Offset truss hex solar concentrator
NASA Technical Reports Server (NTRS)
White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)
1991-01-01
A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.
NASA Astrophysics Data System (ADS)
Li, Hao; Shang, Jian; Shi, Jingu; Zhao, Kun; Zhang, Lizhi
2016-01-01
Under the pressure of a fossil fuels shortage and global climate change, solar ammonia synthesis and the need to develop N2 fixation under mild conditions is becoming more urgent need; however, their intrinsic mechanisms still remain unclear. Herein, we demonstrate that the kinetic inertia of N2 can be overcome using oxygen vacancies (OVs) of BiOCl as the catalytic centers to create lower energy molecular steps, which are amendable for the solar light driven N-N triple bond cleavage via a proton-assisted electron transfer pathway. Moreover, the distinct structures of OVs on different BiOCl facets strongly determine the N2 fixation pathways by influencing both the adsorption structure and the activation level of N2. The fixation of terminal end-on bound N2 on the OVs of BiOCl {001} facets follows an asymmetric distal mode by selectively generating NH3, while the reduction of side-on bridging N2 on the OVs of BiOCl {010} facets is more energetically favorable in a symmetric alternating mode to produce N2H4 as the main intermediate.Under the pressure of a fossil fuels shortage and global climate change, solar ammonia synthesis and the need to develop N2 fixation under mild conditions is becoming more urgent need; however, their intrinsic mechanisms still remain unclear. Herein, we demonstrate that the kinetic inertia of N2 can be overcome using oxygen vacancies (OVs) of BiOCl as the catalytic centers to create lower energy molecular steps, which are amendable for the solar light driven N-N triple bond cleavage via a proton-assisted electron transfer pathway. Moreover, the distinct structures of OVs on different BiOCl facets strongly determine the N2 fixation pathways by influencing both the adsorption structure and the activation level of N2. The fixation of terminal end-on bound N2 on the OVs of BiOCl {001} facets follows an asymmetric distal mode by selectively generating NH3, while the reduction of side-on bridging N2 on the OVs of BiOCl {010} facets is more energetically favorable in a symmetric alternating mode to produce N2H4 as the main intermediate. Electronic supplementary information (ESI) available: Other experimental details, additional SEM and TEM images, X-ray diffraction patterns (XRD), UV-Vis diffuse reflectance spectra (DRS), and additional data. See DOI: 10.1039/c5nr07380d
Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin
2017-07-25
An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.
Lewandowski, Allan A.; Yampolskiy, Vladislav; Alekseev, Valerie; Son, Valentin
2001-01-01
According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.
Solar Concentrator Advanced Development Program
NASA Technical Reports Server (NTRS)
Knasel, Don; Ehresman, Derik
1989-01-01
The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.
2013-09-01
model , they are, for all intents and purposes, simply unit-less linear weights. Although this equation is technically valid for a Lambertian... modeled as a single flat facet, the same model cannot be assumed equally valid for the body. The body, after all, is a complex, three dimensional...facet (termed the “body”) and the solar tracking parts of the object as another facet (termed the solar panels). This comprises the two-facet model
Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao
2017-10-25
The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.
A microscale three-dimensional urban energy balance model for studying surface temperatures
NASA Astrophysics Data System (ADS)
Krayenhoff, E. Scott; Voogt, James A.
2007-06-01
A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).
Solar concentrator advanced development project
NASA Technical Reports Server (NTRS)
Corrigan, Robert D.; Ehresman, Derik T.
1987-01-01
A solar dynamic concentrator design developed for use with a solar-thermodynamic power generation module intended for the Space Station is considered. The truss hexagonal panel reflector uses a modular design approach and is flexible in attainable flux profiles and assembly techniques. Preliminary structural, thermal, and optical analysis results are discussed. Accuracy of the surface reflectors should be within 5 mrad rms slope error, resulting in the need for close fabrication tolerances. Significant fabrication issues to be addressed include the facet reflective and protective coating processes and the surface specularity requirements.
Method and apparatus for aligning a solar concentrator using two lasers
Diver Jr., Richard Boyer
2003-07-22
A method and apparatus are provided for aligning the facets of a solar concentrator. A first laser directs a first laser beam onto a selected facet of the concentrator such that a target board positioned adjacent to the first laser at approximately one focal length behind the focal point of the concentrator is illuminated by the beam after reflection thereof off of the selected facet. A second laser, located adjacent to the vertex of the optical axis of the concentrator, is used to direct a second laser beam onto the target board at a target point thereon. By adjusting the selected facet to cause the first beam to illuminate the target point on the target board produced by the second beam, the selected facet can be brought into alignment with the target point. These steps are repeated for other selected facets of the concentrator, as necessary, to provide overall alignment of the concentrator.
Intermediate Bandgap Solar Cells From Nanostructured Silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Marcie
2014-10-30
This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.
Tsai, Chin-Yi; Lai, Jyong-Di; Feng, Shih-Wei; Huang, Chien-Jung; Chen, Chien-Hsun; Yang, Fann-Wei; Wang, Hsiang-Chen; Tu, Li-Wei
2017-01-01
In this work, textured, well-faceted ZnO materials grown on planar Si(100), planar Si(111), and textured Si(100) substrates by low-pressure chemical vapor deposition (LPCVD) were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathode luminescence (CL) measurements. The results show that ZnO grown on planar Si(100), planar Si(111), and textured Si(100) substrates favor the growth of ZnO(110) ridge-like, ZnO(002) pyramid-like, and ZnO(101) pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100) substrate is slightly larger than that on the planar Si(111) substrate, while both of them are much larger than that on the textured Si(100) substrate. The average grain sizes (about 10-50 nm) of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT) solar cells.
Solar module having reflector between cells
Kardauskas, Michael J.
1999-01-01
A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.
Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M
2014-09-23
We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.
Zinc-oxide-based nanostructured materials for heterostructure solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A., E-mail: vamoshnikov@mail.ru
Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.
NASA Astrophysics Data System (ADS)
Zhang, Guozhong; Zhang, Shuqu; Wang, Longlu; Liu, Ran; Zeng, Yunxiong; Xia, Xinnian; Liu, Yutang; Luo, Shenglian
2017-01-01
The scrupulous design of hierarchical structure and highly active crystal facets exposure is essential for the creation of photocatalytic system. However, it is still a big challenge for scrupulous design of TiO2 architectures. In this paper, bird's nest-like anatase TiO2 microstructure with exposed highly active (001) surface has been successfully synthesized by a facile one-step solvothermal method. Methylene blue (MB) is chosen as a model pollutant to evaluate photocatalytic activity of as-obtained TiO2 samples. The results show that the photocatalytic activity of the bird's nest-like sample is more excellent than P25 in the degradation of MB due to high specific surface area and highly active (001) crystal facets exposure when tested under simulated solar light. Besides, it can be readily separated from the photocatalytic system by sedimentation after photocatalytic reaction, which is a significant advantage against conventional powder photocatalyst. The bird's nest-like microspheres with novel structure may have potential application in photocatalysis and other fields.
VISdish: A new tool for canting and shape-measuring solar-dish facets.
Montecchi, Marco; Cara, Giuseppe; Benedetti, Arcangelo
2017-06-01
Solar dishes allow us to obtain highly concentrated solar fluxes used to produce electricity or feed thermal processes/storage. For practical reasons, the reflecting surface is composed by a number of facets. After the dish assembly, facet-canting is an important task for improving the concentration of solar radiation around the focus-point, as well as the capture ratio at the receiver placed there. Finally, flux profile should be measured or evaluated to verify the concentration quality. All these tasks can be achieved by the new tool we developed at ENEA, named VISdish. The instrument is based on the visual inspection system (VIS) approach and can work in two functionalities: canting and shape-measurement. The shape data are entered in a simulation software for evaluating the flux profile and concentration quality. With respect to prior methods, VISdish offers several advantages: (i) simpler data processing, because light point-source and its reflections are univocally related, (ii) higher accuracy. The instrument functionality is illustrated through the preliminary experimental results obtained on the dish recently installed in ENEA-Casaccia in the framework of the E.U. project OMSoP.
Zhou, Yu; Wang, Xinyu; Wang, Hai; Song, Yeping; Fang, Liang; Ye, Naiqing; Wang, Linjiang
2014-03-28
Anatase TiO2 mesocrystals with a Wulff construction of nearly 100% exposed {101} facets were successfully synthesized by a facile, green solvothermal method. Their morphology, and crystal structure are characterized by powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Accordingly, a possible growth mechanism of anatase TiO2 mesocrystals is elucidated in this work. The as-prepared single anatase TiO2 mesocrystal's mean center diameter is about 500 nm, and the length is about 1 μm. They exhibit high light adsorbance, high reflectance and low transmittance in the visible region due to the unique nearly 100% exposed {101} facets. When utilized as the scattering layer in dye-sensitized solar cells (DSSCs), such mesocrystals effectively enhanced light harvesting and led to an increase of the photocurrent of the DSSCs. As a result, by using an anatase TiO2 mesocrystal film as a scattering overlayer of a compact commercial P25 TiO2 nanoparticle film, the double layered DSSCs show a power conversion efficiency of 7.23%, indicating a great improvement compared to the DSSCs based on a P25 film (5.39%) and anatase TiO2 mesocrystal films, respectively. The synergetic effect of P25 and the mesocrystals as well as the latters unique feature of a Wulff construction of nearly 100% exposed (101) facets are probably responsible for the enhanced photoelectrical performance. In particular, we explore the possibility of the low surface area and exposed {101} facets as an efficient light scattering layer of DSSCs. Our work suggests that anatase TiO2 mesocrystals with the Wulff construction is a promising candidate as a superior scattering material for high-performance DSSCs.
NASA Technical Reports Server (NTRS)
Jefferies, K.
1994-01-01
OFFSET is a ray tracing computer code for optical analysis of a solar collector. The code models the flux distributions within the receiver cavity produced by reflections from the solar collector. It was developed to model the offset solar collector of the solar dynamic electric power system being developed for Space Station Freedom. OFFSET has been used to improve the understanding of the collector-receiver interface and to guide the efforts of NASA contractors also researching the optical components of the power system. The collector for Space Station Freedom consists of 19 hexagonal panels each containing 24 triangular, reflective facets. Current research is geared toward optimizing flux distribution inside the receiver via changes in collector design and receiver orientation. OFFSET offers many options for experimenting with the design of the system. The offset parabolic collector model configuration is determined by an input file of facet corner coordinates. The user may choose other configurations by changing this file, but to simulate collectors that have other than 19 groups of 24 triangular facets would require modification of the FORTRAN code. Each of the roughly 500 facets in the assembled collector may be independently aimed to smooth out, or tailor, the flux distribution on the receiver's wall. OFFSET simulates the effects of design changes such as in receiver aperture location, tilt angle, and collector facet contour. Unique features of OFFSET include: 1) equations developed to pseudo-randomly select ray originating sources on the Sun which appear evenly distributed and include solar limb darkening; 2) Cone-optics technique used to add surface specular error to the ray originating sources to determine the apparent ray sources of the reflected sun; 3) choice of facet reflective surface contour -- spherical, ideal parabolic, or toroidal; 4) Gaussian distributions of radial and tangential components of surface slope error added to the surface normals at the ten nodal points on each facet; and 5) color contour plots of receiver incident flux distribution generated by PATRAN processing of FORTRAN computer code output. OFFSET output includes a file of input data for confirmation, a PATRAN results file containing the values necessary to plot the flux distribution at the receiver surface, a PATRAN results file containing the intensity distribution on a 40 x 40 cm area of the receiver aperture plane, a data file containing calculated information on the system configuration, a file including the X-Y coordinates of the target points of each collector facet on the aperture opening, and twelve P/PLOT input data files to allow X-Y plotting of various results data. OFFSET is written in FORTRAN (70%) for the IBM VM operating system. The code contains PATRAN statements (12%) and P/PLOT statements (18%) for generating plots. Once the program has been run on VM (or an equivalent system), the PATRAN and P/PLOT files may be transferred to a DEC VAX (or equivalent system) with access to PATRAN for PATRAN post processing. OFFSET was written in 1988 and last updated in 1989. PATRAN is a registered trademark of PDA Engineering. IBM is a registered trademark of International Business Machines Corporation. DEC VAX is a registered trademark of Digital Equipment Corporation.
Huang, Aibin; Lei, Lei; Zhu, Jingting; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping
2017-01-25
The short circuit current density of perovskite solar cell (PSC) was boosted by modulating the dominated plane facets of TiO 2 electron transport layer (ETL). Under optimized condition, TiO 2 with dominant {001} facets showed (i) low incident light loss, (ii) highly smooth surface and excellent wettability for precursor solution, (iii) efficient electron extraction, and (iv) high conductivity in perovskite photovoltaic application. A current density of 24.19 mA cm -2 was achieved as a value near the maximum limit. The power conversion efficiency was improved to 17.25%, which was the record value of PSCs with DC magnetron sputtered carrier transport layer. What is more, the room-temperature process had a great significance for the cost reduction and flexible application of PSCs.
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Rhodes, Marvin D.
1994-01-01
Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Y. L.; Zhang, M., E-mail: ylsong@bao.ac.cn
Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory /Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96.more » Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.« less
Alignment method for parabolic trough solar concentrators
Diver, Richard B [Albuquerque, NM
2010-02-23
A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.
Multifunctional Deployment Hinges Rigidified by Ultraviolet
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert;
2005-01-01
Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.
Optimization of spherical facets for parabolic solar concentrators
NASA Technical Reports Server (NTRS)
White, J. E.; Erikson, R. J.; Sturgis, J. D.; Elfe, T. B.
1986-01-01
Solar concentrator designs which employ deployable hexagonal panels are being developed for space power systems. An offset optical configuration has been developed which offers significant system level advantages over previously proposed collector designs for space applications. Optical analyses have been performed which show offset reflector intercept factors to be only slightly lower than those for symmetric reflectors with the same slope error. Fluxes on the receiver walls are asymmetric but manageable by varying the tilt angle of the receiver. Greater producibility is achieved by subdividing the hexagonal panels into triangular mirror facets of spherical contour. Optical analysis has been performed upon these to yield near-optimum sizes and radii.
NASA Astrophysics Data System (ADS)
Zhao, Fengyang; Ma, Rong; Jiang, Yongjian
2018-03-01
Titanium dioxide (TiO2) based dye-sensitized solar cells (DSSCs) often exhibit superior power conversion performance. Here we report a DSSC with novel hierarchical TiO2 composite structure (TCS) composed of anatase TiO2 micro-spheres and rutile TiO2 nanobelt framework by hydrothermal approach for high-performance. As photoanode, the TCS based DSSC shows a strong efficiency enhancement by 58% compared with Degussa TiO2 (P25)-DSSC (4.33%). The excellent performance is mainly attribute to its special multi-dimensional structures of TiO2: much active sites of 0D nanoparticle with exposed excellent {001} facet, special electronic transmission channel of 1D nanobelt, good dye adsorption capacity of 2D nanosheet and high light scattering ability of 3D micro-spheres. The novel multi-dimensional TCS materials will open up a new avenue to the electronic devices fields.
Cost analysis of a mini-facet heliostat
NASA Astrophysics Data System (ADS)
Hall, Colin; Pratt, Rodney; Farrant, David; Corsi, Clotilde; Pye, John; Coventry, Joe
2017-06-01
A significant problem with conventional heliostats is off-axis astigmatism, which increases the spot size at the central receiver, limiting the temperature and efficiency of solar thermal systems. Inspired by low-cost mini-actuators used for car wing mirrors, we examine the economic feasibility of a heliostat with individually adjustable mini-facets to correct astigmatic effects, and we compare three alternative tracking configurations.
Airborne sand and dust soiling of solar collecting mirrors
NASA Astrophysics Data System (ADS)
Sansom, Christopher; Almond, Heather; King, Peter; Endaya, Essam; Bouaichaoui, Sofiane
2017-06-01
The reflectance of solar collecting mirrors can be significantly reduced by sand and dust soiling, particularly in arid environments. Larger airborne sand and dust particles can also cause damage by erosion, again reducing reflectance. This work describes investigations of the airborne particle size, shape, and composition in three arid locations that are considered suitable for CSP plants, namely in Iran, Libya, and Algeria. Sand and dust has been collected at heights between 0.5 to 2.0m by a variety of techniques, but are shown not to be representative of the particle size found either in ground dust and sand, or on the solar collecting mirror facets themselves. The possible reasons for this are proposed, most notably that larger particles may rebound from the mirror surface. The implications for mirror cleaning and collector facet erosion are discussed.
ERIC Educational Resources Information Center
Bechger, Timo M.; Maris, Gunter
2004-01-01
This paper is about the structural equation modelling of quantitative measures that are obtained from a multiple facet design. A facet is simply a set consisting of a finite number of elements. It is assumed that measures are obtained by combining each element of each facet. Methods and traits are two such facets, and a multitrait-multimethod…
Solar Thermal Concept Evaluation
NASA Technical Reports Server (NTRS)
Hawk, Clark W.; Bonometti, Joseph A.
1995-01-01
Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations, recommendations and pit falls regarding the structure, materials and facility design are presented.
Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang
2017-03-01
The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.
Development and Evaluation of New Methods for Estimating Albedo-area for Stable GEOs
NASA Astrophysics Data System (ADS)
Payne, T. E.; Gregory, S. A.; Dentamaro, A.; Ernst, M.; Hollon, J.; Kruchten, A.; Chaudhary, A. B.; Dao, P. D.
Although direct measurements of the projected areas of various Geosynchronous Earth Orbit (GEO) satellite facets are impossible without high-resolution imaging, estimates of the albedo-Area (aA) product lead to the possibility of inferring the area. Such size estimates are an integral part of its identity. We are engaged in parallel development of two methods for calculating aA for the body/communication antennae structures and one method for the solar panels. We have previously reported on the Two Facet Model (2FM) method for body aA, and here we discuss a method based on differences between new observations and a baseline catalog that has been constructed from the GEO Observations with Longitudinal Diversity Simultaneously (GOLDS) data. We report on evaluations of the 2FM and differential method (DM) algorithm results. We also discuss a new method of estimating solar panel aA by fitting new data that include specular glints. All of these measurement methods are compared to models and simulations that serve as a proxy for ground truth. Because of the partially directional nature of the composite Bi-directional Reflectivity Distribution Function (BRDF) of all bus-mounted appendages, variance of body aA results is expected to be significant. Short-term and long-term variance of the derived aAs will also be discussed.
Liu, Bin; Ning, Lichao; Zhang, Congjie; Zheng, Hairong; Liu, Shengzhong Frank; Yang, Heqing
2018-06-21
It is rather challenging to develop photocatalysts based on narrow-band-gap semiconductors for water splitting under solar irradiation. Herein, we synthesized the Cu 2 O/Cu 2 Se multilayer heterostructure nanowires exposing {111} crystal facets by a hydrothermal reaction of Se with Cu and KBH 4 in ethanol amine aqueous solution and subsequent annealing in air. The photocatalytic H 2 production activity of Cu 2 O/Cu 2 Se multilayer heterostructure nanowires is dramatically improved, with an increase on the texture coefficient of Cu 2 O(111) and Cu 2 Se(111) planes, and thus the exposed {111} facets may be the active surfaces for photocatalytic H 2 production. On the basis of the polar structure of Cu 2 O {111} and Cu 2 Se {111} surfaces, we presented a model of charge separation between the Cu-Cu 2 Se(111) and O-Cu 2 O(1̅ 1̅ 1̅) polar surfaces. An internal electric field is created between Cu-Cu 2 Se(111) and O-Cu 2 O(1̅ 1̅ 1̅) polar surfaces, because of spontaneous polarization. As a result, this internal electric field drives the photocreated charge separation. The oxidation and reduction reactions selectively occur at the negative O-Cu 2 O(1̅ 1̅ 1̅) and the positive Cu-Cu 2 Se(111) surfaces. The polar surface-engineering may be a general strategy for enhancing the photocatalytic H 2 -production activity of semiconductor photocatalysts. The charge separation mechanism not only can deepen the understanding of photocatalytic H 2 production mechanism but also provides a novel insight into the design of advanced photocatalysts, other photoelectric devices, and solar cells.
Zhang, Xiaoyan; Xu, You; Zhang, Junjie; Dong, Shuai; Shen, Liming; Gupta, Arunava; Bao, Ningzhong
2018-01-10
Two-dimensional (2D) semiconducting nanomaterials have generated much interest both because of fundamental scientific interest and technological applications arising from the unique properties in two dimensions. However, the colloidal synthesis of 2D quaternary chalcogenide nanomaterials remains a great challenge owing to the lack of intrinsic driving force for its anisotropic growth. 2D wurtzite Cu 2 ZnSnS 4 nanosheets (CZTS-NS) with high-energy (002) facets have been obtained for the first time via a simple one-pot thermal decomposition method. The CZTS-NS exhibits superior photoelectrochemical activity as compared to zero-dimensional CZTS nanospheres and comparable performance to Pt counter electrode for dye sensitized solar cells. The improved catalytic activity can be attributed to additional reactive catalytic sites and higher catalytic reactivity in high-energy (002) facets of 2D CZTS-NS. This is in accordance with the density functional theory (DFT) calculations, which indicates that the (002) facets of wurtzite CZTS-NS possess higher surface energy and exhibits remarkable reducibility for I 3 - ions. The developed synthetic method and findings will be helpful for the design and synthesis of 2D semiconducting nanomaterials, especially eco-friendly copper chalcogenide nanocrystals for energy harvesting and photoelectric applications.
Tracking and shape errors measurement of concentrating heliostats
NASA Astrophysics Data System (ADS)
Coquand, Mathieu; Caliot, Cyril; Hénault, François
2017-09-01
In solar tower power plants, factors such as tracking accuracy, facets misalignment and surface shape errors of concentrating heliostats are of prime importance on the efficiency of the system. At industrial scale, one critical issue is the time and effort required to adjust the different mirrors of the faceted heliostats, which could take several months using current techniques. Thus, methods enabling quick adjustment of a field with a huge number of heliostats are essential for the rise of solar tower technology. In this communication is described a new method for heliostat characterization that makes use of four cameras located near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. From knowledge of a measured sun profile, data processing of the acquired images allows reconstructing the slope and shape errors of the heliostats, including tracking and canting errors. The mathematical basis of this shape reconstruction process is explained comprehensively. Numerical simulations demonstrate that the measurement accuracy of this "backward-gazing method" is compliant with the requirements of solar concentrating optics. Finally, we present our first experimental results obtained at the THEMIS experimental solar tower plant in Targasonne, France.
Multilayered sandwich-like architecture containing large-scale faceted Al–Cu–Fe quasicrystal grains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Dongxia; He, Zhanbing, E-mail: hezhanbing@ustb.edu.cn
Faceted quasicrystals are structurally special compared with traditional crystals. Although the application of faceted quasicrystals has been expected, wide-scale application has not occurred owing to the limited exposure of the facets. Using a facile method of heat treatment, we synthesize a multilayered sandwich-like structure with each layer composed of large-scale pentagonal-dodecahedra of Al–Cu–Fe quasicrystals. Moreover, there are channels between the adjacent Al–Cu–Fe layers that serve to increase the exposure of the facets of quasicrystals. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction are used to characterize the multilayered architecture, and the generation mechanisms of this special structure are alsomore » discussed. - Highlights: • A multilayered sandwich-like structure is produced by a facile method. • Each layer is covered by large-scale faceted Al–Cu–Fe quasicrystals. • There are channels between the adjacent Al–Cu–Fe layers.« less
Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien
2017-03-15
Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.
NASA Astrophysics Data System (ADS)
Sakaki, Atsushi; Funato, Mitsuru; Kawamura, Tomoaki; Araki, Jun; Kawakami, Yoichi
2018-03-01
Synchrotron radiation (SR) X-ray diffraction with a sub-µm spatial resolution is used to nondestructively evaluate the local thickness and alloy composition of three-dimensionally faceted InGaN/GaN quantum wells (QWs). The (0001) facet QW on a trapezoidal structure composed of (0001), \\{ 11\\bar{2}2\\} , and \\{ 11\\bar{2}0\\} facets is nonuniform, most likely owing to the migration of adatoms between facets. The thickness and composition markedly vary within a short distance for the \\{ 11\\bar{2}2\\} facet QW of another pyramidal structure. The QW parameters acquired by SR microbeam X-ray diffraction reproduce the local emission property assessed by cathodoluminescence, thereby indicating the high reliability of this method.
Tang, Lanqin; Zhao, Zongyan; Zhou, Yong; Lv, Bihu; Li, Peng; Ye, Jinhua; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang
2017-05-15
A series of ZnSn(OH) 6 polyhedra are successfully explored with well-controlled area ratio of the exposed {100} and {111} facets. Band alignment of the exposed facet-based homojunction of the elegant polyhedron facilitates spatial separation of photogenerated electrons and holes on {111} and {100} surfaces, respectively. Optimal area ratio of {100} to {111} is the prerequisite for pronounced CO 2 photocatalytic performance of high-symmetry cuboctahedra into methane (CH 4 ). The synergistic effect of the excess electron accumulation and simultaneously the enhanced CO 2 absorption and low dissociation activation energy on {111} reduction sites promote the yield of CO 2 photocatalytic conversion product.
Restructuring of an Ir(210) electrode surface by potential cycling
Soliman, Khaled A; Kolb, Dieter M; Jacob, Timo
2014-01-01
Summary This study addresses the electrochemical surface faceting and restructuring of Ir(210) single crystal electrodes. Cyclic voltammetry measurements and in situ scanning tunnelling microscopy are used to probe structural changes and variations in the electrochemical behaviour after potential cycling of Ir(210) in 0.1 M H2SO4. Faceted structures are obtained electrochemically as a function of time by cycling at a scanrate of 1 V·s−1 between −0.28 and 0.70 V vs SCE, i.e., between the onset of hydrogen evolution and the surface oxidation regime. The electrochemical behaviour in sulfuric acid solution is compared with that of thermally faceted Ir(210), which shows a sharp characteristic voltammetric peak for (311) facets. Structures similar to thermally-induced faceted Ir(210) are obtained electrochemically, which typically correspond to polyoriented facets at nano-pyramids. These structures grow anisotropically in a preferred direction and reach a height of about 5 nm after 4 h of cycling. The structural changes are reflected in variations of the electrocatalytic activity towards carbon monoxide adlayer oxidation. PMID:25247118
Restructuring of an Ir(210) electrode surface by potential cycling.
Soliman, Khaled A; Kolb, Dieter M; Kibler, Ludwig A; Jacob, Timo
2014-01-01
This study addresses the electrochemical surface faceting and restructuring of Ir(210) single crystal electrodes. Cyclic voltammetry measurements and in situ scanning tunnelling microscopy are used to probe structural changes and variations in the electrochemical behaviour after potential cycling of Ir(210) in 0.1 M H2SO4. Faceted structures are obtained electrochemically as a function of time by cycling at a scanrate of 1 V·s(-1) between -0.28 and 0.70 V vs SCE, i.e., between the onset of hydrogen evolution and the surface oxidation regime. The electrochemical behaviour in sulfuric acid solution is compared with that of thermally faceted Ir(210), which shows a sharp characteristic voltammetric peak for (311) facets. Structures similar to thermally-induced faceted Ir(210) are obtained electrochemically, which typically correspond to polyoriented facets at nano-pyramids. These structures grow anisotropically in a preferred direction and reach a height of about 5 nm after 4 h of cycling. The structural changes are reflected in variations of the electrocatalytic activity towards carbon monoxide adlayer oxidation.
NASA Astrophysics Data System (ADS)
Diver, Richard B.; Jones, Scott; Robb, Stacy; Mahoney, A. Rod
1995-05-01
Two test bed concentrators (TBC's) were designed to provide high-performance test beds for advanced solar receivers and converters. However, the second-surface silvered-glass mirror facets on the TBC's, which were originally manufactured by the Jet Propulsion Laboratory, have experienced severe silver corrosion. To restore reflectance, TBC-2 was refurbished with a lustering technique developed at Sandia National Laboratories. In the lustering technique, second-surface silvered thin-glass mirrors were applied over the corroded facets, thereby increasing the dish reflectivity and raising the available power of TBC-2 from approximately 70 to 78 kW(sub t). Degradation of the original optical accuracy of the TBC facets was determined to be minimal. Lustering was chosen over facet replacement because of the lower cost, the anticipated improvement in corrosion resistance, and the shorter project duration. This report includes background information, details of the lustering process, and test results from TBC-2 characterization, both before and after lustering.
Buckling behavior of origami unit cell facets under compressive loads
NASA Astrophysics Data System (ADS)
Kshad, Mohamed Ali Emhmed; Naguib, Hani E.
2018-03-01
Origami structures as cores for sandwich structures are designed to withstand the compressive loads and to dissipate compressive energy. The deformation of the origami panels and the unit cell facets are the primary factors behind the compressive energy dissipation in origami structures. During the loading stage, the origami structures deform through the folding and unfolding process of the unit cell facets, and also through the plastic deformation of the facets. This work presents a numerical study of the buckling behavior of different origami unit cell elements under compressive loading. The studied origami configurations were Miura and Ron-Resch-like origami structures. Finite element package was used to model the origami structures. The study investigated the buckling behavior of the unit cell facets of two types of origami structures Miura origami and Ron-Resch-Like origami structures. The simulation was conducted using ANSYS finite element software, in which the model of the unit cell represented by shell elements, and the eigenvalues buckling solver was used to predict the theoretical buckling of the unit cell elements.
Renewable Energy Feasibility Study Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooney, Tim
2013-10-30
The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to assess the feasibility of solar photovoltaic (PV) installations. A solar energy project could provide a number of benefits to the Community in terms of potential future energy savings, increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a solar project’s overall feasibility, including: Technical appropriateness; Solar resource characteristics and expected system performance; Levelized cost of electricity (LCOE) economic assessment. The Gila River Indian Community (GRIC or the Community) contracted the ANTARESmore » Group, Inc. (“ANTARES”) to prepare a biomass resource assessment study and evaluate the feasibility of a bioenergy project on Community land. A biomass project could provide a number of benefits to the Community in terms of increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a biomass project’s overall feasibility, including: Resource analysis and costs; Identification of potential bioenergy projects; Technical and economic (levelized cost of energy) modeling for selected project configuration.« less
Controlled synthesis and facets-dependent photocatalysis of TiO2 nanocrystals
NASA Astrophysics Data System (ADS)
Roy, Nitish; Park, Yohan; Sohn, Youngku; Pradhan, Debabrata
2015-04-01
Titanium dioxide (TiO2) is a wide band gap semiconductor that has been extensively used in several environmental applications including degradation of organic hazardous chemicals, water splitting to generate hydrogen, dye sensitized solar cells, self cleaning agents, and pigments. Herein we demonstrate the synthesis of TiO2 nanocrystals (NCs) with the shapes of ellipsoids, rods, cuboids, and sheets with different exposed facets using a noncorrosive and nontoxic chemical (i.e. diethanolamine) as the shape controlling agent, unlike hydrofluoric acid commonly used. The TiO2 NCs of diverse shapes with different exposed facets were tested for photocatalytic hydroxyl radical (OH•) formation, which determines their photocatalytic behavior and the results were compared with the standard P-25 Degussa. The formation rate of OH• per specific surface area was found to be >6 fold higher for rod-shaped TiO2 NCs than that of commercial Degussa P25 catalyst. The highest photocatalytic activity of rod-shaped TiO2 NCs is ascribed to the unique chemical environment of {010} exposed facets which facilitates the electron/hole separation in presence of {101} facets.
Light-trapping optimization in wet-etched silicon photonic crystal solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyderman, Sergey, E-mail: sergey.eyderman@utoronto.ca; John, Sajeev; Department of Physics, King Abdul-Aziz University, Jeddah
2015-07-14
We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm{sup 2}, falling not far from 43.5 mA/cm{sup 2}, correspondingmore » to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm{sup 2} for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm{sup 2}. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching.« less
ERIC Educational Resources Information Center
Young, I. Phillip; Young, Karen Holsey; Okhremtchouk, Irina; Castaneda, Jose Moreno
2009-01-01
Pay satisfaction was assessed according to different facets (pay level, benefits, pay structure, and pay raises) and potential referent groups (teachers and elementary school principals) for a random sample of male elementary school principals. A structural model approach was used that considers facets of the pay process, potential others as…
Optical design of a high radiative flux solar furnace for Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riveros-Rosas, D.; Perez-Rabago, C.A.; Arancibia-Bulnes, C.A.
2010-05-15
In the present work, the optical design of a new high radiative flux solar furnace is described. Several optical configurations for the concentrator of the system have been considered. Ray tracing simulations were carried out in order to determine the concentrated radiative flux distributions in the focal zone of the system, for comparing the different proposals. The best configuration was chosen in terms of maximum peak concentration, but also in terms of economical and other practical considerations. It consists of an arrangement of 409 first surface spherical facets with hexagonal shape, mounted on a spherical frame. The individual orientation ofmore » the facets is corrected in order to compensate for aberrations. The design considers an intercepted power of 30 kW and a target peak concentration above 10,000 suns. The effect of optical errors was also considered in the simulations. (author)« less
Energy-driven surface evolution in beta-MnO2 structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Wentao; Yuan, Yifei; Asayesh-Ardakani, Hasti
Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth understanding of their surface evolution mechanisms. Here, combining aberration-corrected scanning transmission electron microscopy (STEM) and high-resolution TEM, we revealed a mutual energy-driven mechanism between beta-MnO2 nanowires and microstructures that dominated the evolution of the lateral facets in both structures. The evolution of the lateral surfaces followed the elimination of the {100} facets and increased the occupancy of {110} facets with the increasemore » in hydrothermal retention time. Both self-growth and oriented attachment along their {100} facets were observed as two different ways to reduce the surface energies of the beta-MnO2 structures. High-density screw dislocations with the 1/2 < 100 > Burgers vector were generated consequently. The observed surface evolution phenomenon offers guidance for the facet-controlled growth of beta-MnO2 materials with high performances for its application in metal-air batteries, fuel cells, supercapacitors, etc.« less
Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi
2016-04-27
Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.
Impact of Growth in the Universe of Subjects on Classification.
ERIC Educational Resources Information Center
Ranganathan, Shiyali Ramamritam
The development of the removal of rigidity in library classification is traced from the Enumerative Classification of DC (1876) through the Nearly-Faceted Classification of UDC (1896), the rigidly, though fully faceted version of CC (1933), the generalized faceted structure of version 2 of CC (1949), down to the Freely Faceted Classification of…
Correlation of the Features of the Lumbar Multifidus Muscle With Facet Joint Osteoarthritis.
Yu, Bo; Jiang, Kaibiao; Li, Xinfeng; Zhang, Jidong; Liu, Zude
2017-09-01
Facet joint osteoarthritis is considered a consequence of the aging process; however, there is evidence that it may be associated with degenerative changes of other structures. The goal of this study was to investigate the correlation between lumbar multifidus muscle features and facet joint osteoarthritis. This retrospective study included 160 patients who had acute or chronic low back pain and were diagnosed with facet joint osteoarthritis on computed tomography scan. Morphometric parameters, including cross-sectional area, muscle-fat index, and percentage of bilateral multifidus asymmetry at L3-L4, L4-L5, and L5-S1, were evaluated with T2-weighted magnetic resonance imaging. Patients with facet joint osteoarthritis had a smaller cross-sectional area and a higher muscle-fat index than those without facet joint osteoarthritis (P<.001). In multivariate regression analysis, older age and higher muscle-fat index were independently associated with facet joint osteoarthritis at all 3 spinal levels (P<.001). Smaller cross-sectional area was independently associated with facet joint osteoarthritis only at L4-L5 (P=.005). Asymmetry of the bilateral multifidus cross-sectional area was independently associated with facet joint osteoarthritis at L5-S1 (P=.009), but did not seem to be responsible for asymmetric degeneration of the bilateral facet joints. A higher multifidus muscle-fat index was independently associated with facet joint osteoarthritis, and bilateral multifidus size asymmetry was associated with the development of facet joint osteoarthritis at L5-S1. It seems more accurate to consider facet joint osteoarthritis a failure of the whole joint structure, including the paraspinal musculature, rather than simply a failure of the facet joint cartilage. [Orthopedics. 2017; 40(5):e793-e800.]. Copyright 2017, SLACK Incorporated.
Carmeli, Abraham; Sternberg, Akiva; Elizur, D
2008-04-01
Despite the prominence of organizational culture (OC), this concept is controversial and its structure has yet to be systematically analyzed. This study develops a three-pronged formal definitional framework on the basis of facet theory (FT) and explores behavior modality, referent, and object. This facet analysis (FA) of OC accounts successfully for variation in both creative behavior at work and the usage of information and communication technologies (ICTs). An analysis of data collected from 230 employees in the financial industry indicates that a radex structure was obtained for work and ICT. The behavior modality facet ordered the space from center to periphery, and referents facet relates to the direction angles away from the origin.
Tan, Ming-Hui; Chong, Kok-Keong; Wong, Chee-Woon
2014-01-20
Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120 m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.
Locking mechanisms in degree-4 vertex origami structures
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.
2016-04-01
Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.
Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing.
Shang, Yang; Guo, Lin
2015-10-01
Shape-dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low-index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu 2 O nanocrystals, including the three basic Cu 2 O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu 2 O nanocrystals enclosed by high-index planes. We then discuss in detail the three main facet-controlled synthetic strategies (deposition, etching and templating) to fabricate Cu 2 O-based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet-controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet-dependent properties of the Cu 2 O and Cu 2 O-based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet-related directions.
Glass light pipes for solar concentration
NASA Astrophysics Data System (ADS)
Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.
2018-02-01
Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.
Sandia Corporation (Albuquerque, NM)
Diver, Richard B.
2010-02-23
A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.
On the Angular Variation of Solar Reflectance of Snow
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Choudhury, B. J.
1979-01-01
Spectral and integrated solar reflectance of nonhomogeneous snowpacks were derived assuming surface reflection of direct radiation and subsurface multiple scattering. For surface reflection, a bidirectional reflectance distribution function derived for an isotropic Gaussian faceted surface was considered and for subsurface multiple scattering, an approximate solution of the radiative transfer equation was studied. Solar radiation incident on the snowpack was decomposed into direct and atmospherically scattered radiation. Spectral attenuation coefficients of ozone, carbon dioxide, water vapor, aerosol and molecular scattering were included in the calculation of incident solar radiation. Illustrative numerical results were given for a case of North American winter atmospheric conditions. The calculated dependence of spectrally integrated directional reflectance (or albedo) on solar elevation was in qualitative agreement with available observations.
Cross-cultural evidence for the two-facet structure of pride.
Shi, Yan; Chung, Joanne M; Cheng, Joey T; Tracy, Jessica L; Robins, Richard W; Chen, Xiao; Zheng, Yong
2015-04-01
Across six studies conducted in Mainland China and South Korea, the present research extended prior findings showing that pride is comprised of two distinct conceptual and experiential facets in the U.S.: a pro-social, achievement-oriented "authentic pride", and an arrogant, self-aggrandizing "hubristic pride". This same two-facet structure emerged in Chinese participants' semantic conceptualizations of pride (Study 1), Chinese and Koreans' dispositional tendencies to experience pride (Studies 2, 3a, and 3b), Chinese and Koreans' momentary pride experiences (Studies 3a, 3b, and 5), and Americans' pride experiences using descriptors derived indigenously in Korea (Study 4). Together, these studies provide the first evidence that the two-facet structure of pride generalizes to cultures with highly divergent views of pride and self-enhancement processes from North America.
Facet control of gold nanorods
Zhang, Qingfeng; Han, Lili; Jing, Hao; ...
2016-01-21
While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less
Briley, Daniel A.; Tucker-Drob, Elliot M.
2017-01-01
The Five Factor Model (FFM) of personality is well-established at the phenotypic level, but much less is known about the coherence of the genetic and environmental influences within each personality domain. Univariate behavioral genetic analyses have consistently found the influence of additive genes and nonshared environment on multiple personality facets, but the extent to which genetic and environmental influences on specific facets reflect more general influences on higher order factors is less clear. We applied a multivariate quantitative-genetic approach to scores on the CPI-Big Five facets for 490 monozygotic and 317 dizygotic twins who took part in the National Merit Twin Study. Our results revealed a complex genetic structure for facets composing all five factors, with both domain-general and facet-specific genetic and environmental influences. Models that required common genetic and environmental influences on each facet to occur by way of effects on a higher order trait did not fit as well as models allowing for common genetic and environmental effects to act directly on the facets for three of the Big Five domains. These results add to the growing body of literature indicating that important variation in personality occurs at the facet level which may be overshadowed by aggregating to the trait level. Research at the facet level, rather than the factor level, is likely to have pragmatic advantages in future research on the genetics of personality. PMID:22695681
Li, Ping; Zhou, Yong; Zhao, Zongyan; Xu, Qinfeng; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang
2015-08-05
An unprecedented, crystal facet-based CeO2 homojunction consisting of hexahedron prism-anchored octahedron with exposed prism surface of {100} facets and octahedron surface of {111} facets was fabricated through solution-based crystallographic-oriented epitaxial growth. The photocatalysis experiment reveals that growth of the prism arm on octahedron allows to activate inert CeO2 octahedron for an increase in phototocatalytic reduction of CO2 into methane. The pronounced photocatalytic performance is attributed to a synergistic effect of the following three factors: (1) band alignment of the {100} and {111} drives electrons and holes to octahedron and prism surfaces, respectively, aiming to reach the most stable energy configuration and leading to a spatial charge separation for long duration; (2) crystallographic-oriented epitaxial growth of the CeO2 hexahedron prism arm on the octahedron verified by the interfacial lattice fringe provides convenient and fast channels for the photogenerated carrier transportation between two units of homojuntion; (3) different effective mass of electrons and holes on {100} and {111} faces leads to high charge carrier mobility, more facilitating the charge separation. The proposed facet-based homojunction in this work may provide a new concept for the efficient separation and fast transfer of photoinduced charge carriers and enhancement of the photocatalytic performance.
Jin, Zhen; Yang, Meng; Chen, Shao-Hua; Liu, Jin-Huai; Li, Qun-Xiang; Huang, Xing-Jiu
2017-02-21
Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO 2 nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO 2 possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingfeng; Han, Lili; Jing, Hao
While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less
Cross-cultural evidence for the two-facet structure of pride
Shi, Yan; Chung, Joanne M.; Cheng, Joey T.; Tracy, Jessica L.; Robins, Richard W.; Chen, Xiao; Zheng, Yong
2016-01-01
Across six studies conducted in Mainland China and South Korea, the present research extended prior findings showing that pride is comprised of two distinct conceptual and experiential facets in the U.S.: a pro-social, achievement-oriented “authentic pride”, and an arrogant, self-aggrandizing “hubristic pride”. This same two-facet structure emerged in Chinese participants’ semantic conceptualizations of pride (Study 1), Chinese and Koreans’ dispositional tendencies to experience pride (Studies 2, 3a, and 3b), Chinese and Koreans’ momentary pride experiences (Studies 3a, 3b, and 5), and Americans’ pride experiences using descriptors derived indigenously in Korea (Study 4). Together, these studies provide the first evidence that the two-facet structure of pride generalizes to cultures with highly divergent views of pride and self-enhancement processes from North America. PMID:27158171
Search Interface Design Using Faceted Indexing for Web Resources.
ERIC Educational Resources Information Center
Devadason, Francis; Intaraksa, Neelawat; Patamawongjariya, Pornprapa; Desai, Kavita
2001-01-01
Describes an experimental system designed to organize and provide access to Web documents using a faceted pre-coordinate indexing system based on the Deep Structure Indexing System (DSIS) derived from POPSI (Postulate based Permuted Subject Indexing) of Bhattacharyya, and the facet analysis and chain indexing system of Ranganathan. (AEF)
NREL Researchers Test Solar Thermal Technology
and manufacturing modifications that could lead to significant cost reductions. The major modifications include a larger reflective area (170 square meters) and a low-cost mirror facet design in which this program. SAIC's low cost stretched-membrane heliostat represents a significant advancement in
Krägeloh, Christian U; Billington, D Rex; Henning, Marcus A; Chai, Penny Pei Minn
2015-02-25
The WHOQOL-SRPB has been a useful module to measure aspects of QOL related to spirituality, religiousness, and personal beliefs, but recent research has pointed to potential problems with its proposed factor structure. Three of the eight facets of the WHOQOL-SRPB have been identified as potentially different from the others, and to date only a limited number of factor analyses of the instrument have been published. Analyses were conducted using data from a sample of 679 university students who had completed the WHOQOL-BREF quality of life questionnaire, the WHOQOL-SRPB module, the Perceived Stress scale, and the Brief COPE coping strategies questionnaire. Informed by these analyses, confirmatory factor analyses suitable for ordinal-level data explored the potential for a two-factor solution as opposed to the originally proposed one-factor solution. The facets WHOQOL-SRPB facets connected, strength, and faith were highly correlated with each other as well as with the religious coping sub-scale of the Brief COPE. Combining these three facets to one factor in a two-factor solution for the WHOQOL-SRPB yielded superior goodness-of-fit indices compared to the original one-factor solution. A two-factor solution for the WHOQOL-SRPB is more tenable, in which three of the eight WHOQOL-SRPB facets group together as a spiritual coping factor and the remaining facets form a factor of spiritual quality of life. While discarding the facets connectedness, strength, and faith without additional research would be premature, users of the scale need to be aware of this alternative two-factor structure, and may wish to analyze scores using this structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudo, Takuya; Inoue, Tomoya; Kita, Takashi
2008-10-01
Self-assembling process of InAs/GaAs quantum dots has been investigated by analyzing reflection high-energy electron diffraction chevron images reflecting the crystal facet structure surrounding the island. The chevron image shows dramatic changes during the island formation. From the temporal evolution of the chevron tail structure, the self-assembling process has been found to consist of four steps. The initial islands do not show distinct facet structures. Then, the island surface is covered by high-index facets, and this is followed by the formation of stable low-index facets. Finally, the flow of In atoms from the islands occurs, which contributes to flatten the wettingmore » layer. Furthermore, we have investigated the island shape evolution during the GaAs capping layer growth by using the same real-time analysis technique.« less
A Practical Methodology for the Systematic Development of Multiple Choice Tests.
ERIC Educational Resources Information Center
Blumberg, Phyllis; Felner, Joel
Using Guttman's facet design analysis, four parallel forms of a multiple-choice test were developed. A mapping sentence, logically representing the universe of content of a basic cardiology course, specified the facets of the course and the semantic structural units linking them. The facets were: cognitive processes, disease priority, specific…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medlin, D. L.; Hattar, K.; Zimmerman, J. A.
Grain boundaries often develop faceted morphologies in systems for which the interfacial free energy depends on the boundary inclination. Although the mesoscale thermodynamic basis for such morphological evolution has been extensively studied, the influence of line defects, such as secondary grain boundary dislocations, on the facet configurations has not been thoroughly explored. In this paper, through a combination of atomistic simulations and electron microscopic observations, we examine in detail the structure of an asymmetric Σ = 5 [001] grain boundary in well-annealed, body-centered cubic (BCC) Fe. The observed boundary forms with a hill-and-valley morphology composed of nanoscale {310} and {210}more » facets. Our analysis clarifies the atomic structure of the {310}/{210} facet junctions and identifies the presence of an array of secondary grain boundary dislocations that are localized to these junctions. Analysis of the Burgers vectors of the grain boundary dislocations, which are of type (1/5)<310> and (1/5)<120>, shows that the defect density is consistent with that required to accommodate a small observed angular deviation from the exact Σ = 5 orientation relationship. As a result, these observations and analysis suggest a crucial role for secondary grain boundary dislocations in dictating the length-scale of grain boundary facets, a consideration which has not been included in prior analyses of facet evolution and equilibrium facet length.« less
Medlin, D. L.; Hattar, K.; Zimmerman, J. A.; ...
2016-11-16
Grain boundaries often develop faceted morphologies in systems for which the interfacial free energy depends on the boundary inclination. Although the mesoscale thermodynamic basis for such morphological evolution has been extensively studied, the influence of line defects, such as secondary grain boundary dislocations, on the facet configurations has not been thoroughly explored. In this paper, through a combination of atomistic simulations and electron microscopic observations, we examine in detail the structure of an asymmetric Σ = 5 [001] grain boundary in well-annealed, body-centered cubic (BCC) Fe. The observed boundary forms with a hill-and-valley morphology composed of nanoscale {310} and {210}more » facets. Our analysis clarifies the atomic structure of the {310}/{210} facet junctions and identifies the presence of an array of secondary grain boundary dislocations that are localized to these junctions. Analysis of the Burgers vectors of the grain boundary dislocations, which are of type (1/5)<310> and (1/5)<120>, shows that the defect density is consistent with that required to accommodate a small observed angular deviation from the exact Σ = 5 orientation relationship. As a result, these observations and analysis suggest a crucial role for secondary grain boundary dislocations in dictating the length-scale of grain boundary facets, a consideration which has not been included in prior analyses of facet evolution and equilibrium facet length.« less
Development of the ASTRI heliostat
NASA Astrophysics Data System (ADS)
Coventry, Joe; Arjomandi, Maziar; Barry, John; Blanco, Manuel; Burgess, Greg; Campbell, Jonathan; Connor, Phil; Emes, Matthew; Fairman, Philip; Farrant, David; Ghanadi, Farzin; Grigoriev, Victor; Hall, Colin; Koltun, Paul; Lewis, David; Martin, Scott; Nathan, Graham; Pye, John; Qiu, Ang; Stuart, Wayne; Tang, Youhong; Venn, Felix; Yu, Jeremy
2016-05-01
The Australian Solar Thermal Research Initiative (ASTRI) aims to develop a high optical quality heliostat with target cost - manufactured, installed and operational - of 90 AUD/m2. Three different heliostat design concepts are described, each with features identified during a prior scoping study as having the potential to contribute to cost reduction compared to the current state-of-the-art. The three concepts which are being developed will be down-selected to a single concept for testing in late 2016. The heliostat concept development work is supported by technology development streams, developing novel sandwich panel mirror facet structures, analysing and testing wind loads on heliostats in both stow and operation positions, and developing new heliostat field layouts and software tools for optical analysis of heliostats design concepts.
