years, including my research on non-LTE modeling, white-light flares, and small-scale solar activities. Through this narrative, the reader can catch a glimpse of the development of solar physics research in mainland China from scratch. In the end, some prospects for future development are given.
Solar Energy Education Packet for Elementary & Secondary Students.
ERIC Educational Resources Information Center
Center for Renewable Resources, Washington, DC.
The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…
Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.
ERIC Educational Resources Information Center
Center for Renewable Resources, Washington, DC.
The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…
Development of LEDs-based microplate reader for bioanalytical assay measurements
NASA Astrophysics Data System (ADS)
Alaruri, Sami D.; Katzlinger, Michael; Schinwald, Bernhard; Kronberger, Georg; Atzler, Joseph
2013-10-01
The optical design for an LEDs-based microplate reader that can perform fluorescence intensity (top and bottom), absorbance, luminescence and time-resolved fluorescence measurements is described. The microplate reader is the first microplate reader in the marketplace that incorporates LEDs as excitation light sources. Absorbance measurements over the 0-3.5 optical density range for caffeine solution are presented. Additionally, fluorescence intensity readings collected at 535 and 625 nm from a green and a red RediPlateTM are reported. Furthermore, fluorescence decay lifetime measurements obtained for Eu (europium) and Sm (samarium) standard solutions using 370 nm excitation are presented. The microplate reader detection limits for the fluorescence intensity top, fluorescence intensity bottom, fluorescence polarization and time-resolved fluorescence modes are 1.5 fmol 100 µL-1 fluorescein (384-well plate), 25 fmol 100 µL-1 fluorescein (384-well plate), 5 mP at 10 nM fluorescein (black 384-well plate) and 30 amol 100 µL-1 europium solution (white 384-well plate), respectively.
ERIC Educational Resources Information Center
New York State Energy Office, Albany.
Determining the feasibility of modifying existing buildings to take advantage of solar energy requires a formal technical study. This workbook is designed to help the reader perform a preliminary analysis to decide whether investing in such a formal study would be beneficial. The book guides the user through an exploration of the general…
Introduction to solar heating and cooling design and sizing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information.more » (MHR)« less
Facility-Scale Solar Photovoltaic Guidebook: Bureau of Reclamation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiatreungwattana, Kosol; VanGeet, Otto; Stoltenberg, Blaise
2016-09-01
This guidebook was written for the U.S. Bureau of Reclamation to explore the use of non-hydro renewable energy resources to meet the U.S. Department of Interior's objectives and Reclamation's mission. This guidebook presents readers with the processes and steps needed to assess and successfully implement facility-scale solar projects.
Experimental studies of high-accuracy RFID localization with channel impairments
NASA Astrophysics Data System (ADS)
Pauls, Eric; Zhang, Yimin D.
2015-05-01
Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.
Development of Singlet Oxygen Absorption Capacity (SOAC) Assay Method Using a Microplate Reader.
Takahashi, Shingo; Iwasaki-Kino, Yuko; Aizawa, Koichi; Terao, Junji; Mukai, Kazuo
2016-01-01
Recently, a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of natural antioxidants and food extracts was developed. The SOAC values were measured in ethanol-chloroform-D2O (50 + 50 + 1, v/v/v) solution at 35°C using a UV-Vis spectrophotometer equipped with a six-channel cell positioner and an electron-temperature control unit. In the present study, measurement of the SOAC values was performed for eight representative carotenoids and three vegetable extracts (tomato, carrot, and red paprika) using a versatile instrument, the microplate reader. A 24-well glass microplate was used for measurements because a plastic microplate, commonly used in the laboratory, dissolves in the ethanol-chloroform-D2O solution. The SOAC values of eight carotenoids and three vegetable extracts measured using a microplate reader were in good agreement with the corresponding values measured using a UV-Vis spectrophotometer, suggesting that the microplate reader is an applicable instrument for the measurement of reliable SOAC values for general antioxidants and food extracts in solution.
Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells
NASA Astrophysics Data System (ADS)
Dongxue, Liu; Liu, Yongsheng
2017-01-01
Organic-inorganic hybrid perovskite solar cells have undergone especially intense research and transformation over the past seven years due to their enormous progress in conversion efficiencies. In this perspective, we review the latest developments of conventional perovskite solar cells with a main focus on dopant-free organic hole transporting materials (HTMs). Regarding the rapid progress of perovskite solar cells, stability of devices using dopant-free HTMs are also discussed to help readers understand the challenges and opportunities in high performance and stable perovskite solar cells. Project supported by the Scientific Research Starting Foundation for Overseas Introduced Talents of College of Chemistry, Nankai University.
Protocols development for security and privacy of radio frequency identification systems
NASA Astrophysics Data System (ADS)
Sabbagha, Fatin
There are benefits to adopting radio frequency identification (RFID) technology, although there are methods of attack that can compromise the system. This research determined how that may happen and what possible solutions can keep that from happening. Protocols were developed to implement better security. In addition, new topologies were developed to handle the problems of the key management. Previously proposed protocols focused on providing mutual authentication and privacy between readers and tags. However, those protocols are still vulnerable to be attacked. These protocols were analyzed and the disadvantages shown for each one. Previous works assumed that the channels between readers and the servers were secure. In the proposed protocols, a compromised reader is considered along with how to prevent tags from being read by that reader. The new protocols provide mutual authentication between readers and tags and, at the same time, remove the compromised reader from the system. Three protocols are proposed. In the first protocol, a mutual authentication is achieved and a compromised reader is not allowed in the network. In the second protocol, the number of times a reader contacts the server is reduced. The third protocol provides authentication and privacy between tags and readers using a trusted third party. The developed topology is implemented using python language and simulates work to check the efficiency regarding the processing time. The three protocols are implemented by writing codes in C language and then compiling them in MSP430. IAR Embedded workbench is used, which is an integrated development environment with the C/C++ compiler to generate a faster code and to debug the microcontroller. In summary, the goal of this research is to find solutions for the problems on previously proposed protocols, handle a compromised reader, and solve key management problems.
Solar radiation data sources, applications, and network design
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided aboutmore » solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.« less
RTG-History, the Curiosity, Voyager, and New Horizons
solar system for many years. Prior to New Horizons, the Apollo missions to the Moon, the Viking missions Report, January 11, 1991--April 30, 1998, DOE Technical Report Download Adobe PDF Reader , August 1998
The Cambridge Guide to the Solar System
NASA Astrophysics Data System (ADS)
Lang, Kenneth R.
2003-10-01
The Cambridge Guide to the Solar System provides a comprehensive, funamental, and up-to-date description of the solar system. It is written in a concise, light and uniform style, without being unnecessarily weighted down with specialized materials or the variable writing of multiple authors. It is filled with vital facts and information for astronomers of all types and for anyone with a scientific interest in the Earth, our Moon, all the other planets and their satellites, and related topics such as asteroids, comets, meteorites and meteors. The language, style, ideas and profuse illustrations will attract the general reader as well as professionals. A thorough report for general readers, it includes much compact reference data. Metaphors, similes and analogies will be of immense help to the lay person or non-science student, and they add to the enjoyment of the material. Vignettes containing historical, literary and even artistic material make this book unusual and interesting, and enhance its scientific content. Kenneth Lang is professor of astronomy in the Physics and Astronomy Department at Tufts University. He is the author of several astrophysics books, including The Sun from Space (Springer Verlag, 2000), Astrophysical Formulae: Radiation, Gas Processes, and High Energy Physics (Springer Verlag, 1999), Sun, Earth and Sky (Copernicus Books, 1997), Astrophysical Data: Planets and Stars (Springer Verlag, 1993), and Wanderers in Space: Exploration and Discovery in the Solar System (Cambridge, 1991),
Solar energy dust and soiling R&D progress: Literature review update for 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Suellen C. S.; Diniz, Antonia Sonia A. C.; Kazmerski, Lawrence L.
The objective of this literature review and survey is to provide a compilation and assessment of recent published reports for solar-electric device soiling R&D, to extend and update the compendium covering 2012-2015 we published last year. This review provides a comprehensive listing of the publications with references for 2016 - with some preliminary 2017 publications that have appeared at the time of this writing. Photovoltaics (PV) and concentrating solar (thermal) power (CSP) technologies are covered. To guide the reader, tabulated information on the investigative focus of the studies, the location, the duration (if pertinent), the solar-device type, key findings andmore » other useful information within the report is presented.« less
Solar energy dust and soiling R&D progress: Literature review update for 2016
Costa, Suellen C. S.; Diniz, Antonia Sonia A. C.; Kazmerski, Lawrence L.
2017-11-26
The objective of this literature review and survey is to provide a compilation and assessment of recent published reports for solar-electric device soiling R&D, to extend and update the compendium covering 2012-2015 we published last year. This review provides a comprehensive listing of the publications with references for 2016 - with some preliminary 2017 publications that have appeared at the time of this writing. Photovoltaics (PV) and concentrating solar (thermal) power (CSP) technologies are covered. To guide the reader, tabulated information on the investigative focus of the studies, the location, the duration (if pertinent), the solar-device type, key findings andmore » other useful information within the report is presented.« less
Fundamentals of Geophysical Fluid Dynamics
NASA Astrophysics Data System (ADS)
McWilliams, James C.
2006-07-01
Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org
Astronomical Resources: Astronomy Books of 1986--The Nontechnical List.
ERIC Educational Resources Information Center
Mercury, 1987
1987-01-01
Provides the results of an annual review of nontechnical astronomy books written for readers without extensive background in science or mathematics. Includes reviews of books on topics including amateur astronomy, comets, computers, cosmology, galaxies, pseudoscience, the solar system, space exploration, stellar evolution, telescopes and…
Just Deal with It! Funny Readers Theatre for Life's Not-So-Funny Moments
ERIC Educational Resources Information Center
Jenkins, Diana
2004-01-01
A collection of humorous plays with real-life settings and contemporary characters, Just Deal with It!, includes readers theatre scripts that poke gentle fun at annoying traits, school-based dilemmas, or the embarrassing moments that are part of growing up. With resolutions that emphasize creative solutions, good humor, or cleverness, these…
ERIC Educational Resources Information Center
Velten, Justin; Mokhtari, Kouider
2016-01-01
In this brief report, we share three challenges we encountered when designing and implementing an after school intervention program for an ethnically diverse group of middle grade underachieving readers. We also offer practical solutions to help guide middle school teams in anticipating and addressing potential problems when putting in place…
Storing free magnetic energy in the solar corona
NASA Astrophysics Data System (ADS)
Vekstein, G.
2016-08-01
This article presents a mini-tutorial aimed at a wide readership not familiar with the field of solar plasma physics. The exposition is centred around the issue of excess/free magnetic energy stored in the solar corona. A general consideration is followed with a particular example of coronal magnetic arcade, where free magnetic energy builds up by photospheric convective flows. In the context of solar physics the major task is to explain how this free energy can be released quickly enough to match what is observed in coronal explosive events such as solar flares. Therefore, in the last section of the paper we discuss briefly a possible role of magnetic reconnection in these processes. This is done in quite simple qualitative physical terms, so that an interested reader can follow it up in more detail with help of the provided references.
NASA Astrophysics Data System (ADS)
Gilbert, Holly; St. Cyr, Orville Chris; Mueller, Daniel; Zouganelis, Yannis; Velli, Marco
2017-08-01
With the delivery of the instruments to the spacecraft builder, the Solar Orbiter mission is in the midst of Integration & Testing phase at Airbus in Stevenage, U.K. This mission to “Explore the Sun-Heliosphere Connection” is the first medium-class mission of ESA’s Cosmic Vision 2015-2025 program and is being jointly implemented with NASA. The dedicated payload of 10 remote-sensing and in-situ instruments will orbit the Sun as close as 0.3 A.U. and will provide measurments from the photosphere into the solar wind. The three-axis stabilized spacecraft will use Venus gravity assists to increase the orbital inclination out of the ecliptic to solar latitudes as high as 34 degrees in the extended mission. The science team of Solar Orbiter has been working closely with the Solar Probe Plus scientists to coordinate observations between these two highly-complementary missions. This will be a status report on the mission development; the interested reader is referred to the recent summary by Müller et al., Solar Physics 285 (2013).
Automatic license plate reader: a solution to avoiding vehicle pursuit
NASA Astrophysics Data System (ADS)
Jordan, Stanley K.
1997-01-01
The Massachusetts Governor's Auto Theft Strike Force has tested an automatic license plate reader (LPR) to recover stolen cars and catch car thieves, without vehicle pursuit. Experiments were conducted at the Sumner Tunnel in Boston, and proved the feasibility of a LPR for identifying stolen cars instantly. The same technology can be applied to other law-enforcement objectives.
Is It Still Considered Reading? Using Digital Video Storytelling to Engage Adolescent Readers
ERIC Educational Resources Information Center
Malin, Ginger
2010-01-01
In order to comprehend and ultimately enjoy reading a text, a reader must first be engaged in it. However, many high school students have difficulty engaging with texts for a variety of reasons. This study was interested in innovative solutions to this problem and examined the educational and aesthetic value of a particular digital video reading…
Deline, Christopher A; van Sark, Wilfried; Georghiou, George E.
2017-08-16
This Special Issue entitled 'Performance Assessment and Condition Monitoring of Photovoltaic Systems for Improved Energy Yield', contains ten papers that discuss various aspects in performance assessment, thus bringing the reader up to date with the present state-of-the-art technologies. In particular, the following topics are addressed: system performance monitoring; operational analysis and design; solar forecasting.
Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions
2012-02-01
Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions by Kendall Bianchi, Jay R. Maddux, Kimberly Sablon-Ramsey...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5920 February 2012 Survey of Thermoelectric and Solar Technologies as Alternative Energy...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions 5a
Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.
Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; Yang, Yang Michael; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang
2013-11-28
A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.
Energy Considerations in Home Mortgages: An Evaluation Technique.
ERIC Educational Resources Information Center
Maine Audubon Society, Falmouth.
This document, intended primarily for mortgage lenders, is designed to aid readers in evaluating solar heating technology in the aspects of its capital cost and potential for recovery of investment. Whether or not American consumers will fully exploit this alternative will depend upon interest rates, the allocation of capital to finance the higher…
Visibly transparent polymer solar cells produced by solution processing.
Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang
2012-08-28
Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.
Future Directions in Distance Learning and Communication Technologies
ERIC Educational Resources Information Center
Shih, Timothy; Hung, Jason
2007-01-01
Future Directions in Distance Learning and Communication Technologies presents theoretical studies and practical solutions for engineers, educational professionals, and graduate students in the research areas of e-learning, distance education, and instructional design. This book provides readers with cutting-edge solutions and research directions…
Kuc, Christopher J; Lebow, Kenneth A
2018-06-13
This article will examine the current literature, as it relates to contact lens discomfort (CLD) secondary to contact lens solutions. The reader will better understand the characteristics of contact lenses, as they uniquely interact with each type of contact lens solution and also gain a better comprehension of the components of contact lens solution such as preservatives, surfactants, and chelating agents, which may contribute to discomfort. By investigating corneal staining theory and the mechanisms that contribute to its presence, the reader will gain insight into this clinical finding, which relates to selection of contact lens solutions. The FDA standards for testing solutions and how this relates to contact lens keratitis will also be appraised in regards to current ISO recommendations. Finally, better selection of multipurpose contact lens solution (MPS) and hydrogen peroxide-based solutions for patients should be accessible to the clinician based on this review and preexisting clinical findings or diagnoses. A review of current published literature from peer reviewed journals and online journals was conducted to gain an understanding of contact lens solution's impact on contact lens discomfort. Many studies have been conducted comparing comfort between various types of contact lens solutions. It is challenging to decipher this information and apply it clinically when selecting solutions for patients. By comparing solution components, how contact lens solutions interact with different types of lenses, keratitis related to contact lenses, and preexisting ocular conditions, this review will improve a clinician's ability to eliminate CLD.
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Gonzalez, W. D.
1995-01-01
Within the last 7-8 years, there has been a substantial growth in out knowledge of the solar and interplanetary causes of geomagnetic storms at Earth. This review article will not attempt to cover all of the work done during this period. This can be found elsewhere. Our emphasis here will be on recent efforts that expose important, presently unanswered questions that must be addressed and solved before true predictability of storms can be possible. Hopefully, this article will encourage some readers to join this effort and perhaps make major contributions to the field.
Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.
Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun
2014-03-28
In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E.; Ramakrishnan, IV
2017-01-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access—an early forerunner of true ubiquitous access—screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments. PMID:28782061
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E; Ramakrishnan, I V
2017-05-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access-an early forerunner of true ubiquitous access-screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments.
NASA Astrophysics Data System (ADS)
Inceoglu, F.; Knudsen, M. F.; Olsen, J.; Karoff, C.; Herren, P.-A.; Schwikowski, M.; Aldahan, A.; Possnert, G.
2016-05-01
The authors regret that figure panels 2d and 4a (green lines), showing the 10Be concentrations from Dome Fuji, were plotted erroneously in the original version. The correct versions of the figures (green lines) appear below for the reader's convenience.
Solar electric power for instruments at remote sites
McChesney, P.J.
2000-01-01
Small photovoltaic (PV) systems are the preferred method to power instruments operating at permanent locations away from the electric power grid. The low-power PV power system consists of a solar panel or small array of panels, lead-acid batteries, and a charge controller. Even though the small PV power system is simple, the job of supplying power at a remote site can be very demanding. The equipment is often exposed to harsh conditions. The site may be inaccessible part of the year or difficult and expensive to reach at any time. Yet the system must provide uninterrupted power with minimum maintenance at low cost. This requires good design. Successful small PV systems often require modifications by a knowledgeable fieldworker to adapt to conditions at the site. Much information is available in many places about solar panels, lead-acid batteries, and charging systems but very little of it applies directly to low power instrument sites. The discussion here aims to close some of the gap. Each of the major components is described in terms of this application with particular attention paid to batteries. Site problems are investigated. Finally, maintenance and test procedures are given. This document assumes that the reader is engaged in planning or maintaining low-power PV sites and has basic electrical and electronic knowledge. The area covered by the discussion is broad. To help the reader with the many terms and acronyms used, they are shown in bold when first used and a glossary is provided at the end of the paper.
Constraints on decay plus oscillation solutions of the solar neutrino problem
NASA Astrophysics Data System (ADS)
Joshipura, Anjan S.; Massó, Eduard; Mohanty, Subhendra
2002-12-01
We examine the constraints on the nonradiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. The decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2, τ2/m2>22.7 s/MeV for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem and τ2/m2>27.8 s/MeV for the vacuum oscillation solution (at 99% C.L.).
Solution-processed copper-nickel nanowire anodes for organic solar cells
NASA Astrophysics Data System (ADS)
Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.
2014-05-01
This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h
The solar textile challenge: how it will not work and where it might.
Krebs, Frederik C; Hösel, Markus
2015-03-01
Solar textiles are highlighted as a future technology with transformative power within the fields of both textiles and solar cells provided that developments are made in critical areas. Specifically, these are fundamental solutions to materials and material combinations with mechanical stability and flexibility imposed by textile architectures, scientific solutions to achieve high carrier transport efficiency and optical transmission in a textile topology, technical solutions to controlling the physical disposition of the anode and cathode along with their specific and error-free contacting and, finally, practical solutions to fast and efficient manufacture and integration. The areas of application and the penetration of solar textiles into our everyday life are expected to be explosive pending efficient developments within these four key areas. A shortcoming in one or more of these will, however, lead to the solar textiles being banned to academic existence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Gelb, James M.; Kwong, Waikwok; Rosen, S. P.
1992-01-01
We compare the implications for Be-7 and pp neutrinos of the two Mikheyev-Smirnov-Wolfenstein fits to the new GALLEX solar neutrino measurements. Small-mixing-angle solutions tend to suppress the former as electron neutrinos, but not the latter, and large-angle solutions tend to reduce both by about a factor of two. The consequences for BOREXINO and similar solar neutrino-electron scattering experiments are discussed.
NASA Technical Reports Server (NTRS)
Lupton, J. E.
1972-01-01
An analytic solution was obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events were observed with solar and galactic cosmic ray experiment aboard OGO 6. Detailed comparisons of the predictions of the solution with observations of 1 to 70 MeV protons show that the model adequately describes both the rise and decay times. The solution also yields a time evolution for the vector anisotropy which agrees well with reported observations.
Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature
NASA Technical Reports Server (NTRS)
Poletto, G.; Suess, S. T.; Biesecker, D. A.; Esser, R.; Gloeckler, G.; Ko, Y.-K.; Zurbuchen, T. H.
2002-01-01
Solar and Heliospheric Observatory (SOH0)-Ulysses quadratures occur when the SOHO-Sun-Ulysses-included angle is 90 deg. These offer the opportunity to directly compare properties of plasma parcels, observed by SOHO [Dorningo et al.] in the low corona, with properties of the same parcels measured, in due time, in situ, by Ulysses [ Wenzel et al]. We refer the reader to Suess et al. for an extended discussion of SOHO-Ulysses quadrature geometry. Here it suffices to recall that there are two quadratures per year, as SOHO makes its one-year revolution around the Sun. This, because SOHO is at the L1 Lagrangian point, in essentially the same place as the Earth, while Ulysses is in a near-polar -5-year solar orbit with a perihelion of 1.34 AU and aphelion of 5.4 AU.
Clean energy choices: Tips on buying and using renewable energy at home
DOE Office of Scientific and Technical Information (OSTI.GOV)
NREL
This brochure provides information on how consumers can use renewable energy in and around the home. Information on buying green power; using renewables to generate power; using passive and active solar and geothermal heat pumps to heat, cool and light buildings; and using alternative fuels and vehicles is included. Resources at the end of each chapter help readers find more information.
Monte Carlo exploration of Mikheyev-Smirnov-Wolfenstein solutions to the solar neutrino problem
NASA Technical Reports Server (NTRS)
Shi, X.; Schramm, D. N.; Bahcall, J. N.
1992-01-01
The paper explores the impact of astrophysical uncertainties on the Mikheyev-Smirnov-Wolfenstein (MSW) solution by calculating the allowed MSW solutions for 1000 different solar models with a Monte Carlo selection of solar model input parameters, assuming a full three-family MSW mixing. Applications are made to the chlorine, gallium, Kamiokande, and Borexino experiments. The initial GALLEX result limits the mixing parameters to the upper diagonal and the vertical regions of the MSW triangle. The expected event rates in the Borexino experiment are also calculated, assuming the MSW solutions implied by GALLEX.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... megawatt (MW) solar photovoltaic project which would connect to an existing Southern California Edison 33... Solutions Lucerne Valley Solar Project, California and the Proposed Amendment to the California Desert... Chevron Energy Solutions Lucerne Valley Solar Project and by this notice is announcing its availability...
Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.
Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual
2015-11-24
Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results.
Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil
2011-01-01
Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173
Biswas, Sovan; Sen, Suman; Im, JongOne; Biswas, Sudipta; Krstic, Predrag; Ashcroft, Brian; Borges, Chad; Zhao, Yanan; Lindsay, Stuart; Zhang, Peiming
2016-12-27
A reader molecule, which recognizes all the naturally occurring nucleobases in an electron tunnel junction, is required for sequencing DNA by a recognition tunneling (RT) technique, referred to as a universal reader. In the present study, we have designed a series of heterocyclic carboxamides based on hydrogen bonding and a large-sized pyrene ring based on a π-π stacking interaction as universal reader candidates. Each of these compounds was synthesized to bear a thiolated linker for attachment to metal electrodes and examined for their interactions with naturally occurring DNA nucleosides and nucleotides by 1 H NMR, ESI-MS, computational calculations, and surface plasmon resonance. RT measurements were carried out in a scanning tunnel microscope. All of these molecules generated electrical signals with DNA nucleotides in tunneling junctions under physiological conditions (phosphate buffered aqueous solution, pH 7.4). Using a support vector machine as a tool for data analysis, we found that these candidates distinguished among naturally occurring DNA nucleotides with the accuracy of pyrene (by π-π stacking interactions) > azole carboxamides (by hydrogen-bonding interactions). In addition, the pyrene reader operated efficiently in a larger tunnel junction. However, the azole carboxamide could read abasic (AP) monophosphate, a product from spontaneous base hydrolysis or an intermediate of base excision repair. Thus, we envision that sequencing DNA using both π-π stacking and hydrogen-bonding-based universal readers in parallel should generate more comprehensive genome sequences than sequencing based on either reader molecule alone.
Fully printed flexible and disposable wireless cyclic voltammetry tag.
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-29
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Fully printed flexible and disposable wireless cyclic voltammetry tag
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250
Fully printed flexible and disposable wireless cyclic voltammetry tag
NASA Astrophysics Data System (ADS)
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... right-of-way (ROW) authorization to construct and operate a 45-megawatt solar photovoltaic project and... Energy Solutions Lucerne Valley Solar Project, San Bernardino County, CA, and the Draft California Desert... Statement (EIS) for the proposed Chevron Energy Solutions Lucerne Valley Solar Project and by this notice is...
Materials interface engineering for solution-processed photovoltaics.
Graetzel, Michael; Janssen, René A J; Mitzi, David B; Sargent, Edward H
2012-08-16
Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.
Sustainability Actions in Higher Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
This brochure details common sustainability actions taken by universities to reduce their energy consumption. Some of the most common actions include energy efficiency (existing building commissioning; lighting; heating, ventilation, and air conditioning upgrades; plug loads) and renewable energy (RE) (on-site or off-site solar deployment, RE procurement). We focus on the costs and benefits of energy efficiency measures and RE through the brochure while highlighting resources where readers can find more information.
2015-10-07
solutions such as solar photovoltaics, solar thermal, wind energy, bio-mass ( wood chips, etc.), bio-gas, or synthetic gas are considered as part of the...Leonard Wood , MO, Fort Hunter Liggett, CA, Schofield Barracks, HI, and the Presidio of Monterey, CA. Energy planning may be conducted at varying levels...installation goals at the lowest cost. In- dustrial scale supply solutions such as solar photovoltaics, solar-thermal, wind energy, biomass ( wood chips
NASA Astrophysics Data System (ADS)
Dai, Si-Min; Tian, Han-Rui; Zhang, Mei-Lin; Xing, Zhou; Wang, Lu-Yao; Wang, Xin; Wang, Tan; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun
2017-01-01
Discovery of organic-inorganic hybrid perovskites ignites the dream of next-generation solar cells fabricated by low-cost solution processing. To date, fullerene derivative [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM), is the most prevalently used electron transport layer for high efficiency p-i-n planar heterojunction perovskite solar cells. Compared with PC61BM, pristine fullerenes, such as C60 and C70, have shown superiority of higher electron mobility and much lower costs. Due to the poor solubility and strong tendency to crystallize for pristine fullerenes in solution process, it is still a challenge to deposit compact and continuous film of pristine fullerenes for p-i-n type perovskite solar cells by solution processing. Herein, solution processed pristine fullerenes (C60 and C70) were used as electron transport layers to replace PC61BM in perovskite solar cells with high performance and enhanced stability. Power conversion efficiency of 14.04% was obtained by using mixture of C60 and C70 as electron transport layer, which is comparable to that of PC61BM based device (13.74%). We demonstrated that the strong tendency of pristine fullerenes to crystallize during solvent removal can be largely mitigated by mixing different kinds of pristine fullerenes. These findings implicate pristine fullerenes as promising electron transport layers for high performance perovskite solar cells.
Status of the neutrino decay solution to the solar neutrino problem
NASA Astrophysics Data System (ADS)
Choubey, S.; Goswami, S.; Majumdar, D.
2000-06-01
We re-examine the neutrino decay solution to the solar neutrino problem in the light of the SuperKamiokande (SK) data. For the decay solution the SK spectrum data by its own can provide a fit comparable to the fit obtained from the MSW solution. However when one combines the results from the total rates of the 37Cl and 71Ga experiments the fit becomes much poorer.
NASA Astrophysics Data System (ADS)
Januševičius, Karolis; Streckienė, Giedrė
2013-12-01
In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.
Boundary Layer Flow of Air Over Water on a Flat Plate
1993-08-01
similar (or coupled self -similar) solution appears to be a global attractor for all initial conditions. 2 Governing Equations A water film of height y...assumptions are self -consistent. The reader may verify that the solution (13) with c(x) given by (16) is self -similar (satisfies (24) without the the...attractor for all solutions of this non-similar family. Self similar boundary layers depend only on q and not on 4. The ý derivatives of u, v and y* may
iPhone-based teleradiology for the diagnosis of acute cervico-dorsal spine trauma.
Modi, Jayesh; Sharma, Pranshu; Earl, Alex; Simpson, Mark; Mitchell, J Ross; Goyal, Mayank
2010-11-01
To assess the feasibility of iPhone-based teleradiology as a potential solution for the diagnosis of acute cervico-dorsal spine trauma. We have developed a solution that allows visualization of images on the iPhone. Our system allows rapid, remote, secure, visualization of medical images without storing patient data on the iPhone. This retrospective study is comprised of cervico-dorsal computed tomogram (CT) scan examination of 75 consecutive patients having clinically suspected cervico-dorsal spine fracture. Two radiologists reviewed CT scan images on the iPhone. Computed tomogram spine scans were analyzed for vertebral body fracture and posterior elements fractures, any associated subluxation-dislocation and cord lesion. The total time taken from the launch of viewing application on the iPhone until interpretation was recorded. The results were compared with that of a diagnostic workstation monitor. Inter-rater agreement was assessed. The sensitivity and accuracy of detecting vertebral body fractures was 80% and 97% by both readers using the iPhone system with a perfect inter-rater agreement (kappa:1). The sensitivity and accuracy of detecting posterior elements fracture was 75% and 98% for Reader 1 and 50% and 97% for Reader 2 using the iPhone. There was good inter-rater agreement (kappa: 0.66) between both readers. No statistically significant difference was noted between time on the workstation and the iPhone system. iPhone-based teleradiology system is accurate in the diagnosis of acute cervicodorsal spinal trauma. It allows rapid, remote, secure, visualization of medical images without storing patient data on the iPhone.
Computer analysis of potentiometric data of complexes formation in the solution
NASA Astrophysics Data System (ADS)
Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira
2018-02-01
The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.
Parathion degradation and toxicity reduction in solar photocatalysis and photolysis.
Zoh, K D; Kim, T S; Kim, J G; Choi, K; Yi, S M
2006-01-01
The solar photocatalytic degradation of methyl parathion was investigated using a circulating TiO2/solar light reactor. Under solar photocatalysis condition, parathion was more effectively degraded than solar photolysis and TiO2-only conditions. With solar photocatalysis, 20 mg/L of parathion was completely degraded within 60 min with a TOC decrease of 63% after 150 min. The main ionic byproducts during photocatalysis recovered from parathion degradation were mainly as NO3-, NO2- and NH4+, 80% of the sulphur as SO4(2-), and 5% of phosphorus as PO4(3-). The organic intermediates 4-nitrophenol and methyl paraoxon were also identified, and these were further degraded in solar photocatalytic condition. Two different bioassays (Vibrio fischeri and Daphnia magna) were used to test the acute toxicity of solutions treated by solar photocatalysis and photolysis. The Microtox test using V. fischeri showed that the toxicity expressed as EC50 (%) value increased from 5.5% to >82% in solar photocatalysis, indicating that the treated solution is non-toxic, but only increased from 4.9 to 20.5% after 150 min in solar photolysis. The acute toxicity test using D. magna showed that EC50 (%) increased from 0.05 to 1.08% under solar photocatalysis, but only increased to 0.12% after 150 min with solar photolysis, indicating the solution is still toxic. The pattern of toxicity reduction parallels the decrease in TOC and the parathion concentrations.
Introduction to Elementary Particle Physics
NASA Astrophysics Data System (ADS)
Bettini, Alessandro
The Standard Model is the most comprehensive physical theory ever developed. This textbook conveys the basic elements of the Standard Model using elementary concepts, without the theoretical rigor found in most other texts on this subject. It contains examples of basic experiments, allowing readers to see how measurements and theory interplay in the development of physics. The author examines leptons, hadrons and quarks, before presenting the dynamics and the surprising properties of the charges of the different forces. The textbook concludes with a brief discussion on the recent discoveries of physics beyond the Standard Model, and its connections with cosmology. Quantitative examples are given, and the reader is guided through the necessary calculations. Each chapter ends in the exercises, and solutions to some problems are included in the book. Complete solutions are available to instructors at www.cambridge.org/9780521880213. This textbook is suitable for advanced undergraduate students and graduate students.
Modeling the heliolatitudinal gradient of the solar wind parameters with exact MHD solutions
NASA Technical Reports Server (NTRS)
Lima, J. J. G.; Tsinganos, K.
1995-01-01
The heliolatitudinal dependence of observations of the solar wind macroscopic quantities such as the averaged proton speed, density and the mass and momentum flux are modeled. The published observations covering the last two and a half solar cycles, are obtained either via the technique of interplanetary scintillations for the last 2 solar cycles (1970-1990), or, from the plasma experiment aboard the ULYSSES spacecraft for the recent period 1990-1994. Exact, two dimensional solutions of the full set of the steady MHD equations are used which are obtained through a nonlinear separation of the variables in the MHD equations. The three parameters emerging from the solutions are fixed from these observations, as well as from observations of the solar rotation. It is found that near solar maximum the solar wind speed is uniformly low, around the 400 km/s over a wide range of latitudes. On the other hand, during solar minimum and the declining phase of the solar activity cycle, there is a strong heliolatitudinal gradient in proton speed between 400-800 from equator to pole. This modeling also agrees with previous findings that the gradient in wind speed with the latitude is offset by a gradient in density such that the mass and momentum flux vary relatively little.
Larrain, Felipe A.; Fuentes-Hernandez, Canek; Chou, Wen-Fang; ...
2018-01-01
A solution-based method to electrically p-dope organic semiconductors enabling the fabrication of organic solar cells with simplified geometry is implemented with acetonitrile as an alternative to nitromethane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larrain, Felipe A.; Fuentes-Hernandez, Canek; Chou, Wen-Fang
A solution-based method to electrically p-dope organic semiconductors enabling the fabrication of organic solar cells with simplified geometry is implemented with acetonitrile as an alternative to nitromethane.
NASA Astrophysics Data System (ADS)
Guo, Heng; Yang, Jian; Pu, Bingxue; Zhang, Haiyan; Niu, Xiaobin
2018-01-01
Organo-lead perovskites as light harvesters have represented a hot field of research on high-efficiency perovskite solar cells. Previous approaches to increasing the solar cell efficiency have focused on optimization of the morphology of perovskite film. In fact, the electron transporting layer (ETL) also has a significant impact on solar cell performance. Herein, we introduce a facile and low temperature solution-processing method to deposit Nb2O5 film as ETL for PSCs. Based on Nb2O5 ETL, we investigate the effect of the annealing time for the perovskite films via different solution processing, relating it to the perovskite film morphology and its influence on the device working mechanisms. These results shed light on the origin of photovoltaic performance voltage in perovskite solar cells, and provide a path to further increase their efficiency.
