A solar dynamo surface wave at the interface between convection and nonuniform rotation
NASA Technical Reports Server (NTRS)
Parker, E. N.
1993-01-01
A simple dynamo surface wave is presented to illustrate the basic principles of a dynamo operating in the thin layer of shear and suppressed eddy diffusion beneath the cyclonic convection in the convection zone of the sun. It is shown that the restriction of the shear delta(Omega)/delta(r) to a region below the convective zone provides the basic mode with a greatly reduced turbulent diffusion coefficient in the region of strong azimuthal field. The dynamo takes on the character of a surface wave tied to the lower surface z = 0 of the convective zone. There is a substantial body of evidence suggesting a fibril state for the principal flux bundles beneath the surface of the sun, with fundamental implications for the solar dynamo.
Helioseismic Observations of Two Solar Cycles and Constraints on Dynamo Theory
NASA Astrophysics Data System (ADS)
Kosovichev, Alexander
2018-01-01
Helioseismology data from the SOHO and SDO, obtained in 1996-2017 for almost two solar cycles, provide a unique opportunity to investigate variations of the solar interior structure and dynamics, and link these variations to the current dynamo models and simulations. The solar oscillation frequencies and frequency splitting of medium-degree p- and f-modes, as well as helioseismic inversions have been used to analyze variations of the differential rotation (“torsional oscillations”) and the global asphericity. By comparing the helioseismology results with the synoptic surface magnetic fields we identify characteristic changes associated the initiation and evolution of the solar cycles, 23 and 24. The observational results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the dynamics of the tachocline and near-surface shear layer, and also may explain the fundamental difference between the two solar cycles and detect the onset of the next cycle.
Helioseismology Observations of Solar Cycles and Dynamo Modeling
NASA Astrophysics Data System (ADS)
Kosovichev, A. G.; Guerrero, G.; Pipin, V.
2017-12-01
Helioseismology observations from the SOHO and SDO, obtained in 1996-2017, provide unique insight into the dynamics of the Sun's deep interior for two solar cycles. The data allow us to investigate variations of the solar interior structure and dynamics, and compare these variations with dynamo models and simulations. We use results of the local and global helioseismology data processing pipelines at the SDO Joint Science Operations Center (Stanford University) to study solar-cycle variations of the differential rotation, meridional circulation, large-scale flows and global asphericity. By comparing the helioseismology results with the evolution of surface magnetic fields we identify characteristic changes associated the initiation and development of Solar Cycles 23 and 24. For the physical interpretation of observed variations, the results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the solar dynamo mechanism, may explain the fundamental difference between the two solar cycles, and also give information about the next solar cycle.
Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model.
Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan
The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-05-01
We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.
A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miesch, Mark S.; Dikpati, Mausumi, E-mail: miesch@ucar.edu
We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude)more » and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.« less
Evolution of Our Understanding of the Solar Dynamo During Solar Cycle 24
NASA Astrophysics Data System (ADS)
Munoz-Jaramillo, A.
2017-12-01
Solar cycle 24 has been an exciting cycle for our understanding of the solar dynamo: 1. It was the first cycle for which dynamo based predictions were ever used teaching us valuable lessons. 2. It has given us the opportunity to observe a deep minimum and a weak cycle with a high level of of observational detail . 3. It is full of breaktrhoughs in anelastic MHD dynamo simulations (regular cycles, buoyant flux-tubes, mounder-like events). 4. It has seen the creation of bridges between the kinematic flux-transport and anelastic MHD approaches. 5. It has ushered a new generation of realistic surface flux-transport simulations 6. We have achieved significant observational progress in our understanding of solar cycle propagation. The objective of this talk is to highlight some of the most important results, giving special emphasis on what they have taught us about solar cycle predictability.
HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Sokoloff, D. D.; Zhang, H.
It is believed that magnetic helicity conservation is an important constraint on large-scale astrophysical dynamos. In this paper, we study a mean-field solar dynamo model that employs two different formulations of the magnetic helicity conservation. In the first approach, the evolution of the averaged small-scale magnetic helicity is largely determined by the local induction effects due to the large-scale magnetic field, turbulent motions, and the turbulent diffusive loss of helicity. In this case, the dynamo model shows that the typical strength of the large-scale magnetic field generated by the dynamo is much smaller than the equipartition value for the magneticmore » Reynolds number 10{sup 6}. This is the so-called catastrophic quenching (CQ) phenomenon. In the literature, this is considered to be typical for various kinds of solar dynamo models, including the distributed-type and the Babcock-Leighton-type dynamos. The problem can be resolved by the second formulation, which is derived from the integral conservation of the total magnetic helicity. In this case, the dynamo model shows that magnetic helicity propagates with the dynamo wave from the bottom of the convection zone to the surface. This prevents CQ because of the local balance between the large-scale and small-scale magnetic helicities. Thus, the solar dynamo can operate in a wide range of magnetic Reynolds numbers up to 10{sup 6}.« less
NASA Astrophysics Data System (ADS)
Cameron, R. H.; Dikpati, M.; Brandenburg, A.
2017-09-01
A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.