ERIC Educational Resources Information Center
Maslovaty, Nava; Cohen, Arie; Furman, Sari
2008-01-01
The article presents a multi-faceted theory of "ideal high school student" traits. The trait system, as defined by several theories, is a translation of the teachers' belief system into educational objectives. The study focused on Bloom's taxonomies and the structural validity of its principles, using Similarity Structure Analysis. Aware of the…
Griffin, Sarah A; Samuel, Douglas B
2014-10-01
The Personality Inventory for DSM-5 (PID-5) was developed as a measure of the maladaptive personality trait model included within Section III of the DSM-5. Although preliminary findings have suggested the PID-5 has a five-factor structure that overlaps considerably with the Five-Factor Model (FFM) at the higher order level, there has been much less attention on the specific locations of the 25 lower-order traits. Joint exploratory factor analysis of the PID-5 traits and the 30 facets of the NEO-PI-R were used to determine the lower-order structure of the PID-5. Results indicated the PID-5's domain-level structure closely resembled the FFM. We also explored the placement of several lower-order facets that have not loaded consistently in previous studies. Overall, these results indicate that the PID-5 shares a common structure with the FFM and clarify the placement of some interstitial facets. More research investigating the lower-order facets is needed to determine how they fit into the hierarchical structure and explicate their relationships to existing measures of pathological traits. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Hinge specification for a square-faceted tetrahedral truss
NASA Technical Reports Server (NTRS)
Adams, L. R.
1984-01-01
A square-faceted tetrahedral truss is geometrically analyzed. Expressions are developed for single degree of freedom hinges which allow packaging of the structure into a configuration in which all members are parallel and closely packed in a square pattern. Deployment is sequential, thus providing control over the structure during deployment.
Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.
Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi
2016-02-16
In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.
Hawley, Lance L; Rogojanski, Jenny; Vorstenbosch, Valerie; Quilty, Lena C; Laposa, Judith M; Rector, Neil A
2017-06-01
Research with non-clinical and clinical samples has examined how mindfulness concepts relate to psychological symptom presentations. However, there is less clarity when examining treatment-seeking patients who experience DSM-diagnosed anxiety and obsessional disorders - both cross-sectionally, and following empirically-supported treatments. The Five Facet Mindfulness Questionnaire (FFMQ; Baer, Smith, Hopkins, Krietemeyer, & Toney, 2006) conceptualizes mindfulness as consisting of five facets: Observing, Describing, Acting with Awareness, Nonreactivity, and Nonjudging. The current study examines the factor structure and predictive validity of the FFMQ in a large sample of treatment-seeking individuals with obsessive compulsive disorder (OCD), panic disorder with or without agoraphobia (PD/A), social anxiety disorder (SAD), and generalized anxiety disorder (GAD). Confirmatory factor analyses (CFA) established that both four and five-factor models (i.e., with and without inclusion of the Observing factor) provided an acceptable representation of the underlying FFMQ structure, but did not support a one-factor solution. For each of these diagnostic groups, hierarchical regression analyses clarified the association between specific FFMQ facets and diagnosis specific symptom change during CBT treatment. These findings are discussed in the context of the possible transdiagnostic relevance of specific mindfulness facets, and how these facets are differentially associated with diagnosis specific symptom alleviation during CBT. Copyright © 2017 Elsevier Ltd. All rights reserved.
Naragon-Gainey, Kristin; Watson, David; Markon, Kristian E.
2009-01-01
Previous research has shown that depression and social anxiety—two “facets” of internalizing psychopathology— both are characterized by low levels of extraversion/positive emotionality (E/PE). However, little is known about the relations of the facets of E/PE with symptoms of depression and social anxiety. This study utilized multiple measures of each facet of E/PE, as well as depression and social anxiety symptoms. Self-report data were collected from large samples of college students and psychiatric outpatients. Separate factor analyses in each sample revealed a four-factor structure of E/PE, consisting of Sociability, Positive Emotionality, Ascendance, and Fun-Seeking. Structural equation modeling revealed that, after controlling for the higher-order internalizing factor and the overlap among the E/PE facets, social anxiety was broadly related to all four facets of E/PE, whereas depression was strongly related only to low positive emotionality. Implications for hierarchical models of personality and psychopathology, assessment and treatment, and etiological models are discussed. PMID:19413405
Development of composite facets for the surface of a space-based solar dynamic concentrator
NASA Technical Reports Server (NTRS)
Ayers, Schuyler R.; Morel, Donald E.; Sanborn, James A.
1986-01-01
An account is given of the composite fabrication techniques envisioned for the production of mirror-quality substrates furnishing the specular reflectance required for the NASA Space Station's solar dynamic concentrator energy system. The candidate materials were graphite fiber-reinforced glass, aluminum, and polymer matrices whose surfaces would be coated with thin metal layers and with atomic oxygen degradation-inhibiting protective coatings to obtain the desired mirror surface. Graphite-epoxy mirror substrate samples have been found to perform satisfactorily for the required concentrator lifetime.
Foundations of reusable and interoperable facet models using category theory
2016-01-01
Faceted browsing has become ubiquitous with modern digital libraries and online search engines, yet the process is still difficult to abstractly model in a manner that supports the development of interoperable and reusable interfaces. We propose category theory as a theoretical foundation for faceted browsing and demonstrate how the interactive process can be mathematically abstracted. Existing efforts in facet modeling are based upon set theory, formal concept analysis, and light-weight ontologies, but in many regards, they are implementations of faceted browsing rather than a specification of the basic, underlying structures and interactions. We will demonstrate that category theory allows us to specify faceted objects and study the relationships and interactions within a faceted browsing system. Resulting implementations can then be constructed through a category-theoretic lens using these models, allowing abstract comparison and communication that naturally support interoperability and reuse. PMID:27942248
CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation.
Xiao, Shuning; Zhu, Wei; Liu, Peijue; Liu, Fanfan; Dai, Wenrui; Zhang, Dieqing; Chen, Wei; Li, Hexing
2016-02-07
A microwave-ionothermal strategy was developed for in situ synthesis of CNTs threaded TiO2 single crystal with a tunable percentage of surface exposed (001) active facets. The CNTs were used as microwave antennas to create local "super hot" dots to induce Ti(3+) adsorption and hydrolysis, thereby leading to a good assembly of (001) facets exposed single crystalline TiO2 threaded by the CNTs in the presence of Hmim[BF4] ionic liquid. Due to the high percentage of the active (001) facets of single crystal TiO2 and the direct electron transfer property of the CNTs, the as-prepared CNTs-TiO2 composite showed a photocatalytic NO removal ratio of up to 76.8% under UV irradiation. In addition, with self-doped Ti(3+), the CNTs-TiO2 composite also exhibited an enhanced activity under irradiation with either solar lights or visible lights, showing good potential in practical applications for environmental remediation.
Ceramic surfaces, interfaces and solid-state reactions
NASA Astrophysics Data System (ADS)
Heffelfinger, Jason Roy
Faceting, the decomposition of a surface into two or more surfaces of different orientation, is studied as a function of annealing time for ceramic surfaces. Single-crystals of Alsb2Osb3\\ (alpha-Alsb2Osb3 or corundum structure) are carefully prepared and characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The mechanisms by which the originally smooth vicinal surface transforms into either a hill-and-valley or a terrace-and-step structure have been characterized. The progression of faceting is found to have a series of stages: surface smoothing, nucleation and growth of individual facets, formation of facet domains, coalescence of individual and facet domains and facet coarsening. These stages provide a model for the mechanisms of how other ceramic surfaces may facet into hill-and-valley and terrace-and-step surface microstructures. The well characterized Alsb2Osb3 surfaces provide excellent substrates by which to study the effect of surface structure on thin-film growth. Pulsed-laser deposition was used to grow thin films of yttria stabilized zirconia (YSZ) and Ysb2Osb3 onto annealed Alsb2Osb3 substrates. The substrate surface structure, such as surface steps and terraces, was found to have several effects on thin-film growth. Thin-films grown onto single-crystal substrates serve as a model geometry for studying thin-film solid-state reactions. Here, the reaction sequence and orientation relationship between thin films of Ysb2Osb3 and an Alsb2Osb3 substrate were characterized for different reaction temperatures. In a system were multiple reaction phases can form, the yttria aluminum monoclinic phase (YAM) was found to form prior to formation of other phases in this system. In a second system, a titanium alloy was reacted with single crystal Alsb2Osb3 in order to study phase formation in an intermetallic system. Both Tisb3Al and TiAl were found to form as reaction products and their orientation relationships with the Alsb2Osb3 are discussed.
Migration mechanisms of a faceted grain boundary
NASA Astrophysics Data System (ADS)
Hadian, R.; Grabowski, B.; Finnis, M. W.; Neugebauer, J.
2018-04-01
We report molecular dynamics simulations and their analysis for a mixed tilt and twist grain boundary vicinal to the Σ 7 symmetric tilt boundary of the type {1 2 3 } in aluminum. When minimized in energy at 0 K , a grain boundary of this type exhibits nanofacets that contain kinks. We observe that at higher temperatures of migration simulations, given extended annealing times, it is energetically favorable for these nanofacets to coalesce into a large terrace-facet structure. Therefore, we initiate the simulations from such a structure and study as a function of applied driving force and temperature how the boundary migrates. We find the migration of a faceted boundary can be described in terms of the flow of steps. The migration is dominated at lower driving force by the collective motion of the steps incorporated in the facet, and at higher driving forces by the step detachment from the terrace-facet junction and propagation of steps across the terraces. The velocity of steps on terraces is faster than their velocity when incorporated in the facet, and very much faster than the velocity of the facet profile itself, which is almost stationary. A simple kinetic Monte Carlo model matches the broad kinematic features revealed by the molecular dynamics. Since the mechanisms seem likely to be very general on kinked grain-boundary planes, the step-flow description is a promising approach to more quantitative modeling of general grain boundaries.
Herron, Jeffrey A.; Ferrin, Peter; Mavrikakis, Manos
2015-09-24
The electro-oxidation of dimethyl ether (DME) was investigated using periodic, self-consistent density functional theory (DFT) calculations on the (111) and (100) facets of eight fcc metals: Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh. The goal of this study is to understand the experimentally observed structure sensitivity of this reaction on Pt, and to predict trends in structure sensitivity of this reaction across the other seven metals studied. The main conclusion is that the enhanced activity of Pt(100) originates from more facile C–O bond breaking and removal of surface poisoning species, including CO and CH. When comparing C–O bondmore » breaking energetics, we do not find a universal trend where these elementary steps are always more exergonic on the (100) facet. However, we find that, at a given potential, DME can be dehydrogenated (prior to breaking the C–O bond) to a greater extent on the (100) facet. Additionally, we find that the reaction energy for C–O bond breaking in CHxOCHy-type species becomes increasingly exergonic as the species becomes increasingly dehydrogenated. Together, the more facile dehydrogenation on the (100) facets provides more favorable routes to C–O bond activation. Though we calculate a lower onset potential on Au(100), Ag(100), Cu(100), Pt(100), and Pd(100) than their respective (111) facets, the calculated onset potential for Ni(100), Ir(100), and Rh(100) are actually higher than for their respective (111) facets. Lastly, by constructing theoretical volcano plots, we conclude that Au(100), Ag(100), Cu(100), Pt(100), and Pd(100) should be more active than their respective (111) facets, while Ni(100), Rh(100), and Ir(100) will show the opposite trend.« less
NASA Astrophysics Data System (ADS)
Jiang, Dong; Yu, Han; Yu, Hongbing
2017-01-01
Novel ternary nanocomposites with facet coupled structure were synthesized by using modified g-C3N4, TiO2 nanosheets and nano-ZnO. Nanosheet/nanosheet heterojunction structure was investigated by TEM, XPS and XRD. FT-IR and Nitrogen adsorption were illustrated for chemical/physical structure analyses. Solution of p-Toluenesulfonic acid (p-TSA) was chosen as target pollutant for visible light photodegradation and the excellent removal efficiency was achieved by this structurally modified g-C3N4/TiO2/ZnO hybrid. The visible light absorption improvement and quantum efficiency enhancement, which were testified by UV-vis DRS, PL and p-TSA photodegradation measurements, due to the facet coupled structure and appropriate quantity of modified g-C3N4 in the nanocomposites.
3D morphology of Au and Au@Ag nanobipyramids
NASA Astrophysics Data System (ADS)
Burgin, Julien; Florea, Ileana; Majimel, Jérôme; Dobri, Adam; Ersen, Ovidiu; Tréguer-Delapierre, Mona
2012-02-01
The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance.The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11454b
An end of service life assessment of PMMA lenses from veteran concentrator photovoltaic systems
Miller, David C.; Khonkar, Hussameldin I.; Herrero, Rebeca; ...
2017-04-04
The optical performance of poly(methyl methacrylate) lenses from veteran concentrator photovoltaic modules was examined after the end of their service life. Lenses from the Martin-Marietta and Intersol module designs were examined from the 'Solar Village' site near Riyadh, Saudi Arabia, as well as the Phoenix Sky Harbor airport, followed by the Arizona Public Service Solar Test and Research (APS-STaR) center in Tempe, Arizona. The various lens specimens were deployed for 20, 27, and 22 years, respectively. Optical characterizations included lens efficiency (Solar Simulator instrument), material transmittance and haze (of coupons cut from veteran lenses, then measured again after their facetedmore » back surface was polished, and then measured again after the incident front surface was polished), and direct transmittance (as a function of detector's acceptance angle, using the Very Low Angular Beam Spread ('VLABS') instrument). Lens efficiency measurements compared the central region to the entire lens, also using hot and cold mirror measurements to diagnose differences in performance. A series of subsequent characterizations was performed because a decrease in performance of greater than 10% was observed for some of the veteran lenses. The optimal focal distance of the lenses was quantified using the Solar Simulator, and then correlated to lens curvature using a recently developed measurement technique. Surface roughness was examined using atomic force microscopy and scanning electron microscopy. Facet geometry (tip and valley radius) was quantified on cross-sectioned specimens. As a result, molecular weight was compared between the incident and faceted surfaces of the lenses.« less
An end of service life assessment of PMMA lenses from veteran concentrator photovoltaic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Khonkar, Hussameldin I.; Herrero, Rebeca
The optical performance of poly(methyl methacrylate) lenses from veteran concentrator photovoltaic modules was examined after the end of their service life. Lenses from the Martin-Marietta and Intersol module designs were examined from the 'Solar Village' site near Riyadh, Saudi Arabia, as well as the Phoenix Sky Harbor airport, followed by the Arizona Public Service Solar Test and Research (APS-STaR) center in Tempe, Arizona. The various lens specimens were deployed for 20, 27, and 22 years, respectively. Optical characterizations included lens efficiency (Solar Simulator instrument), material transmittance and haze (of coupons cut from veteran lenses, then measured again after their facetedmore » back surface was polished, and then measured again after the incident front surface was polished), and direct transmittance (as a function of detector's acceptance angle, using the Very Low Angular Beam Spread ('VLABS') instrument). Lens efficiency measurements compared the central region to the entire lens, also using hot and cold mirror measurements to diagnose differences in performance. A series of subsequent characterizations was performed because a decrease in performance of greater than 10% was observed for some of the veteran lenses. The optimal focal distance of the lenses was quantified using the Solar Simulator, and then correlated to lens curvature using a recently developed measurement technique. Surface roughness was examined using atomic force microscopy and scanning electron microscopy. Facet geometry (tip and valley radius) was quantified on cross-sectioned specimens. As a result, molecular weight was compared between the incident and faceted surfaces of the lenses.« less
Backward-gazing method for heliostats shape errors measurement and calibration
NASA Astrophysics Data System (ADS)
Coquand, Mathieu; Caliot, Cyril; Hénault, François
2017-06-01
The pointing and canting accuracies and the surface shape of the heliostats have a great influence on the solar tower power plant efficiency. At the industrial scale, one of the issues to solve is the time and the efforts devoted to adjust the different mirrors of the faceted heliostats, which could take several months if the current methods were used. Accurate control of heliostat tracking requires complicated and onerous devices. Thus, methods used to adjust quickly the whole field of a plant are essential for the rise of solar tower technology with a huge number of heliostats. Wavefront detection is widely use in adaptive optics and shape error reconstruction. Such systems can be sources of inspiration for the measurement of solar facets misalignment and tracking errors. We propose a new method of heliostat characterization inspired by adaptive optics devices. This method aims at observing the brightness distributions on heliostat's surface, from different points of view close to the receiver of the power plant, in order to calculate the wavefront of the reflection of the sun on the concentrated surface to determine its errors. The originality of this new method is to use the profile of the sun to determine the defects of the mirrors. In addition, this method would be easy to set-up and could be implemented without sophisticated apparatus: only four cameras would be used to perform the acquisitions.
An improved methodology for heliostat testing and evaluation at the Plataforma Solar de Almería
NASA Astrophysics Data System (ADS)
Monterreal, Rafael; Enrique, Raúl; Fernández-Reche, Jesús
2017-06-01
The optical quality of a heliostat basically quantifies the difference between the scattering effects of the actual solar radiation reflected on its optical surface, compared to the so called canonical dispersion, that is, the one reflected on an optical surface free of constructional errors (paradigm). However, apart from the uncertainties of the measuring process itself, the value of the optical quality must be independent of the measuring instrument; so, any new measuring techniques that provide additional information about the error sources on the heliostat reflecting surface would be welcome. That error sources are responsible for the final optical quality value, with different degrees of influence. For the constructor of heliostats it will be extremely useful to know the value of the classical sources of error and their weight on the overall optical quality of a heliostat, such as facets geometry or focal length, as well as the characteristics of the heliostat as a whole, i.e., its geometry, focal length, facets misalignment and also the possible dependence of these effects with mechanical and/or meteorological factors. It is the goal of the present paper to unfold these optical quality error sources by exploring directly the reflecting surface of the heliostat with the help of a laser-scanner device and link the result with the traditional methods of heliostat evaluation at the Plataforma Solar de Almería.
An End of Service Life Assessment of PMMA Lenses from Veteran Concentrator Photovoltaic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Khonkar, Hussameldin I.; Herrero, Rebecca
The optical performance of poly(methyl methacrylate) lenses from veteran concentrator photovoltaic modules was examined after the end of their service life. Lenses from the Martin-Marietta and Intersol module designs were examined from the 'Solar Village' site near Riyadh, Saudi Arabia, as well as the Phoenix Sky Harbor airport, followed by the Arizona Public Service Solar Test and Research (APS-STaR) center in Tempe, Arizona. The various lens specimens were deployed for 20, 27, and 22 years, respectively. Optical characterizations included lens efficiency (Solar Simulator instrument), material transmittance and haze (of coupons cut from veteran lenses, then measured again after their facetedmore » back surface was polished, and then measured again after the incident front surface was polished), and direct transmittance (as a function of detector's acceptance angle, using the Very Low Angular Beam Spread ('VLABS') instrument). Lens efficiency measurements compared the central region to the entire lens, also using hot and cold mirror measurements to diagnose differences in performance. A series of subsequent characterizations was performed because a decrease in performance of greater than 10% was observed for some of the veteran lenses. Surface roughness was examined using atomic force microscopy and scanning electron microscopy. Facet geometry (tip and valley radius) was quantified on cross-sectioned specimens. Molecular weight was compared between the incident and faceted surfaces of the lenses.« less
Shock Wave Structure Mediated by Energetic Particles
NASA Astrophysics Data System (ADS)
Mostafavi, P.; Zank, G. P.; Webb, G. M.
2016-12-01
Energetic particles such as cosmic rays, Pick Up Ions (PUIs), and solar energetic particles can affect all facets of plasma physics and astrophysical plasma. Energetic particles play an especially significant role in the dissipative process at shocks and in determining their structure. The very interesting recent observations of shocks in the inner heliosphere found that many shocks appear to be significantly mediated by solar energetic particles which have a pressure that exceeds considerably both the thermal gas pressure and the magnetic field pressure. Energetic particles contribute an isotropic scalar pressure to the plasma system at the leading order, as well as introducing dissipation via a collisionless heat flux (diffusion) at the next order and a collisionless stress tensor (viscosity) at the second order. Cosmic-ray modified shocks were discussed by Axford et al. (1982), Drury (1983), and Webb (1983). Zank et al. (2014) investigated the incorporation of PUIs in the supersonic solar wind beyond 10AU, in the inner Heliosheath and in the Very Local Interstellar Medium. PUIs do not equilibrate collisionally with the background plasma in these regimes. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. This model is used to investigate the structure of shock waves assuming that we can neglect the magnetic field. Specifically, we consider the dissipative role that both the energetic particle collisionless heat flux and viscosity play in determining the structure of collisionless shock waves. We show that the incorporation of both energetic particle collisionless heat flux and viscosity is sufficient to completely determine the structure of a shock. Moreover, shocks with three sub-shocks converge to the weak sub-shocks. This work differs from the investigation of Jokipii and Williams (1992) who restricted their attention to a cold thermal gas. For a cold thermal non-magnetized gas, all shocks are smoothed by cosmic ray diffusion and therefore viscosity is not an important process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, E.M.; Masso, J.D.
This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.
Extreme Magnetic Storms: Their Characteristics and Possible Consequences for Humanity
NASA Astrophysics Data System (ADS)
Falkowski, B. J.; Tsurutani, B.; Lakhina, G. S.; Deng, Y.; Mannucci, A. J.
2015-12-01
The solar and interplanetary conditions necessary to create an extreme magnetic storm will be discussed. The Carrington 1859 event was not the largest possible. It will be shown that different facets of fast ICMEs/extreme magnetic storms will have different limitations. Some possible adverse effects of such extreme space weather events on society will be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mengyan; Liu, Hui, E-mail: liuhui@sust.edu.cn
A novel dual Z-scheme photocatalytic system composited of Ag{sub 2}O nanocrystals modified Ti{sup 3+} self doped TiO{sub 2} nanocrystals with individual exposed (001) and (101) facets were successfully fabricated. In which, the Ti{sup 3+} self doped TiO{sub 2} nanocrystals with individual exposed (001) and (101) facets have been firstly prepared by a simple hydrothermal method, subsequently the as-prepared products were modified with Ag{sub 2}O nanocrystals through a sonochemical depositing process in order to build a novel dual Z-scheme photocatalytic system. The samples were carefully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–visible diffuse reflectancemore » spectra (UV–vis DRS), and Brunauer-Emmett-Teller (BET). The photocatalytic activity toward degradation of Rhodamine B (Rh B) aqueous solution under stimulated solar light was investigated. The experimental results showed this new dual Z-scheme photocatalytic system possess an enhanced photocatalytic degradation activity compared to that similar surface heterojunction photocatalysts composed of Ti{sup 3+} self doped TiO{sub 2} nanocrystals with individual exposed (001) and (101) facets. This novel photocatalytic system presents a high charge-separation efficiency and strong redox ability. This study will help us to better understand the photocatalytic mechanism of semiconductor photocatalysts with exposed different facets, and provide a new insight into the design and fabrication of advanced photocatalytic materials. - Highlights: •A novel dual Z-scheme system was built by Ag{sub 2}O and facet exposed TiO{sub 2} nanocrystals. •The individual TiO{sub 2} nanocrystals exposed (001) and (101) facets respectively. •Ag{sub 2}O coupled with Ti{sup 3+} self doped TiO{sub 2} nanocrystals through a sonochemical process. •The as-prepared sample possesses a super photocatalytic activity.« less
Lei, Wanying; Zhang, Tingting; Gu, Lin; ...
2015-06-19
Structure–function correlations are a central theme in heterogeneous (photo)catalysis. In this research, using aberration-corrected scanning transmission electron microscopy (STEM), the atomic surface structures of well-defined one-dimensional (1D) CeO 2 nanorods (NRs) and 3D nanocubes (NCs) are directly visualized at subangstrom resolution. CeO 2 NCs predominantly expose the {100} facet, with {110} and {111} as minor cutoff facets at the respective edges and corners. Notably, the outermost surface layer of the {100} facet is nearly O-terminated. Neither surface relaxations nor reconstructions on {100} are observed, indicating unusual polarity compensation, which is primarily mediated by near-surface oxygen vacancies. The surface of CeOmore » 2 NRs is highly stepped, with the enclosed {110} facet exposing Ce cations and O anions on terraces. On the basis of STEM profile-view imaging and electronic structure analysis, the photoreactivity of CeO2 nanocrystals toward aqueous methyl orange degradation under UV is revealed to be surface-structure-sensitive, following the order: {110} >> {100}. The underlying surface-structure sensitivity can be attributed to the variation in low-coordinate surface cerium cations between {110} and {100} facets. To further enhance light absorption, Au nanoparticles (NPs) are deposited on CeO 2 NRs to form Au/CeO 2 plasmonic nanocomposites, which dramatically promotes the photoreactivity that is Au particle size- and excitation light wavelength-dependent. The mechanisms responsible for the enhancement of photocatalytic activity are discussed, highlighting the crucial role of photoexcited charge carrier transfer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung
Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aagesen, Larry K.; Thornton, Katsuyo, E-mail: kthorn@umich.edu; Coltrin, Michael E.
Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materialsmore » synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less
The Active Sites of a Rod-Shaped Hollandite DeNOx Catalyst.
Hu, Pingping; Schuster, Manfred Erwin; Huang, Zhiwei; Xu, Fei; Jin, Shifeng; Chen, Yaxin; Hua, Weiming; Su, Dang Sheng; Tang, Xingfu
2015-06-26
The identification of catalytically active sites (CASs) in heterogeneous catalysis is of vital importance to design and develop improved catalysts, but remains a great challenge. The CASs have been identified in the low-temperature selective catalytic reduction of nitrogen oxides by ammonia (SCR) over a hollandite manganese oxide (HMO) catalyst with a rod-shaped morphology and one-dimensional tunnels. Electron microscopy and synchrotron X-ray diffraction determine the surface and crystal structures of the one-dimensional HMO rods closed by {100} side facets and {001} top facets. A combination of X-ray absorption spectra, molecular probes with potassium and nitric oxide, and catalytic tests reveals that the CASs are located on the {100} side facets of the HMO rods rather than on the top facets or in the tunnels, and hence semi-tunnel structural motifs on the {100} facets are evidenced to be the CASs of the SCR reaction. This work paves the way to further investigate the intrinsic mechanisms of SCR reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reinhard, Patrick; Bissig, Benjamin; Pianezzi, Fabian; Hagendorfer, Harald; Sozzi, Giovanna; Menozzi, Roberto; Gretener, Christina; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N
2015-05-13
Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.
Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.
Dai, Yanjun; Li, Xian; Zhou, Lingyu; Ma, Xuan; Wang, Ruzhu
2016-05-16
Concentrating the concept of a beam-down solar tower with linear Fresnel heliostat (PLCF) is one of the feasible choices and has great potential in reducing spot size and improving optical efficiency. Optical characteristics of a PLCF system with the hyperboloid reflector are introduced and investigated theoretically. Taking into account solar position and optical surface errors, a Monte Carlo ray-tracing (MCRT) analysis model for a PLCF system is developed and applied in a comparison-based study on the optical performance between the PLCF system and the conventional beam-down solar tower system with flat and spherical heliostats. The optimal square facet of linear Fresnel heliostat is also proposed for matching with the 3D-CPC receiver.
X-ray Fluorescence Observations of the Moon by SMART-1/D-CIXS
NASA Astrophysics Data System (ADS)
Grande, Manuel; Swinyard, B.; Joy, K. H.; Kellett, Barry J.; Crawford, Ian A.; Howe, Chris J.
2008-09-01
Introduction The SMART-1 mission to the Moon included in its payload D-CIXS, a compact X-ray spectrometer [1], [2] SMART-1 was a technology evaluation mission, and D-CIXS was the first of a new generation of planetary X-ray spectrometers. Novel technologies enabled new capabilities for measuring the fluorescent yield of a planetary surface or atmosphere which is illuminated by solar X-rays. During the extended SMART-1 cruise phase, observations of the Earth showed strong argon emission, providing a good source for calibration and demonstrating the potential of the technique. At the Moon, observations showed a first unambiguous remote sensing of calcium in the lunar regolith (Grande et al 2007) (Fig 1). Data obtained were broadly consistent with current understanding of mare and highland composition. Ground truth was provided by the returned Apollo and Luna sample sets. We have extended our observations to comparisons of Lunar near and farside, and by careful analysis enabled new elemental lines to be observed. Observations: In March, 2005, the SMART-1 spacecraft reached its nominal lunar orbit, and we began full commissioning for lunar operations. During the pre-commissioning period in mid-January, 2005, observations of the lunar surface were made which coincided with the occurrence of several major M and X class flares. This opportunity provided an excellent chance to observe spatially localized fluorescence from the lunar surface. X-ray fluorescent elemental lines from the lunar surface are detected by all three facets of D-CIXS while the XSM instrument observes the input solar spectrum. At the end of this interval, a long duration M-class solar flare began at 06:00 UTC on the 15th of January, 2005. The flare lasted for more than 1 hour but only ~30 minutes corresponded to D-CIXS observations. At this time SMART-1 was orbiting over the Moon's near-side eastern limb from about the equator, traveling northwards. As SMART-1 flew north, its altitude was also increasing from around 2100 km at 06:00 to ~3100 km at 06:35. Due to the nature of SMART-1's orbit and thermal dynamics, the spacecraft was performing a mid-orbit slew (rotation), and so D-CIXS's three facets had different surface ground tracks during the observation of interest. However, this variability in footprints was very fortuitous as the instrument FOVs included areas of both mare basalt and highland lithologies, which have different and recognizable elemental signatures. Facet 1 (thin Al-filter, 12º FOV) was oriented throughout the observation toward highland areas to the northeast of Mare Crisium. Facet 3 (Mg-filter, 12º FOV) had a ground track that crossed Mare Crisium. Due to the 12º FOV and the 2100 km altitude, the facet 3 footprint always contains a mixture of mare and highland regions. The footprint of facet 2 (thin Alfilter, 8º FOV) encompassed the regions between the two facets shown and covered a mixture of mare and highland regions but with a smaller signal due to its narrower FOV. Fig. 1 shows the particle background corrected spectra from summed data of the 3 D-CIXS facets for the interval 06:00 UTC to 06:35 UTC. Separate facet spectra have been derived by co-adding data from detectors. Essentially, elemental lines seen in the three different facet spectra represent an averaged geochemical signature from the areas covered by the D-CIXS ground tracks. The spectra shown in figure 5 indicate that lowenergy lines (Mg: 1.25 keV, Al; 1.49 keV and Si: 1.74 keV) are observed in detectors from Facet 1 and 2 (Alfilter). Detectors in Facet 3 are covered by a Magnesium filter which was designed to attenuate the signal from Al and Si X-rays, and so in the Facet 3 spectrum Mg is the only significant low-energy peak detected. Data taken from the Facet 3 spectrum also show a clear Fe peak at around 6.4 keV which is interpreted to be related to fluorescence from Mare Crisium (see below). All three facets clearly show the detection of a Ca emission peak at ~3.69 keV. Although inferences about the distribution of Ca in the lunar crust have been made indirectly from neutron and gamma ray measurements [3], this observation represents the first ever unambiguous remote sensing of Ca on the Moon. Discussion: The areas of the lunar surface observed during the flare of January 15 include Mare Crisium, and highlands to the north and east. The basaltic lavas of Mare Crisium, which appear dark in, are iron-rich owing to high modal abundances of mafic minerals (principally pyroxene). In contrast, the adjacent highlands are expected to be anorthositic (i.e., composed largely of the mineral plagioclase), and thus iron poor but relatively enriched in calcium and aluminium. Some `ground truth' is provided by samples collected at the Luna 20 and 24 landing sites, both of which were located within the footprint of facet 3 during these observations . Remote sensing by Clementine [4] and Lunar Prospector [5] suggests that the Soviet Luna 24 and Luna 20 iron abundances are reasonably representative of the Mare Crisium basalts, and the adjacent highlands, respectively. These remote sensing data also suggest that the highlands north and east of Crisium, are more anorthositic (i.e. poorer in Fe and richer in Ca) than those immediately adjacent to the Crisium basin and which were sampled by Luna 20. These expectations are confirmed by the D-CIXS data shown in Figure 1, when facet 3 was over the centre of Crisium and facet 1 was observing the highlands approximately 900 km to the north (material apparently similar to that of the highlands of the Luna 20 landing site). As expected, the Fe flux is strongly enhanced over Crisium, while Ca is somewhat enhanced over the highlands. Moreover, although there is strictly no ground truth available for the facet 1 footprint, the greater variability of Fe relative to Ca between mare and highland regions apparent in Fig. 6 is explicable in terms of the Luna 20 and 24 results presented in Table 2: while Fe is almost three times as abundant in the Crisium basalts than in the adjacent highlands, the Ca abundance is only some 20% less. Essentially the same trend is obtained by comparing the Fe and Ca Lunar Prospector data [3], which imply a factor of 2 difference in Fe, but less than a 10% difference in Ca, between these two footprints. Figure 2 shows a comparison of a spectrum obtained close to the Apollo 12 site, with a modelled spectrum, derived from averaged Apollo 12 soil compositions [6]. The match between data (black line) and model (grey) is reasonable, with the exception of the low energy continuum, where the model clearly needs refinement. We have extended our observations to comparison of Lunar near and farside, and by careful analysis enabled new elemental lines to be observed (Swinyard et al 2008)[8]. Conclusions: The instrument demonstrates the capability of this method to perform X-ray fluorescence measurements of the Moon. A number of rock forming elements have been successfully detected from the Moon during solar flare events, and we have made the first unambiguous remote detection of Calcium from the lunar surface. For more detail see Grande et al 2007 [7].All of this has been achieved during solar minimum and proves that the technique will be highly suitable for the upcoming Chandrayaan- 1 mission [9]), when the mission will take place during the rising phase of the solar cycle, and for which it forms part of the core payload. Acknowledgements We acknowledge the contributions of the entire DCIXS team (M. Grande, J. Huovelin, B. Kellett, R Browning, C. Howe, B. Swinyard, C. H. Perry, S. Dunkin, N. Waltham, B. Kent, D. Parker, I. Crawford, K. Joy, J. Guest, S. Russell, M. Grady, A. Christou, H. Alleyne, D. Hughes, C. D. Murray, S. Maurice C. L. Duston , O. Gasnaut, N. Bhandari, R. Lundin, S. Barabash, D Lawrence, V. Fernandes, I. Casanova, M. Kato, T. Okada, P. Clark, B. Foing, D. Heather, M. Wieczorek). We acknowledge the SMART-1 teams from ESA/ESTEC project, industrial teams, STOC Science and Technology Operations Centre and ESOC spacecraft operations, SMART-1 Science and Technology Working Team. The D-CIXS instrument development was supported with SMART-1 funding from ESA Science and Technology Research Programmes, and funding sources (BNSC, RAL, PPARC/STFC). Additional hardware was provided by CESR, Toulouse, University of Helsinki observatory and IRF Kiruna, Sweden. References [1] Grande, (2001) Earth Moon And Planets, Vol 85-6, pp 143-152). [2] Grande et al., (2003), Planet. & Sp. Sci., 51 (6), 427. [3] Prettyman et al, 33rd LPS XXXIII #2012. [4] Bussey & Spudis (2000), JGR- Planets, 105, 4235- 4243. [5] Lawrence et al (2002) JGRPlanets, 107, (#E12), 5130, 10.1029/2001JE001530, 2002. [6] Haskin and Warren. 1991. The Lunar Sourcebook. Eds. Heiken [7] Grande et al (2007), in press Planet. & Sp. Sci 2006 [8] Swinyard et al 2008 submitted Science [9] Grande et al., (2008), Submitted Planet. & Sp. Sci.,
NASA Technical Reports Server (NTRS)
Botez, D.
1981-01-01
Constricted double-heterojunction (CDH) diode lasers are presented as a class of nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various CDH structures are discussed while treating such topics as liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers with positive-index lateral mode confinement provides single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C, while exhibiting light-current characteristics with second-harmonic distortions as low as -57 dB below the fundamental level. Semileaky guide CDH lasers with an asymmetric leaky cavity provide single-mode operation to 15-20 mW/facet CW, and to 50 mW/facet at 50% duty cycle.
NASA Astrophysics Data System (ADS)
Gao, Bifen; Yuan, Xia; Lu, Penghui; Lin, Bizhou; Chen, Yilin
2015-12-01
CdS-loaded TiO2 microspheres with highly exposed (001) facets were prepared by hydrothermal treatment of a TiF4-HCl-H2O mixed solution followed by a chemical bath deposition of CdS onto TiO2 microspheres. The crystal structure, surficial micro-structure and photo-absorption property of the samples were characterized by XRD, FE-SEM, TEM and UV-vis diffuse reflectance spectroscopy, etc. The as-prepared samples exhibited superior visible-light-driven photocatalytic H2-production activity from lactic acid aqueous solution in comparison with CdS-sensitized TiO2 nanoparticles, whose surface was dominated by (101) facets. Photoelectrochemical measurement confirmed that (001) facet is beneficial for the transfer of photo-generated electron from CdS to TiO2 microsphere, which led to the unexpected high photocatalytic activity of CdS-loaded TiO2 microspheres.
Search for Life Beyond the Solar System. Exoplanets, Biosignatures & Instruments
NASA Astrophysics Data System (ADS)
Apai, Daniel; Gabor, Pavel
2014-03-01
Motivated by the rapidly increasing number of known Earth-sized planets, the increasing range of extreme conditions in which life on Earth can persist, and the progress toward a technology that will ultimately enable the search for life on exoplanets, the Vatican Observatory and the Steward Observatory announce a major conference entitled The Search for Life Beyond the Solar System: Exoplanets, Biosignatures & Instruments. The goal of the conference is to bring together the interdisciplinary community required to address this multi-faceted challenge: experts on exoplanet observations, early and extreme life on Earth, atmospheric biosignatures, and planet-finding telescopes.
Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries.
Guo, Binbin; Ruan, Hongcheng; Zheng, Cheng; Fei, Hailong; Wei, Mingdeng
2013-09-27
Hierarchically structured LiFePO4 was successfully synthesized by ionic liquid solvothermal method. These hierarchically structured LiFePO4 samples were constructed from nanostructured platelets with their (010) facets mainly exposed. To the best of our knowledge, facet control of a hierarchical LiFePO4 crystal has not been reported yet. Based on a series of experimental results, a tentative mechanism for the formation of these hierarchical structures was proposed. After these hierarchically structured LiFePO4 samples were coated with a thin carbon layer and used as cathode materials for lithium-ion batteries, they exhibited excellent high-rate discharge capability and cycling stability. For instance, a capacity of 95% can be maintained for the LiFePO4 sample at a rate as high as 20 C, even after 1000 cycles.
Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation.
Suleiman, Ibrahim A; Radny, Marian W; Gladys, Michael J; Smith, Phillip V; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z
2015-03-14
Density functional theory together with ab initio atomistic thermodynamics has been utilized to study the structures and stabilities of the low index CuCl surfaces. It is shown that the Cl-terminated structures are more stable than the Cu-terminated configurations, and that the defective CuCl(110)-Cu structure is more stable than the stoichiometric CuCl(110) surface. The equilibrium shape of a cuprous chloride nanostructure terminated by low-index CuCl surfaces has also been predicted using a Wulff construction. It was found that the (110) facets dominate at low chlorine concentration. As the chlorine concentration is increased, however, the contributions of the (100) and (111) facets to the Wulff construction also increase giving the crystal a semi-prism shape. At high chlorine concentration, and close to the rich limit, the (111) facets were found to be the only contributors to the Wulff construction, resulting in prismatic nanocrystals.
Díaz-Batanero, Carmen; Ramírez-López, Juan; Domínguez-Salas, Sara; Fernández-Calderón, Fermín; Lozano, Óscar M
2017-11-01
Section III of the Diagnostic and Statistical Manual of Mental Disorders-Fifth edition ( DSM-5) has generated a personality paradigm consisting of 25 personality facets identified in five domains. The developed assessment instrument Personality Inventory for DSM-5 (PID-5) has showed good psychometric properties, but the potential for certain improvements still remain. In this article, a sample of 282 dual diagnosis patients is used to provide evidence of the psychometric properties of the PID-5-Short Form. The mean value of Cronbach's alpha coefficients reached .73 on the facets and .84 for domains and test-retest values ranged between .57 to .83 for facets and .70 to .87 for the domains. Confirmatory factor analyses conducted showed good fit on both models tested: the five correlated factor structure and hierarchical structure of personality traits. The WHODAS 2.0 domains of understanding and communicating, and participating in society, appear to show the strongest relationship with personality facets. In general, the PID-5-Short Form shows adequate psychometric properties for use in dual diagnosis patients.
Hughes, Zak E; Kochandra, Raji; Walsh, Tiffany R
2017-04-18
The adsorption of three homo-tripeptides, HHH, YYY, and SSS, at the aqueous Au interface is investigated, using molecular dynamics simulations. We find that consideration of surface facet effects, relevant to experimental conditions, opens up new questions regarding interpretations of current experimental findings. Our well-tempered metadynamics simulations predict the rank ordering of the tripeptide binding affinities at aqueous Au(111) to be YYY > HHH > SSS. This ranking differs with that obtained from existing experimental data which used surface-immobilized Au nanoparticles as the target substrate. The influence of Au facet on these experimental findings is then considered, via our binding strength predictions of the relevant amino acids at aqueous Au(111) and Au(100)(1 × 1). The Au(111) interface supports an amino acid ranking of Tyr > HisA ≃ HisH > Ser, matching that of the tripeptides on Au(111), while the ranking on Au(100) is HisA > Ser ≃ Tyr ≃ HisH, with only HisA showing non-negligible binding. The substantial reduction in Tyr amino acid affinity for Au(100) vs Au(111) offers one possible explanation for the experimentally observed weaker adsorption of YYY on the nanoparticle-immobilized substrate compared with HHH. In a separate set of simulations, we predict the structures of the adsorbed tripeptides at the two aqueous Au facets, revealing facet-dependent differences in the adsorbed conformations. Our findings suggest that Au facet effects, where relevant, may influence the adsorption structures and energetics of biomolecules, highlighting the possible influence of the structural model used to interpret experimental binding data.
Chirped Grating Tunable Lasers for the Infrared Molecular Fingerprint Spectral Region
2013-09-01
lasers with chirped gratings and compare both normal DFB (pump stripe perpendicular to grating) and -DFB (pump stripe perpendicular to facets...structure. Because the period of grating increases gradually laterally, wavelength tuning is implemented by shifting pump stripe to different positions on...tilted with respect to facets and adjusting the pump stripe normal to the grating. Continuous tuning of 30 nm around 3.1 µm with 320 mW single facet
NASA Astrophysics Data System (ADS)
Rice, M. P.
1982-07-01
The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.
NASA Technical Reports Server (NTRS)
Rice, M. P.
1982-01-01
The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.
Backward-gazing method for measuring solar concentrators shape errors.
Coquand, Mathieu; Henault, François; Caliot, Cyril
2017-03-01
This paper describes a backward-gazing method for measuring the optomechanical errors of solar concentrating surfaces. It makes use of four cameras placed near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. Simple data processing then allows reconstructing the slope and shape errors of the surfaces. The originality of the method is enforced by the use of generalized quad-cell formulas and approximate mathematical relations between the slope errors of the mirrors and their reflected wavefront in the case of sun-tracking heliostats at high-incidence angles. Numerical simulations demonstrate that the measurement accuracy is compliant with standard requirements of solar concentrating optics in the presence of noise or calibration errors. The method is suited to fine characterization of the optical and mechanical errors of heliostats and their facets, or to provide better control for real-time sun tracking.
Nanocrystalline Anatase Titania Supported Vanadia Catalysts: Facet-dependent Structure of Vanadia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei-Zhen; Gao, Feng; Li, Yan
2015-07-09
Titania supported vanadia, a classic heterogeneous catalyst for redox reactions, typically has nonhomogeneous vanadia species on various titania facets, making it challenging not only to determine and quantify each species but also to decouple their catalytic contributions. We prepared truncated tetragonal bipyramidal (TiO2-TTB) and rod-like (TiO2-Rod) anatase titania with only {101} and {001} facets at ratios of about 80:20 and 93:7, respectively, and used them as supports of sub-monolayer vanadia. The structure and redox properties of supported vanadia were determined by XRD, TEM, XPS, EPR, Raman, FTIR and TPR, etc. It was found that vanadia preferentially occupy TiO2 {001} facetsmore » and form isolated O=V4+(O-Ti)2 species, and with further increase in vanadia surface coverage, isolated O=V5+(O-Ti)3 and oligomerized O=V5+(O-M)3 (M = Ti or V) species form on TiO2 {101} facets. The discovery on support facet-dependent structure of vanadia on anatase titania is expected to enable the elucidation of structure-function correlations on high surface area TiO2 supported vanadia catalysts. This work was supported by U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle.« less
Decentralized solar photovoltaic energy systems
NASA Astrophysics Data System (ADS)
Krupka, M. C.
1980-09-01
Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.
Assessing adolescents' personality with the NEO PI-R.
De Fruyt, F; Mervielde, I; Hoekstra, H A; Rolland, J P
2000-12-01
The suitability of the Revised NEO Personality Inventory (NEO PI-R) to assess adolescents' personality traits was investigated in an unselected heterogeneous sample of 469 adolescents aged 12 to 17 years. They were further administered the Hierarchical Personality Inventory for Children (HiPIC) to allow an examination of convergent and discriminant validity. The adult NEO PI-R factor structure proved to be highly replicable in the sample of adolescents, with all facet scales primarily loading on the expected factors, independent of the age group. Domain and facet internal consistency coefficients were comparable to those obtained in adult samples, with less than 12% of the items showing corrected item-facet correlations below absolute value .20. Although, in general, adolescents reported few difficulties with the comprehensibility of the items, they tend to report more problems with the Openness to Ideas (05) and Openness to Values (06) items. Correlations between NEO PI-R and HiPIC scales underscored the convergent and discriminant validity of the NEO facets and HiPIC scales. It was concluded that the NEO PI-R in its present form is useful for assessing adolescents' traits at the primary level, but additional research is necessary to infer the most appropriate facet level structure.
Friction at ice-Ih / water interfaces
NASA Astrophysics Data System (ADS)
Louden, Patrick B.; Gezelter, J. Daniel
We present evidence that the prismatic and secondary prism facets of ice-Ih crystals possess structural features that alter the effective hydrophilicity of the ice / water interface. This is shown through molecular dynamics simulations of solid-liquid friction, where the prismatic { 10 1 0 } , secondary prism { 11 2 0 } , basal { 0001 } , and pyramidal { 20 2 1 } facets are drawn through liquid water. We find that the two prismatic facets exhibit differential solid-liquid friction coefficients when compared with the basal and pyramidal facets. These results are complemented by a model solid/liquid interface with tunable hydrophilicity. These simulations provide evidence that the two prismatic faces have a significantly smaller effective surface area in contact with the liquid water. The ice / water interfacial widths for all four crystal facets are similar (using both structural and dynamic measures), and were found to be independent of the shear rate. Additionally, decomposition of orientational time correlation functions show position-dependence for the short- and longer-time decay components close to the interface. Support for this project was provided by the National Science Foundation under Grant CHE-1362211. Computational time was provided by the Center for Research Computing (CRC) at the University of Notre Dame.
Using Self-Report Assessment Methods to Explore Facets of Mindfulness
ERIC Educational Resources Information Center
Baer, Ruth A.; Smith, Gregory T.; Hopkins, Jaclyn; Krietemeyer, Jennifer; Toney, Leslie
2006-01-01
The authors examine the facet structure of mindfulness using five recently developed mindfulness questionnaires. Two large samples of undergraduate students completed mindfulness questionnaires and measures of other constructs. Psychometric properties of the mindfulness questionnaires were examined, including internal consistency and convergent…
Three-dimensional evaluation of the facet joints
NASA Astrophysics Data System (ADS)
Folio, Les R.