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; ...
2015-08-12
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less
Charge exchange in solar wind-cometary interactions
NASA Technical Reports Server (NTRS)
Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.
1983-01-01
A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion densities is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion density in the vicinity of the comet. An axisymmetric model of the solar wind-cometary interaction is considered, taking into account the loss of solar wind ions due to charge exchange. The calculations predict that for active comets, solar wind absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar wind from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan
2015-01-01
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528
Solution-Processed Germanium Nanowire-Positioned Schottky Solar Cells
2011-04-01
nanowire (GeNW)-positioned Schottky solar cell was fabricated by a solution process. A GeNW-containing solution was spread out onto asymmetric metal ...177 mV and a short-circuit current of 19.2 nA. Schottky and ohmic contacts between a single GeNW and different metal electrodes were systematically...containing solution was spread out onto asymmetric metal electrodes to produce a rectifying current flow. Under one-sun illumination, the GeNW
Increasing the efficiency of solar thermal panels
NASA Astrophysics Data System (ADS)
Dobrnjac, M.; Latinović, T.; Dobrnjac, S.; Živković, P.
2016-08-01
The popularity of solar heating systems is increasing for several reasons. These systems are reliable, adaptable and pollution-free, because the renewable solar energy is used. There are many variants of solar systems in the market mainly constructed with copper pipes and absorbers with different quality of absorption surface. Taking into account the advantages and disadvantages of existing solutions, in order to increase efficiency and improve the design of solar panel, the innovative solution has been done. This new solar panel presents connection of an attractive design and the use of constructive appropriate materials with special geometric shapes. Hydraulic and thermotechnical tests that have been performed on this panel showed high hydraulic and structural stability. Further development of the solar panel will be done in the future in order to improve some noticed disadvantages.
Does magnetic storm generation depend on the solar wind type?
NASA Astrophysics Data System (ADS)
Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.; Yermolaev, M. Yu.
2017-09-01
The purpose of this work is to draw the reader's attention to the problem of possible differences in the generation of magnetic storms by different large-scale solar wind types: corotating interaction regions (CIRs), Sheaths, and interplanetary coronal mass ejections (ICMEs), including magnetic clouds (MCs) and Ejecta. We recently showed that the description of relationships between interplanetary conditions and Dst and Dst* indices with the modified formula by Burton et al. gives an 50% higher efficiency of storm generation by Sheath and CIR than that by ICME. Many function couplings (FCs) between different interplanetary parameters and the magnetosphere state have been suggested in the literature; however, they have not been analyzed for different solar wind types. In this work, we study the generation efficiency of the main phase of a storm by different solar wind streams with the use of 12 FCs on the basis of OMNI data for 1976-2000. The results show that the Sheath has the highest efficiency for most FCs, and MC is the least efficient, and this result corresponds to our previous results. The reliability of the results and possible causes of differences for different FCs and solar wind types are to be studied further.
2013-04-01
Identification (RFID), Large Area Flexible Displays, Electronic Paper, Bio - Sensors , Large Area Conformal and Flexible Antennas, Smart and Interactive Textiles...Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator ...Ubiquitous Sensor Networks (USN), Vehicle Clickers Readers, Real Time Locating Systems, Lighting, Photovoltaics etc. FA9550-11-C-0014 STTR Phase II
Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection
Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual
2015-01-01
Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results. PMID:26610513
Novel label-free biosensing technology for monitoring of aqueous solutions (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kehl, Florian; Bielecki, Robert; Follonier, Stephane; Dorokhin, Denis
2016-03-01
Waste water, drinking water and other industrial water sources are more and more/increasingly polluted with a large variety of contaminants, such as pesticides or residuals of pharmaceuticals. These compounds can impact human and animal organisms and lead to serious health issues. Today, in order to analyze the presence and quantity of the abovementioned micropollutants, samples are typically sent to specialized centralized laboratories and their processing may take up to several days. In order to meet the demand for continuous and consistent monitoring of aqueous solutions we propose a novel label-free technology system comprising proprietary chip and reader device designs. The core of the system is constituted by a planar-grated-waveguide (PGW) chip. Label-free biosensors, based on PGWs are sensitive to effective refractive index changes caused by the adsorption of biomolecules (micropollutants) onto the sensor surface or due to refractive index changes of the bulk solution. The presented reader device operates with a novel readout concept based on a scanning MEMS mirror for the angular interrogation of input grating couplers at a high repetition rate. The reader has fully integrated optics, electronics and fluidics and at the same time consumes limited energy (portable, field use ready). In the recent experiments, the effectiveness of the technology has been demonstrated with various liquids and bioassays showing (i) an excellent refractometric sensitivity with a limit of detection towards effective refractive index changes of ▵neff < 2 x 10-7, and (ii) the capability to perform affinity measurements for large (<150 kDa) and small (<250 Da) molecules.
76 FR 33803 - Order of Suspension of Trading
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
....; CASCADIA INVESTMENTS, INC.; CYTOGENIX, INC.; EMERGING HEALTHCARE SOLUTIONS, INC.; EVOLUTION SOLAR....; MIND TECHNOLOGIES, INC.; MONTVALE TECHNOLOGIES, INC.; MSGI TECHNOLOGY SOLUTIONS, INC. (F/K/A MGSI... assets. 7. Evolution Solar Corporation is a Colorado corporation based in Arizona. Questions have arisen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Suellen C. S.; Diniz, Antonia Sonia A. C.; Kazmerski, Lawrence L.
The purpose of this review survey is to provide a literature compilation, updating materials reported in several review papers on solar-device soiling and mitigation approaches published over the past 5 years. The focus is on the period 2013-2015, but an updated listing is also provided for the year 2012 for completeness. This literature review also provides the first update for a periodic, single collation report on such publications proposed in this journal two years ago. This review presents a listing of the publications, their publication source, and some brief tabulated information to help guide the reader into the focus ofmore » each of the works.« less
Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
Long, Ran; Li, Yu; Song, Li; Xiong, Yujie
2015-08-26
Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1982-12-28
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
Molecular solution processing of metal chalcogenide thin film solar cells
NASA Astrophysics Data System (ADS)
Yang, Wenbing
The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (CISS) and kesterite Cu2ZnSn(S,Se) 4 organized in chronological order. Chalcopyrite CISS is a very promising material. It has been demonstrated to achieve the highest efficiency among thin film solar cells. Scaled-up industry production at present has reached the giga-watt per year level. The process however mainly relies on vacuum systems which account for a significant percentage of the manufacturing cost. In the first section of this dissertation, hydrazine based solution processed CISS has been explored. The focus of the research involves the procedures to fabricate devices from solution. The topics covered in Chapter 2 include: precursor solution synthesis with a focus on understanding the solution chemistry, CISS absorber formation from precursor, properties modification toward favorable device performance, and device structure innovation toward tandem device. For photovoltaics to have a significant impact toward meeting energy demands, the annual production capability needs to be on TW-level. On such a level, raw materials supply of rare elements (indium for CIS or tellurium for CdTe) will be the bottleneck limiting the scalability. Replacing indium with zinc and tin, earth abundant kesterite CZTS exhibits great potential to reach the goal of TW-level with no limitations on raw material availability. Chapter 3 shows pioneering work towards solution processing of CZTS film at low temperature. The solution processed devices show performances which rival vacuum-based techniques and is partially attributed to the ease in controlling composition and CZTS phase through this technique. Based on this platform, comprehensive characterization on CZTS devices is carried out including solar cells and transistors. Especially defects properties are exploited in Chapter 4 targeting to identify the limiting factors for further improvement on CZTS solar cells efficiency. Finally, molecular structures and precursor solution stability have been explored, potentially to provide a universal approach to process multinary compounds.
Community Solar Scenario Tool | Integrated Energy Solutions | NREL
Community Solar Scenario Tool Community Solar Scenario Tool The Community Solar Scenario Tool (CSST ) provides a "first cut" analysis of different community or shared solar program options. NREL sponsoring utility. Community Solar Scenario Tool -Beta Version Available as a Microsoft Excel file, which
Schumacher, J; Schumacher, J; de Graves, F; Steiger, R; Schramme, M; Smith, R; Coker, M
2001-05-01
The response of horses, with solar pain in the dorsal or palmar aspect of the foot, to 6 or 10 ml local analgesic solution administered into the distal interphalangeal (DIP) joint was examined. Lameness was induced in 7 horses by creating solar pain in the dorsal aspect of one forefoot and, at another time, the palmar aspect of the other forefoot with set-screws inserted into a custom-made shoe. Horses were videotaped trotting before and after application of set-screws and, in separate trials, after 6 or 10 ml local analgesic solution was administered into the DIP joint. Lameness scores were assigned by examining videotaped gaits. Scores were significantly lower (P < 0.05) for horses with set-screws applied to the angles of the sole and receiving 10 ml, but not 6 ml, local analgesic solution into the DIP joint. Scores were significantly lower (P < 0.05) for all horses with set-screws in the dorsal margin of the sole receiving either volume of local analgesic solution. Analgesia of the DIP joint was less effective in desensitising the angles of the sole than in desensitising the dorsal margin of the sole, and 10 ml local analgesic solution was more effective than 6 ml in desensitising these regions. The response of horses with solar pain to local analgesic solution in the DIP joint was influenced by the volume administered and the region of sole affected.
On the limits of numerical astronomical solutions used in paleoclimate studies
NASA Astrophysics Data System (ADS)
Zeebe, Richard E.
2017-04-01
Numerical solutions of the equations of the Solar System estimate Earth's orbital parameters in the past and represent the backbone of cyclostratigraphy and astrochronology, now widely applied in geology and paleoclimatology. Given one numerical realization of a Solar System model (i.e., obtained using one code or integrator package), various parameters determine the properties of the solution and usually limit its validity to a certain time period. Such limitations are denoted here as "internal" and include limitations due to (i) the underlying physics/physical model and (ii) numerics. The physics include initial coordinates and velocities of Solar System bodies, treatment of the Moon and asteroids, the Sun's quadrupole moment, and the intrinsic dynamics of the Solar System itself, i.e., its chaotic nature. Numerical issues include solver algorithm, numerical accuracy (e.g., time step), and round-off errors. At present, internal limitations seem to restrict the validity of astronomical solutions to perhaps the past 50 or 60 myr. However, little is currently known about "external" limitations, that is, how do different numerical realizations compare, say, between different investigators using different codes and integrators? Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 myr (Laskar and coworkers and Varadi et al. 2003). In this contribution, I will present results from new Solar System integrations for Earth's eccentricity obtained using the integrator package HNBody (Rauch and Hamilton 2002). I will discuss the various internal limitations listed above within the framework of the present simulations. I will also compare the results to the existing solutions, the details of which are still being sorted out as several simulations are still running at the time of writing.
Method for forming indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1984-03-13
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
Su, Zhangli
2016-01-01
Combinatorial patterns of histone modifications are key indicators of different chromatin states. Most of the current approaches rely on the usage of antibodies to analyze combinatorial histone modifications. Here we detail an antibody-free method named MARCC (Matrix-Assisted Reader Chromatin Capture) to enrich combinatorial histone modifications. The combinatorial patterns are enriched on native nucleosomes extracted from cultured mammalian cells and prepared by micrococcal nuclease digestion. Such enrichment is achieved by recombinant chromatin-interacting protein modules, or so-called reader domains, which can bind in a combinatorial modification-dependent manner. The enriched chromatin can be quantified by western blotting or mass spectrometry for the co-existence of histone modifications, while the associated DNA content can be analyzed by qPCR or next-generation sequencing. Altogether, MARCC provides a reproducible, efficient and customizable solution to enrich and analyze combinatorial histone modifications. PMID:26131849
Gottlieb, Klaus; Hussain, Fez
2015-02-19
Independent central reading or off-site reading of imaging endpoints is increasingly used in clinical trials. Clinician-reported outcomes, such as endoscopic disease activity scores, have been shown to be subject to bias and random error. Central reading attempts to limit bias and improve accuracy of the assessment, two factors that are critical to trial success. Whether one central reader is sufficient and how to best integrate the input of more than one central reader into one output measure, is currently not known.In this concept paper we develop the theoretical foundations of a reading algorithm that can achieve both objectives without jeopardizing operational efficiency We examine the role of expert versus competent reader, frame scoring of imaging as a classification task, and propose a voting algorithm (VISA: Voting for Image Scoring and Assessment) as the most appropriate solution which could also be used to operationally define imaging gold standards. We propose two image readers plus an optional third reader in cases of disagreement (2 + 1) for ordinary scoring tasks. We argue that it is critical in trials with endoscopically determined endpoints to include the score determined by the site reader, at least in endoscopy clinical trials. Juries with more than 3 readers could define a reference standard that would allow a transition from measuring reader agreement to measuring reader accuracy. We support VISA by applying concepts from engineering (triple-modular redundancy) and voting theory (Condorcet's jury theorem) and illustrate our points with examples from inflammatory bowel disease trials, specifically, the endoscopy component of the Mayo Clinic Score of ulcerative colitis disease activity. Detailed flow-diagrams (pseudo-code) are provided that can inform program design.The VISA "2 + 1" reading algorithm, based on voting, can translate individual reader scores into a final score in a fashion that is both mathematically sound (by avoiding averaging of ordinal data) and in a manner that is consistent with the scoring task at hand (based on decisions about the presence or absence of features, a subjective classification task). While the VISA 2 + 1 algorithm is currently being used in clinical trials, empirical data of its performance have not yet been reported.
2017-12-01
Advisor: Andrea D. Holmes Second Reader: Anthony J. Gannon THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704...Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 ii THIS PAGE...generators or backup power, renewable energy generation does not depend on fossil fuels and reduces installations’ dependency on fossil fuel infrastructures
Los Alamos Quantum Dots for Solar, Display Technology
Klimov, Victor
2018-05-01
Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology â quantum dot displays â employed, for example, in the newest generation of e-readers and video monitors.
Solar energy storage using surfactant micelles
NASA Astrophysics Data System (ADS)
Srivastava, R. C.; Marwadi, P. R.; Latha, P. K.; Bhise, S. B.
1982-09-01
The results of experiments designed to test the soluble reduced form of thionine dye as a suitable solar energy storage agent inside the hydrophobic core of surfactant micelles are discussed. Aqueous solutions of thionine, methylene blue, cetyl pyridinium bromide, sodium lauryl sulphate, iron salts, and iron were employed as samples of anionic, cationic, and nonionic surfactants. The solutions were exposed to light until the dye disappeared, and then added drop-by-drop to surfactant solutions. The resultant solutions were placed in one cell compartment while an aqueous solution with Fe(2+) and Fe(3+) ions were placed in another, with the compartments being furnished with platinum electrodes connected using a saturated KCl-agar bridge. Data was gathered on the short circuit current, maximum power, and internal resistance encountered. Results indicate that dye-surfactant systems are viable candidates for solar energy storage for later conversion to electrical power.
NASA Astrophysics Data System (ADS)
Lima, F. Anderson S.; Beliatis, Michail J.; Roth, Bérenger; Andersen, Thomas R.; Bortoti, Andressa; Reyna, Yegraf; Castro, Eryza; Vasconcelos, Igor F.; Gevorgyan, Suren A.; Krebs, Frederik C.; Lira-Cantu, Mónica
2016-02-01
Solution processable semiconductor oxides have opened a new paradigm for the enhancement of the lifetime of thin film solar cells. Their fabrication by low-cost and environmentally friendly solution-processable methods makes them ideal barrier (hole and electron) transport layers. In this work, we fabricate flexible ITO-free organic solar cells (OPV) by printing methods applying an aqueous solution-processed V2O5 as the hole transport layer (HTL) and compared them to devices applying PEDOT:PSS. The transparent conducting electrode was PET/Ag/PEDOT/ZnO, and the OPV configuration was PET/Ag/PEDOT/ZnO/P3HT:PC60BM/HTL/Ag. Outdoor stability analyses carried out for more than 900 h revealed higher stability for devices fabricated with the aqueous solution-processed V2O5.
Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu
2014-12-28
The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.
Enhanced Vehicle Beddown Approximations for the Improved Theater Distribution Model
2014-03-27
processed utilizing a heuristic routing and scheduling procedure the authors called the Airlift Planning Algorithm ( APA ). The linear programming model...LINGO 13 environment. The model is then solved by LINGO 13 and solution data is passed back to the Excel environment in a readable format . All original...DSS is relatively unchanged when solutions to the ITDM are referenced for comparison testing. Readers are encouraged to see Appendix I for ITDM VBA
Comparison of rainbow smelt age estimates from fin rays and otoliths
Walsh, M.G.; Maloy, A.P.; O'Brien, T. P.
2008-01-01
Rainbow smelt Osmerus mordax, although nonnative, are an important component of the offshore food web in the Laurentian Great Lakes. In Lake Ontario, we estimate ages of rainbow smelt annually to study population dynamics such as year-class strength and age-specific growth and mortality. Since the early 1980s, we have used pectoral fin rays to estimate rainbow smelt ages, but the sectioning and mounting of fin rays are time and labor intensive. Our objective was to assess the feasibility of using otoliths rather than fin rays to estimate rainbow smelt ages. Three readers interpreted the ages of 172 rainbow smelt (60-198 mm total length) based on thin sections of pectoral fin rays, whole otoliths with no preparation, and whole otoliths that had been cleared for 1 month in a 70:30 ethanol : glycerin solution. Bias was lower and precision was greater for fin rays than for otoliths; these results were consistent for comparisons within readers (first and second readings by one individual; three readers were used) and between readers (one reading for each reader within a pair). Both otolith methods appeared to misclassify age-1 rainbow smelt. Fin ray ages had the highest precision and provided the best approximation of age estimates inferred from the Lake Ontario population's length frequency distribution and from our understanding of this population. ?? American Fisheries Society 2008.
Distributed Storage Inverter and Legacy Generator Integration Plus Renewable Solution for Microgrids
2015-07-01
24 6.6 DEMONSTRATION 6: PV + STORAGE SUPPORT MANAGING VARIABLE SOLAR ...Table 2. Energy generated by solar PV for 1 month. .......................................................... 23 Table 3. NG generators energy...saving with solar PV . ........................................................ 24 Table 4. NG generators fuel saving with solar PV
A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.
Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang
2017-11-01
Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sheikh, Nadeem Ahmad; Ali, Farhad; Khan, Ilyas; Gohar, Madeha; Saqib, Muhammad
2017-12-01
In the modern era, solar energy has gained the consideration of researchers to a great deal. Apparently, the reasons are twofold: firstly, the researchers are concerned to design new devices like solar collectors, solar water heaters, etc. Secondly, the use of new approaches to improve the performance of solar energy equipment. The aim of this paper is to model the problem of the enhancement of heat transfer rate of solar energy devices, using nanoparticles and to find the exact solutions of the considered problem. The classical model is transformed to a generalized model using two different types of time-fractional derivatives, namely the Caputo-Fabrizio and Atangana-Baleanu derivatives and their comparative analysis has been presented. The solutions for the flow profile and heat transfer are presented using the Laplace transform method. The variation in the heat transfer rate has been observed for different nanoparticles and their different volume fractions. Theoretical results show that by adding aluminum oxide nanoparticles, the efficiency of solar collectors may be enhanced by 5.2%. Furthermore, the effect of volume friction of nanoparticles on velocity distribution has been discussed in graphical illustrations. The solutions are reduced to the corresponding classical model of nanofluid.
The solar neutrino problem after the first results from KamLAND
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Abhijit; Choubey, Sandhya; Gandhi, Raj; Goswami, Srubabati; Roy, D. P.
2003-05-01
The first results from the KamLAND experiment have provided confirmational evidence for the Large Mixing Angle (LMA) Mikheyev-Smirnov-Wolfenstein (MSW) solution to the solar neutrino problem. We do a global analysis of solar and the recently announced KamLAND data (both rate and spectrum) and investigate its effect on the allowed region in the Δm2-tan2θ plane. The best-fit from a combined analysis which uses the KamLAND rate plus global solar data comes at Δm2=6.06×10-5 eV2 and tan2θ=0.42, very close to the global solar best-fit, leaving a large allowed region within the global solar LMA contour. The inclusion of the KamLAND spectral data in the global fit gives a best-fit Δm2=7.17×10-5 eV2 and tan2θ=0.43 and constrains the allowed areas within LMA, leaving essentially two allowed zones. Maximal mixing though allowed by the KamLAND data alone is disfavored by the global solar data and remains disallowed at about /3σ. The low Δm2 solution (LOW) is now ruled out at about 5/σ with respect to the LMA solution.
Consuming Web Services: A Yahoo! Newsfeed Reader
ERIC Educational Resources Information Center
Dadashzadeh, Mohammad
2010-01-01
Service Oriented Architecture (SOA) shows demonstrable signs of simplifying software integration. It provides the necessary framework for building applications that can be integrated and can reduce the cost of integration significantly. Organizations are beginning to architect new integration solutions following the SOA approach. As such,…
Variable anodic thermal control coating
NASA Technical Reports Server (NTRS)
Gilliland, C. S.; Duckett, J. (Inventor)
1983-01-01
A process for providing a thermal control solar stable surface coating for aluminum surfaces adapted to be exposed to solar radiation wherein selected values within the range of 0.10 to 0.72 thermal emittance (epsilon sub tau) and 0.2 to 0.4 solar absorptance (alpha subs) are reproducibly obtained by anodizing the surface area in a chromic acid solution for a selected period of time. The rate voltage and time, along with the parameters of initial epsilon sub tau and alpha subs, temperature of the chromic acid solution, acid concentration of the solution and the material anodized determines the final values of epsilon/tau sub and alpha sub S. 9 Claims, 5 Drawing Figures.
Fabrication and optimisation of a fused filament 3D-printed microfluidic platform
NASA Astrophysics Data System (ADS)
Tothill, A. M.; Partridge, M.; James, S. W.; Tatam, R. P.
2017-03-01
A 3D-printed microfluidic device was designed and manufactured using a low cost (2000) consumer grade fusion deposition modelling (FDM) 3D printer. FDM printers are not typically used, or are capable, of producing the fine detailed structures required for microfluidic fabrication. However, in this work, the optical transparency of the device was improved through manufacture optimisation to such a point that optical colorimetric assays can be performed in a 50 µl device. A colorimetric enzymatic cascade assay was optimised using glucose oxidase and horseradish peroxidase for the oxidative coupling of aminoantipyrine and chromotropic acid to produce a blue quinoneimine dye with a broad absorbance peaking at 590 nm for the quantification of glucose in solution. For comparison the assay was run in standard 96 well plates with a commercial plate reader. The results show the accurate and reproducible quantification of 0-10 mM glucose solution using a 3D-printed microfluidic optical device with performance comparable to that of a plate reader assay.
Stability of the Martian climate system under the seasonal change condition of solar radiation
NASA Astrophysics Data System (ADS)
Nakamura, Takasumi; Tajika, Eiichi
2002-11-01
Previous studies on stability of the Martian climate system used essentially zero-dimensional energy balance climate models (EBMs) under the condition of annual mean solar radiation income. However, areal extent of polar ice caps should affect the Martian climate through the energy balance and the CO2 budget, and results under the seasonal change condition of solar radiation will be different from those under the annual mean condition. We therefore construct a one-dimensional energy balance climate model with CO2-dependent outgoing radiation, seasonal changes of solar radiation income, changes of areal extent of CO2 ice caps, and adsorption of CO2 by regolith. We have investigated behaviors of the Martian climate system and, in particular, examined the effect of the seasonal changes of solar radiation by comparing the results of previous studies under the condition of annual mean solar radiation. One of the major discrepancies between them is the condition for multiple solutions of the Martian climate system. Although the Martian climate system always has multiple solutions under the annual mean condition, under the seasonal change condition, existence of multiple solutions depends on the present amounts of CO2 in the ice caps and the regolith.
NASA Astrophysics Data System (ADS)
Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong
2018-05-01
The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.
NASA Astrophysics Data System (ADS)
Duffett-Smith, Peter
1996-11-01
Easy PC Astronomy is the perfect book for everyone who wants to make easy and accurate astronomical calculations. The author supplies a simple but powerful script language called AstroScript on a disk, ready to use on any IBM PC-type computer. Equipped with this software, readers can compute complex but interesting astronomical results within minutes: from the time of moonrise or moonset anywhere in the world on any date, to the display of a lunar or solar eclipse on the computer screen--all within a few minutes of opening the book! The Sky Graphics feature of the software displays a detailed image of the sky as seen from any point on earth--at any time in the future or past--showing the constellations, planets, and a host of other features. Readers need no expert knowledge of astronomy, math or programming; the author provides full details of the calculations and formulas, which the reader can absorb or ignore as desired, and a comprehensive glossary of astronomical terms. Easy PC Astronomy is of immediate practical use to beginning and advanced amateur astronomers, students at all levels, science teachers, and research astronomers. Peter Duffett-Smith is at the Cavendish Laboratory of the University of Cambridge and is the author of Astronomy with Your Personal Computer (Cambridge University Press, 1990) and Practical Astronomy with Your Calculator (Cambridge University Press, 1989).
Solar Energy - Solution or Pipedream?
ERIC Educational Resources Information Center
Polk, Joyce
This series of lessons and class activities is designed for presentation in a sequence of nine class days. The collection is intended to provide the student in advanced science classes with awareness of the possibilities and limitations of solar energy as a potential solution to the energy crisis. Included are discussion of the following: (1)…
Performance and operational analysis of a liquid desiccant open-flow solar collector
NASA Astrophysics Data System (ADS)
Grodzka, P. G.; Rico, S. S.
1982-10-01
Theoretical predictions of the heat and mass transfer in an open flow solar collector used in conjunction with an absorption chiller are compared with performance data from a rooftop system. The study focuses on aqueous solutions of a hygroscopic salt, e.g., LiCl, flowing continuously over a solar absorbing surface. Water in the solution sublimes to a region of lower vapor pressure, i.e., the atmosphere. Direction of the water-depleted dessiccant to a storage volume and then to circulation around an evaporator unit permits operation of a solar-powered air conditioner. A closed form solution was defined for the heat and mass transfer, along with a finite difference solution. The system studied comprised a sloped roof top with 2500 sq ft of asphalt shingles, collector pipes beneath the shingles, and two 500 gal storage tanks. Relatively good agreement was found between the models and the recorded data, although some discrepancies were present when considering temperatures and performance at specific times of day. The measured 30-40% efficiencies indicated that further development of the system is warranted.
Lee, Cheng-Kuang; Pao, Chun-Wei
2016-08-17
Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.
Reina, Alejandro Cabrera; Martínez-Piernas, Ana B; Bertakis, Yannis; Brebou, Christina; Xekoukoulotakis, Nikolaos P; Agüera, Ana; Sánchez Pérez, José Antonio
2018-01-01
This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 10 3 -10 4 L mol -1 cm -1 . The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10 -3 mol einsten -1 . Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m -2 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Building Alliances Series: Workforce Development
ERIC Educational Resources Information Center
Brady, Cecilia
2009-01-01
Public-private partnerships done right are a powerful tool for development, providing enduring solutions to some of the greatest challenges. To help familiarize readers with the art of alliance building, the Global Development Alliance (GDA) office has created a series of practical guides that highlight proven practices in partnerships,…
The principle of superposition and its application in ground-water hydraulics
Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.
1987-01-01
The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.
The principle of superposition and its application in ground-water hydraulics
Reilly, T.E.; Franke, O.L.; Bennett, G.D.
1984-01-01
The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)
NASA Technical Reports Server (NTRS)
Dahlback, Arne; Stamnes, Knut
1991-01-01
Accurate computation of atmospheric photodissociation and heating rates is needed in photochemical models. These quantities are proportional to the mean intensity of the solar radiation penetrating to various levels in the atmosphere. For large solar zenith angles a solution of the radiative transfer equation valid for a spherical atmosphere is required in order to obtain accurate values of the mean intensity. Such a solution based on a perturbation technique combined with the discrete ordinate method is presented. Mean intensity calculations are carried out for various solar zenith angles. These results are compared with calculations from a plane parallel radiative transfer model in order to assess the importance of using correct geometry around sunrise and sunset. This comparison shows, in agreement with previous investigations, that for solar zenith angles less than 90 deg adequate solutions are obtained for plane parallel geometry as long as spherical geometry is used to compute the direct beam attenuation; but for solar zenith angles greater than 90 deg this pseudospherical plane parallel approximation overstimates the mean intensity.
NASA Astrophysics Data System (ADS)
Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Tlili, I.
2018-06-01
In this article the idea of Caputo time fractional derivatives is applied to MHD mixed convection Poiseuille flow of nanofluids with graphene nanoparticles in a vertical channel. The applications of nanofluids in solar energy are argued for various solar thermal systems. It is argued in the article that using nanofluids is an alternate source to produce solar energy in thermal engineering and solar energy devices in industries. The problem is modelled in terms of PDE's with initial and boundary conditions and solved analytically via Laplace transform method. The obtained solutions for velocity, temperature and concentration are expressed in terms of Wright's function. These solutions are significantly controlled by the variations of parameters including thermal Grashof number, Solutal Grashof number and nanoparticles volume fraction. Expressions for skin-friction, Nusselt and Sherwood numbers are also determined on left and right walls of the vertical channel with important numerical results in tabular form. It is found that rate of heat transfer increases with increasing nanoparticles volume fraction and Caputo time fractional parameters.
NASA Astrophysics Data System (ADS)
Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou
2017-08-01
Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.
Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis
2016-06-08
[70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin
2015-12-01
Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.
Design of a solar energy assisted air conditioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varlet, J.L.P.; Johnson, B.R.; Vora, J.N.
1976-03-24
Energy consumption in air conditioning systems can be reduced by reducing the water content of air before cooling. This reduction in humidity can be accomplished by contacting the humid air with a hygroscopic solution in a spray tower. The hydroscopic solution, diluted by water from the air, can be reconcentrated in a solar evaporator. A solar evaporator for this purpose was evaluated by formulating simultaneous energy and mass balances for forced air convection through the evaporator. Temperatures in the evaporator were calculated by numerical integration of the mathematical model. The calculations indicated that the salt solution cannot be reconcentrated inmore » a forced convection evaporator because of the large energy losses associated with the air stream passing through the evaporator.« less
NASA Astrophysics Data System (ADS)
Rakhmangulov, Aleksandr; Muravev, Dmitri; Mishkurov, Pavel
2016-11-01
The issue of operative data reception on location and movement of railcars is significant the constantly growing requirements of the provision of timely and safe transportation. The technical solution for efficiency improvement of data collection on rail rolling stock is the implementation of an identification system. Nowadays, there are several such systems, distinguished in working principle. In the authors' opinion, the most promising for rail transportation is the RFID technology, proposing the equipping of the railway tracks by the stationary points of data reading (RFID readers) from the onboard sensors on the railcars. However, regardless of a specific type and manufacturer of these systems, their implementation is affiliated with the significant financing costs for large, industrial, rail transport systems, owning the extensive network of special railway tracks with a large number of stations and loading areas. To reduce the investment costs for creation, the identification system of rolling stock on the special railway tracks of industrial enterprises has developed the method based on the idea of priority installation of the RFID readers on railway hauls, where rail traffic volumes are uneven in structure and power, parameters of which is difficult or impossible to predict on the basis of existing data in an information system. To select the optimal locations of RFID readers, the mathematical model of the staged installation of such readers has developed depending on the non-uniformity value of rail traffic volumes, passing through the specific railway hauls. As a result of that approach, installation of the numerous RFID readers at all station tracks and loading areas of industrial railway stations might be not necessary,which reduces the total cost of the rolling stock identification and the implementation of the method for optimal management of transportation process.
Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng; Shen, Wenzhong
2017-11-01
Large-scale (156 mm × 156 mm) quasi-omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal-assisted alkaline etching method, which is an all-solution-processed method and highly simple together with cost-effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)-textured solar cells, the SiNPs-textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures-textured solar cells. Furthermore, SiNPs-textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi-omnidirectional characteristic. As an overall result, both the SiNPs-textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs-textured counterparts. The quasi-omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost.
Aizawa, Naoya; Fuentes-Hernandez, Canek; Kolesov, Vladimir A; Khan, Talha M; Kido, Junji; Kippelen, Bernard
2016-03-07
Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is shown to be simultaneously cross-linked and p-doped when immersed into a phosphomolybdic acid solution, yielding conductive films with low solubility that can withstand the solution processing of subsequent photoactive layers. Such a modified PCDTBT film serves to improve hole collection and limit carrier recombination in organic solar cells.
Literacy in Early Childhood and Primary Education: Issues, Challenges, Solutions
ERIC Educational Resources Information Center
McLachlan, Claire; Nicholson, Tom; Fielding-Barnsley, Ruth; Mercer, Louise; Ohi, Sarah
2012-01-01
Literacy in Early Childhood and Primary Education provides a comprehensive introduction to literacy teaching and learning. The book explores the continuum of literacy learning and children's transitions from early childhood settings to junior primary classrooms and then to senior primary and beyond. Reader-friendly and accessible, this book equips…
A Simple Recipe for Whitening Old Newspaper Clippings.
ERIC Educational Resources Information Center
Carter, Henry A.
1995-01-01
Describes a method for experimenting with both whitening and deacidifying old newspaper clippings using sodium borohydride bleaching. Clippings are soaked in distilled water then immersed in sodium borohydride for 15-20 minutes. After rinsing with distilled water, the paper is washed with saturated Ca(OH)2 solution. Readers should not begin…
The Digital Daily: How Will Readers React?
ERIC Educational Resources Information Center
Thompson, David Russell
As publishers make the transition from ink-on-paper to digitalized messages, researchers must ask whether the system is the solution. Are there advantages to presenting newspaper content on computers? Or do people prefer to handle paper? A study reported subjects' self-report responses regarding interface between people (experimental subjects) and…
User authentication based on the NFC host-card-emulation technology
NASA Astrophysics Data System (ADS)
Kološ, Jan; Kotyrba, Martin
2017-11-01
This paper deals with implementation of algorithms for data exchange between mobile devices supporting NFC HCE (Host-Card-Emulation) and a contactless NFC reader communicating in a read/write mode. This solution provides multiplatform architecture for data exchange between devices with a focus on safe and simple user authentication.
Teaching Critical Analytical Methods in the Digital Typography Classroom.
ERIC Educational Resources Information Center
Gibson, Michael
1997-01-01
Describes a studio project designed to help students (1) utilize the digital environment to organize typography and images that represent the socio-political context their solutions were required to identify; and (2) explore the empirical variables that help readers to access and contemplate the content presented by their text. (PA)
A Practical Reader in Universal Design for Learning
ERIC Educational Resources Information Center
Rose, David H., Ed.; Meyer, Anne, Ed.