The solar dynamo and prediction of sunspot cycles
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi
2012-07-01
Much progress has been made in understanding the solar dynamo since Parker first developed the concepts of dynamo waves and magnetic buoyancy around 1955, and the German school first formulated the solar dynamo using the mean-field formalism. The essential ingredients of these mean-field dynamos are turbulent magnetic diffusivity, a source of lifting of flux, or 'alpha-effect', and differential rotation. With the advent of helioseismic and other observations at the Sun's photosphere and interior, as well as theoretical understanding of solar interior dynamics, solar dynamo models have evolved both in the realm of mean-field and beyond mean-field models. After briefly discussing the status of these models, I will focus on a class of mean-field model, called flux-transport dynamos, which include meridional circulation as an essential additional ingredient. Flux-transport dynamos have been successful in simulating many global solar cycle features, and have reached the stage that they can be used for making solar cycle predictions. Meridional circulation works in these models like a conveyor-belt, carrying a memory of the magnetic fields from 5 to 20 years back in past. The lower is the magnetic diffusivity, the longer is the model's memory. In the terrestrial system, the great-ocean conveyor-belt in oceanic models and Hadley, polar and Ferrel circulation cells in the troposphere, carry signatures from the past climatological events and influence the determination of future events. Analogously, the memory provided by the Sun's meridional circulation creates the potential for flux-transport dynamos to predict future solar cycle properties. Various groups in the world have built flux-transport dynamo-based predictive tools, which nudge the Sun's surface magnetic data and integrated forward in time to forecast the amplitude of the currently ascending cycle 24. Due to different initial conditions and different choices of unknown model-ingredients, predictions can vary; so it is for their cycle 24 forecasts. We all await the peak of cycle 24. I will close by discussing the prospects of improving dynamo-based predictive tools using more sophisticated data-assimilation techniques, such as the Ensemble Kalman Filter method and variational approaches.
Extrapolating Solar Dynamo Models Throughout the Heliosphere
NASA Astrophysics Data System (ADS)
Cox, B. T.; Miesch, M. S.; Augustson, K.; Featherstone, N. A.
2014-12-01
There are multiple theories that aim to explain the behavior of the solar dynamo, and their associated models have been fiercely contested. The two prevailing theories investigated in this project are the Convective Dynamo model that arises from the pure solving of the magnetohydrodynamic equations, as well as the Babcock-Leighton model that relies on sunspot dissipation and reconnection. Recently, the supercomputer simulations CASH and BASH have formed models of the behavior of the Convective and Babcock-Leighton models, respectively, in the convective zone of the sun. These models show the behavior of the models within the sun, while much less is known about the effects these models may have further away from the solar surface. The goal of this work is to investigate any fundamental differences between the Convective and Babcock-Leighton models of the solar dynamo outside of the sun and extending into the solar system via the use of potential field source surface extrapolations implemented via python code that operates on data from CASH and BASH. The use of real solar data to visualize supergranular flow data in the BASH model is also used to learn more about the behavior of the Babcock-Leighton Dynamo. From the process of these extrapolations it has been determined that the Babcock-Leighton model, as represented by BASH, maintains complex magnetic fields much further into the heliosphere before reverting into a basic dipole field, providing 3D visualisations of the models distant from the sun.
Numerical modeling of the thin shallow solar dynamo
NASA Astrophysics Data System (ADS)
O'Bryan, J. B.; Jarboe, T. R.
2017-10-01
Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Soumitra; Nandy, Dibyendu
At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting formore » the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.« less
Exploring the North-South asymmetry in a Babcock-Leighton dynamo
NASA Astrophysics Data System (ADS)
Belucz , B.; Forgács-Dajka, E.; Dikpati, M.
2013-11-01
We present here a Babcock-Leighton, kinematic flux-transport solar dynamo model, based on an earlier model (Dikpati & Charbonneau 1999), operating in a full spherical shell of the convection zone, to investigate the properties of North-South (N-S) asymmetry. We develop a C language code for this model in order to examine the N-S asymmetry. The main components of the model are a solar-like internal differential rotation profile, a depth-dependent diffusivity, and a Babcock-Leighton type poloidal source. Our purpose here is to study what kind of North-South asymmetry is produced in solar cycle patterns when the Babcock-Leighton poloidal source is asymmetric between North and South. We present our solutions in the form of model butterfly diagrams in which we plot the tachocline toroidal field and surface radial field, and compare them with observations. We find that the dynamos in the northern and southern hemispheres operate nearly independently - if the Babcock-Leighton source is much smaller in the southern hemisphere with respect to that in the northern hemisphere, the dynamo in the southern hemisphere gets weaker and weaker, but the dynamo in the northern hemisphere runs without being affected by the dynamo in the southern hemisphere.
Shear-driven dynamo waves at high magnetic Reynolds number.
Tobias, S M; Cattaneo, F
2013-05-23
Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.
NASA Astrophysics Data System (ADS)
Kumar, Rohit; Jouve, Laurène; Pinto, Rui F.; Rouillard, Alexis P.
2018-01-01
We present a three-dimensional numerical model for the generation and evolution of the magnetic field in the solar convection zone, in which sunspots are produced and contribute to the cyclic reversal of the large-scale magnetic field. We then assess the impact of this dynamo-generated field on the structure of the solar corona and solar wind. This model solves the induction equation in which the velocity field is prescribed. This velocity field is a combination of a solar-like differential rotation and meridional circulation. We develop an algorithm that enables the magnetic flux produced in the interior to be buoyantly transported towards the surface to produce bipolar spots. We find that those tilted bipolar magnetic regions contain a sufficient amount of flux to periodically reverse the polar magnetic field and sustain dynamo action. We then track the evolution of these magnetic features at the surface during a few consecutive magnetic cycles and analyze their effects on the topology of the corona and on properties of the solar wind (distribution of streamers and coronal holes, and of slow and fast wind streams) in connection with current observations of the Sun.
Solar Cycle 24 and the Solar Dynamo
NASA Technical Reports Server (NTRS)
Pesnell, W. D.; Schatten, K.
2007-01-01
We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.
NASA Astrophysics Data System (ADS)
Dikpati, M.; Gilman, P. A.