1990-04-01
Computerized tomography and magnetic resonance imaging nave revolurionalized analysis of vertebral anatomy and pathology. Further advances with 3-dimensional imaging have recently become an important adjunct for diagnosis and treatment in structural abnormalities. Facets are intimately related to their surrounding musculature and malalignment may cause pain directly or indirectly. High resolution 3-dimensional reformations of CT Scans give us new insight on structure and function of facet joints, since their motion and architecture are ever complex. It is well documented in the literature that facet joint biomecnanics is a partial contributor to the myriad at causes of low back The term "facet Joint syndrome" was coined in 1933 by GhorMley.3 The osteopathic lesion complex is well defined by LeRoy and McCole and comparison of roentgenographic findings before and after manipulation has teen described by Long and Lioyd.4,5 since alterations in facet biamechanics are an important aspect of osteopathic manipulative therapy (OT), 3-dimensional hign resolution imaging will prove to be a great asset in osteopathic research. Rotating the spine allows for different viewing perspectives to provide optimal and consistent measurements of the facet joint. Rotations are performed on the X, Y and 7, axis and measurements pre and post-manipulation are performed and compared on matching axis and perspectives. Rotation about the X, Y and Z axis help appreciate the 3-dimensionality of the vertebral column to project to the viewer a feeling that the spine is floating in space before them. This does give the viewer a 3-D understanding of the object however, only at a perspective at a Lime.
NASA Astrophysics Data System (ADS)
Ali Deeb, Manal; Ledig, Johannes; Wei, Jiandong; Wang, Xue; Wehmann, Hergo-Heinrich; Waag, Andreas
2017-08-01
Three dimensional GaN structures with different crystal facets and doping types have been investigated employing the surface photo-voltage (SPV) method to monitor illumination-induced surface charge behavior using Kelvin probe force microscopy. Various photon energies near and below the GaN bandgap were used to modify the generation of electron-hole pairs and their motion under the influence of the electric field near the GaN surface. Fast and slow processes for Ga-polar c-planes on both Si-doped n-type as well as Mg-doped p-type GaN truncated pyramid micro-structures were found and their origin is discussed. The immediate positive (for n-type) and negative (for p-type) SPV response dominates at band-to-band and near-bandgap excitation, while only the slow process is present at sub-bandgap excitation. The SPV behavior for the semi-polar facets of the p-type GaN truncated pyramids has a similar characteristic to that on its c-plane, which indicates that it has a comparable band bending and no strong influence of the polarity-induced charges is detectable. The SPV behavior of the non-polar m-facets of the Si-doped n-type part of a transferred GaN column is similar to that of a clean c-plane GaN surface during illumination. However, the SPV is smaller in magnitude, which is attributed to intrinsic surface states of m-plane surfaces and their influence on the band bending. The SPV behavior of the non-polar m-facet of the slightly Mg-doped part of this GaN column is found to behave differently. Compared to c- and r-facets of p-type surfaces of GaN-light-emitting diode micro-structures, the m-plane is more chemically stable.
Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields
NASA Technical Reports Server (NTRS)
Jauss, T.; Croell, A.; SorgenFrei, T.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.
2014-01-01
Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.
Langdon, Aaron; Grohe, Bernd
2016-10-01
The protein osteopontin (OPN) plays an important role in preventing the formation of calcium oxalate monohydrate (COM) kidney stones. To gain insight into these mechanisms, crystallization was induced by addition of human kidney OPN to artificial urine (ionic strength comparable to urine; without citrate), and the OPN-COM interaction studied using a combination of scanning electron (SEM) and confocal microscopy. By SEM, we found that increasing OPN concentrations formed large monoclinic penetration twins (no protein added) and, at higher concentrations (1-, 2μg/ml OPN), super and hyper twins with crystal habits not found in previous studies. For instance, the hyper twins indicate well-facetted gearwheel-like habits with "teeth" developed in all crystallographic
Space station solar concentrator materials research
NASA Technical Reports Server (NTRS)
Gulino, Daniel A.
1988-01-01
The Space Station will represent the first time that a solar dynamic power system will be used to generate electrical power in space. In a system such as this, sunlight is collected and focused by a solar concentrator onto the receiver of a heat engine which converts the energy into electricity. The concentrator must be capable of collecting and focusing as much of the incident sunlight as possible, and it must also withstand the atomic oxygen bombardment which occurs in low Earth orbit (LEO). This has led to the development of a system of thin film coatings applied to the concentrator facet surface in a chamber designed especially for this purpose. The system of thin film coatings employed gives both the necessary degree of reflectance and the required protection from the LEO atomic oxygen environment.
The surface structure of silver-coated gold nanocrystals and its influence on shape control
Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; ...
2015-07-08
Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A uniquemore » approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.« less
Cebolla, Ausiàs; Campos, Daniel; Galiana, Laura; Oliver, Amparo; Tomás, Jose Manuel; Feliu-Soler, Albert; Soler, Joaquim; García-Campayo, Javier; Demarzo, Marcelo; Baños, Rosa María
2017-03-01
Several meditation practices are associated with mindfulness-based interventions but little is known about their specific effects on the development of different mindfulness facets. This study aimed to assess the relations among different practice variables, types of meditation, and mindfulness facets. The final sample was composed of 185 participants who completed an on-line survey, including information on the frequency and duration of each meditation practice, lifetime practice, and the Five Facet Mindfulness Questionnaire. A Multiple Indicators Multiple Causes structural model was specified, estimated, and tested. Results showed that the Model's overall fit was adequate: χ 2 (1045)=1542.800 (p<0.001), CFI=0.902, RMSEA=0.042. Results revealed that mindfulness facets were uniquely related to the different variables and types of meditation. Our findings showed the importance of specific practices in promoting mindfulness, compared to compassion and informal practices, and they pointed out which one fits each mindfulness facet better. Copyright © 2017 Elsevier Inc. All rights reserved.
Mechanical role of the posterior column components in the cervical spine.
Hartman, Robert A; Tisherman, Robert E; Wang, Cheng; Bell, Kevin M; Lee, Joon Y; Sowa, Gwendolyn A; Kang, James D
2016-07-01
To quantify the mechanical role of posterior column components in human cervical spine segments. Twelve C6-7 segments were subjected to resection of (1) suprasinous/interspinous ligaments (SSL/ISL), (2) ligamenta flavum (LF), (3) facet capsules, and (4) facets. A robot-based testing system performed repeated flexibility testing of flexion-extension (FE), axial rotation (AR), and lateral bending (LB) to 2.5Nm and replayed kinematics from intact flexibility tests for each state. Range-of-motion, stiffness, moment resistance and resultant forces were calculated. The LF contributes largely to moment resistance, particularly in flexion. Facet joints were primary contributors to AR and LB mechanics. Moment/force responses were more sensitive and precise than kinematic outcomes. The LF is mechanically important in the cervical spine; its injury could negatively impact load distribution. Damage to facets in a flexion injury could lead to AR or LB hypermobility. Quantifying the contribution of spinal structures to moment resistance is a sensitive, precise process for characterizing structural mechanics.
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture.
Kim, Hyun You; Hybertsen, Mark S; Liu, Ping
2017-01-11
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. Here, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, we are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. The ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.
Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires
Nguyen, Binh -Minh; Swartzentruber, Brian; Ro, Yun Goo; ...
2015-10-08
Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been exploredmore » before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. As a result, synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.« less
NASA Astrophysics Data System (ADS)
Champion, J.; Ristorcelli, T.; Ferrari, C. C.; Briottet, X.; Jacquemoud, S.
2013-12-01
Surface roughness is a key physical parameter that governs various processes (incident radiation distribution, temperature, erosion,...) on Earth and other Solar System objects. Its impact on the scattering function of incident electromagnetic waves is difficult to model. In the 80's, Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. This analytical radiative transfer model is widely used in solar system science whereas its ability to remotely determine surface roughness is still a question at issue. The validation of the Hapke model has been only occasionally undertaken due to the lack of radiometric data associated with field measurement of surface roughness. We propose to validate it on Earth, on several volcanic terrains for which very high resolution digital elevation models are available at small scale. We simulate the BRDF of these DEMs thanks to a ray-tracing code and fit them with the Hapke model to retrieve surface roughness. The mean slope angle of the facets, which quantifies surface roughness, can be fairly well retrieved when most conditions are met, i.e. a random-like surface and little multiple scattering between the facets. A directional sensitivity analysis of the Hapke model confirms that both surface intrinsic optical properties (facet's reflectance or single scattering albedo) and roughness are the most influential variables on ground BRDFs. Their interactions in some directions explain why their separation may be difficult, unless some constraints are introduced in the inversion process. Simulation of soil surface BRDF at different illumination and viewing angles
Goekoop, Rutger; Goekoop, Jaap G.; Scholte, H. Steven
2012-01-01
Introduction Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network. PMID:23284713
Goekoop, Rutger; Goekoop, Jaap G; Scholte, H Steven
2012-01-01
Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. At facet level, NCS showed a best match (96.2%) with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.
Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.
Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng
2017-11-01
Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of fabricating vertically aligned group III-V nanowires
Wang, George T; Li, Qiming
2014-11-25
A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.
Uniform Si nano-dot fabrication using reconstructed structure of Si(110)
NASA Astrophysics Data System (ADS)
Yano, Masahiro; Uozumi, Yuki; Yasuda, Satoshi; Asaoka, Hidehito
2018-06-01
Si nano-dot (ND) formation on Si(110) is observed by means of a scanning tunneling microscope (STM). The initial Si-NDs are Si crystals that are continuous from the substrate and grow during the oxide layer desorption. The NDs fabricated on the flat surface of Si(110)-1 × 1 are surrounded by four types of facets with almost identical appearance probabilities. An increase in the size of the NDs increases the variety of its morphology. In contrast, most Si-NDs fabricated on straight-stepped surface of Si(110)-16 × 2 reconstructed structure are surrounded by only a single type of facet, namely the \\text{Si}(17,15,1)-2 × 1 plane. An appearance probability of the facet in which the base line is along the step of Si(110)-16 × 2 exceeds 75%. This finding provides a fabrication technique of uniformed structural Si-NDs by using the reconstructed structure of Si(110).
Wang, Tongyu; Reuter, Karsten
2015-11-24
We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO 2. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO 2(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. As a result, these findings challenge the traditional definitionmore » of structure sensitivity based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tongyu; Reuter, Karsten, E-mail: karsten.reuter@ch.tum.de; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory and Stanford University, 443 Via Ortega, Stanford, California 94035-4300
2015-11-28
We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO{sub 2}. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO{sub 2}(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. These findings challenge the traditional definition of structure sensitivitymore » based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.« less
Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang
2017-05-31
Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.
Chapman, Benjamin P.; Weiss, Alexander; Barrett, Paul; Duberstein, Paul
2014-01-01
The structure of the Eysenck Personality Inventory (EPI) is poorly understood, and applications have mostly been confined to the broad Neuroticism, Extraversion, and Lie scales. Using a hierarchical factoring procedure, we mapped the sequential differentiation of EPI scales from broad, molar factors to more specific, molecular factors, in a UK population sample of over 6500 persons. Replicable facets at the lowest tier of Neuroticism included emotional fragility, mood lability, nervous tension, and rumination. The lowest order set of replicable Extraversion facets consisted of social dynamism, sociotropy, decisiveness, jocularity, social information seeking, and impulsivity. The Lie scale consisted of an interpersonal virtue and a behavioral diligence facet. Users of the EPI may be well served in some circumstances by considering its broad Neuroticism, Extraversion, and Lie scales as multifactorial, a feature that was explicitly incorporated into subsequent Eysenck inventories and is consistent with other hierarchical trait structures. PMID:25983361
White matter correlates of psychopathic traits in a female community sample
Budhiraja, Meenal; Westerman, Johan; Savic, Ivanka; Jokinen, Jussi; Tiihonen, Jari; Hodgins, Sheilagh
2017-01-01
Abstract Psychopathy comprises interpersonal, affective, lifestyle and antisocial facets that vary dimensionally in the population and are associated with criminal offending and adverse psychosocial outcomes. Evidence associating these facets with white matter microstructure of the uncinate fasciculus and the cingulum tracts is inconsistent and derives principally from studies of male offenders. In a sample of 99 young women presenting a range of scores on the Psychopathy Checklist: Screening Version, we used Diffusion Tensor Imaging, tractography and Tract-Based Spatial Statistics to investigate microstructure across the brain and of the uncinate fasciculus and cingulum. Right uncinate fasciculus microstructure was negatively associated with the interpersonal facet, while cingulum integrity was not associated with any facet of psychopathy. Whole-brain analyses revealed that both affective and lifestyle facets were negatively correlated with white matter microstructure adjacent to the fusiform gyrus, and the interpersonal facet correlated negatively with the integrity of the fornix. Findings survived adjustment for the other facet scores, and age, verbal and performance IQ. A similar negative association between the interpersonal facet and uncinate fasciculus integrity was previously observed in male offenders. Thus, previous evidence showing that psychopathic traits are associated with functional and structural abnormalities within limbic networks may also apply to females. PMID:28992269
A Model of Job Facet Satisfaction.
ERIC Educational Resources Information Center
Conway, Patricia G.; And Others
1987-01-01
Elements of the job that lead to overall job satisfaction were surveyed among public employees. The 17-facet model included promotion, training, supervisor, upper management, organization of work tasks, work stress, work challenge and autonomy, physical work space and equipment, work group, organizational structure, pay, etc. (Author/MH)
The Psychometric Properties of the French Version of the Personality Inventory for DSM-5
Roskam, Isabelle; Galdiolo, Sarah; Hansenne, Michel; Massoudi, Koorosh; Rossier, Jérôme; Gicquel, Ludovic; Rolland, Jean-Pierre
2015-01-01
In the context of the publication of DSM-5, the Personality Inventory for DSM-5 (PID-5) has been proposed as a new dimensional assessment tool for personality disorders. This instrument includes a pool of 220 items organized around 25 facets included in a five-factor second-order domain structure. The examination of the replicability of the trait structure across methods and populations is of primary importance. In view of this need, the main objective of the current study was to validate the French version of the PID-5 among French-speaking adults from a European community sample (N=2,532). In particular, the assumption of unidimensionality of the 25 facet and the five domain scales was tested, as well as the extent to which the five-factor structure of the PID-5 and the DSM-5 personality trait hierarchical structure are replicated in the current sample. The results support the assumption of unidimensionality of both the facets and the domains. Exploratory factor and hierarchical analyses replicated the five-factor structure as initially proposed in the PID-5. PMID:26193699
The Psychometric Properties of the French Version of the Personality Inventory for DSM-5.
Roskam, Isabelle; Galdiolo, Sarah; Hansenne, Michel; Massoudi, Koorosh; Rossier, Jérôme; Gicquel, Ludovic; Rolland, Jean-Pierre
2015-01-01
In the context of the publication of DSM-5, the Personality Inventory for DSM-5 (PID-5) has been proposed as a new dimensional assessment tool for personality disorders. This instrument includes a pool of 220 items organized around 25 facets included in a five-factor second-order domain structure. The examination of the replicability of the trait structure across methods and populations is of primary importance. In view of this need, the main objective of the current study was to validate the French version of the PID-5 among French-speaking adults from a European community sample (N=2,532). In particular, the assumption of unidimensionality of the 25 facet and the five domain scales was tested, as well as the extent to which the five-factor structure of the PID-5 and the DSM-5 personality trait hierarchical structure are replicated in the current sample. The results support the assumption of unidimensionality of both the facets and the domains. Exploratory factor and hierarchical analyses replicated the five-factor structure as initially proposed in the PID-5.
Bezci, Semih E; Eleswarapu, Ananth; Klineberg, Eric O; O'Connell, Grace D
2018-02-12
Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Active Chevrons for Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Depuru-Mohan, N. K.; Doty, M. J.
2017-01-01
Jet noise is often a dominant component of aircraft noise, particularly at takeoff. To meet the stringent noise regulations, the aircraft industry is in a pressing need of advanced noise reduction concepts. In the present study, the potential of piezoelectrically-activated chevrons for jet noise reduction was experimentally investigated. The perturbations near the nozzle exit caused by piezoelectrically-activated chevrons could be used to modify the growth rate of the mixing layer and thereby potentially reduce jet noise. These perturbations are believed to increase the production of small-scale disturbances at the expense of large-scale turbulent structures. These large-scale turbulent structures are responsible for the dominant portion of the jet mixing noise, particularly low-frequency noise. Therefore, by exciting the static chevron geometry through piezoelectric actuators, an additional acoustic benefit could possibly be achieved. To aid in the initial implementation of this concept, several flat-faced faceted nozzles (four, six, and eight facets) were investigated. Among the faceted nozzles, it was found that the eight-faceted nozzle behaves very similarly to the round nozzle. Furthermore, among the faceted nozzles with static chevrons, the four-faceted nozzle with static chevrons was found to be most effective in terms of jet noise reduction. The piezoelectrically-activated chevrons reduced jet noise up to 2 dB compared to the same nozzle geometry without excitation. This benefit was observed over a wide range of excitation frequencies by applying very low voltages to the piezoelectric actuators.
The Relation between Different Facets of Creativity and the Dark Side of Personality
ERIC Educational Resources Information Center
Dahmen-Wassenberg, Phoebe; Kämmerle, Monika; Unterrainer, Human-Friedrich; Fink, Andreas
2016-01-01
This study examined the relation between different facets of creativity and personality, focusing on the dark side of personality. In a sample of 247 students, psychometric measures for the assessment of the dark triad of personality (subclinical narcissism, Machiavellianism, subclinical psychopathy), personality organization (structural deficit:…
The Cool and Belkin Faceted Classification of Information Interactions Revisited
ERIC Educational Resources Information Center
Huvila, Isto
2010-01-01
Introduction: The complexity of human information activity is a challenge for both practice and research in information sciences and information management. Literature presents a wealth of approaches to analytically structure and make sense of human information activity including a faceted classification model of information interactions published…
NASA Technical Reports Server (NTRS)
Eichmann, David A.
1992-01-01
We present a user interface for software reuse repository that relies both on the informal semantics of faceted classification and the formal semantics of type signatures for abstract data types. The result is an interface providing both structural and qualitative feedback to a software reuser.
Facets of emotional awareness and associations with emotion regulation and depression.
Boden, Matthew Tyler; Thompson, Renee J
2015-06-01
Emotion theories posit that effective emotion regulation depends upon the nuanced information provided by emotional awareness; attending to and understanding one's own emotions. Additionally, the strong associations between facets of emotional awareness and various forms of psychopathology may be partially attributable to associations with emotion regulation. These logically compelling hypotheses are largely uninvestigated, including which facets compose emotional awareness and how they relate to emotion regulation strategies and psychopathology. We used exploratory structural equation modeling of individual difference measures among a large adult sample (n = 919) recruited online. Results distinguished 4 facets of emotional awareness (type clarity, source clarity, involuntary attention to emotion, and voluntary attention to emotion) that were differentially associated with expressive suppression, acceptance of emotions, and cognitive reappraisal. Facets were associated with depression both directly and indirectly via associations with emotion regulation strategies. We discuss implications for theory and research on emotional awareness, emotion regulation, and psychopathology. (c) 2015 APA, all rights reserved).
Li, Liang; Han, Qiutong; Tang, Lanqin; Zhang, Yuan; Li, Ping; Zhou, Yong; Zou, Zhigang
2018-01-25
Herein, orthorhombic regular Bi 4 TaO 8 Cl square nanoplates with an edge length of about 500 nm and a thickness of about 100 nm were successfully synthesized using a facile molten salt route. The as-prepared square nanoplates have been proven to be of {001} crystal facets as two dominantly exposed surfaces. The density functional theory calculation and photo-deposition of noble metal experiment demonstrate the electron and hole separation on different crystal facets and reveal that {001} crystal facets are in favor of the reduction reaction. Since the square nanoplate structure exhibits dominant exposure surfaces of the {001} facets, the molten salt route-based samples basically possess an obviously higher photocatalytic activity than those prepared by the solid state reaction (SSR) method. This study may provide inspiration for fabricating efficient photocatalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jue; Olds, Daniel; Peng, Rui
The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic structure of {001} and {101} faceted anatase TiO 2 nanocrystals based on differential evolution refinements using Debye scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO 2 nanocrystals can be effectively obtained from the diffractionmore » data via a numerical refinement routine. The morphology refinement results are in good agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO 2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic hydrogen evolution reaction (HER) activity. It is expected that the simultaneous structure and morphology refinement technique can be generally used to study the relationship between morphology and functionality of nanomaterials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jue; Olds, Daniel; Peng, Rui
The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic structure of {001} and {101} faceted anatase TiO 2 nanocrystals based on differential evolution refinements using Debye scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO 2 nanocrystals can be effectively obtained from the diffractionmore » data via a numerical refinement routine. The morphology refinement results are in good agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO 2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic hydrogen evolution reaction (HER) activity. As a result, it is expected that the simultaneous structure and morphology refinement technique can be generally used to study the relationship between morphology and functionality of nanomaterials.« less
Liu, Jue; Olds, Daniel; Peng, Rui; ...
2017-06-14
The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic structure of {001} and {101} faceted anatase TiO 2 nanocrystals based on differential evolution refinements using Debye scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO 2 nanocrystals can be effectively obtained from the diffractionmore » data via a numerical refinement routine. The morphology refinement results are in good agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO 2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic hydrogen evolution reaction (HER) activity. As a result, it is expected that the simultaneous structure and morphology refinement technique can be generally used to study the relationship between morphology and functionality of nanomaterials.« less
Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries
Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; ...
2015-05-15
Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less
Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F. Sánchez; Primo, Ana; Garcia, Hermenegildo
2016-01-01
Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold–graphene interaction occurring in the composite system. PMID:27264495
Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F Sánchez; Primo, Ana; Garcia, Hermenegildo
2016-06-06
Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold-graphene interaction occurring in the composite system.
Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces
Kaghazchi, Payam; Jacob, Timo; Chen, Wenhua; ...
2013-06-03
Here, we report adsorption and desorption of hydrogen on planar Ir(210) and faceted Ir(210), consisting of nanoscale {311} and (110) facets, by means of temperature programmed desorption (TPD) and density functional theory (DFT) in combination with the ab initio atomistic thermodynamics approach. TPD spectra show that only one H 2 peak is seen from planar Ir(210) at all coverages whereas a single H 2 peak is observed at around 440 K (F1) at fractional monolayer (ML) coverage and an additional H 2 peak appears at around 360 K (F2) at 1 ML coverage on faceted Ir(210), implying structure sensitivity inmore » recombination and desorption of hydrogen on faceted Ir(210) versus planar Ir(210), but no evidence is found for size effects in recombination and desorption of hydrogen on faceted Ir(210) for average facet sizes of 5-14 nm. Calculations indicate that H prefers to bind at the two-fold short-bridge sites of the Ir surfaces. In addition, we studied the stability of the Ir surfaces in the presence of hydrogen at different H coverages through surface free energy plots as a function of the chemical potential, which is also converted to a temperature scale. Moreover, the calculations revealed the origin of the two TPD peaks of H 2 from faceted Ir(210): F1 from desorption of H 2 on {311} facets while F2 from desorption of H 2 on (110) facets.« less
Zhou, Jigang; Wang, Jian; Cutler, Jeffrey; ...
2016-07-26
We have employed scanning transmission X-ray microscopy (STXM) using the X-ray fluorescence mode in order to elucidate the chemical structures at Ni, Fe, Mn and O sites from the (111) and (100) facets of micron-sized LiNi 1/3Fe 1/3Mn 4/3O 4 energy material particles. Furthermore, STXM imaging using electron yield mode has mapped out the surface conductivity of the crystalline particles. Our study presents a novel approach that visualizes local element segregation, chemistry and conductivity variation among different crystal facets, which will assist further tailoring of the morphology and surface structure of this high voltage spinel lithium ion battery cathode material.
Li, Guang; Chen, Xiaoshuang; Gao, Guandao
2014-03-21
In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm(-2), Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures.
NASA Astrophysics Data System (ADS)
Liu, Yubin; Chen, Wenqiang; Yang, Chengyu; Wei, Qiaohua; Wei, Mingdeng
2018-07-01
Facet engineering of electrode materials with a special facet provides a new strategy to enhance their electrochemical properties. In the present work, hierarchical TiO2-B composed of nanosheets with exposed {010} facets are successfully synthesized via a facial hydrothermal route. When used as an anode for lithium ion batteries, this material demonstrates high capacities, excellent rata capability and remarkable cycling performance. For instance, it displays a reversible capacity of 200.9 mA h g-1 after 200 cycles at a current density of 1.675 A g-1 (5 C). Furthermore, a full cell consisted of hierarchical TiO2-B composed of nanosheets with exposed {010} facets anode and LiFePO4 cathode exhibits a high capacity of 125.6 mA h g-1 after 1000 cycles at a current density of 2 A g-1. Such outstanding electrochemical properties of this material can be attributed to hierarchical structure and the presence of exposed {010} facets which provides favorable lithium transport channels.
Shi, Wen; Tian, Dan; Liu, Da; Yin, Jing; Huang, Ying
2017-08-01
Besides the study on examining facet joints of lumbar spine by ultrasound in normal population, there has not been any related report about examining normal facet joints of lumbar spine by ultrasound so far. This study was aimed to explore the feasibility of ultrasound assessment of lumber spine facet joints by comparing ultrasound measure values of normal and degenerative lumber spine facet joints, and by comparing measure values of ultrasound and computed tomography (CT) of degenerative lumber spine facet joints.This study included 15 patients who had chronic low back pain because of degenerative change in lumbar vertebrae, and 19 volunteers who did not have low back pain or pain in the lower limb. The ultrasound measure values (height [H] and width [W]) of normal and degenerative lumber spine facet joints were compared. And the differentiation between measure values (H and W) of ultrasound and CT of degenerative lumber spine facet joints was also analyzed.The ultrasound clearly showed abnormal facet joints lesion, which was characterized by hyperostosis on the edge of joints, bone destruction under joints, and thinner or thicker articular cartilage. There were significant differences between the ultrasound measure values of the normal (H: 1.26 ± 0.03 cm, W: 0.18 ± 0.01 cm) and abnormal facet joints (H: 1.43 ± 0.05 cm, W: 0.15 ± 0.02 cm) (all P < .05). However, there were no significant differences between the measure values of the ultrasound (H: 1.43 ± 0.17 cm, W: 0.15 ± 0.03 cm) and CT (H: 1.42 ± 0.16, W: 0.14 ± 0.03) of the degenerative lumber spine facet joints (all P > .05).Ultrasound can clearly show the structure of facet joints of lumbar spine. It is precise and feasible to assess facet joints of lumbar spine by ultrasound. This study has important significance for the diagnosis of lumbar facet joint degeneration.
Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation.
Sofianou, Maria-Veronica; Trapalis, Christos; Psycharis, Vassils; Boukos, Nikos; Vaimakis, Tiverios; Yu, Jiaguo; Wang, Wenguang
2012-11-01
TiO(2) anatase nanoplates and hollow microspheres were fabricated by a solvothermal-hydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals. These different morphological structures of TiO(2) anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal-hydrothermal process. After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO(2) anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO(2) anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO(2) anatase structures. All TiO(2) anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference. The fluoride free TiO(2) anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO(2) and NO(3) (-).
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun You; Hybertsen, Mark S.; Liu, Ping
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. In this paper, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, wemore » are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. Finally, the ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.« less
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture
Kim, Hyun You; Hybertsen, Mark S.; Liu, Ping
2016-12-05
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. In this paper, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, wemore » are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. Finally, the ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.« less
Theoretical and Numerical Modeling of faceted Ionic crystalline vesicles
NASA Astrophysics Data System (ADS)
Olvera de La Cruz, Monica
2007-03-01
Icosahedral shape is found in several natural structures including large viruses, large fullerenes and cationic-anionic vesicles. Faceting into icosahedral shape can occur in large crystalline membranes via elasticity theory. Icosahedral symmetry is found in small systems of particles with short-range interactions on a sphere. Dr G. Vernizzi and I show a novel electrostatic-driven mechanism of ionic crystalline shells faceting into icosahedral shapes even for systems with a small number of particles. Icosahedral shape is possible in cationic and anionic molecules adsorbed onto spherical interfaces, such as emulsions or other immiscible liquid droplets because the large concentration of charges at the interface can lead to ionic crystals on the curved interface. Such self-organized ionic structures favors the formation of flat surfaces. We find that these ionic crystalline shells can have lower energy when faceted into icosahedra along particular directions. Indeed, the ``ionic'' buckling is driven by preferred bending directions of the planar ionic structure, along which is more likely for the icosahedral shape to develop an edge. Since only certain orientations are allowed, rotational symmetry is broken. One can hope to exploit this mechanism to generate functional materials where, for instance, proteins with specific charge groups can orient at specific directions along an icosahedral cationic-anionic vesicle.
Carbon Nanotubes: On the Origin of Helicity
NASA Astrophysics Data System (ADS)
Harutyunyan, Avetik
2015-03-01
The mechanism of helicity formation of carbon nanotubes still remains elusive that hinders their applications. Current explanations mainly rely on the planar interrelationship between the structure of nanotube and corresponding facet of catalyst in 2D geometry that could amend the structure of grown carbon layer, specifically due to the epitaxial interaction. Yet, the structure of carbon nanotube and circumference of the rims assume involvement of more than one facet i.e. it is 3D problem. By aiming this problem we find that the nanotube nucleation is initiated by cap formation via evolving of graphene embryo across the adjacent facets of catalyst particle. As a result the graphene embryos incorporate in their hexagonic network various polygons to accommodate the curved 3D geometry that initiates cap formation following by elongation of the circumferential rims. Based on these results, also on the census of nanotube caps and the fact that given cap fit only one nanotube wall, we consider carbon cap responsible for the helicity of carbon nanotube. This understanding could provide new avenues towards engineering particles to explicitly accommodate certain helicities via exploitation of the angular distribution of catalyst adjacent facets. Our recent progresses in production of carbon nanotubes, nanotube reinforced composites and their potential applications also will be presented.
Orosz, Gábor; Tóth-Király, István; Büki, Noémi; Ivaskevics, Krisztián; Bőthe, Beáta; Fülöp, Márta
2018-01-01
To date, no short scale exists with established factor structure that can assess individual differences in competition. The aim of the present study was to uncover and operationalize the facets of competitive orientations with theoretical underpinning and strong psychometric properties. A total of 2676 respondents were recruited for four studies. The items were constructed based on qualitative research in different cultural contexts. A combined method of exploratory structural equation modeling (ESEM) and confirmatory factor analysis (CFA) was employed. ESEM resulted in a four-factor structure of the competitive orientations and this structure was supported by a series of CFAs on different comprehensive samples. The Multidimensional Competitive Orientation Inventory (MCOI) included 12 items and four factors: hypercompetitive orientation, self-developmental competitive orientation, anxiety-driven competition avoidance, and lack of interest toward competition. Strong gender invariance was established. The four facets of competition have differentiated relationship patterns with adaptive and maladaptive personality and motivational constructs. The MCOI can assess the adaptive and maladaptive facets of competitive orientations with a short, reliable, valid and theoretically underlined multidimensional measure. PMID:29872415
Versatile plasmonic-effects at the interface of inverted perovskite solar cells.
Shalan, Ahmed Esmail; Oshikiri, Tomoya; Sawayanagi, Hiroki; Nakamura, Keisuke; Ueno, Kosei; Sun, Quan; Wu, Hui-Ping; Diau, Eric Wei-Guang; Misawa, Hiroaki
2017-01-19
Plasmonics is a highly promising approach to enhancing the light-harvesting properties of hybrid organic/inorganic perovskite solar cells. In the present work, our cells have a p-i-n inverted planar structure. An ultrathin NiO film with two different thicknesses of 5 and 10 nm prepared by a pulsed laser deposition process on an ITO substrate with a faceted and furrowed surface enabled the formation of a continuous and compact layer of well-crystallized CH 3 NH 3 PbI 3 via an anti-solvent chlorobenzene process. The coverage mechanism of the NiO film on the ITO was clearly demonstrated through the J-V and external quantum efficiency (EQE) curves. Moreover, the results demonstrated that the gold nanoislands (Au NIs) increased the power conversion efficiency to 5.1%, almost double that of the samples without Au NIs. This result is due to the excitation of surface plasmons, which is characterized by strong scattering and enhancement of the electric field in the vicinity of the Au NIs loaded at the interface between the NiO and perovskite films. Additionally, we observed an enhancement of the EQE at wavelengths shorter than the plasmon resonance peak. In the current state, we speculate that the plasmoelectric potential effect is considered to be a good explanation of the photocurrent enhancement at the off-resonance region. Our work provides good guidance for the design and fabrication of solar-energy-related devices employing NiO electrodes and plasmonic Au NIs.
From Cylindrical to Stretching Ridges and Wrinkles in Twisted Ribbons
NASA Astrophysics Data System (ADS)
Pham Dinh, Huy; Démery, Vincent; Davidovitch, Benny; Brau, Fabian; Damman, Pascal
2016-09-01
Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our experimental observations are described within an "asymptotic isometry" approach that brings together geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose minimization selects the favored structure among those families, is governed by the tensile work and bending cost of the pattern. This framework describes the coexistence lines in a morphological phase diagram, and determines the domain of existence of faceted structures.
NASA Technical Reports Server (NTRS)
Kling, Daniel (Inventor)
2014-01-01
An end-configuration of components to be moved or positioned is first obtained. This end-configuration determines the relative positioning and orientation of the components with respect to each other when in a final, desired configuration. A folding pattern is then obtained that is formed by interior vertices defining corresponding tessellation facets. The folding pattern can be induced to transition from a first folded configuration to a second folded configuration. When in the second folded configuration mounting facets, which are a subset of the tessellation facets, are arranged by the geometry of the folding pattern into positions and orientations with respect to each other that correspond to the end-configuration of the components. A foldable structure is then obtained that folds in accordance with the folding pattern, and the components are affixed to their respective mounting facets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Mo, Kun; Yao, Tiankai
Here coordinated experimental efforts to quantitatively correlate crystallographic orientation and surface faceting features in UO2 are reported upon. A sintered polycrystalline UO2 sample was thermally etched to induce the formation of surface faceting features. Synchrotron Laue microdiffraction was used to obtain a precise crystallographic orientation map for the UO2 surface grains. Scanning electron microscopy (SEM) was utilized to collect the detailed information on the surface morphology of the sample. The surface faceting features were found to be highly dependent on the crystallographic orientation. In most cases, Triple-plane structures containing one {100} plane and two {111} planes were found to dominatemore » the surface of UO2. The orientation-faceting relationship established in this study revealed a practical and efficient method of determining crystallographic orientation based on the surface features captured by SEM images.« less
ERIC Educational Resources Information Center
Quilty, Lena C.; Bagby, R. Michael
2007-01-01
The Personality Psychopathology Five (PSY-5) is a model of personality psychopathology assessed in adult populations with a set of Minnesota Multiphasic Personality Inventory-2 (MMPI-2) scales. The authors examine the reliability and validity of recently developed lower-order facet subscales for each of these five domains, with an emphasis on…
Naragon-Gainey, Kristin; Watson, David
2014-08-01
Depression has robust associations with personality, showing a strong relation with neuroticism and more moderate associations with extraversion and conscientiousness. In addition, each Big Five domain can be decomposed into narrower facets. However, we currently lack consensus as to the contents of Big Five facets, with idiosyncrasies across instruments; moreover, few studies have examined associations with depression. In the current study, community participants completed six omnibus personality inventories; self-reported depressive symptoms were assessed at baseline and 5 years later. Exploratory factor analyses suggested three to five facets in each domain, and these facets served as prospective predictors of depression in hierarchical regressions, after accounting for baseline and trait depression. In these analyses, high anger (from neuroticism), low positive emotionality (extraversion), low conventionality (conscientiousness), and low culture (openness to experiences) were significant prospective predictors of depression. Results are discussed in regard to personality structure and assessment, as well as personality-psychopathology associations. © The Author(s) 2014.
Liu, Yiwei; Liu, Shumei; He, Danfeng; Li, Ning; Ji, Yujuan; Zheng, Zhiping; Luo, Fang; Liu, Shuxia; Shi, Zhan; Hu, Changwen
2015-10-07
An inherent challenge in using metal-organic frameworks (MOFs) for catalysis is how to access the catalytic sites generally confined inside the porous structure, in particular for substrates larger than the pores. We present here a promising solution to bypass this roadblock by modulating the facets of a crystalline MOF NENU-3a to enhance the facet exposure of the catalytic sites and the adsorption of substrates. Specifically, by transforming it with encapsulated catalysis-responsible polyoxometalate from octahedron characterized entirely by {111} facets to cube with only {100} facets, much enhanced catalytic activities were observed, especially for sterically demanding substrates that are otherwise hard to diffuse into the pores. Crystallographic analysis and adsorption/desorption experiments collectively established the critical effects of morphological control on the enhanced catalysis. The cubic crystals were then applied for biodiesel production, reaching more than 90% conversion of fatty acids (C12-C22) in comparison to <22% using octahedral crystals.
Aplanatic double reflection system for thermophotovoltaic applications: design.
Demichelis, F; Ferrari, G; Minetti-Mezzetti, E
1981-12-15
The design of a solar concentrator is presented; it consists of a spherical mirror and a field of Fresnel mirror facets deployed on a spherical surface so that sine condition is satisfied, eliminating both spherical aberration and coma. This particular easy to construct optical system yields high concentration ratios and has the distinct advantage of having a narrow beam aperture near the receiver. These design features make the concentrator particularly suitable for thermophotovoltaic applications.
Wide-bandgap epitaxial heterojunction windows for silicon solar cells
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland; Sekula-Moise, Patricia A.; Vernon, Stanley M.
1990-01-01
It is shown that the efficiency of a solar cell can be improved if minority carriers are confined by use of a wide-bandgap heterojunction window. For silicon (lattice constant a = 5.43 A), nearly lattice-matched wide-bandgap materials are ZnS (a = 5.41 A) and GaP (a = 5.45 A). Isotype n-n heterojuntions of both ZnS/Si and GaP/Si were grown on silicon n-p homojunction solar cells. Successful deposition processes used were metalorganic chemical vapor deposition (MO-CVD) for GaP and ZnS, and vacuum evaporation of ZnS. Planar (100) and (111) and texture-etched - (111)-faceted - surfaces were used. A decrease in minority-carrier surface recombination compared to a bare surface was seen from increased short-wavelength spectral response, increased open-circuit voltage, and reduced dark saturation current, with no degradation of the minority carrier diffusion length.
Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.
O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A
2018-04-15
The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This is the first study to report the properties of equine cervical facet joint cartilage and may serve as the foundation for the development of future tissue-engineered replacements as well as other treatment strategies. © 2018 EVJ Ltd.
Incidence of noncarious cervical lesions and their relation to the presence of wear facets.
Telles, Daniel; Pegoraro, Luiz Fernando; Pereira, José Carlos
2006-01-01
Noncarious cervical lesions are characterized by loss of tooth structure in the cervical area, compromising its integrity and resulting in esthetic problems for the patient. The purpose of this study was to assess noncarious cervical lesions in young patients in an attempt to establish a possible relationship to the presence of wear facets. First-year dental students of Bauru Dental School were studied to verify the prevalence of noncarious cervical lesions and their relationship to the presence of wear facets. After 3 years, the students were examined again to verify the incidence of new lesions, trying to establish a correlation to the previous existence of wear facets. Of the 1,131 teeth analyzed, 129 had noncarious cervical lesions. Twenty-nine of the 40 students had at least one tooth with one lesion. After 3 years, the incidence of new lesions was 57. Mandibular first molars (22.3%), mandibular first premolars (13.2%), mandibular second premolars (13.2%), and maxillary first molars (12.4%) showed the highest prevalence of lesions. On final analysis, 86.8% of all teeth presenting lesions showed wear facets. The identification of new lesions associated with the presence of wear facets identified during the first exam 3 years earlier was statistically significant (p < 0.01). The patterns of wear facets found in the study population examined were associated with an increased occurrence of noncarious cervical lesions. Occlusal factors, especially the presence of wear facets, should be considered in the management of noncarious cervical lesions.
rf breakdown tests of mm-wave metallic accelerating structures
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-01-06
In this study, we explore the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wavemore » structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.« less
Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe
2012-03-09
III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.
Tan, Chih-Shan; Huang, Michael Hsuan-Yi
2018-05-21
To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cao, Yuhui; Zong, Lanlan; Li, Qiuye; Li, Chen; Li, Junli; Yang, Jianjun
2017-01-01
Anatase TiO2 nanocrystals exposed with {001} facets were fabricated by solvothermal strategy in HF-C4H9OH mixed solution, using titanic acid nanobelts (TAN) as a precursor. The shape of TAN is a long flat plane with a high aspect ratio, and F- is easily adsorbed on the surface of the nanobelts, inducing a higher exposure of {001} facet of TiO2 nanoparticles during the structure reorganization. The exposed percentage of {001} facets could vary from 40 to 77% by adjusting the amount of HF. The as-prepared samples were characterized by transmission electron microscopy, N2 adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscope. The photocatalytic measurement showed that TiO2 nanocrystals with 77% {001} facets exhibited much superior photocatalytic activity for photodegradation of methyl orange, methylene blue, and rhodamine B. And what's more, the mineralization rate of methyl orange was as high as 96% within 60 min. The photocatalytic enhancement is due to a large amount of the high energetic {001} facets exposing, the special truncated octahedral morphology and a stronger ability for dyes adsorption.
Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures
NASA Astrophysics Data System (ADS)
Umar, Akrajas Ali; Md Saad, Siti Khatijah; Ali Umar, Marjoni Imamora; Rahman, Mohd Yusri Abd; Oyama, Munetaka
2018-01-01
In this review, we present a summary of research to date on the anatase polymorph of TiO2 nanostructures containing high-energy facet, particularly (001) plane, with porous structure, covering their synthesis and their application in photocatalysis as well as a review of any attempts to modify their electrical, optical and photocatalytic properties via doping. After giving a brief introduction on the role of crystalline facet on the physico-chemical properties of the anatase TiO2, we discuss the electrical and optical properties of pristine anatase TiO2 and after being doped with both metal and non-metals dopants. We then continue to the discussion of the electrical properties of (001) faceted anatase TiO2 and their modification upon being prepared in the form of porous morphology. Before coming to the review of the photocatalytic properties of the (001) faceted anatase and (001) with porous morphology in selected photocatalysis application, such as photodegradation of organic pollutant, hydrogenation reaction, water splitting, etc., we discuss the synthetic strategy for the preparation of them. We then end our discussion by giving an outlook on future strategy for development of research related to high-energy faceted and porous anatase TiO2.
NASA Technical Reports Server (NTRS)
Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)
2006-01-01
The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.
Fabrication of a novel quartz micromachined gyroscope
NASA Astrophysics Data System (ADS)
Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong
2015-04-01
A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.
Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Hyuk Kim, Yoon
2015-11-01
Computational musculoskeletal models have been developed to predict mechanical joint loads on the human spine, such as the forces and moments applied to vertebral and facet joints and the forces that act on ligaments and muscles because of difficulties in the direct measurement of joint loads. However, many whole-spine models lack certain elements. For example, the detailed facet joints in the cervical region or the whole spine region may not be implemented. In this study, a detailed cervico-thoraco-lumbar multibody musculoskeletal model with all major ligaments, separated structures of facet contact and intervertebral disk joints, and the rib cage was developed. The model was validated by comparing the intersegmental rotations, ligament tensile forces, facet joint contact forces, compressive and shear forces on disks, and muscle forces were to those reported in previous experimental and computational studies both by region (cervical, thoracic, or lumbar regions) and for the whole model. The comparisons demonstrated that our whole spine model is consistent with in vitro and in vivo experimental studies and with computational studies. The model developed in this study can be used in further studies to better understand spine structures and injury mechanisms of spinal disorders.
Lesion Mapping the Four-Factor Structure of Emotional Intelligence
Operskalski, Joachim T.; Paul, Erick J.; Colom, Roberto; Barbey, Aron K.; Grafman, Jordan
2015-01-01
Emotional intelligence (EI) refers to an individual’s ability to process and respond to emotions, including recognizing the expression of emotions in others, using emotions to enhance thought and decision making, and regulating emotions to drive effective behaviors. Despite their importance for goal-directed social behavior, little is known about the neural mechanisms underlying specific facets of EI. Here, we report findings from a study investigating the neural bases of these specific components for EI in a sample of 130 combat veterans with penetrating traumatic brain injury. We examined the neural mechanisms underlying experiential (perceiving and using emotional information) and strategic (understanding and managing emotions) facets of EI. Factor scores were submitted to voxel-based lesion symptom mapping to elucidate their neural substrates. The results indicate that two facets of EI (perceiving and managing emotions) engage common and distinctive neural systems, with shared dependence on the social knowledge network, and selective engagement of the orbitofrontal and parietal cortex for strategic aspects of emotional information processing. The observed pattern of findings suggests that sub-facets of experiential and strategic EI can be characterized as separable but related processes that depend upon a core network of brain structures within frontal, temporal and parietal cortex. PMID:26858627
A diffuse interface model of grain boundary faceting
NASA Astrophysics Data System (ADS)
Abdeljawad, Fadi; Medlin, Douglas; Zimmerman, Jonathan; Hattar, Khalid; Foiles, Stephen
Incorporating anisotropy into thermodynamic treatments of interfaces dates back to over a century ago. For a given orientation of two abutting grains in a pure metal, depressions in the grain boundary (GB) energy may exist as a function of GB inclination, defined by the plane normal. Therefore, an initially flat GB may facet resulting in a hill-and-valley structure. Herein, we present a diffuse interface model of GB faceting that is capable of capturing anisotropic GB energies and mobilities, and accounting for the excess energy due to facet junctions and their non-local interactions. The hallmark of our approach is the ability to independently examine the role of each of the interface properties on the faceting behavior. As a demonstration, we consider the Σ 5 < 001 > tilt GB in iron, where faceting along the { 310 } and { 210 } planes was experimentally observed. Linear stability analysis and numerical examples highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. On the whole, our modeling approach provides a general framework to examine the spatio-temporal evolution of highly anisotropic GBs in polycrystalline metals. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
A diffuse interface model of grain boundary faceting
NASA Astrophysics Data System (ADS)
Abdeljawad, F.; Medlin, D. L.; Zimmerman, J. A.; Hattar, K.; Foiles, S. M.
2016-06-01
Interfaces, free or internal, greatly influence the physical properties and stability of materials microstructures. Of particular interest are the processes that occur due to anisotropic interfacial properties. In the case of grain boundaries (GBs) in metals, several experimental observations revealed that an initially flat GB may facet into hill-and-valley structures with well defined planes and corners/edges connecting them. Herein, we present a diffuse interface model that is capable of accounting for strongly anisotropic GB properties and capturing the formation of hill-and-valley morphologies. The hallmark of our approach is the ability to independently examine the various factors affecting GB faceting and subsequent facet coarsening. More specifically, our formulation incorporates higher order expansions to account for the excess energy due to facet junctions and their non-local interactions. As a demonstration of the modeling capability, we consider the Σ5 <001 > tilt GB in body-centered-cubic iron, where faceting along the {210} and {310} planes was experimentally observed. Atomistic calculations were utilized to determine the inclination-dependent GB energy, which was then used as an input in our model. Linear stability analysis and simulation results highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. Broadly speaking, our modeling approach provides a general framework to examine the microstructural stability of polycrystalline systems with highly anisotropic GBs.
NASA Astrophysics Data System (ADS)
Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman
2014-01-01
Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.
Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman
2014-02-21
Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.
Concentrator optical characterization using computer mathematical modelling and point source testing
NASA Technical Reports Server (NTRS)
Dennison, E. W.; John, S. L.; Trentelman, G. F.
1984-01-01
The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.
Solar thermal collectors using planar reflector
NASA Technical Reports Server (NTRS)
Espy, P. N.
1978-01-01
Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.
Ribbon Growth of Single Crystal GaAs for Solar Cell Application.