2006-01-01
Universal Design for Learning (UDL) stands at the forefront of contemporary efforts to create universal access to educational curricula for all students, including those with disabilities. The "universal" in UDL does not mean there is a single optimal solution for everyone. Instead, it underscores the need for flexible approaches to…
National Community Solar Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupert, Bart
This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groupsmore » of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative« less
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
A Summary of the Space-Time Conservation Element and Solution Element (CESE) Method
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.
2015-01-01
The space-time Conservation Element and Solution Element (CESE) method for solving conservation laws is examined for its development motivation and design requirements. The characteristics of the resulting scheme are discussed. The discretization of the Euler equations is presented to show readers how to construct a scheme based on the CESE method. The differences and similarities between the CESE method and other traditional methods are discussed. The strengths and weaknesses of the method are also addressed.
Solar Heater in a West Virginia College
NASA Technical Reports Server (NTRS)
1982-01-01
Solar space-heating and hot water system installed at Alderson-Broaddus College, Philippi, West Virginia, is described in 87-page document. Report contains description of building and its solar-energy system; specifications for solar-energy system, including collectors, coolant, storage tanks, circulation equipment, piping, controls, and insulation; acceptance test data; and discussion of problems with installation, their solution, and recommendations for dealing with excess solar energy.
NREL Projects Awarded More Than $3 Million to Advance Novel Solar
in Grid Operations," evaluating a research solution to better integrate solar power generation funding program, which advances state-of-the-art techniques for predicting solar power generation to Office to advance predictive modeling of solar power as part of its Solar Forecasting 2 funding program
Achieving 15% Tandem Polymer Solar Cells
2015-06-23
solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency
The Solar-Terrestrial Environment
NASA Astrophysics Data System (ADS)
Hargreaves, John Keith
1995-05-01
The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.
Stability of organic solar cells: challenges and strategies.
Cheng, Pei; Zhan, Xiaowei
2016-05-03
Organic solar cells (OSCs) present some advantages, such as simple preparation, light weight, low cost and large-area flexible fabrication, and have attracted much attention in recent years. Although the power conversion efficiencies have exceeded 10%, the inferior device stability still remains a great challenge. In this review, we summarize the factors limiting the stability of OSCs, such as metastable morphology, diffusion of electrodes and buffer layers, oxygen and water, irradiation, heating and mechanical stress, and survey recent progress in strategies to increase the stability of OSCs, such as material design, device engineering of active layers, employing inverted geometry, optimizing buffer layers, using stable electrodes and encapsulation. Some research areas of device stability that may deserve further attention are also discussed to help readers understand the challenges and opportunities in achieving high efficiency and high stability of OSCs towards future industrial manufacture.
Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W
2016-05-18
Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.
IPS analysis on relationship among velocity, density and temperature of the solar wind
NASA Astrophysics Data System (ADS)
Hayashi, K.; Tokumaru, M.; Fujiki, K.
2015-12-01
The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.
Solar thermoelectric generator
Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.
2016-05-03
Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.
NASA Technical Reports Server (NTRS)
Pisanko, Yu. V.
1995-01-01
The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkin, V. G.; Lionello, R.; Linker, J.
2016-11-01
Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon–Fedder–Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run with both LFM and the MAS extension into the heliosphere, and use themore » same polytropic coronal MAS solutions as the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric solutions diverge. Additional simulations with different resolution are then performed and show that the MAS heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit.« less
Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho
2016-03-28
We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.
NASA Astrophysics Data System (ADS)
Che, Xiaozhou; Li, Yongxi; Qu, Yue; Forrest, Stephen R.
2018-05-01
Multijunction solar cells are effective for increasing the power conversion efficiency beyond that of single-junction cells. Indeed, the highest solar cell efficiencies have been achieved using two or more subcells to adequately cover the solar spectrum. However, the efficiencies of organic multijunction solar cells are ultimately limited by the lack of high-performance, near-infrared absorbing organic subcells within the stack. Here, we demonstrate a tandem cell with an efficiency of 15.0 ± 0.3% (for 2 mm2 cells) that combines a solution-processed non-fullerene-acceptor-based infrared absorbing subcell on a visible-absorbing fullerene-based subcell grown by vacuum thermal evaporation. The hydrophilic-hydrophobic interface within the charge-recombination zone that connects the two subcells leads to >95% fabrication yield among more than 130 devices, and with areas up to 1 cm2. The ability to stack solution-based on vapour-deposited cells provides significant flexibility in design over the current, all-vapour-deposited multijunction structures.
A two-dimensional MHD global coronal model - Steady-state streamers
NASA Technical Reports Server (NTRS)
Wang, A.-H.; Wu, S. T.; Suess, S. T.; Poletto, G.
1992-01-01
A 2D, time-dependent, numerical, MHD model for the simulation of coronal streamers from the solar surface to 15 solar is presented. Three examples are given; for dipole, quadrupole and hexapole (Legendre polynomials P1, P2, and P3) initial field topologies. The computed properties are density, temperature, velocity, and magnetic field. The calculation is set up as an initial-boundary value problem wherein a relaxation in time produces the steady state solution. In addition to the properties of the solutions, their accuracy is discussed. Besides solutions for dipole, quadrupole, and hexapole geometries, the model use of realistic values for the density and Alfven speed while still meeting the requirement that the flow speed be super-Alfvenic at the outer boundary by extending the outer boundary to 15 solar radii.
Effect of thermal-convection-induced defects on the performance of perovskite solar cells
NASA Astrophysics Data System (ADS)
Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan
2017-07-01
Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.
Engineering solutions for polymer composites solar water heaters production
NASA Astrophysics Data System (ADS)
Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.
2016-06-01
Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.
Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals
Mohite, Aditya; Nie, Wanyi
2018-05-11
State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.
Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon
2012-09-01
A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Systems Integration | Photovoltaic Research | NREL
& Engineering pages: Real-Time PV & Solar Resource Testing Accelerated Testing & Analysis integration support, system-level testing, and systems analysis for the Department of Energy's solar issues and develop solutions for high-penetration grid integration of solar technologies into the
Chen, Yong-Siou; Manser, Joseph S; Kamat, Prashant V
2015-01-21
The quest for economic, large-scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. Here we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons, and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard AM 1.5G illumination, the photoanode-photovoltaic architecture, in conjunction with an earth-abundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.
Efficient hybrid solar cell with P3HT:PCBM and Cu2ZnSnS4 nanocrystals
NASA Astrophysics Data System (ADS)
Jang, Se-Jung; Thuy Ho, Nhu; Lee, Min Hyung; Kim, Yong Soo
2017-06-01
Recently, Cu2ZnSnS4 (CZTS) with band gap about 1.50 eV is predicted to become an ideal light absorption material due to the abundant component elements in the crust being nontoxic and environmentally friendly. However, CZTS solar cells made by high temperature and vacuum-processed are at a perceived cost disadvantage in compared with solution-processed systems such as organic and hybrid solar cells. In this study, we propose a hybrid solar configurations with solution-processed CZTS nanocrystals and P3HT:PCBM bulk heterojunction. The forming double heterojunction, as charge can be separated at both the P3HT:PCBM and CZTS:PCBM interface is attributed to enhance the light harvesting efficiency. As a result, organic solar cells with CZTS nanocrystals show the higher efficiency 3.32 % compare to 2.65 % of reference organic solar cells. A 25 % improvement of power conversion efficiency is obtained by the increasing in short-circuit current and fill factor.
Special issue on asteroids - Introduction
NASA Astrophysics Data System (ADS)
Novaković, Bojan; Hsieh, Henry H.; Gronchi, Giovanni F.
2018-04-01
The articles in this special issue are devoted to asteroids, small solar system bodies that primarily populate a region between the orbits of Mars and Jupiter, known as the asteroid belt, but can also be found throughout the Solar System. Asteroids are considered to be a key to understanding the formation and evolution of our planetary system. Their properties allow us to test current theoretical models and develop new theoretical concepts pertaining to evolutionary processes in the Solar System. There have been major advances in asteroid science in the last decade, and that trend continues. Eighteen papers accepted for this special issue cover a wide range of asteroid-related subjects, pushing the boundaries of our understanding of these intriguing objects even further. Here we provide the reader with a brief overview of these thrilling papers, with an invitation for interested scientists to read each work in detail for a better understanding of these recent cutting edge results. As many topics in asteroid science remain open challenges, we hope that this special issue will be an important reference point for future research on this compelling topic.
Lei, Hongwei; Yang, Guang; Guo, Yaxiong; Xiong, Liangbin; Qin, Pingli; Dai, Xin; Zheng, Xiaolu; Ke, Weijun; Tao, Hong; Chen, Zhao; Li, Borui; Fang, Guojia
2016-06-28
Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3.
Fabrication and comparison of selective, transparent optics for concentrating solar systems
NASA Astrophysics Data System (ADS)
Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.
2015-09-01
Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.
NASA Astrophysics Data System (ADS)
Xu, Yan; Shen, Yunzhong; Xu, Guochang; Shan, Xinjian; Rozelot, Jean-Pierre
2017-12-01
Analytic solutions of planetary orbits disturbed by solar gravitational oblateness have been derived and given in the solar equatorial coordinate system, although the results usually have to be represented in the ecliptic coordinate system. The perihelion precession of interest in the solar equatorial and ecliptic coordinate systems is partly periodical and not negligible. The result shows that the difference in Mercury's perihelion precession between the solar equatorial plane and the ecliptic plane can reach a magnitude of 126708J2, which is even bigger than the perihelion precession itself (101516J2). Due to the temporal variability of the oblateness, the periodic variation of the J2 term, instead of simply a constant, is taken into account and solutions are derived. In the case of Mercury, the periodic J2 has an effect of nearly 0.8 per cent of the secular perihelion precession of Mercury. This indicates that a better understanding of the solar oblateness is required, which could be done through observation in the solar orbits instead of on Earth.
Photovoltaic Module Encapsulation Design and Materials Selection, Volume 1, Abridged
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.
1982-01-01
A summary version of Volume 1, presenting the basic encapsulation systems, their purposes and requirements, and the characteristics of the most promising candidate systems and materials, as identified and evaluated by the Flat-Plate Solar Array Project is presented. In this summary version considerable detail and much supporting and experimental information has necessarily been omitted. A reader interested in references and literature citations, and in more detailed information on specific topics, should consult Reference 1, JPL Document No. 5101-177, JPL Publication 81-102, DOE/JPL-1012-60 (JPL), June 1, 1982.
Corrosion and scaling in solar heating systems
NASA Astrophysics Data System (ADS)
Foresti, R. J., Jr.
1981-12-01
Corrosion, as experienced in solar heating systems, is described in simplistic terms to familiarize designers and installers with potential problems and their solutions. The role of a heat transfer fluid in a solar system is briefly discussed, and the choice of an aqueous solution is justified. The complexities of the multiple chemical and physical reactions are discussed in order that uncertainties of corrosion behavior can be anticipated. Some basic theories of corrosion are described, aggressive environments for some common metals are identified, and the role of corrosion inhibitors is delineated. The similarities of thermal and material characteristics of a solor system and an automotive cooling system are discussed. Based on the many years of experience with corrosion in automotive systems, it is recommended that similar antifreezes and corrosion inhibitors should be used in solar systems. The importance of good solar system design and fabrication is stressed and specific characteristics that affect corrosion are identified.
Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells
Choi, Hyosung; Mai, Cheng-Kang; Kim, Hak-Beom; Jeong, Jaeki; Song, Seyeong; Bazan, Guillermo C.; Kim, Jin Young; Heeger, Alan J.
2015-01-01
Organic–inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT:PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT:PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells. PMID:26081865
Chemicals in Schools: Solutions for Healthy School Environments. K-12 Schools
ERIC Educational Resources Information Center
US Environmental Protection Agency, 2006
2006-01-01
School leaders play a pivotal role in keeping schools safe from chemical accidents. Readers of this brochure can help schools develop a chemical cleanout and prevention program and assemble a team of teachers, facilities staff, and administrators with technical expertise to assess chemical safety issues and set policy. Some important team roles…
The Art of Showing Art. Revised and Updated.
ERIC Educational Resources Information Center
Reeve, James K.
This book focuses attention on the art objects collections and how to display them. Designing the effective placement of objects is an easily learned art. Starting with the basics, the book takes the reader step by step through a systematic method, to solutions for display problems. The first chapter covers basic concepts of display including…
The Old Way of Reading and the New
ERIC Educational Resources Information Center
Kirschenbaum, Valerie Ruth
2006-01-01
Recent research indicates that Americans are reading less than they have in the past, as black-and-white text competes with more visually exciting media, such as the Internet, movies, and television. As a solution to this problem, the author proposes that books and instructional materials engage readers visually through the use of color and…
Interfering with DNA Damage Signals: Radiosensitizing Prostate Cancer Using Small Peptides
2009-05-01
25-l sample of the supernatant was analyzed for free phosphate in the malachite green assay by dilution with 100 l of a developing solution... malachite green). After incubation for 15 min, the release of phosphate was quantified by measuring the absorbance at 650 nm in a microtiter plate reader
Becoming Literate in Different Languages: Similar Problems, Different Solutions
ERIC Educational Resources Information Center
Ziegler, Johannes C.; Goswami, Usha
2006-01-01
The teaching of reading in different languages should be informed by an effective evidence base. Although most children will eventually become competent, indeed skilled, readers of their languages, the pre-reading (e.g. phonological awareness) and language skills that they bring to school may differ in systematic ways for different language…
Integer Solutions of Binomial Coefficients
ERIC Educational Resources Information Center
Gilbertson, Nicholas J.
2016-01-01
A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…
ERIC Educational Resources Information Center
Firozzaman, Firoz; Firoz, Fahim
2017-01-01
Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the…
Water Pollution (Causes, Mechanisms, Solution).
ERIC Educational Resources Information Center
Strandberg, Carl
Written for the general public, this book illustrates the causes, status, problem areas, and prediction and control of water pollution. Water pollution is one of the most pressing issues of our time and the author communicates the complexities of this problem to the reader in common language. The purpose of the introductory chapter is to show what…
The Solar Jobs Book: How to Take Part in the New Movement Toward Energy Self-Sufficiency.
ERIC Educational Resources Information Center
Ericson, Katharine
Solutions to this country's energy problems can be found through a combination of conservation measures and solar technology. Accordingly, this book provides an overview of employment in the solar energy and energy conservation fields, an analysis of related life styles and working situations, a listing of solar energy programs and agencies, and a…
NREL and CSIRO Validating Advanced Microgrid Control Solution | Energy
Organisation NREL and CSIRO Validating Advanced Microgrid Control Solution Australia's Commonwealth Scientific microgrid control solution. This technology helps hybrid microgrids to automatically recognize when solar
Publications | Integrated Energy Solutions | NREL
Publications 2018 Federal Tax Incentives for Energy Storage Systems Solar Plus: Optimization of Distributed Resiliency REopt: A Platform for Energy System Integration and Optimization Solar Plus: A Holistic Approach Barriers for Residential Solar Photovoltaics with Energy Storage 2016 Quality Assurance Framework for Mini
NASA Astrophysics Data System (ADS)
Shah, Syed Afaq Ali; Sayyad, Muhammad Hassan; Abdulkarim, Salem; Qiao, Qiquan
2018-05-01
A step-by-step heat treatment was applied to ruthenium-based N719 dye solution for its potential application in dye-sensitized solar cells (DSSCs). The effects were analyzed and compared with standard untreated devices. A significant increase in short circuit current density was observed by employing a step-by-step heating method for dye solution in DSSCs. This increase of J sc is attributed to the enhancement in dye adsorption by the surface of the semiconductor and the higher number of charge carriers generated. DSSCs fabricated by a heated dye solution have achieved an overall power conversion efficiency of 8.41% which is significantly higher than the efficiency of 7.31% achieved with DSSCs fabricated without heated dye. Electrochemical impedance spectroscopy and capacitance voltage studies were performed to understand the better performance of the device fabricated with heated dye. Furthermore, transient photocurrent and transient photovoltage measurements were also performed to gain an insight into interfacial charge carrier recombinations.
NASA Astrophysics Data System (ADS)
Guzzo, M. M.; Holanda, P. C.; Reggiani, N.
2003-08-01
The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.
Oubel, Estanislao; Bonnard, Eric; Sueoka-Aragane, Naoko; Kobayashi, Naomi; Charbonnier, Colette; Yamamichi, Junta; Mizobe, Hideaki; Kimura, Shinya
2015-02-01
Lesion volume is considered as a promising alternative to Response Evaluation Criteria in Solid Tumors (RECIST) to make tumor measurements more accurate and consistent, which would enable an earlier detection of temporal changes. In this article, we report the results of a pilot study aiming at evaluating the effects of a consensual lesion selection on volume-based response (VBR) assessments. Eleven patients with lung computed tomography scans acquired at three time points were selected from Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) and proprietary databases. Images were analyzed according to RECIST 1.1 and VBR criteria by three readers working in different geographic locations. Cloud solutions were used to connect readers and carry out a consensus process on the selection of lesions used for computing response. Because there are not currently accepted thresholds for computing VBR, we have applied a set of thresholds based on measurement variability (-35% and +55%). The benefit of this consensus was measured in terms of multiobserver agreement by using Fleiss kappa (κfleiss) and corresponding standard errors (SE). VBR after consensual selection of target lesions allowed to obtain κfleiss = 0.85 (SE = 0.091), which increases up to 0.95 (SE = 0.092), if an extra consensus on new lesions is added. As a reference, the agreement when applying RECIST without consensus was κfleiss = 0.72 (SE = 0.088). These differences were found to be statistically significant according to a z-test. An agreement on the selection of lesions allows reducing the inter-reader variability when computing VBR. Cloud solutions showed to be an interesting and feasible strategy for standardizing response evaluations, reducing variability, and increasing consistency of results in multicenter clinical trials. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Particular Solutions in Four body problem with solar wind drag
NASA Astrophysics Data System (ADS)
Kumari, Reena; Singh Kushvah, Badam
2012-07-01
To study the motion of a group of celestial objects/bodies interacting with each other under gravitational attraction. We formulated a four body problem with solar wind drag of one radiating body, rotating about their common center of mass with central configuration. We suppose that the governing forces of the motion of four body problems are mutual gravitational attractions of bodies and drag force of radiating body. Firstly, we derive the equations of motion using new co-ordinates for the four body problem. Again, we find the integrals of motions under different cases regarding to the mass of the bodies. Then we find the zero velocity surfaces and particular solutions. Finally, we examined the effect of solar wind drag on the motion of the four body problem. Keywords: Four Body Problem; Particular Solutions; Radiation Force; Zero Velocity Surfaces.
Module level solutions to solar cell polarization
Xavier, Grace , Li; Bo, [San Jose, CA
2012-05-29
A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.
Early Paleogene Orbital Variations in Atmospheric CO2 and New Astronomical Solutions
NASA Astrophysics Data System (ADS)
Zeebe, R. E.
2017-12-01
Geologic records across the globe show prominent variations on orbital time scales during numerous epochs going back hundreds of millions of years. The origin of the Milankovic cycles are variations in orbital parameters of the bodies of the Solar System. On long time scales, the orbital variations can not be computed analytically because of the chaotic nature of the Solar System. Thus, numerical solutions are used to estimate changes in, e.g., Earth's orbital parameters in the past. The orbital solutions represent the backbone of cyclostratigraphy and astrochronology, now widely used in geology and paleoclimatology. Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 Myr. In this presentation, I will touch on the basic physics behind, and present new results of, accurate Solar System integrations for Earth's eccentricity over the past hundred million years. I will discuss various limitations within the framework of the present simulations and compare the results to existing solutions. Furthermore, I will present new results from practical applications of such orbital solutions, including effects of orbital forcing on coupled climate- and carbon cycle variations. For instance, we have recently revealed a mechanism for a large lag between changes in carbon isotope ratios and eccentricity at the 400-kyr period, which has been observed in Paleocene, Oligocene, and Miocene sections. Finally, I will present the first estimates of orbital-scale variations in atmospheric CO2 during the early Paleogene.
Book Review: A Concise History of Solar and Stellar Physics
NASA Technical Reports Server (NTRS)
Phillips, Kenneth J. H.
2005-01-01
There is no doubt that the awareness of the often long history and its principal players of a scientific specialty is disappearing among present-day researchers. The reason is the inexorable rise of specialization, in which scientists are expected to keep pace with publications in their own field, not to mention the inevitable round of writing grant proposals and teaching and other mundane responsibilities. The authors of this small book had the intention of rectifying this for solar and stellar physics, disciplines which are still broad enough to embrace fields as diverse as nuclear fusion, magnetohydrodynamics, and the dynamic theory of gas spheres. They take the reader on a journey from ancient Greek and middle Eastern astronomy to the late 1990s, one which has an emphasis very much on a theoretical point of view. For the authors, it is the ideas that are central, not the observations.
Survey of coatings for solar collectors
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.
1975-01-01
Optimum solar selective properties of black chrome require some tailoring of current and time for plating solution being used. Black zinc is produced from high zinc electroplate by subsequent conversion with chromate dip. Measurements have also been made of reflectance of previously known solar selective coatings of black copper and electroplated black nickel.
A two-fluid model of the solar wind
NASA Technical Reports Server (NTRS)
Sandbaek, O.; Leer, E.; Holzer, T. E.
1992-01-01
A method is presented for the integration of the two-fluid solar-wind equations which is applicable to a wide variety of coronal base densities and temperatures. The method involves proton heat conduction, and may be applied to coronal base conditions for which subsonic-supersonic solar wind solutions exist.
Coronal magnetic fields and the solar wind
NASA Technical Reports Server (NTRS)
Newkirk, G., Jr.
1972-01-01
Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.
Utschig, Lisa M; Silver, Sunshine C; Mulfort, Karen L; Tiede, David M
2011-10-19
Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature's specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.
Transport equations for low-energy solar particles in evolving interplanetary magnetic fields
NASA Technical Reports Server (NTRS)
Ng, C. K.
1988-01-01
Two new forms of a simplified Fokker-Planck equation are derived for the transport of low-energy solar energetic particles in an evolving interplanetary magnetic field, carried by a variable radial solar wind. An idealized solution suggests that the 'invariant' anisotropy direction reported by Allum et al. (1974) may be explained within the conventional theoretical framework. The equations may be used to relate studies of solar particle propagation to solar wind transients, and vice versa.
Cho, Jin Woo; Ismail, Agus; Park, Se Jin; Kim, Woong; Yoon, Sungho; Min, Byoung Koun
2013-05-22
Cu2ZnSnS4 (CZTS) is a very promising semiconductor material when used for the absorber layer of thin film solar cells because it consists of only abundant and inexpensive elements. In addition, a low-cost solution process is applicable to the preparation of CZTS absorber films, which reduces the cost when this film is used for the production of thin film solar cells. To fabricate solution-processed CZTS thin film using an easily scalable and relatively safe method, we suggest a precursor solution paste coating method with a two-step heating process (oxidation and sulfurization). The synthesized CZTS film was observed to be composed of grains of a size of ~300 nm, showing an overall densely packed morphology with some pores and voids. A solar cell device with this film as an absorber layer showed the highest efficiency of 3.02% with an open circuit voltage of 556 mV, a short current density of 13.5 mA/cm(2), and a fill factor of 40.3%. We also noted the existence of Cd moieties and an inhomogeneous Zn distribution in the CZTS film, which may have been triggered by the presence of pores and voids in the CZTS film.
NASA Astrophysics Data System (ADS)
Chen, Guo; Zheng, Jianghui; Zheng, LingLing; Yan, Xin; Lin, Huangding; Zhang, Fengyan
2017-01-01
The past five years have witnessed the uniquely rapid emergence of the mixed organic-inorganic halide perovskite solar cells. Here, a modified deposition process, continuous dripping method, is reported for fabricating high-performance and reproducible perovskite solar cells. We have systematically investigated the impact of different molar ratio of lead iodide (PbI2) to dimethylsulfoxide (DMSO) on the growth, morphology and crystallinity of CH3NH3PbI3 (MAPbI3) films obtained via this process. The high power conversion efficiency (PCE) perovskite solar cell originates in crack-free and highly crystallographic perovskite films prepared with optimized ratio of PbI2 to DMSO in first precursor solution. The best PCE of 17.76% and an average PCE of 16.37 ± 0.51% were obtained via this process. Moreover, the conventional solution two steps method was also carried out as a comparison to this process. This work provides a new simple solution approach to obtain high quality of perovskite thin films for high-performance and reproducible PSCs.
All-solution-processed PbS quantum dot solar modules.
Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee
2015-05-21
A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm(2) unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.
Improved performance of mesostructured perovskite solar cells via an anti-solvent method
NASA Astrophysics Data System (ADS)
Hao, Jiabin; Hao, Huiying; Cheng, Feiyu; Li, Jianfeng; Zhang, Haiyu; Dong, Jingjing; Xing, Jie; Liu, Hao; Wu, Jian
2018-06-01
One-step solution process is a facile and widely used procedure to prepare organic-inorganic perovskite materials. However, the poor surface morphology of the films attributed to the uncontrollable nucleation and crystal growth in the process is unfavorable to solar cells. In this study, an anti-solvent treatment during the one-step solution process, in which ethyl acetate (EA) was dropped on the sample during spinning the precursor solution containing CH3NH3Cl, was adopted to fabricate perovskite materials and solar cells. It was found that the morphology of the perovskite film was significantly improved due to the rapid nucleation and slow crystal growth process. The modified process enabled us to fabricate the mesoporous solar cell with power conversion efficiency of 14%, showing an improvement of 40% over the efficiency of 9.7% of the device prepared by conventional one-step method. The controlling effect of annealing time on the morphology, crystal structure and transport properties of perovskite layer as well as the performance of device fabricated by the anti-solvent method were investigated and the possible mechanism was discussed.
Effects of solar radiation pressure torque on the rotational motion of an artificial satellite
NASA Technical Reports Server (NTRS)
Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho
1992-01-01
The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.
solution-phase phenomena of nanomaterials Switchable photovoltaics Solar thermochemical fuel production methylammonium lead halide perovskites during thermal processing from solution," Energy & Environmental
Comparison of potential field solutions for Carrington Rotation 2144
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Yang, Shangbin; Deng, Yuagyong
2016-02-01
We examined differences among the coronal magnetic field structures derived with the potential field source surface (PFSS) model for Carrington Rotation 2144, from 21 November to 19 December 2013. We used the synoptic maps of solar photospheric magnetic field from four observatories, the Huairou Solar Observing Station (HSOS), Global Oscillation Network Group (GONG), Helioseismic Magnetic Imager (HMI), and Wilcox Solar Observatory (WSO). We tested two smoothing methods, Gaussian and boxcar averaging, and correction of unbalanced net magnetic flux. The solutions of three-dimensional coronal magnetic field are significantly different each other. An open-field region derived with HSOS data agrees best with the corresponding coronal hole observed by Solar Dynamics Observatories/Atmospheric Imaging Assembly, while HMI data yielded best agreements with the near-Earth OMNI database. The GONG data overall gave agreements as good as the HMI. The PFSS calculations using WSO data were least sensitive to the choices we examined in this work. Differences in PFSS solutions using different choices and parameters in smoothing imply that the photospheric magnetic field distributions with size of several degrees at midlatitude and low-latitude regions can be decisive, at least, in the examined period. To better determine the global solar corona, therefore, further evaluation of influences from compact bipolar magnetic field is needed.
NASA Technical Reports Server (NTRS)
Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.
2010-01-01
Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.
Joint Command and Control: Integration Not Interoperability
2013-03-01
separate computer and communication equipment. Besides having to engineer interoperability, the Services also must determine the level of...effects. Determines force responsiveness and allocates resources.5 This thesis argues Joint military operations will never be fully integrated as...processes and systems. Secondly, the limited depth of discussion risks implying (or the reader inferring) the solution is more straightforward than
Bracing Regular Polygons as We Race into the Future
ERIC Educational Resources Information Center
Frederickson, Greg N.
2012-01-01
How many rods does it take to brace a square in the plane? Once Martin Gardner's network of readers got their hands on it, it turned out to be fewer than Raphael Robinson, who originally posed the problem, thought. And who could have predicted the stunning solutions found subsequently for various generalizations of the problem?
ERIC Educational Resources Information Center
Wright, Jim; Cleary, Kristi S.
2006-01-01
Increasingly, elementary schools across America are adopting prereferral intervention models that follow a structured problem-solving consultation process to reduce referrals to special education and to improve student academic outcomes. One feasible and affordable systems-level solution for a school that must deliver reading interventions of high…
Science 102: This Month's Task
ERIC Educational Resources Information Center
Robertson, Bill
2015-01-01
This task asks readers to figure out why when you stir a cup of hot liquid and tap on the side of the cup with a spoon, the pitch of sound starts low and ends up high. The solution to last month's tasks relating to the circumference of the Earth and how many stars are in the (visible) sky is also presented.
ERIC Educational Resources Information Center
Misco, Thomas
2007-01-01
In this paper I convey a recurring problem and possible solution that arose during my doctoral research on the topic of cross-cultural Holocaust curriculum development for Latvian schools. Specifically, as I devised the methodology for my research, I experienced a number of frustrations concerning the issue of transferability and the limitations…
Termination of the solar wind in the hot, partially ionized interstellar medium. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lombard, C. K.
1974-01-01
Theoretical foundations for understanding the problem of the termination of the solar wind are reexamined in the light of most recent findings concerning the states of the solar wind and the local interstellar medium. The investigation suggests that a simple extention of Parker's (1961) analytical model provides a useful approximate description of the combined solar wind, interstellar wind plasma flowfield under conditions presently thought to occur. A linear perturbation solution exhibiting both the effects of photoionization and charge exchange is obtained for the supersonic solar wind. A numerical algorithm is described for computing moments of the non-equilibrium hydrogen distribution function and associated source terms for the MHD equations. Computed using the algorithm in conjunction with the extended Parker solution to approximate the plasma flowfield, profiles of hydrogen number density are given in the solar wind along the upstream and downstream axes of flow with respect to the direction of the interstellar wind. Predictions of solar Lyman-alpha backscatter intensities to be observed at 1 a.u. have been computed, in turn, from a set of such hydrogen number density profiles varied over assumed conditions of the interstellar wind.
Solution-processed air-stable mesoscopic selenium solar cells
Zhu, Menghua; Hao, Feng; Ma, Lin; ...
2016-07-28
Crystalline selenium (c-Se) is a direct band gap semiconductor and has been developed for detector applications for more than 30 years. While most advances have been made using vacuum deposition processes, it remains a challenge to prepare efficient c-Se devices directly from solution. We demonstrate a simple solution process leading to uniform and high-crystallinity selenium films under ambient conditions. A combination of ethylenediamine (EDA) and hydrazine solvents was found to be effective in dissolving selenium powder and forming highly concentrated solutions. These can be used to infiltrate a mesoporous titanium dioxide layer and form a smooth and pinhole-free capping overlayer.more » Efficient light-induced charge injection from the crystalline selenium to TiO 2 was observed using transient absorption spectroscopy. A small amount of EDA addition in the hydrazine solution was found to improve the film coverage significantly, and on the basis of the finding, we are able to achieve up to 3.52% power conversion efficiency solar cells with a fill factor of 57%. Lastly, these results provide a method to control the crystalline selenium film and represent significant progress in developing low-cost selenium-based solar cells.« less
75 FR 49486 - Environmental Impacts Statements; Notice Of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
..., CA, Chevron Energy Solutions Lucerne Valley Solar Project, Proposing To Develop a 45-megawatt (MW) Solar Photovotaic (PV) Plant and Associated Facilities on 516 Acres of Federal Land Managed, California...
Process of making solar cell module
Packer, M.; Coyle, P.J.
1981-03-09
A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
...-way (ROW) authorization to construct and operate a 45-megawatt (MW) solar photovoltaic project which... Solar Project, California and the Approved Plan Amendment to the California Desert Conservation Area...) Lucerne Valley Solar Project located in San Bernardino County, California. The Secretary of the Interior...
Mechanism of Action and Toxicities of Purgatives Used for Colonoscopy Preparation
Adamcewicz, Margaret; Bearelly, Dilip; Porat, Gail; Friedenberg, Frank K.
2011-01-01
Importance of the field In developed countries colonoscopy volume has increased dramatically over the past 15 years and is the principle method used to screen for colon cancer. Preparations used for colon cleaning have evolved over the past 30 years. Some preparations have been shown to be unsafe and are now used on a limited basis. There has been progress on limiting the volume required and on taste improvement. Areas covered in this review This review provides an account of preparations used from 1980 when polyethylene glycol-based preparations became widely available, until the present day. The review highlights their mechanism of action and principle toxicities. The handling of solutes and solute-free fluid by the colon is also reviewed. What the reader will gain The reader will gain a perspective on the factors considered in developing colonic purgatives and the rationale for choosing selected preparations based on patient factors such as age, co-morbidities, and concomitant medications. Take home message Although generally safe and effective, colonic purgatives have both acute and permanent toxicities. The safest preparations utilize polyethylene glycol combined with a balanced electrolyte solution. Limitations of this preparation center on the volume required and poor taste. Alternative formulations are now available; however those using sodium phosphate have fallen out of favor due to a risk of renal toxicity. PMID:21162694
The possibility of developing hybrid PV/T solar system
NASA Astrophysics Data System (ADS)
Dobrnjac, M.; Zivkovic, P.; Babic, V.
2017-05-01
An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.
Li, Miaozi; Liu, Xinyan; Wen, Shiya; Liu, Songwei; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Wu, Hongbin; Xu, Wei; Huang, Wenbo
2017-05-03
We propose Sb-doped TiO₂ as electron acceptor material for depleted CdTe nanocrystal (NC) hetero-junction solar cells. Novel devices with the architecture of FTO/ZnO/Sb:TiO₂/CdTe/Au based on CdTe NC and TiO₂ precursor are fabricated by rational ambient solution process. By introducing TiO₂ with dopant concentration, we are able to tailor the optoelectronic properties of NC solar cells. Our novel devices demonstrate a very high open circuit voltage of 0.74 V, which is the highest V oc reported for any CdTe NC based solar cells. The power conversion efficiency (PCE) of solar cells increases with the increase of Sb-doped content from 1% to 3%, then decreases almost linearly with further increase of Sb content due to the recombination effect. The champion device shows J sc , V oc , FF, and PCE of 14.65 mA/cm², 0.70 V, 34.44, and 3.53% respectively, which is prospective for solution processed NC solar cells with high V oc .