2001-05-01
We propose here an α Ω flux-transport dynamo driven by a tachocline α -effect, produced by the global hydrodynamic instability of tachocline differential rotation as calculated using a shallow-water model (Dikpati & Gilman, 2001, ApJ, Mar.20 issue). Growing, unstable shallow-water modes propagating longitudinally in the tachocline create alternate vortices which correlate with upward/downward radial motion of top boundary, associated with convergence/divergence of the disturbance flow to produce a longitude-averaged net kinetic helicity, and hence an α -effect. We show that a flux-transport dynamo driven by a tachocline α -effect is equally successful as a Babcock-Leighton flux-transport dynamo (Dikpati & Charbonneau 1999, ApJ, 518, 508) in reproducing many large-scale solar cycle features, including the most difficult feature of phase relationship between the subsurface toroidal field and surface radial field. In view of the success of flux-transport dynamos, whether the α -effect is at the surface or in the tachocline, we argue that the solar dynamo should be considered to involve three basic processes, rather than two (α -effect and Ω -effect only). The third important process is the advective transport of flux by meridional circulation. In reality, both α -effects (Babcock-Leighton type and tachocline α -effect) are likely to exist, but it is hard to estimate their relative magnitudes. We show, by extending the simulation in a full spherical shell model that a flux-transport dynamo driven by a tachocline α -effect selects toroidal field that is antisymmetric about the equator, while a Babcock-Leighton flux-transport dynamo selects symmetric toroidal field. Since our present Sun selects antisymmetric toroidal fields, we argue that the flux-transport solar dynamo is primarily driven by a tachocline α -effect. Acknowledgements: This work is supported by NASA grants W-19752 and S-10145-X. National Center for Atmospheric Research is sponsored by National Science Foundation.
NASA Astrophysics Data System (ADS)
Featherstone, Nicholas
2017-05-01
Our understanding of the interior dynamics that give rise to a stellar dynamo draws heavily from investigations of similar dynamics in the solar context. Unfortunately, an outstanding gap persists in solar dynamo theory. Convection, an indispensable component of the dynamo, occurs in the midst of rotation, and yet we know little about how the influence of that rotation manifests across the broad range of convective scales present in the Sun. We are nevertheless well aware that the interaction of rotation and convection profoundly impacts many aspects of the dynamo, including the meridional circulation, the differential rotation, and the helicity of turbulent EMF. The rotational constraint felt by solar convection ultimately hinges on the characteristic amplitude of deep convective flow speeds, and such flows are difficult to measure helioseismically. Those measurements of deep convective power which do exist disagree by orders of magnitude, and until this disagreement is resolved, we are left with the results of models and those less ambiguous measurements derived from surface observations of solar convection. I will present numerical results from a series of nonrotating and rotating convection simulations conducted in full 3-D spherical geometry. This presentation will focus on how convective spectra differ between the rotating and non-rotating models and how that behavior changes as simulations are pushed toward more turbulent and/or more rotationally-constrained regimes. I will discuss how the surface signature of rotationally-constrained interior convection might naturally lead to observable signatures in the surface convective pattern, such as supergranulation and a dearth of giant cells.
On the possibility of an alpha-sq omega-type dynamo in a thin layer inside the sun
NASA Technical Reports Server (NTRS)
Choudhuri, Arnab Rai
1990-01-01
If the solar dynamo operates in a thin layer of 10,000-km thickness at the interface between the convection zone and the radiative core, using the facts that the dynamo should have a period of 22 years and a half-wavelength of 40 deg in the theta-direction, it is possible to impose restrictions on the values which various dynamo parameters are allowed to have. It is pointed out that the dynamo should be of alpha-sq omega nature, and kinematical calculations are presented for free dynamo waves and for dynamos in thin rectangular slabs with appropriate boundary conditions. An alpha-sq omega dynamo is expected to produce a significant poloidal field which does not leak to the solar surface. It is found that the turbulent diffusity eta and alpha-coefficient are restricted to values within about a factor of 10, the median values being eta of about 10 to the 10th sq cm/sec and alpha of about 10 cm/sec. On the basis of mixing length theory, it is pointed out that such values imply a reasonable turbulent velocity of the order 30 m/s, but rather small turbulent length scales like 300 km.
NASA Technical Reports Server (NTRS)
Hathaway, David H.
1994-01-01
The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood in spite of decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. The two basic processes involved in dynamo activity are demonstrated and the Sun's activity effects are presented in this document, along with a historical perspective regarding solar dynamos and the efforts to understand and measure them.
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-11-01
The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.
NASA Astrophysics Data System (ADS)
Belucz, Bernadett; Dikpati, Mausumi; Forgács-Dajka, Emese
2015-06-01
Babcock-Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock-Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu
Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterflymore » diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.« less
NASA Technical Reports Server (NTRS)
Ruzmaikin, A.
1997-01-01
Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.
DYNAMO EFFECTS NEAR THE TRANSITION FROM SOLAR TO ANTI-SOLAR DIFFERENTIAL ROTATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simitev, Radostin D.; Kosovichev, Alexander G.; Busse, Friedrich H.