1981-11-01
Entered) 20. Abstract (Cont.) 7growth techniques, dendrite seeds, and melt chemistry were optimized during the course of the program; however...Faceted Web. 10 Crystal Grown From a Melt Doped With 1.0 Atomic% Ge. 17 The Ge-Doped Crystals Grew at Low Undercooling and Contained Flatter Textured-Web...Ge Melt Doping. The 18 Textured-Web Sections Were the Widest Achieved at Small Undercooling, ɝ.0°C. 12 Radiation Exchange Between the Melt Surface
BiVO4 Photoanode with Exposed (040) Facets for Enhanced Photoelectrochemical Performance
NASA Astrophysics Data System (ADS)
Xia, Ligang; Li, Jinhua; Bai, Jing; Li, Linsen; Chen, Shuai; Zhou, Baoxue
2018-03-01
A BiVO4 photoanode with exposed (040) facets was prepared to enhance its photoelectrochemical performance. The exposure of the (040) crystal planes of the BiVO4 film was induced by adding NaCl to the precursor solution. The as-prepared BiVO4 photoanode exhibits higher solar-light absorption and charge-separation efficiency compared to those of an anode prepared without adding NaCl. To our knowledge, the photocurrent density (1.26 mA cm-2 at 1.23 V vs. RHE) of as-prepared BiVO4 photoanode is the highest according to the reports for bare BiVO4 films under simulated AM1.5G solar light, and the incident photon-to-current conversion efficiency is above 35% at 400 nm. The photoelectrochemical (PEC) water-splitting performance was also dramatically improved with a hydrogen evolution rate of 9.11 μmol cm-2 h-1, which is five times compared with the BiVO4 photoanode prepared without NaCl (1.82 μmol cm-2 h-1). Intensity-modulated photocurrent spectroscopy and transient photocurrent measurements show a higher charge-carrier-transfer rate for this photoanode. These results demonstrate a promising approach for the development of high-performance BiVO4 photoanodes which can be used for efficient PEC water splitting and degradation of organic pollutants. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Song, Jinling; Qu, Yonghua; Wang, Jindi; Wan, Huawei; Liu, Xiaoqing
2007-06-01
Radiosity method is based on the computer simulation of 3D real structures of vegetations, such as leaves, branches and stems, which are composed by many facets. Using this method we can simulate the canopy reflectance and its bidirectional distribution of the vegetation canopy in visible and NIR regions. But with vegetations are more complex, more facets to compose them, so large memory and lots of time to calculate view factors are required, which are the choke points of using Radiosity method to calculate canopy BRF of lager scale vegetation scenes. We derived a new method to solve the problem, and the main idea is to abstract vegetation crown shapes and to simplify their structures, which can lessen the number of facets. The facets are given optical properties according to the reflectance, transmission and absorption of the real structure canopy. Based on the above work, we can simulate the canopy BRF of the mix scenes with different species vegetation in the large scale. In this study, taking broadleaf trees as an example, based on their structure characteristics, we abstracted their crowns as ellipsoid shells, and simulated the canopy BRF in visible and NIR regions of the large scale scene with different crown shape and different height ellipsoids. Form this study, we can conclude: LAI, LAD the probability gap, the sunlit and shaded surfaces are more important parameter to simulate the simplified vegetation canopy BRF. And the Radiosity method can apply us canopy BRF data in any conditions for our research.
Yamabe, Daisuke; Murakami, Hideki; Chokan, Kou; Endo, Hirooki; Oikawa, Ryosuke; Sawamura, Shoitsu; Doita, Minoru
2017-12-15
T2 mapping was used to quantify the water content of lumbar spine intervertebral discs (IVDs) and facet joints before and after physiological loading. The aim of this study was to clarify the interaction between lumbar spine IVD and facet joints as load-bearing structures by measuring the water content of their matrix after physiological loading using T2 mapping magnetic resonance imaging (MRI). To date, few reports have functionally evaluated lumbar spine IVD and facet joints, and their interaction in vivo. T2 mapping may help detect changes in the water content of IVD and articular cartilage of facet joints before and after physiological loading, thereby enabling the evaluation of changes in interacted water retention between IVD and facet joints. Twenty asymptomatic volunteers (10 female and 10 male volunteers; mean age, 19.3 years; age range, 19-20 years) underwent MRI before and after physiological loading such as lumbar flexion, extension, and rotation. Each IVD from L1/2 to L5/S1 was sliced at center of the disc space, and the T2 value was measured at the nucleus pulposus (NP), anterior annulus fibrosus (AF), posterior AF, and bilateral facet joints. In the NP, T2 values significantly decreased after exercise at every lumbar spinal level. In the anterior AF, there were no significant differences in T2 values at any level. In the posterior AF, T2 values significantly increased only at L4/5. In the bilateral facet joints, T2 values significantly decreased after exercise at every level. There was a significant decrease in the water content of facet joints and the NP at every lumbar spinal level after dynamic loading by physical lumbar exercise. These changes appear to play an important and interactional role in the maintenance of the interstitial matrix in the IVD NP and cartilage in the facet joint. 3.
NASA Astrophysics Data System (ADS)
Guo, Minghuan; Sun, Feihu; Wang, Zhifeng
2017-06-01
The solar tower concentrator is mainly composed of the central receiver on the tower top and the heliostat field around the tower. The optical efficiencies of a solar tower concentrator are important to the whole thermal performance of the solar tower collector, and the aperture plane of a cavity receiver or the (inner or external) absorbing surface of any central receiver is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated time-changing solar flux density distributions on the flat or curved receiving surface of the collector, with main optical errors considered. The transient concentrated solar flux on the receiving surface is the superimposition of the flux density distributions of all the normal working heliostats in the field. In this paper, we will mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the flux density map on the receiving-surface. For BRT, bundles of rays are launched at the receiving-surface points of interest, strike directly on the valid cell centers among the uniformly sampled mirror cell centers in the mirror surface of the heliostats, and then direct to the effective solar cone around the incident sun beam direction after reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is here supposed to be circular Gaussian type. The mirror curvature can be adequately formulated by certain number of local normal vectors at the mirror cell centers of a heliostat. The shading & blocking mirror region of a heliostat by neighbor heliostats and also the solar tower shading on the heliostat mirror are all computed on the flat-ground-plane platform, i.e., projecting the mirror contours and the envelope cylinder of the tower onto the horizontal ground plane along the sun-beam incident direction or along the reflection directions. If the shading projection of a sampled mirror point of the current heliostat is inside the shade cast of a neighbor heliostat or in the shade cast of the tower, this mirror point should be shaded from the incident sun beam. A code based on this new ray tracing method for the 1MW Badaling solar tower power plant in Beijing has been developed using MATLAB. There are 100 azimuth-elevation tracking heliostats in the solar field and the total tower is 118 meters high. The mirror surface of the heliostats is 10m wide and 10m long, it is composed of 8 rows × 8 columns of square mirror facets and each mirror facet has the size of 1.25m×1.25m. This code also was verified by two sets of sun-beam concentrating experiments of the heliostat field on the June 14, 2015. One set of optical experiments were conducted between some typical heliostats to verify the shading & blocking computation of the code, since shading & blocking computation is the most complicated, time-consuming and important optical computing section of the code. The other set of solar concentrating tests were carried out on the field center heliostat (No. 78) to verify the simulated the solar flux images on the white target region of the northern wall of the tower. The target center is 74.5 m high to the ground plane.
One-dimension-based spatially ordered architectures for solar energy conversion.
Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun
2015-08-07
The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.
Mahata, Arup; Choudhuri, Indrani; Pathak, Biswarup
2015-08-28
The methanol dehydrogenation steps are studied very systematically on the (111) facet of a cuboctahedral platinum (Pt79) nanocluster enclosed by well-defined facets. The various intermediates formed during the methanol decompositions are adsorbed at the edge and bridge site of the facet either vertically (through C- and O-centres) or in parallel. The di-sigma adsorption (in parallel) on the (111) facet of the nanocluster is the most stable structure for most of the intermediates and such binding improves the interaction between the substrate and the nanocluster and thus the catalytic activity. The reaction thermodynamics, activation barrier, and temperature dependent reaction rates are calculated for all the successive methanol dehydrogenation steps to understand the methanol decomposition mechanism, and these values are compared with previous studies to understand the catalytic activity of the nanocluster. We find the catalytic activity of the nanocluster is excellent while comparing with any previous reports and the methanol dehydrogenation thermodynamics and kinetics are best when the intermediates are adsorbed in a di-sigma manner.
Siegling, Alex B; Petrides, K V
2016-01-01
The field of mindfulness has seen a proliferation of psychometric measures, characterised by differences in operationalisation and conceptualisation. To illuminate the scope of, and offer insights into, the diversity apparent in the burgeoning literature, two distinct samples were used to examine the similarities, validity, and dimensionality of mindfulness facets and subscales across three independent measures: the Five Facet Mindfulness Questionnaire (FFMQ), Philadelphia Mindfulness Scale (PHLMS), and Toronto Mindfulness Scale (TMS). Results revealed problematic associations of FFMQ Observe with the other FFMQ facets and supported a four-factor structure (omitting this facet), while disputing the originally envisaged five-factor model; thus, solidifying a pattern in the literature. Results also confirmed the bidimensional nature of the PHLMS and TMS subscales, respectively. A joint Confirmatory Factor Analysis showed that PHLMS Acceptance could be assimilated within the FFMQ's four-factor model (as a distinct factor). The study offers a way of understanding interrelationships between the available mindfulness scales, so as to help practitioners and researchers make a more informed choice when conceptualising and operationalising mindfulness.
Siegling, Alex B.; Petrides, K. V.
2016-01-01
The field of mindfulness has seen a proliferation of psychometric measures, characterised by differences in operationalisation and conceptualisation. To illuminate the scope of, and offer insights into, the diversity apparent in the burgeoning literature, two distinct samples were used to examine the similarities, validity, and dimensionality of mindfulness facets and subscales across three independent measures: the Five Facet Mindfulness Questionnaire (FFMQ), Philadelphia Mindfulness Scale (PHLMS), and Toronto Mindfulness Scale (TMS). Results revealed problematic associations of FFMQ Observe with the other FFMQ facets and supported a four-factor structure (omitting this facet), while disputing the originally envisaged five-factor model; thus, solidifying a pattern in the literature. Results also confirmed the bidimensional nature of the PHLMS and TMS subscales, respectively. A joint Confirmatory Factor Analysis showed that PHLMS Acceptance could be assimilated within the FFMQ’s four-factor model (as a distinct factor). The study offers a way of understanding interrelationships between the available mindfulness scales, so as to help practitioners and researchers make a more informed choice when conceptualising and operationalising mindfulness. PMID:27055017
ERIC Educational Resources Information Center
Raychaudhuri, Debasree
2008-01-01
In this note we develop a framework that makes explicit the inherent dynamic structure of certain mathematical definitions by means of the four facets of context-entity-process-object. These facets and their interrelations are then used to capture and interpret specific aspects of student constructions of the concept of solution to first order…
Optical resonator and laser applications
NASA Technical Reports Server (NTRS)
Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)
2006-01-01
The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.
Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals
NASA Astrophysics Data System (ADS)
Grünwald, Michael; Rabani, Eran; Dellago, Christoph
2006-06-01
We study the pressure-driven phase transition from the four-coordinate wurtzite to the six-coordinate rocksalt structure in CdSe nanocrystals with molecular dynamics computer simulations. With an ideal gas as the pressure medium, we apply hydrostatic pressure to spherical and faceted nanocrystals ranging in diameter from 25 to 62 Å. In spherical crystals, the main mechanism of the transformation involves the sliding of (100) planes, but depending on the specific surface structure we also observe a second mechanism proceeding through the flattening of (100) planes. In faceted crystals, the transition proceeds via a five-coordinated hexagonal structure, which is stabilized at intermediate pressures due to dominant surface energetics.
Zapata, Luis E.
2004-12-21
The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.
Sensor lighting considerations for earth observatory satellite missions
NASA Technical Reports Server (NTRS)
Cooley, J. L.
1972-01-01
Facets of sensor lighting conditions for Earth observatory satellite missions are considered. Assuming onboard sensors of a given width viewing perpendicular to the subsatellite ground track along sun-synchronous orbits with various nodes, the ground trace of the ends of the sensor coverage were found, as well as the variation in solar illumination on the ground across the line covered by the sensor during the day for any point along the orbit. The changes with season and variation during the year were also found.
Solar Photovoltaic Array With Mini-Dome Fresnel Lenses
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; O'Neill, Mark J.
1994-01-01
Mini-dome Fresnel lenses concentrate sunlight onto individual photovoltaic cells. Facets of Fresnel lens designed to refract incident light at angle of minimum deviation to minimize reflective losses. Prismatic cover on surface of each cell reduces losses by redirecting incident light away from metal contacts toward bulk of semiconductor, where it is usefully absorbed. Simple design of mini-dome concentrator array easily adaptable to automated manufacturing techniques currently used by semiconductor industry. Attractive option for variety of future space missions.
ERIC Educational Resources Information Center
Samuel, Douglas B.; Mullins-Sweatt, Stephanie N.; Widiger, Thomas A.
2013-01-01
The Five-Factor Model Rating Form (FFMRF) is a one-page measure designed to provide an efficient assessment of the higher order domains of the Five Factor Model (FFM) as well as the more specific, lower order facets proposed by McCrae and Costa. Although previous research has suggested that the FFMRF's assessment of the lower order facets converge…
Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman
2014-03-01
Titanium dioxide (TiO2 ) is one of the most widely investigated metal oxides because of its extraordinary surface, electronic, and photocatalytic properties. However, the large band gap of TiO2 and the considerable recombination of photogenerated electron-hole pairs limit its photocatalytic efficiency. Therefore, research attention is being increasingly directed towards engineering the surface structure of TiO2 on the atomic level (namely morphological control of {001} facets on the micro- and nanoscale) to fine-tune its physicochemical properties; this could ultimately lead to the optimization of selectivity and reactivity. This Review encompasses the fundamental principles to enhance the photocatalytic activity by using highly reactive {001}-faceted TiO2 -based composites. The current progress of such composites, with particular emphasis on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation, is also discussed. The progresses made are thoroughly examined for achieving remarkable photocatalytic performances, with additional insights with regard to charge transfer. Finally, a summary and some perspectives on the challenges and new research directions for future exploitation in this emerging frontier are provided, which hopefully would allow for harnessing the outstanding structural and electronic properties of {001} facets for various energy- and environmental-related applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fang; Zhang, Yu; Liu, Shizhong
Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less
Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; ...
2015-11-27
Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO 2. We show that the mask opening diameter leads to as much as 4 times increasemore » in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.« less
Facet‐Controlled Synthetic Strategy of Cu2O‐Based Crystals for Catalysis and Sensing
Shang, Yang
2015-01-01
Shape‐dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low‐index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu2O nanocrystals, including the three basic Cu2O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu2O nanocrystals enclosed by high‐index planes. We then discuss in detail the three main facet‐controlled synthetic strategies (deposition, etching and templating) to fabricate Cu2O‐based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet‐controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet‐dependent properties of the Cu2O and Cu2O‐based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet‐related directions. PMID:27980909
Reopening Openness to Experience: A Network Analysis of Four Openness to Experience Inventories.
Christensen, Alexander P; Cotter, Katherine N; Silvia, Paul J
2018-05-10
Openness to Experience is a complex trait, the taxonomic structure of which has been widely debated. Previous research has provided greater clarity of its lower order structure by synthesizing facets across several scales related to Openness to Experience. In this study, we take a finer grained approach by investigating the item-level relations of four Openness to Experience inventories (Big Five Aspects Scale, HEXACO-100, NEO PI-3, and Woo et al.'s Openness to Experience Inventory), using a network science approach, which allowed items to form an emergent taxonomy of facets and aspects. Our results (N = 802) identified 10 distinct facets (variety-seeking, aesthetic appreciation, intellectual curiosity, diversity, openness to emotions, fantasy, imaginative, self-assessed intelligence, intellectual interests, and nontraditionalism) that largely replicate previous findings as well as three higher order aspects: two that are commonly found in the literature (intellect and experiencing; i.e., openness), and one novel aspect (open-mindedness). In addition, we demonstrate that each Openness to Experience inventory offers a unique conceptualization of the trait, and that some inventories provide broader coverage of the network space than others. Our findings establish a broader consensus of Openness to Experience at the aspect and facet level, which has important implications for researchers and the Openness to Experience inventories they use.
Lu, Fang; Zhang, Yu; Liu, Shizhong; ...
2017-05-11
Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less
Whiplash syndrome: kinematic factors influencing pain patterns.
Cusick, J F; Pintar, F A; Yoganandan, N
2001-06-01
The overall, local, and segmental kinematic responses of intact human cadaver head-neck complexes undergoing an inertia-type rear-end impact were quantified. High-speed, high-resolution digital video data of individual facet joint motions during the event were statistically evaluated. To deduce the potential for various vertebral column components to be exposed to adverse strains that could result in their participation as pain generators, and to evaluate the abnormal motions that occur during this traumatic event. The vertebral column is known to incur a nonphysiologic curvature during the application of an inertial-type rear-end impact. No previous studies, however, have quantified the local component motions (facet joint compression and sliding) that occur as a result of rear-impact loading. Intact human cadaver head-neck complexes underwent inertia-type rear-end impact with predominant moments in the sagittal plane. High-resolution digital video was used to track the motions of individual facet joints during the event. Localized angular motion changes at each vertebral segment were analyzed to quantify the abnormal curvature changes. Facet joint motions were analyzed statistically to obtain differences between anterior and posterior strains. The spine initially assumed an S-curve, with the upper spinal levels in flexion and the lower spinal levels in extension. The upper C-spine flexion occurred early in the event (approximately 60 ms) during the time the head maintained its static inertia. The lower cervical spine facet joints demonstrated statistically greater compressive motions in the dorsal aspect than in the ventral aspect, whereas the sliding anteroposterior motions were the same. The nonphysiologic kinematic responses during a whiplash impact may induce stresses in certain upper cervical neural structures or lower facet joints, resulting in possible compromise sufficient to elicit either neuropathic or nociceptive pain. These dynamic alterations of the upper level (occiput to C2) could impart potentially adverse forces to related neural structures, with subsequent development of a neuropathic pain process. The pinching of the lower facet joints may lead to potential for local tissue injury and nociceptive pain.
(Per)chlorate in Biology on Earth and Beyond.
Youngblut, Matthew D; Wang, Ouwei; Barnum, Tyler P; Coates, John D
2016-09-08
Respiration of perchlorate and chlorate [collectively, (per)chlorate] was only recognized in the last 20 years, yet substantial advances have been made in our understanding of the underlying metabolisms. Although it was once considered solely anthropogenic, pervasive natural sources, both terrestrial and extraterrestrial, indicate an ancient (per)chlorate presence across our solar system. These discoveries stimulated interest in (per)chlorate microbiology, and the application of advanced approaches highlights exciting new facets. Forward and reverse genetics revealed new information regarding underlying molecular biology and associated regulatory mechanisms. Structural and functional analysis characterized core enzymes and identified novel reaction sequences. Comparative genomics elucidated evolutionary aspects, and stress analysis identified novel response mechanisms to reactive chlorine species. Finally, systems biology identified unique metabolic versatility and novel mechanisms of (per)chlorate respiration, including symbiosis and a hybrid enzymatic-abiotic metabolism. While many published studies focus on (per)chlorate and their basic metabolism, this review highlights seminal advances made over the last decade and identifies new directions and potential novel applications.
Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies. [NASA NIAC Phase I Study
NASA Technical Reports Server (NTRS)
Pavone, Marco; Castillo-Rogez, Julie C.; Hoffman, Jeffrey A.; Nesnas, Issa A. D.
2012-01-01
This study investigated a novel mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies. Specifically, a mother spacecraft would deploy over the surface of a small body one, or several, spacecraft/rover hybrids, which are small, multi-faceted enclosed robots with internal actuation and external spikes. They would be capable of 1) long excursions (by hopping), 2) short traverses to specific locations (through a sequence of controlled tumbles), and 3) high-altitude, attitude-controlled ballistic flight (akin to spacecraft flight). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and, in turn, the entire mission architecture affordable.
Simulation and optimization of faceted structure for illumination
NASA Astrophysics Data System (ADS)
Liu, Lihong; Engel, Thierry; Flury, Manuel
2016-04-01
The re-direction of incoherent light using a surface containing only facets with specific angular values is proposed. A new photometric approach is adopted since the size of each facet is large in comparison with the wavelength. A reflective configuration is employed to avoid the dispersion problems of materials. The irradiance distribution of the reflected beam is determined by the angular position of each facet. In order to obtain the specific irradiance distribution, the angular position of each facet is optimized using Zemax OpticStudio 15 software. A detector is placed in the direction which is perpendicular to the reflected beam. According to the incoherent irradiance distribution on the detector, a merit function needs to be defined to pilot the optimization process. The two dimensional angular position of each facet is defined as a variable which is optimized within a specified varying range. Because the merit function needs to be updated, a macro program is carried out to update this function within Zemax. In order to reduce the complexity of the manual operation, an automatic optimization approach is established. Zemax is in charge of performing the optimization task and sending back the irradiance data to Matlab for further analysis. Several simulation results are given for the verification of the optimization method. The simulation results are compared to those obtained with the LightTools software in order to verify our optimization method.
A practical scale for Multi-Faceted Organizational Health Climate Assessment.
Zweber, Zandra M; Henning, Robert A; Magley, Vicki J
2016-04-01
The current study sought to develop a practical scale to measure 3 facets of workplace health climate from the employee perspective as an important component of a healthy organization. The goal was to create a short, usable yet comprehensive scale that organizations and occupational health professionals could use to determine if workplace health interventions were needed. The proposed Multi-faceted Organizational Health Climate Assessment (MOHCA) scale assesses facets that correspond to 3 organizational levels: (a) workgroup, (b) supervisor, and (c) organization. Ten items were developed and tested on 2 distinct samples, 1 cross-organization and 1 within-organization. Exploratory and confirmatory factor analyses yielded a 9-item, hierarchical 3-factor structure. Tests confirmed MOHCA has convergent validity with related constructs, such as perceived organizational support and supervisor support, as well as discriminant validity with safety climate. Lastly, criterion-related validity was found between MOHCA and health-related outcomes. The multi-faceted nature of MOHCA provides a scale that has face validity and can be easily translated into practice, offering a means for diagnosing the shortcomings of an organization or workgroup's health climate to better plan health and well-being interventions. (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.
Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.
NASA Astrophysics Data System (ADS)
Li, Guang; Chen, Xiaoshuang; Gao, Guandao
2014-02-01
In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures.In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06093d
Mars Orbiter Sample Return Power Design
NASA Technical Reports Server (NTRS)
Mardesich, N.; Dawson, S.
1999-01-01
The NASA/JPL 2003/2005 Mars Sample Return (MSR) Missions will each have a sample return canister that will be filled with samples cored from the surface of MARS. These spherical canisters will be 14.8 cm in diameter and must be powered only by solar cells on the surface and must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the SOAP program developed by JPL. The requirements and geometry for a solar array on a sphere are unique and place special constraints on the design. These requirements include 1) accommodating a lid for sample loading into the canister, surface area was restricted from use on the Northern pole of the spherical canister. 2) minimal cell surface coverage (maximum cell efficiency), less than 40%, for recovery vehicle to locate the canister by optical techniques. 3) a RF transmission during 50% of MARS orbit time on any spin axis, which requires optimum circuit placement of the solar cell onto the spherical canister. The best configuration would have been a 4.5 volt round cell, but in the real world we compromised with six triangular silicon cells connected in series to form a hexagon. These hexagon circuits would be mounted onto a flat facet cut into the spherical canister. The surface flats are required in order to maximize power, the surface of the cells connected in series must be at the same angle relative to the sun. The flat facets intersect each other to allow twelve circuits evenly spaced just North and twelve circuits South of the equator of the spherical canister. Connecting these circuits in parallel allows sufficient power to operate the transmitter at minimum solar exposure, Northern pole of the canister facing the sun. Additional power, as much as 20%, is also generated by the circuits facing MARS due to albedo of MARS.
NASA Astrophysics Data System (ADS)
Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon
2015-12-01
We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06509g
Fisher, David M; Bell, Suzanne T; Dierdorff, Erich C; Belohlav, James A
2012-07-01
Team mental models (TMMs) have received much attention as important drivers of effective team processes and performance. Less is known about the factors that give rise to these shared cognitive structures. We examined potential antecedents of TMMs, with a specific focus on team composition variables, including various facets of personality and surface-level diversity. Further, we examined implicit coordination as an important outcome of TMMs. Results suggest that team composition in terms of the cooperation facet of agreeableness and racial diversity were significantly related to team-focused TMM similarity. TMM similarity was also positively predictive of implicit coordination, which mediated the relationship between TMM similarity and team performance. Post hoc analyses revealed a significant interaction between the trust facet of agreeableness and racial diversity in predicting TMM similarity. Results are discussed in terms of facilitating the emergence of TMMs and corresponding implications for team-related human resource practices. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Colony-Level Differences in the Scaling Rules Governing Wood Ant Compound Eye Structure.
Perl, Craig D; Niven, Jeremy E
2016-04-12
Differential organ growth during development is essential for adults to maintain the correct proportions and achieve their characteristic shape. Organs scale with body size, a process known as allometry that has been studied extensively in a range of organisms. Such scaling rules, typically studied from a limited sample, are assumed to apply to all members of a population and/or species. Here we study scaling in the compound eyes of workers of the wood ant, Formica rufa, from different colonies within a single population. Workers' eye area increased with body size in all the colonies showing a negative allometry. However, both the slope and intercept of some allometric scaling relationships differed significantly among colonies. Moreover, though mean facet diameter and facet number increased with body size, some colonies primarily increased facet number whereas others increased facet diameter, showing that the cellular level processes underlying organ scaling differed among colonies. Thus, the rules that govern scaling at the organ and cellular levels can differ even within a single population.
Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy
Sutter, Markus; Faulkner, Matthew; Aussignargues, Clément; ...
2015-11-30
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO 2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that themore » self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures.« less
NASA Technical Reports Server (NTRS)
Bates, Kevin R.; Scuseria, Gustavo E.
1998-01-01
Multi-layered round carbon particles (onions) containing tens to hundreds of thousands of atoms form during electron irradiation of graphite. However. theoretical models or large icosahedral fullerenes predict highly faceted shapes for molecules with more than a few hundred atoms. This discrepancy in shape may be explained by the presence of defects during the formation of carbon onions. Here, we use the semi-empirical tight-binding method for carbon to simulate the incorporation of pentagon-heptagon defects on to the surface of large icosahedral fullerenes. We show a simple mechanism that results in energetically competitive derivative structures and a global change in molecular shape from faceted to round. Our results provide a plausible explanation of the apparent discrepancy between experimental observations or round buckyonions and theoretical predictions of faceted icosahedral fullerenes.
Hackett, Paul M. W.
2016-01-01
When behavior is interpreted in a reliable manner (i.e., robustly across different situations and times) its explained meaning may be seen to possess hermeneutic consistency. In this essay I present an evaluation of the hermeneutic consistency that I propose may be present when the research tool known as the mapping sentence is used to create generic structural ontologies. I also claim that theoretical and empirical validity is a likely result of employing the mapping sentence in research design and interpretation. These claims are non-contentious within the realm of quantitative psychological and behavioral research. However, I extend the scope of both facet theory based research and claims for its structural utility, reliability and validity to philosophical and qualitative investigations. I assert that the hermeneutic consistency of a structural ontology is a product of a structural representation's ontological components and the mereological relationships between these ontological sub-units: the mapping sentence seminally allows for the depiction of such structure. PMID:27065932
Experimenting with concentrated sunlight using the DLR solar furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumann, A.; Groer, U.
1996-10-01
The high flux solar furnace that is operated by the Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR) at Cologne was inaugurated in June 1994 and we are now able to look back onto one year of successful operation. The solar furnace project was founded by the government of the State Northrhine Westfalia within the Study Group AG Solar. The optical design is a two-stage off-axis configuration which uses a flat 52 m{sup 2} heliostat and a concentrator composed of 147 spherical mirror facets. The heliostat redirects the solar light onto the concentrator which focuses the beam out of the opticalmore » axis of the system into the laboratory building. At high insolation levels (>800W/m{sup 2}) it is possible to collect a total power of 20 kW with peak flux densities of 4 MW/m{sup 2}. Sixteen different experiment campaigns were carried out during this first year of operation. The main research fields for these experiments were material science, component development and solar chemistry. The furnace also has its own research program leading to develop sophisticated measurement techniques like remote infrared temperature sensing and flux mapping. Another future goal to be realized within the next five years is the improvement of the performance of the furnace itself. 6 refs., 9 figs., 1 tab.« less
Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.
Kozera, Katarzyna; Ciszek, Bogdan
2016-01-01
The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.
Plasma wakefield acceleration experiments at FACET II
NASA Astrophysics Data System (ADS)
Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.
2018-03-01
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.
Plasma wakefield acceleration experiments at FACET II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, C.; Adli, E.; An, W.
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Plasma wakefield acceleration experiments at FACET II
Joshi, C.; Adli, E.; An, W.; ...
2018-01-12
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Tsai, Charlie; Lee, Kyoungjin; Yoo, Jong Suk; ...
2016-02-16
Density functional theory calculations are used to investigate thermal water decomposition over the close-packed (111), stepped (211), and open (100) facets of transition metal surfaces. A descriptor-based approach is used to determine that the (211) facet leads to the highest possible rates. As a result, a range of 96 binary alloys were screened for their potential activity and a rate control analysis was performed to assess how the overall rate could be improved.
Solar influences on global change
NASA Technical Reports Server (NTRS)
1994-01-01
Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.
Gómez Vega, Juan Carlos; Acevedo-González, Juan Carlos
2018-06-14
Lumbar pain affects between 60-90% of people. It is a frequent cause of disability in adults. Pain may be generated by different anatomical structures such as the facet joint. However, nowadays pain produced by the facet joint has no clinical diagnosis. Therefore, the purpose of this article is to propose a clinical diagnostic scale for lumbar facet syndrome. The study was conducted by means of 6 phases as follows, Phase 1, a systematic review of the literature was performed regarding the clinical diagnosis of facet-based lumbar pain based on the PRISMA checklist; Phase 2, a list of signs and symptoms proposed for diagnosis lumbar pain of facet origin was made. Phase 3, the list of signs and symptoms found was submitted to a committee of experts to discriminate the most significant signs and symptoms, these were linked to general sociodemographic variables to develop an evaluation questionnaire; Phase 4, the evaluation questionnaire was applied, including those selected signs and symptoms to a group of patients with clinical diagnosis of facet disease lumbar pain and who underwent a selective facet block. Phase 5, under standard technique selective facet block and subsequent postoperative clinical control at 1 month. Phase 6, given pre and postsurgical results associated with signs present in the patients we propose a clinical scale of diagnosis scale. Descriptive statistics and Stata 12.0 were used as statistical software. A total of 36 signs and symptoms were found for the diagnosis of lumbar facet syndrome that were submitted to the group of experts, where a total of 12 (8 symptoms and 4 signs) were included for the final survey. 31 patients underwent selective lumbar facet blockade, mostly women, with an average of 60±11.5 years, analogous visual scale of preoperative pain of 8/10, postoperative of 1.7/10, the signs and symptoms most frequently found included in a diagnostic scale were: 3 symptoms 1) axial or bilateral axial lumbar pain, 2) improvement with rest, 3) absence of root pattern, may have pseudoradicular pattern, however, the pain is greater lumbar than pain in the leg and 3 clinical signs 1) Kemp sign, 2) pain induced in joint or transverse process, 3) facet stress sign or Acevedo sign. The clinical diagnosis of lumbar facet pain is still debated. Few diagnostic scales have been postulated, with little or no external validity, so the present study proposes a diagnostic scale consisting of 3 symptoms and 3 clinical signs. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Use of the Nebraska Mesonet to Engage the Public in the 2017 Eclipse Event
NASA Astrophysics Data System (ADS)
Cooper, S. R.; Richter-Ryerson, S.; Shulski, M.; Roebke, G.
2017-12-01
The 21 August 2017 Solar Eclipse promises to be the best observable solar eclipse for the Great Plains of the United States in recent history. The Nebraska State Climate Office has embarked upon a campaign of combining real-time Nebraska Mesonet observations, specifically shortwave downward radiation, with GOES-16 multispectral imagery, and social media solicited citizen images of the event to provide a multiple faceted record of the event. Providing a real-time view of the eclipse via satellite imagery and pyranometer output for web users will act as a hook to solicit images and testimonial from observers in the Great Plains to help enhance the record. The desired result is to provide excitement in the science of what is happening, along with promotion of the Nebraska State Climate Office and the services it provides.
Solar-B E/PO Program at Chabot Space and Science Center, Oakland, California
NASA Astrophysics Data System (ADS)
Burress, B. S.
2005-05-01
Chabot Space and Science Center in Oakland, California, conducts the Education/Public Outreach program for the Lockheed-Martin Solar and Astrophysics Lab Solar-B Focal Plane Package project. Since opening its doors in August 2000, Chabot has carried out this program in activities and educational products in the public outreach, informal education, and formal education spheres. We propose a poster presentation that illustrates the spectrum of our Solar-B E/PO program. Solar-B, scheduled to launch in September 2006, is another step in an increasingly sophisticated investigation and understanding of our Sun, its behavior, and its effects on the Earth and our technological civilization. A mission of the Japan Aerospace Exploration Agency (JAXA), Solar-B is an international collaboration between Japan, the US/NASA, and the UK/PPARC. Solar-B's main optical telescope, extreme ultraviolet imaging spectrometer, and x-ray telescope will collect data on the Sun's magnetic dynamics from the photosphere through the corona at higher spatial and time resolution than on current and previous solar satellite missions, furthering our understanding of the Sun's behavior and, ultimately, its effects on the Earth. Chabot's E/PO program for the Lockheed-Martin Solar-B Focal Plane Package is multi-faceted, including elements focused on technology/engineering, solar physics, and Sun-Earth Connection themes. In the Public Outreach arena, we conduct events surrounding NASA Sun-Earth Day themes and programs other live and/or interactive events, facilitate live solar viewing, and present a series of exhibits focused on the Solar-B and other space-based missions, the dynamic Sun, and light and optics. In the Informal Education sector we run a solar day camp for kids and produce educational products, including a poster on the Solar-B mission and CDROM multimedia packages. In Formal Education, we develop classroom curriculum guides and conduct workshops training teachers in their implementation. Our poster presentation will address the highlights of our program in all three of these areas.
NASA Technical Reports Server (NTRS)
Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.
1989-01-01
An attempt is made to improve device efficiencies by depositing indium tin oxide onto epitaxially grown p-InP on p(+)-InP substrates. This leads to a reduction in the device series resistance, high-quality reproducible surfaces, and an improvement in the transport properties of the base layer. Moreover, many of the facets associated with badly characterized bulk liquid encapsulated Czochralski substrates used in previous investigations are removed in this way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S.C.; Hashida, T.; Takahashi, H.
1998-03-01
The fracture mode and crack propagation behavior of brittle fracture at 77 and 4 K in an 18Cr-18Mn-0.7N austenitic stainless were investigated using optical and scanning electron microscopy. The fracture path was examined by observing the side surface in a partially ruptured specimen. The relationship of the fracture facets to the microstructures were established by observing the fracture surface and the adjacent side surface simultaneously. Three kinds of fracture facets were identified at either temperature. The first is a smooth curved intergranular fracture facet with characteristic parallel lines on it. The second is a fairly planar facet formed by partingmore » along an annealing twin boundary, a real {l_brace}111{r_brace} plane. There are three sets of parallel lines on the facet and the lines in different sets intersect at 60 deg. The third is a lamellar transgranular fracture facet with sets of parallel steps on it. Fracture propagated by the formation of microcracks on a grain boundary, annealing twin boundary, and coalescence of these cracks. The observation suggests that the ease of crack initiation and propagation along the grain boundary and the annealing twin boundary may be the main reason for the low-temperature brittleness of this steel. A mechanism for grain boundary cracking, including annealing twin boundary parting, has been discussed based on the stress concentration induced by impinging planar deformation structures on the grain boundaries.« less
Simulation of Mirror Electron Microscopy Caustic Images in Three-Dimensions
NASA Astrophysics Data System (ADS)
Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.
A full, three-dimensional (3D) ray tracing approach is developed to simulate the caustics visible in mirror electron microscopy (MEM). The method reproduces MEM image contrast resulting from 3D surface relief. To illustrate the potential of the simulation methods, we study the evolution of crater contrast associated with a movie of GaAs structures generated by the droplet epitaxy technique. Specifically, we simulate the image contrast resulting from both a precursor stage and the final crater morphology which is consistent with an inverted pyramid consisting of (111) facet walls. The method therefore facilities the study of how self-assembled quantum structures evolve with time and, in particular, the development of anisotropic features including faceting.
Vertebral rotatory subluxation in degenerative scoliosis: facet joint tropism is related.
Bao, Hongda; Zhu, Feng; Liu, Zhen; Bentley, Mark; Mao, Saihu; Zhu, Zezhang; Ding, Yitao; Qiu, Yong
2014-12-15
A cross-sectional study. To identify facet tropism as one of the possible risk factors leading to vertebral rotatory subluxation (VRS). VRS has been considered as one of the prognostic factors for degenerative scoliosis. Although several risk factors of VRS, including age and Cobb angle, have been investigated, few studies exist that have evaluated the correlation between VRS and anatomical structures of the vertebral column. This retrospective study recruited 23 patients diagnosed with degenerative lumbar scoliosis with VRS and 20 patients with degenerative scoliosis without VRS. The lateral translation on coronal radiographs was measured and 5 mm was used as the cutoff value to define rotatory subluxation. Computed tomographic scans for facet joints were made for all lumbar levels. The difference between right and left facet angles was recorded as ΔFA. Facet tropism was defined as a difference between the bilateral facet angles of more than 10°. In this study, VRS was most commonly found at the L3-L4 level (49%) and, with decreasing frequency at L2-L3 (24%), L4-L5 (20%), and L1-L2 (7%). On the convex side of the main curve, face joints at levels with VRS were more coronally oriented compared with those at levels without VRS (41.64° ± 11.65° vs. 36.30° ± 10.99°, P = 0.034). ΔFA was also significantly different between levels with and without VRS (P = 0.005). A strong correlation was found between ΔFA and lateral translation, with a coefficient of 0.33 (P < 0.001). In addition, ΔFA and a larger Cobb angle were found to be significantly associated with VRS based on binary regression analysis, with an odds ratio of 4.68 and 2.14, respectively. Facet tropism was more significantly observed at levels with VRS. On the convex side of the main curve, facet joints at levels with VRS were more coronally oriented. A larger Cobb angle and severe facet tropism in degenerative scoliosis should be considered to be related to VRS.
Wu, Xuelian; Hart, Judy N; Wen, Xiaoming; Wang, Liang; Du, Yi; Dou, Shi Xue; Ng, Yun Hau; Amal, Rose; Scott, Jason
2018-03-21
It has been reported that photogenerated electrons and holes can be directed toward specific crystal facets of a semiconductor particle, which is believed to arise from the differences in their surface electronic structures, suggesting that different facets can act as either photoreduction or photo-oxidation sites. This study examines the propensity for this effect to occur in faceted, plate-like bismuth molybdate (Bi 2 MoO 6 ), which is a useful photocatalyst for water oxidation. Photoexcited electrons and holes are shown to be spatially separated toward the {100} and {001}/{010} facets of Bi 2 MoO 6 , respectively, by facet-dependent photodeposition of noble metals (Pt, Au, and Ag) and metal oxides (PbO 2 , MnO x , and CoO x ). Theoretical calculations revealed that differences in energy levels between the conduction bands and valence bands of the {100} and {001}/{010} facets can contribute to electrons and holes being drawn to different surfaces of the plate-like Bi 2 MoO 6 . Utilizing this knowledge, the photo-oxidative capability of Bi 2 MoO 6 was improved by adding an efficient water oxidation co-catalyst, CoO x , to the system, whereby the extent of enhancement was shown to be governed by the co-catalyst location. A greater oxygen evolution occurred when CoO x was selectively deposited on the hole-rich {001}/{010} facets of Bi 2 MoO 6 compared to when CoO x was randomly located across all of the facets. The elevated performance exhibited for the selectively loaded CoO x /Bi 2 MoO 6 was ascribed to the greater opportunity for hole trapping by the co-catalyst being accentuated over other potentially detrimental effects, such as the co-catalyst acting as a recombination medium and/or covering reactive sites. The results indicate that harnessing the synergy between the spatial charge separation and the co-catalyst location on the appropriate facets of plate-like Bi 2 MoO 6 can promote its photocatalytic activity.
Rough surface scattering based on facet model
NASA Technical Reports Server (NTRS)
Khamsi, H. R.; Fung, A. K.; Ulaby, F. T.
1974-01-01
A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave.
NASA Technical Reports Server (NTRS)
Bates, Kevin R.; Scuseria, Gustavo E.
1997-01-01
Multi-layered round carbon particles (onions) containing tens to hundreds of thousands of atoms form during electron irradiation of graphite carbon. However, theoretical models of large icosahedral fullerenes predict highly faceted shapes for molecules with more than a few hundred atoms. This discrepancy in shape may be explained by the presence of defects during the formation of carbon onions. Here, we use the semi-empirical tight-binding method for carbon to simulate the incorporation of pentagon-heptagon defects on to the surface of large icosahedral fullerenes. We show a simple mechanism that results in energetically competitive derivative structures and a global change in molecular shape from faceted to round. Our results provide a plausible explanation of the apparent discrepancy between experimental observations of round buckyonions and theoretical predictions of faceted icosahedral fullerenes.
Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Von der Porten, S.; Pflügl, C.; Diehl, L.; Capasso, Federico; Patel, C. Kumar N.
2010-01-01
A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission at 4.0 μm using nonresonant extraction design approach, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. An air-cooled laser system incorporating a 10-mm × 11.5-μm laser with antireflection-coated front facet and high-reflection-coated back facet delivered over 2 W of single-ended optical power in a collimated beam. Maximum continuous-wave room temperature wall plug efficiency of 5.0% was demonstrated for a high-reflection-coated 3.65-mm × 8.7-μm laser mounted on an aluminum nitride submount.
Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined Facets
Zhang, Lei; Wang, Xue; Chi, Miaofang; ...
2015-07-24
A cost-effective catalyst should have a high dispersion of the active atoms, together with a controllable surface structure for the optimization of activity, selectivity, or both. We fabricated nanocages by depositing a few atomic layers of platinum (Pt) as conformal shells on palladium (Pd) nanocrystals with well-defined facets and then etching away the Pd templates. Density functional theory calculations suggest that the etching is initiated via a mechanism that involves the formation of vacancies through the removal of Pd atoms incorporated into the outermost layer during the deposition of Pt. With the use of Pd nanoscale cubes and octahedra asmore » templates, we obtained Pt cubic and octahedral nanocages enclosed by {100} and {111} facets, respectively, which exhibited distinctive catalytic activities toward oxygen reduction.« less
Designing of self-deploying origami structures using geometrically misaligned crease patterns
Saito, Kazuya; Tsukahara, Akira; Okabe, Yoji
2016-01-01
Usually, origami-based morphing structures are designed on the premise of ‘rigid folding’, i.e. the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. From a structural mechanics viewpoint, some rigid-foldable origami models are overconstrained and have negative degrees of freedom (d.f.). In these cases, the singularity in crease patterns guarantees their rigid foldability. This study presents a new method for designing self-deploying origami using the geometrically misaligned creases. In this method, some facets are replaced by ‘holes’ such that the systems become a 1-d.f. mechanism. These perforated origami models can be folded and unfolded similar to rigid-foldable (without misalignment) models because of their d.f. focusing on the removed facets, the holes will deform according to the motion of the frame of the remaining parts. In the proposed method, these holes are filled with elastic parts and store elastic energy for self-deployment. First, a new extended rigid-folding simulation technique is proposed to estimate the deformation of the holes. Next, the proposed method is applied on arbitrary-size quadrilateral mesh origami. Finally, by using the finite-element method, the authors conduct numerical simulations and confirm the deployment capabilities of the models. PMID:26997884
Designing of self-deploying origami structures using geometrically misaligned crease patterns.
Saito, Kazuya; Tsukahara, Akira; Okabe, Yoji
2016-01-01
Usually, origami-based morphing structures are designed on the premise of 'rigid folding', i.e. the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. From a structural mechanics viewpoint, some rigid-foldable origami models are overconstrained and have negative degrees of freedom (d.f.). In these cases, the singularity in crease patterns guarantees their rigid foldability. This study presents a new method for designing self-deploying origami using the geometrically misaligned creases. In this method, some facets are replaced by 'holes' such that the systems become a 1-d.f. mechanism. These perforated origami models can be folded and unfolded similar to rigid-foldable (without misalignment) models because of their d.f. focusing on the removed facets, the holes will deform according to the motion of the frame of the remaining parts. In the proposed method, these holes are filled with elastic parts and store elastic energy for self-deployment. First, a new extended rigid-folding simulation technique is proposed to estimate the deformation of the holes. Next, the proposed method is applied on arbitrary-size quadrilateral mesh origami. Finally, by using the finite-element method, the authors conduct numerical simulations and confirm the deployment capabilities of the models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenyu; Sang, Xiahan; Gamler, Jocelyn T. L.
Compressive surface strains can enhance the performance of platinum-based core@shell electrocatalysts for the oxygen reduction reaction (ORR). Bimetallic core@shell nanoparticles (NPs) are widely studied nanocatalysts but often have limited lattice mismatch and surface compositions; investigations of core@shell NPs with greater compositional complexity and lattice misfit are in their infancy. Here, a new class of multimetallic NPs composed of intermetallic cores and random alloy shells is reported. Specifically, face-centered cubic (fcc) Pt- Cu random alloy shells were deposited non-epitaxially on PdCu B2 intermetallic seeds, giving rise to faceted core@shell NPs with highly strained surfaces. In fact, high resolution transmission electron microscopymore » (HRTEM) revealed orientation-dependent surface strains, where the compressive strains were minimal on Pt-Cu {111} facets but greater on {200} facets. These core@shell NPs provide higher specific and mass activities for the ORR when compared to conventional Pt-Cu NPs. Moreover, these intermetallic@random alloy NPs displayed high endurance, undergoing 10,000 cycles with only a slight decay in activity and no apparent structural changes.« less
Wang, Chenyu; Sang, Xiahan; Gamler, Jocelyn T. L.; ...
2017-08-25
Compressive surface strains can enhance the performance of platinum-based core@shell electrocatalysts for the oxygen reduction reaction (ORR). Bimetallic core@shell nanoparticles (NPs) are widely studied nanocatalysts but often have limited lattice mismatch and surface compositions; investigations of core@shell NPs with greater compositional complexity and lattice misfit are in their infancy. Here, a new class of multimetallic NPs composed of intermetallic cores and random alloy shells is reported. Specifically, face-centered cubic (fcc) Pt- Cu random alloy shells were deposited non-epitaxially on PdCu B2 intermetallic seeds, giving rise to faceted core@shell NPs with highly strained surfaces. In fact, high resolution transmission electron microscopymore » (HRTEM) revealed orientation-dependent surface strains, where the compressive strains were minimal on Pt-Cu {111} facets but greater on {200} facets. These core@shell NPs provide higher specific and mass activities for the ORR when compared to conventional Pt-Cu NPs. Moreover, these intermetallic@random alloy NPs displayed high endurance, undergoing 10,000 cycles with only a slight decay in activity and no apparent structural changes.« less
Connelly, Brian S; Ones, Deniz S; Davies, Stacy E; Birkland, Adib
2014-01-01
Existing taxonomies of Openness's facet structure have produced widely divergent results, and there is limited comprehensive empirical evidence about how Openness-related scales on existing personality inventories align within the 5-factor framework. In Study 1, we used a critical incidents sorting methodology to identify 11 categories of Openness measures; in Study 2, we meta-analyzed the relationships of these categories with global markers of the Big Five traits (utilizing data from 106 samples with a total sample size of N = 35,886). Our results identified 4 true facets of Openness: aestheticism, openness to sensations, nontraditionalism, and introspection. Measures of these facets were unadulterated by variance from other Big Five traits. Many traits frequently conceptualized as facets of Openness (e.g., innovation/creativity, variety-seeking, and tolerance) emerged as trait compounds that, although related to Openness, are also dependent on other Big Five traits. We discuss how Openness should be conceptualized, measured, and studied in light of the empirically based, refined taxonomy emerging from this research.
Legleiter, Carl; Mobley, Curtis D.; Overstreet, Brandon
2017-01-01
This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.
Cryo-EM structures of two bovine adenovirus type 3 intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin
2014-02-15
Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure representsmore » a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.« less
2017-01-01
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl2 concentration. Using DLVO theory with charge regulation, we determine from the measured force–distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca2+ ion adsorption, while Cl– adsorption at higher CaCl2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl– ions will co-adsorb, thereby changing the observed ordered surface structure. PMID:29140711
Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I
2017-12-19
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.
Direct Synthesis of Anatase Films with ~100% (001) Facets and [001] Preferred Orientation.
Ichimura, Andrew S; Mack, Brianne; Usmani, Shirin M; Mars, Diana
2012-06-26
Anatase films exhibiting ~100% (001) reactive facets at the surface were grown hydrothermally on gold substrate from a homogeneous solution of TiF(4) and NaF. In addition to NaF, it was found that TiO(2) films with very similar properties could be prepared with the fluoride salts LiF, CsF, HF, NH(4)F, and N(CH(2)CH(3))(4)F. The polycrystalline anatase films are continuous, approximately 1 μm thick, and evenly coat the substrate. The surface grain size is ~400 nm. Grazing angle XRD measurements show that the films exhibit a high degree of preferred orientation with the c-axis normal to the substrate surface. SEM images reveal that the grains span the thickness of the films. Annealing the films at 500 °C removes fluorine and causes crystallites within the grains to restructure as shown by SEM, XRD, and Raman spectroscopy. Supported anatase films grown from this one-pot method may serve as oxidative photocatalysts and electrodes for photoelectrochemical applications such as solar cells and hydrogen evolution.