Yi, Qinghua; Zhai, Pengfei; Sun, Yinghui; Lou, Yanhui; Zhao, Jie; Sun, Baoquan; Patterson, Brian; Luo, Hongmei; Zhang, Wenrui; Jiao, Liang; Wang, Haiyan; Zou, Guifu
2015-08-26
In this study, we report the growth of molybdenum oxide (MoOx) film by polymer-assisted deposition (PAD), an environmentally friendly strategy in an aqueous system. The MoOx film has good crystal quality and is dense and smooth. The transparency of the film is >95% in the wavelength range of 300-900 nm. The device based on P3HT:PCBM absorber material was fabricated. The solar cell with PAD-MoOx as an anode interfacial layer exhibits great performance, even better than that of a solar cell with PSS or evaporated MoOx as an anode interfacial layer. More importantly, the solar cells based on the growth of MoOx have a longer term stability than that of solar cells based on PSS. These results demonstrate the aqueous PAD technology provides an alternative strategy not only for the thin films' growth of applied materials but also for the solution processing for the low-cost fabrication of future materials to be applied in the field of solar cells.
Li, Miaozi; Liu, Xinyan; Wen, Shiya; Liu, Songwei; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Wu, Hongbin; Xu, Wei; Huang, Wenbo
2017-01-01
We propose Sb-doped TiO2 as electron acceptor material for depleted CdTe nanocrystal (NC) hetero-junction solar cells. Novel devices with the architecture of FTO/ZnO/Sb:TiO2/CdTe/Au based on CdTe NC and TiO2 precursor are fabricated by rational ambient solution process. By introducing TiO2 with dopant concentration, we are able to tailor the optoelectronic properties of NC solar cells. Our novel devices demonstrate a very high open circuit voltage of 0.74 V, which is the highest Voc reported for any CdTe NC based solar cells. The power conversion efficiency (PCE) of solar cells increases with the increase of Sb-doped content from 1% to 3%, then decreases almost linearly with further increase of Sb content due to the recombination effect. The champion device shows Jsc, Voc, FF, and PCE of 14.65 mA/cm2, 0.70 V, 34.44, and 3.53% respectively, which is prospective for solution processed NC solar cells with high Voc. PMID:28467347
Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2014-12-23
Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.
NASA Astrophysics Data System (ADS)
Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka
2013-01-01
Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.
75 FR 7479 - Environmental Impact Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
... EIS, BLM, CA Chevron Energy Solutions Lucerne Valley Solar Project, Proposing To Develop a 45-megawatt (MW) Solar Photovoltaic (PV) Plant and Associated Facilities on 516 Acres of Federal Land Managed...
Renewable energy and conservation measures for non-residential buildings
NASA Astrophysics Data System (ADS)
Grossman, Andrew James
The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.
NASA Astrophysics Data System (ADS)
Yoshimura, H.
1983-08-01
The case of the solar magnetic cycle is investigated as a prototype of the dynamo processes involved in the generation of magnetic fields in astrophysics. Magnetohydrodynamic (MHD) equations are solved using a numerical method with a prescribed velocity field in order follow the movement and deformation. It is shown that a simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the sun. These main flux tubes of the solar cycle are the progenitors of small-scale flux ropes of the solar activity. These findings indicate that magnetic fields can be generated by fluid motions and that MHD equations have a new type of oscillatory solution. It is shown that the solar cycle can be identified with one of these oscillatory solutions. It is proposed that the formation of magnetic flux tubes by streaming plasma flows is a universal mechanism of flux tube formation in astrophysics.
Automotive absorption air conditioner utilizing solar and motor waste heat
NASA Technical Reports Server (NTRS)
Popinski, Z. (Inventor)
1981-01-01
In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.
Performance of low-power RFID tags based on modulated backscattering
NASA Astrophysics Data System (ADS)
Mhanna, Zeinab; Sibille, Alain; Contreras, Richard
2017-02-01
Ultra Wideband (UWB) modulated backscattering (MBS) passive Radio-Frequency IDentification (RFID) systems provide a promising solution to overcome many limitations of current narrowband RFID devices. This work addresses the performance of such systems from the point of view of the radio channel between the readers and the tags. Such systems will likely combine several readers, in order to provide both the detection and localization of tags operating in MBS. Two successive measurements campaigns have been carried out in an indoor reference scenario environment. The first is intended to verify the methods and serves as a way to validate the RFID backscattering measurement setup. The second represents a real use case for RFID application and allows one to quantitatively analyze the path loss of the backscattering propagation channel. xml:lang="fr"
The deathly hallows: Harry Potter and adolescent development.
Rosegrant, John
2009-12-01
The enormous popularity of the Harry Potter books points to the deep resonance readers feel with the psychological issues they bring to life. Three developmental issues provide central themes: the necessity for partial disenchantment and increasing attunement to reality, while retaining a capacity for wonder; repudiation or endorsement of the narcissistic solution to life's difficulties; and aggression and castration fantasies while growing into adult power. These developmental issues are particularly acute during adolescence but start earlier and continue to be reworked throughout the life span, accounting for the books' appeal to a wide age-range of readers despite their apparent focus on adolescence. These developmental themes are explored in order to better understand the Harry Potter books, as, conversely, the books are explored in order to better understand these themes.
All-solution-processed PbS quantum dot solar modules
NASA Astrophysics Data System (ADS)
Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee
2015-05-01
A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01508a
New dual asymmetric CEC linear Fresnel concentrator for evacuated tubular receivers
NASA Astrophysics Data System (ADS)
Canavarro, Diogo; Chaves, Julio; Collares-Pereira, Manuel
2017-06-01
Linear Fresnel Reflector concentrators (LFR) are a potential solution for low-cost electricity production. Nevertheless in order to become more competitive with other CSP (Concentrated Solar Power) technologies, in particular with the Parabolic Trough concentrator, their overall solar to electricity efficiencies must increase. A possible path to achieve this goal is to increase the concentration factor, hence increasing the working temperatures for higher thermodynamic efficiency (more energy collection) and decrease the total number of rows of the solar field (less parasitic losses and corresponding cost reduction). This paper presents a dual asymmetric CEC-type (Compound Elliptical Concentrator) LFR (Linear Fresnel Concentrator) for evacuated tubular receivers. The concentrator is designed for a high concentration factor, presenting an asymmetric configuration enabling a very compact solution. The CEC-type secondary mirror is introduced to accommodate very high concentration values with a wide enough acceptance-angle (augmenting optical tolerances) for simple mechanical tracking solutions, achieving a higher CAP (Concentration Acceptance Product) in comparison with conventional LFR solutions. The paper presents an optical and thermal analysis of the concentrator using two different locations, Faro (Portugal) and Hurghada (Egypt).
Featured Article: Genotation: Actionable knowledge for the scientific reader
Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L
2016-01-01
We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org. The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug–gene relationships, 5981 gene–disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. PMID:26900164
Featured Article: Genotation: Actionable knowledge for the scientific reader.
Nagahawatte, Panduka; Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L
2016-06-01
We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug-gene relationships, 5981 gene-disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. © 2016 by the Society for Experimental Biology and Medicine.
Natural life styles library: energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1974-01-01
Three new sections appear in this issue. Information from the readers on good products, books, catalogues, places to eat and sleep, good doctors, foods, farms, natural cosmetics, or nutritionists is provided. Another section is devoted to housing to serve as an information exchange. This section is open to comments from readers on house construction, about materials, or alternate energy sources. The third new section deals with wild food and natural food recipes. Articles in this issue deal with wood stoves; solar energy in use; wood dome planner for NLS or communal living; farming information; the thriftchanger, a device for heatingmore » and cooling; maintaining the old truck; and how to build a hotbed for all seasons. Information on Jerusalem artichokes, pond lilies, pumpkin pies, persimmons, rose hips, sunflowers, and seed gathering is included in the food section. Information on Alternate Energy Access and Consumers in a Food Economy are two additional articles. Two nature poems are included. Reviews on an organic primer, shelter and survival data, the mountain people, an herbal guide, super beauty and natural cosmetics, a review of six cookbooks, and a healthy family cookbook are presented. (MCW)« less
High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.
Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei
2016-06-01
Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Absorption generator for solar-powered air-conditioner
NASA Technical Reports Server (NTRS)
Lowen, D. J.; Murray, J. G.
1977-01-01
Device passes solar-heated water through coils. Hot lithium Bromide/Water solution leaves through central stand-pipe, and water vapor leaves through refrigerant outlet at top. Matching generation temperature to collector efficiency helps cut costs.
Reviews in Modern Astronomy: Vol. 16: The Cosmic Circuit of Matter
NASA Astrophysics Data System (ADS)
Schielicke, Reinhard E.
2003-08-01
The 16th volume in the annual series on recent developments and scientific progress in astronomy and astrophysics contains thirteen invited reviews presented during the International Scientific Conference of the Society on "The Cosmic Circuit of Matter", held in Berlin, Germany. Readers also learn about the lecture on the behaviour of stars by infrared interferometry given by Charles H. Townes, Berkeley, USA who was awarded the Karl Schwarzschild medal 2002. Further contributions on the topic provide, among other, the latest results on the Solar atmosphere, formation of stars, substellar objects, galaxies and clusters of galaxies.
Scalar field dark energy with a minimal coupling in a spherically symmetric background
NASA Astrophysics Data System (ADS)
Matsumoto, Jiro
Dark energy models and modified gravity theories have been actively studied and the behaviors in the solar system have been also carefully investigated in a part of the models. However, the isotropic solutions of the field equations in the simple models of dark energy, e.g. quintessence model without matter coupling, have not been well investigated. One of the reason would be the nonlinearity of the field equations. In this paper, a method to evaluate the solution of the field equations is constructed, and it is shown that there is a model that can easily pass the solar system tests, whereas, there is also a model that is constrained from the solar system tests.
All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode.
Yang, Kaiyu; Li, Fushan; Zhang, Jianhua; Veeramalai, Chandrasekar Perumal; Guo, Tailiang
2016-03-04
In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... (EIS) for the Chevron Energy Solutions/Solar Millennium (CESSM), LLC's Blythe Solar Power Plant (BSPP... project and amend the CDCA Plan to prohibit solar energy projects on the project site. The BLM will take..., LVRWB09B2600] Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy...
Jung, Jae Woong; Chueh, Chu-Chen; Jen, Alex K. -Y.
2015-10-20
The promising photophysical properties of the emerging organometallic halide perovskites, such as intense broadband absorption, high charge carrier mobility, and long charge diffusion length, have enabled the rapid development in solar cells reaching over 20% power conversion effi ciency (PCE) recently. Especially, the low material cost and facile solution processability of perovskites are very attractive as next-generation photovoltaic materials for sustainable energy.
NASA Astrophysics Data System (ADS)
Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea
2016-05-01
Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.
NASA Astrophysics Data System (ADS)
Ascher, A.; Lehner, M.; Eberhardt, M.; Biebl, E.
2015-11-01
The sensitivity of passive UHF RFID transponders (Radio Frequency Identification) is the key issue, which determines the maximum read range of an UHF RFID system. During this work the ability of improving the sensitivity using solar energy harvesting, especially for low light conditions, is shown. To use the additional energy harvested from the examined silicon and organic solar cells, the passive RFID system is changed into a semi-active one. This needs no changes on the reader hardware itself, only the used RFIC (Radio Frequency Integrated Circuit) of the transponder has to possess an additional input pin for an external supply voltage. The silicon and organic cells are evaluated and compared to each other regarding their low light performance. The different cells are examined in a shielded box, which is protected from the environmental lighting. Additionally, a demonstrator is shown, which makes the measurement of the extended read range with respect to the lighting conditions possible. If the cells are completely darkened, the sensitivity gain is ascertained using high capacity super caps. Due to the measurements an enhancement in range up to 70 % could be guaranteed even under low light conditions.
Biotechnology for Solar System Exploration
NASA Astrophysics Data System (ADS)
Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.
With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.
ERIC Educational Resources Information Center
Dilsaver, John S.; Siler, Joseph R.
1991-01-01
Solutions for a problem in which the time necessary for an object to fall into the sun from the average distance from the earth to the sun are presented. Both calculus- and noncalculus-based solutions are presented. A sample computer solution is included. (CW)
ERIC Educational Resources Information Center
Kokkola, Lydia
2011-01-01
It is presumed that readers of Stephenie Meyer's "Twilight" enjoy the sexual tension between Bella and Edward; a tension that remains unresolved until the couple are married. This very traditional solution to the couple's carnal desires is just one of many ways in which the novels adhere to the conventions of romance writing for young people.…
Using Picture Books to Provide Archetypes to Young Boys: Extending the Ideas of William Brozo
ERIC Educational Resources Information Center
Zambo, Debby
2007-01-01
In his book "To Be a Boy, To Be a Reader: Engaging Teen and Preteen Boys in Active Literacy," William Brozo suggested that many adolescent boys have become mentally and academically detached from school. While Brozo acknowledges that a solution to these problems is multifaceted, he asserts that engaging boys in literature that makes use of…
The dynamics and control of solar-sail spacecraft in displaced lunar orbits
NASA Astrophysics Data System (ADS)
Wawrzyniak, Geoffrey George
Trajectory generation for any spacecraft mission application typically involves either well-developed analytical approximations or a linearization with respect to a known solution. Such approximations are based on the well-understood dynamics of behavior in the system. However, when two or more large bodies (e.g., the Earth and the Moon or the Sun, the Earth and the Moon) are present, trajectories in the multi-body gravitational field can evolve chaotically. The problem is further complicated when an additional force from a solar sail is included. Solar sail trajectories are often developed in a Sun-centered reference frame in which the sunlight direction is fixed. New challenges arise when modeling a solar-sail trajectory in a reference frame attached to the Earth and the Moon (a frame that rotates in inertial space). Advantages accrue from geometry and symmetry properties that are available in this Earth--Moon reference frame, but the Sun location and the sunlight direction change with time. Current trajectory design tools can reveal many solutions within these regimes. Recent work using numerical boundary value problem (BVP) solvers has demonstrated great promise for uncovering additional and, sometimes, "better" solutions to problems in spacecraft trajectory design involving solar sails. One such approach to solving BVPs is the finite-difference method. Derivatives that appear in the differential equations are replaced with their respective finite differences and evaluated at node points along the trajectory. The solution process is iterative. A candidate solution, such as an offset circle or a point, is discretized into nodes, and the equations that represent the relationships at the nodes are solved simultaneously. Finite-difference methods (FDMs) exploit coarse initial approximations and, with the system constraints (such as the continuous visibility of the spacecraft from a point on the lunar surface), to develop orbital solutions in regions where the structure of the solution space is not well known. Because of their simplicity and speed, the FDM is used to populate a survey to assist in the understanding of the available design space. Trajectories generated by FDMs can also be used to initialize other nonlinear BVP solvers. Any solution is only as accurate as the model used to generate it, especially when the trajectory is dynamically unstable, certainly the case when an orbit is purposefully offset from the Moon. Perturbations, such as unmodeled gravitational forces, variations in the solar flux, as well as mis-modeling of the sail and bus properties, all shift the spacecraft off the reference trajectory and, potentially, into a regime from which the vehicle is unrecoverable. Therefore, some type of flight-path control is required to maintain the vehicle near the reference path. Reference trajectories, supplied by FDMs, are used to develop guidance algorithms based on other, more accurate, numerical procedures, such as multiple shooting. The primary motivation of this investigation is to determine what level of technology is required to displace a solar sail spacecraft sufficiently such that a vehicle equipped with a sail supplies a continuous relay between the Earth and an outpost at the lunar south pole. To accomplish this objective, numerical methods to generate reference orbits that meet mission constraints are examined, as well as flight-path control strategies to ensure that a sailcraft follows those reference trajectories. A survey of the design space is also performed to highlight vehicle-performance and ground-based metrics critical to a mission that monitors the lunar south pole at all times. Finally, observations about the underlying dynamical structure of solar sail motion in a multi-body system are summarized.
NASA Astrophysics Data System (ADS)
Mawyin, Jose Amador
The worldwide electrical energy consumption will increase from currently 10 terawatts to 30 terawatts by 2050. To decrease the current atmospheric CO2 would require our civilization to develop a 20 terawatts non-greenhouse emitting (renewable) electrical power generation capability. Solar photovoltaic electric power generation is thought to be a major component of proposed renewable energy-based economy. One approach to less costly, easily manufactured solar cells is the Dye-sensitized solar cells (DSSC) introduced by Greatzel and others. This dissertation describes the work focused on improving the performance of DSSC type solar cells. In particular parameters affecting dye-sensitized solar cells (DSSC) based on anthocyanin pigments extracted from California blackberries (Rubus ursinus) and bio-inspired modifications were analyzed and solar cell designs optimized. Using off-the-shelf materials DSSC were constructed and tested using a custom made solar spectrum simulator and photoelectric property characterization. This equipment facilitated the taking of automated I-V curve plots and the experimental determination of parameters such as open circuit voltage (V OC), short circuit current (JSC), fill factor (FF), etc. This equipment was used to probe the effect of various modifications such as changes in the annealing time and composition of the of the electrode counter-electrode. Solar cell optimization schemes included novel schemes such as solar spectrum manipulation to increase the percentage of the solar spectrum capable of generating power in the DSSC. Solar manipulation included light scattering and photon upconversion. Techniques examined here focused on affordable materials such as silica nanoparticles embedded inside a TiO2 matrix. Such materials were examined for controlled scattering of visible light and optimize light trapping within the matrix as well as a means to achieve photon up-energy-conversion using the Raman effect in silica nano-particles (due to a strong Raman anti-Stoke scattering probability). Finally, solutions to the mobility problem of organic photovoltaics were explored. The solutions examined here were based on the bio-inspired neural ionic conduction were nature has overcome the poor ionic mobility in solutions (D ˜ 10-5cm2/ s) to achieve amazingly fast ionic conduction using non-electric field energy gradients. Electric-permeability-graded layers with possibility to create an energy gradient that helps the diffusion DSSC electrolyte diffusion were explored in this work.
High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Highlight is being developed for the 2015 February Alliance S&T Board meeting and describes a solution-processable ink to produce high-efficiency solar cells using low temperature and simple processing.
Litzov, Ivan; Brabec, Christoph J.
2013-01-01
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423
A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Xiong; Bi, Dongqin; Yi, Chenyi; Décoppet, Jean-David; Luo, Jingshan; Zakeeruddin, Shaik Mohammed; Hagfeldt, Anders; Grätzel, Michael
2016-07-01
Metal halide perovskite solar cells (PSCs) currently attract enormous research interest because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication costs, but their practical development is hampered by difficulties in achieving high performance with large-size devices. We devised a simple vacuum flash-assisted solution processing method to obtain shiny, smooth, crystalline perovskite films of high electronic quality over large areas. This enabled us to fabricate solar cells with an aperture area exceeding 1 square centimeter, a maximum efficiency of 20.5%, and a certified PCE of 19.6%. By contrast, the best certified PCE to date is 15.6% for PSCs of similar size. We demonstrate that the reproducibility of the method is excellent and that the cells show virtually no hysteresis. Our approach enables the realization of highly efficient large-area PSCs for practical deployment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, W.; Moreno-Quintanar, G.; Best, R.
2011-01-15
A novel solar intermittent refrigeration system for ice production developed in the Centro de Investigacion en Energia of the Universidad Nacional Autonoma de Mexico is presented. The system operates with the ammonia/lithium nitrate mixture. The system developed has a nominal capacity of 8 kg of ice/day. It consists of a cylindrical parabolic collector acting as generator-absorber. Evaporator temperatures as low as -11 C were obtained for several hours with solar coefficients of performance up to 0.08. It was found that the coefficient of performance increases with the increment of solar radiation and the solution concentration. A dependency of the coefficientmore » of performance was not founded against the cooling water temperature. Also it was found that the maximum operating pressure increases meanwhile the generation temperature decreases with an increase of the solution concentration. (author)« less
Litzov, Ivan; Brabec, Christoph J
2013-12-10
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.
SafeConnect Solar - Final Scientific/Technical Report (Updated)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNish, Zachary
2016-02-03
Final Scientific/Technical Report from Tier 0 SunShot Incubator award for hardware-based solution to reducing soft costs of installed solar. The primary objective of this project was for SafeConnect Solar (“SafeConnect”) to create working proof-of-concept hardware prototypes from its proprietary intellectual property and business concepts for a plug-and-play, safety-oriented hardware solution for photovoltaic solar systems. Specifically, SafeConnect sought to build prototypes of its “SmartBox” and related cabling and connectors, as well as the firmware needed to run the hardware. This hardware is designed to ensure a residential PV system installed with it can address all safety concerns that currently form themore » basis of AHJ electrical permitting and licensing requirements, thereby reducing the amount of permitting and specialized labor required on a residential PV system, and also opening up new sales channels and customer acquisition opportunities.« less
Yang, Yang Michael; Chen, Qi; Hsieh, Yao-Tsung; Song, Tze-Bin; Marco, Nicholas De; Zhou, Huanping; Yang, Yang
2015-07-28
Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1974-01-01
The solution to the steady state magnetohydrodynamic equations governing the supersonic expansion of the solar corona into interplanetary space is obtained for various assumptions regarding the form in which proton thermal energy is carried away from the sun. The one-fluid, inviscid, formulation of the MHD equations is considered assuming that thermal energy is carried away by conduction from a heat source located at the base of the corona. Angular motion of the solar wind led to the existence of three critical points through which the numerical solutions must pass to extend from the sun's surface to large heliocentric distances. The results show that the amount of magnetic field energy converted into kinetic energy in the solar wind is only a small fraction of the total expansion energy flux and has little effect upon the final radial expansion velocity.
Solar Corona Simulation Model With Positivity-preserving Property
NASA Astrophysics Data System (ADS)
Feng, X. S.
2015-12-01
Positivity-preserving is one of crucial problems in solar corona simulation. In such numerical simulation of low plasma β region, keeping density and pressure is a first of all matter to obtain physical sound solution. In the present paper, we utilize the maximum-principle-preserving flux limiting technique to develop a class of second order positivity-preserving Godunov finite volume HLL methods for the solar wind plasma MHD equations. Based on the underlying first order building block of positivity preserving Lax-Friedrichs, our schemes, under the constrained transport (CT) and generalized Lagrange multiplier (GLM) framework, can achieve high order accuracy, a discrete divergence-free condition and positivity of the numerical solution simultaneously without extra CFL constraints. Numerical results in four Carrington rotation during the declining, rising, minimum and maximum solar activity phases are provided to demonstrate the performance of modeling small plasma beta with positivity-preserving property of the proposed method.
Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin
2016-02-08
We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.
Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere.
Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Woo, Kyoohee; Moon, Jooho
2015-10-14
A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.
Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin
2016-01-01
We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266
NASA Astrophysics Data System (ADS)
Woolsey, L. N.; Cranmer, S. R.
2013-12-01
The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.
NASA Astrophysics Data System (ADS)
Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.
2015-09-01
Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.
Fabrication of nanostructured CIGS solar cells
NASA Astrophysics Data System (ADS)
Zhang, Hongwang; Wang, Fang; Parry, James; Perera, Samanthe; Zeng, Hao
2012-02-01
We present the work on Cu(In,Ga)(Se,S)2 based nanostructured solar cells based on nanowire arrays. CIGS as the light absorber for thin-film solar cells has been widely studied recently, due to its high absorption coefficient, long-term stability, and low-cost of fabrication. Recently, solution phase processed CIGS thin film solar cells attracted great attention due to their extremely low fabrication cost. However, the performance is lower than vacuum based thin films possibly due to higher density of defects and lower carrier mobility. On the other hand, one dimensional ordered nanostructures such as nanowires and nanorods can be used to make redial junction solar cells, where the orthogonality between light absorption and charge carrier separation can lead to enhanced PV performance. Since the charge carriers only need to traverse a short distance in the radial direction before they are separated at the heterojunction interface, the radial junction scheme can be more defect tolerant than their planar junction scheme. In this work, a wide band gap nanowire or nanotube array such as TiO2 is used as a scaffold where CIGS is conformally coated using solution phase to obtain a radial heterojunction solar cell. Their performance is compared that of the planar thin film solar cells fabricated with the same materials.
The design of large petal-type paraboloidal solar collectors for the ASTEC Program requires a capability for determining the distortion and stress...analysis of a parabolic curved beam is given along with a numerical solution and digital program. The dynamic response of the ASTEC flight-test vehicle is discussed on the basis of modal analysis.
Light propagation in the Solar System for astrometry on sub-micro-arcsecond level
NASA Astrophysics Data System (ADS)
Zschocke, Sven
2018-04-01
We report on recent advancement in the theory of light propagation in the Solar System aiming at sub-micro-arcsecond level of accuracy: (1) A solution for the light ray in 1.5PN approximation has been obtained in the field of N arbitrarily moving bodies of arbitrary shape, inner structure, oscillations, and rotational motion. (2) A solution for the light ray in 2PN approximation has been obtained in the field of one arbitrarily moving pointlike body.
Tang, Li Juan; Chen, Xiao; Wen, Tian Yu; Yang, Shuang; Zhao, Jun Jie; Qiao, Hong Wei; Hou, Yu; Yang, Hua Gui
2018-02-26
A highly transparent NiO layer was prepared by a solution processing method with nickel(II) 2-ethylhexanoate in non-polar solvent and utilized as HTM in perovskite solar cells. Excellent optical transmittance and the matched energy level lead to the enhanced power conversion efficiency (PCE, 18.15 %) than that of conventional sol-gel-processed NiO-based device (12.98 %). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Corbard, T.; Berthomieu, G.; Provost, J.; Blanc-Feraud, L.
Inferring the solar rotation from observed frequency splittings represents an ill-posed problem in the sense of Hadamard and the traditional approach used to override this difficulty consists in regularizing the problem by adding some a priori information on the global smoothness of the solution defined as the norm of its first or second derivative. Nevertheless, inversions of rotational splittings (e.g. Corbard et al., 1998; Schou et al., 1998) have shown that the surface layers and the so-called solar tachocline (Spiegel & Zahn 1992) at the base of the convection zone are regions in which high radial gradients of the rotation rate occur. %there exist high gradients in the solar rotation profile near %the surface and at the base of the convection zone (e.g. Corbard et al. 1998) %in the so-called solar tachocline (Spiegel & Zahn 1992). Therefore, the global smoothness a-priori which tends to smooth out every high gradient in the solution may not be appropriate for the study of a zone like the tachocline which is of particular interest for the study of solar dynamics (e.g. Elliot 1997). In order to infer the fine structure of such regions with high gradients by inverting helioseismic data, we have to find a way to preserve these zones in the inversion process. Setting a more adapted constraint on the solution leads to non-linear regularization methods that are in current use for edge-preserving regularization in computed imaging (e.g. Blanc-Feraud et al. 1995). In this work, we investigate their use in the helioseismic context of rotational inversions.
New design for CSP plant with direct-steam solar receiver and molten-salt storage
NASA Astrophysics Data System (ADS)
Ganany, Alon; Hadad, Itay
2016-05-01
This paper presents the evolution of BrightSource's Concentrated Solar Power (CSP) technology - from a solar steam generator (SRSG) with no Thermal Energy Storage (TES) to SRSG with TES to Extended-cycle TES. The paper discusses SRSG with TES technology, and the capabilities of this solution are compared with those of an MSR plant.
Xu, Lu; Deng, Lin-Long; Cao, Jing; Wang, Xin; Chen, Wei-Yi; Jiang, Zhiyuan
2017-12-01
Perovskite solar cells are emerging as one of the most promising candidates for solar energy harvesting. To date, most of the high-performance perovskite solar cells have exclusively employed organic hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) or polytriarylamine (PTAA) which are often expensive and have low hole mobility. Almost all these HTMs reported needed lithium salt, e.g., lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI) doping, to improve hole mobility and performance. However, the use of Li-TFSI should be avoided because the hygroscopic nature of Li-TFSI could cause decomposition of perovskite and reduce device stability. Herein, we employed solution-processed CuIn 0.1 Ga 0.9 (S 0.9 Se 0.1 ) 2 (CIGSSe) nanocrystals as a novel inorganic HTM in perovskite solar cells. A power conversion efficiency of 9.15% was obtained for CIGSSe-based devices with improved stability, compared to devices using spiro-OMeTAD as HTM. This work offers a promising candidate of Cu-based inorganic HTM for efficient and stable perovskite solar cells.
Solar cooling - comparative study between thermal and electrical use in industrial buildings
NASA Astrophysics Data System (ADS)
Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.
2016-08-01
The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.
Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario
2017-03-01
The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.
Mellado-Ortega, Elena; Zabalgogeazcoa, Iñigo; Vázquez de Aldana, Beatriz R; Arellano, Juan B
2017-02-15
Oxygen radical absorbance capacity (ORAC) assay in 96-well multi-detection plate readers is a rapid method to determine total antioxidant capacity (TAC) in biological samples. A disadvantage of this method is that the antioxidant inhibition reaction does not start in all of the 96 wells at the same time due to technical limitations when dispensing the free radical-generating azo initiator 2,2'-azobis (2-methyl-propanimidamide) dihydrochloride (AAPH). The time delay between wells yields a systematic error that causes statistically significant differences in TAC determination of antioxidant solutions depending on their plate position. We propose two alternative solutions to avoid this AAPH-dependent error in ORAC assays. Copyright © 2016 Elsevier Inc. All rights reserved.
The Solar System and Its Origin
ERIC Educational Resources Information Center
Dormand, J. R.
1973-01-01
Presents a brief explanation of the solar system, including planets, asteroids, satellites, comets, planetary orbits, as well as, old and recent cosmogonic theories. Indicates that man is nearer a solution to the origin of the planetary system than ever before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mao; Shi, Chengwu, E-mail: shicw506@foxmail.com; Zhang, Jincheng
2015-11-15
In this paper, the influence of PbCl{sub 2} content in PbI{sub 2} solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl{sub 2} powder into PbI{sub 2} solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH{sub 3}NH{sub 3}PbI{sub 3−x}Cl{sub x} thin film by the precursormore » solution with the mixture of 0.80 M PbI{sub 2} and 0.20 M PbCl{sub 2} exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm{sup −2} and a fill factor of 0.69. - Graphical abstract: The figure showed the surface and cross-sectional SEM images of lead halide thin films using the precursor solutions: (a) 0.80 M PbI{sub 2}, (b) 0.80 M PbI{sub 2}+0.20 M PbCl{sub 2}, (c) 0.80 M PbI{sub 2}+0.40 M PbCl{sub 2}, and (d) 0.80 M PbI{sub 2}+0.60 M PbCl{sub 2}. With the increase of the PbCl{sub 2} content in precursor solution, the size of the lead halide nanosheet decreased and the corresponding thin films gradually turned to be porous with low crystallinity. - Highlights: • Influence of PbCl{sub 2} content on absorption, crystal phase and morphology of thin film. • Influence of perovskite film thickness on photovoltaic performance of solar cell. • Lead halide thin film with small sheet-like, porous morphology and low crystallinity. • Planar solar cell with 300 nm-thick perovskite thin film achieved PCE of 10.12%.« less
The Search for an Effective Clinical Behavior Analysis: The Nonlinear Thinking of Israel Goldiamond
Layng, T.V Joe
2009-01-01
This paper has two purposes; the first is to reintroduce Goldiamond's constructional approach to clinical behavior analysis and to the field of behavior analysis as a whole, which, unfortunately, remains largely unaware of his nonlinear functional analysis and its implications. The approach is not simply a set of clinical techniques; instead it describes how basic, applied, and formal analyses may intersect to provide behavior-analytic solutions where the emphasis is on consequential selection. The paper takes the reader through a cumulative series of explorations, discoveries, and insights that hopefully brings the reader into contact with the power and comprehensiveness of Goldiamond's approach, and leads to an investigation of the original works cited. The second purpose is to provide the context of a life of scientific discovery that attempts to elucidate the variables and events that informed one of the most extraordinary scientific journeys in the history of behavior analysis, and expose the reader (especially young ones) to the exciting process of discovery followed by one of the field's most brilliant thinkers. One may perhaps consider this article a tribute to Goldiamond and his work, but the tribute is really to the process of scientific discovery over a professional lifetime. PMID:22478519
Britton, J
2007-01-01
Portable medical devices represent an important resource for assisting healthcare delivery. The movement of portable devices often results in them being unavailable when needed. Tracking equipment using radiofrequency identification technology/devices (RFID) may provide a promising solution to the problems encountered in locating portable equipment. An RFID technology trial was undertaken at Royal Alexandra Hospital, Paisley. This involved the temporary installation of three active readers and attaching actively transmitting radio frequency tags to different portable medical devices. The active readers and computer system were linked using a bespoke data network. Tags and readers from two separate manufacturers were tested. Reliability difficulties were encountered when testing the technology from the first manufacturer, probably due to the casing of the medical device interfering with the signal from the tag. Improved results were obtained when using equipment from the second manufacturer with an overall error rate of 12.3%. Tags from this manufacturer were specifically designed to overcome problems observed with the first system tested. Findings from this proof of concept trial suggest that RFID technology could be used to track the location of equipment in a hospital.
Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions.
Mailhot, G; Sarakha, M; Lavedrine, B; Cáceres, J; Malato, S
2002-11-01
The degradation of diethyl phthalate (DEP) photoinduced by Fe(III) in aqueous solutions has been investigated under solar irradiation in the compound parabolic collector reactor at Plataforma Solar de Almeria. Hydroxyl radicals *OH, responsible of the degradation, are formed via an intramolecular photoredox process in the excited state of Fe(III) aquacomplexes. The primary step of the reaction is mainly due to the attack of *OH radicals on the aromatic ring. For prolonged irradiations DEP and its photoproducts are completely mineralized due to the regeneration of the absorbing species and the continuous formation of *OH radicals that confers a catalytic aspect to the process. Consequently, the degradation photoinduced by Fe(III) could be an efficient method of DEP removal from water.
Ong, Soon-An; Min, Ohm-Mar; Ho, Li-Ngee; Wong, Yee-Shian
2013-05-01
The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir-Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.
Fully solution-processing route toward highly transparent polymer solar cells.
Guo, Fei; Kubis, Peter; Stubhan, Tobias; Li, Ning; Baran, Derya; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2014-10-22
We report highly transparent polymer solar cells using metallic silver nanowires (AgNWs) as both the electron- and hole-collecting electrodes. The entire stack of the devices is processed from solution using a doctor blading technique. A thin layer of zinc oxide nanoparticles is introduced between photoactive layer and top AgNW electrode which plays decisive roles in device functionality: it serves as a mechanical foundation which allows the solution-deposition of top AgNWs, and more importantly it facilitates charge carriers extraction due to the better energy level alignment and the formation of ohmic contacts between the active layer/ZnO and ZnO/AgNWs. The resulting semitransparent polymer:fullerene solar cells showed a power conversion efficiency of 2.9%, which is 72% of the efficiency of an opaque reference device. Moreover, an average transmittance of 41% in the wavelength range of 400-800 nm is achieved, which is of particular interest for applications in transparent architectures.