2015-09-01
Numerical MHD simulations play an increasingly important role for understanding the mechanisms of stellar magnetism. We present simulations of convection and dynamos in density-stratified rotating spherical fluid shells. We employ a new 3D simulation code for obtaining the solution of a physically consistent anelastic model of the process with a minimum number of parameters. The reported dynamo simulations extend into a “buoyancy-dominated” regime where the buoyancy forcing is dominant while the Coriolis force is no longer balanced by pressure gradients, and strong anti-solar differential rotation develops as a result. We find that the self-generated magnetic fields, despite being relatively weak,more » are able to reverse the direction of differential rotation from anti-solar to solar-like. We also find that convection flows in this regime are significantly stronger in the polar regions than in the equatorial region, leading to non-oscillatory dipole-dominated dynamo solutions, and to a concentration of magnetic field in the polar regions. We observe that convection has a different morphology in the inner and the outer part of the convection zone simultaneously such that organized geostrophic convection columns are hidden below a near-surface layer of well-mixed highly chaotic convection. While we focus our attention on the buoyancy-dominated regime, we also demonstrate that conical differential rotation profiles and persistent regular dynamo oscillations can be obtained in the parameter space of the rotation-dominated regime even within this minimal model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay; Cameron, Robert, E-mail: bkarak@ucar.edu
The key elements of the Babcock–Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock–Leighton model. We find that the pumping causes the poloidal field to become predominately radial inmore » the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock–Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.« less
A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca
The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returnsmore » Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.« less
An Elementary Introduction to Solar Dynamo Theory
NASA Astrophysics Data System (ADS)
Choudhuri, Arnab Rai
2007-07-01
The cyclically varying magnetic field of the Sun is believed to be produced by the hydromagnetic dynamo process. We first summarize the relevant observational data pertaining to sunspots and solar cycle. Then we review the basic principles of MHD needed to develop the dynamo theory. This is followed by a discussion how bipolar sunspots form due to magnetic buoyancy of flux tubes formed at the base of the solar convection zone. Following this, we come to the heart of dynamo theory. After summarizing the basic ideas of a turbulent dynamo and the basic principles of its mean field formulation, we present the famous dynamo wave solution, which was supposed to provide a model for the solar cycle. Finally we point out how a flux transport dynamo can circumvent some of the difficulties associated with the older dynamo models.
NASA Astrophysics Data System (ADS)
Suresh, A.; Dikpati, M.; Burkepile, J.; de Toma, G.
2013-12-01
The structure of the Sun's corona varies with solar cycle, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. Why does this pattern occur? It is widely accepted that large-scale coronal structure is governed by magnetic fields, which are most likely generated by the dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential field source surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation and above the photosphere these dynamo-generated fields are extended from the photosphere to the corona by using a potential field source surface model. Under the assumption of axisymmetry, the large-scale poloidal fields can be written in terms of the curl of a vector potential. Since from the photosphere and above the magnetic diffusivity is essentially infinite, the evolution of the vector potential is given by Laplace's Equation, the solution of which is obtained in the form of a first order Associated Legendre Polynomial. By taking linear combinations of these polynomial terms, we find solutions that match more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986-1991), we compute the coefficients of the Associated Legendre Polynomials up to degree eight and compare with observation. We reproduce some previous results that at minimum the dipole term dominates, but that this term fades with the progress of the cycle and higher order multipole terms begin to dominate. We find that the amplitudes of these terms are not exactly the same in the two limbs, indicating that there is some phi dependence. Furthermore, by comparing the solar minimum corona during the past three minima (1986, 1996, and 2008), we find that, while both the 1986 and 1996 minima were dipolar, the minimum in 2008 was unusual, as there was departure from a dipole. In order to investigate the physical cause of this departure from dipole, we implement north-south asymmetry in the surface source of the magnetic fields in our model, and find that such n/s asymmetry in solar cycle could be one of the reasons for this departure. This work is partially supported by NASA's LWS grant with award number NNX08AQ34G. NCAR is sponsored by the NSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu
The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithmmore » for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity.more » Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.« less
A Coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. II. Reference Dynamo Solutions
NASA Astrophysics Data System (ADS)
Lemerle, Alexandre; Charbonneau, Paul
2017-01-01
In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.
UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal
2016-09-01
The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT atmore » the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.« less
An update of Leighton's solar dynamo model
NASA Astrophysics Data System (ADS)
Cameron, R. H.; Schüssler, M.
2017-03-01
In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of Babcock published in 1961. Here we present a modification and extension of Leighton's model. Using the axisymmetric component (longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location of the toroidal flux. The model includes the effects of (I) turbulent diffusion at the surface and in the convection zone; (II) poleward meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (III) latitudinal differential rotation and the near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s-1, turbulent diffusivity below about 80 km2s-1, and dynamo excitation not too far above the threshold (linear growth rate less than 0.1 yr-1).
Recovery from Maunder-like Grand Minima in a Babcock–Leighton Solar Dynamo Model
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Miesch, Mark
2018-06-01
The Sun occasionally goes through Maunder-like extended grand minima when its magnetic activity drops considerably from the normal activity level for several decades. Many possible theories have been proposed to explain the origin of these minima. However, how the Sun managed to recover from such inactive phases every time is even more enigmatic. The Babcock–Leighton type dynamos, which are successful in explaining many features of the solar cycle remarkably well, are not expected to operate during grand minima due to the lack of a sufficient number of sunspots. In this Letter, we explore the question of how the Sun could recover from grand minima through the Babcock–Leighton dynamo. In our three-dimensional dynamo model, grand minima are produced spontaneously as a result of random variations in the tilt angle of emerging active regions. We find that the Babcock–Leighton process can still operate during grand minima with only a minimal number of sunspots, and that the model can emerge from such phases without the need for an additional generation mechanism for the poloidal field. The essential ingredient in our model is a downward magnetic pumping, which inhibits the diffusion of the magnetic flux across the solar surface.
Solar-type dynamo behaviour in fully convective stars without a tachocline.
Wright, Nicholas J; Drake, Jeremy J
2016-07-28
In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.
DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François
The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field producedmore » by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2}Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.« less
Solar Cycle #24 and the Solar Dynamo
NASA Technical Reports Server (NTRS)
Schatten, Kenneth; Pesnell, W. Dean
2007-01-01
We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears consistent with a weakening polar field, but coronal hole data must be scrutinized carefully as observing techniques have changed. We also discuss new solar dynamo ideas, and the SODA (SOlar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, dynamo magnetic fields throughout the various stages of the Sun's cycle. Our solar dynamo ideas are a modernization and rejuvenation of the Babcock-Leighton original idea of a shallow solar dynamo, using modern observations that appear to support their shallow dynamo viewpoint. We are in awe of being able to see an object the size of the Sun undergoing as dramatic a change as our model provides in a few short years. The Sun, however, has undergone changes as rapid as this before! The weather on the Sun is at least as fickle as the weather on the Earth.
Solar Cycle #24 and the Solar Dynamo
NASA Technical Reports Server (NTRS)
Pesnell, W. Dean; Schatten, Kenneth
2007-01-01
We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun s polar field plays a major role in forecasting the next cycle s activity based upon the Babcock- Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130+ 30 (2 4, in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (-7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun s open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears consistent with a weakening polar field, but coronal hole data must be scrutinized carefully as observing techniques have changed. We also discuss new solar dynamo ideas, and the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun s hidden, dynamo magnetic fields throughout the various stages of the Sun s cycle. Our solar dynamo ideas are a modernization and rejuvenation of the Babcock-Leighton original idea of a shallow solar dynamo, using modem observations that appear to support their shallow dynamo viewpoint. We are in awe of being able to see an object the size of the Sun undergoing as dramatic a change as our model provides in a few short years. The Sun, however, has undergone changes as rapid as this before! The weather on the Sun is at least as fickle as the weather on the Earth.
Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD
NASA Astrophysics Data System (ADS)
Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.
2006-12-01
We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.
Solar and planetary dynamos: comparison and recent developments
NASA Astrophysics Data System (ADS)
Petrovay, K.
2009-03-01
While obviously having a common root, solar and planetary dynamo theory have taken increasingly divergent routes in the last two or three decades, and there are probably few experts now who can claim to be equally versed in both. Characteristically, even in the fine and comprehensive book “The magnetic Universe” (Rudiger & Hollerbach 2004), the chapters on planets and on the Sun were written by different authors. Separate reviews written on the two topics include Petrovay (2000), Charbonneau (2005), Choudhuri (2008) on the solar dynamo and Glatzmaier (2002), Stevenson (2003) on the planetary dynamo. In the following I will try to make a systematic comparison between solar and planetary dynamos, presenting analogies and differences, and highlighting some interesting recent results.
A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemerle, Alexandre; Charbonneau, Paul, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca
In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probabilitymore » of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.« less
A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.
Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva
2016-01-21
Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1975-01-01
The magnetic field appearing as bipolar magnetic regions at the surface of the sun represents the lines of force from a general azimuthal field of the order of 100 gauss somewhere beneath the surface. The amplification time, as a consequence of the nonuniform rotation, is of the order of 10 years. But magnetic buoyancy brings the azimuthal field up through much of the convective zone in a time rather less than 10 years, raising the question of where the azimuthal field can be retained long enough to be amplified. We show that magnetic fields can be retained for long periods of time in the stable radiative region beneath the convective zone, but unfortunately the solar dynamo cannot function there because turbulent diffusion is an essential part of its operation. The only possible conclusion appears to be that the dynamo operates principally in the very lowest levels of the convective zone at depths of 150,000 km or more, where the gas density is 0.1 g/cu cm, and the fields are limited to 50 gauss.
NASA Technical Reports Server (NTRS)
Hathaway, David H.
1998-01-01
The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood despite decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. Two basic processes are involved in dynamo activity. When the fluid stresses dominate the magnetic stresses (high plasma beta = 8(pi)rho/B(sup 2)), shear flows can stretch magnetic field lines in the direction of the shear (the "alpha effect") and helical flows can lift and twist field lines into orthogonal planes (the "alpha effect"). These two processes can be active anywhere in the solar convection zone but with different results depending upon their relative strengths and signs. Little is known about how and where these processes occur. Other processes, such as magnetic diffusion and the effects of the fine scale structure of the solar magnetic field, pose additional problems.
Magnetic Flux Transport at the Solar Surface
NASA Astrophysics Data System (ADS)
Jiang, J.; Hathaway, D. H.; Cameron, R. H.; Solanki, S. K.; Gizon, L.; Upton, L.
2014-12-01
After emerging to the solar surface, the Sun's magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows—differential rotation, meridional circulation, granular, supergranular flows, and active region inflows—determine the evolution of the field (now taken to be purely radial). In this paper, we review the modeling of the various processes that determine the evolution of the surface field. We restrict our attention to their role in the surface flux transport model. We also discuss the success of the model and some of the results that have been obtained using this model.
Solar Dynamo Driven by Periodic Flow Oscillation
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)
2001-01-01
We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends to increase with the angular momentum of the fluid.