NASA Technical Reports Server (NTRS)
Mcclure, Donald J.
1988-01-01
A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.
Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium
Zhang, Qifeng; Cao, Guozhong
2013-10-15
Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.
Aging behavior and surge endurance of 870-900 nm AlGaAs lasers with nonabsorbing mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadota, Y.; Chino, K.; Namizaki, M.
1984-11-01
The reliability of 870-900 nm AlGaAs TJS lasers has been investigated. An emission wavelength longer than 870 nm is realized by utilizing the band tailing effect due to heavy Zn-diffusion in the active region. A nonabsorbing mirror structure is employed to eliminate both gradual degradation and catastrophic damage of the facets. Stable continuous operation for over 10000 hours has been confirmed at ambient temperatures higher than 50/sup 0/C and output powers more than 5 mW/ facet. MTTF longer than 10/sup 5/ hours is expected for screened devices. Surge endurance has been improved to be nearly one order of magnitude highermore » than that for a conventional structure.« less
The Multidimensional Structure of Verbal Comprehension Test Items.
ERIC Educational Resources Information Center
Peled, Zimra
1984-01-01
The multidimensional structure of verbal comprehension test items was investigated. Empirical evidence was provided to support the theory that item tasks are multivariate-multiordered composites of faceted components: language, contextual knowledge, and cognitive operation. Linear and circular properties of cylindrical manifestation were…
Character of the opposition effect and negative polarization
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Shkuratov, Yu. G.; Stankevich, D. G.
1991-01-01
Photometric and polarimetric properties at small phase angles were measured for silicates with controlled surface properties in order to distinguish properties that are associated with surface reflection from those that are associated with multiple scattering from internal grain boundaries. These data provide insight into the causes and conditions of photometric properties observed at small phase angles for dark bodies of the solar system. Obsidian was chosen to represent a silicate dielectric with no internal scattering boundaries. Because obsidian is free of internal scatterers, light reflected from both the rough and smooth obsidian samples is almost entirely single and multiple Fresnel reflections form surface facets with no body component. Surface structure alone cannot produce an opposition effect. Comparison of the obsidian and basalt results indicates that for an opposition effect to occur, surface texture must be both rough and contain internal scattering interfaces. Although the negative polarization observed for the obsidian samples indicates single and multiple reflections are part of negative polarization, the longer inversion angle of the multigrain inversion samples implies that internal reflections must also contribute a significant negative polarization component.
Carter, Nathan T; Guan, Li; Maples, Jessica L; Williamson, Rachel L; Miller, Joshua D
2016-08-01
Although conscientiousness exhibits positive relations with psychological well-being, theoretical and empirical work suggests individuals can be too conscientious, resulting in obsessive-compulsiveness, and therein less positive individual outcomes. However, the potential for curvilinearity between conscientiousness and well-being has been underexplored. We measured 912 subjects on facets of conscientiousness, obsessive-compulsive personality, and well-being variables (life satisfaction, job satisfaction, self-esteem, positive affect, negative affect, work stress). Methods of scoring included traditional sum-scoring, traditional item response theory (IRT), and a relatively new IRT approach. Structural models were estimated to evaluate curvilinearity. Results confirmed the curvilinear relationship between conscientiousness and well-being, and demonstrated that differential facet-level relationships underlie weaker curvilinearity at the general trait level. Consistency was found in the strength of relation between conscientiousness facets with their obsessive-compulsive variants and their contribution to decreased well-being. The most common association was that higher standing on conscientiousness facets was positively related to negative affect. Findings support the idea that extreme standing on facets of conscientiousness more strongly linked to their obsessive-compulsive variants contributed to lower well-being, highlighting the importance of considering alternative functional representations of the relationship between personality and other constructs. Future work should seek to further clarify the link between conscientiousness and negative affect. © 2015 Wiley Periodicals, Inc.
Knafo-Noam, Ariel; Uzefovsky, Florina; Israel, Salomon; Davidov, Maayan; Zahn-Waxler, Caroyln
2015-01-01
Children vary markedly in their tendency to behave prosocially, and recent research has implicated both genetic and environmental factors in this variability. Yet, little is known about the extent to which different aspects of prosociality constitute a single dimension (the prosocial personality), and to the extent they are intercorrelated, whether these aspects share their genetic and environmental origins. As part of the Longitudinal Israeli Study of Twins (LIST), mothers of 183 monozygotic (MZ) and dizygotic (DZ) 7-year-old twin pairs (51.6% male) reported regarding their children’s prosociality using questionnaires. Five prosociality facets (sharing, social concern, kindness, helping, and empathic concern) were identified. All five facets intercorrelated positively (r > 0.39) suggesting a single-factor structure to the data, consistent with the theoretical idea of a single prosociality trait. Higher MZ than DZ twin correlations indicated genetic contributions to each prosociality facet. A common-factor-common-pathway multivariate model estimated high (69%) heritability for the common prosociality factor, with the non-shared environment and error accounting for the remaining variance. For each facet, unique genetic and environmental contributions were identified as well. The results point to the presence of a broad prosociality phenotype, largely affected by genetics; whereas additional genetic and environmental factors contribute to different aspects of prosociality, such as helping and sharing. PMID:25762952
RELATIONS BETWEEN PSYCHOPATHY FACETS AND EXTERNALIZING IN A CRIMINAL OFFENDER SAMPLE
Patrick, Christopher J.; Hicks, Brian M.; Krueger, Robert F.; Lang, Alan R.
2008-01-01
The construct of psychopathy is viewed as comprising distinctive but correlated affective-interpersonal and social deviance facets. Here, we examined these facets of Hare's Psychopathy Checklist-Revised (PCL-R) in terms of their associations with the externalizing dimension of adult psychopathology, defined as the common factor underlying symptoms of conduct disorder, adult antisocial behavior, alcohol use/abuse, and drug abuse, along with disinhibitory personality traits. Correlational analyses revealed a strong relationship between this externalizing dimension and the social deviance facet of psychopathy (r = .84), and a lesser relationship with the emotional-interpersonal component (r = .44). Structural models controlling for the moderate overlap between the PCL-R factors revealed that externalizing was substantially related to the unique variance in the social deviance features of psychopathy, but unrelated to the unique variance of the emotional and interpersonal features whether modeled together or as separate factors. These results indicate that the social deviance factor of the PCL-R reflects the externalizing dimension of psychopathology, whereas the emotional-interpersonal component taps something distinct aside from externalizing. In addition, based on our finding of an association between PCL-R social deviance and externalizing, we were able to predict new relations between this facet of psychopathy and criterion variables, including nicotine use and gambling, that have previously been linked to externalizing. Implications for future research on the causes and correlates of psychopathy are discussed. PMID:16178678
Henry, James L.; Yashpal, Kiran; Vernon, Howard; Kim, Jaesung; Im, Hee-Jeong
2012-01-01
Objective. To develop a novel animal model of persisting lumbar facet joint pain. Methods. Sprague Dawley rats were anaesthetized and the right lumbar (L5/L6) facet joint was exposed and compressed to ~1 mm with modified clamps applied for three minutes; sham-operated and naïve animals were used as control groups. After five days, animals were tested for hind-paw sensitivity using von Frey filaments and axial deep tissue sensitivity by algometer on assigned days up to 28 days. Animals were sacrificed at selected times for histological and biochemical analysis. Results. Histological sections revealed site-specific loss of cartilage in model animals only. Tactile hypersensitivity was observed for the ipsi- and contralateral paws lasting 28 days. The threshold at which deep tissue pressure just elicited vocalization was obtained at three lumbar levels; sensitivity at L1 > L3/4 > L6. Biochemical analyses revealed increases in proinflammatory cytokines, especially TNF-α, IL-1α, and IL-1β. Conclusions. These data suggest that compression of a facet joint induces a novel model of local cartilage loss accompanied by increased sensitivity to mechanical stimuli and by increases in inflammatory mediators. This new model may be useful for studies on mechanisms and treatment of lumbar facet joint pain and osteoarthritis. PMID:22966427
Burgers vector content of an interfacial ledge
NASA Astrophysics Data System (ADS)
Bonnet, R.; Loubradou, M.; Pénisson, J. M.
1992-07-01
A new way of investigating the elastic field around a ledge of a faceted interface is proposed for crystalline materials. The length and/or angular misfits along two adjacent facets are accommodated by slightly deforming the atomic structural units with an appropriate distribution of translation dislocations. The Burgers vector content of the ledge is not defined as usual from a circuit crossing the interface twice, a method which proves to be sometimes misleading. An example treats, at the atomic scale, an unusual ledge of the interface TiAl/Ti3Al.
Directed self-assembly of Ge nanostructures on very high index, highly anisotropic Si(hkl) surfaces.
Ohmori, Kenji; Foo, Y L; Hong, Sukwon; Wen, J G; Greene, J E; Petrov, I
2005-02-01
Families of very high-index planes, such as those which bifurcate spontaneously to form a hill-and-valley structure composed of opposing facets, provide natural templates for the directed growth of position-controlled self-organized nanostructures with shapes determined by the facet width ratio R. For example, deposition of a few ML of Ge on Si(173 100 373), corresponding to R(113/517) = 1.7, results in a field of 40-nm-wide Ge nanowires along [72 187] with a uniform period of 60 nm.
Replicable Facets of Positive Emotionality and Their Relations to Psychopathology.
Stanton, Kasey; Watson, David
2015-12-01
General individual differences in positive emotionality are negatively related to depression, social anxiety, and schizotypy/schizophrenia, and positively related to mania. However, the structure of positive emotionality remains unclear at the facet level, as there are significant disparities in the types of content assessed across emotionality measures. This study analyzed the lower order structure of positive emotionality in two samples, finding evidence for a replicable two-factor structure of Joviality and Experience Seeking. These factors demonstrated a markedly different pattern of relations in both direction and magnitude with internalizing, externalizing, and schizotypal symptoms. Joviality seems to represent an adaptive variant of positive emotionality, as it showed strong positive relations with well-being and moderate negative relations with measures of depression, social anxiety, and social anhedonia. In contrast, Experience Seeking appears to be somewhat maladaptive. It generally related positively to psychopathology, correlating most strongly with indicators of manic and externalizing symptoms. © The Author(s) 2014.
Ebraheim, Nabil A; Liu, Jiayong; Ramineni, Satheesh K; Liu, Xiaochen; Xie, Joe; Hartman, Ryan G; Goel, Vijay K
2009-11-01
Many investigators have conducted studies to determine the biomechanics, causes, complications and treatment of unilateral facet joint dislocation in the cervical spine. However, there is no quantitative data available on morphological changes in the intervertebral foramen of the cervical spine following unilateral facet joint dislocation. These data are important to understand the cause of neurological compromise following unilateral facet joint dislocation. Eight embalmed human cadaver cervical spine specimens ranging from level C1-T1 were used. The nerve roots of these specimens at C5-C6 level were marked by wrapping a 0.12mm diameter wire around them. Unilateral facet dislocation at C5-C6 level was simulated by serially sectioning the corresponding ligamentous structures. A CT scan of the specimens was obtained before and after the dislocation was simulated. A sagittal plane through the centre of the pedicle and facet joint was constructed and used for measurement. The height and area of the intervertebral foramen, the facet joint space, nerve root diameter and area, and vertebral alignment both before and after dislocation were evaluated. The intervertebral foramen area changed from 50.72+/-0.88mm(2) to 67.82+/-4.77mm(2) on the non-dislocated side and from 41.39+/-1.11mm(2) to 113.77+/-5.65mm(2) on the dislocated side. The foraminal heights changed from 9.02+/-0.30mm to 10.52+/-0.50mm on the non-dislocated side and 10.43+/-0.50mm to 17.04+/-0.96mm on the dislocated side. The facet space area in the sagittal plane changed from 6.80+/-0.80mm(2) to 40.02+/-1.40mm(2) on the non-dislocated side. The C-5 anterior displacement showed a great change from 0mm to 5.40+/-0.24mm on the non-dislocated side and from 0mm to 3.42+/-0.20mm on the dislocated side. Neither of the nerve roots on either side showed a significant change in size. The lack of change in nerve root area indicates that the associated nerve injury with unilateral facet joint dislocation is probably due to distraction rather than due to direct nerve root compression.
Exploring dynamic events in the solar corona
NASA Astrophysics Data System (ADS)
Downs, Cooper James
With the advent of modern computational technology it is now becoming the norm to employ detailed 3D computer models as empirical tools that directly account for the inhomogeneous nature of the Sun-Heliosphere environment. The key advantage of this approach lies in the ability to compare model results directly to observational data and to use a successful comparison (or lack thereof) to glean information on the underlying physical processes. Using extreme ultraviolet waves (EUV waves) as the overarching scientific driver, we apply this observation modeling approach to study the complex dynamics of the magnetic and thermodynamic structures that are observed in the low solar corona. Representing a highly non-trivial effort, this work includes three main scientific thrusts: an initial modeling effort and two EUV wave case-studies. First we document the development of the new Low Corona (LC) model, a 3D time-dependent thermodynamic magnetohydrodynamic (MHD) model implemented within the Space Weather Modeling Framework (SWMF). Observation synthesis methods are integrated within the LC model, which provides the ability to compare model results directly to EUV imaging observations taken by spacecraft. The new model is then used to explore the dynamic interplay between magnetic structures and thermodynamic energy balance in the corona that is caused by coronal heating mechanisms. With the model development complete, we investigate the nature of EUV waves in detail through two case-studies. Starting with the 2008 March 25 event, we conduct a series of numerical simulations that independently vary fundamental parameters thought to govern the physical mechanisms behind EUV waves. Through the subsequent analysis of the 3D data and comparison to observations we find evidence for both wave and non-wave mechanisms contributing to the EUV wave signal. We conclude with a comprehensive observation and modeling analysis of the 2010 June 13 EUV wave event, which was observed by the recently launched Solar Dynamics Observatory. We use a high resolution simulation of the transient to unambiguously characterize the globally propagating front of EUV wave as a fast-mode magnetosonic wave, and use the rich set of observations to place the many other facets of the EUV transient within a unified scenario involving wave and non-wave components.
Intensive Titan exploration begins.
Mahaffy, Paul R
2005-05-13
The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.
The Multivariate Structure of Communication Avoidance.
ERIC Educational Resources Information Center
Bell, Robert A.
1986-01-01
Clarifies the nature of communication avoidance through a structural analysis grounded in facet theory. Presents evidence for a duplex model of avoidance in which theoretical distinctions among modalities of approach-avoidance and context proved empirically relevant. Discusses implications of these findings for the explication, treatment, and…
Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.
Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano
2016-09-16
Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.
Edge enhanced growth induced shape transition in the formation of GaN nanowall network
NASA Astrophysics Data System (ADS)
Nayak, Sanjay; Kumar, Rajendra; Shivaprasad, S. M.
2018-01-01
We address the mechanism of early stages of growth and shape transition of the unique nanowall network (NwN) of GaN by experimentally monitoring its morphological evolution and complementing it by first-principles calculations. Using atomic force and scanning electron microscopy, we observe the formation of oval shaped islands at very early stages of the growth which later transformed into tetrahedron shaped (3 faced pyramid) islands. These tetrahedron shaped islands further grow anisotropically along their edges of the (20 2 ¯ 1) facets to form the wall-like structure as the growth proceeds. The mechanism of this crystal growth is discussed in light of surface free energies of the different surfaces, adsorption energy, and diffusion barrier of Ga ad-atoms on the (20 2 ¯ 1) facets. By first-principles calculations, we find that the diffusion barrier of ad-atoms reduces with decreasing width of facets and is responsible for the anisotropic growth leading to the formation of NwN. This study suggests that formation of NwN is an archetype example of structure dependent attachment kinetic instability induced shape transition in thin film growth.
Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces
NASA Astrophysics Data System (ADS)
Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas
2015-03-01
Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.
Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug
2017-06-02
We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.
NASA Astrophysics Data System (ADS)
Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug
2017-06-01
We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.
{1 1 1} facet growth laws and grain competition during silicon crystallization
NASA Astrophysics Data System (ADS)
Stamelou, V.; Tsoutsouva, M. G.; Riberi-Béridot, T.; Reinhart, G.; Regula, G.; Baruchel, J.; Mangelinck-Noël, N.
2017-12-01
Directional solidification from mono-crystalline Si seeds having different orientations along the growth direction is studied. Due to the frequent twinning phenomenon, new grains soon nucleate during growth. The grain competition is then characterized in situ by imaging the dynamic evolution of the grain boundaries and of the corresponding grain boundary grooves that are formed at the solid-liquid interface. To perform this study, an experimental investigation based on Bridgman solidification technique coupled with in situ X-ray imaging is conducted in an original device: GaTSBI (Growth at high Temperature observed by X-ray Synchrotron Beam Imaging). Imaging characterisation techniques using X-ray synchrotron radiation at ESRF (European Synchrotron Radiation Facility, Grenoble, France) are applied during the solidification to study the growth dynamics. Facetted/facetted grain boundary grooves only are studied due to their importance in the grain competition because of their implication in the twinning mechanism. The maximum undercooling inside the groove is calculated from the groove depth knowing the local temperature gradient. Additionally, thanks to dynamic X-ray images, the global solid-liquid interface growth rate and the normal growth rate of the {1 1 1} facets existing at the grooves and at the edges are measured. From these measurements, experimental growth laws that correlate the normal velocity of the {1 1 1} facets with the maximum undercooling of the groove are extracted and compared to existing theoretical models. Finally, the experimental laws found for the contribution to the undercooling of the {1 1 1} facets are in good agreement with the theoretical model implying nucleation and growth eased by the presence of dislocations. Moreover, it is shown that, for the same growth parameters, the undercooling at the level of the facets (always lower than 1 K) is higher at the edges so that there is a higher probability of twin nucleation at the edges which is in agreement with the grain structure development characterised in the present experiments as well as in the literature.
Facet‐Engineered Surface and Interface Design of Photocatalytic Materials
Wang, Lili; Li, Zhengquan
2016-01-01
The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398
Moumene, Missoum; Geisler, Fred H
2007-08-01
Finite element model. To estimate the effect of lumbar mobile-core and fixed-core artificial disc design and placement on the loading of the facet joints, and stresses on the polyethylene core. Although both mobile-core and fixed-core lumbar artificial disc designs have been used clinically, the effect of their design and the effect of placement within the disc space on the structural element loading, and in particular the facets and the implant itself, have not been investigated. A 3D nonlinear finite element model of an intact ligamentous L4-L5 motion segment was developed and validated in all 6 df based on previous experiments conducted on human cadavers. Facet loading of a mobile-core TDR and a fixed-core TDR were estimated with 4 different prosthesis placements for 3 different ranges of motion. Placing the mobile-core TDR anywhere within the disc space reduced facet loading by more than 50%, while the fixed-core TDR increased facet loading by more than 10% when compared with the intact disc in axial rotation. For central (ideal) placement, the mobile- and fixed-core implants were subjected to compressive stresses on the order of 3 MPa and 24 MPa, respectively. The mobile-core stresses were not affected by implant placement, while the fixed-core stresses increased by up to 40%. A mobile-core artificial disc design is less sensitive to placement, and unloads the facet joints, compared with a fixed-core design. The decreased core stress may result in a reduced potential for wear in a mobile-core prosthesis compared with a fixed-core prosthesis, which may increase the functional longevity of the device.
Zhu, Ying
2016-01-01
Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157
Wilson, David J; Owen, Sara; Corkill, Rufus A
2011-08-01
Recent publications compared treatment of vertebral fractures reporting improvement in the majority but with no significant difference between the local anaesthetic and vertebroplasty groups. Potential explanations include placebo response or therapeutic response to the "control procedure". We investigated whether preliminary facet joint injection can identify those patients whose pain arises from paravertebral structures rather than the vertebral insufficiency fracture itself. Patients referred for treatment by vertebroplasty were first offered local anaesthetic and steroid facet joint injection (FJI) at the most painful level. Those who failed to respond were offered a vertebroplasty. Ninety one patients referred, 16 went straight to vertebroplasty. Sixty one of 75 were initially offered FJI. Twenty one were successful; two relapsed, had further FJIs with good results; three declined treatment; 5 had temporary benefit; 1 died from unrelated causes. Of 29 who failed to respond to FJIs, 24 underwent vertebroplasty and 23 had a successful outcome. A third of patients technically suitable for vertebroplasty responded beneficially to FJI. In this group the pain mediator maybe one of instability and overload on the facet joints produced by adjacent wedge fracture. This protocol allows more selective and more successful vertebroplasty.
Rammsayer, Thomas H; Borter, Natalie; Troche, Stefan J
2017-02-01
The present study was designed to systematically investigate the functional relationships among biological sex; masculine and feminine gender-role characteristics; and sociosexual behavior, attitude toward, and desire for uncommitted casual sex as three facets of sociosexual orientation. For this purpose, facets of sociosexuality were assessed by the Revised Sociosexual Orientation Inventory (SOI-R) and masculine and feminine gender-role characteristics were assessed by a revised German version of the Bem Sex-Role Inventory in 499 male and 958 female heterosexual young adults. Confirmatory factor analysis (CFA) and structural equation modeling (SEM) revealed differential mediating effects of masculine and feminine gender-role characteristics on the relationship between biological sex and the three facets of sociosexual orientation. Sociosexual behavior was shown to be primarily controlled by an individual's level of masculine gender-role characteristics irrespective of biological sex. Sociosexual desire was identified as being a sole function of biological sex with no indication for any effect of masculine or feminine gender-role characteristics, while sociosexual attitude was influenced by biological sex as well as by masculine and feminine gender-role characteristics to about the same extent.
NASA Technical Reports Server (NTRS)
Botez, D.
1982-01-01
Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.
Enhanced and Facet-specific Electrocatalytic Properties of Ag/Bi2Fe4O9 Composite Nanoparticles.
Wang, Kai; Xu, Xiaoguang; Lu, Liying; Wang, Haicheng; Li, Yan; Wu, Yong; Miao, Jun; Zhang, Jin Zhong; Jiang, Yong
2018-04-18
Ag/Bi 2 Fe 4 O 9 nanoparticles (BFO NPs) have been synthesized using a two-step approach involving glycine combustion and visible light irradiation. Their structures were characterized in detail using X-ray diffraction, transmission electron microscope, scanning electron microscopy, and scanning transmission electron microscopy techniques. Their electrocatalytic properties were studied through enzymatic glucose detection with an amperometric biosensor. The Ag deposited on selective crystal facets of BFO NPs significantly enhanced their electrocatalytic activity. To gain insights into the origin of the enhanced electrocatalytic activities, we have carried out studies of Ag + reduction and Mn 2+ oxidation reaction at the {200} and {001} facets, respectively. The results suggest effective charge separation on the BFO NP surfaces, which is likely responsible for the enhanced electrocatalytic properties. Furthermore, enhanced ferromagnetism was observed after the Ag deposition on BFO NPs, which may be related to the improved electrocatalytic properties through spin-dependent charge transport. The facet-specific electrocatalytic properties are highly interesting and desired for chemical reactions. This study demonstrates that Ag/BFO NPs are potentially useful for electrocatalytic applications including biosensing and chemical synthesis with high product selectivity.
Levi, Roi; Bar-Sadan, Maya; Albu-Yaron, Ana; Popovitz-Biro, Ronit; Houben, Lothar; Prior, Yehiam; Tenne, Reshef
2010-08-18
Numerous examples of closed-cage nanostructures, such as nested fullerene-like nanoparticles and nanotubes, formed by the folding of materials with layered structure are known. These compounds include WS₂, NiCl₂, CdCl₂, Cs₂O, and recently V₂O₅. Layered materials, whose chemical bonds are highly ionic in character, possess relatively stiff layers, which cannot be evenly folded. Thus, stress-relief generally results in faceted nanostructures seamed by edge-defects. V₂O₅, is a metal oxide compound with a layered structure. The study of the seams in nearly perfect inorganic "fullerene-like" hollow V₂O 5 nanoparticles (NIF-V₂O₅) synthesized by pulsed laser ablation (PLA), is discussed in the present work. The relation between the formation mechanism and the seams between facets is examined. The formation mechanism of the NIF-V₂O 5 is discussed in comparison to fullerene-like structures of other layered materials, like IF structures of MoS₂, CdCl₂, and Cs₂O. The criteria for the perfect seaming of such hollow closed structures are highlighted.
The application of the multi-alternative approach in active neural network models
NASA Astrophysics Data System (ADS)
Podvalny, S.; Vasiljev, E.
2017-02-01
The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.
[The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].
Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang
2009-08-01
Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.
Latent factor structure of a behavioral economic cigarette demand curve in adolescent smokers
Bidwell, L. Cinnamon; MacKillop, James; Murphy, James G.; Tidey, Jennifer W.; Colby, Suzanne M.
2012-01-01
Behavioral economic demand curves, or quantitative representations of drug consumption across a range of prices, have been used to assess motivation for a variety of drugs. Such curves generate multiple measures of drug demand that are associated with cigarette consumption and nicotine dependence. However, little is known about the relationships among these facets of demand. The aim of the study was to quantify these relationships in adolescent smokers by using exploratory factor analysis to examine the underlying structure of the facets of nicotine incentive value generated from a demand curve measure. Participants were 138 adolescent smokers who completed a hypothetical cigarette purchase task, which assessed estimated cigarette consumption at escalating levels of price/cigarette. Demand curves and five facets of demand were generated from the measure: Elasticity (i.e., 1/α or proportionate price sensitivity); Intensity (i.e., consumption at zero price); Omax (i.e., maximum financial expenditure on cigarettes); Pmax (i.e., price at which expenditure is maximized); and Breakpoint (i.e., the price that suppresses consumption to zero). Principal components analysis was used to examine the latent structure among the variables. The results revealed a two-factor solution, which were interpreted as “Persistence,” reflecting insensitivity to escalating price, and “Amplitude,” reflecting the absolute levels of consumption and price. These findings suggest a two factor structure of nicotine incentive value as measured via a demand curve. If supported, these findings have implications for understanding the relationships among individual demand indices in future behavioral economic studies and may further contribute to understanding of the nature of cigarette reinforcement. PMID:22727784
Monie, Aubrey P; Price, Roger I; Lind, Christopher R P; Singer, Kevin P
2017-06-01
A test-retest cohort study was conducted to assess the use of a novel computer-aided, combined movement examination (CME) to measure change in low back movement after pain management intervention in 17 cases of lumbar spondylosis. Additionally we desired to use a CME normal reference range (NRR) to compare and contrast movement patterns identified from 3 specific structural pathologic conditions: intervertebral disc, facet joint, and nerve root compression. Computer-aided CME was used before and after intervention, in a cohort study design, to record lumbar range of movement along with pain, disability, and health self-report questionnaires in 17 participants who received image-guided facet, epidural, and/or rhizotomy intervention. In the majority of cases, CME was reassessed after injection together with 2 serial self-reports after an average of 2 and 14 weeks. A minimal clinically important difference of 30% was used to interpret meaningful change in self-reports. A CME NRR (n = 159) was used for comparison with the 17 cases. Post hoc observation included subgrouping cases into 3 discrete pathologic conditions, intervertebral disc, facet dysfunction, and nerve root compression, in order to report intergroup differences in CME movement. Seven of the 17 participants stated that a "combined" movement was their most painful CME direction. Self-report outcome data indicated that 4 participants experienced significant improvement in health survey, 5 improved by ≥30% on low back function, and 8 reported that low back pain was more bothersome than stiffness, 6 of whom achieved the minimal clinically important difference for self-reported pain. Subgrouping of cases into structure-specific groups provided insight to different CME movement patterns. The use of CME assists in identifying atypical lumbar movement relative to an age and sex NRR. Data from this study, exemplified by representative case studies, provide preliminary evidence for distinct intervertebral disc, facet joint, and nerve root compression CME movement patterns in cases of chronic lumbar spondylosis. Copyright © 2017. Published by Elsevier Inc.
The Wellbeing of the Self's Personality: A Structural Analysis
ERIC Educational Resources Information Center
Levy, Shlomit; Sabbagh, Clara
2008-01-01
Leaning on the formal faceted definition of wellbeing (Levy and Guttman (1975) "Social Indicators Research," 2, 361-388), a mapping sentence is provided for defining the universe of observations of the wellbeing of the self-expanding on personality aspects. The structure of the interrelationships among the variables of the expanded…
Prasad, Prashant Kumar; Salunke, Pravin; Sahni, Daisy; Kalra, Parveen
2017-01-01
Purpose: The existing literature on lateral atlantoaxial joints is predominantly on bony facets and is unable to explain various C1-2 motions observed. Geometric morphometry of facets would help us in understanding the role of cartilages in C1-2 biomechanics/kinematics. Objective: Anthropometric measurements (bone and cartilage) of the atlantoaxial joint and to assess the role of cartilages in joint biomechanics. Materials and Methods: The authors studied 10 cadaveric atlantoaxial lateral joints with the articular cartilage in situ and after removing it, using three-dimensional laser scanner. The data were compared using geometric morphometry with emphasis on surface contours of articulating surfaces. Results: The bony inferior articular facet of atlas is concave in both sagittal and coronal plane. The bony superior articular facet of axis is convex in sagittal plane and is concave (laterally) and convex medially in the coronal plane. The bony articulating surfaces were nonconcordant. The articular cartilages of both C1 and C2 are biconvex in both planes and are thicker than the concavities of bony articulating surfaces. Conclusion: The biconvex structure of cartilage converts the surface morphology of C1-C2 bony facets from concave on concavo-convex to convex on convex. This reduces the contact point making the six degrees of freedom of motion possible and also makes the joint gyroscopic. PMID:29403249
A Bifactor Approach to Model Multifaceted Constructs in Statistical Mediation Analysis.
Gonzalez, Oscar; MacKinnon, David P
Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to an outcome. However, current methods do not allow researchers to study the relationships between general and specific aspects of a construct to an outcome simultaneously. This study proposes a bifactor measurement model for the mediating construct as a way to parse variance and represent the general aspect and specific facets of a construct simultaneously. Monte Carlo simulation results are presented to help determine the properties of mediated effect estimation when the mediator has a bifactor structure and a specific facet of a construct is the true mediator. This study also investigates the conditions when researchers can detect the mediated effect when the multidimensionality of the mediator is ignored and treated as unidimensional. Simulation results indicated that the mediation model with a bifactor mediator measurement model had unbiased and adequate power to detect the mediated effect with a sample size greater than 500 and medium a - and b -paths. Also, results indicate that parameter bias and detection of the mediated effect in both the data-generating model and the misspecified model varies as a function of the amount of facet variance represented in the mediation model. This study contributes to the largely unexplored area of measurement issues in statistical mediation analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sushko, M. L.; Rosso, K. M.
Atomic-to-mesoscale simulations were used to reveal the origin of oriented attachment between anatase TiO2 nanoparticles in aqueous HCl solutions. Analysis of the distance and pH dependence of interparticle interactions demonstrates that ion correlation forces are responsible for facet-specific attraction and rotation into lattice co-alignment at long-range. These forces give rise to a metastable solvent separated capture minimum on the disjoining pressure-distance curve, with the barrier to attachment largely due to steric hydration forces from structured intervening solvent.
Solar Cell Fabrication Studies Pertinent to Developing Countries.
NASA Astrophysics Data System (ADS)
Prah, Joseph Henry
That there is a need in the world today, and in the Third World in particular, for developing renewable energy sources is a proposition without question. Toward that end, the harnessing of solar energy has attracted much attention recently. In this thesis, we have addressed the question of Photovoltaics among the many approaches to the problem as being of poignant relevance in the Third World. Based on our studies, which involved the physics of solar cells, various solar cell configurations, the materials for their fabrication and their fabrication sequences, we arrived at the conclusion that silicon homojunction solar cells are best suited to the present needs and environment of, and suitable for development in the Third World, though Cadmium Sulphide-Cuprous Sulphide solar cell could be considered as a viable future candidate. Attendant with the adoption of photovoltaics as electric energy supply, is the problem of technology transfer and development. Towards that goal, we carried out in the laboratory, the fabrication of solar cells using very simple fabrication sequences and materials to demonstrate that tolerable efficiencies are achievable by their use. The view is also presented that for a thriving and viable solar cell industry in the Third World, the sine qua non is an integrated national policies involving all facets of solar cell manufacture and application, namely, material processing and fabrication, basic research, and development and socio -economic acceptance of solar cell appliances. To demonstrate how basic research could benefit solar cell fabrication, we undertook a number of experiments, such as varying our fabrication sequences and materials, finding their radiation tolerance, and carrying out Deep Level Transient Spectroscopy (DLTS) studies, in an attempt to understand some of the fabrication and environmental factors which limit solar cell performance. We thus found that subjecting wafers to preheat treatments does not improve solar cell performance, but rather reduces solar cell radiation tolerance. Also P-type substrate solar cells were found to be more radiation resistant than N-type substrate solar cells. The Deep Level Transient Spectroscopy results showed that carbon and oxygen, as one would expect, are chief contaminants of the silicon wafers that we used in the fabrication of our solar cells. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI.
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora.
Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei
2016-10-01
Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets ( e.g. , application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes.
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora
Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei
2017-01-01
Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets (e.g., application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes. PMID:28210517
Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis
NASA Astrophysics Data System (ADS)
Li, Jie; Yu, Ying; Zhang, Lizhi
2014-07-01
In recent years, layered bismuth oxyhalide nanomaterials have received more and more interest as promising photocatalysts because their unique layered structures endow them with fascinating physicochemical properties; thus, they have great potential photocatalytic applications for environment remediation and energy harvesting. In this article, we explore the synthesis strategies and growth mechanisms of layered bismuth oxyhalide nanomaterials, and propose design principles of tailoring a layered configuration to control the nanoarchitectures for high efficient photocatalysis. Subsequently, we focus on their layered structure dependent properties, including pH-related crystal facet exposure and phase transformation, facet-dependent photoactivity and molecular oxygen activation pathways, so as to clarify the origin of the layered structure dependent photoreactivity. Furthermore, we summarize various strategies for modulating the composition and arrangement of layered structures to enhance the photoactivity of nanostructured bismuth oxyhalides via internal electric field tuning, dehalogenation effect, surface functionalization, doping, plasmon modification, and heterojunction construction, which may offer efficient guidance for the design and construction of high-performance bismuth oxyhalide-based photocatalysis systems. Finally, we highlight some crucial issues in engineering the layered-structure mediated properties of bismuth oxyhalide photocatalysts and provide tentative suggestions for future research on increasing their photocatalytic performance.
Educating for Peace: The Australian Experience.
ERIC Educational Resources Information Center
Swee-Hin, Toh; Burns, Robin
1989-01-01
The many facets of the peace education movement in Australia include (1) development education, which focuses on inequities in the global economic structure; (2) demilitarization and disarmament; and (3) conservation of the environment. (SK)
Ding, Yangbin; Bai, Wei; Sun, Jinhua; Wu, Yu; Memon, Mushtaque A; Wang, Chao; Liu, Chengbin; Huang, Yong; Geng, Jianxin
2016-05-18
The morphologies of transition metal oxides have decisive impact on the performance of their applications. Here, we report a new and facile strategy for in situ preparation of anatase TiO2 nanospindles in three-dimensional reduced graphene oxide (RGO) structure (3D TiO2@RGO) using cellulose as both an intermediate agent eliminating the negative effect of graphene oxide (GO) on the growth of TiO2 crystals and as a structure-directing agent for the shape-controlled synthesis of TiO2 crystals. High-resolution transmission electron microscopy and X-ray diffractometer analysis indicated that the spindle shape of TiO2 crystals was formed through the restriction of the growth of high energy {010} facets due to preferential adsorption of cellulose on these facets. Because of the 3D structure of the composite, the large aspect ratio of the TiO2 nanospindles, and the exposed high-energy {010} facets of the TiO2 crystals, the 3D TiO2@RGO(Ce 1.7) exhibited excellent capacitive performance as an electrode material for supercapacitors, with a high specific capacitance (ca. 397 F g(-1)), a high energy density (55.7 Wh kg(-1)), and a high power density (1327 W kg(-1)) on the basis of the masses of RGO and TiO2. These levels of capacitive performance far exceed those of previously reported TiO2-based composites.
Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.
With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure canmore » be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.« less
Chong, Kok-Keong
2010-05-15
To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.
Design of a lattice-based faceted classification system
NASA Technical Reports Server (NTRS)
Eichmann, David A.; Atkins, John
1992-01-01
We describe a software reuse architecture supporting component retrieval by facet classes. The facets are organized into a lattice of facet sets and facet n-tuples. The query mechanism supports precise retrieval and flexible browsing.
NASA Astrophysics Data System (ADS)
Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Lowndes, Douglas H.
2003-10-01
We demonstrate the growth of silicon oxide nanowires through a sandwich-like configuration, i.e., Ga ball/Si polyhedrons/silicon oxide nanowires, by using Ga as the catalyst and SiO powder as the source material. The sandwich-like structures have a carrot-like morphology, consisting of three materials with different morphologies, states, and crystallographic structures. The "carrot" top is a liquid Ga ball with diameter of ˜10-30 μm; the middle part is a Si ring usually composed of about 10 μm-sized, clearly faceted, and crystalline Si polyhedrons that are arranged sequentially in a band around the lower hemisphere surface of the Ga ball; the bottom part is a carrot-shaped bunch of highly aligned silicon oxide nanowires that grow out from the downward facing facets of the Si polyhedrons. This study reveals several interesting nanowire growth phenomena that enrich the conventional vapor-liquid-solid nanowire growth mechanism.
Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation.
Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn
2016-03-30
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors.
Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation
Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn
2016-01-01
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070
ERIC Educational Resources Information Center
Camasso, Michael J.; Roche, Susan E.
1991-01-01
Data from 1988 sample of 1,058 state employees provided evidence that family structure, price, and quality were important determinants of parent's willingness to change from informal to formal child care arrangements. Measured 43 facets of program structure, curriculum, and child development goals. (Author/NB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Amanda K; Wu, Zili; Calaza, Florencia
2014-01-01
CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumptionmore » of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.« less
Hands on the sun: Teaching SEC science through hands on inquiery and direct observation
NASA Astrophysics Data System (ADS)
Mayo, L.; Cline, T.; Lewis, E.
2003-04-01
Hands on the Sun is a model partnership between the NASA Sun Earth Connection Education Forum (SECEF), Coronado Instruments, Space Science Institute, NOAO/Kitt Peak, Flandrau Planetarium, Astronomical League, and professional astronomers. This joint venture uses experiential learning, provocative talks, and direct observation in both formal and informal education venues to teach participants (K-12 educators, amateur astronomers, and the general public) about the sun, its impact on the Earth, and the importance of understanding the sun-Earth system. The program consists of three days of workshops and activities including tours and observing sessions on Kitt Peak including the National Solar Observatory, planetarium shows, exhibits on space weather, and professional development workshops targeted primarily at Hispanic public school science teachers which are intended to provide hands on activities demonstrating solar and SEC science that can be integrated into the classroom science curriculum. This talk will describe the many facets of this program and discuss our plans for future events.
Bucher, Meredith A; Samuel, Douglas B
2018-02-01
Although there has been widespread consensus on the use of the Five-Factor Model (FFM) of general personality functioning in personality research, there are various, diverse models of the lower order traits of the FFM domains. Given the usefulness of these finer grained traits, it is imperative to integrate facets proposed across a variety of models and eventually reach consensus on the lower level traits of the FFM. Due to its depth and coverage, the Abridged Big Five-Dimensional Circumplex (AB5C) model potentially provides a useful framework for organizing various faceted models due to its conceptual organization and inclusiveness. The only measure of this model-the IPIP-AB5C-has shown promise, but is limited by its length (i.e., 485 items). This study developed an abbreviated version of the IPIP-AB5C using an iterative process including item response theory methods. The shorter version maintained key features of the long form including a factor structure that matched the full form as well as facets that correlated in expected ways with other FFM measures. Building on this support, the short form was used to contextualize and organize the facets from 2 commonly used measures.
NASA Astrophysics Data System (ADS)
Lai, Lin; Barnard, Amanda S.
2016-04-01
Like many of the useful nanomaterials being produced on the industrial scale, the surface of diamond nanoparticles includes a complicated mixture of various atomic and molecular adsorbates, attaching to the facets following synthesis. Some of these adsorbates may be functional, and adsorption is encouraged to promote applications in biotechnology and nanomedicine, but others are purely adventurous and must be removed prior to use. In order to devise more effective treatments it is advantageous to know the relative strength of the interactions of the adsorbates with the surface, and ideally how abundant they are likely to be under different conditions. In this paper we use a series of explicit electronic structure simulations to map the distribution of small hydrocarbons, amines and thiols on a 2.9 nm diamond nanoparticle, with atomic level resolution, in 3-D. We find a clear relationship between surface reconstructions, facet orientation, and the distribution of the different adsorbates; with a greater concentration expected on the (100) and (110) facets, particularly when the supersaturation in the reservoir is high. Adsorption on the (111) facets is highly unlikely, suggesting that controlled graphitization may be a useful stage in the cleaning and treatment of nanodiamonds, prior to the deliberate coating with functional adsorbates needed for drug delivery applications.
Perl, Craig D; Rossoni, Sergio; Niven, Jeremy E
2017-03-01
Static allometries determine how organ size scales in relation to body mass. The extent to which these allometric relationships are free to evolve, and how they differ among closely related species, has been debated extensively and remains unclear; changes in intercept appear common, but changes in slope are far rarer. Here, we compare the scaling relationships that govern the structure of compound eyes of four closely related ant species from the genus Formica . Comparison among these species revealed changes in intercept but not slope in the allometric scaling relationships governing eye area, facet number, and mean facet diameter. Moreover, the scaling between facet diameter and number was conserved across all four species. In contrast, facet diameters from distinct regions of the compound eye differed in both intercept and slope within a single species and when comparing homologous regions among species. Thus, even when species are conservative in the scaling of whole organs, they can differ substantially in regional scaling within organs. This, at least partly, explains how species can produce organs that adhere to genus wide scaling relationships while still being able to invest differentially in particular regions of organs to produce specific features that match their ecology.
Delgado, Mikel M; Sulloway, Frank J
2017-08-01
Conscientiousness is a fundamental aspect of human personality, one that is closely linked with various favorable life outcomes. Despite its importance in humans, conscientiousness has received little attention as to how it may have evolved, or whether it provides similar fitness benefits in other animals. To date, research in animal personality has found consistent support for the presence of all major dimensions of human personality in other animals except conscientiousness. In this review, we investigate conscientiousness at the level of traits and facets (clusters of closely related traits). A systematic review of the literature retrieved 876 relevant publications describing attributes of conscientiousness in other animal species. A factor analysis of citation counts revealed 2 major dimensions representing 9 distinct facets of conscientiousness in nonhumans. These facets, together with their underlying personality traits, exhibit individual variability, are generally known to be heritable, and often offer clear fitness benefits to individuals. Other facets of conscientiousness appear to be unique to humans. Publication biases, research biases, and anthropomorphism may all play a role in the structure of the evidence we report. We conclude by suggesting fruitful areas of future research to further elucidate the presence and functional roles of conscientiousness in animals. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Satoskar, Savni R.; Goel, Aimee A.; Mehta, Pooja H.; Goel, Atul
2014-01-01
Objective: The authors evaluate the anatomic subtleties of lumbar facets and assess the feasibility and effectiveness of use of ‘Goel facet spacer’ in the treatment of degenerative spinal canal stenosis. Materials and Methods: Twenty-five lumbar vertebral cadaveric dried bones were used for the purpose. A number of morphometric parameters were evaluated both before and after the introduction of Goel facet spacers within the confines of the facet joint. Results: The spacers achieved distraction of facets that was more pronounced in the vertical perspective. Introduction of spacers on both sides resulted in an increase in the intervertebral foraminal height and a circumferential increase in the spinal canal dimensions. Additionally, there was an increase in the disc space or intervertebral body height. The lumbar facets are more vertically and anteroposteriorly oriented when compared to cervical facets that are obliquely and transversely oriented. Conclusions: Understanding the anatomical peculiarities of the lumbar and cervical facets can lead to an optimum utilization of the potential of Goel facet distraction arthrodesis technique in the treatment of spinal degenerative canal stenosis. PMID:25558146
NASA Astrophysics Data System (ADS)
Liu, Ruirui; Ji, Zhijiang; Wang, Jing; Zhang, Jinjun
2018-05-01
A novel TiO2/sepiolite composite gel (TiSG) was fabricated in the presence of cetyltrimethylammonium bromide (CTAB) through a simple solvothermal reaction in an acetic acid-water solvent. A homogeneous anchoring of TiO2 nanoparticles with exposed {0 0 1} and {1 0 1} facets on sepiolite nanofibers was achieved. CTAB content, solvothermal temperature/time, and HAc content play crucial roles in the morphological and facet formation of TiSG. A possible mechanism for the formation of TiSG was further proposed. CTAB as capping/shape-controlling agent can strongly bind to the more reactive (0 0 1) facet of TiO2 and then mitigate the thermodynamically favored (0 0 1) plane growth. Eventually, the truncated octahedral TiO2 was obtained by controlling the growth rates in 〈0 0 1〉 and 〈1 0 1〉 directions. Sepiolite as a cross-linking agent provides sufficient crosslinking sites for TiO2 to induce three-dimensional (3D) network formation, thereby generating the composite gel. The synthesized TiSG samples were then used as photocatalysts, which exhibited increased methyl orange removal under UV-vis light (350-780 nm) by the synergistic effect of adsorption and in-situ photocatalytic degradation as compared to P25 and bare TiO2. The excellent photocatalytic performance of TiSG was mainly ascribed to the formations of 3D gel structure and surface heterojunctions between (0 0 1) and (1 0 1) facets.
Extraversion and psychopathology: A facet-level analysis.
Watson, David; Stasik, Sara M; Ellickson-Larew, Stephanie; Stanton, Kasey
2015-05-01
The goal of this study was to explicate how the lower order facets of extraversion are related to psychopathology. We used a "bottom-up" approach in which specific extraversion scales from 3 comprehensive personality inventories were used to model these facets as latent factors. We collected both self-report and interview measures of a broad range of psychopathology from a large community sample. Replicating previous findings using a similar approach (Naragon-Gainey & Watson, 2014; Naragon-Gainey, Watson, & Markon, 2009), structural analyses yielded four factors: Positive Emotionality, Sociability, Assertiveness, and Experience Seeking. Scores on these latent dimensions were related to psychopathology in correlational analyses and in two sets of regressions (the first series used the four facets as predictors; the second included composite scores on the other Big Five domains as additional predictors). These results revealed a striking level of specificity. As predicted, Positive Emotionality displayed especially strong negative links to depressive symptoms and diagnoses. Sociability also was negatively related to psychopathology, showing particularly strong associations with indicators of social dysfunction and the negative symptoms of schizotypy (i.e., social anxiety, social aloofness, and restricted affectivity). Assertiveness generally had weak associations at the bivariate level but was negatively related to social anxiety and was positively correlated with some forms of externalizing. Finally, Experience Seeking had substantial positive associations with a broad range of indicators related to externalizing and bipolar disorder; it also displayed negative links to agoraphobia. These differential correlates demonstrate the importance of examining personality-psychopathology relations at the specific facet level. (c) 2015 APA, all rights reserved).
Argentinean outdoor test facility for mirrors
NASA Astrophysics Data System (ADS)
Medina, M. C.; Dipold, J.; García, B.; Mansilla, A.; Maya, J.; Rasztocky, E.; de Souza, V.; Larrarte, J. J.; Benitez, M.
2015-08-01
The Cherenkov Telescope Array (CTA) is planned to be an Observatory for very high energy -ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m. These mirrors will be formed by a set of reflective facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the former candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600 m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. Four prototype mirrors built with different technologies have been installed and have been monitored for 6 months. In this work we present the preliminary results of this characterization.
Tett, Robert P; Fox, Kevin E; Wang, Alvin
2005-07-01
Psychometric review of 33 peer-reviewed studies of six self-report emotional intelligence (EI) measures supports a multidimensional conceptualization of EI. The nature and number of EI facets, however, and their distinctiveness from more established trait domains is unclear. Building on earlier efforts, three studies were undertaken (Ns = 138, 163, 152) to develop self-report measures of 10 facets of EI proposed by Salovey and Mayer (1990). Results support the reliability (internal consistency, test-retest) and validity (content, criterion, construct, structural) of the proposed scales and their distinctiveness among themselves and with respect to more established trait domains (e.g., personality). Specifically, three satisfaction and four cross-cultural adaptability facets were predicted uniquely by 9 of the 10 proposed subscales, controlling for social desirability, the Big Five, positive and negative affect, and self-monitoring. All told, results confirm that trait-EI can be measured using self-report and conceptualized as a distinct multidimensional domain.
Growth and characterization of epitaxially stabilized ceria(001) nanostructures on Ru(0001)
Flege, Jan Ingo; Hocker, Jan; Kaemena, Bjorn; ...