Development of a model of space station solar array
NASA Technical Reports Server (NTRS)
Bosela, Paul A.
1990-01-01
Space structures, such as the space station solar arrays, must be extremely lightweight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a control system. The tension preload in the blanket of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomena known as grounding, or false stiffening, of the stiffness matrix occurs during rigid body rotation. The grounding phenomena is examined in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. Various techniques are used for developing new stiffness matrices from the rigorous solutions of the differential equations, including the solution of the directed force problem. A new directed force stiffness matrix developed by the author provides all the rigid body capabilities for the beam in space.
Physics of the inner heliosphere 1-10R sub O plasma diagnostics and models
NASA Technical Reports Server (NTRS)
Withbroe, G. L.
1984-01-01
The physics of solar wind flow in the acceleration region and impulsive phenomena in the solar corona is studied. The study of magnetohydrodynamic wave propagation in the corona and the solutions for steady state and time dependent solar wind equations gives insights concerning the physics of the solar wind acceleration region, plasma heating and plasma acceleration processes and the formation of shocks. Also studied is the development of techniques for placing constraints on the mechanisms responsible for coronal heating.
Development of Facility Type Information Packages for Design of Air Force Facilities.
1983-03-01
solution. For example, the optimum size and loca- 19 tion of windows for the incorporation of a passive solar *l . heating system varies with location, time...conditioning load estimate M. Energy impact statement N. Majcom review comments 0. Solar energy systems 61 4 Information which could help in the development...and Passive solar systems. All facilities should have Scme aspects of passive solar incor- por3ted into the iesign. Active sclar systems should ze con
Sustainable Water and Energy in Gaza Strip
NASA Astrophysics Data System (ADS)
Hamdan, L.; Zarei, M.; Chianelli, R.; Gardner, E.
2007-12-01
Shortage of fresh water is a common problem in different areas of the world including the Middle East. Desalination of seawater and brackish water is the cheapest way to obtain fresh water in many regions. This research focuses on the situation in Gaza Strip where there is a severe shortage in the energy and water supply. The depletion of fresh water supplies and lack of wastewater treatments result in environmental problems. A solar powered cogeneration plant producing water and energy is proposed to be a suitable solution for Gaza Strip. Solar energy, using Concentrating Solar thermal Power (CSP) technologies, is used to produce electricity by a steam cycle power plant. Then the steam is directed to a desalination plant where it is used to heat the seawater to obtain freshwater. The main objective of this research is to outline a solution for the water problems in Gaza Strip, which includes a cogeneration (power and water) solar powered plant. The research includes four specific objectives: 1- an environmental and economic comparison between solar and fossil fuel energies; 2- technical details for the cogeneration plant; 3- cost and funding, 4- the benefits.
Spatially inhomogeneous acceleration of electrons in solar flares
NASA Astrophysics Data System (ADS)
Stackhouse, Duncan J.; Kontar, Eduard P.
2018-04-01
The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.
NASA Astrophysics Data System (ADS)
Yang, Gang; Li, Yong-Feng; Yao, Bin; Ding, Zhan-Hui; Deng, Rui; Zhao, Hai-Feng; Zhang, Li-Gong; Zhang, Zhen-Zhong
2018-03-01
Kesterite Cu2ZnSn(S x Se1-x )4 (CZTSSe) thin films and related solar cells were successfully fabricated by a facile sol-gel method and selenization process. The influence of Polyvinylpyrrolidone (PVP) additive on the properties of the CZTSSe films and the power conversion efficiency (PCE) of the solar cells were investigated. The results reveal that the qualities of CZTSSe films can be manipulated by incorporating a small amount of PVP. With addition of 1 wt% of PVP, the smoothness and grain size of the CZTSSe films were greatly improved. The contact at the CZTSSe/Mo interface was also improved. As a result, the optimized PCE of solar cells improved from 2.24% to 4.34% after the addition of 1 wt% PVP due to the decrease of recombination at the interfaces. These results suggest that polymer addition in the precursor solution is a promising method for obtaining high quality of CZTSSe films and high-performance solar cells.
A Solution on Identification and Rearing Files Insmallhold Pig Farming
NASA Astrophysics Data System (ADS)
Xiong, Benhai; Fu, Runting; Lin, Zhaohui; Luo, Qingyao; Yang, Liang
In order to meet government supervision of pork production safety as well as consumeŕs right to know what they buy, this study adopts animal identification, mobile PDA reader, GPRS and other information technologies, and put forward a data collection method to set up rearing files of pig in smallhold pig farming, and designs related metadata structures and its mobile database, and develops a mobile PDA embedded system to collect individual information of pig and uploading into the remote central database, and finally realizes mobile links to the a specific website. The embedded PDA can identify both a special pig bar ear tag appointed by the Ministry of Agricultural and a general data matrix bar ear tag designed by this study by mobile reader, and can record all kinds of inputs data including bacterins, feed additives, animal drugs and even some forbidden medicines and submitted them to the center database through GPRS. At the same time, the remote center database can be maintained by mobile PDA and GPRS, and finally reached pork tracking from its origin to consumption and its tracing through turn-over direction. This study has suggested a feasible technology solution how to set up network pig electronic rearing files involved smallhold pig farming based on farmer and the solution is proved practical through its application in the Tianjińs pork quality traceability system construction. Although some individual techniques have some adverse effects on the system running such as GPRS transmitting speed now, these will be resolved with the development of communication technology. The full implementation of the solution around China will supply technical supports in guaranteeing the quality and safety of pork production supervision and meet consumer demand.
Royère, C
1999-03-01
The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.
Xie, Yian; Shao, Feng; Wang, Yaoming; Xu, Tao; Wang, Deliang; Huang, Fuqiang
2015-06-17
Sequential deposition is a widely adopted method to prepare CH3NH3PbI3 on mesostructured TiO2 electrode for organic lead halide perovskite solar cells. However, this method often suffers from the uncontrollable crystal size, surface morphology, and residual PbI2 in the resulting CH3NH3PbI3, which are all detrimental to the device performance. We herein present an optimized sequential solution deposition method by introducing different amount of CH3NH3I in PbI2 precursor solution in the first step to prepare CH3NH3PbI3 absorber on mesoporous TiO2 substrates. The addition of CH3NH3I in PbI2 precursor solution can affect the crystallization and composition of PbI2 raw films, resulting in the variation of UV-vis absorption and surface morphology. Proper addition of CH3NH3I not only enhances the absorption but also improves the efficiency of CH3NH3PbI3 solar cells from 11.13% to 13.37%. Photoluminescence spectra suggest that the improvement of device performance is attributed to the decrease of recombination rate of carriers in CH3NH3PbI3 absorber. This current method provides a highly repeatable route for enhancing the efficiency of CH3NH3PbI3 solar cell in the sequential solution deposition method.
Synergies of solar energy use in the desalination of seawater: A case study in northern Chile
NASA Astrophysics Data System (ADS)
Servert, Jorge F.; Cerrajero, Eduardo; Fuentealba, Edward L.
2016-05-01
The mining industry is a great consumer of water for hydrometallurgical processes. Despite the efforts in minimizing the use of fresh water through reuse, recycling and process intensification, water demand for mining is expected to rise a 40% from 2013 to 2020. For seawater to be an alternative to groundwater, it must be pumped up to the mine (thousands of meters uphill) and desalinated. These processes require intensive energy and investment in desalination and piping/pumping facilities. A conventional solution for this process would be desalination by reverse osmosis at sea level, powered by electricity from the grid, and further pumping of the desalinated water uphill. This paper compares the feasibility of two solar technologies versus the "conventional" option. LCOW (Levelized Cost of Water) was used as a comparative indicator among the studied solutions, with values for a lifetime of 10, 15, 20 and 25 years, calculated using a real discount rate equal to 12%. The LCOW is lower in all cases for the RO + grid solution. The cost of desalination, ignoring the contribution of pumping, is similar for the three technologies from twenty years of operation. The use of solar energy to desalinate sea water for consumption in the mines of the Atacama region is technically feasible. However, due to the extra costs from pumping whole seawater, and not just the desalinated water, solar solutions are less competitive than the conventional process.
GSBPP Faculty Perceptions of Synchronous Distance Learning Technologies
2008-12-01
faculty who teach DL programs in the Graduate School of Business & Public Policy (GSBPP) at Naval Postgraduate School (NPS), and then to recommend...Alice Crawford Second Reader Terry Rea, CAPT, USN, Dean, (Acting) Graduate School of Business and Public Policy iv THIS PAGE...DL programs in the Graduate School of Business & Public Policy (GSBPP) at Naval Postgraduate School (NPS), and then to recommend sound solutions in
ERIC Educational Resources Information Center
Nelson, Mark A.
2008-01-01
Each year one of the biggest debates in higher education seems to be: Is this the year that electronic textbooks take off? E-reader devices are getting better. The inventory of digital content is expanding. Business models are emerging to support the needs of students, faculty members, and publishers. People are getting more comfortable with new…
Module 1: Text Versions | State, Local, and Tribal Governments | NREL
bonus module is on using solar PV for resilience. And, as Jenny and Harrison both mentioned, if you do working definition. To simply resilience and to incorporate solutions like on-site solar PV, NREL has into solar PV projects. Energy resilience can only be achieved by understanding energy needs and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, J. F.; Erdélyi, R., E-mail: robertus@sheffield.ac.uk
2016-05-10
Magneto-acoustic gravity (MAG) waves have been studied intensively in the context of astrophysical plasmas. There are three popular choices of analytic modeling using a Cartesian coordinate system: a magnetic field parallel, perpendicular, or at an angle to the gravitational field. Here, we study a gravitationally stratified plasma embedded in a parallel, so called vertical, magnetic field. We find a governing equation for the auxiliary quantity Θ = p {sub 1}/ ρ {sub 0}, and find solutions in terms of hypergeometric functions. With the convenient relationship between Θ and the vertical velocity component, v {sub z}, we derive the solution formore » v{sub z}. We show that the four linearly independent functions for v{sub z} can also be cast as single hypergeometric functions, rather than the Frobenius series derived by Leroy and Schwartz. We are then able to analyze a case of approximation for a one-layer solution, taking the small wavelength limit. Motivated by solar atmospheric applications, we finally commence study of the eigenmodes of perturbations for a two-layer model using our solutions, solving the dispersion relation numerically. We show that, for a transition between a photospheric and chromospheric plasma embedded in a vertical magnetic field, modes exist that are between the observationally widely investigated three and five minute oscillation periods, interpreted as solar global oscillations in the lower solar atmosphere . It is also shown that, when the density contrast between the layers is large (e.g., applied to photosphere/chromosphere-corona), the global eigenmodes are practically a superposition of the same as in each of the separate one-layer systems.« less
NASA Astrophysics Data System (ADS)
Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.
2015-09-01
In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The properties of the solar cells on anodized aluminum substrates were analyzed by using a solar simulator.
The Effect of Planetary Albedo on Solar Orientation of Spacecraft
NASA Technical Reports Server (NTRS)
Fontana, Anthony
1967-01-01
The analytical expression for the solar orientation error caused by planetary albedo is derived. A typical solar sensor output characteristic is assumed and a computer solution to the analytical is obtained. The computer results are presented for a spacecraft in the vicinity of Earth, Venus, Mars, and the Moon. Each planetary body is assumed to be a spherical diffuse reflector with cylindrical shadows and a constant albedo. The data generated herein permit the selection of an appropriate coarse-sensor to fine-sensor switching angle for solar orientation control systems and facilitate the the interpretation of solar-referenced scientific experiment data.
Colloidal Engineering for Infrared-Bandgap Solution-Processed Quantum Dot Solar Cells
NASA Astrophysics Data System (ADS)
Kiani, Amirreza
Ever-increasing global energy demand and a diminishing fossil fuel supply have prompted the development of technologies for sustainable energy production. Solar photovoltaic (PV) devices have huge potential for energy harvesting and production since the sun delivers more energy to the earth in one hour than the global population consumes in one year. The solar cell industry is now dominated by silicon PV devices. The cost of silicon modules has decreased substantially over the past two decades and the number of installed silicon PV devices has increased dramatically. There remains a need for emerging solar technologies that can harvest the untapped portion of the solar spectrum and can be integrated on flexible and curved surfaces. This thesis focuses on colloidal quantum dot (CQD) PV devices. CQDs are nanoparticles fabricated using a low-temperature and cost-effective solution technique. These materials suffer from a high density of surface traps derived from the large surface-to-volume ratio of CQD nanoparticles, combined with limited carrier mobility. These result in a short carrier diffusion length, a main limiting factor in CQD solar cell performance. This thesis seeks to address the poor diffusion length in lead sulfide (PbS) CQD films and pave the way for new applications for CQD PV devices in infrared solar harvesting and waste heat recovery. A two-fold reduction in surface trap density is demonstrated using molecular halide treatment. Iodine molecules introduced prior to the film formation replace the otherwise unpassivated surface sulfur atoms. This results in a 35% increase in the diffusion length and enables charge extraction over thicker active layer leading to the world's most efficient CQD PV devices from June 2015 to July 2016 with the certified power conversion efficiency of 9.9%. This represents a 30% increase over the best-certified PCE (7.5%) prior to this thesis. The colloidal engineering highlighted herein enables infrared (IR) solar harvesting for the first time. Addition of short bromothiol ligands during the synthesis significantly reduces the agglomeration of 1 eV bandgap CQDs and maintains efficient charge extraction into the selective electrodes. The devices can augment the performance of the best silicon cells by 7 power points where 0.8 additive power points are demonstrated experimentally. A tailored solution exchanged process developed for 1 eV bandgap CQDs results in air-stable IR PV devices with improved manufacturability. The process utilizes a tailored combination of lead iodide (PbI2) and ammonium acetate for the solution exchange and hexylamine + MEK as the final solvent to yield solar thick films with the filtered (1100 nm and beyond) performance of 0.4%. This thesis pushes the limit of CQD device applications to waste heat recovery. I demonstrate successful harvesting of low energy photons emitted from a hot object by designing and developing the first solution-processed thermophotovoltaic devices. These devices are comprised of 0.7 eV bandgap CQDs that successfully harvest photons emitted from an 800°C heat source.
NASA Astrophysics Data System (ADS)
Li, Zhenxiang; Zhao, Jianxi
2013-03-01
Wettability of aluminum substrate by the aqueous solutions containing ethoxylated alcohol nonionic surfactants C12En- or Triton X-series was studied using dynamic contact angle measurements. The efficiency of wetting was found to strongly depend on the length of polyoxyethylene (POE) chain of C12En- or Triton X surfactants. For C12E4 that has a very short POE chain, it hardly made the aqueous solution spreading over aluminum. The others with a long POE chain were indeed very efficient in promoting the solution spreading. Moreover, all the spreading process could be completed within 10 s. The single-layer Nisbnd Al2O3 coatings were fabricated from the precursor solutions containing C12En- or Triton X surfactants and the reflectance spectra were measured by a UV/vis spectrophotometer equipped with an integrating sphere. The results indicated that the precursor solution with a long POE chain surfactant as wetting agent favored to fabricate a uniform film on the aluminum substrate and therefore to get a high solar absorptance.
NASA Astrophysics Data System (ADS)
Noh, Hongche; Oh, Seong-Geun; Im, Seung Soon
2015-04-01
To prepare the anatase TiO2 thin films on ITO glass, amorphous TiO2 colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO2 colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO2 film (for device A). For other TiO2 films, amorphous TiO2 colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO2 colloidal solution. This anatase TiO2 colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO2 colloidal solution was about 1.0 nm and that of anatase TiO2 colloidal solution was 10 nm. The thickness of TiO2 films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO2 films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO2 films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO2 films as a buffer layer at low temperature on plastic substrate by roll-to roll process.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.
1991-01-01
The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.
Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity
NASA Astrophysics Data System (ADS)
Almeida, Joana; Liang, Dawei
2011-05-01
Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.
Solar Array Power Conditioning for a Spinning Satellite
NASA Astrophysics Data System (ADS)
De Luca, Antonio; Chirulli, Giovanni
2008-09-01
The conditioning of the output power from a solar array can mainly be achieved by the adoption of DET or MPPT based architecture. There are several factors that can orientate the choice of the system designer towards one solution or the other; some of them maybe inherent to the mission derived requirements (Illumination levels, EMC cleanliness, etc.), others come directly from a careful assessment of performances and losses of both power conditioner and solar array.Definition of the criteria on which basis the final choice is justified is important as they have to guarantee a clear determination of the available versus the required power in all those mission conditions identifiable as design drivers for the overall satellite system both in terms of mass and costs.Such criteria cannot just be simple theoretical enunciations of principles; nor the meticulous definition of them on a case by case basis for different types of missions as neither option gives a guarantee of being conclusive.The aim of this paper is then to suggest assessment steps and guidelines that can be considered generically valid for any mission case, starting from the exposition of the trade off activity performed in order to choose the power conditioning solution for a spinning satellite having unregulated power bus architecture. Calculations and numerical simulations have been made in order to establish the needed solar array surface in case of adoption of a DET or MPPT solution, taking into account temperature and illumination levels on the solar cells, as well as power losses and inefficiencies from the solar generator to the main power bus, in different mission phases. Particular attention has been taken in order to correctly evaluate the thermal effects on the rest of the spacecraft as function of the adopted power system regulation.
A new class of exact, nonlinear solutions to the Grad-Shafranov equation
NASA Technical Reports Server (NTRS)
Roumeliotis, George
1993-01-01
We have constructed a new class of exact, nonlinear solutions to the Grad-Shafranov equation, representing force-free magnetic fields with translational symmetry. These exact solutions are pertinent to the study of magnetic structures in the solar corona that are subjected to photospheric shearing motions.
Screen printed silver top electrode for efficient inverted organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min
2015-10-15
Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinitymore » and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.« less
NASA Astrophysics Data System (ADS)
Chae, Jongchul; Litvinenko, Yuri E.
2017-08-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na I D2 and Hα lines.
Selective Internal Heat Distribution in Modified Trombe Wall
NASA Astrophysics Data System (ADS)
Szyszka, Jerzy; Kogut, Janusz; Skrzypczak, Izabela; Kokoszka, Wanda
2017-12-01
At present, the requirements for thermal insulation of the external walls in buildings are being increased. There is a need to reduce energy consumption for heating rooms during the winter season. This may be achieved by increasing the thermal resistance of the outer partitions, using solutions that utilize either recuperation or solar radiation. The most popular systems include either solar collectors, or heat pump links or ground exchangers. Trombe walls (TW) are a very promising passive heating system, which requires little or no effort to operate, and may be very convenient in different climate conditions. A typical TW consists of a masonry wall painted a dark, heat absorbing paint colour and faced with a single or double layer of glass. The principle of operation is based on the photothermal conversion of solar radiation. There are various modifications of TW. They may improve the energy efficiency in relation to the climate conditions in which they operate. The hybrid solutions are also known. The efficiency of walls is related to the use of proper materials. In TW, the compromise should be sought between the thermal resistance and the ability to distribute heat from the absorbed energy of solar radiation. The paper presents an overview of the most commonly used solutions and discusses its own concept dedicated to the climate conditions of Central Europe.
NASA Astrophysics Data System (ADS)
Schielicke, Reinhard E.
2002-11-01
This 15th volume in the annual series on recent developments and scientific progress in astronomy and astrophysics contains fourteen invited reviews presented during the Joint European and National Astronomical Meeting JENAM 2001, held in Munich, Germany. Readers also learn about the lecture on macro- and microscopic views of nearby galaxies given by Keiichi Kodaira, Japan, who was awarded the Karl Schwarzschild medal 2001. Further contributions on the topic provide the latest results on the search for extra-solar planets, formation of stars and galaxies, physics of active galactic nuclei, as well as new telescopes and sensor technologies for various wavelengths.
Solar space heating for the Visitors Center, Stephens College, Columbia, Missouri
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri is discussed. The system is installed in a four-story, 15,000 square foot building. The solar energy system is an integral design of the building and utilizes 176 hydronic flat plate collectors which use a 50 percent water ethylene blycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5,000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71 percent of the heating load.
Solar powered automobile automation for heatstroke prevention
NASA Astrophysics Data System (ADS)
Singh, Navtej Swaroop; Sharma, Ishan; Jangid, Santosh
2016-03-01
Heatstroke inside a car has been critical problem in every part of the world. Non-exertional heat stroke results from exposure to a high environmental temperature. Exertional heat stroke happens from strenuous exercise. This paper presents a solution for this fatal problem and proposes an embedded solution, which is cost effective and shows the feasibility in implementation. The proposed system consists of information sharing platform, interfacing of sensors, Global System Mobile (GSM), real time monitoring system and the system is powered by the solar panel. The system has been simulated and tested with experimental setup.
Organic Solar Cells Based on Electrodeposited Polyaniline Films
NASA Astrophysics Data System (ADS)
Inoue, Kei; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo
2012-04-01
Polyaniline thin films as hole transporting layers were fabricated on transparent indium-tin-oxide electrodes by electrodeposition of aniline in an aqueous H2SO4 electrolyte solution. Emerald-green polyaniline films were obtained, which showed stable redox waves. A mixed solution of polythiophene and fullerene derivative was spin-coated onto the electrodeposited polyaniline film. After the modification of titanium oxide film on the surface of the polythiophene/fullerene layer, an aluminum electrode was fabricated by vacuum deposition. The obtained solar cells generated stable photocurrent and photovoltage under light illumination.
6.5% efficient perovskite quantum-dot-sensitized solar cell.
Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu
2011-10-05
Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH(3)NH(3))PbI(3) nanocrystal. Spin-coating of the equimolar mixture of CH(3)NH(3)I and PbI(2) in γ-butyrolactone solution (perovskite precursor solution) leads to (CH(3)NH(3))PbI(3) quantum dots (QDs) on nanocrystalline TiO(2) surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO(2) film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm(-2)), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.
Solar energy to meet the nation's energy needs
NASA Technical Reports Server (NTRS)
Rom, F. E.; Thomas, R. L.
1973-01-01
Discussion of the possibilities afforded by solar energy as one of the alternative energy sources capable to take the place of the dwindling oil and gas reserves. Solar energy, being a nondepleting clean source of energy, is shown to be capable of providing energy in all the forms in which it is used today. Steps taken toward providing innovative solutions that are economically competitive with other systems are briefly reviewed.
JPRS Report Science & Technology, Europe
1991-10-31
the solar system, the earth, and the conditions for life on earth, • To contribute to the solution of environmental prob- lems through satellite...requiring considerable additional R&D is to be stepped up. • Wind plants require about 10 years’ more R&D work. • Photovoltaics (PV) and solar ...Funding for active and passive solar energy exploita- tion. 5. Transport Sector • Optimizing means of transport (in manufacture and operation
Berny, Stephane; Blouin, Nicolas; Distler, Andreas; Egelhaaf, Hans-Joachim; Krompiec, Michal; Lohr, Andreas; Lozman, Owen R; Morse, Graham E; Nanson, Lana; Pron, Agnieszka; Sauermann, Tobias; Seidler, Nico; Tierney, Steve; Tiwana, Priti; Wagner, Michael; Wilson, Henry
2016-05-01
The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large-scale production.
Solar hybrid power plants: Solar energy contribution in reaching full dispatchability and firmness
NASA Astrophysics Data System (ADS)
Servert, Jorge F.; López, Diego; Cerrajero, Eduardo; Rocha, Alberto R.; Pereira, Daniel; Gonzalez, Lucía
2016-05-01
Renewable energies for electricity generation have always been considered as a risk for the electricity system due to its lack of dispatchability and firmness. Renewable energies penetration is constrained to strong grids or else its production must be limited to ensure grid stability, which is kept by the usage of hydropower energy or fossil-fueled power plants. CSP technology has an opportunity to arise not only as a dispatchable and firm technology, but also as an alternative that improves grid stability. To achieve that objective, solar hybrid configurations are being developed, being the most representative three different solutions: SAPG, ISCC and HYSOL. A reference scenario in Kingdom of Saudi Arabia (KSA) has been defined to compare these solutions, which have been modelled, simulated and evaluated in terms of dispatchability and firmness using ratios defined by the authors. The results show that: a) SAPG obtains the highest firmness KPI values, but no operation constraints have been considered for the coal boiler and the solar energy contribution is limited to 1.7%, b) ISCC provides dispatchable and firm electricity production but its solar energy contribution is limited to a 6.4%, and c) HYSOL presents the higher solar energy contribution of all the technologies considered: 66.0% while providing dispatchable and firm generation in similar conditions as SAPG and ISCC.
Heliostat kinematic system calibration using uncalibrated cameras
NASA Astrophysics Data System (ADS)
Burisch, Michael; Gomez, Luis; Olasolo, David; Villasante, Cristobal
2017-06-01
The efficiency of the solar field greatly depends on the ability of the heliostats to precisely reflect solar radiation onto a central receiver. To control the heliostats with such a precision accurate knowledge of the motion of each of them modeled as a kinematic system is required. Determining the parameters of this system for each heliostat by a calibration system is crucial for the efficient operation of the solar field. For small sized heliostats being able to make such a calibration in a fast and automatic manner is imperative as the solar field potentially contain tens or even hundreds of thousands of them. A calibration system which can rapidly recalibrate a whole solar field would also allow reducing costs. Heliostats are generally designed to provide stability over a large period of time. Being able to relax this requirement and compensate any occurring error by adapting parameters in a model, the costs of the heliostat can be reduced. The presented method describes such an automatic calibration system using uncalibrated cameras rigidly attached to each heliostat. The cameras are used to observe targets spread out through the solar field; based on this the kinematic system of the heliostat can be estimated with high precision. A comparison of this approach to similar solutions shows the viability of the proposed solution.
Photoelectrochemical Solar Cells.
ERIC Educational Resources Information Center
McDevitt, John T.
1984-01-01
This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are…
Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells
Varotto, Alessandro; Nam, Chang-Yong; Radivojevic, Ivana; Tomé, Joao; Cavaleiro, José A.S.; Black, Charles T.; Drain, Charles Michael
2010-01-01
A core phthalocyanine platform allows engineering the solubility properties the band gap; shifting the maximum absorption toward the red. A simple method to increase the efficiency of heterojunction solar cells uses a self-organized blend of the phthalocyanine chromophores fabricated by solution processing. PMID:20136126
NREL Establishes World Record for Solar Hydrogen Production | News | News |
acid/water solution (electrolyte) where the water-splitting reaction occurs to form hydrogen and oxygen efficiency and to partially protect the critical underlying layers from the corrosive electrolyte solution
The Ambient and Perturbed Solar Wind: From the Sun to 1 AU
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1997-01-01
The overall objective of the proposed research was to use numerical solutions of the magnetohydrodynamic (MHD) equations along with comparisons of the computed results with observations to study the following topics: (1) ambient solar wind solutions that extend from the solar surface to 1 astronomical unit (AU), contain closed magnetic structures near the Sun, and are consistent with observed values; (2) magnetic and plasma structures in coronal mass ejections (CMES) as they propagate to the interplanetary medium; (3) relation of MHD shocks to CMEs in the interplanetary medium; (4) interaction of MHD shocks with structures (such as other shocks, corotating interaction regions, current sheets) in the interplanetary plasma; and (5) simulations of observed interplanetary structures. A planned close collaboration with data analysts served to make the model more relevant to the data. The outcome of this research program is an improved understanding of the physical processes occurring in solar-generated disturbances in the interplanetary medium between the Sun and 1 AU.
Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4.
Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, B; Murugesan, V
2002-03-01
Aqueous solutions of reactive blue 4 textile dye are totally mineralised when irradiated with TiO2 photocatalyst. A solution containing 4 x 10(-4) M dye was completely degraded in 24 h irradiation time. The intensity of the solar light was measured using Lux meter. The results showed that the dye molecules were completely degraded to CO2, SO4(2-), NO3-, NH4+ and H2O under solar irradiation. The addition of hydrogen peroxide and potassium persulphate influenced the photodegradation efficiency. The rapidity of photodegradation of dye intermediates were observed in the presence of hydrogen peroxide than in its absence. The auxiliary chemicals such as sodium carbonate and sodium chloride substantially affected the photodegradation efficiency. High performance liquid chromatography and chemical oxygen demand were used to study the mineralisation and degradation of the dye respectively. It is concluded that solar light induced degradation of textile dye in wastewater is a viable technique for wastewater treatment.
Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.
Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen
2015-08-03
Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr3 as Light Absorber.
Duan, Jialong; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei
2018-05-01
Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO 2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr 3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr 3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI 2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2005-01-01
The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
Self-Consistent and Time-Dependent Solar Wind Models
NASA Technical Reports Server (NTRS)
Ong, K. K.; Musielak, Z. E.; Rosner, R.; Suess, S. T.; Sulkanen, M. E.
1997-01-01
We describe the first results from a self-consistent study of Alfven waves for the time-dependent, single-fluid magnetohydrodynamic (MHD) solar wind equations, using a modified version of the ZEUS MHD code. The wind models we examine are radially symmetrical and magnetized; the initial outflow is described by the standard Parker wind solution. Our study focuses on the effects of Alfven waves on the outflow and is based on solving the full set of the ideal nonlinear MHD equations. In contrast to previous studies, no assumptions regarding wave linearity, wave damping, and wave-flow interaction are made; thus, the models naturally account for the back-reaction of the wind on the waves, as well as for the nonlinear interaction between different types of MHD waves. Our results clearly demonstrate when momentum deposition by Alfven waves in the solar wind can be sufficient to explain the origin of fast streams in solar coronal holes; we discuss the range of wave amplitudes required to obtained such fast stream solutions.
On the Solution of the Continuity Equation for Precipitating Electrons in Solar Flares
NASA Technical Reports Server (NTRS)
Emslie, A. Gordon; Holman, Gordon D.; Litvinenko, Yuri E.
2014-01-01
Electrons accelerated in solar flares are injected into the surrounding plasma, where they are subjected to the influence of collisional (Coulomb) energy losses. Their evolution is modeled by a partial differential equation describing continuity of electron number. In a recent paper, Dobranskis & Zharkova claim to have found an "updated exact analytical solution" to this continuity equation. Their solution contains an additional term that drives an exponential decrease in electron density with depth, leading them to assert that the well-known solution derived by Brown, Syrovatskii & Shmeleva, and many others is invalid. We show that the solution of Dobranskis & Zharkova results from a fundamental error in the application of the method of characteristics and is hence incorrect. Further, their comparison of the "new" analytical solution with numerical solutions of the Fokker-Planck equation fails to lend support to their result.We conclude that Dobranskis & Zharkova's solution of the universally accepted and well-established continuity equation is incorrect, and that their criticism of the correct solution is unfounded. We also demonstrate the formal equivalence of the approaches of Syrovatskii & Shmeleva and Brown, with particular reference to the evolution of the electron flux and number density (both differential in energy) in a collisional thick target. We strongly urge use of these long-established, correct solutions in future works.
Ljubas, Davor; Smoljanić, Goran; Juretić, Hrvoje
2015-09-15
In this study we used TiO2 nanoparticles as semiconductor photocatalysts for the degradation of Methyl Orange (MO) and Congo Red (CR) dyes in an aqueous solution. Since TiO2 particles become photocatalytically active by UV radiation, two sources of UV-A radiation were used - natural solar radiation which contains 3-5% UV-A and artificial, solar-like radiation, created by using a lamp. The optimal doses of TiO2 of 500 mg/L for the CR and 1500 mg/L for the MO degradation were determined in experiments with the lamp and were also used in degradation experiments with natural solar light. The efficiency of each process was determined by measuring the absorbance at two visible wavelengths, 466 nm for MO and 498 nm for CR, and the total organic carbon (TOC), i.e. decolorization and mineralization, respectively. In both cases, considerable potential for the degradation of CR and MO was observed - total decolorization of the solution was achieved within 30-60 min, while the TOC removal was in the range 60-90%. CR and MO solutions irradiated without TiO2 nanoparticles showed no observable changes in either decolorization or mineralization. Three different commercially available TiO2 nanoparticles were used: pure-phase anatase, pure-phase rutile, and mixed-phase preparation named Degussa P25. In terms of degradation kinetics, P25 TiO2 exhibited a photocatalytic activity superior to that of pure-phase anatase or rutile. The electric energy consumption per gram of removed TOC was determined. For nearly the same degradation effect, the consumption in the natural solar radiation experiment was more than 60 times lower than in the artificial solar-like radiation experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Taylor, W.
1982-01-01
Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.
Sustainable Energy - Without the hot air
NASA Astrophysics Data System (ADS)
MacIsaac, Dan
2009-11-01
Reader John Roeder writes about a website associated with David MacKay's book Sustainable Energy-Without the hot air. The book is a freely downloadable PDF (or purchasable) book describing an analysis detailing a low-carbon renewable energy transformation route for a large, modern first world industrial country (the United Kingdom). Written for the layman, the work uses vernacular language, e.g., energy consumption and production in a series of bar charts detailing the impacts of necessary strategies such as population reduction, lifestyle changes, and technology changes. MacKay notes that most reasonable plans have large nuclear and ``clean coal'' or other carbon capture components, lots of pumped heat, wind, and much efficiency improvement. He debunks some sacred cows (roof-mounted micro-turbines; hydrogen-powered cars) while pointing out simple effective technologies such as roof-mounted solar water heaters. Similar modest changes in the U.S. (painting roofs white in the southern half of the country) have strong impacts. MacKay claims that he ``doesn't advocate any particular plan or technology,'' but ``tells you how many bricks are in the lego box, and how big each brick is'' so readers can start making planning decisions.
The Starflight Handbook: A Pioneer's Guide to Interstellar Travel
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.; Matloff, Gregory L.
1989-06-01
The Starflight Handbook A Pioneer's Guide to Interstellar Travel "The Starflight Handbook is an indispensable compendium of the many and varied methods for traversing the vast interstellar gulf--don't leave the Solar System without it!" --Robert Forward "Very sensible, very complete and useful. Its good use of references and technical `sidebars' adds to the book and allows the nontechnical text to be used by ordinary readers in an easy fashion. I certainly would recommend this book to anyone doing any thinking at all about interstellar flight or the notion of possibilities of contacts between hypothetical civilizations in different stat systems." --Louis Friedman Executive Director, The Planetary Society The Starflight Handbook is the first and only compendium on planet Earth of the radical new technologies now on the drawing boards of some of our smartest and most imaginative space scientists and engineers. Scientists and engineers as well as general readers will be captivated by its: In-depth discussions of everything from nuclear pulse propulsion engines to in-flight navigation, in flowing, non-technical language Sidebars and appendices cover technical and mathematical concepts in detail Seventy-five elegant and enlightening illustrations depicting starships and their hardware
Propellant Management in Booster and Upper Stage Propulsion Systems
NASA Technical Reports Server (NTRS)
Fisher, Mark F.