NASA Astrophysics Data System (ADS)
Weber, Maria Ann; Browning, Matthew; Nelson, Nicholas
2018-01-01
Starspots are windows into a star’s internal dynamo mechanism. However, the manner by which the dynamo-generated magnetic field traverses the stellar interior to emerge at the surface is not especially well understood. Establishing the details of magnetic flux emergence plays a key role in deciphering stellar dynamos and observed starspot properties. In the solar context, insight into this process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized thin flux tubes (TFTs). Here, we present three sets of TFT simulations in rotating spherical shells of convection: one representative of the Sun, the second of a solar-like rapid rotator, and the third of a fully convective M dwarf. Our solar simulations reproduce sunspot observables such as low-latitude emergence, tilting action toward the equator following the Joy’s Law trend, and a phenomenon akin to active longitudes. Further, we compare the evolution of rising flux tubes in our (computationally inexpensive) TFT simulations to buoyant magnetic structures that arise naturally in a unique global simulation of a rapidly rotating Sun. We comment on the role of rapid rotation, the Coriolis force, and external torques imparted by the surrounding convection in establishing the trajectories of the flux tubes across the convection zone. In our fully convective M dwarf simulations, the expected starspot latitudes deviate from the solar trend, favoring significantly poleward latitudes unless the differential rotation is sufficiently prograde or the magnetic field is strongly super-equipartition. Together our work provides a link between dynamo-generated magnetic fields, turbulent convection, and observations of starspots along the lower main sequence.
Waldmeier's Rules in the Solar and Stellar Dynamos
NASA Astrophysics Data System (ADS)
Pipin, Valery; Kosovichev, Alexander
2015-08-01
The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284
Using Data Assimilation Methods of Prediction of Solar Activity
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy S.
2017-01-01
The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and long-term sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.
Early Estimation of Solar Activity Cycle: Potential Capability and Limits
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy S.
2017-01-01
The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and longterm sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.
An early solar dynamo prediction: Cycle 23 is approximately cycle 22
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.; Pesnell, W. Dean
1993-01-01
In this paper, we briefly review the 'dynamo' and 'geomagnetic precursor' methods of long-term solar activity forecasting. These methods depend upon the most basic aspect of dynamo theory to predict future activity, future magnetic field arises directly from the magnification of pre-existing magnetic field. We then generalize the dynamo technique, allowing the method to be used at any phase of the solar cycle, through the development of the 'Solar Dynamo Amplitude' (SODA) index. This index is sensitive to the magnetic flux trapped within the Sun's convection zone but insensitive to the phase of the solar cycle. Since magnetic fields inside the Sun can become buoyant, one may think of the acronym SODA as describing the amount of buoyant flux. Using the present value of the SODA index, we estimate that the next cycle's smoothed peak activity will be about 210 +/- 30 solar flux units for the 10.7 cm radio flux and a sunspot number of 170 +/- 25. This suggests that solar cycle #23 will be large, comparable to cycle #22. The estimated peak is expected to occur near 1999.7 +/- 1 year. Since the current approach is novel (using data prior to solar minimum), these estimates may improve when the upcoming solar minimum is reached.
Multiple periodicities in the solar magnetic field - Possible origin in a multiple-mode solar dynamo
NASA Technical Reports Server (NTRS)
Boyer, D. W.; Levy, E. H.
1992-01-01
The solar magnetic field is generated in an oscillatory mode with a 22 yr full period and gives rise to the 11 yr sunspot cycle. However, analyses of contemporary solar records, as well as other surrogate indicators of solar activity, suggest the presence also of longer term periodicities in the solar magnetic cycle. This paper suggests that the solar dynamo can operate in a multiply periodic state, with several periodicites being generated simultaneously at different depths in the convection zone. A simple two-layer model of the solar convection zone is used to illustrate the physical mechanism of spatially localized, multiple-periodicity-mode dynamo regeneration. The two layers are characterized by differences in their respective turbulent magnetic diffusivities. Although the magnetic modes interact with one another, each mode is produced large in one layer or the other, and has an oscillation period approximately equal to the time characteristic of magnetic diffusion across the layer. The observed complicated periodicity pattern in the solar magnetic field could be a combination of two (or more) dynamo modes generated in this manner. The calculations are carried out using a differential rotation model consistent with recent helioseismological measurements, illustrating the challenge to dynamo theory raised by those observational results.
NASA Technical Reports Server (NTRS)
Song, Yan; Lysak, Robert L.
1992-01-01
A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.
Confinement of the solar tachocline by a cyclic dynamo magnetic field
NASA Astrophysics Data System (ADS)
Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul
2017-05-01
Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.
DEPENDENCE OF STELLAR MAGNETIC ACTIVITY CYCLES ON ROTATIONAL PERIOD IN A NONLINEAR SOLAR-TYPE DYNAMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2016-06-01
We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. Wemore » discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.« less
An ancient core dynamo in asteroid Vesta.
Fu, Roger R; Weiss, Benjamin P; Shuster, David L; Gattacceca, Jérôme; Grove, Timothy L; Suavet, Clément; Lima, Eduardo A; Li, Luyao; Kuan, Aaron T
2012-10-12
The asteroid Vesta is the smallest known planetary body that has experienced large-scale igneous differentiation. However, it has been previously uncertain whether Vesta and similarly sized planetesimals formed advecting metallic cores and dynamo magnetic fields. Here we show that remanent magnetization in the eucrite meteorite Allan Hills A81001 formed during cooling on Vesta 3.69 billion years ago in a surface magnetic field of at least 2 microteslas. This field most likely originated from crustal remanence produced by an earlier dynamo, suggesting that Vesta formed an advecting liquid metallic core. Furthermore, the inferred present-day crustal fields can account for the lack of solar wind ion-generated space weathering effects on Vesta.
NASA Astrophysics Data System (ADS)
Kim, E.; Newton, A. P.