2016-05-03
We have studied (001) surface terminated cerium oxide nanoparticles grown on a ruthenium substrate using physical vapor deposition. Their morphology, shape, crystal structure, and chemical state are determined by low-energy electron microscopy and micro-diffraction, scanning probe microscopy, and synchrotron-based X-ray absorption spectroscopy. Square islands are identified as CeO 2 nanocrystals exhibiting a (001) oriented top facet of varying size; they have a height of about 7 to 10 nm and a side length between about 50 and 500 nm, and are terminated with a p(2 × 2) surface reconstruction. Micro-illumination electron diffraction reveals the existence of a coincidence lattice atmore » the interface to the ruthenium substrate. The orientation of the side facets of the rod-like particles is identified as (111); the square particles are most likely of cuboidal shape, exhibiting (100) oriented side facets. Lastly, the square and needle-like islands are predominantly found at step bunches and may be grown exclusively at temperatures exceeding 1000 °C.« less
Latent factor structure of a behavioral economic cigarette demand curve in adolescent smokers.
Bidwell, L Cinnamon; MacKillop, James; Murphy, James G; Tidey, Jennifer W; Colby, Suzanne M
2012-11-01
Behavioral economic demand curves, or quantitative representations of drug consumption across a range of prices, have been used to assess motivation for a variety of drugs. Such curves generate multiple measures of drug demand that are associated with cigarette consumption and nicotine dependence. However, little is known about the relationships among these facets of demand. The aim of the study was to quantify these relationships in adolescent smokers by using exploratory factor analysis to examine the underlying structure of the facets of nicotine incentive value generated from a demand curve measure. Participants were 138 adolescent smokers who completed a hypothetical cigarette purchase task, which assessed estimated cigarette consumption at escalating levels of price/cigarette. Demand curves and five facets of demand were generated from the measure: Elasticity (i.e., 1/α or proportionate price sensitivity); Intensity (i.e., consumption at zero price); O(max) (i.e., maximum financial expenditure on cigarettes); P(max) (i.e., price at which expenditure is maximized); and Breakpoint (i.e., the price that suppresses consumption to zero). Principal components analysis was used to examine the latent structure among the variables. The results revealed a two-factor solution, which were interpreted as "Persistence," reflecting insensitivity to escalating price, and "Amplitude," reflecting the absolute levels of consumption and price. These findings suggest a two factor structure of nicotine incentive value as measured via a demand curve. If supported, these findings have implications for understanding the relationships among individual demand indices in future behavioral economic studies and may further contribute to understanding of the nature of cigarette reinforcement. Copyright © 2012 Elsevier Ltd. All rights reserved.
Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration.
Van Vlasselaer, Nicolas; Van Roy, Peter; Cattrysse, Erik
2017-01-01
Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t -test and the Pearson correlation. On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry.
Levi, Roi; Bar-Sadan, Maya; Albu-Yaron, Ana; Popovitz-Biro, Ronit; Houben, Lothar; Prior, Yehiam; Tenne, Reshef
2010-01-01
Numerous examples of closed-cage nanostructures, such as nested fullerene-like nanoparticles and nanotubes, formed by the folding of materials with layered structure are known. These compounds include WS2, NiCl2, CdCl2, Cs2O, and recently V2O5. Layered materials, whose chemical bonds are highly ionic in character, possess relatively stiff layers, which cannot be evenly folded. Thus, stress-relief generally results in faceted nanostructures seamed by edge-defects. V2O5, is a metal oxide compound with a layered structure. The study of the seams in nearly perfect inorganic "fullerene-like" hollow V2O5 nanoparticles (NIF-V2O5) synthesized by pulsed laser ablation (PLA), is discussed in the present work. The relation between the formation mechanism and the seams between facets is examined. The formation mechanism of the NIF-V2O5 is discussed in comparison to fullerene-like structures of other layered materials, like IF structures of MoS2, CdCl2, and Cs2O. The criteria for the perfect seaming of such hollow closed structures are highlighted. PMID:28883335
Using Facet Clusters to Guide Teacher Professional Development
NASA Astrophysics Data System (ADS)
Seeley, Lane; DeWater, L. S.; Vokos, S.; Kraus, P.
2006-12-01
The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC project, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to help teachers make their classrooms into better diagnostic learning environments. In this talk, we describe initial efforts to construct content-rich professional development courses for teachers, which are infused with diagnostic assessment that target the fine structure of student ideas in specific topical areas. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.
NASA Technical Reports Server (NTRS)
Botez, D.; Connolly, J. C.
1982-01-01
A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.
NASA Astrophysics Data System (ADS)
Yang, Zixin; Shen, Min; Dai, Ke; Zhang, Xuehao; Chen, Hao
2018-02-01
Bi2MoO6 nanosheets with exposed {010} facets were selectively synthesized through hydrothermal method by adjusting the pH value in the presence of cetyltrimethyl ammonium bromide (CTAB) as the templates. The effects of CTAB content and hydrothermal conditions on the morphologies and crystal phases of the products were determined by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), Raman spectrometry, and Brunauer-Emmett-Teller surface area analyses. It is found that Bi2MoO6 nanosheets with relatively large particle sizes (plate length 0.5-3 μm) and special anisotropic growth along the {010} plane can be obtained from an alkaline hydrothermal environment. The band gap of Bi2MoO6 can be fine-tuned from 2.30 to 2.57 eV by adjusting the pH value of hydrothermal solution. The pH value has a significant effect on the composition of hydrothermal precursors, which results in Bi2MoO6 nanosheets with different ratio of {010} faces, especially the formation of Bi2O3 in the primary stage of the hydrothermal treatment is a key factor for the exposure of {010} facets. The visible-light-driven photocatalytic activities of the Bi2MoO6 products with different ratio of {010} facets exposed are investigated through the degradation of Rhodamine B, oxytetracycline, and tetracycline. Bi2MoO6 nanosheets synthesized at pH 10.0 with highest {010} facet exposed ratio exhibited highly efficient visible light photocatalytic activity for pollutant decomposition, which can be mainly attributed to the flake structures, the crystallinity and most importantly, the exposed {010} facet which generate high concentration of rad O2-.
Das, Pronay; Babbar, Palak; Malhotra, Nipun; Sharma, Manmohan; Jachak, Gorakhnath R; Gonnade, Rajesh G; Shanmugam, Dhanasekaran; Harlos, Karl; Yogavel, Manickam; Sharma, Amit; Reddy, D Srinivasa
2018-05-21
The dependence of drug potency on diastereomeric configurations is a key facet. Using a novel general divergent synthetic route for a three-chiral centre anti-malarial natural product cladosporin, we built its complete library of stereoisomers (cladologs) and assessed their inhibitory potential using parasite-, enzyme- and structure-based assays. We show that potency is manifest via tetrahyropyran ring conformations that are housed in the ribose binding pocket of parasite lysyl tRNA synthetase (KRS). Strikingly, drug potency between top and worst enantiomers varied 500-fold, and structures of KRS-cladolog complexes reveal that alterations at C3 and C10 are detrimental to drug potency where changes at C3 are sensed by rotameric flipping of Glutamate332. Given that scores of anti-malarial and anti-infective drugs contain chiral centers, this work provides a new foundation for focusing on inhibitor stereochemistry as a facet of anti-microbial drug development.
Fabrication of GaAs symmetric pyramidal mesas prepared by wet-chemical etching using AlAs interlayer
NASA Astrophysics Data System (ADS)
Kicin, S.; Cambel, V.; Kuliffayová, M.; Gregušová, D.; Kováčová, E.; Novák, J.; Kostič, I.; Förster, A.
2002-01-01
We present a wet-chemical-etching method developed for the preparation of GaAs four-sided pyramid-shaped mesas. The method uses a fast lateral etching of AlAs interlayer that influences the cross-sectional profiles of etched structures. We have tested the method using H3PO4:H2O2:H2O etchant for the (100) GaAs patterning. The sidewalls of the prepared pyramidal structures together with the (100) bottom facet formed the cross-sectional angles 25° and 42° for mask edges parallel, resp. perpendicular to {011} cleavage planes. For mask edges turned in 45° according to the cleavage planes, 42° cross-sectional angles were obtained. Using the method, symmetric and more than 10-μm-high GaAs "Egyptian" pyramids with smooth tilted facets were prepared.
Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis.
Masharawi, Youssef; Rothschild, Bruce; Dar, Gali; Peleg, Smadar; Robinson, Dror; Been, Ella; Hershkovitz, Israel
2004-08-15
Thoracolumbar facet orientations were measured and analyzed. To establish a comprehensive database for facet orientation in the thoracolumbar vertebrae and to determine the normal human condition. Most studies on facet orientation have based their conclusions on two-dimensional measurements, in small samples or isolated vertebrae. The amount of normal asymmetry in facet orientation is poorly addressed. Transverse and longitudinal facet angles were measured directly from 240 human vertebral columns (males/females, blacks/whites). The specimens' osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History (Cleveland, OH). A total of 4,080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and analysis of variance. RESULTS.: Facet orientation is independent of gender, age, and ethnic group. Asymmetry in facet orientation is found in the thorax. All thoracolumbar facets are positioned in an oblique plane. In the transverse plane, all facets from T1 to T11 are positioned with an anterior inclination of approximately 25 degrees to 30 degrees from the frontal plane. The facets of T12-L2 are oriented closer to the midsagittal plane of the vertebral body (mean range, 25.89 degrees-33.87 degrees), while the facets of L3-L5 are oriented away from that plane (mean range, 40.40 degrees-56.30 degrees). Facet transverse orientation at the thoracolumbar junction is highly variable (approximately 80% with approximately 101 degrees and approximately 20% with 35 degrees). All facets are oriented more vertically from T1 (approximately 150 degrees) to L5 (approximately 170 degrees). The facet sagittal orientations of the lumbar zygoapophyseal joints are not equivalent. CONCLUSIONS.: Asymmetry in facet orientation is a normal characteristic in the thorax.
ERIC Educational Resources Information Center
Marsh, Herbert W.; Nagengast, Benjamin; Morin, Alexandre J. S.; Parada, Roberto H.; Craven, Rhonda G.; Hamilton, Linda R.
2011-01-01
Existing research posits multiple dimensions of bullying and victimization but has not identified well-differentiated facets of these constructs that meet standards of good measurement: goodness of fit, measurement invariance, lack of differential item functioning, and well-differentiated factors that are not so highly correlated as to detract…
MultiFacet: A Faceted Interface for Browsing Large Multimedia Collections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael J.; Hampton, Shawn D.; Endert, Alexander
2013-10-31
Faceted browsing is a common technique for exploring collections where the data can be grouped into a number of pre-defined categories, most often generated from textual metadata. Historically, faceted browsing has been applied to a single data type such as text or image data. However, typical collections contain multiple data types, such as information from web pages that contain text, images, and video. Additionally, when browsing a collection of images and video, facets are often created based on the metadata which may be incomplete, inaccurate, or missing altogether instead of the actual visual content contained within those images and video.more » In this work we address these limitations by presenting MultiFacet, a faceted browsing interface that supports multiple data types. MultiFacet constructs facets for images and video in a collection from the visual content using computer vision techniques. These visual facets can then be browsed in conjunction with text facets within a single interface to reveal relationships and phenomena within multimedia collections. Additionally, we present a use case based on real-world data, demonstrating the utility of this approach towards browsing a large multimedia data collection.« less
Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration
Van Roy, Peter
2017-01-01
Introduction Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Method Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t-test and the Pearson correlation. Results On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Conclusions Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry. PMID:29359153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vara, Madeline; Roling, Luke T.; Wang, Xue
Core–shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core–shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt 4L core–shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability ofmore » the core–shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. Furthermore, the opposite trend for alloying of the core–shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.« less
Vara, Madeline; Roling, Luke T.; Wang, Xue; ...
2017-05-09
Core–shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core–shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt 4L core–shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability ofmore » the core–shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. Furthermore, the opposite trend for alloying of the core–shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.« less
Vara, Madeline; Roling, Luke T; Wang, Xue; Elnabawy, Ahmed O; Hood, Zachary D; Chi, Miaofang; Mavrikakis, Manos; Xia, Younan
2017-05-23
Core-shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core-shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt 4L core-shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability of the core-shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. The opposite trend for alloying of the core-shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.
Mesoscale studies of ionic closed membranes with polyhedral geometries
2016-07-25
assembled ionic amphiphiles.4 The most commonly observed polyhedral symmetry in self-organized homogeneous structures is the icosahedron, which has the...Possible buckled structures can be obtained considering components A, B with intermediate compositions f of the B component such that the stable shape...lines aids the faceting of the shell into a polyhedral structure often with three-fold vertices. Such vertices are joined together by sharp edges
Coal gasification systems engineering and analysis. Appendix H: Work breakdown structure
NASA Technical Reports Server (NTRS)
1980-01-01
A work breakdown structure (WBS) is presented which encompasses the multiple facets (hardware, software, services, and other tasks) of the coal gasification program. The WBS is shown to provide the basis for the following: management and control; cost estimating; budgeting and reporting; scheduling activities; organizational structuring; specification tree generation; weight allocation and control; procurement and contracting activities; and serves as a tool for program evaluation.
Determinants of Market Structure and the Airline Industry
NASA Technical Reports Server (NTRS)
Raduchel, W.
1972-01-01
The general economic determinants of market structure are outlined with special reference to the airline industry. Included are the following facets: absolute size of firms; distributions of firms by size; concentration; entry barriers; product and service differentiation; diversification; degrees of competition; vertical integration; market boundaries; and economies of scale. Also examined are the static and dynamic properties of market structure in terms of mergers, government policies, and economic growth conditions.
Manchikanti, Laxmaiah; Hirsch, Joshua A; Pampati, Vidyasagar; Boswell, Mark V
2016-10-01
Increasing utilization of interventional techniques in managing chronic spinal pain, specifically facet joint interventions and sacroiliac joint injections, is a major concern of healthcare policy makers. We analyzed the patterns of utilization of facet and sacroiliac joint interventions in managing chronic spinal pain. The results showed significant increase of facet joint interventions and sacroiliac joint injections from 2000 to 2014 in Medicare FFS service beneficiaries. Overall, the Medicare population increased 35 %, whereas facet joint and sacroiliac joint interventions increased 313.3 % per 100,000 Medicare population with an annual increase of 10.7 %. While the increases were uniform from 2000 to 2014, there were some decreases noted for facet joint interventions in 2007, 2010, and 2013, whereas for sacroiliac joint injections, the decreases were noted in 2007 and 2013. The increases were for cervical and thoracic facet neurolysis at 911.5 % compared to lumbosacral facet neurolysis of 567.8 %, 362.9 % of cervical and thoracic facet joint blocks, 316.9 % of sacroiliac joints injections, and finally 227.3 % of lumbosacral facet joint blocks.
Climate differentiates forest structure across a residential macrosystem
The extent of urban ecological homogenization depends on how humans build, inhabit, and manage cities. Morphological and socio-economic facets of neighborhoods can drive the homogenization of forest cover, thus affecting urban ecological and hydrological processes, and ecosystem...
Palea, Ovidiu; Granville, Michelle
2017-01-01
Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated. PMID:29119066
Jacobson, Robert E; Palea, Ovidiu; Granville, Michelle
2017-09-01
Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated.
Alignment and focus of mirrored facets of a heliosat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B
2013-11-12
Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoreticalmore » image.« less
Self-locking degree-4 vertex origami structures
Li, Suyi; Wang, K. W.
2016-01-01
A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications. PMID:27956889
Self-locking degree-4 vertex origami structures.
Fang, Hongbin; Li, Suyi; Wang, K W
2016-11-01
A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications.
Evidence of active region imprints on the solar wind structure
NASA Technical Reports Server (NTRS)
Hick, P.; Jackson, B. V.
1995-01-01
A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics
The semiconductor waveguide facet reflectivity problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herzinger, C.M.; Lu, C.C.; DeTemple, T.A.
1993-08-01
The problem of the facet reflectivity of a semiconductor slab waveguide is reexamined as an extension of Ikegami's original approach but which includes radiation-like modes. The latter are included, using a guide-within-a-guide geometry, as modes bound to a thick air-cladding guide which contains the core profile of interest. In this model with a relatively simple analysis, the coupling from the fundamental mode to radiation modes can be analyzed. The cross-coupling to the radiation modes is considered in detail for the simple double heterostructure waveguide and is shown to be important only for large core-cladding index differences and for strong modalmore » confinement wherein it results in a true facet loss. The conditions for this are the same as for low threshold lasers so that the loss sets a maximum limit on the equivalent internal quantum efficiency. A separate one-dimensional finite element, numerical mode matching program, which treats evanescent and propagating radiation modes, is used as a comparison. The two methods of accounting for radiation modes are shown to be in good agreement: both predict reduced extremes in reflectivity when compared with the original Ikegami model. Modern graded core cases are treated as general examples along with the specific quantum well laser structures taken from the literature. These include II-VI and III-V structures spanning wavelengths from 0.5 [mu]m to 10.0 [mu]m.« less
Shanmuganathan, K; Mirvis, S E; Levine, A M
1994-11-01
Imaging studies of patients with rotational facet injuries of the cervical spine were retrospectively reviewed to determine the prevalence and pattern of associated fractures, to correlate injury pattern with recommended surgical stabilization, and to assess neurologic outcome. Radiographs and CT scans obtained for 40 consecutive patients with rotational facet injuries of the cervical spine during a 70-month period were retrospectively reviewed to determine injury level, presence, and orientation of facet fractures, and concurrent nonfacet injuries. Imaging findings were reviewed to assess the likelihood of instability and to determine the most appropriate stabilization requirement. Medical records were reviewed to ascertain mechanism of injury, initial neurologic deficit, and surgical findings. Among the 40 patients with cervical rotational facet injuries, 11 (27%) had pure unilateral facet dislocation or subluxation without associated fractures, and 29 (73%) had concurrent facet fractures involving the inferior facet of the rotated vertebra (n = 13), the superior facet of the subjacent vertebra (n = 9), or both (n = 7). Injury of the rotated vertebra was unilateral in 22 patients but bilateral in 18 patients. Facet fractures frequently extended into the ipsilateral lamina or articular pillar or both. An avulsion fracture from the posteroinferior aspect of the rotated vertebral body, indicating disk disruption, occurred in 10 patients (25%), and seven patients (17%) had complete isolation of an articular pillar. Facet fractures were confirmed for 27 patients who underwent surgical stabilization. Neurologic deficits developed in 29 (73%) of the 40 patients and included radiculopathy in 11 patients and cord syndromes in 18 patients. Pure dislocation without a facet fracture was more likely to lead to a cord syndrome (p = .006). Cervical rotational facet injuries are often accompanied by facet fractures and bilateral damage of the rotated vertebra. These injuries contribute to rotational instability and require specific internal fixation based on a precise delineation of all injuries. Facet dislocations without fractures have a significantly higher association with cord syndromes than do rotational facet injuries with fractures. CT, particularly with parasagittal reformations, is valuable in identifying all injuries of the rotated and subjacent vertebrae.
Parallel CARLOS-3D code development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putnam, J.M.; Kotulski, J.D.
1996-02-01
CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions tomore » the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.« less
Solar wind structure out of the ecliptic plane over solar cycles
NASA Astrophysics Data System (ADS)
Sokol, J. M.; Bzowski, M.; Tokumaru, M.
2017-12-01
Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.
ERIC Educational Resources Information Center
Payne, Frank D.
1980-01-01
A sample of 41 fourth- through sixth-grade children participated in structured situations and were rated by themselves and their teachers on the same four facets of prosocial conduct (donating, helping, sharing, and cooperating). Among the results, the relationship between need for approval and prosocial conduct varied inversely with the…
Cervical facet force analysis after disc replacement versus fusion.
Patel, Vikas V; Wuthrich, Zachary R; McGilvray, Kirk C; Lafleur, Matthew C; Lindley, Emily M; Sun, Derrick; Puttlitz, Christian M
2017-05-01
Cervical total disc replacement was developed to preserve motion and reduce adjacent-level degeneration relative to fusion, yet concerns remain that total disc replacement will lead to altered facet joint loading and long-term facet joint arthrosis. This study is intended to evaluate changes in facet contact force, pressure and surface area at the treated and superior adjacent levels before and after discectomy, disc replacement, and fusion. Ten fresh-frozen human cadaveric cervical spines were potted from C2 to C7 with pressure sensors placed into the facet joints of C3-C4 and C4-C5 via slits in the facet capsules. Moments were applied to the specimens to produce axial rotation, lateral bending and extension. Facet contact force and pressure were measured at both levels for intact, discectomy at C4-C5, disc replacement with ProDisc-C (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5, and anterior discectomy and fusion with Cervical Spine Locking Plate (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5. Facet contact area was calculated from the force and pressure measurements. An analysis of variance was used to determine significant differences with P-values <0.05 indicating significance. Facet contact force was elevated at the treated level under extension following both discectomy and disc replacement, while facet contact pressure and area were relatively unchanged. Facet contact force and area were decreased at the treated level following fusion for all three loading conditions. Total disc replacement preserved facet contact force for all scenarios except extension at the treated level, highlighting the importance of the anterior disco-ligamentous complex. This could promote treated-level facet joint disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
The multidimensional nature of ageism: construct validity and group differences.
Rupp, Deborah E; Vodanovich, Stephen J; Credé, Marcus
2005-06-01
The authors investigated the factor structure and construct validity of the Fraboni Scale of Ageism and the age and gender differences in ageism scores. Confirmatory factor analyses supported the multidimensional nature of FSA scores and generally corroborated the initial factor structure reported by M. Fraboni, with some notable exceptions. Essentially, the present findings were aligned with theoretical models of ageism that emphasize both cognitive facets and affective facets. That is, on the basis of their factor analytic findings, the authors redefined Fraboni's original factors of Antilocution, Avoidance, and Discrimination as Stereotypes, Separation, and Affective Attitudes, respectively, because of the clustering of items within factors. The revised 3-factor structure accounted for 36.4% of the variance in FSA scores. FSA factor scores significantly related to other scores from other measures of age-related attitudes, with higher correlations among factors that were similar in terms of their cognitive nature versus their affective nature. Finally, younger individuals and men had significantly higher ageism scores on the FSA than older individuals and women. The authors discussed the importance of adequately assessing ageism, with particular emphasis devoted to the understanding of age bias.
Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy
NASA Astrophysics Data System (ADS)
Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.
2017-10-01
While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.
Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)
2002-01-01
We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.
Shell structures in aluminum nanocontacts at elevated temperatures
2012-01-01
Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572
Migrating lumbar facet joint cysts.
Palmieri, Francesco; Cassar-Pullicino, Victor N; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; McCall, Iain W
2006-04-01
The majority of lumbar facet joint cysts (LFJCs) are located in the spinal canal, on the medial aspect of the facet joint with characteristic diagnostic features. When they migrate away from the joint of origin, they cause diagnostic problems. In a 7-year period we examined by computed tomography (CT) and magnetic resonance (MR) imaging five unusual cases of facet joint cysts which migrated from the facet joint of origin. Three LFJCs were identified in the right S1 foramen, one in the right L5-S1 neural foramen and one in the left erector spinae and multifidus muscles between the levels of L2-L4 spinous process. Awareness that spinal lesions identified at MRI and CT could be due to migrating facet joint cyst requires a high level of suspicion. The identification of the appositional contact of the cyst and the facet joint needs to be actively sought in the presence of degenerative facet joints.
Wen, Chuan-Bing; Li, Yong-Zhong; Tang, Qin-Qin; Sun, Lin; Xiao, Hong; Yang, Bang-Xiang; Song, Li; Liu, Hui
2013-03-01
To investigate the feasibility, accuracy of B ultrasound in the examination of joint space of lumbar spine facet joints compared with CT scan. Ten healthy adult volunteers were enrolled. The joint space of lumbar facet joints was measured by ultrasound. To identify the spinal levels, the posterior parasagittal sonograms were obtained at levels L1 to S1. The lumbar facet joints were delineated with the help of transverse sonograms at each level. Meanwhile, the lumbar facet joints were evaluated by spiral CT on the same plane, reformatted to 1-mm axial slices. A total of 88 lumbar facet joints from L1 to S1 were clearly visualized in the 10 volunteers. Both ultrasound and CT measurements showed the same average depth and lateral distance of lumbar facet joint space (P > 0.05). The lumbar facet joint space can be accurately demonstrated by ultrasound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, K.P.; Lamontagne, B.; Delage, A.
2006-05-15
We present a technique to lithographically define and fabricate all required optical facets on a silicon-on-insulator photonic integrated circuit by an inductively coupled plasma etch process. This technique offers 1 {mu}m positioning accuracy of the facets at any location within the chip and eliminates the need of polishing. Facet fabrication consists of two separate steps to ensure sidewall verticality and minimize attack on the end surfaces of the waveguides. Protection of the waveguides by a thermally evaporated aluminum layer before the 40-70 {mu}m deep optical facet etching has been proven essential in assuring the facet smoothness and integrity. Both scanningmore » electron microscopy analysis and optical measurement results show that the quality of the facets prepared by this technique is comparable to the conventional facets prepared by polishing.« less
Wei, Guang-Feng
2015-01-01
The restructuring of nanoparticles at the in situ condition is a common but complex phenomenon in nanoscience. Here, we present the first systematic survey on the structure dynamics and its catalytic consequence for hydrogen evolution reaction (HER) on Pt nanoparticles, as represented by a magic number Pt44 octahedron (∼1 nm size). Using a first principles calculation based global structure search method, we stepwise follow the significant nanoparticle restructuring under HER conditions as driven by thermodynamics to expose {100} facets, and reveal the consequent large activity enhancement due to the marked increase of the concentration of the active site, being identified to be apex atoms. The enhanced kinetics is thus a “byproduct” of the thermodynamical restructuring. Based on the results, the best Pt catalyst for HER is predicted to be ultrasmall Pt particles without core atoms, a size below ∼20 atoms. PMID:29560237
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom
2011-12-01
Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systemsmore » are properly specified and installed with respect to the continuing structural integrity of the building.« less
NASA Astrophysics Data System (ADS)
Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.
2017-06-01
For many applied problems it is necessary to obtain information about the situation in a wide angular field in order to measure various parameters of objects: their spatial coordinates, instantaneous velocities, and so on. In this case, one interesting bionic approach can be used - a mosaic (or discrete, otherwise, facet) angular field. Such electro-optical system constructively imitates the visual apparatus of insects: many photodetectors like ommatidia (elements of the facet eye structure) are located on a non-planar surface. Such devices can be used in photogrammetry and aerial photography systems (if the space is sufficient), in the transport sector as vehicle orientation organs, as systems for monitoring in unmanned aerial vehicles, in endoscopy for obtaining comprehensive information on the state of various cavities, in intelligent robotic systems. In this manuscript discusses the advantages and disadvantages of multi-channeled optoelectronic systems with a mosaic angular field, presents possible options for their use, and discusses some of the design procedures performed when developing a layout of a coordinate measuring device.
Factorial structure and convergent and discriminant validity of the E (Empathy) scale.
Tran, Ulrich S; Laireiter, Anton-Rupert; Schmitt, David P; Neuner, Christine; Leibetseder, Max; Szente-Voracek, Sara Leyla; Voracek, Martin
2013-10-01
The Empathy (E) scale has been proposed as a theoretically and psychometrically more satisfying alternative to existing self-report measures of empathy. Its four scales (facets) cover both components (cognitive vs. emotional) and both reality statuses (fictitious vs. real-life) of empathy in pairwise combinations. Confirmatory factor analyses of the E-scale in an Austrian community sample (N = 794) suggested that one prior assumption, namely the mutual orthogonality of these facets, may partly need revision; particularly, the E-scale facets seemed to reflect more strongly differences in the reality statuses than in the components of empathy. Utilizing numerous informative psychological traits, the scale's convergent and discriminant validity were examined. E-scale scores were consistently predicted by sex-related and relationship-related constructs and measures of antisocial attitudes and behavior. Among the Big Five personality dimensions, openness emerged as a major positive correlate of empathy. Sex and age were demographic correlates of E-scale scores (higher in women and the younger). Findings were discussed with regards to the definition and measurement of empathy.
NASA Astrophysics Data System (ADS)
Bennett, David A.; Cargnello, Matteo; Diroll, Benjamin T.; Murray, Christopher B.; Vohs, John M.
2016-12-01
Structure-activity relationships and the influence of particle size and shape on the partial- and photo-oxidation of methanol on nanocrystalline anatase TiO2 were investigated using temperature-programmed desorption. The study employed two distinct nanoparticle morphologies: truncated bipyramids exposing primarily {101} facets, and flatter platelets exposing primarily {001} surfaces, whose nominal sizes ranged from 10 to 25 nm. The platelets were found to be more active for thermally-driven reactions, such as coupling of methoxide groups to produce dimethyl ether, and deoxygenation to produce methane. A dependence of the reactivity of {001} facets for the coupling of methoxide groups to produce dimethyl ether on facet size was also observed. In contrast to the thermally-driven reactions, the bipyramidal nanoparticles were observed to be more active for a range of photochemical reactions, including oxidation and coupling to produce methyl formate, and photo-decomposition of surface methoxide species. This study also shows how well-defined nanocrystals can be used to help bridge the materials gap between studies of single crystal model catalysts and their high surface area industrial analogs.
Cervical myelopathy associated with extradural synovial cysts in 4 dogs.
Levitski, R E; Chauvet, A E; Lipsitz, D
1999-01-01
Three Mastiffs and 1 Great Dane were presented to the University of Wisconsin Veterinary Medical Teaching Hospital for cervical myelopathy based on history and neurologic examination. All dogs were males and had progressive ataxia and tetraparesis. Degenerative arthritis of the articular facet joints was noted on survey spinal radiographs. Myelography disclosed lateral axial compression of the cervical spinal cord medial to the articular facets. Extradural compressive cystic structures adjacent to articular facets were identified on magnetic resonance imaging (1 dog). High protein concentration was the most important finding on cerebrospinal fluid analysis. Dorsal laminectomies were performed in all dogs for spinal cord decompression and cyst removal. Findings on cytologic examination of the cystic fluid were consistent with synovial fluid, and histopathologic results supported the diagnosis of synovial cysts. All dogs are ambulatory and 3 are asymptomatic after surgery with a follow-up time ranging from 1 to 8 months. This is the 1st report of extradural synovial cysts in dogs, and synovial cysts should be a differential diagnosis for young giant breed dogs with cervical myelopathy.
Judge, Timothy A; Rodell, Jessica B; Klinger, Ryan L; Simon, Lauren S; Crawford, Eean R
2013-11-01
Integrating 2 theoretical perspectives on predictor-criterion relationships, the present study developed and tested a hierarchical framework in which each five-factor model (FFM) personality trait comprises 2 DeYoung, Quilty, and Peterson (2007) facets, which in turn comprise 6 Costa and McCrae (1992) NEO facets. Both theoretical perspectives-the bandwidth-fidelity dilemma and construct correspondence-suggest that lower order traits would better predict facets of job performance (task performance and contextual performance). They differ, however, as to the relative merits of broad and narrow traits in predicting a broad criterion (overall job performance). We first meta-analyzed the relationship of the 30 NEO facets to overall job performance and its facets. Overall, 1,176 correlations from 410 independent samples (combined N = 406,029) were coded and meta-analyzed. We then formed the 10 DeYoung et al. facets from the NEO facets, and 5 broad traits from those facets. Overall, results provided support for the 6-2-1 framework in general and the importance of the NEO facets in particular. (c) 2013 APA, all rights reserved.
The Semantic eScience Framework
NASA Astrophysics Data System (ADS)
McGuinness, Deborah; Fox, Peter; Hendler, James
2010-05-01
The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?. http://tw.rpi.edu/portal/SESF
The Semantic eScience Framework
NASA Astrophysics Data System (ADS)
Fox, P. A.; McGuinness, D. L.
2009-12-01
The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?.
NASA Astrophysics Data System (ADS)
Gibson, Justus L.; Stencel, Robert E.; Ketzeback, William; Barentine, John; Coughlin, Jeffrey; Leadbeater, Robin; Saurage, Gabrelle
2018-06-01
Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. One hundred and sixteen epochs of data were obtained between 2009 and 2012, and equivalent widths and line velocities measured for high versus low eccentricity accretion disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830Å line, and the discovery of the P Cygni shape of the Pa-β line at third contact. We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualized the disk and stream interaction using SHAPE software, and used CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with nH = 1011 cm-3 and temperature of 20,000 K, consistent with a mid-B type central star. Van Rensbergen binary star evolutionary models are somewhat consistent with the current binary parameters for their case of a 9 plus 8 solar mass initial binary, evolving into a 2.3 and 14.11 solar mass end product after 35 Myr. With these results, it is possible to make predictions which suggest that continued monitoring prior to the next eclipse (2036) will help resolve standing questions about the mass and age of this binary.
Complex Problem Solving--More than Reasoning?
ERIC Educational Resources Information Center
Wustenberg, Sascha; Greiff, Samuel; Funke, Joachim
2012-01-01
This study investigates the internal structure and construct validity of Complex Problem Solving (CPS), which is measured by a "Multiple-Item-Approach." It is tested, if (a) three facets of CPS--"rule identification" (adequateness of strategies), "rule knowledge" (generated knowledge) and "rule application"…
FACETS: multi-faceted functional decomposition of protein interaction networks.
Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes
2012-10-15
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein-protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Supplementary data are available at the Bioinformatics online. Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/~assourav/Facets/
NASA Astrophysics Data System (ADS)
Krumer, Zachar; van Sark, Wilfried G. J. H. M.; de Mello Donegá, Celso; Schropp, Ruud E. I.
2013-09-01
Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species (fluorophores) have been incorporated.The fluorophores absorb the solar light and radiatively re-emit a part of the energy. Total internal reflection traps most of the emitted light inside the plate and wave-guides it to a narrow side facet with a solar cell attached, where conversion into electricity occurs. The eciency of such devices is as yet rather low, due to several loss mechanisms, of which self-absorption is of high importance. Combined ray-tracing and Monte-Carlosimulations is a widely used tool for efficiency estimations of LSC-devices prior to manufacturing. We have applied this method to a model experiment, in which we analysed the impact of self-absorption onto LSC-efficiency of fluorophores with different absorption/emission-spectral overlap (Stokes-shift): several organic dyes and semiconductor quantum dots (single compound and core/shell of type-II). These results are compared with the ones obtained experimentally demonstrating a good agreement. The validated model is used to investigate systematically the influence of spectral separation and luminescence quantum efficiency on the intensity loss inconsequence of increased self-absorption. The results are used to adopt a quantity called the self-absorption cross-section and establish it as reliable criterion for self-absorption properties of materials that can be obtained from fundamental data and has a more universal scope of application, than the currently used Stokes-shift.
Facet joint laser radiation: tissue effects of a new clinical laser application
NASA Astrophysics Data System (ADS)
Werkmann, Klaus; Thal, Dietmar R.
1996-01-01
Chronic unilateral and bilateral back pain with pseudoradicular symptoms, is a common clinical syndrome, which in many cases can be related to the facet joint syndrome. The pain is caused by mechanical affection of synovial and capsular nerve terminals. Therefore, current therapeutical attempts including physical therapy, intra-articular injection of local anesthetics and steroids and thermocoagulation of the facet joint with a thermocoagulator, are performed. We confirmed laser coagulation of the facet joint. Porcine cadaveric spines were treated immediately after death by intra-articular facet joint laser radiation. With the pulsed Nd:YAG laser (1064 nm) altogether 600 J were applied in three different places 4 mm apart at the top of the facet joint. The results showed that facet joint laser radiation leads to a small (about 1 - 2 mm diameter) lesion restricted to the facet joint cavity and its synovia. Histologically, we found a central carbonization zone and necrosis, including almost the whole cartilage and approximately 0.2 mm of the adjacent bone. These changes are similar to Nd:Yag-laser applications in other skeletal regions. It is suggested that these changes may lead to facet joint denervation by coagulation of the synovial nerve terminals. Cicatration of the laser lesion might cause ankylosis of this joint. In sum, facet joint laser radiation could be an alternative therapeutical tool for lower back pain of the facet joint syndrome type. Therefore, future clinical application of this technique seems to be very promising.
Yin, Xin; Wang, Xudong
2016-11-09
Nanocrystal facets evolution is critical for designing nanomaterial morphology and controlling their properties. In this work, we report a unique high-energy crystal facets evolution phenomenon at the tips of wurtzite zinc oxide nanowires (NWs). As the zinc vapor supersaturation decreased at the NW deposition region, the NW tip facets evolved from the (0001) surface to the {101̅3} surface and subsequently to the {112̅2} surface and eventually back to the flat (0001) surface. A series of NW tip morphology was observed in accordance to the different combinations of exposed facets. Exposure of the high-energy facets was attributed to the fluctuation of the energy barriers for the formation of different crystal facets during the layer-by-layer growth of the NW tip. The energy barrier differences between these crystal facets were quantified from the surface area ratios as a function of supersaturation. On the basis of the experimental observation and kinetics analysis, we argue that at appropriate deposition conditions exposure of the crystal facets at NW growth front is not merely determined by the surface energy. Instead, the NW may choose to expose the facets with minimal formation energy barrier, which can be determined by the Ehrlich-Schwoebel barrier variation. This empirical law for the NW tip facet formation was in analogy to the Ostwald-Lussac law of phase transformation, which brings a new insight toward nanostructure design and controlled synthesis.
Self-organization in complex oxide thin films: from 2D to 0D nanostructures of SrRuO3 and CoCr2O4
NASA Astrophysics Data System (ADS)
Sánchez, F.; Lüders, U.; Herranz, G.; Infante, I. C.; Fontcuberta, J.; García-Cuenca, M. V.; Ferrater, C.; Varela, M.
2005-05-01
We report here on the controlled fabrication of nanostructures of varied dimensionality by self-organization processes in the heteroepitaxial growth of SrRuO3 (SRO) and CoCr2O4 (CCO) films. The surface of SRO films on SrTiO3(001) substrates can show extremely smooth terraces (2D objects) separated by atomic steps, a structure of faceted islands (0D objects), a cross-hatch morphology (1D objects), an array of finger-like units (1D objects), or an array of giant bunched steps (1D objects). The surface can be tailored to a particular structure by controlling the vicinality of the substrate and the growth rate and nominal thickness of the film. In the case of CCO films, grown on (001)-oriented MgAl2O4 or MgO substrates, high aspect ratio {111}-faceted pyramids and hut clusters (0D objects), highly oriented and having a similar size, appear above a critical thickness. The size and spatial density can be tuned by varying deposition temperature, nominal thickness, and substrate. This dependence allows the fabrication of surfaces being fully faceted (2D objects), or having arrays of dislocated pyramids of up to micrometric size, or small coherently lattice strained pyramids having a nanometric size. We discuss the driving forces that originate the peculiar SRO and CCO nanostructures. The findings illustrate that the growth of complex oxides can promote a variety of novel self-organized morphologies, and suggest original strategies to fabricate templates or hybrid structures of oxides combining varied functionalities.
Mallette, Evan
2017-01-01
Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. PMID:27927988
Mallette, Evan; Kimber, Matthew S
2017-01-27
Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Development of a consensus taxonomy of sedentary behaviors (SIT): report of Delphi Round 1.
Chastin, Sebastien Francois Martin; Schwarz, Ulf; Skelton, Dawn A; Skelton, Dawn Ann
2013-01-01
Over the last decade, sedentary behaviors have emerged as a distinctive behavioral paradigm with deleterious effects on health independent of physical activity. The next phase of research is to establish dose response between sedentary behaviors and health outcomes and improve understanding of context and determinants of these behaviors. Establishing a common taxonomy of these behaviors is a necessary step in this process. The Sedentary behavior International Taxonomy project was developed to establish a classification of sedentary behaviors by use of a formal consensus process. The study follows a Delphi process in three Rounds. A preparatory stage informed the development of terms of reference documents. In Round 1, experts were asked to make statements about the taxonomy; 1) its purpose and use ; 2) the domains, categories or facets that should be consider and include; 3) the structure/architecture to arrange and link these domains and facets. In Round 2 experts will be presented with a draft taxonomy emerging from Round 1 and invited to comment and propose alterations. The taxonomy will then be finalised at the outset of this stage. Results of Round 1 are reported here. There is a general consensus that a taxonomy will help advances in research by facilitating systematic and standardised: 1) investigation and analysis; 2) reporting and communication; 3) data pooling, comparison and meta-analysis; 4) development of measurement tools; 4) data descriptions, leading to higher quality in data querying and facilitate discoveries. There is also a consensus that such a taxonomy should be flexible to accommodate diverse purposes of use, and future advances in the field and yet provide a cross-disciplinary common language. A consensual taxonomy structure emerged with nine primary facets (Purpose, Environment, Posture, Social, Measurement, Associated behavior, Status, Time, Type) and the draft structure presented here for Round 2.
Domains and facets: hierarchical personality assessment using the revised NEO personality inventory.
Costa, P T; McCrae, R R
1995-02-01
Personality traits are organized hierarchically, with narrow, specific traits combining to define broad, global factors. The Revised NEO Personality Inventory (NEO-PI-R; Costa & McCrae, 1992c) assesses personality at both levels, with six specific facet scales in each of five broad domains. This article describes conceptual issues in specifying facets of a domain and reports evidence on the validity of NEO-PI-R facet scales. Facet analysis-the interpretation of a scale in terms of the specific facets with which it correlates-is illustrated using alternative measures of the five-factor model and occupational scales. Finally, the hierarchical interpretation of personality profiles is discussed. Interpretation on the domain level yields a rapid understanding of the individual interpretation of specific facet scales gives a more detailed assessment.
A STRUCTURAL THEORY FOR THE PERCEPTION OF MORSE CODE SIGNALS AND RELATED RHYTHMIC PATTERNS.
ERIC Educational Resources Information Center
WISH, MYRON
THE PRIMARY PURPOSE OF THIS DISSERTATION IS TO DEVELOP A STRUCTURAL THEORY, ALONG FACET-THEORETIC LINES, FOR THE PERCEPTION OF MORSE CODE SIGNALS AND RELATED RHYTHMIC PATTERNS. AS STEPS IN THE DEVELOPMENT OF THIS THEORY, MODELS FOR TWO SETS OF SIGNALS ARE PROPOSED AND TESTED. THE FIRST MODEL IS FOR A SET COMPRISED OF ALL SIGNALS OF THE…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Uma; Li, Meijun; Cook, Brandon G.
2015-12-31
The effects of the surface structure of ceria (CeO2) on the nature, strength, and amount of species resulting from SO2 adsorption were studied using in situ IR and Raman spectroscopies coupled with mass spectrometry, along with first-principles calculations based on density functional theory (DFT). CeO2 nanocrystals with different morphologies, namely, rods (representing a defective structure), cubes (100 facet), and octahedra (111 facet), were used to represent different CeO2 surface structures. IR and Raman spectroscopic studies showed that the structure and binding strength of adsorbed species from SO2 depend on the shape of the CeO2 nanocrystals. SO2 adsorbs mainly as surfacemore » sulfites and sulfates at room temperature on CeO2 rods, cubes, and octahedra that were either oxidatively or reductively pretreated. The formation of sulfites is more evident on CeO2 octahedra, whereas surface sulfates are more prominent on CeO2 rods and cubes. This is explained by the increasing reducibility of the surface oxygen in the order octahedra < cubes < rods. Bulk sulfites are also formed during SO2 adsorption on reduced CeO2 rods. The formation of surface sulfites and sulfates on CeO2 cubes is in good agreement with our DFT results of SO2 interactions with the CeO2(100) surface. CeO2 rods desorb SO2 at higher temperatures than cubes and octahedra nanocrystals, but bulk sulfates are formed on CeO2 rods and cubes after high-temperature desorption whereas only some surface sulfates/sulfites are left on octahedra. This difference is rationalized by the fact that CeO2 rods have the highest surface basicity and largest amount of defects among the three nanocrystals, so they bind and react with SO2 strongly and are the most degraded after SO2 adsorption cycles. The fundamental understanding obtained in this work on the effects of the surface structure and defects on the interaction of SO2 with CeO2 provides insights for the design of more sulfur-resistant CeO2-based catalysts.« less
Tumuluri, Uma; Li, Meijun; Cook, Brandon G.; ...
2015-12-02
The effects of the surface structure of ceria (CeO 2) on the nature, strength, and amount of species resulting from SO 2 adsorption were studied using in situ IR and Raman spectroscopies coupled with mass spectrometry, along with first-principles calculations based on density functional theory (DFT). CeO 2 nanocrystals with different morphologies, namely, rods (representing a defective structure), cubes (100 facet), and octahedra (111 facet), were used to represent different CeO 2 surface structures. IR and Raman spectroscopic studies showed that the structure and binding strength of adsorbed species from SO 2 depend on the shape of the CeO 2more » nanocrystals. SO 2 adsorbs mainly as surface sulfites and sulfates at room temperature on CeO 2 rods, cubes, and octahedra that were either oxidatively or reductively pretreated. The formation of sulfites is more evident on CeO 2 octahedra, whereas surface sulfates are more prominent on CeO 2 rods and cubes. This is explained by the increasing reducibility of the surface oxygen in the order octahedra < cubes < rods. Bulk sulfites are also formed during SO 2 adsorption on reduced CeO 2 rods. The formation of surface sulfites and sulfates on CeO 2 cubes is in good agreement with our DFT results of SO 2 interactions with the CeO 2(100) surface. CeO 2 rods desorb SO2 at higher temperatures than cubes and octahedra nanocrystals, but bulk sulfates are formed on CeO 2 rods and cubes after high-temperature desorption whereas only some surface sulfates/sulfites are left on octahedra. This difference is rationalized by the fact that CeO 2 rods have the highest surface basicity and largest amount of defects among the three nanocrystals, so they bind and react with SO 2 strongly and are the most degraded after SO 2 adsorption cycles. The fundamental understanding obtained in this work on the effects of the surface structure and defects on the interaction of SO 2 with CeO 2 provides insights for the design of more sulfur-resistant CeO 2-based catalysts.« less
A model for the geomorphic development of normal-fault facets
NASA Astrophysics Data System (ADS)
Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.
2014-12-01
Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent with this prediction.
T2 mapping in patellar chondromalacia.
Ruiz Santiago, Fernando; Pozuelo Calvo, Rocío; Almansa López, Julio; Guzmán Álvarez, Luis; Castellano García, María Del Mar
2014-06-01
To study the correlation between the T2 relaxation times of the patellar cartilage and morphological MRI findings of chondromalacia. This prospective study comprises 50 patients, 27 men and 23 women suffering of anterior knee pain (mean age: 29.7, SD 8.3 years; range: 16-45 years). MRI of 97 knees were performed in these patients at 1.5T magnet including sagittal T1, coronal intermediate, axial intermediate fat sat and T2 mapping. Chondromalacia was assessed using a modified version of Noyes classification. The relaxation time, T2, was studied segmenting the full thickness of the patellar cartilage in 12 areas: 4 proximal (external facet-proximal-lateral (EPL), external facet-proximal-central (EPC), internal facet-proximal-central (IPC), internal facet-proximal-medial (IPM), 4 in the middle section (external facet-middle-lateral (EML), external facet-middle-central (EMC), internal facet-middle-central (IMC), internal facet-middle-medial (IMM) and 4 distal (external facet-distal-lateral (EDL), external facet-distal-central (EDC), internal facet-distal-central (IDC), internal facet-distal-medial (IDM). T2 values showed a significant increase in mild chondromalacia regarding normal cartilage in most of the cartilage areas (p<0.05), except in the internal distal facet (IDC and IDM), EPC, EDL, and IMM. Severe chondromalacia was characterized by a fall of T2 relaxation times with loss of statistical significant differences in comparison with normal cartilage, except in EMC and IMC, where similar values as mild chondromalacia were maintained (p<0.05). Steepest increase in T2 values of patellar cartilage occurs in early stages of patellar cartilage degeneration. Progression of morphologic changes of chondromalacia to more severe degrees is associated to a new drop of T2 relaxation times approaching basal values in most of the areas of the patellar cartilage, except in the central area of the middle section, where T2 values remain increased. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Masharawi, Youssef; Rothschild, Bruce; Salame, Khalil; Dar, Gali; Peleg, Smadar; Hershkovitz, Israel
2005-06-01
Thoracolumbar facet and interfacet linear dimensions were measured and analyzed. To characterize and analyze the thoracolumbar facet and interfacet size and shape in relation to gender, ethnic group, and age and to detect the extent of normal facet tropism along the thoracolumbar spine. Knowledge on facet tropism and interfacet shape is limited in the literature as most data are based on 2-dimensional measurements, small samples, or isolated vertebrae. Facet shape as represented by width, length, width/length ratio and interfacet distances was obtained directly from dry vertebrae of 240 adult human spines. The specimen's osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History, Cleveland, OH. A total of 4080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe 3-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and ANOVA. A significant correlation was found between all thoracolumbar facet dimensions and an individual's height and weight. Facet tropism is a major characteristic of the thoracolumbar spine, the left being longer in the thorax while the right is longer in the lumbar. In general, facet size is age-independent and greater in males compared with females with a significant ethnic component. Facet length is similar for all thoracic vertebrae, whereas it sharply and continuously increases in the lumbar vertebrae. Facet dimension manifests a bipolar distribution along the thoracolumbar vertebrae. Width/length ratio indicates that facets are longer than wider for most verte-brae. The interarticular area manifests a marked inverted trapezoidal shape at T1-T2, a rectangular shape at T3-L3, and an ordinary trapezoidal shape at L4-L5. Facet tropism is a normal characteristic in humans, yet it varies along the thoracolumbar spine.