1997-01-01
A summary review of some of the technical issues which surround the design of the propulsion systems for Booster and Upper Stage systems are presented. The work focuses on Propellant Geyser, Slosh, and Orientation. A brief description of the concern is given with graphics which help the reader to understand the physics of the situation. The most common solutions to these problems are given with there respective advantages and disadvantages.
Prajapat, Amrutlal L; Gogate, Parag R
2016-09-01
Depolymerization of polyacrylic acid (PAA) as sodium salt has been investigated using ultrasonic and solar irradiations with process intensification studies based on combination with hydrogen peroxide (H2O2) and ozone (O3). Effect of solar intensity, ozone flow and ultrasonic power dissipation on the extent of viscosity reduction has been investigated for individual treatment approaches. The combined approaches such as US+solar, solar+O3, solar+H2O2, US+H2O2 and US+O3 have been subsequently investigated under optimum conditions and established to be more efficient as compared to individual approaches. Approach based on US (60W)+solar+H2O2 (0.01%) resulted in the maximum extent of viscosity reduction as 98.97% in 35min whereas operation of solar+H2O2 (0.01%), US (60W), H2O2 (0.3%) and solar irradiation resulted in about 98.08%, 90.13%, 8.91% and 90.77% intrinsic viscosity reduction in 60min respectively. Approach of US (60W)+solar+ozone (400mg/h flow rate) resulted in extent of viscosity reduction as 99.47% in 35min whereas only ozone (400mg/h flow rate), ozone (400mg/h flow rate)+US (60W) and ozone (400mg/h flow rate)+solar resulted in 69.04%, 98.97% and 98.51% reduction in 60min, 55min and 55min respectively. The chemical identity of the treated polymer using combined approaches was also characterized using FTIR (Fourier transform infrared) spectra and it was established that no significant structural changes were obtained during the treatment. Overall, it can be said that the combination technique based on US and solar irradiations in the presence of hydrogen peroxide is the best approach for the depolymerization of PAA solution. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meng, Lei
Solar energy harvesting through photovoltaic conversion has gained great attention as a sustainable and environmentally friendly solution to meet the rapidly increasing global energy demand. Currently, the high cost of solar-cell technology limits its widespread use. This situation has generated considerable interest in developing alternative solar-cell technologies that reduce cost through the use of less expensive materials and processes. Perovskite solar cells provide a promising low-cost technology for harnessing this energy source. In Chapter two, a moisture-assist method is introduced and studied to facilitate grain growth of solution processed perovskite films. As an approach to achieve high-quality perovskite films, I anneal the precursor film in a humid environment (ambient air) to dramatically increase grain size, carrier mobility, and charge carrier lifetime, thus improving electrical and optical properties and enhancing photovoltaic performance. It is revealed that mild moisture has a positive effect on perovskite film formation, demonstrating perovskite solar cells with 17.1% power conversion efficiency. Later on, in Chapter four, an ultrathin flexible device delivering a PCE of 14.0% is introduced. The device is based on silver-mesh substrates exhibiting superior durability against mechanical bending. Due to their low energy of formation, organic lead iodide perovskites are also susceptible to degradation in moisture and air. The charge transport layer therefore plays a key role in protecting the perovskite photoactive layer from exposure to such environments, thus achieving highly stable perovskite-based photovoltaic cells. Although incorporating organic charge transport layers can provide high efficiencies and reduced hysteresis, concerns remain regarding device stability and the cost of fabrication. In this work, perovskite solar cells that have all solution-processed metal oxide charge transport layers were demonstrated. Stability has been significantly improved compared with cells made with organic layers. Degradation mechanisms were investigated and important guidelines were derived for future device design with a view to achieving both highly efficient and stable solar devices. Organometal halide based perovskite material has great optoelectronic proprieties, for example, shallow traps, benign grain boundaries and high diffusion length. The perovskite LEDs show pure electroluminescence (EL) with narrow full width at half maximum (FWHM), which is an advantage for display, lighting or lasing applications. In chapter five, perovskite LEDs are demonstrated employing solution processed charge injection layers with a quantum efficiency of 1.16% with a very low driving voltage.
NASA Astrophysics Data System (ADS)
He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O'Neil, Daniel; Szymanski, Paul; Ei-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun
2017-07-01
Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.
He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O’Neil, Daniel; Szymanski, Paul; EI-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun
2017-01-01
Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics. PMID:28685751
Taking Venus models to new dimensions.
NASA Astrophysics Data System (ADS)
Murawski, K.
1997-11-01
Space plasma physicists in Poland and Japan have gained new insights into the interaction between the solar wind and Venus. Computer simulations of this 3D global interaction between the solar wind and nonmagnetized bodies have enabled greater understanding of the large-scale processes involved in such phenomena. A model that offers improved understanding of the solar wind interaction with Venus (as well as other nonmagnetized bodies impacted by the solar wind) has been developed. In this model, the interaction of the solar wind with the ionosphere of Venus is studied by calculating numerical solutions of the 3D MHD equations for two-component, chemically reactive plasma. The author describes the innovative model.
The Surface Density Distribution in the Solar Nebula
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2004-01-01
The commonly used minimum mass power law representation of the pre-solar nebula is reanalyzed using a new cumulative-mass-model. This model predicts a smoother surface density approximation compared with methods based on direct computation of surface density. The density is quantified using two independent analytical formulations. First, a best-fit transcendental function is applied directly to the basic planetary data. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the solar nebula data. The latter model is shown to be a good approximation to the finite-size early Solar Nebula, and by extension to other extra solar protoplanetary disks.
Applied and implied semantics in crystallographic publishing
2012-01-01
Background Crystallography is a data-rich, software-intensive scientific discipline with a community that has undertaken direct responsibility for publishing its own scientific journals. That community has worked actively to develop information exchange standards allowing readers of structure reports to access directly, and interact with, the scientific content of the articles. Results Structure reports submitted to some journals of the International Union of Crystallography (IUCr) can be automatically validated and published through an efficient and cost-effective workflow. Readers can view and interact with the structures in three-dimensional visualization applications, and can access the experimental data should they wish to perform their own independent structure solution and refinement. The journals also layer on top of this facility a number of automated annotations and interpretations to add further scientific value. Conclusions The benefits of semantically rich information exchange standards have revolutionised the scholarly publishing process for crystallography, and establish a model relevant to many other physical science disciplines. PMID:22932420
Key Value Considerations for Consultant Pharmacists.
Meyer, Lee; Perry, Ronald G; Rhodus, Susan M; Stearns, Wendy
2016-07-01
Managing the efficiency and costs of residents' drug regimens outside the acute-care hospital and through transitions of care requires a toolbox filled with cost-control tools and careful collaboration among the pharmacy provider(s), facility staff, and the consultant/senior care pharmacist. This article will provide the reader with key long-term care business strategies that affect the profitability of the pharmacy provider in various care settings while, at the same time, ensuring optimal therapy for residents as they transition across levels of care. Readers can take away ideas on how to access critical information, what they can do with this information, and how they can improve the overall care process. Four experts in various aspects of pharmacy management share their insights on pharmacy practice issues including formulary management, performance metrics, short-cycle dispensing challenges/solutions, cost-control measures, facility surveys, billing practices, medication reconciliation, prospective medication reviews, and transitions of care.
Journey to the center of the galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaisson, E.
1980-08-01
The solar system is a member of the Orion Arm of the Milky Way, far from the center of the Galaxy. This article takes the reader on a hypothetical journey from the solar system to the center of the Galaxy. Results from radio and infrared studies are used to suggest what such a journey might reveal. Traveling from the solar system toward the center, one crosses the Cygnus Arm, then the Sagittarius Arm, and then the so-called Three-kiloparsec Arm. The Arms contain a mixture of young stars as well as lots of gas and dust. Radio studies show that themore » Three-kiloparsec Arm is more like a ring than an arm. Inside this ring, is another ring composed of giant molecular clouds. Radio and infrared astronomers have discovered that the heart of the Galaxy is composed of matter in most perplexing states. There are three regions known within this innermost thousand light-years. First, there is a large zone of thin, hot ionized gas. Within this, there is a whirlpool of dense, warm matter. And further embedded, there seems to be a small supermassive object at the center. Possibly this object could be a blackhole. Researchers are continuing to examine, monitor, and model this mysterious region, the galactic nuclei. (SC)« less
Solar Heating Considerations for Green Schools
ERIC Educational Resources Information Center
Kelley, Brian; Fiedler, Lon
2012-01-01
As energy costs continue to rise, many schools and universities are considering energy-saving solutions, including solar heating options, to lower costs and to attract students and staff that support environmentally friendly practices. However, administrators and facility engineers should take several issues into account before pursuing a solar…
Integrated Solutions for a Complex Energy World - Continuum Magazine |
NREL Integrated Solutions for a Complex Energy World Integrated Solutions for a Complex Energy World Energy systems integration optimizes electrical, thermal, fuel, and data technologies design and performance. An array of clean energy technologies, including wind, solar, and electric vehicle batteries, is
Effect of electromagnetic dipole dark matter on energy transport in the solar interior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geytenbeek, Ben; Rao, Soumya; White, Martin
In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or anmore » anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.« less
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Araneda, J. A.; Poedts, S.
2014-12-01
We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.
The utilization of solar energy to help meet our nation's energy needs
NASA Technical Reports Server (NTRS)
Thomas, R. L.
1973-01-01
The nation's energy needs, domestic energy resources, and possible future energy resources are briefly discussed in this paper. Three potential solutions, coal, nuclear and solar are compared as to benefits and problems. The paper primarily discusses the options available in using solar energy as a natural energy resource. These options are discussed under the generation of electricity, heating and cooling of buildings, and the production of clean fuel.
EUV imager and spectrometer for LYOT and solar orbiter space missions
NASA Astrophysics Data System (ADS)
Millard, Anne; Lemaire, Philippe; Vial, Jean-Claude
2017-11-01
In the 2010 horizon, solar space missions such as LYOT and Solar Orbiter will allow high cadence UV observations of the Sun at spatial and spectral resolution never obtained before. To reach these goals, the two missions could take advantage of spectro-imagers. A reflective only optical solution for such an instrument is described in this paper and the first results of the mock-up being built at IAS are shown.
EUV imager and spectrometer for Lyot and Solar Orbiter space missions
NASA Astrophysics Data System (ADS)
Millard, Anne; Lemaire, Philippe; Vial, Jean-Claude
2004-06-01
In the 2010 horizon, solar space missions such as LYOT and Solar Orbiter will allow high cadence UV observations of the Sun at spatial and spectral resolution never obtained before. To reach these goals, the two missions could take advantage of spectro-imagers. A reflective only optical solution for such an instrument is described in this paper and the first results of the mock-up being built at IAS are shown.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.
Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya
2015-08-17
The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.
NASA Astrophysics Data System (ADS)
Grib, S. A.; Leora, S. N.
2016-03-01
We use analytical methods of magnetohydrodynamics to describe the behavior of cosmic plasma. This approach makes it possible to describe different structural fields of disturbances in solar wind: shock waves, direction discontinuities, magnetic clouds and magnetic holes, and their interaction with each other and with the Earth's magnetosphere. We note that the wave problems of solar-terrestrial physics can be efficiently solved by the methods designed for solving classical problems of mathematical physics. We find that the generalized Riemann solution particularly simplifies the consideration of secondary waves in the magnetosheath and makes it possible to describe in detail the classical solutions of boundary value problems. We consider the appearance of a fast compression wave in the Earth's magnetosheath, which is reflected from the magnetosphere and can nonlinearly overturn to generate a back shock wave. We propose a new mechanism for the formation of a plateau with protons of increased density and a magnetic field trough in the magnetosheath due to slow secondary shock waves. Most of our findings are confirmed by direct observations conducted on spacecrafts (WIND, ACE, Geotail, Voyager-2, SDO and others).
Jacobson, Mark Z; Delucchi, Mark A; Cameron, Mary A; Frew, Bethany A
2015-12-08
This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050-2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide.
Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Frew, Bethany A.
2015-01-01
This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050–2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide. PMID:26598655
NASA Astrophysics Data System (ADS)
Giancotti, Marco; Campagnola, Stefano; Tsuda, Yuichi; Kawaguchi, Jun'ichiro
2014-11-01
This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill's problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.
Integrated dynamic analysis simulation of space stations with controllable solar array
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.
2017-01-10
A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.
Mass breakdown model of solar-photon sail shuttle: The case for Mars
NASA Astrophysics Data System (ADS)
Vulpetti, Giovanni; Circi, Christian
2016-02-01
The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth-Mars-Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty-fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014-2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty-fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.
Chen, Jing; Xu, Jia; Xiao, Li; Zhang, Bing; Dai, Songyuan; Yao, Jianxi
2017-01-25
Compared to that of methylammonium lead iodide perovskite (MAPbI 3 ), formamidinium lead iodide perovskite (FAPbI 3 ) has a smaller energy band gap and greater potential efficiency. To prevent the transformation of α-FAPbI 3 to δ-FAPbI 3 , preparation of (FA) x (MA) 1-x PbI 3 was regarded as an effective route. Usually, the planar (FA) x (MA) 1-x PbI 3 perovskite solar cells are fabricated by a solution process. Herein, we report a low-pressure vapor-assisted solution process (LP-VASP) for the growth of (FA) x (MA) 1-x PbI 3 perovskite solar cells that features improved electron transportation, uniform morphology, high power conversion efficiency (PCE), and better crystal stability. In LP-VASP, the (FA) x (MA) 1-x PbI 3 films were formed by the reaction between the PbI 2 film with FAI and MAI vapor in a very simple vacuum oven. LP-VASP is an inexpensive way to batch-process solar cells, avoiding the repeated deposition solution process for PbI 2 films, and the device had a low cost. We demonstrate that, with an increase in the MAI content, the (101) peak position of FAPbI 3 shifts toward the (110) peak position of MAPbI 3 , the (FA) x (MA) 1-x PbI 3 perovskites are stable, and no decomposition or phase transition is observed after 14 days. The photovoltaic performance was effectively improved by the introduction of MA + with the highest efficiency being 16.48% under conditions of 40 wt % MAI. The carrier lifetime of (FA) x (MA) 1-x PbI 3 perovskite films is approximately three times longer than that of pure FAPbI 3 . Using this process, solar cells with a large area of 1.00 cm 2 were fabricated with the PCE of 8.0%.
Randić, M
2015-01-01
We briefly review the history of the connectivity index from 1975 to date. We hope to throw some light on why this unique, by its design, graph theoretical molecular descriptor continues to be of interest in QSAR, having wide use in applications in structure-property and structure-activity studies. We will elaborate on its generalizations and the insights it offered on applications in Multiple Regression Analysis (MRA). Going beyond the connectivity index we will outline several related developments in the development of molecular descriptors used in MRA, including molecular ID numbers (1986), the variable connectivity index (1991), orthogonal regression (1991), irrelevance of co-linearity of descriptors (1997), anti-connectivity (2006), and high discriminatory descriptors characterizing molecular similarity (2015). We will comment on beauty in QSAR and recent progress in searching for similarity of DNA, proteins and the proteome. This review reports on several results which are little known to the structure-property-activity community, the significance of which may surprise those unfamiliar with the application of discrete mathematics to chemistry. It tells the reader many unknown stories about the connectivity index, which may help the reader to better understand the meaning of this index. Readers are not required to be familiar with graph theory.
Space power technology applied to the energy problem
NASA Technical Reports Server (NTRS)
Miller, J. L.; Morgan, J. R.
1977-01-01
A solution to the energy problem is suggested through the technology of photovoltaic electrolysis of water to generate hydrogen. Efficient solar devices are discussed in relation to available solar energy, and photovoltaic energy cost. It is concluded that photovoltaic electrolytic generation of hydrogen will be economically feasible in 1985.
NASA Astrophysics Data System (ADS)
Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna
2018-03-01
Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.
Low Earth orbit environmental effects on the space station photovoltaic power generation systems
NASA Technical Reports Server (NTRS)
Nahra, Henry K.
1987-01-01
A summary of the Low Earth Orbital Environment, its impact on the Photovoltaic Power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the Photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized.
Two New R&D 100 Awards Uphold NREL Winning Streak - Continuum Magazine |
-effective and meet the demand for power. Solution: NREL, in partnership with Solar Junction, a manufacturer escalating power costs, brownouts, and rolling blackouts. Solution: NREL and its partners, AILR Research, Inc
Achieving High Performance Perovskite Solar Cells
NASA Astrophysics Data System (ADS)
Yang, Yang
2015-03-01
Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.
Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia
NASA Technical Reports Server (NTRS)
1981-01-01
A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.
1986-01-01
The goal of this project is the development of an optimization algorithm for use with a solar cell model. It is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junctions depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm has been developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAPID). SCAPID uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the operation of a solar cell. A major obstacle is that the numerical methods used in SCAPID require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the value associated with the maximum efficiency. This problem has been alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution. Adapting SCAPID so that it could be called iteratively by the optimization code provided another means of reducing the cpu time required to complete an optimization. Instead of calculating the entire I-V curve, as is usually done in SCAPID, only the efficiency is calculated (maximum power voltage and current) and the solution from previous calculations is used to initiate the next solution.
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua; ...
2017-08-30
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI 3. The three-dimensional ASnI 3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI 3-xBr x. We show that en can serve as a new A cation capable ofmore » achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI 3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells.« less
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI 3. The three-dimensional ASnI 3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI 3-xBr x. We show that en can serve as a new A cation capable ofmore » achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI 3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells.« less
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua; Mao, Lingling; Spanopoulos, Ioannis; Liu, Jian; Kontsevoi, Oleg Y.; Chen, Michelle; Sarma, Debajit; Zhang, Yongbo; Wasielewski, Michael R.; Kanatzidis, Mercouri G.
2017-01-01
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI3. The three-dimensional ASnI3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI3−xBrx. We show that en can serve as a new A cation capable of achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells. PMID:28875173
Solar photo-Fenton mineralization of antipyrine in aqueous solution.
Durán, A; Monteagudo, J M; Sanmartín, I; Carrasco, A
2013-11-30
The mineralization of an aqueous solution of antipyrine (C11H12N2O), an emerging contaminant, using a solar photocatalytic oxidation process assisted with ferrioxalate was evaluated in a compound parabolic collector (CPC) pilot plant. Under the selected operating conditions ([H2O2] = 250 ppm, [Fe] = 14 ppm, pH = 2.7, and [(COOH)2·2H2O] = 80 ppm), 60% of TOC is removed just 5 min after treating an aqueous solution containing 50 ppm of antipyrine. The addition of oxalic acid up to a maximum concentration of 80 ppm significantly increases the mineralization rate during the first 15 min of the reaction. The synergism between the solar and dark H2O2/ferrioxalate process was quantified at 79%, calculated from the pseudo first-order mineralization rate constants. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions and compared with a novel sono-photocatalytic process using artificial UV-light. The results showed that the ferrioxalate-assisted solar photo-Fenton process was economically feasible, being able to achieve up to 60% mineralization with a total cost of 4.5 cent €/g TOC removed (1.1 €/m(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.
Performance enhancement of dye-sensitized solar cells (DSSCs) using a natural sensitizer
NASA Astrophysics Data System (ADS)
Arifin, Zainal; Soeparman, Sudjito; Widhiyanuriyawan, Denny; Sutanto, Bayu; Suyitno
2017-01-01
Dye-sensitized solar cells (DSSCs) based on natural sensitizers have become a topic of significant research because of their urgency and importance in the energy conversion field and the following advantages: ease of fabrication, low-cost solar cell, and usage of nontoxic materials. The natural sensitizer in DSSCs is responsible for the absorption of light as well as the injection of charges to the conduction band of the semiconductor such as TiO2 nanoparticles. In this study, the chlorophyll extracted from papaya leaves was used as a natural sensitizer. Dye molecules were adsorbed by TiO2 nanoparticle surfaces when submerged in the dye solution for 24 h. The concentration of the dye solution influences both the amount of dye loading and the DSSC performance. The amount of adsorbed dye molecules by TiO2 nanoparticle was calculated using a desorption method. As the concentration of dye solution was increased, the dye loading capacity and power conversion efficiency increased. Above 90 mM dye solution concentration, however, the DSSC efficiency decreased because dye precipitated on the TiO2 nanostructure. These characteristics of DSSCs were analyzed under the irradiation of 100 mW/cm2. The best performance of DSSCs was obtained at 90 mM dye solution, with the values of Voc, Jsc, FF, and efficiency of DSSCs being 0.561 V, 0.402 mA/cm2, 41.65%, and 0.094%, respectively.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-09-01
Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.
2009-09-01
be complete MMOG solutions such as Multiverse are not within the scope of this thesis, though it is recommended that readers compare this type of...software to the middleware described here ( Multiverse , 2009). 1. University of Munster: Real-Time Framework The Real-Time Framework (RTF) project is...10, 2009, from http://wiki.secondlife.com/wiki/MMOX Multiverse . (2009). Multiverse platform architecture. Retrieved September 9, 2009, from http
The Chemical Adventures of Sherlock Holmes: The Death Puzzle at 221B Baker Street
NASA Astrophysics Data System (ADS)
Rybolt, Thomas R.; Waddell, Thomas G.
1999-04-01
This story describes a chemical mystery with an emphasis on medicinal chemistry and qualitative analysis. It is the tenth article in a series presenting a scientific problem in mystery format in the context of the popular and beloved characters Sherlock Holmes and Dr. Watson. There is a break in the story where the reader (students and teachers) can ponder and solve the mystery. Sherlock Holmes then provides his solution.
The Chemical Adventures of Sherlock Holmes: The Ghost of Gordon Square
NASA Astrophysics Data System (ADS)
Waddell, Thomas G.; Rybolt, Thomas R.
2000-04-01
This story describes a scientific mystery with an emphasis on chemical magic. It is the 11th in a series presenting chemical problems in mystery format in the context of the popular and beloved characters Sherlock Holmes and Dr. Watson. There is a break in the story where the reader (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
Mobile Interactive Training: Tablets, Readers, and Phones - Oh, My!
2011-12-01
the interactive PDF, it was not possible to devise a one-size- fits -all solution. Instead, each type of interaction had to be addressed...determined they could automate this process by using Flash to export the individual frames of the slideshow and to produce a text file with the appropriate...now to create Web-enabled HUDs that can be integrated into eyeglasses and contact lenses. Only one thing remains constant with every new Web
Solar array stepping problems in satellites and solutions
NASA Astrophysics Data System (ADS)
Maharana, P. K.; Goel, P. S.
1992-01-01
The dynamics problems arising due to stepping motion of the solar arrays of spacecraft are studied. To overcome these problems, design improvements in the drive logic based on the phase plane analysis are suggested. The improved designs are applied to the Solar Array Drive Assembly (SADA) of IRS-1B and INSAT-2A satellites. In addition, an alternate torquing strategy for very successful slewing of the arrays, and with minimum excitation of flexible modes, is proposed.
Solar energy to meet the nation's energy needs
NASA Technical Reports Server (NTRS)
Rom, F. E.; Thomas, R. L.
1973-01-01
Solar energy, being a non-depleting clean source of energy, is shown to be capable of providing energy in all the forms in which it is used today. It can be used to generate electricity, for heating and cooling buildings, and for producing clean renewable gaseous, liquid and solid fuel. There is little question of the technical feasibility for utilizing solar energy. The chief problem is rapidly providing innovative solutions that are economically competititive with other systems.
1977-07-01
layer as thin as possible. The dead layer phenomena has been observed by other researchers working in the area of solar cells and nuclear particle...solution for the planar diode substrate. Solar cell researchers have had some success in producing -40- •^,.^,„>.^,u.^ ....... .• .„..^....L...A^.^.^:.*.,». ’ ’ "•"’•’•" i.i»miii«i • i immmßm^m i P-PJP adequately thin dead layers for solar cell applications by
Quantum Confined Semiconductors
2015-02-01
diodes [8-10], metamaterials [11-13], and solar cells [14,15]. As a consequence, the optical and electrical stability of colloidal quantum dots...PbS quantum dot solar cells with high fill factor,” ACS Nano, 4 (7), 3743–3752 (2010). [15] Gur, I., Fromer, N. A., Geier, M. L. and Alivisatos, A...P., “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Sci. 310, 462–465 (2005). [16] Dai, Q., Wang, Y. N., Zhang, Y
NASA Technical Reports Server (NTRS)
Sah, C. T.
1985-01-01
Loss mechanisms in high-efficiency solar cells were discussed. Fundamental limitations and practical solutions were stressed. Present cell efficiency is limited by many recombination sites: emitter, base, contacts, and oxide/silicon interface. Use of polysilicon passivation was suggested. After reduction of these losses, a 25% efficient cell could be built. A floating emitter cell design was shown that had the potential of low recombination losses.
On the solution of the continuity equation for precipitating electrons in solar flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emslie, A. Gordon; Holman, Gordon D.; Litvinenko, Yuri E., E-mail: emslieg@wku.edu, E-mail: gordon.d.holman@nasa.gov
2014-09-01
Electrons accelerated in solar flares are injected into the surrounding plasma, where they are subjected to the influence of collisional (Coulomb) energy losses. Their evolution is modeled by a partial differential equation describing continuity of electron number. In a recent paper, Dobranskis and Zharkova claim to have found an 'updated exact analytical solution' to this continuity equation. Their solution contains an additional term that drives an exponential decrease in electron density with depth, leading them to assert that the well-known solution derived by Brown, Syrovatskii and Shmeleva, and many others is invalid. We show that the solution of Dobranskis andmore » Zharkova results from a fundamental error in the application of the method of characteristics and is hence incorrect. Further, their comparison of the 'new' analytical solution with numerical solutions of the Fokker-Planck equation fails to lend support to their result. We conclude that Dobranskis and Zharkova's solution of the universally accepted and well-established continuity equation is incorrect, and that their criticism of the correct solution is unfounded. We also demonstrate the formal equivalence of the approaches of Syrovatskii and Shmeleva and Brown, with particular reference to the evolution of the electron flux and number density (both differential in energy) in a collisional thick target. We strongly urge use of these long-established, correct solutions in future works.« less
Coupling of the coronal helium abundance to the solar wind
NASA Technical Reports Server (NTRS)
Hansteen, Viggo H.; Leer, Egil; Holzer, Thomas E.
1994-01-01
Models of the transition region-corona-solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the solar wind proton flux. The thermal force on alpha-particles in the transition region sets the flow of helium into the corona. The frictional coupling between alpha-particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content. The models are constructed by solving the time-dependent population and momentum equations for all species of hydrogen and helium in an atmosphere with a given temperature profile. Several temperature profiles are considered in order to very the roles of frictional coupling and electric polarization field in the solar wind, and the thermal force in the transition region. Steady-state solutions are found for coronae with a hydrogen flux at 1 AU of 1.0 x 10(exp 9)/cm(exp 2)/sec or larger. For coronae with lower hydrogen fluxes, the helium flux into the corona is larger than the flux 'pulled out' by the solar wind protons, and solutions with increasing coronal helium content are found. The timescale for forming a helium-filled corona, that may allow for a steady outflow, is long compared to the mixing time for the corona.
Guerrero, Antonio; Loser, Stephen; Garcia-Belmonte, Germà; Bruns, Carson J; Smith, Jeremy; Miyauchi, Hiroyuki; Stupp, Samuel I; Bisquert, Juan; Marks, Tobin J
2013-10-21
Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.
The Redox Flow System for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Odonnell, P.; Gahn, R. F.; Pfeiffer, W.
1976-01-01
The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.
Polymer based organic solar cells using ink-jet printed active layers
NASA Astrophysics Data System (ADS)
Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J.
2008-01-01
Ink-jet printing is used to deposit polymer:fullerene blends suitable as active layer for organic solar cells. We show that merging of separately deposited ink droplets into a continuous, pinhole-free organic thin film results from a balance between ink viscosity and surface wetting, whereas for certain of the studied solutions clear coffee drop effect occurs for single droplets; this can be minimized for larger printed areas, yielding smooth layers with minimal surface roughness. Resulting organic films are used as active layer for solar cells with power conversion efficiency of 1.4% under simulated AM1.5 solar illumination.
Optical design of a solar flux homogenizer for concentrator photovoltaics.
Kreske, Kathi
2002-04-01
An optical solution is described for the redistribution of the light reflected from a 400-m2 paraboloidal solar concentrating dish as uniformly as possible over an approximately 1-m2 plane. Concentrator photovoltaic cells will be mounted at this plane, and they require a uniform light distribution for high efficiency. It is proposed that the solar cells will be mounted at the output of a rectangular receiver box with reflective sidewalls (i.e., a kaleidoscope), which will redistribute the light. I discuss the receiver box properties that influence the light distribution reaching the solar cells.
NASA Technical Reports Server (NTRS)
Hathaway, David H.
1994-01-01
The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood in spite of decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. The two basic processes involved in dynamo activity are demonstrated and the Sun's activity effects are presented in this document, along with a historical perspective regarding solar dynamos and the efforts to understand and measure them.
New Earth-abundant Materials for Large-scale Solar Fuels Generation.
Prabhakar, Rajiv Ramanujam; Cui, Wei; Tilley, S David
2018-05-30
The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.
Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells.
Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei; Yang, Yingping
2018-01-15
Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.
A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry.
Cambié, Dario; Zhao, Fang; Hessel, Volker; Debije, Michael G; Noël, Timothy
2017-01-19
The use of solar light to promote chemical reactions holds significant potential with regard to sustainable energy solutions. While the number of visible light-induced transformations has increased significantly, the use of abundant solar light has been extremely limited. We report a leaf-inspired photomicroreactor that constitutes a merger between luminescent solar concentrators (LSCs) and flow photochemistry to enable green and efficient reactions powered by solar irradiation. This device based on fluorescent dye-doped polydimethylsiloxane collects sunlight, focuses the energy to a narrow wavelength region, and then transports that energy to embedded microchannels where the flowing reactants are converted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Anastasiadis, Anastasios; Sandberg, Ingmar; Papaioannou, Athanasios; Georgoulis, Manolis; Tziotziou, Kostas; Jiggens, Piers; Hilgers, Alain
2015-04-01
We present a novel integrated prediction system, of both solar flares and solar energetic particle (SEP) events, which is in place to provide short-term warnings for hazardous solar radiation storms. FORSPEF system provides forecasting of solar eruptive events, such as solar flares with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. It also provides nowcasting of SEP events based on actual solar flare and CME near real-time alerts, as well as SEP characteristics (peak flux, fluence, rise time, duration) per parent solar event. The prediction of solar flares relies on a morphological method which is based on the sophisticated derivation of the effective connected magnetic field strength (Beff) of potentially flaring active-region (AR) magnetic configurations and it utilizes analysis of a large number of AR magnetograms. For the prediction of SEP events a new reductive statistical method has been implemented based on a newly constructed database of solar flares, CMEs and SEP events that covers a large time span from 1984-2013. The method is based on flare location (longitude), flare size (maximum soft X-ray intensity), and the occurrence (or not) of a CME. Warnings are issued for all > C1.0 soft X-ray flares. The warning time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective warning time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes. We discuss the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on the Sun and the interplanetary space, while the combined usage of solar flare and SEP forecasting methods upgrades FORSPEF to an integrated forecasting solution. This work has been funded through the "FORSPEF: FORecasting Solar Particle Events and Flares", ESA Contract No. 4000109641/13/NL/AK
Electric Propulsion Concepts Enabled by High Power Systems for Space Exploration
NASA Technical Reports Server (NTRS)
Gilland, James; Fiehler, Douglas; Lyons, Valerie
2005-01-01
This paper describes the latest development in electric propulsion systems being planned for the new Space Exploration initiative. Missions to the Moon and Mars will require these new thrusters to deliver the large quantities of supplies that would be needed to support permanent bases on other worlds. The new thrusters are also being used for unmanned exploration missions that will go to the far reaches of the solar system. This paper is intended to give the reader some insight into several electric propulsion concepts their operating principles and capabilities, as well as an overview of some mission applications that would benefit from these propulsion systems, and their accompanying advanced power systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Springer, M. Seitzler, and C. Backman
2016-12-01
Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in additionmore » to heating water that is consumed by fixtures and appliances.« less
Leveraging the Experimental Method to Inform Solar Cell Design
ERIC Educational Resources Information Center
Rose, Mary Annette; Ribblett, Jason W.; Hershberger, Heather Nicole
2010-01-01
In this article, the underlying logic of experimentation is exemplified within the context of a photoelectrical experiment for students taking a high school engineering, technology, or chemistry class. Students assume the role of photochemists as they plan, fabricate, and experiment with a solar cell made of copper and an aqueous solution of…
Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
Gee, James M; Schmit, Russell R.
2007-01-30
Methods of manufacturing back-contacted silicon solar cells fabricated using a gradient-driven solute transport process, such as thermomigration or electromigration, to create n-type conductive vias connecting the n-type emitter layer on the front side to n-type ohmic contacts located on the back side.
CdS/TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation
NASA Astrophysics Data System (ADS)
Krishna Karuturi, Siva; Yew, Rowena; Reddy Narangari, Parvathala; Wong-Leung, Jennifer; Li, Li; Vora, Kaushal; Tan, Hark Hoe; Jagadish, Chennupati
2018-03-01
Cadmium sulfide (CdS) is a unique semiconducting material for solar hydrogen generation applications with a tunable, narrow bandgap that straddles water redox potentials. However, its potential towards efficient solar hydrogen generation has not yet been realized due to low photon-to-current conversions, high charge carrier recombination and the lack of controlled preparation methods. In this work, we demonstrate a highly efficient CdS/TiO2 heterostructured photoelectrode using atomic layer deposition and solution ion transfer reactions. Enabled by the well-controlled deposition of CdS nanocrystals on TiO2 inverse opal (TiIO) nanostructures using the proposed method, a saturation photocurrent density of 9.1 mA cm-2 is realized which is the highest ever reported for CdS-based photoelectrodes. We further demonstrate that the passivation of a CdS surface with an ultrathin amorphous layer (˜1.5 nm) of TiO2 improves the charge collection efficiency at low applied potentials paving the way for unassisted solar hydrogen generation.
Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse
NASA Technical Reports Server (NTRS)
Fritts, David C.; Luo, Zhangai
1993-01-01
We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.
Intelligent trend analysis for a solar thermal energy collector field
NASA Astrophysics Data System (ADS)
Juuso, E. K.
2018-03-01
Solar thermal power plants collect available solar energy in a usable form at a temperature range which is adapted to the irradiation levels and seasonal variations. Solar energy can be collected only when the irradiation is high enough to produce the required temperatures. During the operation, a trade-off of the temperature and the flow is needed to achieve a good level for the collected power. The scaling approach brings temporal analysis to all measurements and features: trend indices are calculated by comparing the averages in the long and short time windows, a weighted sum of the trend index and its derivative detects the trend episodes and severity of the trend is estimated by including also the variable level in the sum. The trend index, trend episodes and especially, the deviation index reveal early evolving changes in the operating conditions, including cloudiness and load disturbances. The solution is highly compact: all variables, features and indices are transformed to the range [-2, 2] and represented in natural language which is important in integrating data-driven solutions with domain expertise. The special situations detected during the test campaigns are explained well.