2012-04-01
One major problem in dynamo theory is the multi-scale nature of the MHD turbulence, which requires statistical theory in terms of probability distribution functions. In this contribution, we present the statistical theory of magnetic fields in a simplified mean field α-Ω dynamo model by varying the statistical property of alpha, including marginal stability and intermittency, and then utilize observational data of solar activity to fine-tune the mean field dynamo model. Specifically, we first present a comprehensive investigation into the effect of the stochastic parameters in a simplified α-Ω dynamo model. Through considering the manifold of marginal stability (the region of parameter space where the mean growth rate is zero), we show that stochastic fluctuations are conductive to dynamo. Furthermore, by considering the cases of fluctuating alpha that are periodic and Gaussian coloured random noise with identical characteristic time-scales and fluctuating amplitudes, we show that the transition to dynamo is significantly facilitated for stochastic alpha with random noise. Furthermore, we show that probability density functions (PDFs) of the growth-rate, magnetic field and magnetic energy can provide a wealth of useful information regarding the dynamo behaviour/intermittency. Finally, the precise statistical property of the dynamo such as temporal correlation and fluctuating amplitude is found to be dependent on the distribution the fluctuations of stochastic parameters. We then use observations of solar activity to constrain parameters relating to the effect in stochastic α-Ω nonlinear dynamo models. This is achieved through performing a comprehensive statistical comparison by computing PDFs of solar activity from observations and from our simulation of mean field dynamo model. The observational data that are used are the time history of solar activity inferred for C14 data in the past 11000 years on a long time scale and direct observations of the sun spot numbers obtained in recent years 1795-1995 on a short time scale. Monte Carlo simulations are performed on these data to obtain PDFs of the solar activity on both long and short time scales. These PDFs are then compared with predicted PDFs from numerical simulation of our α-Ω dynamo model, where α is assumed to have both mean α0 and fluctuating α' parts. By varying the correlation time of fluctuating α', the ratio of the amplitude of the fluctuating to mean alpha <α'2>/α02 (where angular brackets <> denote ensemble average), and the ratio of poloidal to toroidal magnetic fields, we show that the results from our stochastic dynamo model can match the PDFs of solar activity on both long and short time scales. In particular, a good agreement is obtained when the fluctuation in alpha is roughly equal to the mean part with a correlation time shorter than the solar period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A.
Magnetic fields are usually observed in the quiet Sun as small-scale elements that cover the entire solar surface (the “salt-and-pepper” patterns in line-of-sight magnetograms). By using 3D radiative MHD numerical simulations, we find that these fields result from a local dynamo action in the top layers of the convection zone, where extremely weak “seed” magnetic fields (e.g., from a 10{sup −6} G) can locally grow above the mean equipartition field to a stronger than 2000 G field localized in magnetic structures. Our results reveal that the magnetic flux is predominantly generated in regions of small-scale helical downflows. We find thatmore » the local dynamo action takes place mostly in a shallow, about 500 km deep, subsurface layer, from which the generated field is transported into the deeper layers by convective downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and horizontal fields above the photosphere can be explained by small-scale magnetic loops produced by the dynamo. Such small-scale loops play an important role in the structure and dynamics of the solar atmosphere and their detection in observations is critical for understanding the local dynamo action on the Sun.« less
Can Superflares Occur on the Sun? A View from Dynamo Theory
NASA Astrophysics Data System (ADS)
Katsova, M. M.; Kitchatinov, L. L.; Livshits, M. A.; Moss, D. L.; Sokoloff, D. D.; Usoskin, I. G.
2018-01-01
Recent data from the Kepler mission has revealed the occurrence of superflares in Sun-like stars which exceed by far any observed solar flares in released energy. Radionuclide data do not provide evidence for occurrence of superflares on the Sun over the past eleven millennia. Stellar data for a subgroup of superflaring Kepler stars are analysed in an attempt to find possible progenitors of their abnormal magnetic activity. A natural idea is that the dynamo mechanism in superflaring stars differs in some respect from that in the Sun. We search for a difference in the dynamo-related parameters between superflaring stars and the Sun to suggest a dynamo mechanism as close as possible to the conventional solar/stellar dynamo but capable of providing much higher magnetic energy. Dynamo based on joint action of differential rotation and mirror asymmetric motions can in principle result in excitation of two types of magnetic fields. First of all, it is well-known in solar physics dynamo waves. The point is that another magnetic configuration with initial growth and further stabilisation can also be excited. For comparable conditions, magnetic field of second configuration is much stronger than that of the first one just because dynamo does not spend its energy for periodic magnetic field inversions but uses it for magnetic field growth. We analysed available data from the Kepler mission concerning the superflaring stars in order to find tracers of anomalous magnetic activity. As suggested in a recent paper [1], we find that anti-solar differential rotation or anti-solar sign of the mirror-asymmetry of stellar convection can provide the desired strong magnetic field in dynamo models. We confirm this concept by numerical models of stellar dynamos with corresponding governing parameters. We conclude that the proposed mechanism can plausibly explain the superflaring events at least for some cool stars, including binaries, subgiants and, possibly, low-mass stars and young rapid rotators.
Does the Current Minimum Validate (or Invalidate) Cycle Prediction Methods?
NASA Technical Reports Server (NTRS)
Hathaway, David H.
2010-01-01
This deep, extended solar minimum and the slow start to Cycle 24 strongly suggest that Cycle 24 will be a small cycle. A wide array of solar cycle prediction techniques have been applied to predicting the amplitude of Cycle 24 with widely different results. Current conditions and new observations indicate that some highly regarded techniques now appear to have doubtful utility. Geomagnetic precursors have been reliable in the past and can be tested with 12 cycles of data. Of the three primary geomagnetic precursors only one (the minimum level of geomagnetic activity) suggests a small cycle. The Sun's polar field strength has also been used to successfully predict the last three cycles. The current weak polar fields are indicative of a small cycle. For the first time, dynamo models have been used to predict the size of a solar cycle but with opposite predictions depending on the model and the data assimilation. However, new measurements of the surface meridional flow indicate that the flow was substantially faster on the approach to Cycle 24 minimum than at Cycle 23 minimum. In both dynamo predictions a faster meridional flow should have given a shorter cycle 23 with stronger polar fields. This suggests that these dynamo models are not yet ready for solar cycle prediction.