Applications of Fluorogens with Rotor Structures in Solar Cells.
Ong, Kok-Haw; Liu, Bin
2017-05-29
Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.
NASA Technical Reports Server (NTRS)
Steinberg, J. L.; Caroubalos, C.
1976-01-01
The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.
Seiler, Gabriela S; Häni, Hansjürg; Busato, André R; Lang, Johann
2002-01-01
To evaluate the possible association between facet joint geometry and intervertebral disk degeneration in German Shepherd Dogs. 25 German Shepherd Dogs and 11 control dogs of similar body weight and condition. Facet joint angles in the caudal portion of the lumbar region of the vertebral column (L5-S1) were measured by use of computed tomography, and the intervertebral discs were evaluated microscopically. The relationship between facet joint geometry and disk degeneration was evaluated by use of statistical methods. German Shepherd Dogs had significantly more facet joint tropism than control dogs, but an association with disk degeneration was not found. However, German Shepherd Dogs had a different facet joint conformation, with more sagittally oriented facet joints at L5-L6 and L6-L7 and a larger angle difference between the lumbar and lumbosacral facet joints, compared with control dogs. A large difference between facet joint angles at L6-L7 and L7-S1 in German Shepherd Dogs may be associated with the frequent occurrence of lumbosacral disk degeneration in this breed.
[Does the French Big Five Inventory evaluate facets other than the Big Five factors?
Courtois, R; Petot, J-M; Lignier, B; Lecocq, G; Plaisant, O
2017-03-29
The Big Five Inventory (BFI) developed by John et al. (1991) is one of the most widely accepted tools for assessing dimensions of personality. It comprises 44 items that assess five broad dimensions of personality (the Big Five Factors): Extraversion, Agreeableness, Conscientiousness, Neuroticism and Openness to experience. Based on correlations with the facets described in the NEO Personality Inventory Revised (NEO PI-R), another Big Five assessment tool with 240 items and 6 facets per dimension, Soto and John (2009) showed that the dimensions in the BFI could be divided into two facets each (ten facets altogether). These results are in line with those of DeYoung et al. (2007), who ran factorial analyses with all the NEO PI-R facets and the International Personality Item Pool (IPIP) and identified ten intermediate factors (between facets and dimensions) which they called "aspects" (two per dimension). The goal of the present study is to investigate the ten facets described by Soto and John in a French sample, using the French version of the BFI (BFI-Fr), which has good psychometric properties, and to check whether the pattern of correlations of these facets with the NEO PI-R match those of the American version. We created three groups. The first comprised 360 students from the Institut libre d'éducation physique supérieure (ILEPS) and Tours University (psychology undergraduates). Participants (mean age 21.1 years±2.30; 58% women) completed the BFI-Fr and the NEO PI-R. The second comprised 142 psychology students from Tours University (mean age 20.6 years±1.78; 81% women); they completed the BFI-Fr twice, two weeks apart (test and retest). The third comprised 252 psychology students from Paris-Nanterre University (mean age 23 years±4.2; 89% women) who described a total of 405 people they knew well (mean age 35.2±10.8; 49% women) using the peer-report format of the BFI-Fr. In the self-report format, eight of Soto and John's ten aspects had acceptable internal consistency (based on Guildford's (1954) internal consistency criteria, due to the small number of items), with Cronbach's α between 0.60 and 0.86 and test-retest correlations between 0.71 and 0.89, showing satisfactory temporal stability. We found a single facet for Extraversion (Assertiveness), two for Agreeableness (Altruism and Compliance), two for Conscientiousness (Self-Discipline and Order), one for Neuroticism (Anxiety), and two for Openness to Experience (Openness to aesthetics and Openness to ideas). Based on their convergence with the corresponding facets in the NEO PI-R, these eight facets showed satisfactory external validity. With regard to the peer-report format, the Activity facet of Extraversion, which did not have sufficient internal consistency in the self-report format, had acceptable properties (i.e. 9 out of 10 facets). Only the Depression facet of Neuroticism still had insufficient internal consistency. In this study, we proposed an improvement of two facets (Activity and Compliance) and added one facet specific to the French version (Emotional Instability) in place of the Depression facet. We showed that the BFI-Fr can be used to assess nine of the ten facets described by Soto and John. We also identified an Emotional Instability facet, replacing the Depression facet of Neuroticism. DeYoung et al. (2007) considered that anxiety and depression are indissociable and can be represented by a Neuroticism aspect they labeled Withdrawal. They suggested a second aspect of this dimension they called Volatility (with the N2 Angry Hostility facet of the NEO PI-R as main marker and the N5 Impulsiveness and N3 Depression as secondary markers). The Emotional Instability facet we found corresponds closely to the N2 Angry Hostility facet of the NEO PI-R and appears to be a satisfactory marker of DeYoung et al.'s (2007) Volatility aspect. Although this study has limitations, particularly related to the samples (students), the BFI-Fr facets (derived from those defined by Soto and John in the BFI or proposed as improvements on the original facets) match the corresponding NEO PI-R facets and can also be seen as main markers of the aspects defined by DeYoung et al. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
The Psychological Reality of "Grammar" in the ESL Classroom.
ERIC Educational Resources Information Center
Brown, H. Douglas
Examing the relationship between linguistic functions and other complex mental and emotional processes such as intellect, conceptual behavior, personality differences, egocentricity, and other important facets of cognitive and affective behavior may lead to the description of "psychologically" real grammatical structures which relate directly to…
A Framework for Assessing Developmental Education Programs
ERIC Educational Resources Information Center
Goldwasser, Molly; Martin, Kimberly; Harris, Eugenia
2017-01-01
This paper presents a framework for educators, administrators, and researchers to assess distinct facets of developmental education programs. The researchers review the literature on best practices in developmental education with regards to program cost, program structure, and student placement procedures. This paper also identifies seven model…
ERIC Educational Resources Information Center
Dolby, James L.
1984-01-01
Suggests structure based on two sets of principles for deriving meaning from data: Shannon's measure of entropy, which provides means of measuring amount of information in message; and Ranganathan's faceted classification scheme, which provides means of determining number of meaningful data. Syntax, meaning, and semantics of data are discussed.…
Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis
Bu, Lingzheng; Guo, Shaojun; Zhang, Xu; ...
2016-06-29
Despite intense research in past decades, the lack of high-performance catalysts for fuel cell reactions remains a challenge in realizing fuel cell technologies for transportation applications. Here we report a facile strategy for synthesizing hierarchical platinum-cobalt nanowires with high-index, platinum-rich facets and ordered intermetallic structure. These structural features enable unprecedented performance for the oxygen reduction and alcohol oxidation reactions. The specific/mass activities of the platinum-cobalt nanowires for oxygen reduction reaction are 39.6/33.7 times higher than commercial Pt/C catalyst, respectively. Density functional theory simulations reveal that the active threefold hollow sites on the platinum-rich high-index facets provide an additional factor inmore » enhancing oxygen reduction reaction activities. The nanowires are stable in the electrochemical conditions and also thermally stable. Furthermore, this work may represent a key step towards scalable production of high performance platinum-based nanowires for applications in catalysis and energy conversion.« less
Liu, Huijun; Han, Xiuhua; Xiao, Qunying; Li, Shuzhuo; Feldman, M W
2015-01-01
Using data from a survey in Ankang district of Shaanxi province of China in 2011, this article examines the protective effect of the New Rural Social Pension (NRSP) on quality of life of rural elders, as well the moderating effect on association between family structure and quality of life. An instrumental variable approach is used. NRSP is shown to significantly improve the quality of life of rural elders, and a robustness check shows that this effect is consistent across different sets of subgroups. Compared with the elders who have at least one son, the quality of life of those who are childless or have only one child is significantly lower. The NRSP is more likely to significantly improve the quality of life of one-child elders. In addition, the associations between the NRSP and the different facets of quality of life of the elders are significant except for the facet of sensory abilities.
Modular reflector concept study
NASA Technical Reports Server (NTRS)
Vaughan, D. H.
1981-01-01
A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.
Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.
2015-01-01
The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance. PMID:26576477
Chi, Miaofang; Wang, Chao; Lei, Yinkai; ...
2015-11-18
The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt 3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt 3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation;more » nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. In conlcusion, this work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.« less
Liu, Huijun; Han, Xiuhua; Li, Shuzhuo; Feldman, Marcus W.
2017-01-01
Using data from a survey in Ankang district of Shaanxi province of China in 2011, this paper examines the protective effect of the NRSP on quality of life of the rural elderly, as well the moderating effect on association between family structure and quality of life. An instrumental variable approach is used. NRSP is shown to significantly improve the quality of life of rural elderly, and a robustness check shows that this effect is consistent across different sets of subgroups. Compared with the elderly who have at least one son, the quality of life of those who are childless or have only one child is significantly lower. The NRSP is more likely to significantly improve the quality of life of the one-child elderly. In addition, the associations between the NRSP and the different facets of quality of life of the elderly are significant except for the facet of sensory abilities. PMID:25356822
Organizing the Confusion Surrounding Workaholism: New Structure, Measure, and Validation
Shkoler, Or; Rabenu, Edna; Vasiliu, Cristinel; Sharoni, Gil; Tziner, Aharon
2017-01-01
Since “workaholism” was coined, a considerable body of research was conducted to shed light on its essence. After at least 40 years of studying this important phenomenon, a large variety of definitions, conceptualizations, and measures emerged. In order to try and bring more integration and consensus to this construct, the current research was conducted in two phases. We aimed to formulate a theoretical definitional framework for workaholism, capitalizing upon the Facet Theory Approach. Two basic facets were hypothesized: A. Modalities of workaholism, with three elements: cognitive, emotional, and instrumental; and B. Resources of workaholism with two elements: time and effort. Based on this definitional framework, a structured questionnaire was conceived. In the first phase, the new measure was validated with an Israeli sample comparing two statistical procedures; Factor Analysis (FA) and Smallest Space Analysis (SSA). In the second phase, we aimed to replicate the findings, and to contrast the newly-devised questionnaire with other extant workaholism measures, with a Romanian sample. Theoretical implications and future research suggestions are discussed. PMID:29097989
Near-field control and imaging of free charge carrier variations in GaN nanowires
NASA Astrophysics Data System (ADS)
Berweger, Samuel; Blanchard, Paul T.; Brubaker, Matt D.; Coakley, Kevin J.; Sanford, Norman A.; Wallis, Thomas M.; Bertness, Kris A.; Kabos, Pavel
2016-02-01
Despite their uniform crystallinity, the shape and faceting of semiconducting nanowires (NWs) can give rise to variations in structure and associated electronic properties. Here, we develop a hybrid scanning probe-based methodology to investigate local variations in electronic structure across individual n-doped GaN NWs integrated into a transistor device. We perform scanning microwave microscopy (SMM), which we combine with scanning gate microscopy to determine the free-carrier SMM signal contribution and image local charge carrier density variations. In particular, we find significant variations in free carriers across NWs, with a higher carrier density at the wire facets. By increasing the local carrier density through tip-gating, we find that the tip injects current into the NW with strongly localized current when positioned over the wire vertices. These results suggest that the strong variations in electronic properties observed within NWs have significant implications for device design and may lead to new paths to optimization.
Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.
Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo
2013-04-23
Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.
Liu, Yang; Gu, Xin; Qi, Wen; Zhu, Hong; Shan, Hao; Chen, Wenlong; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao; Wu, Jianbo
2017-04-12
Construction of a metal-semiconductor heterojunction is a promising method to improve heterogeneous photocatalysis for various reactions. Although the structure and photocatalytic performance of such a catalyst system have been extensively studied, few reports have demonstrated the effect of interface orientation at the metal-semiconductor junction on junction-barrier bending and the electronic transport properties. Here, we construct a Pt/PbS heterojunction, in which Pt nanoparticles are used as highly active catalysts and PbS nanocrystals (NCs) with well-controlled shapes are used as light-harvesting supports. Experimental results show that the photoelectrocatalytic activities of the Pt/PbS catalyst are strongly dependent on the contacting facets of PbS at the junction. Pt/octahedral PbS NCs with exposed PbS(111) facets show the highest photoinduced enhancement of hydrogen evolution reaction activity, which is ∼14.38 times higher than that of the ones with only PbS(100) facets (Pt/cubic PbS NCs). This enhancement can further be rationalized by the different energy barriers of the Pt/PbS Schottky junction due to the specific band structure and electron affinity, which is also confirmed by the calculations based on density functional theory. Therefore, controlling the contacting interfaces of a metal/semiconductor material may offer an effective approach to form the desired heterojunction for optimization of the catalytic performance.
Xu, W B; Chen, S; Fan, S W; Zhao, F D; Yu, X J; Hu, Z J
2016-08-10
Many studies have explored the relationship between facet tropism and facet joint osteoarthritis, disc degeneration and degenerative spondylolisthesis. However, the associations between facet orientation and tropism, and paraspinal muscles have not been studied. To analyze the associations between facet orientation and tropism, and parameters of paraspinal muscles in patients with chronic low back pain. Ninety-five patients with chronic low back pain were consecutively enrolled. Their facet joint angles were measured on computed tomography (CT) while gross cross-sectional area (GCSA), functional cross-sectional area (FCSA) and T2 signal intensity of lumbar paraspinal and psoas muscle were evaluated on magnetic resonance imaging (MRI). The GCSA and FCSA were significantly smaller for multifidus muscle (P< 0.001), but significantly larger for erector spinae and psoas muscles (P< 0.001), in coronally-orientated group than those in sagittally-orientated group. The differences of bilateral GCSA and FCSA of multifidus muscle were significantly larger in facet tropism group than those in no facet tropism group (P= 0.009 and P= 0.019). Muscular asymmetries may develop in the lumbar region of the spine, which are associated with facet asymmetry in patients with chronic low back pain. Longitudinal studies are needed to understand the causal relationship between facet orientation and tropism and muscular asymmetry in future.
NASA Astrophysics Data System (ADS)
Li, G.; Arnold, L.; Miao, B.; Yan, Y.
2011-12-01
G. Li (1,2), L. Arnold (1), B. Miao (3) and Y. Yan (4) (1) Department of Physics, University of Alabama in Huntsville Huntsville, AL, 35899 (2) CSPAR, University of Alabama in Huntsville Huntsville, AL, 35899 (3) School of Earth and Space Sciences, University of Science and Technology of CHINA, Hefei, China (4) Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012, China Current sheets is a common structure in the solar wind and is a significant source of solar wind MHD turbulence intermittency. The origin of these structure is presently unknown. Non-linear interactions of the solar wind MHD turbulence can spontaneously generate these structures. On the other hand, there are proposals that these structures may represent relic structures having solar origins. Using a technique developed in [1], we examine current sheets in the solar wind from multiple spacecraft. We identify the "single-peak" and "double-peak" events in the solar wind and discuss possible scenarios for these events and its implication of the origin of the current sheets. [1] Li, G., "Identify current-sheet-like structures in the solar wind", ApJL 672, L65, 2008.
Smooth and vertical facet formation for AlGaN-based deep-UV laser diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogart, Katherine Huderle Andersen; Shul, Randy John; Stevens, Jeffrey
2008-10-01
Using a two-step method of plasma and wet chemical etching, we demonstrate smooth, vertical facets for use in Al{sub x} Ga{sub 1-x} N-based deep-ultraviolet laser-diode heterostructures where x = 0 to 0.5. Optimization of plasma-etching conditions included increasing both temperature and radiofrequency (RF) power to achieve a facet angle of 5 deg from vertical. Subsequent etching in AZ400K developer was investigated to reduce the facet surface roughness and improve facet verticality. The resulting combined processes produced improved facet sidewalls with an average angle of 0.7 deg from vertical and less than 2-nm root-mean-square (RMS) roughness, yielding an estimated reflectivity greatermore » than 95% of that of a perfectly smooth and vertical facet.« less
NASA Astrophysics Data System (ADS)
Zhu, Jianxi; Xian, Haiyang; Lin, Xiaoju; Tang, Hongmei; Du, Runxiang; Yang, Yiping; Zhu, Runliang; Liang, Xiaoliang; Wei, Jingming; Teng, H. Henry; He, Hongping
2018-05-01
Pyrite oxidation not only is environmentally significant in the formation of acid mine (or acid rock) drainage and oxidative acidification of lacustrine sediment but also is a critical stage in geochemical sulfur evolution. The oxidation process is always controlled by the reactivity of pyrite, which in turn is controlled by its surface structure. In this study, the oxidation behavior of naturally existing {1 0 0}, {1 1 1}, and {2 1 0} facets of pyrite was investigated using a comprehensive approach combining X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, and time-of-flight secondary-ion mass spectrometry with periodic density functional theoretical (DFT) calculations. The experimental results show that (i) the initial oxidation rates of both pyrite {1 1 1} and {2 1 0} are much greater than that of pyrite {1 0 0}; (ii) the initial oxidation rate of pyrite {2 1 0} is greater than that of pyrite {1 1 1} in low relative humidity, which is reversed in high relative humidity; and (iii) inner sphere oxygen-bearing sulfur species are originally generated from surface reactions and then converted to outer sphere species. The facet dependent rate law can be expressed as: r{hkl} =k{hkl}haP0.5(t + 1) - 0.5 , where r{hkl} is the orientation dependent reaction rate, k{hkl} is the orientation dependent rate constant, h is the relative humidity, P is the oxygen partial pressure, and t is the oxidation time in seconds. {1 1 1} is the most sensitive facet for pyrite oxidation. Combined with DFT theoretical investigations, water catalyzed electron transfer is speculated as the rate-limiting step. These findings disclose the structure-reactivity dependence of pyrite, which not only presents new insight into the mechanism of pyrite oxidation but also provides fundamental data to evaluate sulfur speciation evolution, suggesting that the surface structure sensitivity should be considered to estimate the reactivity at the mineral-water interface.
ECO: A Framework for Entity Co-Occurrence Exploration with Faceted Navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halliday, K. D.
2010-08-20
Even as highly structured databases and semantic knowledge bases become more prevalent, a substantial amount of human knowledge is reported as written prose. Typical textual reports, such as news articles, contain information about entities (people, organizations, and locations) and their relationships. Automatically extracting such relationships from large text corpora is a key component of corporate and government knowledge bases. The primary goal of the ECO project is to develop a scalable framework for extracting and presenting these relationships for exploration using an easily navigable faceted user interface. ECO uses entity co-occurrence relationships to identify related entities. The system aggregates andmore » indexes information on each entity pair, allowing the user to rapidly discover and mine relational information.« less
MFV-class: a multi-faceted visualization tool of object classes.
Zhang, Zhi-meng; Pan, Yun-he; Zhuang, Yue-ting
2004-11-01
Classes are key software components in an object-oriented software system. In many industrial OO software systems, there are some classes that have complicated structure and relationships. So in the processes of software maintenance, testing, software reengineering, software reuse and software restructure, it is a challenge for software engineers to understand these classes thoroughly. This paper proposes a class comprehension model based on constructivist learning theory, and implements a software visualization tool (MFV-Class) to help in the comprehension of a class. The tool provides multiple views of class to uncover manifold facets of class contents. It enables visualizing three object-oriented metrics of classes to help users focus on the understanding process. A case study was conducted to evaluate our approach and the toolkit.
Fabrication of photonic crystal microprisms based on artificial opals
NASA Astrophysics Data System (ADS)
Fenollosa, Roberto; Ibisate, Marta; Rubio, Silvia; Lopez, Ceferino; Meseguer, Francisco; Sanchez-Dehesa, Jose
2002-04-01
This paper reports a new method for faceting artificial opals based on micromanipulation techniques. By this means it was possible to fabricate an opal prism in a single domain with different faces: (111), (110) and (100), which were characterized by Scanning Electron Microscopy and Optical Reflectance Spectroscopy. Their spectra exhibit different characteristics depending on the orientation of the facet. While (111)-oriented face gives rise to a high Bragg reflection peak at about a/(lambda) equals 0.66 (where a is the lattice parameter), (110) and (100) faces show much less intense peaks corresponding to features in the band structure at a/(lambda) equals 1.12 and a/(lambda) equals 1.07 respectively. Peaks at higher energies have less obvious explanation.
Mõttus, René; Realo, Anu; Allik, Jüri; Esko, Tõnu; Metspalu, Andres; Johnson, Wendy
2015-01-01
The study investigated differences in the Five-Factor Model (FFM) domains and facets across adulthood. The main questions were whether personality scales reflected coherent units of trait development and thereby coherent personality traits more generally. These questions were addressed by testing if the components of the trait scales (items for facet scales and facets for domain scales) showed consistent age group differences. For this, measurement invariance (MI) framework was used. In a sample of 2,711 Estonians who had completed the NEO Personality Inventory 3 (NEO PI-3), more than half of the facet scales and one domain scale did not meet the criterion for weak MI (factor loading equality) across 12 age groups spanning ages from 18 to 91 years. Furthermore, none of the facet and domain scales met the criterion for strong MI (intercept equality), suggesting that items of the same facets and facets of the same domains varied in age group differences. When items were residualized for their respective facets, 46% of them had significant (p < 0.0002) residual age-correlations. When facets were residualized for their domain scores, a majority had significant (p < 0.002) residual age-correlations. For each domain, a series of latent factors were specified using random quarters of their items: scores of such latent factors varied notably (within domains) in correlations with age. We argue that manifestations of aetiologically coherent traits should show similar age group differences. Given this, the FFM domains and facets as embodied in the NEO PI-3 do not reflect aetiologically coherent traits.
Mõttus, René; Realo, Anu; Allik, Jüri; Esko, Tõnu; Metspalu, Andres; Johnson, Wendy
2015-01-01
The study investigated differences in the Five-Factor Model (FFM) domains and facets across adulthood. The main questions were whether personality scales reflected coherent units of trait development and thereby coherent personality traits more generally. These questions were addressed by testing if the components of the trait scales (items for facet scales and facets for domain scales) showed consistent age group differences. For this, measurement invariance (MI) framework was used. In a sample of 2,711 Estonians who had completed the NEO Personality Inventory 3 (NEO PI-3), more than half of the facet scales and one domain scale did not meet the criterion for weak MI (factor loading equality) across 12 age groups spanning ages from 18 to 91 years. Furthermore, none of the facet and domain scales met the criterion for strong MI (intercept equality), suggesting that items of the same facets and facets of the same domains varied in age group differences. When items were residualized for their respective facets, 46% of them had significant (p < 0.0002) residual age-correlations. When facets were residualized for their domain scores, a majority had significant (p < 0.002) residual age-correlations. For each domain, a series of latent factors were specified using random quarters of their items: scores of such latent factors varied notably (within domains) in correlations with age. We argue that manifestations of aetiologically coherent traits should show similar age group differences. Given this, the FFM domains and facets as embodied in the NEO PI-3 do not reflect aetiologically coherent traits. PMID:25751273
Lumbar facet anatomy changes in spondylolysis: a comparative skeletal study.
Masharawi, Youssef; Dar, Gali; Peleg, Smadar; Steinberg, Nili; Alperovitch-Najenson, Dvora; Salame, Khalil; Hershkovitz, Israel
2007-07-01
Opinions differ as to the exact mechanism responsible for spondylolysis (SP) and whether individuals with specific morphological characteristics of the lumbar vertebral neural arch are predisposed to SP. The aim of our study was to reveal the association between SP and the architecture of lumbar articular facets and the inter-facet region. Using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA, USA), length, width and depth of all articular facets and all inter-facet distances in the lumbar spine (L1-L5) were measured. From the Hamann-Todd Human Osteological Collection (Cleveland Museum of Natural History, OH, USA) 120 normal male skeletons with lumbar spines in the control group and 115 with bilateral SP at L5 were selected. Analysis of variance was employed to examine the differences between spondylolytic and normal spines. Three profound differences between SP and the norm appeared: (1) in individuals with SP, the size and shape of L4's neural arch had significantly greater inter-facet widths, significantly shorter inter-facet heights and significantly shorter and narrower articular facets; (2) only in the L4 vertebra in individuals with SP was the inferior inter-facet width greater in size than the superior inter-facet width of the vertebra below (L5) (38.7 mm versus 40 mm); (3) in all lumbar vertebrae, the right inferior articular facets in individuals with SP were flatter compared to the control group. Individuals with L4 "SP" characteristics are at a greater risk of developing fatigue fractures in the form of spondylolysis at L5.
Li, Guiying; Nie, Xin; Chen, Jiangyao; Wong, Po Keung; An, Taicheng; Yamashita, Hiromi; Zhao, Huijun
2016-09-15
Biohazards and coexisted antibiotics are two groups of emerging contaminants presented in various aquatic environments. They can pose serious threat to the ecosystem and human health. As a result, inactivation of biohazards, degradation of antibiotics, and simultaneous removal of them are highly desired. In this work, a novel photoanode with a hierarchical structured {001} facets exposed nano-size single crystals (NSC) TiO2 top layer and a perpendicularly aligned TiO2 nanotube array (NTA) bottom layer (NSC/NTA) was successfully fabricated. The morphology and facets of anatase TiO2 nanoparticles covered on the top of NTA layer could be controlled by adjusting precalcination temperature and heating rate as the pure NTA was clamped with glasses. Appropriate recalcination can timely remove surface F from {001} facets, and the photocatalytic activity of the resultant photoanode was subsequently activated. NSC/NTA photoanode fabricated under 500 °C precalcination with 20 °C min(-1) followed by 550 °C recalcination possessed highest photoelectrocatalytic efficiency to simultaneously remove bacteria and antibiotics. Results suggest that two-step calcination is necessary for fabrication of high photocatalytic activity NSC/NTA photoanode. The capability of simultaneous eradication of bacteria and antibiotics shows great potential for development of a versatile approach to effectively purify various wastewaters contaminated with complex pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang
2015-03-01
Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.
Self-assembled InN quantum dots on side facets of GaN nanowires
NASA Astrophysics Data System (ADS)
Bi, Zhaoxia; Ek, Martin; Stankevic, Tomas; Colvin, Jovana; Hjort, Martin; Lindgren, David; Lenrick, Filip; Johansson, Jonas; Wallenberg, L. Reine; Timm, Rainer; Feidenhans'l, Robert; Mikkelsen, Anders; Borgström, Magnus T.; Gustafsson, Anders; Ohlsson, B. Jonas; Monemar, Bo; Samuelson, Lars
2018-04-01
Self-assembled, atomic diffusion controlled growth of InN quantum dots was realized on the side facets of dislocation-free and c-oriented GaN nanowires having a hexagonal cross-section. The nanowires were synthesized by selective area metal organic vapor phase epitaxy. A 3 Å thick InN wetting layer was observed after growth, on top of which the InN quantum dots formed, indicating self-assembly in the Stranski-Krastanow growth mode. We found that the InN quantum dots can be tuned to nucleate either preferentially at the edges between GaN nanowire side facets, or directly on the side facets by tuning the adatom migration by controlling the precursor supersaturation and growth temperature. Structural characterization by transmission electron microscopy and reciprocal space mapping show that the InN quantum dots are close to be fully relaxed (residual strain below 1%) and that the c-planes of the InN quantum dots are tilted with respect to the GaN core. The strain relaxes mainly by the formation of misfit dislocations, observed with a periodicity of 3.2 nm at the InN and GaN hetero-interface. The misfit dislocations introduce I1 type stacking faults (…ABABCBC…) in the InN quantum dots. Photoluminescence investigations of the InN quantum dots show that the emissions shift to higher energy with reduced quantum dot size, which we attribute to increased quantum confinement.
Lumbar Facet Tropism: A Comprehensive Review.
Alonso, Fernando; Kirkpatrick, Christina M; Jeong, William; Fisahn, Christian; Usman, Sameera; Rustagi, Tarush; Loukas, Marios; Chapman, Jens R; Oskouian, Rod J; Tubbs, R Shane
2017-06-01
Scattered reports exist in the medical literature regarding facet tropism. However, this finding has had mixed conclusions regarding its origin and impact on the normal spine. We performed a literature review of the anatomy, embryology, biomechanics, and pathology related to lumbar facet tropism. Facet tropism is most commonly found at L4-L5 vertebral segments and there is some evidence that this condition may lead to facet degenerative spondylolisthesis, intervertebral disc disease, and other degenerative conditions. Long-term analyses of patients are necessary to elucidate relationships between associated findings and facet tropism. In addition, a universally agreed definition that is more precise should be developed for future investigative studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of ZnO facet on ethanol steam reforming over Co/ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ning; Zhang, He; Davidson, Stephen D.
2016-01-01
The effects of ZnO facets on ethanol steam reforming (ESR) were investigated over Co/ZnO catalysts synthesized using ZnO with different fractions of (10-10) non-polar facet. Co supported on ZnO with a higher fraction of (10-10) non-polar facet shows higher C-C cleavage activity and higher selectivity to CO2 (lower selectivity to CO) compared with Co supported on ZnO with less (10-10) non-polar facet exposed. The improved ethanol steam reforming performances are attributed to the high fraction of metallic Co stabilized by the ZnO (10-10) non-polar facet, which enhanced C-C cleavage and water-gas-shift (WGS) activities.
Autonomous Infrastructure for Observatory Operations
NASA Astrophysics Data System (ADS)
Seaman, R.
This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?
Development of a Conceptual Structure for Architectural Solar Energy Systems.
ERIC Educational Resources Information Center
Ringel, Robert F.
Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…
Formulation and Application of the Generalized Multilevel Facets Model
ERIC Educational Resources Information Center
Wang, Wen-Chung; Liu, Chih-Yu
2007-01-01
In this study, the authors develop a generalized multilevel facets model, which is not only a multilevel and two-parameter generalization of the facets model, but also a multilevel and facet generalization of the generalized partial credit model. Because the new model is formulated within a framework of nonlinear mixed models, no efforts are…
ERIC Educational Resources Information Center
Beehr, Terry A.; Newman, John E.
1978-01-01
The empirical research on job stress and employee health is reviewed within the context of six facets (environmental, personal, process, human consequences, organizational consequences, and time) of a seven facet conceptualization of the job stress-employee health research domain. Models are proposed for tying the facets together. (Author/SJL)
NASA Astrophysics Data System (ADS)
De Hoyos, Diane N.
The global demand for electric energy has continuously increased over the last few decades. Some mature, alternative generation methods are wind, power, photovoltaic panels, biogas and fuel cells. In order to find alternative sources of energy to aid in the reduction of our nation's dependency on non-renewable fuels, energy sources include the use of solar energy panels. The intent of these initiatives is to provide substantial energy savings and reduce dependence on the electrical grid and net metering savings during the peak energy-use hours. The focus of this study explores and provides a clearer picture of the adoption of solar photovoltaic technology in institutions of higher education. It examines the impact of different variables associated with a photovoltaic installation in an institutions of higher education in the United States on the production generations for universities. Secondary data was used with permission from the Advancement of Suitability in Higher Education (AASHE). A multiple regression analysis was performed to determine the impact of different variables on the energy generation production. A Meta Data transformation analysis offered a deeper investigation into the impact of the variables on the photovoltaic installations. Although a review of a significant number of journal articles, dissertations and thesis in the area of photovoltaic solar installations are available, there were limited studies of actual institutions of higher education with the significant volume of institutions. However a study where the database included a significant number of data variables is unique and provides a researcher the opportunity to investigate different facets of a solar installation. The data of the installations ranges from 1993-2015. Included in this observation are the researcher's experience both in the procurement industry and as a team member of a solar institution of higher education in the southern portion of the United States.
O’Brien, Christopher J.; Medlin, Douglas L.; Foiles, Stephen M.
2016-03-30
Here, grain boundary-engineered materials are of immense interest for their corrosion resistance, fracture resistance and microstructural stability. This work contributes to a larger goal of understanding both the structure and thermodynamic properties of grain boundaries vicinal (within ±30°) to the Σ3(1 1 1) <1 1¯0> (coherent twin) boundary which is found in grain boundary-engineered materials. The misoriented boundaries vicinal to the twin show structural changes at elevated temperatures. In the case of nickel, this transition temperature is substantially below the melting point and at temperatures commonly reached during processing, making the existence of such boundaries very likely in applications. Thus,more » the thermodynamic stability of such features is thoroughly investigated in order to predict and fully understand the structure of boundaries vicinal to twins. Low misorientation angle grain boundaries (|θ| ≲ 16°) show distinct ±1/3(1 1 1) disconnections which accommodate misorientation in opposite senses. The two types of disconnection have differing low-temperature structures which show different temperature-dependent behaviours with one type undergoing a structural transition at approximately 600 K. At misorientation angles greater than approximately ±16°, the discrete disconnection nature is lost as the disconnections merge into one another. Free energy calculations demonstrate that these high-angle boundaries, which exhibit a transition from a planar to a faceted structure, are thermodynamically more stable in the faceted configuration.« less
Tan, Chih-Shan; Huang, Michael H
2017-09-04
Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stelzeneder, David; Messner, Alina; Vlychou, Marianna; Welsch, Goetz H; Scheurecker, Georg; Goed, Sabine; Pieber, Karin; Pflueger, Verena; Friedrich, Klaus M; Trattnig, Siegfried
2011-11-01
To assess the feasibility of T2 mapping of lumbar facet joints and intervertebral discs in a single imaging slab and to compare the findings with morphological grading. Sixty lumbar spine segments from 10 low back pain patients and 5 healthy volunteers were examined by axial T2 mapping and morphological MRI at 3.0 Tesla. Regions of interest were drawn on a single slice for the facet joints and the intervertebral discs (nucleus pulposus, anterior and posterior annulus fibrosus). The Weishaupt grading was used for facet joints and the Pfirrmann score was used for morphological disc grading ("normal" vs. "abnormal" discs). The inter-rater agreement was excellent for the facet joint T2 evaluation (r = 0.85), but poor for the morphological Weishaupt grading (kappa = 0.15). The preliminary results show similar facet joint T2 values in segments with normal and abnormal Pfirrmann scores. There was no difference in mean T2 values between facet joints in different Weishaupt grading groups. Facet joint T2 values showed a weak correlation with T2 values of the posterior annulus (r = 0.32) This study demonstrates the feasibility of a combined T2 mapping approach for the facet joints and intervertebral discs using a single axial slab.
Proximal attrition facets: morphometric, demographic, and aging characteristics.
Sarig, Rachel; Hershkovitz, Israel; Shvalb, Nir; Sella-Tunis, Tatiana; May, Hila; Vardimon, Alexander D
2014-08-01
Although interproximal attrition is considered to be limited in modern populations, it has important clinical implications. However, in contrast to occlusal attrition, proximal attrition receives limited scientific attention. The main purpose of the current study was to fill this void. Seven-hundred and sixty-five teeth were collected from 255 skulls of subjects 18-75 yr of age. For each individual, three mandibular teeth (the first and second premolars and the first molar) were examined for proximal attrition facets (PAFs). The results provide detailed information on the size, shape, and location of the facets according to age cohort, gender, and ethnicity. The validity of the method used to measure the facets was also examined. The major findings were as follows: PAFs are usually located on the upper half of the crown proximal aspect; in each tooth, the mesial facet is more lingually positioned and the distal facet is more buccally positioned; the majority of the facets are subrectangular in shape; the size of the facets tends to increase in an anteroposterior direction (from premolars to molars); and facet size and location are age- and sex-dependent and ethnicity-independent. It is our recommendation that dentists bear in mind that interproximal attrition is a dynamic, long-term process and needs to be considered in many clinical scenarios. © 2014 Eur J Oral Sci.
ERIC Educational Resources Information Center
Albro, Elizabeth; Williams, Joanna P.; Wijekumar, Kausalai; Meyer, Bonnie J. F.; Harris, Karen R.
2015-01-01
Content area reading comprehension and writing have been a challenge for children in the U.S. schools for many years as evidenced by state and national assessments. One promising solution to the problem is text structure based instruction that promotes strategic selection, encoding, retrieval, and use of information for myriads of activities…
Light-induced charge separation across bio-inorganic interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, N. M.; Rajh, T.; De La Garza, L.
Rational design of hybrid biomolecule - nanoparticulate semiconductor conjugates enables coupling of functionality of biomolecules with the capability of semiconductors for solar energy capture, that can have potential application in energy conversion, sensing and catalysis. The particular challenge is to obtain efficient charge separation analogous to the natural photosynthesis process. The synthesis of axially anisotropic TiO{sub 2} nano-objects such as tubes, rods and bricks, as well as spherical and faceted nanoparticles has been developed in our laboratory. Depending on their size and shape, these nanostructures exhibit different domains of crystallinity, surface areas and aspect ratios. Moreover, in order to accommodatemore » for high curvature in nanoscale regime, the surfaces of TiO{sub 2} nano-objects reconstructs resulting in changes in the coordination of surface Ti atoms from octahedral (D{sub 2d}) to square pyramidal structures (C{sub 4v}). The formation of these coordinatively unsaturated Ti atoms, thus depends strongly on the size and shape of nanocrystallites and affects trapping and reactivity of photogenerated charges. We have exploited these coordinatively unsaturated Ti atoms to coupe electron-donating (such as dopamine) and electron-accepting (pyrroloquinoline quinone) conductive linkers that allow wiring of biomolecules and proteins resulting in enhanced charge separation which increases the yield of ensuing chemical transformations.« less
The structure of the inner heliosphere from Pioneer Venus and IMP observations
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1992-01-01
The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.
NASA Astrophysics Data System (ADS)
Nevius, Meredith; Wang, F.; Palacio, I.; Celis, A.; Tejeda, A.; Taleb-Ibrahimi, A.; de Heer, W.; Berger, C.; Conrad, E.
2014-03-01
Graphene grown on sidewalls of trenches etched in SiC shows particular promise as a candidate for post-Si CMOS electronics because of its ballistic transport, exceptional mobilities, low intrinsic doping, and the opening of a large band gap. However, before definitive progress can be made toward epitaxial graphene-based transistors, we must fully understand the nuances of graphene ribbon growth on different SiC facets. We have now confirmed that sidewall ribbons grown in graphene's two primary crystallographic directions (``armchair'' and ``zigzag'') differ greatly in both structure and electronic band-structure. We present data from both geometries obtained using low-energy electron microscopy (LEEM), low-energy electron diffraction (LEED), angle-resolved photoemission spectroscopy (ARPES), photoemission electron microscopy (PEEM), micro-ARPES and dark-field micro-ARPES. We demonstrate that while graphene grows on stable facets of trenches oriented for armchair edge growth, trenches oriented for zigzag edge growth prefer narrow ribbons of graphene on the (0001) surface near the trench edge. The structure of these zigzag edge graphene ribbons is complex and paramount to understanding their transport. This work was supported by the NSF under grants DMR-1005880 and DMR-0820382, the W. M. Keck Foundation and the Partner University Fund from the Embassy of France
Tran, Ulrich S; Cebolla, Ausiàs; Glück, Tobias M; Soler, Joaquim; Garcia-Campayo, Javier; von Moy, Theresa
2014-01-01
To investigate the psychometric and structural properties of the Five Facets Mindfulness Questionnaire (FFMQ) among meditators, to develop a short form, and to examine associations of mindfulness with mental health and the mechanisms of mindfulness. Two independent samples were used, a German (n = 891) and a Spanish (n = 393) meditator sample, practicing various meditation styles. Structural and psychometric properties of the FFMQ were investigated with multigroup confirmatory factor analysis and exploratory structural equation modeling. Associations with mental health and mechanisms of mindfulness were examined with path analysis. The derived short form broadly matched a previous item selection in samples of non-meditators. Self-regulated Attention and Orientation to Experience governed the facets of mindfulness on a higher-order level. Higher-order factors of mindfulness and meditation experience were negatively associated with symptoms of depression and anxiety, and perceived stress. Decentering and nonattachment were the most salient mechanisms of mindfulness. Aspects of emotion regulation, bodily awareness, and nonattachment explained the effects of mindfulness on depression and anxiety. A two-component conceptualization for the FFMQ, and for the study of mindfulness as a psychological construct, is recommended for future research. Mechanisms of mindfulness need to be examined in intervention studies.
FACETS: multi-faceted functional decomposition of protein interaction networks
Seah, Boon-Siew; Bhowmick, Sourav S.; Forbes Dewey, C.
2012-01-01
Motivation: The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein–protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. Results: We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Contact: seah0097@ntu.edu.sg or assourav@ntu.edu.sg Supplementary information: Supplementary data are available at the Bioinformatics online. Availability: Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/∼assourav/Facets/ PMID:22908217
Albayrak, Akif; Ozkul, Baris; Balioglu, Mehmet Bulent; Atici, Yunus; Gultekin, Muhammet Zeki; Albayrak, Merih Dilan
2016-01-01
Retrospective cohort study. Facet joints are considered a common source of chronic low-back pain. To determine whether pathogens related to the facet joint arthritis have any effect on treatment failure. Facet joint injection was applied to 94 patients treated at our hospital between 2011 and 2012 (mean age 59.5 years; 80 women and 14 men). For the purpose of analysis, the patients were divided into two groups. Patients who only had facet hypertrophy were placed in group A (47 patients, 41 women and 6 men, mean age 55.3 years) and patients who had any additional major pathology to facet hypertrophy were placed in group B (47 patients, 39 women and 8 men, mean age 58.9 years). Injections were applied around the facet joint under surgical conditions utilizing fluoroscopy device guidance. A mixture of methylprednisolone and lidocaine was used as the injection ingredient. In terms of Oswestry Disability Index (ODI) and visual analog scale (VAS) scores, no significant difference was found between preinjection and immediate postinjection values in both groups, and the scores of group A patients were significantly lower (P < 0.005) compared with that of group B patients at the end of the third, sixth, and twelfth month. For low-back pain caused by facet hypertrophy, steroid injection around the facet joint is an effective treatment, but if there is an existing major pathology, it is not as effective.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Washimi, H.
1999-06-01
The global structure of the solar wind/very local interstellar medium interaction is studied from a fully three-dimensional time-dependent magnetohydrodynamic model, in which the solar wind speed increases from 400 to 800 km/s in going from the ecliptic to pole and the heliolatitude of the low-high-speed boundary changes from 30° to 80° in going from the solar minimum to solar maximum. In addition, the interplanetary magnetic field (IMF) changes its polarity at the solar maximum. As a whole, the shapes of the terminal shock (TS) and heliopause (HP) are elongated along the solar polar axis owing to a high solar wind ram pressure over the poles. In the ecliptic plane, the heliospheric structure changes little throughout a solar cycle. The TS in this plane shows a characteristic bullet-shaped structure. In the polar plane, on the other hand, the shape of the TS exhibits many specific structures according to the stage of the solar cycle. These structures include the polygonal configuration of the polar TS seen around the solar minimum, the mesa- and terrace-shaped TSs in the high- and low-speed solar wind regions seen around the ascending phase, and the chimney-shaped TS in the high-speed solar wind region seen around the solar maximum. These structures are formed from different combinations of right-angle shock, oblique shock, and steep oblique shock so as to transport the heliosheath plasma most efficiently toward the heliotail (HT). In the HT, the hot and weakly-magnetized plasma from the high-heliolatitude TS invades as far as the ecliptic plane. A weakly time-dependent recirculation flow in the HT is a manifestation of invading flow. Distributions of magnetic field in the HT, which are a pile-up of the compressed MF over several solar cycles, are modified by the flow from high-heliolatitude.
Cervical facet oedema: prevalence, correlation to symptoms, and follow-up imaging.
Nevalainen, M T; Foran, P J; Roedl, J B; Zoga, A C; Morrison, W B
2016-06-01
To evaluate the prevalence of cervical facet oedema in patients referred for magnetic resonance imaging (MRI) to investigate neck pain and/or radiculopathy, and to investigate whether there is a correlation between the presence of oedema and patients' symptoms. A retrospective report review of 1885 patients undergoing cervical spine MRI between July 2008 and June 2015 was performed. Exclusion criteria included acute trauma, surgery, neoplastic disease, or infection in the cervical spine. One hundred and seventy-three MRI studies with cervical facet oedema were evaluated by each of the two radiologists. In these patients, the grade of bone marrow oedema (BMO) and corresponding neuroforaminal narrowing at the cervical facets was assessed. Correlation with symptoms was performed based on pre-MRI questionnaire. The prevalence of cervical facet oedema was 9%; the most commonly affected levels were C3-4, C4-5, and C2-3. A total of 202 cervical facets were evaluated: mild BMO was seen in 35%, moderate in 41%, and severe in 24% of cases. Surrounding soft-tissue oedema was observed in 36%, 69%, and 92% of the BMO grades, respectively. The correlations between unilateral radiculopathy and ipsilateral facet BMO grades were 79%, 83%, and 73% (chi-square, p<0.001), respectively. Furthermore, neuroforaminal narrowing on the corresponding level was found in 35%, 38%, and 11% of cases, respectively. At follow-up imaging, facet oedema was most likely to remain unchanged or to decrease. The prevalence of cervical facet oedema is 9%. Cervical facet oedema is associated with ipsilateral radiculopathy. Neuroforaminal narrowing, however, is not associated with facet oedema. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Lumbar facet anatomy changes in spondylolysis: a comparative skeletal study
Dar, Gali; Peleg, Smadar; Steinberg, Nili; Alperovitch-Najenson, Dvora; Salame, Khalil; Hershkovitz, Israel
2007-01-01
Opinions differ as to the exact mechanism responsible for spondylolysis (SP) and whether individuals with specific morphological characteristics of the lumbar vertebral neural arch are predisposed to SP. The aim of our study was to reveal the association between SP and the architecture of lumbar articular facets and the inter-facet region. Methods: Using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA, USA), length, width and depth of all articular facets and all inter-facet distances in the lumbar spine (L1–L5) were measured. From the Hamann-Todd Human Osteological Collection (Cleveland Museum of Natural History, OH, USA) 120 normal male skeletons with lumbar spines in the control group and 115 with bilateral SP at L5 were selected. Analysis of variance was employed to examine the differences between spondylolytic and normal spines. Results: Three profound differences between SP and the norm appeared: (1) in individuals with SP, the size and shape of L4’s neural arch had significantly greater inter-facet widths, significantly shorter inter-facet heights and significantly shorter and narrower articular facets; (2) only in the L4 vertebra in individuals with SP was the inferior inter-facet width greater in size than the superior inter-facet width of the vertebra below (L5) (38.7 mm versus 40 mm); (3) in all lumbar vertebrae, the right inferior articular facets in individuals with SP were flatter compared to the control group. Conclusions: Individuals with L4 “SP” characteristics are at a greater risk of developing fatigue fractures in the form of spondylolysis at L5. PMID:17440753
Facet joint disturbance induced by miniscrews in plated cervical laminoplasty
Chen, Hua; Li, Huibo; Wang, Beiyu; Li, Tao; Gong, Quan; Song, Yueming; Liu, Hao
2016-01-01
Abstract A retrospective cohort study. Plated cervical laminoplasty is an increasingly common technique. A unique facet joint disturbance induced by lateral mass miniscrews penetrating articular surface was noticed. Facet joints are important to maintain cervical spine stability and kinetic balance. Whether this facet joint disturbance could affect clinical and radiologic results is still unknown. The objective of this study is to investigate the clinical and radiologic outcomes of patients with facet joints disturbance induced by miniscrews in plated cervical laminoplasty. A total of 105 patients who underwent cervical laminoplasty with miniplate fixation between May 2010 and February 2014 were comprised. Postoperative CT images were used to identify whether facet joints destroyed by miniscrews. According to facet joints destroyed number, all the patients were divided into: group A (none facet joint destroyed), group B (1–2 facet joints destroyed), and group C (≥3 facet joints destroyed). Clinical data (JOA, VAS, and NDI scores), radiologic data (anteroposterior diameter and Palov ratio), and complications (axial symptoms and C5 palsy) were evaluated and compared among the groups. There were 38, 40, and 27 patients in group A, B, and C, respectively. The overall facet joints destroyed rate was 30.7%. All groups gained significant JOA and NDI scores improvement postoperatively. The preoperative JOA, VAS, NDI scores, and postoperative JOA scores did not differ significantly among the groups. The group C recorded significant higher postoperative VAS scores than group A (P = 0.002) and B (P = 0.014) and had significant higher postoperative NDI scores than group A (P = 0.002). The pre- and postoperative radiologic data were not significant different among the groups. The group C had a significant higher axial symptoms incidence than group A (12/27 vs 8/38, P = 0.041). Facet joints disturbance caused by miniscrews in plated cervical laminoplasty may not influence neurological recovery and spinal canal expansion, but may negatively affect postoperative axial symptoms. PMID:27661016
Oxidation of CO by NO on planar and faceted Ir(210)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wenhua; Bartynski, Robert A.; Kaghazchi, Payam
2012-06-11
Oxidation of CO by pre-adsorbed NO has been studied on planar Ir(210) and nanofaceted Ir(210) with average facet sizes of 5 nm and 14 nm by temperature programmed desorption (TPD). Both surfaces favor oxidation of CO to CO 2, which is accompanied by simultaneous reduction of NO with high selectivity to N 2. At low NO pre-coverage, the temperature (T i) for the onset of CO 2 desorption as well as CO 2 desorption peak temperature (T p) decreases with increasing CO exposure, and NO dissociation is affected by co-adsorbed CO. At high NO pre-coverage, T i and T pmore » are independent of CO exposure, and co-adsorbed CO has no influence on dissociation of NO. Moreover, at low NO pre-coverage, planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO 2: T i and T p are much lower on planar Ir(210) than that on faceted Ir(210). In addition, faceted Ir(210) with an average facet size of 5 nm is more active for oxidation of CO to CO 2 than faceted Ir(210) with an average facet size of 14 nm, i.e., oxidation of CO by pre-adsorbed NO on faceted Ir(210) exhibits size effects on the nanometer scale. In comparison, at low O pre-coverage planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO 2 but no evidence has been found for size effects in oxidation of CO by pre-adsorbed oxygen on faceted Ir(210) for average facet sizes of 5 nm and 14 nm. The TPD data indicate the same reaction pathway for CO 2 formation from CO + NO and CO + O reactions on planar Ir(210). Lastly, the adsorption sites of CO, NO, O, CO + O, and CO + NO on Ir are characterized by density functional theory.« less
Evolving faceted surfaces: From continuum modeling, to geometric simulation, to mean-field theory
NASA Astrophysics Data System (ADS)
Norris, Scott A.