Resent Results from Super-Kamiokande
NASA Astrophysics Data System (ADS)
Moriyama, S.
2001-04-01
Results on atmospheric and solar neutrino analyses at Super-Kamiokande are presented. The whole data set of atmospheric neutrino is consistently explained with an assumption of pure ν
Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua
2017-07-05
Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.
Decomposition Behavior of Curcumin during Solar Irradiation when Contact with Inorganic Particles
NASA Astrophysics Data System (ADS)
Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Riza, L. S.
2017-03-01
Curcumin is one of materials which have been widely used in medicine, Asian cuisine, and traditional cosmetic. Therefore, understanding the stability of curcumin has been widely studied. The purpose of this study was to investigate the stability of curcumin solution against solar irradiation when making contact with inorganic material. As a model for the inorganic material, titanium dioxide (TiO2) was used. In the experimental method, the curcumin solution was irradiated using a solar irradiation. To confirm the stability of curcumin when contact with inorganic material, we added TiO2 micro particles with different concentrations. The results showed that the concentration of curcumin decreased during solar irradiation. The less concentration of curcumin affected the more decomposition rate obtained. The decomposition rate was increased greatly when TiO2 was added, in which the more TiO2 concentration added allowed the faster decomposition rate. Based on the result, we conclude that the curcumin is relatively stable as long as using higher concentration of curcumin and is no inorganic material existed. Then, the decomposition can be minimized by avoiding contact with inorganic material.
The location of planetary bow shocks: A critical overview of theory and observations
NASA Technical Reports Server (NTRS)
Spreiter, J. R.; Stahara, S. S.
1995-01-01
A bow shock (BS has been observed in the collisionless solar wind upstream of every planet except Pluto, which has yet to be visited by a spacecraft. They are all of similar character, but their size relative to the planet varies widely, e.g., the planeto-centric distance to the BS nose ranges from about 1.4 R(sub V) for Venus to 88 R(sub J) or more for Jupiter. Comparisons are reviewed that show its location may be represented satisfactorily by a gasdynamic (GD) model, provided the properties of the solar wind and planetary magnetic field and ionosphere are known and used as input in the application. Factors that determine the location are discussed, and examples are presented to illustrate effects of their variation, including which part of a BS is influenced by a local variation of the magneto/ionopause (MIP) shape. The interplanetary magnetic field (IMF) has no influence on the BS location in the GD model, but is shown to have a small effect in corresponding solutions of the basic MHD model from which the GD model is derived as the limit for weak IMF. Nearly all GD and MHD solutions are for steady flow, but a solution for unsteady flow associated with the passage of an interplanetary shock is also presented. It shows that the BS moves rapidly from its initial to final location, e.g., in about minute for the earth. Since many changes in the solar wind occur over longer intervals, these results help explain the success of quasi-stationary solutions in modeling the BS in time-varying solar wind flows.
Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng
2014-08-01
Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume
2015-11-11
In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.
Sparse Bayesian Inference and the Temperature Structure of the Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Harry P.; Byers, Jeff M.; Crump, Nicholas A.
Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of themore » solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.« less
Ahn, Yumi; Jeong, Youngjun; Lee, Youngu
2012-12-01
Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.
Solar system constraints on disformal gravity theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy, E-mail: iphys@mpa-garching.mpg.de, E-mail: jeremy.sakstein@port.ac.uk, E-mail: fabians@mpa-garching.mpg.de
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve uponmore » the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology.« less
Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H
2016-07-13
Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.
Gabriele, Alex; Marco, Valeria; Gatto, Laura; Paoletti, Giulia; Di Vito, Luca; Castriota, Fausto; Romagnoli, Enrico; Ricciardi, Andrea; Prati, Francesco
2014-10-01
The optical coherence tomography (OCT) evaluation of the stent anatomy requires the inspection of sequential cross section (CS). However stent coils cannot be appreciated in the conventional format as the OCT CS simply display stent struts, that are poorly representative of the stent architecture. The aim of the present study was to validate a new software (Carpet View), which unfolds the stented segment, reconstructing it as an open structure and displaying the stent meshwork. 21 patients were studied with frequency domain OCT after the deployment of different stents: seven bio-absorbable scaffolds (Dream), seven bare metal stent (Vision/Multilink8), seven drug eluting stent (Cre8). Conventional CS reconstructions were post-processed with the Carpet View software and analyzed by the same reader twice (intra-observer variability) and by two different readers (inter-observer variability). A small average difference in the number of all struts was obtained with the two methods (conventional vs carpet view reconstruction). Using the carpet view, high intra-observer and inter-observer correlations were found for the number of struts obtained in each coil. The Pearson correlation values were 0.98 (p = 0.0001) and 0.96 (p = 0.0001) respectively. The same number of coils was found when analyses were repeated by the same reader or by a different reader whilst mild differences in the count of stent junctions were reported. The Carpet View can be used to address the stent geometry with high reproducibility. This approach enables the matching of the same stent portion during serial time points and promises to improve the stent assessment.
Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications
NASA Astrophysics Data System (ADS)
Long, C. N.; Riihimaki, L. D.; Berg, L. K.
2012-12-01
Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and variability. This new system could be a long term economical solution for solar energy applications.xample of SW Flux Analysis global hemispheric (light blue) and direct (yellow) clear-sky shortwave (SW) along with corresponding actual global hemispheric (blue) and direct (red) SW, and the corresponding fractional sky cover (black, right Y-axis). Note in afternoon about 40-50% of the global SW is available, yet most times there is no direct SW.
NASA Astrophysics Data System (ADS)
Kazmerski, Lawrence; Costa, Suellen C.; Machado, Marcelo; Diniz, Antonia Sonia A. C.
2016-09-01
Soiling, the sedimentation of particulate matter (on the size scale of 1/10 the diameter of a human hair) on the exposed surfaces of solar collectors, is a growing area of concern for solar-system performance, reliability, maintenance, and cost. In the case of photovoltaics (PV), the condition of this first-surface of interaction of the incident photons is critical for ensuring that the maximum-possible light reaches the conversion devices. This paper begins with a more than seven-decade historical look at the research invested into this problem, highlighting the motivation and milestones; the researchers and the progress. The current growing terrestrial markets for solar have brought a new focus on soiling and dust issues. That is because many of these new markets in the solar-rich geographic regions of our world are ironically also in the most dust-rich and soiling-prone ones as well. This paper continues to provide an overview of the status of current research efforts toward understanding the basic soiling mechanisms, the relationships to the PV technology approaches, the geographical differences (highlighting Brasil, India, and the MENA region) in the severity of the problem, the dust physics and chemistry—all relating to the current and future mitigation approaches. Included are some fundamental microscale through nanoscale examinations at how individual dust particles adhere to module glass surfaces—as well as how the particles might stick to each other under certain environmental conditions. These observations are used to show how fundamental science may lead to the macroscale engineering solutions of these soiling problems. This presentation is designed to both overview the soiling area and highlight some of the current and future research directions, speculate on short-term approaches preventing solar showstoppers, and speculate on some "holy-grail" schemes that might lead to the final solutions.
An Introduction to the Solar System
NASA Astrophysics Data System (ADS)
McBride, Neil; Gilmour, Iain
2004-03-01
Compiled by a team of experts, this textbook has been designed for elementary university courses in planetary science. It starts with a tour of the Solar System and an overview of its formation that reviews in detail the terrestrial planets, giant planets and minor bodies. It concludes with a discussion of the origin of the Solar System. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials.
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Hilton, H. H.
1977-01-01
Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.
Instrumentation at the Decade 80 solar house in Tucson, Arizona
NASA Technical Reports Server (NTRS)
1978-01-01
Modifications, problems and solutions for the instrumentation system that occurred during the period from May through September, 1978, are described. The solar house was built to show the use of copper in home building and to demonstrate the use of solar energy to provide space heating and cooling and domestic hot water. The auxiliary energy sources are electrical resistance heating for the domestic hot water and a gas-fired boiler for space heating and operation of the adsorption air conditioning units.
Risk on the Horizon, Rig for Dark: Solutions to Mitigate DoD’s Reliance on the Fragile Electric Grid
2013-04-01
occurring event that could disrupt the production and delivery of power is a solar storm. Solar storms can create effects in the earth’s magnetic fields ...solar storms, their potential for disruption is evident. The magnetic fields within the sun undergo a 22-year cycle during which the magnetic poles...sunspots.27 Contained in this CME are low- to medium-charged 25 “The Sun’s Magnetic Field ,” NASA’s
Texas Solar Collaboration Action Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winland, Chris
2013-02-14
Texas Solar Collaboration Permitting and Interconenction Process Improvement Action Plan. San Antonio-specific; Investigate feasibility of using electronic signatures; Investigate feasibility of enabling other online permitting processes (e.g., commercial); Assess need for future document management and workflow/notification IT improvements; Update Information Bulletin 153 regarding City requirements and processes for PV; Educate contractors and public on CPS Energy’s new 2013 solar program processes; Continue to discuss “downtown grid” interconnection issues and identify potential solutions; Consider renaming Distributed Energy Resources (DER); and Continue to participate in collaborative actions.
Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.
Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H
2016-01-13
A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid temporal evolution of radiation from non-thermal electrons in solar flares
NASA Technical Reports Server (NTRS)
Lu, Edward T.; Petrosian, Vahe
1987-01-01
Solutions of the time dependent Fokker-Planck equation was found for accelerated electrons undergoing Coulomb collisions in a magnetized, fully ionized plasma. An exact solution was found for arbitrary pitch angle and energy distribution in a uniform background plasma. Then, for an inhomogeneous plasma, a solution was found for particles with small pitch angles. These solutions were used to calculate the temporal evolution of bremsstrahlung x-rays from short bursts of nonthermal electron beams, and these spectra were compared with observed high time resolution spectra of short timescale solar hard x-ray bursts. It is shown that the observed softening in time of the spectra rules out a homogeneous background and therefore the possibility of electrons being confined to the corona either because of converging magnetic field or high densities. The inhomogeneous solution was also applied to a model with constant coronal density and exponentially rising chromospheric density. The spectra are shown to be consistent with that produced by a collimated beam of electrons accelerated in the corona with certain given conditions. These conditions could be violated if large pitch angle electrons are present.
Turbulent Equilibria for Charged Particles in Space
NASA Astrophysics Data System (ADS)
Yoon, Peter
2017-04-01
The solar wind electron distribution function is apparently composed of several components including non-thermal tail population. The electron distribution that contains energetic tail feature is well fitted with the kappa distribution function. The solar wind protons also possess quasi power-law tail distribution function that is well fitted with an inverse power law model. The present paper discusses the latest theoretical development regarding the dynamical steady-state solution of electrons and Langmuir turbulence that are in turbulent equilibrium. According to such a theory, the Maxwellian and kappa distribution functions for the electrons emerge as the only two possible solution that satisfy the steady-state weak turbulence plasma kinetic equation. For the proton inverse power-law tail problem, a similar turbulent equilibrium solution can be conceived of, but instead of high-frequency Langmuir fluctuation, the theory involves low-frequency kinetic Alfvenic turbulence. The steady-state solution of the self-consistent proton kinetic equation and wave kinetic equation for Alfvenic waves can be found in order to obtain a self-consistent solution for the inverse power law tail distribution function.
Diagnostics and Dynamics of the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Kneer, F.; von Uexküll, M.
Research of the chromosphere of the Sun is exciting, as it has been over more than a century. The present contribution can only give glimpses into the wealth of chromospheric structures and dynamics. Likewise, in view of the limited space, it is not possible to present in due balance the published work on the solar chromosphere. The reader is referred to the monographs by Bray and Loughhead (1974, with a historical account and many references to early work) and by Athay (1976) for the state of knowledge two decades ago. Among the conferences dealing meanwhile with the chromosphere we mention the proceedings edited by Bonnet and Delache (1976) and by Ulmschneider et al. (1991). Withbroe and Noyes (1977) treated the mass and energy flow in the chromosphere and corona; a throughout account of the Ca II K2v cell grains is given by Rutten and Uitenbroek (1991); the review by Narain and Ulmschneider (1996) deals with chromospheric and coronal heating mechanisms. Last but not least, the book ``Le Soleil'' by Secchi (1877) is historically precious and full of still viable ideas.
Home retrofitting for energy conservation and solar considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-10-01
This manual explains both the key concepts behind our need for and our impact on energy usage, as well as a nuts-and-bolts explanation of how to improve the energy efficiency of your home. By reviewing both the concepts and practices of energy conservation, the manual presents a comprehensive picture of how home energy use is effected by the inhabitants and by the structure itself. The manual begins with an explanation of why we are looking at energy, then proceeds to explain how the heat transfer occurs between houses and humans. Next is a chapter on energy audits and how tomore » use them, followed by a comprehensive section on energy conservation actions to do now to reduce energy use. Conservation actions include low cost/no cost measures, schemes to reduce infiltration, how to increase insulation, and what to do with windows and doors, heating and heat distribution systems, and water heaters. Solar energy options are then briefly explained, as well as the all important issues of financing and tax credits. The manual concludes with a bibliography to direct the reader to more sources of information.« less
Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza
2016-01-01
We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991
NASA Astrophysics Data System (ADS)
Lei, Yan; Yang, Xiaogang; Gu, Longyan; Jia, Huimin; Ge, Suxiang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi
2015-04-01
Solar cells devices based on inorganic/polymer heterojunction can be a possible solution to harvest solar energy and convert to electric energy with high efficiency through a cost-effective fabrication. The solution-process method can be easily used to produce large area devices. Moreover, due to the intrinsic different charge separation, diffusion or recombination in various semiconductors, the interfaces between each component may strongly influence the inorganic/polymer heterojunction performance. Here we prepared a n-type Ag3CuS2 (Eg = 1.25 eV) nanostructured film through a room-temperature element reaction process, which was confirmed as direct bandgap semiconductor through density function theory simulation. This Ag3CuS2 film was spin-coated with an organic semiconducting poly(3-hexythiophene) (P3HT) or polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) film, which formed an inorganic/polymer heterojunction. After constructing it to a solar cell device, the power conversion efficiencies of 0.79% and 0.31% were achieved with simulated solar illumination on Ag3CuS2/P3HT and Ag3CuS2/PTB7, respectively. A possible mechanism was discussed and we showed the charge separation at interface of inorganic and polymer semiconductors played an important role.
Solution-Processed hybrid Sb2 S3 planar heterojunction solar cell
NASA Astrophysics Data System (ADS)
Huang, Wenxiao; Borazan, Ismail; Carroll, David
Thin-film solar cells based on inorganic absorbers permit a high efficiency and stability. Among or those absorber candidates, recently Sb2S3 has attracted extensive attention because of its suitable band gap (1.5eV ~1.7 eV) , strong optical absorption, low-cost and earth-abundant constituents. Currently high-efficiency Sb2S3 solar cells have absorber layer deposited on nanostructured TiO2 electrodes in combination with organic hole transport material (HTM) on top. However it's challenging to fill the nanostructured TiO2 layer with Sb2S3 and subsequently by HTM, this leads to uncovered surface permits charge recombination. And the existing of Sb2S3/TiO2/HTM triple interface will enhance the recombination due to the surface trap state. Therefore, a planar junction cell would not only have simpler structure with less steps to fabricate but also ideally also have a higher open circuit voltage because of less interface carrier recombination. By far there is limited research focusing on planar Sb2S3 solar cell, so the feasibility is still unclear. Here, we developed a low-toxic solution method to fabricate Sb2S3 thin film solar cell, then we studied the morphology of the Sb2S3 layer and its impact to the device performance. The best device with a structure of FTO/TiO2/Sb2S3/P3HT/Ag has PCE over 5% which is similar or higher than yet the best nanostructure devices with the same HTM. Furthermore, based on solution engineering and surface modification, we improved the Sb2S3 film quality and achieved a record PCE. .
Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.
Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H
2017-04-12
Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.
Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong
2016-01-01
With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776
Green, Peter F. (Director, Center for Solar and Thermal Energy Conversion, University of Michigan); CSTEC Staff
2017-12-09
'Heart of the Solution - Energy Frontiers' was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its 'exemplary explanation of the role of an Energy Frontier Research Center'. The Center for Solar and Thermal Energy Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.
NASA Astrophysics Data System (ADS)
Abdelsalam, Tarek I.; Darwish, Ziad; Hatem, Tarek M.
Egypt is currently experiencing the symptoms of an energy crisis, such as electricity outage and high deficit, due to increasing rates of fossil fuels consumption. Conversely, Egypt has a high solar availability of more than 18.5 MJ daily. Additionally, Egypt has large uninhabited deserts on both sides of the Nile valley and Sinai Peninsula, which both represent more than 96.5 % of the nation's total land area. Therefore, solar energy is one of the promising solutions for the energy shortage in Egypt. Furthermore, these vast lands are advantageous for commissioning large-scaled solar power projects, not only in terms of space availability, but also of availability of high quality silicon (sand) required for manufacturing silicon wafers used in photovoltaic (PV) modules. Also, rural Egypt is considered market a gap for investors, due to low local competition, and numerous remote areas that are not connected to the national electricity grid. Nevertheless, there are some obstacles that hinder the progress of solar energy in Egypt; for instance, the lack of local manufacturing capabilities, security, and turbulent market in addition to other challenges. This paper exhibits an experience of the authors designing and installing decentralized PV solar systems, with a total rated power of about 11 kW, installed at two rural villages in at the suburbs of Fayoum city, in addition to a conceptual design of a utility scale, 2 MW, PV power plant to be installed in Kuraymat. The outcomes of this experience asserted that solar PV systems can be a more technically and economically feasible solution for the energy problem in rural villages.
Wu, Jian; Zhang, Yupeng; He, Yeyuan; Liu, Chunyu; Guolt, Wenbin; Ruan, Shengping
2014-06-01
We used a hydrothermal method to synthesis the solution-processed V2O5 as anode buffer layer, which applied on inverted polymer solar cells based on FTO substrate. The structure of the device is glass/FTO/TiO2/P3HT:PCBM/V2O5/Ag. We discussed the dependence of device performance on the concentrations of V2O5 solution. It is found that when the concentration of V2O5 is 300 microg/ml, the power conversion efficiency (PCE of 2.38%) is the highest, which is much higher than that of the device without anode buffer layer (PCE of only 0.87%). Moreover, it can significantly reduce the energy consumption and make it more cost-effective.
Interplanetary double-shock ensembles with anomalous electrical conductivity
NASA Technical Reports Server (NTRS)
Dryer, M.
1972-01-01
Similarity theory is applied to the case of constant velocity, piston-driven, shock waves. This family of solutions, incorporating the interplanetary magnetic field for the case of infinite electric conductivity, represents one class of experimentally observed, flare-generated shock waves. This paper discusses the theoretical extension to flows with finite conductivity (presumably caused by unspecified modes of wave-particle interactions). Solutions, including reverse shocks, are found for a wide range of magnetic Reynolds numbers from one to infinity. Consideration of a zero and nonzero ambient flowing solar wind (together with removal of magnetic considerations) enables the recovery of earlier similarity solutions as well as numerical simulations. A limited comparison with observations suggests that flare energetics can be reasonably estimated once the shock velocity, ambient solar wind velocity and density, and ambient azimuthal Alfven Mach number are known.
Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung
2013-06-13
Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C,more » with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.« less
Neural Network for Positioning Space Station Solar Arrays
NASA Technical Reports Server (NTRS)
Graham, Ronald E.; Lin, Paul P.
1994-01-01
As a shuttle approaches the Space Station Freedom for a rendezvous, the shuttle's reaction control jet firings pose a risk of excessive plume impingement loads on Freedom solar arrays. The current solution to this problem, in which the arrays are locked in a feathered position prior to the approach, may be neither accurate nor robust, and is also expensive. An alternative solution is proposed here: the active control of Freedom's beta gimbals during the approach, positioning the arrays dynamically in such a way that they remain feathered relative to the shuttle jet most likely to cause an impingement load. An artificial neural network is proposed as a means of determining the gimbal angles that would drive plume angle of attack to zero. Such a network would be both accurate and robust, and could be less expensive to implement than the current solution. A network was trained via backpropagation, and results, which compare favorably to the current solution as well as to some other alternatives, are presented. Other training options are currently being evaluated.
Transparent ohmic contacts for solution-processed, ultrathin CdTe solar cells
Kurley, J. Matthew; Panthani, Matthew G.; Crisp, Ryan W.; ...
2016-12-19
Recently, solution-processing became a viable route for depositing CdTe for use in photovoltaics. Ultrathin (~500 nm) solar cells have been made using colloidal CdTe nanocrystals with efficiencies exceeding 12% power conversion efficiency (PCE) demonstrated by using very simple device stacks. Further progress requires an effective method for extracting charge carriers generated during light harvesting. Here, we explored solution-based methods for creating transparent Ohmic contacts to the solution-deposited CdTe absorber layer and demonstrated molecular and nanocrystal approaches to Ohmic hole-extracting contacts at the ITO/CdTe interface. Furthermore, we used scanning Kelvin probe microscopy to further show how the above approaches improved carriermore » collection by reducing the potential drop under reverse bias across the ITO/CdTe interface. Other methods, such as spin-coating CdTe/A 2CdTe 2 (A = Na, K, Cs, N 2H 5), can be used in conjunction with current/light soaking to improve PCE further.« less
Ciro, John; Ramírez, Daniel; Mejía Escobar, Mario Alejandro; Montoya, Juan Felipe; Mesa, Santiago; Betancur, Rafael; Jaramillo, Franklin
2017-04-12
Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.
Xu, Qiaojing; Song, Tao; Cui, Wei; Liu, Yuqiang; Xu, Weidong; Lee, Shuit-Tong; Sun, Baoquan
2015-02-11
Hybrid solar cells based on n-Si/poly(3,4-ethylenedioxythiophene):poly(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique "sandwich" structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6×10(-3) Ω(-1), which was even higher than that of sputtered indium tin oxide electrode (6.6×10(-3) Ω(-1)). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (Vbi) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology.
He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan
2017-12-06
Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.
The Chemical Adventures of Sherlock Holmes: The Baker Street Burning
NASA Astrophysics Data System (ADS)
Waddell, Thomas G.; Rybolt, Thomas R.
1998-04-01
This story describes a chemical mystery with an emphasis on forensic chemistry, physical properties, and qualitative organic analysis. This is the ninth article in a series presenting a scientific problem in mystery form in the context of the popular and beloved characters Sherlock Holmes and Dr. Watson. There is a break in the story where the reader (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
The Chemical Adventures of Sherlock Holmes: Autopsy in Blue
NASA Astrophysics Data System (ADS)
Waddell, Thomas G.; Rybolt, Thomas R.
2004-04-01
This story is a chemical mystery with an emphasis on qualitative inorganic analysis, forensic chemistry, and medicinal substances. This is the 15th article in a series presenting a scientific problem in mystery format in the context of the popular and beloved characters Sherlock Holmes and Dr. Watson. There is a break in the story where readers (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
The Chemical Adventures of Sherlock Holmes: The Case of Three
NASA Astrophysics Data System (ADS)
Rybolt, Thomas R.; Waddell, Thomas G.
2002-04-01
This story is a chemical mystery with an emphasis on simple physical properties and chemical characterization of metals. It is the 13th in a series presenting scientific problems in mystery format in the context of the popular and beloved characters Sherlock Holmes and Dr. Watson. There is a break in the story where the reader (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
On the Angular Variation of Solar Reflectance of Snow
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Choudhury, B. J.
1979-01-01
Spectral and integrated solar reflectance of nonhomogeneous snowpacks were derived assuming surface reflection of direct radiation and subsurface multiple scattering. For surface reflection, a bidirectional reflectance distribution function derived for an isotropic Gaussian faceted surface was considered and for subsurface multiple scattering, an approximate solution of the radiative transfer equation was studied. Solar radiation incident on the snowpack was decomposed into direct and atmospherically scattered radiation. Spectral attenuation coefficients of ozone, carbon dioxide, water vapor, aerosol and molecular scattering were included in the calculation of incident solar radiation. Illustrative numerical results were given for a case of North American winter atmospheric conditions. The calculated dependence of spectrally integrated directional reflectance (or albedo) on solar elevation was in qualitative agreement with available observations.
Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells
Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei
2018-01-01
Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research. PMID:29342950
Glass heat pipe evacuated tube solar collector
McConnell, Robert D.; Vansant, James H.
1984-01-01
A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.
New Materials for Chalcogenide Based Solar Cells
NASA Astrophysics Data System (ADS)
Tosun, Banu Selin
Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 °C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to the deposition temperature while the CBD solution is rapidly circulated between the bath and a chilled reservoir. We have demonstrated Zn1-x CdxS films for a variety of (x) values, with and without varying (x) across film thickness.
Polychiral semiconducting carbon nanotube-fullerene solar cells.
Gong, Maogang; Shastry, Tejas A; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A; Marks, Tobin J; Grossman, Jeffrey C; Ren, Shenqiang; Hersam, Mark C
2014-09-10
Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.
NREL: International Activities - U.S.-China Renewable Energy Partnership
Solar PV and TC88 Wind working groups. Renewable Energy Technology These projects enhance policies to Collaboration on innovative business models and financing solutions for solar PV deployment. Micrositing and O development. Current Projects Recommendations for photovoltaic (PV) and wind grid code updates. New energy
The Decline of the Atom and the Rise of the Sun as Future Energy Sources
ERIC Educational Resources Information Center
Bockris, J. O'M.
1973-01-01
Examines the various energy sources likely to be developed in the near future, and suggests that the only satisfactory solution lies in the development of solar energy and an associated non-polluting "hydrogen economy." Concludes that Australia has ideal conditions and the technical expertise to lead in solar energy research. (JR)
Solar-Assisted Oxidation of Toxic Cyanide
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Miles, A.
1985-01-01
In solar-assisted oxidation technique, oxygen-bearing air bubbled through cyanide solution in which platinized powdered TiO2 is suspended. Light from either artifical source or natural Sunlight irradiates. Experiments demonstrated this technique effective in reducing concentration of cyanide to levels well below those achieved by other methods. Results suggest effective and inexpensive method for oxidizing cyanide in industrial wastewaters.
A Wearable All-Solid Photovoltaic Textile.
Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan
2016-01-13
A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of fabricating a solar cell
Pass, Thomas; Rogers, Robert
2016-02-16
Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.
Method of fabricating a solar cell
Pass, Thomas; Rogers, Robert
2014-02-25
Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.
Solar heating and hot water system installed at Alderson Broaddus College, Philippi, West Virginia
NASA Technical Reports Server (NTRS)
1981-01-01
Data needed necessary to evaluate the design and operation of a solar energy heating and hot water system installed in a commercial application are presented. The information includes system descriptions, acceptance test data, schematics, as built drawing, problems encountered, all solutions and photographs of the system at various stages of completion.
NASA Technical Reports Server (NTRS)
1980-01-01
The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.
[Advances in microbial solar cells--A review].
Guo, Xiaoyun; Yu, Changping; Zheng, Tianling
2015-08-04
The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.
One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applications
NASA Astrophysics Data System (ADS)
Weintraub, Benjamin A.
As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis of ZnO nanowires and applications in photovoltaics. The following thesis goals have been achieved: rationale synthesis of a single ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique to control ZnO nanowire array density using layer-by-layer polymers, determination of optimal nanowire field emitter density to maximize the field enhancement factor, design of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.
NASA Astrophysics Data System (ADS)
Brunier, Serge; Luminet, Jean-Pierre
2000-12-01
Stargazers who may have missed the last total solar eclipse of the 20th century this past summer have just been given another chance to observe this "once in a lifetime" occurrence. Inside Glorious Eclipses they will find startling images and rich personal accounts that fully capture this event and other recent eclipses. The book will also insure that readers will not miss another eclipse in the next 60 years! Specially designed in a beautiful, large format, the volume portrays eclipses of all kinds--lunar, solar, and those occurring elsewhere in the Solar System and beyond. Brunier and Luminet have gathered together all aspects of eclipses, and carefully selected a host of lavish images. The authors detail the history of eclipses, the celestial mechanics involved, their observation, and scientific interest. Personal accounts of recent eclipses are also included as well as all relevant information about forthcoming eclipses up to 2060. Complete with NASA maps and data, Glorious Eclipses is the ultimate source for all those interested in these remarkable (and rare) celestial events. Serge Brunier is chief editor of the journal Ciel et Espace, a photo-journalist, and the author of many nonfiction books aimed at both specialists and the general public. Jean-Pierre Luminet is an astrophysicist at the Paris-Meudon Observatory and director of research at the Centre pour la Recherche Scientifique. He is the author of many popular astronomy books, including Black Holes (Cambridge University Press, 1992).
Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell.
Bergmann, Victor W; Weber, Stefan A L; Javier Ramos, F; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Li, Dan; Domanski, Anna L; Lieberwirth, Ingo; Ahmad, Shahzada; Berger, Rüdiger
2014-09-22
Perovskite-sensitized solar cells have reached power conversion efficiencies comparable to commercially available solar cells used for example in solar farms. In contrast to silicon solar cells, perovskite-sensitized solar cells can be made by solution processes from inexpensive materials. The power conversion efficiency of these cells depends substantially on the charge transfer at interfaces. Here we use Kelvin probe force microscopy to study the real-space cross-sectional distribution of the internal potential within high efficiency mesoscopic methylammonium lead tri-iodide solar cells. We show that the electric field is homogeneous through these devices, similar to that of a p-i-n type junction. On illumination under short-circuit conditions, holes accumulate in front of the hole-transport layer as a consequence of unbalanced charge transport in the device. After light illumination, we find that trapped charges remain inside the active device layers. Removing these traps and the unbalanced charge injection could enable further improvements in performance of perovskite-sensitized solar cells.
Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong
2015-10-14
Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.
Synoptic, Global Mhd Model For The Solar Corona
NASA Astrophysics Data System (ADS)
Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.
2007-05-01
The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.
The Amateur Astronomer's Introduction to the Celestial Sphere
NASA Astrophysics Data System (ADS)
Millar, William
2005-12-01
This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.
Solution-Processed Solar Cells via Nanocrystal Inks and Molecular Solutions
NASA Astrophysics Data System (ADS)
Miskin, Caleb K.
On February 15, 2008 the National Academy of Engineering unveiled their fourteen grand challenges of engineering for the 21st century. At the top of the list and voted by the public as the most important challenge was the thrust to make solar energy economical. My research has been dedicated to solving this millennial challenge by developing routes to high-efficiency, solution-processed photovoltaics (PV) for low-cost and low-energy manufacturing. My research has primarily advanced two methods for solution processed PV. In one method, semiconducting nanocrystals are synthesized and then suspended in an appropriate solvent to form an ink. The ink is then applied to a substrate by a variety of high-throughput methods such as spray coating or doctor blading and then annealed to form a polycrystalline absorber layer for solar energy. I have applied this method with great success to Cu2ZnSnS 4, a promising earth-abundant, non-toxic semiconductor. A challenge with this material is its propensity to form binary and ternary undesired phases. Using advanced nano-characterization techniques, my colleagues and I have been able to determine the spatially resolved composition of these nanoparticles and have found them to be highly non-uniform. In addition, I developed synthesis techniques aimed at controlling the nucleation and growth of this material to improve nanocrystal compositional homogeneity. Though particles produced in this work still exhibit some non-uniformities, they are greatly improved. When combined with optimized fabrication techniques, I have been able to advance the efficiency of nanocrystal ink based solar cells of CZTS from 7.2 to 9.0 percent in our lab. Another promising route to solution-processed PV is by directly coating molecular precursor solutions (rather than first forming nanocrystals) and annealing the coating to form the polycrystalline solar absorber layer. Unfortunately, a major challenge is that many metals, metal salts, and chalcogens that would be useful precursors to such films have poor solubility in organic solvents compatible with roll-to-roll manufacturing techniques. Interestingly, we have found that mixtures of commonly available thiols and amines are able to dissolve at room temperature and pressure a host of metals and salts that are otherwise insoluble in either solvent by itself. In this work, I have primarily focused on CdTe--which has been by far the most successful technology in terms of production cost ($/peak watt) and energy payback time for thin-film solar cells. In this research thrust I demonstrate for the first time the fabrication of CdTe thin-films via a solution-processed molecular precursor approach by dissolving CdCl2 and Te in ethylenediamine and 1-propanethiol. The films are formed by spin-coating thin layers of the solution and then annealing each layer until a 1.5 mum thick film is achieved. I have achieved 0.5% efficient devices by this method. As thiol-amine mixtures have the potential to leave residual sulfur in these films, other novel solvent systems are presented as future work. While amine-thiol mixtures are excellent solvents for many materials, they do not dissolve lead chalcogenides with ease. I leverage this to develop room-temperature synthesis routes to PbS, PbSe, PbTe, and PbSxSe 1-x nanoparticles. This is achieved by mixing a lead salt dissolved in thiol-amine with a chalcogen dissolved in thiol-amine at room temperature. We find that when particles produced in this manner are pressed into pellets, they show comparable thermoelectric performance to more complicated and energy intensive synthesis techniques. Ultimately, we wish to enable the use of these particles in room-temperature fabricated quantum dot solar cells. This requires the synthesis of highly monodisperse, stable colloids and is the subject of future work using thiol-amine mixtures and related aqueous analogues.
Spatial Searching for Solar Physics Data
NASA Astrophysics Data System (ADS)
Hourcle, Joseph; Spencer, J. L.; The VSO Team
2013-07-01
The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.Abstract (2,250 Maximum Characters): The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.
Welcome, Suzanne E; Leonard, Christiana M; Chiarello, Christine
2010-05-01
Resilient readers are characterized by impaired phonological processing despite skilled text comprehension. We investigated orthographic and semantic processing in resilient readers to examine mechanisms of compensation for poor phonological decoding. Performance on phonological (phoneme deletion, pseudoword reading), orthographic (orthographic choice, orthographic analogy), and semantic (semantic priming, homograph resolution) tasks was compared between resilient, poor and proficient readers. Asymmetry of the planum temporale was investigated in order to determine whether atypical readers showed unusual morphology in this language-relevant region. Resilient readers showed deficits on phonological tasks similar to those shown by poor readers. We obtained no evidence that resilient readers compensate via superior orthographic processing, as they showed neither exceptional orthographic skill nor increased reliance on orthography to guide pronunciation. Resilient readers benefited more than poor or proficient readers from semantic relationships between words and experienced greater difficulty when such relationships were not present. We suggest, therefore, that resilient readers compensate for poor phonological decoding via greater reliance on word meaning relationships. The reading groups did not differ in mean asymmetry of the planum temporale. However, resilient readers showed greater variability in planar asymmetry than proficient readers. Poor readers also showed a trend towards greater variability in planar asymmetry, with more poor readers than proficient readers showing extreme asymmetry. Such increased variability suggests that university students with less reading skill display less well regulated brain anatomy than proficient readers. Copyright 2010 Elsevier Inc. All rights reserved.