We first consider the directional solidification, in two dimensions, of a dilute binary alloy having a large anisotropy of surface energy, where the sample is pulled in a high-energy direction such that the planar state is thermodynamically prohibited. Analyses including reduction of dynamics, matched asymptotic analysis, and energy minimization are used to show that the interface assumes a faceted profile with small wavelength. Questions on stability and other dynamic behavior lead to the derivation of a facet-velocity law. This shows the that faceted steady solutions are stable in the absence of constitutional supercooling, while in its presence, coarsening replaces cell formation as the mechanism of instability. We next proceed to introduce a computational-geometry tool which, given a facet-velocity law, performs large-scale simulations of fully-faceted coarsening surfaces, first in the special case with only three allowed facet orientations (threefold symmetry), and then for arbitrary surfaces. Topological events including coarsening are comprehensively considered, and are treated explicitly by our method using both a priori knowledge of event outcomes and a novel graph-rewriting algorithm. While careful attention must be paid to both non-unique topological events and the imposition of a discrete time-stepping scheme, the resulting method allows rapid simulation of large surfaces and easy extraction of statistical data. Example statistics are provided for the threefold case based on simulations totaling one million facets. Finally, a mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the LSW theory of Ostwald ripening in two-phase systems, but the mechanism of coarsening in faceted surfaces requires the derivation of additional terms to model the coalescence of facets. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a generic framework for the investigation of faceted surfaces evolving under arbitrary dynamics.
Oberkircher, Ludwig; Born, Sebastian; Struewer, Johannes; Bliemel, Christopher; Buecking, Benjamin; Wack, Christina; Bergmann, Martin; Ruchholtz, Steffen; Krüger, Antonio
2014-10-01
Injuries of the subaxial cervical spine including facet joints and posterior ligaments are common. Potential surgical treatments consist of anterior, posterior, or anterior-posterior fixation. Because each approach has its advantages and disadvantages, the best treatment is debated. This biomechanical cadaver study compared the effect of different facet joint injuries on primary stability following anterior plate fixation. Fractures and plate fixation were performed on 15 fresh-frozen intact cervical spines (C3-T1). To simulate a translation-rotation injury in all groups, complete ligament rupture and facet dislocation were simulated by dissecting the entire posterior and anterior ligament complex between C-4 and C-5. In the first group, the facet joints were left intact. In the second group, one facet joint between C-4 and C-5 was removed and the other side was left intact. In the third group, both facet joints between C-4 and C-5 were removed. The authors next performed single-level anterior discectomy and interbody grafting using bone material from the respective thoracic vertebral bodies. An anterior cervical locking plate was used for fixation. Continuous loading was performed using a servohydraulic test bench at 2 N/sec. The mean load failure was measured when the implant failed. In the group in which both facet joints were intact, the mean load failure was 174.6 ± 46.93 N. The mean load failure in the second group where only one facet joint was removed was 127.8 ± 22.83 N. In the group in which both facet joints were removed, the mean load failure was 73.42 ± 32.51 N. There was a significant difference between the first group (both facet joints intact) and the third group (both facet joints removed) (p < 0.05, Kruskal-Wallis test). In this cadaver study, primary stability of anterior plate fixation for dislocation injuries of the subaxial cervical spine was dependent on the presence of the facet joints. If the bone in one or both facet joints is damaged in the clinical setting, anterior plate fixation in combination with bone grafting might not provide sufficient stabilization; additional posterior stabilization may be needed.
Solar Plus: A Holistic Approach to Distributed Solar PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
OShaughnessy, Eric J.; Ardani, Kristen B.; Cutler, Dylan S.
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
The Third Solar Wind Conference: A summary
NASA Technical Reports Server (NTRS)
Russell, C. T.
1974-01-01
The Third Solar Wind Conference consisted of nine sessions. The following subjects were discussed: (1) solar abundances; (2) the history and evolution of the solar wind; (3) the structure and dynamics of the solar corona; (4) macroscopic and microscopic properties of the solar wind; (5) cosmic rays as a probe of the solar wind; (6) the structure and dynamics of the solar wind; (7) spatial gradients; (8) stellar winds; and (9) interactions with objects in the solar wind. The invited and contributed talks presented at the conference are summarized.
Andrés, Juan; Gracia, Lourdes; Gouveia, Amanda Fernandes; Ferrer, Mateus Meneghetti; Longo, Elson
2015-10-09
Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and α-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.
Structural, energetic, and electronic trends in low-dimensional late-transition-metal systems
NASA Astrophysics Data System (ADS)
Hu, C. H.; Chizallet, C.; Toulhoat, H.; Raybaud, P.
2009-05-01
Using first-principles calculations, we present a comprehensive investigation of the structural trends of low dimensionality late 4d (from Tc to Ag) and 5d (from Re to Au) transition-metal systems including 13-atom clusters. Energetically favorable clusters not being reported previously are discovered by molecular-dynamics simulation based on the simulated annealing method. They allow a better agreement between experiments and theory for their magnetic properties. The structural periodic trend exhibits a nonmonotonic variation of the ratio of square to triangular facets for the two rows, with a maximum for Rh13 and Ir13 . By a comparative analysis of the relevant energetic and electronic properties performed on other metallic systems with reduced dimensionalities such as four-atom planar clusters, one-dimensional (1D) scales, double scales, 1D cylinders, monatomic films, two and seven layer slabs, we highlight that this periodic trend can be generalized. Hence, it appears that 1D-metallic nanocylinders or 1D-double nanoscales (with similar binding energies as TM13 ) also favor square facets for Rh and Ir. We finally propose an interpretation based on the evolution of the width of the valence band and of the Coulombic repulsions of the bonding basins.
Acoustic Wave Guiding by Reconfigurable Tessellated Arrays
NASA Astrophysics Data System (ADS)
Zou, Chengzhe; Lynd, Danielle T.; Harne, Ryan L.
2018-01-01
The reconfiguration of origami tessellations is a prime vehicle to harness for adapting system properties governed by a structural form. While the knowledge of mechanical property changes associated with origami tessellation folding has been extensively built up, the opportunities to integrate other physics into a framework of tessellated, adaptive structures remain to be fully exploited. Acoustics appears to be a prime domain to marry with origami science. Specifically, deep technical analogies are revealed between wave-guiding properties achieved via digital methods that virtually reposition array elements and the actual repositioning of facets by folding origami-inspired tessellations. Here we capitalize on this analogy to investigate acoustic arrays established upon facet layouts of origami-inspired tessellations. We show that a concept of reconfigurable tessellated arrays may guide waves more effectively than traditional digitally phased arrays using fewer transducer elements. Moreover, we show that the refinement of tessellated arrays trends to the ideal case of classical wave radiators or receivers grounded in principles of geometrical acoustics. By linear wave physics shared among myriad scientific disciplines and across orders of magnitude in length scale, these discoveries may cultivate numerous opportunities for wave-guiding adaptive structures inspired by low-dimensional origami tessellations.
NASA Astrophysics Data System (ADS)
Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin
2015-02-01
Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.
Ban, Ehsan; Zhang, Sijia; Zarei, Vahhab; Barocas, Victor H; Winkelstein, Beth A; Picu, Catalin R
2017-07-01
The spinal facet capsular ligament (FCL) is primarily comprised of heterogeneous arrangements of collagen fibers. This complex fibrous structure and its evolution under loading play a critical role in determining the mechanical behavior of the FCL. A lack of analytical tools to characterize the spatial anisotropy and heterogeneity of the FCL's microstructure has limited the current understanding of its structure-function relationships. Here, the collagen organization was characterized using spatial correlation analysis of the FCL's optically obtained fiber orientation field. FCLs from the cervical and lumbar spinal regions were characterized in terms of their structure, as was the reorganization of collagen in stretched cervical FCLs. Higher degrees of intra- and intersample heterogeneity were found in cervical FCLs than in lumbar specimens. In the cervical FCLs, heterogeneity was manifested in the form of curvy patterns formed by collections of collagen fibers or fiber bundles. Tensile stretch, a common injury mechanism for the cervical FCL, significantly increased the spatial correlation length in the stretch direction, indicating an elongation of the observed structural features. Finally, an affine estimation for the change of correlation length under loading was performed which gave predictions very similar to the actual values. These findings provide structural insights for multiscale mechanical analyses of the FCLs from various spinal regions and also suggest methods for quantitative characterization of complex tissue patterns.
ERIC Educational Resources Information Center
Makransky, Guido; Mortensen, Erik Lykke; Glas, Cees A. W.
2013-01-01
Narrowly defined personality facet scores are commonly reported and used for making decisions in clinical and organizational settings. Although these facets are typically related, scoring is usually carried out for a single facet at a time. This method can be ineffective and time consuming when personality tests contain many highly correlated…
Surgical Tips to Preserve the Facet Joint during Microdiscectomy
Park, Man-Kyu; Cho, Dae-Chul; Sung, Joo-Kyung
2013-01-01
Lumbar microdiscectomy (MD) is the gold standard for treatment of lumbar disc herniation. Generally, the surgeon attempts to protect the facet joint in hopes of avoiding postoperative pain/instability and secondary degenerative arthropathy. We believe that preserving the facet joint is especially important in young patients, owing to their life expectancy and activity. However, preserving the facet joint is not easy during lumbar MD. We propose several technical tips (superolateral extension of conventional laminotomy, oblique drilling for laminotomy, and additional foraminotomy) for facet joint preservation during lumbar MD. PMID:24294466
Solar selective absorption coatings
Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY
2004-08-31
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
Solar selective absorption coatings
Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY
2003-10-14
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
Afghans: The Challenge of Sponsorship.
ERIC Educational Resources Information Center
Li, Gertraude Roth; Johnson, Winston
Provided in this report are descriptions of the sociocultural background of Afghan refugees and other information that may be of use to those involved in sponsoring Afghan refugees in the United States. The report discusses facets of Afghan life and culture, including religion, personal relationships, family structure, and male-female relations;…
Facets of Speaking Proficiency
ERIC Educational Resources Information Center
de Jong, Nivja H.; Steinel, Margarita P.; Florijn, Arjen F.; Schoonen, Rob; Hulstijn, Jan H.
2012-01-01
This study examined the componential structure of second-language (L2) speaking proficiency. Participants--181 L2 and 54 native speakers of Dutch--performed eight speaking tasks and six tasks tapping nine linguistic skills. Performance in the speaking tasks was rated on functional adequacy by a panel of judges and formed the dependent variable in…
ERIC Educational Resources Information Center
Janowicz, Philip A.
2010-01-01
This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online…
ERIC Educational Resources Information Center
McIlwaine, I. C.
1997-01-01
Discusses the history and development of the Universal Decimal Classification (UDC). Topics include the relationship with Dewey Decimal Classification; revision process; structure; facet analysis; lack of standard rules for application; application in automated systems; influence of UDC on classification development; links with thesauri; and use…
Multilevel Design of School Effectiveness Studies in Sub-Saharan Africa
ERIC Educational Resources Information Center
Kelcey, Ben; Shen, Zuchao
2016-01-01
School-based improvement programs represent a core strategy in improving education because they can leverage pre-existing social and organizational structures to promote coordinated and comprehensive change across multiple facets of schooling. School-based programs are generally designed to be implemented by intact schools/districts, frequently…
Psychometric Properties of the HEXACO Personality Inventory
ERIC Educational Resources Information Center
Lee, Kibeom; Ashton, Michael C.
2004-01-01
We introduce a personality inventory designed to measure six major dimensions of personality derived from lexical studies of personality structure. The HEXACO Personality Inventory (HEXACO-PI) consists of 24 facet-level personality trait scales that define the six personality factors named Honesty-Humility (H), Emotionality (E), Extraversion (X),…
Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N
2015-06-01
Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for detecting the laminae and facet joints in ultrasound images has been proposed. The system has the potential to assist the anesthesiologists in quickly finding the target plane for epidural steroid injections and facet joint injections.
Multi-spectral investigation of bulk and facet failures in high-power single emitters at 980 nm
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Shamay, Moshe; Cohen, Shalom; Shkedy, Lior; Berk, Yuri; Tessler, Renana; Klumel, Genadi; Rappaport, Noam; Karni, Yoram
2013-03-01
Reliable single emitters delivering >10W in the 9xx nm spectral range, are common building blocks for fiber laser pumps. As facet passivation techniques can suppress or delay catastrophic optical mirror damage (COMD) extending emitter reliability into hundreds of thousands of hours, other, less dominant, failure modes such as intra-chip catastrophic optical bulk damage (COBD) become apparent. Based on our failure statistics in high current operation, only ~52% of all failures can be attributed to COMD. Imaging through a window opened in the metallization on the substrate (n) side of a p-side down mounted emitter provides valuable insight into both COMD and COBD failure mechanisms. We developed a laser ablation process to define a window on the n-side of an InGaAs/AlGaAs 980nm single emitter that is overlaid on the pumped 90μm stripe on the p-side. The ablation process is compatible with the chip wire-bonding, enabling the device to be operated at high currents with high injection uniformity. We analyzed both COMD and COBD failed emitters in the electroluminescence and mid-IR domains supported by FIB/SEM observation. The ablated devices revealed branching dark line patterns, with a line origin either at the facet center (COMD case) or near the stripe edge away from the facet (COBD case). In both cases, the branching direction is always toward the rear facet (against the photon density gradient), with SEM images revealing a disordered active layer structure. Absorption levels between 0.22eV - 0.55eV were observed in disordered regions by FT-IR spectroscopy. Temperature mapping of a single emitter in the MWIR domain was performed using an InSb detector. We also report an electroluminescence study of a single emitter just before and after failure.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2010-12-28
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2012-09-04
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2014-06-10
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Continuity Between DSM-5 Section II and III Personality Disorders in a Dutch Clinical Sample.
Orbons, Irene M J; Rossi, Gina; Verheul, Roel; Schoutrop, Mirjam J A; Derksen, Jan L L; Segal, Daniel L; van Alphen, Sebastiaan P J
2018-05-14
The goal of this study was to evaluate the continuity across the Section II personality disorders (PDs) and the proposed Section III model of PDs in the Diagnostic and Statistical Manual of Mental Disorders (5th ed. [DSM-5]; American Psychiatric Association, 2013a ). More specifically, we analyzed association between the DSM-5 Section III pathological trait facets and Section II PDs among 110 Dutch adults (M age = 35.8 years, range = 19-60 years) receiving mental health care. We administered the Structured Clinical Interview for DSM-IV Axis II Disorders to all participants. Participants also completed the self-report Personality Inventory for DSM-5 (PID-5) as a measure of pathological trait facets. The distributions underlying the dependent variable were modeled as criterion counts, using negative binomial regression. The results provided some support for the validity of the PID-5 and the DSM-5 Section III Alternative Model, although analyses did not show a perfect match. Both at the trait level and the domain level, analyses showed mixed evidence of significant relationships between the PID-5 trait facets and domains with the traditional DSM-IV PDs.
NASA Astrophysics Data System (ADS)
Lei, Zeyu; Zhou, Xin; Yang, Jie; He, Xiaolong; Wang, Yalin; Yang, Tian
2017-04-01
Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free biosensing systems that have a dip-and-read configuration, high compatibility with fiber-optic techniques, and in vivo monitoring capability, which however meets the challenge to match the performance of free-space counterparts. We report a second-order distributed feedback (DFB) SPR cavity on an SMF end facet and its application in protein interaction analysis. In our device, a periodic array of nanoslits in a gold film is used to couple fiber guided lightwaves to surface plasmon polaritons (SPPs) with its first order spatial Fourier component, while the second order spatial Fourier component provides DFB to SPP propagation and produces an SPP bandgap. A phase shift section in the DFB structure introduces an SPR defect state within the SPP bandgap, whose mode profile is optimized to match that of the SMF to achieve a reasonable coupling efficiency. We report an experimental refractive index sensitivity of 628 nm RIU-1, a figure-of-merit of 80 RIU-1, and a limit of detection of 7 × 10-6 RIU. The measurement of the real-time interaction between human immunoglobulin G molecules and their antibodies is demonstrated.
Zhang, Ai-Yong; Lin, Tan; He, Yuan-Yi; Mou, Yu-Xuan
2016-07-05
The heterogeneous catalyst plays a key role in Fenton-like reaction for advanced oxidation of refractory pollutants in water treatment. Titanium dioxide (TiO2) is a typical semiconductor with high industrial importance due to its earth abundance, low cost and no toxicity. In this work, it is found that TiO2 can heterogeneously activate hydrogen peroxide (H2O2, E°=1.78 eV), a common chemical oxidant, to efficiently generate highly-powerful hydroxyl radical, OH (E(0)=2.80 eV), for advanced water treatment, when its crystal shape, exposed facet and oxygen-stoichiometry are finely tuned. The defect-engineered TiO2 single crystals exposed by high-energy {001} facets exhibited an excellent Fenton-like activity and stability for degrading typical refractory organic pollutants such as methyl orange and p-nitrophenol. Its defect-centered Fenton-like superiority is mainly attributed to the crystal oxygen-vacancy, single-crystalline structure and exposed polar {001} facet. Our findings could provide new chance to utilize TiO2 for Fenton-like technology, and develop novel heterogeneous catalyst for advanced water treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles
NASA Astrophysics Data System (ADS)
Kenmoe, Stephane; Biedermann, P. Ulrich
2018-02-01
ZnO nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding of the exposed crystal facets, their surface chemistry, and stability as a function of environmental conditions is essential for rational design and improvement of synthesis and properties. We study the stability of water adsorbate phases on the non-polar low-index (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces from low coverage to multilayers using ab initio thermodynamics. We show that phonon contributions and the entropies due to a 2D lattice gas at low coverage and multiple adsorbate configurations at higher coverage have an important impact on the stability range of water adsorbate phases in the (T,p) phase diagram. Based on this insight, we compute and analyze the possible growth mode of water films for pressures ranging from UHV via ambient conditions to high pressures and the impact of water adsorption on the equilibrium shape of nanoparticles in a humid environment. A 2D variant of the Wulff construction shows that the (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces coexist on 12-faceted prismatic ZnO nanoparticles in dry conditions, while in humid environment, the (10 1 ¯ 0 ) surface is selectively stabilized by water adsorption resulting in hexagonal prisms.
Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z
2013-10-01
Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Tiankai; Long, Mingzhu; Yan, Keyou; Zeng, Xiaoliang; Zhou, Fengrui; Chen, Zefeng; Wan, Xi; Chen, Kun; Liu, Pengyi; Li, Faming; Yu, Tao; Xie, Weiguang; Xu, Jianbin
2016-11-30
Quantification of intergrain length scale properties of CH 3 NH 3 PbI 3 (MAPbI 3 ) can provide further understanding of material physics, leading to improved device performance. In this work, we noticed that two typical types of facets appear in sequential deposited perovskite (SDP) films: smooth and steplike morphologies. By mapping the surface potential as well as the photoluminescence (PL) peak position, we revealed the heterogeneity of SDP thin films that smooth facets are almost intrinsic with a PL peak at 775 nm, while the steplike facets are p-type-doped with 5-nm blue-shifted PL peak. Considering the reaction process, we propose that the smooth facets have well-defined crystal lattices that resulted from the interfacial reaction between MAI and PbI 2 domains containing low trap states density. The steplike facets are MAI-rich originated from the grain boundaries of PbI 2 film and own more trap states. Conversion of steplike facets to smooth facets can be controlled by increasing the reaction time through Ostwald ripening. The improved stability, photoresponsivity up to 0.3 A/W, on/off ratio up to 3900, and decreased photo response time to ∼160 μs show that the trap states can be annihilated effectively to improve the photoelectrical conversion with prolonged reaction time and elimination of steplike facets. Our findings demonstrate the relationship between the facet heterogeneity of SDP films and crystal growth process for the first time, and imply that the systematic control of crystal grain modification will enable amelioration of crystallinity for more-efficient perovskite photoelectrical applications.
Boyer, Doug M; Seiffert, Erik R
2013-07-01
A laterally sloping fibular facet of the astragalus (=talus) has been proposed as one of few osteological synapomorphies of strepsirrhine primates, but the feature has never been comprehensively quantified. We describe a method for calculating fibular facet orientation on digital models of astragali as the angle between the planes of the fibular facet and the lateral tibial facet. We calculated this value in a sample that includes all major extant primate clades, a diversity of Paleogene primates, and nonprimate euarchontans (n = 304). Results show that previous characterization of a divide between extant haplorhines and strepsirrhines is accurate, with little overlap even when individual data points are considered. Fibular facet orientation is conserved in extant strepsirrhines despite major differences in locomotion and body size, while extant anthropoids are more variable (e.g., low values for catarrhines relative to non-callitrichine platyrrhines). Euprimate outgroups exhibit a mosaic of character states with Cynocephalus having a more obtuse strepsirrhine-like facet and sampled treeshrews and plesiadapiforms having more acute haplorhine-like facets. Surprisingly, the earliest species of the adapiform Cantius have steep haplorhine-like facets as well. We used a Bayesian approach to reconstruct the evolution of fibular facet orientation as a continuous character across a supertree of living and extinct primates. Mean estimates for crown Primatomorpha (97.9°), Primates (99.5°), Haplorhini (98.7°), and Strepsirrhini (108.2°) support the hypothesis that the strepsirrhine condition is derived, while lower values for crown Anthropoidea (92.8°) and Catarrhini (88.9°) are derived in the opposite direction. Copyright © 2013 Wiley Periodicals, Inc.
Facet joint hypertrophy is a misnomer: A retrospective study.
An, Sang Joon; Seo, Mi Sook; Choi, Soo Il; Lim, Tae-Ha; Shin, So Jin; Kang, Keum Nae; Kim, Young Uk
2018-06-01
One of the major causes of lumbar spinal canal stenosis (LSCS) has been considered facet joint hypertrophy (FJH). However, a previous study asserted that "FJH" is a misnomer because common facet joints are no smaller than degenerative facet joints; however, this hypothesis has not been effectively demonstrated. Therefore, in order to verify that FJH is a misnomer in patients with LSCS, we devised new morphological parameters that we called facet joint thickness (FJT) and facet joint cross-sectional area (FJA).We collected FJT and FJA data from 114 patients with LSCS. A total of 86 control subjects underwent lumbar magnetic resonance imaging (MRI) as part of routine medical examinations, and axial T2-weighted MRI images were obtained from all participants. We measured FJT by drawing a line along the facet area and then measuring the narrowest point at L4-L5. We measured FJA as the whole cross-sectional area of the facet joint at the stenotic L4-L5 level.The average FJT was 1.60 ± 0.36 mm in the control group and 1.11 ± 0.32 mm in the LSCS group. The average FJA was 14.46 ± 5.17 mm in the control group and 9.31 ± 3.47 mm in the LSCS group. Patients with LSCS had significantly lower FJTs (P < .001) and FJAs (P < .001).FJH, a misnomer, should be renamed facet joint area narrowing. Using this terminology would eliminate confusion in descriptions of the facet joint.
Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less
Optimization and Control of Burning Plasmas Through High Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankin, Alexei
This project has revived the FACETS code, that has been developed under SciDAC fund- ing in 2008-2012. The code has been dormant for a number of years after the SciDAC funding stopped. FACETS depends on external packages. The external packages and libraries such as PETSc, FFTW, HDF5 and NETCDF that are included in FACETS have evolved during these years. Some packages in FACETS are also parts of other codes such as PlasmaState, NUBEAM, GACODES, and UEDGE. These packages have been also evolved together with their host codes which include TRANSP, TGYRO and XPTOR. Finally, there is also a set ofmore » packages in FACETS that are being developed and maintained by Tech-X. These packages include BILDER, SciMake, and FcioWrappers. Many of these packages evolved significantly during the last several years and FACETS had to be updated to synchronize with the re- cent progress in the external packages. The PI has introduced new changes to the BILDER package to support the updated interfaces to the external modules. During the last year of the project, the FACETS version of the UEDGE code has been extracted from FACETS as a standalone package. The PI collaborates with the scientists from LLNL on the updated UEDGE model in FACETS. Drs. T. Rognlien, M. Umansky and A. Dimits from LLNL are contributing to this task.« less
Long-Term Developmental Changes in Children's Lower-Order Big Five Personality Facets.
de Haan, Amaranta; De Pauw, Sarah; van den Akker, Alithe; Deković, Maja; Prinzie, Peter
2017-10-01
This study examined long-term developmental changes in mother-rated lower-order facets of children's Big Five dimensions. Two independent community samples covering early childhood (2-4.5 years; N = 365, 39% girls) and middle childhood to the end of middle adolescence (6-17 years; N = 579, 50% girls) were used. All children had the Belgian nationality. Developmental changes were examined using cohort-sequential latent growth modeling on the 18 facets of the Hierarchical Personality Inventory for Children. In early childhood, changes were mostly similar across child gender. Between 2 and 4.5 years, several facets showed mean-level stability; others changed in the direction of less Extraversion and Emotional Stability, and more Benevolence and Imagination. The lower-order facets of Conscientiousness showed opposite changes. Gender differences became more apparent from middle childhood onward for facets of all dimensions except Imagination, for which no gender differences were found. Between 6 and 17 years, same-dimension facets showed different shapes of growth. Facets that changed linearly changed mostly in the direction of less Extraversion, Benevolence, Conscientiousness, Emotional Stability, and Imagination. Changes in facets for which nonlinear growth was found generally moved in direction or magnitude during developmental transitions. This study provides comprehensive, fine-grained knowledge about personality development during the first two decades of life. © 2016 Wiley Periodicals, Inc.
Localized cervical facet joint kinematics under physiological and whiplash loading.
Stemper, Brian D; Yoganandan, Narayan; Gennarelli, Thomas A; Pintar, Frank A
2005-12-01
Although facet joints have been implicated in the whiplash injury mechanism, no investigators have determined the degree to which joint motions in whiplash are nonphysiological. The purpose of this investigation was to quantify the correlation between facet joint and segmental motions under physiological and whiplash loading. Human cadaveric cervical spine specimens were exercise tested under physiological extension loading, and intact human head-neck complexes were exercise tested under whiplash loading to correlate the localized component motions of the C4-5 facet joint with segmental extension. Facet joint shear and distraction kinematics demonstrated a linear correlation with segmental extension under both loading modes. Facet joints responded differently to whiplash and physiological loading, with significantly increased kinematics for the same-segmental angulation. The limitations of this study include removal of superficial musculature and the limited sample size for physiological testing. The presence of increased facet joint motions indicated that synovial joint soft-tissue components (that is, synovial membrane and capsular ligament) sustain increased distortion that may subject these tissues to a greater likelihood of injury. This finding is supported by clinical investigations in which lower cervical facet joint injury resulted in similar pain patterns due to the most commonly reported whiplash symptoms.
Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}.
Ruan, Lingyan; Ramezani-Dakhel, Hadi; Chiu, Chin-Yi; Zhu, Enbo; Li, Yujing; Heinz, Hendrik; Huang, Yu
2013-02-13
Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.
NASA Astrophysics Data System (ADS)
Zhang, Yuxuan; Zeng, Wen; Ye, Hong; Li, Yanqiong
2018-06-01
In the present study, crystal-facet-dependent gas sensing performance was thoroughly investigated and sensing mechanism of TiO2 was elaborated in depth. Anatase TiO2 nano-polyhedron with highly reactive (0 0 1) facet was successfully synthesized via a one-pot hydrothermal method using fluoride as facet stabilizer and was utilized for fabrication of carbon monoxide gas sensors, followed by characterization of microstructure, phase-purity and gas-sensing properties. Chemiresistive properties of (0 0 1)-dominated gas sensor exhibit superior response to CO with a maximum response of 27.9 at 300 ppm in optimum working temperature as 350 °C. Particularly, first-principle calculation was carried out to expound the sensing mechanism, which shows that CO adsorption on (0 0 1) facet is more stable and favorable than that on normally exposed (1 0 1) facet, corroborating the reactive nature of (0 0 1) facet.
Jacobs, Ingo; Wollny, Anna; Sim, Chu-Won; Horsch, Antje
2016-06-01
In the present study, we tested a serial mindfulness facets-trait emotional intelligence (TEI)-emotional distress-multiple health behaviors mediation model in a sample of N = 427 German-speaking occupational therapists. The mindfulness facets-TEI-emotional distress section of the mediation model revealed partial mediation for the mindfulness facets Act with awareness (Act/Aware) and Accept without judgment (Accept); inconsistent mediation was found for the Describe facet. The serial two-mediator model included three mediational pathways that may link each of the four mindfulness facets with multiple health behaviors. Eight out of 12 indirect effects reached significance and fully mediated the links between Act/Aware and Describe to multiple health behaviors; partial mediation was found for Accept. The mindfulness facet Observe was most relevant for multiple health behaviors, but its relation was not amenable to mediation. Implications of the findings will be discussed. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Vibrations of single-crystal gold nanorods and nanowires
NASA Astrophysics Data System (ADS)
Saviot, L.
2018-04-01
The vibrations of gold nanowires and nanorods are investigated numerically in the framework of continuum elasticity using the Rayleigh-Ritz variational method. Special attention is paid to identify the vibrations relevant in Raman scattering experiments. A comprehensive description of the vibrations of nanorods is proposed by determining their symmetry, comparing with standing waves in the corresponding nanowires, and estimating their Raman intensity. The role of experimentally relevant parameters such as the anisotropic cubic lattice structure, the presence of faceted lateral surfaces, and the shape of the ends of the nanorods is evaluated. Elastic anisotropy is shown to play a significant role contrarily to the presence of facets. Localized vibrations are found for nanorods with flat ends. Their evolution as the shape of the ends is changed to half-spheres is discussed.
Design of a Shape Memory Alloy deployment hinge for reflector facets
NASA Technical Reports Server (NTRS)
Anders, W. S.; Rogers, C. A.
1991-01-01
A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.
Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R
2017-04-29
The refractive index of sputtered indium oxide nanocoatings has been altered just by changing the sputtering parameters, such as pressure. These induced changes have been exploited for the generation of a grating on the end facet of an optical fiber towards the development of wavelength-modulated optical fiber humidity sensors. A theoretical analysis has also been performed in order to study the different parameters involved in the fabrication of this optical structure and how they would affect the sensitivity of these devices. Experimental and theoretical results are in good agreement. A sensitivity of 150 pm/%RH was obtained for relative humidity changes from 20% to 60%. This kind of humidity sensors shows a maximum hysteresis of 1.3% relative humidity.
Facet Annotation by Extending CNN with a Matching Strategy.
Wu, Bei; Wei, Bifan; Liu, Jun; Guo, Zhaotong; Zheng, Yuanhao; Chen, Yihe
2018-06-01
Most community question answering (CQA) websites manage plenty of question-answer pairs (QAPs) through topic-based organizations, which may not satisfy users' fine-grained search demands. Facets of topics serve as a powerful tool to navigate, refine, and group the QAPs. In this work, we propose FACM, a model to annotate QAPs with facets by extending convolution neural networks (CNNs) with a matching strategy. First, phrase information is incorporated into text representation by CNNs with different kernel sizes. Then, through a matching strategy among QAPs and facet label texts (FaLTs) acquired from Wikipedia, we generate similarity matrices to deal with the facet heterogeneity. Finally, a three-channel CNN is trained for facet label assignment of QAPs. Experiments on three real-world data sets show that FACM outperforms the state-of-the-art methods.
Attaching solar collectors to a structural framework utilizing a flexible clip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, John S
Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged bymore » the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.« less
Zhu, Q A; Park, Y B; Sjovold, S G; Niosi, C A; Wilson, D C; Cripton, P A; Oxland, T R
2008-02-01
Experimental measurement of the load-bearing patterns of the facet joints in the lumbar spine remains a challenge, thereby limiting the assessment of facet joint function under various surgical conditions and the validation of computational models. The extra-articular strain (EAS) technique, a non-invasive measurement of the contact load, has been used for unilateral facet joints but does not incorporate strain coupling, i.e. ipsilateral EASs due to forces on the contralateral facet joint. The objectives of the present study were to establish a bilateral model for facet contact force measurement using the EAS technique and to determine its effectiveness in measuring these facet joint contact forces during three-dimensional flexibility tests in the lumbar spine. Specific goals were to assess the accuracy and repeatability of the technique and to assess the effect of soft-tissue artefacts. In the accuracy and repeatability tests, ten uniaxial strain gauges were bonded to the external surface of the inferior facets of L3 of ten fresh lumbar spine specimens. Two pressure-sensitive sensors (Tekscan) were inserted into the joints after the capsules were cut. Facet contact forces were measured with the EAS and Tekscan techniques for each specimen in flexion, extension, axial rotation, and lateral bending under a +/- 7.5 N m pure moment. Four of the ten specimens were tested five times in axial rotation and extension for repeatability. These same specimens were disarticulated and known forces were applied across the facet joint using a manual probe (direct accuracy) and a materials-testing system (disarticulated accuracy). In soft-tissue artefact tests, a separate set of six lumbar spine specimens was used to document the virtual facet joint contact forces during a flexibility test following removal of the superior facet processes. Linear strain coupling was observed in all specimens. The average peak facet joint contact forces during flexibility testing was greatest in axial rotation (71 +/- 25 N), followed by extension (27 +/- 35 N) and lateral bending (25 +/- 28 N), and they were most repeatable in axial rotation (coefficient of variation, 5 per cent). The EAS accuracy was about 20 per cent in the direct accuracy assessment and about 30 per cent in the disarticulated accuracy test. The latter was very similar to the Tekscan accuracy in the same test. Virtual facet loads (r.m.s.) were small in axial rotation (12 N) and lateral bending (20 N), but relatively large in flexion (34 N) and extension (35 N). The results suggested that the bilateral EAS model could be used to determine the facet joint contact forces in axial rotation but may result in considerable error in flexion, extension, and lateral bending.
The Role of Structural Models in the Solar Sail Flight Validation Process
NASA Technical Reports Server (NTRS)
Johnston, John D.
2004-01-01
NASA is currently soliciting proposals via the New Millennium Program ST-9 opportunity for a potential Solar Sail Flight Validation (SSFV) experiment to develop and operate in space a deployable solar sail that can be steered and provides measurable acceleration. The approach planned for this experiment is to test and validate models and processes for solar sail design, fabrication, deployment, and flight. These models and processes would then be used to design, fabricate, and operate scaleable solar sails for future space science missions. There are six validation objectives planned for the ST9 SSFV experiment: 1) Validate solar sail design tools and fabrication methods; 2) Validate controlled deployment; 3) Validate in space structural characteristics (focus of poster); 4) Validate solar sail attitude control; 5) Validate solar sail thrust performance; 6) Characterize the sail's electromagnetic interaction with the space environment. This poster presents a top-level assessment of the role of structural models in the validation process for in-space structural characteristics.
Solar steam generation by heat localization.
Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang
2014-07-21
Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.
Dissociable brain biomarkers of fluid intelligence.
Paul, Erick J; Larsen, Ryan J; Nikolaidis, Aki; Ward, Nathan; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F; Barbey, Aron K
2016-08-15
Cognitive neuroscience has long sought to understand the biological foundations of human intelligence. Decades of research have revealed that general intelligence is correlated with two brain-based biomarkers: the concentration of the brain biochemical N-acetyl aspartate (NAA) measured by proton magnetic resonance spectroscopy (MRS) and total brain volume measured using structural MR imaging (MRI). However, the relative contribution of these biomarkers in predicting performance on core facets of human intelligence remains to be well characterized. In the present study, we sought to elucidate the role of NAA and brain volume in predicting fluid intelligence (Gf). Three canonical tests of Gf (BOMAT, Number Series, and Letter Sets) and three working memory tasks (Reading, Rotation, and Symmetry span tasks) were administered to a large sample of healthy adults (n=211). We conducted exploratory factor analysis to investigate the factor structure underlying Gf independent from working memory and observed two Gf components (verbal/spatial and quantitative reasoning) and one working memory component. Our findings revealed a dissociation between two brain biomarkers of Gf (controlling for age and sex): NAA concentration correlated with verbal/spatial reasoning, whereas brain volume correlated with quantitative reasoning and working memory. A follow-up analysis revealed that this pattern of findings is observed for males and females when analyzed separately. Our results provide novel evidence that distinct brain biomarkers are associated with specific facets of human intelligence, demonstrating that NAA and brain volume are independent predictors of verbal/spatial and quantitative facets of Gf. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Wang, Ning; Stahl, John
2012-01-01
This article discusses the use of the Many-Facets Rasch Model, via the FACETS computer program (Linacre, 2006a), to scale job/practice analysis survey data as well as to combine multiple rating scales into single composite weights representing the tasks' relative importance. Results from the Many-Facets Rasch Model are compared with those…
Bismuth Oxybromide-based Photocatalysts: Syntheses, Characterizations and Applications
NASA Astrophysics Data System (ADS)
Wu, Dan
The increasing intractable crises of environmental pollution and fossil fuels shortage are among the biggest challenges in current society and becoming an overwhelming concern for the development of our future world. Semiconductor photocatalysis has received considerable interdisciplinary attention and research interest owing to their diverse potentials in energy and environmental applications. As an important V-VI-VII ternary semiconductor, BiOBr has been recently received considerable attention owing to its fascinating physicochemical prosperities originated from its unique layered structures. However, existing reports on the photocatalytic bacterial inactivation of BiOBr based photocatalysts are rather limited. In addition, the mechanisms in visible-light-driven (VLD) photocatalytic disinfection systems are far from fully understandable. Moreover, the exploitation of facile ways to make BiOBr photocatalysts harvesting a wide range of solar spectrum with high efficiency remains challenging, yet highly desirable. In this study, BiOBr based photocatalysts with various nanostructures were synthesized and characterized. Their photocatalytic activities were systematically investigated towards bacterial inactivation, dye degradation and CO2 reduction. The exploration on the photo-excited charge carriers and reactive species were conducted to gain some insight into the corresponding photocatalytic mechanisms. Firstly, BiOBr 2D nanosheets with a high percentage of exposed {001} and {010} facets were synthesized via a facile hydrothermal method. BiOBr with dominant {001} facet (B001) nanosheets exhibited remarkably higher photocatalytic activity in inactivating E. coli K-12 under visible light irradiation, in comparison with BiOBr with dominant {010} facet (B010) nanosheets. There were 7-log bacterial cells inactivated within 2 h for B001, while B010 needed 6 h irradiation to inactivate 6.5-log bacterial cells. This superior activity was assigned to the more favorable separation and transfer of photogenerated e-/h+ pairs as well as more oxygen vacancies in B001 nanosheets, resulting in faster production and further accumulation of •O2- and h+ within a short time. Secondly, B was doped into BiOBr nanosheets without changing the morphology, crystal structure, and {001}-facet exposed features compared with pure BiOBr nanosheets. The photocatalytic activities were investigated by inactivating E. coli K-12 bacteria using fluorescence tubes as visible light sources. Significantly, 0.75B-BiOBr (0.75% molar ratio of B/Bi) showed the best photocatalytic efficiency with 7-log bacterial cells inactivation within 30 min, compared with 2-log for pure BiOBr. Photogenerated h+ was the major reactive species accounting for the B-BiOBr inactivation system. With its electron-deficient characteristics, the B dopant is favorable to accept extra e- from VB of BiOBr, leading to improved e- /h+ separation efficiency. In addition, the destruction process of bacterial cell was also observed from the destruction of cell membrane to the intracellular components. Finally, a simple alkali (NaOH) post-treatment approach was applied to obtain BiOBr-0.01 with brown color. Bi2O4 nanoparticles were in situ formed due to a combined action of NaOH-induced dehalogenation and light triggered photoexcited h+ oxidation processes on the surface of BiOBr nanosheets. Significantly, without any foreign elements, the light absorption of BiOBr-0.01 was extended to the near infrared (NIR) region. Compared with normal BiOBr, BiOBr-0.01 nanosheet showed superior photocatalytic activity for the dye degradation and microbial disinfection. Particularly, it exhibits excellent capability to photocatalytically reduce CO2 into CO and CH4, whereas the normal BiOBr is completely incapable for CO2 conversion under simulated sunlight irradiation. The exceptional enhancement is due to the Bi2O4 extended light absorption, efficient e-/h + separation, and the increased surface-adsorbed ability to reactants. This facile post-treatment method is promising for different bismuth-based systems and hence offers a path to a large variety of materials.
2014-01-01
Study design A phantom experiment, two thermocouple experiments, three in vivo pig experiments, and a simulated treatment on a healthy human volunteer were conducted to test the feasibility, safety, and efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) for treating facet joint pain. Objective The goal of the current study was to develop a novel method for accurate and safe noninvasive facet joint ablation using MRgFUS. Summary of background data Facet joints are a common source of chronic back pain. Direct facet joint interventions include medial branch nerve ablation and intra-articular injections, which are widely used, but limited in the short and long term. MRgFUS is a breakthrough technology that enables accurate delivery of high-intensity focused ultrasound energy to create a localized temperature rise for tissue ablation, using MR guidance for treatment planning and real-time feedback. Methods We validated the feasibility, safety, and efficacy of MRgFUS for facet joint ablation using the ExAblate 2000® System (InSightec Ltd., Tirat Carmel, Israel) and confirmed the system's ability to ablate the edge of the facet joint and all terminal nerves innervating the joint. A phantom experiment, two thermocouple experiments, three in vivo pig experiments, and a simulated treatment on a healthy human volunteer were conducted. Results The experiments showed that targeting the facet joint with energies of 150–450 J provides controlled and accurate heating at the facet joint edge without penetration to the vertebral body, spinal canal, or root foramina. Treating with reduced diameter of the acoustic beam is recommended since a narrower beam improves access to the targeted areas. Conclusions MRgFUS can safely and effectively target and ablate the facet joint. These results are highly significant, given that this is the first study to demonstrate the potential of MRgFUS to treat facet joint pain. PMID:24921048
In vivo facet joint loading of the canine lumbar spine.
Buttermann, G R; Schendel, M J; Kahmann, R D; Lewis, J L; Bradford, D S
1992-01-01
This study describes a technique to measure in vivo loads and the resultant load-contact locations in the facet joint of the canine lumbar spine. The technique is a modification of a previously described in vitro method that used calibrated surface strains of the lateral aspect of the right L3 cranial articular process. In the present study, strains were measured during various in vivo static and dynamic activities 3 days after strain gage implantation. The in vivo recording technique and its errors, which depend on the location of the applied facet loads, is described. The results of applying the technique to five dogs gave the following results. Relative resultant contact load locations on the facet tended to be in the central and caudal portion of the facet in extension activities, central and cranial in standing, and cranial and ventral in flexion or right-turning activities. Right-turning contact locations were ventral and cranial to left-turning locations. Resultant load locations at peak loading during walking were in the central region of the facet, whereas resultant load locations at minimum loading during walking were relatively craniad. This resultant load-contact location during a walk gait cycle typically migrated in an arc with a displacement of 4 mm from minimum to maximum loading. Static tests resulted in a range of facet loads of 0 N in flexion and lying to 185 N for two-legged standing erect, and stand resulted in facet loads of 26 +/- 15 N (mean +/- standard deviation [SD]). Dynamic tests resulted in peak facet loads ranging from 55 N while walking erect to 170 N for climbing up stairs. Maximum walk facet loads were 107 +/- 27 N. The technique is applicable to in vivo studies of a canine facet joint osteoarthritis model and may be useful for establishing an understanding of the biomechanics of low-back pain.
Evolution of triangular topographic facets along active normal faults
NASA Astrophysics Data System (ADS)
Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.
2011-12-01
Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric measurements of the triangular facets to represent possible locations of fault segment linkage associated with normal fault evolution.
On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind
NASA Astrophysics Data System (ADS)
Edmondson, J. K.
2012-11-01
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.
Guided filtering for solar image/video processing
NASA Astrophysics Data System (ADS)
Xu, Long; Yan, Yihua; Cheng, Jun
2017-06-01
A new image enhancement algorithm employing guided filtering is proposed in this work for the enhancement of solar images and videos so that users can easily figure out important fine structures embedded in the recorded images/movies for solar observation. The proposed algorithm can efficiently remove image noises, including Gaussian and impulse noises. Meanwhile, it can further highlight fibrous structures on/beyond the solar disk. These fibrous structures can clearly demonstrate the progress of solar flare, prominence coronal mass emission, magnetic field, and so on. The experimental results prove that the proposed algorithm gives significant enhancement of visual quality of solar images beyond original input and several classical image enhancement algorithms, thus facilitating easier determination of interesting solar burst activities from recorded images/movies.
Kras, Jeffrey V.; Kartha, Sonia; Winkelstein, Beth A.
2015-01-01
Objective The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Method Male Holtzman rats underwent painful cervical facet joint distraction or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. Results NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint’s mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Conclusion Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. PMID:26521746
Kras, J V; Kartha, S; Winkelstein, B A
2015-11-01
The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Male Holtzman rats underwent painful cervical facet joint distraction (FJD) or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint's mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.
Mankin, Max N; Day, Robert W; Gao, Ruixuan; No, You-Shin; Kim, Sun-Kyung; McClelland, Arthur A; Bell, David C; Park, Hong-Gyu; Lieber, Charles M
2015-07-08
Integration of compound semiconductors with silicon (Si) has been a long-standing goal for the semiconductor industry, as direct band gap compound semiconductors offer, for example, attractive photonic properties not possible with Si devices. However, mismatches in lattice constant, thermal expansion coefficient, and polarity between Si and compound semiconductors render growth of epitaxial heterostructures challenging. Nanowires (NWs) are a promising platform for the integration of Si and compound semiconductors since their limited surface area can alleviate such material mismatch issues. Here, we demonstrate facet-selective growth of cadmium sulfide (CdS) on Si NWs. Aberration-corrected transmission electron microscopy analysis shows that crystalline CdS is grown epitaxially on the {111} and {110} surface facets of the Si NWs but that the Si{113} facets remain bare. Further analysis of CdS on Si NWs grown at higher deposition rates to yield a conformal shell reveals a thin oxide layer on the Si{113} facet. This observation and control experiments suggest that facet-selective growth is enabled by the formation of an oxide, which prevents subsequent shell growth on the Si{113} NW facets. Further studies of facet-selective epitaxial growth of CdS shells on micro-to-mesoscale wires, which allows tuning of the lateral width of the compound semiconductor layer without lithographic patterning, and InP shell growth on Si NWs demonstrate the generality of our growth technique. In addition, photoluminescence imaging and spectroscopy show that the epitaxial shells display strong and clean band edge emission, confirming their high photonic quality, and thus suggesting that facet-selective epitaxy on NW substrates represents a promising route to integration of compound semiconductors on Si.
Heavy ion composition in the inner heliosphere: Predictions for Solar Orbiter
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Livi, S. A.; Galvin, A. B.; Kistler, L. M.; Raines, J. M.; Allegrini, F.; Collier, M. R.; Zurbuchen, T.
2014-12-01
The Heavy Ion Sensor (HIS) on SO, with its high time resolution, will provide the first ever solar wind and surpathermal heavy ion composition and 3D velocity distribution function measurements inside the orbit of Mercury. These measurements will provide us the most in depth examination of the origin, structure and evolution of the solar wind. The near co-rotation phases of the orbiter will enable the most accurate mapping of in-situ structures back to their solar sources. Measurements of solar wind composition and heavy ion kinetic properties enable characterization of the sources, transport mechanisms and acceleration processes of the solar wind. This presentation will focus on the current state of in-situ studies of heavy ions in the solar wind and their implications for the sources of the solar wind, the nature of structure and variability in the solar wind, and the acceleration of particles. Additionally, we will also discuss opportunities for coordinated measurements across the payloads of Solar Orbiter and Solar Probe in order to answer key outstanding science questions of central interest to the Solar and Heliophysics communities.
Structurally integrated steel solar collector
Moore, Stanley W.
1977-03-08
Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.