Taylor, Stuart A; Slater, Andrew; Halligan, Steve; Honeyfield, Lesley; Roddie, Mary E; Demeshski, Jamshid; Amin, Hamdam; Burling, David
2007-01-01
To prospectively investigate the relative accuracy and reproducibility of manual and automated computer software measurements by using polyps of known size in a human colectomy specimen. Institutional review board approval was obtained for the study; written consent for use of the surgical specimen was obtained. A colectomy specimen containing 27 polyps from a 16-year-old male patient with familial adenomatous polyposis was insufflated, submerged in a container with solution, and scanned at four-section multi-detector row computed tomography (CT). A histopathologist measured the maximum dimension of all polyps in the opened specimen. Digital photographs and line drawings were produced to aid CT-histologic measurement correlation. A novice (radiographic technician) and an experienced (radiologist) observer independently estimated polyp diameter with three methods: manual two-dimensional (2D) and manual three-dimensional (3D) measurement with software calipers and automated measurement with software (automatic). Data were analyzed with paired t tests and Bland-Altman limits of agreement. Seven polyps (
Single-step colloidal quantum dot films for infrared solar harvesting
NASA Astrophysics Data System (ADS)
Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao-Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.
2016-10-01
Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ˜1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.
Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...
An unconditionally stable method for numerically solving solar sail spacecraft equations of motion
NASA Astrophysics Data System (ADS)
Karwas, Alex
Solar sails use the endless supply of the Sun's radiation to propel spacecraft through space. The sails use the momentum transfer from the impinging solar radiation to provide thrust to the spacecraft while expending zero fuel. Recently, the first solar sail spacecraft, or sailcraft, named IKAROS completed a successful mission to Venus and proved the concept of solar sail propulsion. Sailcraft experimental data is difficult to gather due to the large expenses of space travel, therefore, a reliable and accurate computational method is needed to make the process more efficient. Presented in this document is a new approach to simulating solar sail spacecraft trajectories. The new method provides unconditionally stable numerical solutions for trajectory propagation and includes an improved physical description over other methods. The unconditional stability of the new method means that a unique numerical solution is always determined. The improved physical description of the trajectory provides a numerical solution and time derivatives that are continuous throughout the entire trajectory. The error of the continuous numerical solution is also known for the entire trajectory. Optimal control for maximizing thrust is also provided within the framework of the new method. Verification of the new approach is presented through a mathematical description and through numerical simulations. The mathematical description provides details of the sailcraft equations of motion, the numerical method used to solve the equations, and the formulation for implementing the equations of motion into the numerical solver. Previous work in the field is summarized to show that the new approach can act as a replacement to previous trajectory propagation methods. A code was developed to perform the simulations and it is also described in this document. Results of the simulations are compared to the flight data from the IKAROS mission. Comparison of the two sets of data show that the new approach is capable of accurately simulating sailcraft motion. Sailcraft and spacecraft simulations are compared to flight data and to other numerical solution techniques. The new formulation shows an increase in accuracy over a widely used trajectory propagation technique. Simulations for two-dimensional, three-dimensional, and variable attitude trajectories are presented to show the multiple capabilities of the new technique. An element of optimal control is also part of the new technique. An additional equation is added to the sailcraft equations of motion that maximizes thrust in a specific direction. A technical description and results of an example optimization problem are presented. The spacecraft attitude dynamics equations take the simulation a step further by providing control torques using the angular rate and acceleration outputs of the numerical formulation.
Enhancement of the inverted polymer solar cells via ZnO doped with CTAB
NASA Astrophysics Data System (ADS)
Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin
2018-02-01
A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.
NASA Astrophysics Data System (ADS)
Ceacaru, Mihai C.
2012-11-01
In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.
High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces.
Panthani, Matthew G; Kurley, J Matthew; Crisp, Ryan W; Dietz, Travis C; Ezzyat, Taha; Luther, Joseph M; Talapin, Dmitri V
2014-02-12
Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface.
Novel second-stage solar concentrator for parabolic troughs
NASA Astrophysics Data System (ADS)
Collares-Pereira, Manuel; Mendes, Joao F.
1995-08-01
Conventional parabolic troughs can be combined with second stage concentrators (SSC), to increase temperature and pressure inside the absorber, making possible the direct production of steam, improving substantially the overall system efficiency and leading to a new generation of distributed solar power plants. To attain this objective, research is needed at the optical, thermodynamic, system control, and engineering levels. In what concerns the receiver of such a system, different practical solutions have been proposed recently and in the past for the geometry of the second stage concentrator: CPC type and others. In this work we discuss these solutions and we propose a new one, 100% efficient in energy collection while reaching a total concentration ratio which is almost 65% of the thermodynamic limit. This SSC has an asymmetric elliptical geometry, rendering possible a smooth solution for the reflectors while maintaining a reasonable size for the receiver.
NASA Technical Reports Server (NTRS)
Low, B. C.; Tsinganos, K.
1986-01-01
In the case of an establishment of theoretical models of the hydromagnetic solar wind, the inclusion of the effects of the magnetic field in the solar wind makes it extremely dificult to solve the mathematical problem. This paper has the objective to present a set of particular analytic solutions. The general formulation of Tsinganos (1982) is used to identify a class of analytic solutions to the equations of steady hydromagnetic flows in spherical coordinates. Flow in an open magnetic field are studied, taking into account the problem in dimensionless form, the special case of radial flows with alpha = 0, general radial flows, illustrative examples for flows in which alpha is not equal to 0, a parametric study of nonradial flows in which alpha is not equal to zero, variations in the parameter nu, and variations in the initial speed eta.
Silicon diatom frustules as nanostructured photoelectrodes.
Chandrasekaran, Soundarrajan; Sweetman, Martin J; Kant, Krishna; Skinner, William; Losic, Dusan; Nann, Thomas; Voelcker, Nicolas H
2014-09-18
In the quest for solutions to meeting future energy demands, solar fuels play an important role. A particularly promising example is photocatalysis since even incremental improvements in performance in this process are bound to translate into significant cost benefits. Here, we report that semiconducting and high surface area 3D silicon replicas prepared from abundantly available diatom fossils sustain photocurrents and enable solar energy conversion.
The Effect of Solar Radiation Pressure on the Motion of an Artificial Satellite
NASA Technical Reports Server (NTRS)
Bryant, Robert W.
1961-01-01
The effects of solar radiation pressure on the motion of an artificial satellite are obtained, including the effects of the intermittent acceleration which results from the eclipsing of the satellite by the earth. Vectorial methods have been utilized to obtain the nonlinear equations describing the motion, and the method of Kryloff-Bogoliuboff has been applied in their solution.
Low-cost point-focus solar concentrator, phase 1
NASA Technical Reports Server (NTRS)
Nelson, E. V.; Derbidge, T. C.; Erskine, D.; Maraschin, R. A.; Niemeyer, W. A.; Matsushita, M. J.; Overly, P. T.
1979-01-01
The results of the preliminary design study for the low cost point focus solar concentrator (LCPFSC) development program are presented. A summary description of the preliminary design is given. The design philosophy used to achieve a cost effective design for mass production is described. The concentrator meets all design requirements specified and is based on practical design solutions in every possible way.
Nucleosynthesis of Mo and Ru isotopes in neutrino-driven winds
NASA Astrophysics Data System (ADS)
Bliss, Julia; Arcones, Almudena
2018-01-01
The solar system origin of the p-isotopes 92,94Mo and 96,98Ru is a long-lasting mystery. Several astrophysical scenarios failed to explain their formation. Moreover, SiC X grains show a different abundance ratio of 95,97Mo than in the solar system. We have investigated if neutrino-driven winds can offer a solution to those problems.
Yamada, Yusuke; Fukunishi, Yurie; Yamazaki, Shin-ichi; Fukuzumi, Shunichi
2010-10-21
Hydrogen peroxide was electrochemically produced by reducing oxygen in an aqueous solution with [Co(TCPP)] as a catalyst and photovoltaic solar cell operating at 0.5 V. Hydrogen peroxide thus produced is utilized as a fuel for a one-compartment fuel cell with Ag-Pb alloy nanoparticles as the cathode.
NASA Astrophysics Data System (ADS)
Calvet, Nicolas; Martins, Mathieu; Grange, Benjamin; Perez, Victor G.; Belasri, Djawed; Ali, Muhammad T.; Armstrong, Peter R.
2016-05-01
Masdar Institute established a new solar platform dedicated to research and development of concentrated solar power (CSP), and thermal energy storage systems. The facility includes among others, state of the art solar resource assessment apparatuses, a 100 kW beam down CSP plant that has been adapted to research activity, one independent 100 kW hot-oil loop, and new thermal energy storage systems. The objective of this platform is to develop cost efficient CSP solutions, promote and test these technologies in extreme desert conditions, and finally develop local expertise. The purpose of this paper is not to present experimental results, but more to give a general overview of the different capabilities of the Masdar Institute Solar Platform.
Single Source Precursors for Thin Film Solar Cells
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.
2002-01-01
The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.
Nanoplasmonics: a frontier of photovoltaic solar cells
NASA Astrophysics Data System (ADS)
Gu, Min; Ouyang, Zi; Jia, Baohua; Stokes, Nicholas; Chen, Xi; Fahim, Narges; Li, Xiangping; Ventura, Michael James; Shi, Zhengrong
2012-12-01
Nanoplasmonics recently has emerged as a new frontier of photovoltaic research. Noble metal nanostructures that can concentrate and guide light have demonstrated great capability for dramatically improving the energy conversion efficiency of both laboratory and industrial solar cells, providing an innovative pathway potentially transforming the solar industry. However, to make the nanoplasmonic technology fully appreciated by the solar industry, key challenges need to be addressed; including the detrimental absorption of metals, broadband light trapping mechanisms, cost of plasmonic nanomaterials, simple and inexpensive fabrication and integration methods of the plasmonic nanostructures, which are scalable for full size manufacture. This article reviews the recent progress of plasmonic solar cells including the fundamental mechanisms, material fabrication, theoretical modelling and emerging directions with a distinct emphasis on solutions tackling the above-mentioned challenges for industrial relevant applications.
Graphene interfaced perovskite solar cells: Role of graphene flake size
NASA Astrophysics Data System (ADS)
Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu
2018-04-01
Graphene interfaced inverted planar heterojunction perovskite solar cells are fabricated by facile solution method and studied its potential as hole conducting layer. Reduced graphene oxide (rGO) with small and large flake size and Polyethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) are utilized as hole conducting layers in different devices. For the solar cell employing PEDOT:PSS as hole conducting layer, 3.8 % photoconversion efficiency is achieved. In case of solar cells fabricated with rGO as hole conducting layer, the efficiency of the device is strongly dependent on flake size. With all other fabrication conditions kept constant, the efficiency of graphene-interfaced solar cell improves by a factor of 6, by changing the flake size of graphene oxide. We attribute this effect to uniform coverage of graphene layer and improved electrical percolation network.
Semitransparent Fully Air Processed Perovskite Solar Cells.
Bu, Lingling; Liu, Zonghao; Zhang, Meng; Li, Wenhui; Zhu, Aili; Cai, Fensha; Zhao, Zhixin; Zhou, Yinhua
2015-08-19
Semitransparent solar cells are highly attractive for application as power-generating windows. In this work, we present semitransparent perovskite solar cells that employ conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) film as the transparent counter electrode. The PSS electrode is prepared by transfer lamination technique using plastic wrap as the transfer medium. The use of the transfer lamination technique avoids the damage of the CH3NH3PbI3 perovskite film by direct contact of PSS aqueous solution. The semitransparent perovskite solar cells yield a power conversion efficiency of 10.1% at an area of about 0.06 cm(2) and 2.9% at an area of 1 cm(2). The device structure and the fabrication technique provide a facile way to produce semitransparent perovskite solar cells.
Efficient luminescent solar cells based on tailored mixed-cation perovskites
Bi, Dongqin; Tress, Wolfgang; Dar, M. Ibrahim; Gao, Peng; Luo, Jingshan; Renevier, Clémentine; Schenk, Kurt; Abate, Antonio; Giordano, Fabrizio; Correa Baena, Juan-Pablo; Decoppet, Jean-David; Zakeeruddin, Shaik Mohammed; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Hagfeldt, Anders
2016-01-01
We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight. PMID:26767196
Xi, Jun; Wu, Zhaoxin; Jiao, Bo; Dong, Hua; Ran, Chenxin; Piao, Chengcheng; Lei, Ting; Song, Tze-Bin; Ke, Weijun; Yokoyama, Takamichi; Hou, Xun; Kanatzidis, Mercouri G
2017-06-01
Tin (Sn)-based perovskites are increasingly attractive because they offer lead-free alternatives in perovskite solar cells. However, depositing high-quality Sn-based perovskite films is still a challenge, particularly for low-temperature planar heterojunction (PHJ) devices. Here, a "multichannel interdiffusion" protocol is demonstrated by annealing stacked layers of aqueous solution deposited formamidinium iodide (FAI)/polymer layer followed with an evaporated SnI 2 layer to create uniform FASnI 3 films. In this protocol, tiny FAI crystals, significantly inhibited by the introduced polymer, can offer multiple interdiffusion pathways for complete reaction with SnI 2 . What is more, water, rather than traditional aprotic organic solvents, is used to dissolve the precursors. The best-performing FASnI 3 PHJ solar cell assembled by this protocol exhibits a power conversion efficiency (PCE) of 3.98%. In addition, a flexible FASnI 3 -based flexible solar cell assembled on a polyethylene naphthalate-indium tin oxide flexible substrate with a PCE of 3.12% is demonstrated. This novel interdiffusion process can help to further boost the performance of lead-free Sn-based perovskites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter
2016-09-22
In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH 3 NH 3 PbI 3 perovskite. We observed that the Pb(SCN) 2 film transformed to PbI 2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN) 2 is only 4 % of PbI 2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Chemical Adventures of Sherlock Holmes: The Blackwater Escape
NASA Astrophysics Data System (ADS)
Waddell, Thomas G.; Rybolt, Thomas R.
2003-04-01
The following story is a chemical mystery with an emphasis on qualitative inorganic analysis, laboratory observations, and oxidation reduction processes. This is the 14th article in a series presenting a scientific problem in mystery format in the context of the popular and beloved characters Sherlock Holmes and Dr. Watson. There is a break in the story where readers (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
The Chemical Adventures of Sherlock Holmes: The Problem of Woolthshrap Prison
NASA Astrophysics Data System (ADS)
Rybolt, Thomas R.; Waddell, Thomas G.
1995-12-01
A story describing a chemical mystery with an emphasis on scientific observation and the criminal use of classic reaction of chemistry is related. This is the seventh article in a series presenting a scientific problem in mystery form in the context of the popular and beloved characters, Sherlock Holmes and Dr. Watson. There is a break in the story where the reader (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
Sherlock Holmes and the Nebulous Nitro
NASA Astrophysics Data System (ADS)
Waddell, Thomas G.; Rybolt, Thomas R.
1996-12-01
The following story describes a chemical mystery with an emphasis on knowledge in basic organic chemistry, scientific observation, and reasoning skills. This is the eighth article in a series presenting a scientific problem in mystery form in the context of the popular and beloved characters Sherlock Holmes and Dr. Watson (1 - 7). There is a break in the story where the reader (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
The Chemical Adventures of Sherlock Holmes: The Shroud of Spartacus
NASA Astrophysics Data System (ADS)
Waddell, Thomas G.; Rybolt, Thomas R.
2001-04-01
The following story is a chemical mystery with emphasis on a blood test, qualitative analysis, and the properties of biological substances. This is the twelfth article in a series presenting a scientific problem in mystery format in the context of the popular and beloved characters Sherlock Holmes and Dr. Watson. There is a break in the story where readers (students and teachers) can ponder and solve the mystery. Sherlock Holmes provides his solution in the paragraphs following this break.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priye, Aashish
2017-06-08
The app is a unique image analysis software and acts as a fluorescence reader for multiplexed nucleic acid amplification reactions. If the reaction is positive, a bright fluorescent signal is emitted from the solution depending on the choice of fluorophore molecule. The app reads the Red, blue and green (RGB) channels of the emitted signal and transforms it to yield the chromaticity (x and y) and luminance of the signal. This new representation of signal is far superior to the RGB system in determining the signal color and intensity.
Advanced methods for the solution of differential equations
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Braun, W. H.
1973-01-01
This book is based on a course presented at the Lewis Research Center for engineers and scientists who were interested in increasing their knowledge of differential equations. Those results which can actually be used to solve equations are therefore emphasized; and detailed proofs of theorems are, for the most part, omitted. However, the conclusions of the theorems are stated in a precise manner, and enough references are given so that the interested reader can find the steps of the proofs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Peter F.
"Heart of the Solution- Energy Frontiers" was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its "exemplary explanation of the role of an Energy Frontier Research Center". The Center for Solar and Thermal Energymore » Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less
NASA Astrophysics Data System (ADS)
Lin, Ming-Yi; Chen, Tsun-Jui; Xu, Wei-Feng; Hsiao, Li-Jen; Budiawan, Widhya; Tu, Wei-Chen; Chen, Shih-Lun; Chu, Chih-Wei; Wei, Pei-Kuen
2018-03-01
Flexible indium tin oxide (ITO)-free poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PC61BM) solar cells with a spin-coated silver nanowire transparent electrode are demonstrated. The solution-processed silver nanowire thin film not only exhibits high transmission (∼87%), but also shows low sheet resistance R s (∼25 Ω/sq). For solar cells with a conventional structure, the power conversion efficiency (PCE) of devices based on silver nanowires can reach around 2.29%. For the inverted structure, the PCE of devices can reach 3.39%. Conventional and inverted flexible ITO-based P3HT:PC61BM solar cells are also fabricated as a reference for comparison. For both types of solar cells, the PCE of ITO-free devices is very close that of an ITO-based polymer solar cell.
Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.
Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; George, Patrick J.
2000-01-01
NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objectives of the Ingham County Solar Project include: the demonstration of a major operational supplement to fossil fuels, thereby reducing the demand for non-renewable energy sources, demonstration of the economic and technical feasibility of solar systems as an important energy supplement over the expected life of the building, and to encourage Michigan industry to produce and incorporate solar systems in their own facility. The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a mixture of water and propylene glycol which flows through themore » tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently utilized to increase the temperature of the laundry water, kitchen water, and domestic potable water.« less
Reversal of skin aging with topical retinoids.
Hubbard, Bradley A; Unger, Jacob G; Rohrich, Rod J
2014-04-01
Topical skin care and its place in plastic surgery today are often overlooked by clinicians formulating a plan for facial rejuvenation. Not only is it important to consider topical skin care as part of comprehensive care, but clinicians should also be educated with the data available in today's literature. This review aims to familiarize the reader with the biological processes of skin aging and evidence-based clinical outcomes afforded by various topical therapies. Furthermore, this review will focus on solar damage, the value of retinoids, and how they can be used in conjunction with forms of treatment such as chemical peel, dermabrasion, and lasers. Finally, guidelines will be provided to help the physician administer appropriate skin care based on the data presented.
NASA Astrophysics Data System (ADS)
Samad, Leith L. J.
The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.
Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides.
Podjaski, Filip; Kröger, Julia; Lotsch, Bettina V
2018-03-01
Graphitic carbon nitrides have emerged as an earth-abundant family of polymeric materials for solar energy conversion. Herein, a 2D cyanamide-functionalized polyheptazine imide (NCN-PHI) is reported, which for the first time enables the synergistic coupling of two key functions of energy conversion within one single material: light harvesting and electrical energy storage. Photo-electrochemical measurements in aqueous electrolytes reveal the underlying mechanism of this "solar battery" material: the charge storage in NCN-PHI is based on the photoreduction of the carbon nitride backbone and charge compensation is realized by adsorption of alkali metal ions within the NCN-PHI layers and at the solution interface. The photoreduced carbon nitride can thus be described as a battery anode operating as a pseudocapacitor, which can store light-induced charge in the form of long-lived, "trapped" electrons for hours. Importantly, the potential window of this process is not limited by the water reduction reaction due to the high intrinsic overpotential of carbon nitrides for hydrogen evolution, potentially enabling new applications for aqueous batteries. Thus, the feasibility of light-induced electrical energy storage and release on demand by a one-component light-charged battery anode is demonstrated, which provides a sustainable solution to overcome the intermittency of solar radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Alidaei, Maryam; Izadifard, Morteza; Ghazi, Mohammad E.; Ahmadi, Vahid
2018-01-01
Perovskite solar cells have been heavily investigated due to their unique properties such as high power conversion efficiency (PCE), low-cost fabrication by solution processes, high diffusion length, large absorption coefficient, and direct and tunable band gap. PCE of perovskite devices is strongly dependent on the absorber layer properties such as morphology, crystallinity, and compactness, which are required to be optimized. In this work, the CH3NH3PbI3 (170-480 nm) absorber layers with various methylammonium iodine (MAI) concentrations (7, 10, 20 and 40 mg ml-1) and perovskite solar cells with the fluorine-doped tin oxide (400 nm)/C-TiO2 (30 nm)/Meso-TiO2 (400 nm)/CH3NH3PbI3 (170-480 nm)/P3HT (30 nm)/Au (100 nm) structure were fabricated. A two-step solution process was used for deposition of the CH3NH3PbI3 absorber layers. The morphology, crystal structure, and optical properties of the perovskite layer grown on glass and also the photovoltaic properties of the fabricated solar cells were studied. The results obtained showed that by controlling the deposition conditions, due to the reduction in charge recombination, PCE enhancement of the perovskite solar cell (up to 11.6%) was accessible.
Fabrication, Characterization and Modeling of Functionally Graded Materials
NASA Astrophysics Data System (ADS)
Lee, Po-Hua
In the past few decades, a number of theoretical and experimental studies for design, fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems) have been documented. The existing literature shows that the use of solar energy provides a promising solution to alleviate the shortage of natural resources and the environmental pollution associated with electricity generation. A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with water tubes cast inside, through which water flow serves as both a heat sink and a solar heat collector. Due to the unique and graded material properties of FGMs, this novel design not only supplies efficient thermal harvest and electrical production, but also provides benefits such as structural integrity and material efficiency. In this work, a sedimentation method has been used to fabricate aluminum (Al) and high-density polyethylene (HDPE) FGMs. The size effect of aluminum powder on the material gradation along the depth direction is investigated. Aluminum powder or the mixture of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected to sedimentation. During the sedimentation process, the concentration of Al and HDPE particles temporally and spatially changes in the depth direction due to the non-uniform motion of particles; this change further affects the effective viscosity of the suspension and thus changes the drag force of particles. A Stokes' law based model is developed to simulate the sedimentation process, demonstrate the effect of manufacturing parameters on sedimentation, and predict the graded microstructure of deposition in the depth direction. In order to improve the modeling for sedimentation behavior of particles, the Eshelby's equivalent inclusion method (EIM) is presented to determine the interaction between particles, which is not considered in a Stokes' law based model. This method is initially applied to study the case of one drop moving in a viscous fluid; the solution recovers the closed form classic solution when the drop is spherical. Moreover, this method is general and can be applied to the cases of different drop shapes and the interaction between multiple drops. The translation velocities of the drops depend on the relative position, the center-to-center distance of drops, the viscosity and size of drops. For the case of a pair of identical spherical drops, the present method using a linear approximation of the eigenstrain rate has provided a very close solution to the classic explicit solution. If a higher order of the polynomial form of the eigenstrain rate is used, one can expect a more accurate result. To meet the final goal of mass production of the aforementioned Al-HDPE FGM, a faster and more economical material manufacturing method is proposed through a vibration method. The particle segregation of larger aluminum particles embedded in the concentrated suspension of smaller high-density polyethylene is investigated under vibration with different frequencies and magnitudes. Altering experimental parameters including time and amplitude of vibration, the suspension exhibits different particle segregation patterns: uniform-like, graded and bi-layered. For material characterization, small cylinder films of Al-HDPE system FGM are obtained after the stages of dry, melt and solidification. Solar panel prototypes are fabricated and tested at different water flow rates and solar irradiation intensities. The temperature distribution in the solar panel is measured and simulated to evaluate the performance of the solar panel. Finite element simulation results are very consistent with the experimental data. The understanding of heat transfer in the hybrid solar panel prototypes gained through this study will provide a foundation for future solar panel design and optimization.
NASA Technical Reports Server (NTRS)
Ryason, P. R. (Inventor)
1977-01-01
Hydrogen is produced by the solar photolysis of water in a first photooxidation vessel with a transparent wall in the presence of a water soluble photooxidizable reagent and an insoluble hydrogen recombination catalyst. Simultaneously oxygen is produced in a second photoreduction reactor with a transparent wall in the presence of an insoluble photoreduction reagent catalyst. When spent, the solution from the first reactor is fed into the second reactor. A reaction occurs in the dark in which the redox reagents are regenerated, and the regenerated photooxidation reagent solution is recycled to the first reactor. The photoreduction-catalyst is a bifunctional reagent catalyst including a transition metal salt together with a hydroxyl or chlorohydroxyl decomposition catalyst of high area.
Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori; Haleem, Ashraf
2017-10-04
A cofacial iron porphyrin hetero-dimer, Fe2TPFPP-TMP showed high electro-catalytic activity, selectivity, and stability for the O2 reduction to H2O both in homogeneous non-aqueous and heterogeneous neutral aqueous solutions. Moreover, when it is integrated to FTO/p-CuBi2O4 (FTO = fluorine doped tin oxide) photocathode prepared by a simple novel method, a remarkable efficient solar-assisted O2 reduction is achieved in neutral potassium phosphate (KPi) or basic NaOH solutions saturated with O2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart
2013-09-17
In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.
Sol-gel derived ZnO as an electron transport layer (ETL) for inverted organic solar cells
NASA Astrophysics Data System (ADS)
Tiwari, D. C.; Dwivedi, Shailendra Kumar; Dipak, Phukhrambam; Chandel, Tarun; Sharma, Rishi
2017-05-01
In this work, we present the study of the fabrication process of the sol-gel derived zinc oxide (ZnO) as an electron transport layer (ETL.). The solution processed inverted bulk heterojunction organic solar cells based on a thin film blend of poly (3-hexylthiophene 2, 5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester is prepared. ZnO thin films are annealed at different temperature to optimize the solar cell performance and their characterization for their structural and optical properties are carried out. We have observed Voc=70mV, Jsc=1.33 µA/cm2 and FF=26% from the inverted heterojunction solar cell.
Solar-powered airplane design for long-endurance, high-altitude flight
NASA Technical Reports Server (NTRS)
Youngblood, J. W.; Talay, T. A.
1982-01-01
This paper describes the performance analysis and design of a solar-powered airplane for long-endurance, unmanned, high-altitude cruise flight utilizing electric propulsion and solar energy collection/storage devices. For a fixed calendar date and geocentric latitude, the daily energy balance, airplane sizing, and airplane aerodynamics relations combine to determine airplane size and geometry to meet mission requirements. Vehicle component weight loadings, aerodynamic parameters, and current and projected values of power train component characteristics form the basis of the solution. For a specified mission, a candidate airplane design is presented to demonstrate the feasibility of solar-powered long endurance flight. Parametric data are presented to illustrate the airplane's mission flexibility.
High work function transparent middle electrode for organic tandem solar cells
NASA Astrophysics Data System (ADS)
Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.
2010-04-01
The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function of PEDOT:PSS, which does not affect the performance of polythiophene:fullerene solar cells, but results in a lower open-circuit voltage of devices based on a polyfluorene derivative with a higher ionization potential. The introduction of a thin layer of a perfluorinated ionomer recovers the anode work function and gives an open-circuit voltage of 1.92 V for a double junction polyfluorene-based solar cell.
New Solution of Diffusion-Advection Equation for Cosmic-Ray Transport Using Ultradistributions
NASA Astrophysics Data System (ADS)
Rocca, M. C.; Plastino, A. R.; Plastino, A.; Ferri, G. L.; de Paoli, A.
2015-11-01
In this paper we exactly solve the diffusion-advection equation (DAE) for cosmic-ray transport. For such a purpose we use the Theory of Ultradistributions of J. Sebastiao e Silva, to give a general solution for the DAE. From the ensuing solution, we obtain several approximations as limiting cases of various situations of physical and astrophysical interest. One of them involves Solar cosmic-rays' diffusion.
Reading strategies of fast and slow readers.
Haberlandt, K F; Graesser, A C; Schneider, N J
1989-09-01
In three subject-paced experiments we evaluated reading patterns at the word, line, and sentence level for fast and slow readers. A moving-window method was used to collect word reading times for natural texts. At the word level, reading times of word N were influenced by features of word N-1 for fast readers but not for slow readers. The lag effect exhibited by fast readers indicates that they continue to process a word when it is no longer in view, thus limiting the notion of immediate processing. Contrary to our initial expectation that fast readers would process only a single new argument from a sentence, whereas slow readers would process several new arguments, we found that both reader groups adopted a many-argument strategy. However, fast and slow readers differed in terms of the text units (lines vs. sentences) defining the new-argument effects: Fast readers exhibited greater new-argument effects relative to lines, whereas slow readers exhibited greater new-argument effects relative to sentences. Specifically, slow readers integrated the new arguments primarily at the end of the sentence, whereas fast readers did so at line boundaries. These results are discussed in terms of a buffer-and-integrate model of reading comprehension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radu, Daniela Rodica; Liu, Mimi; Hwang, Po-yu
The project aimed to provide solar energy education to students from underrepresented groups and to develop a novel, nano-scale approach, in utilizing Fe 2SiS 4 and Fe 2GeS 4 materials as precursors to the absorber layer in photovoltaic thin-film devices. The objectives of the project were as follows: 1. Develop and implement one solar-related course at Delaware State University and train two graduate students in solar research. 2. Fabricate and characterize high-efficiency (larger than 7%) Fe 2SiS 4 and Fe 2GeS 4-based solar devices. The project has been successful in both the educational components, implementing the solar course at DSUmore » as well as in developing multiple routes to prepare the Fe 2GeS 4 with high purity and in large quantities. The project did not meet the efficiency objective, however, a functional solar device was demonstrated.« less
High Performance Tandem Perovskite/Polymer Solar Cells
NASA Astrophysics Data System (ADS)
Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas
Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.
Electrospinning Nanofiber Based Organic Solar Cell
NASA Astrophysics Data System (ADS)
Yang, Zhenhua; Liu, Ying; Moffa, Maria; Nam, Chang-Yong; Pisignano, Dario; Rafailovich, Miriam
Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their potential to result in printable, inexpensive solar cells which can be processed onto flexible substrates. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the presence of unfavorable morphological features, including dead ends or isolated domains. Here we MEH-PPV:PVP:PCBM electrospun nanofiber into BHJ solar cell for the active layer morphology optimization. Larger interfacial area between donor and acceptor is abtained with electrospinning method and the high aspect ratio of the MEH-PPV:PVP:PCBM nanofibers allow them to easily form a continuous pathway. The surface morphology is investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrospun nanofibers are discussed as a favorable structure for application in bulk-heterojunction organic solar cells. Electrospinning Nanofiber Based Bulk Heterojunction Organic Solar Cell.
Floating rGO-based black membranes for solar driven sterilization.
Zhang, Yao; Zhao, Dengwu; Yu, Fan; Yang, Chao; Lou, Jinwei; Liu, Yanming; Chen, Yingying; Wang, Zhongyong; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2017-12-14
This paper presents a new steam sterilization approach that uses a solar-driven evaporation system at the water/air interface. Compared to the conventional solar autoclave, this new steam sterilization approach via interfacial evaporation requires no complex system design to bear high steam pressure. In such a system, a reduced graphene oxide/polytetrafluoroethylene composite membrane floating at the water/air interface serves as a light-to-heat conversion medium to harvest and convert incident solar light into localized heat. Such localized heat raises the temperature of the membrane substantially and helps generate steam with a temperature higher than 120 °C. A sterilization device that takes advantage of the interfacial solar-driven evaporation system was built and its successful sterilization capability was demonstrated through both chemical and biological sterilization tests. The interfacial evaporation-based solar driven sterilization approach offers a potential low cost solution to meet the need for sterilization in undeveloped areas that lack electrical power but have ample solar radiation.
Advanced tendencies in development of photovoltaic cells for power engineering
NASA Astrophysics Data System (ADS)
Strebkov, D. S.
2015-01-01
Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.
Wet Pretreatment-Induced Modification of Cu(In,Ga)Se2/Cd-Free ZnTiO Buffer Interface.
Hwang, Suhwan; Larina, Liudmila; Lee, Hojin; Kim, Suncheul; Choi, Kyoung Soon; Jeon, Cheolho; Ahn, Byung Tae; Shin, Byungha
2018-06-20
We report a novel Cd-free ZnTiO buffer layer deposited by atomic layer deposition for Cu(In,Ga)Se 2 (CIGS) solar cells. Wet pretreatments of the CIGS absorbers with NH 4 OH, H 2 O, and/or aqueous solution of Cd 2+ ions were explored to improve the quality of the CIGS/ZnTiO interface, and their effects on the chemical state of the absorber and the final performance of Cd-free CIGS devices were investigated. X-ray photoelectron spectroscopy (XPS) analysis revealed that the aqueous solution etched away sodium compounds accumulated on the CIGS surface, which was found to be detrimental for solar cell operation. Wet treatment with NH 4 OH solution led to a reduced photocurrent, which was attributed to the thinning (or removal) of an ordered vacancy compound (OVC) layer on the CIGS surface as evidenced by an increased Cu XPS peak intensity after the NH 4 OH treatment. However, the addition of Cd 2+ ions to the NH 4 OH aqueous solution suppressed the etching of the OVC by NH 4 OH, explaining why such a negative effect of NH 4 OH is not present in the conventional chemical bath deposition of CdS. The band alignment at the CIGS/ZnTiO interface was quantified using XPS depth profile measurements. A small cliff-like conduction band offset of -0.11 eV was identified at the interface, which indicates room for further improvement of efficiency of the CIGS/ZnTiO solar cells once the band alignment is altered to a slight spike by inserting a passivation layer with a higher conduction band edge than ZnTiO. Combination of the small cliff conduction band offset at the interface, removal of the Na compound via water, and surface doping by Cd ions allowed the application of ZnTiO buffer to CIGS treated with Cd solutions, exhibiting an efficiency of 80% compared to that of a reference CIGS solar cell treated with the CdS.