Diagnostics of Turbulent Dynamo from the Flux Emergence Rate in Solar Active Regions
NASA Astrophysics Data System (ADS)
Abramenko, V. I.; Tikhonova, O. I.; Kutsenko, A. S.
2017-12-01
Line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO) and by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO) for 14 emerging ARs were used to study the derivative of the total unsigned flux-the flux emergence rate, R( t). We found that the emergence regime is not universal: each AR displays a unique emergence process. Nevertheless, two types of the emergence process can be identified. First type is a "regular" emergence with quasi-constant behavior of R( t) during a 1-3 day emergence interval with a rather low magnitude of the flux derivative, R max = (0.57 ± 0.22) × 1022 Mx day-1. The second type can be described as "accelerated" emergence with a long interval (>1 day) of the rapidly increasing flux derivative R( t) that result in a rather high magnitude of R max= (0.92 ± 0.29) × 1022 Mx day-1, which later changes to a very short (about a one third of day) interval of R( t) = const followed by a monotonous decrease of R( t). The first type events might be associated with emergence of a flux tube with a constant amount of flux that rises through the photosphere with a quasi-constant speed. Such events can be explained by the traditional largescale solar dynamo generating the toroidal flux deep in the convective zone. The second-type events can be interpreted as a signature of sub-surface turbulent dynamo action that generates additional magnetic flux (via turbulent motions) as the magnetic structure makes its way up to the solar surface.
Generation of dynamo magnetic fields in the primordial solar nebula
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1992-01-01
The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.
Modeling the Solar Convective Dynamo and Emerging Flux
NASA Astrophysics Data System (ADS)
Fan, Y.
2017-12-01
Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.
Solar Activity Heading for a Maunder Minimum?
NASA Astrophysics Data System (ADS)
Schatten, K. H.; Tobiska, W. K.
2003-05-01
Long-range (few years to decades) solar activity prediction techniques vary greatly in their methods. They range from examining planetary orbits, to spectral analyses (e.g. Fourier, wavelet and spectral analyses), to artificial intelligence methods, to simply using general statistical techniques. Rather than concentrate on statistical/mathematical/numerical methods, we discuss a class of methods which appears to have a "physical basis." Not only does it have a physical basis, but this basis is rooted in both "basic" physics (dynamo theory), but also solar physics (Babcock dynamo theory). The class we discuss is referred to as "precursor methods," originally developed by Ohl, Brown and Williams and others, using geomagnetic observations. My colleagues and I have developed some understanding for how these methods work and have expanded the prediction methods using "solar dynamo precursor" methods, notably a "SODA" index (SOlar Dynamo Amplitude). These methods are now based upon an understanding of the Sun's dynamo processes- to explain a connection between how the Sun's fields are generated and how the Sun broadcasts its future activity levels to Earth. This has led to better monitoring of the Sun's dynamo fields and is leading to more accurate prediction techniques. Related to the Sun's polar and toroidal magnetic fields, we explain how these methods work, past predictions, the current cycle, and predictions of future of solar activity levels for the next few solar cycles. The surprising result of these long-range predictions is a rapid decline in solar activity, starting with cycle #24. If this trend continues, we may see the Sun heading towards a "Maunder" type of solar activity minimum - an extensive period of reduced levels of solar activity. For the solar physicists, who enjoy studying solar activity, we hope this isn't so, but for NASA, which must place and maintain satellites in low earth orbit (LEO), it may help with reboost problems. Space debris, and other aspects of objects in LEO will also be affected. This research is supported by the NSF and NASA.
A nonmagnetic differentiated early planetary body
Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; ...
2017-06-19
Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<~1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. Finally, this supports a recent conclusion that the solar nebula had dissipated by ~4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.
Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<~1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. Finally, this supports a recent conclusion that the solar nebula had dissipated by ~4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less
A nonmagnetic differentiated early planetary body
NASA Astrophysics Data System (ADS)
Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; Gattacceca, Jérôme; Shuster, David L.; Downey, Brynna; Hu, Jinping; Fu, Roger R.; Kuan, Aaron T.; Suavet, Clément; Irving, Anthony J.; Wang, Jun; Wang, Jiajun
2017-06-01
Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating that it last cooled in a near-zero field (<∼1.7 μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al-Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. This supports a recent conclusion that the solar nebula had dissipated by ∼4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.
STELLAR DYNAMO MODELS WITH PROMINENT SURFACE TOROIDAL FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonanno, Alfio
2016-12-20
Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy inmore » low-mass fast-rotating stars can be naturally explained with an underlying α Ω mechanism.« less
Dynamical systems for modeling the evolution of the magnetic field of stars and Earth
NASA Astrophysics Data System (ADS)
Popova, H.
2016-02-01
The cycles of solar magnetic activity are connected with a solar dynamo that operates in the convective zone. Solar dynamo mechanism is based on the combined action of the differential rotation and the alpha-effect. Application of these concepts allows us to get an oscillating solution as a wave of the toroidal field propagating from middle latitudes to the equator. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the solar magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the convection zone of the star. It was shown the possibility of coexistence of quiasi-biennial and 22-year cycle. We obtained the different regimes (oscillations, vacillations, dynamo-bursts) depending on the value of the dynamo-number, the meridional circulation, and thickness of the convection zone. We discuss the features of these regimes and compare them with the observed features of evolution of the solar and geo magnetic fields. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.
Constraints on the nature of the ancient lunar magnetic field
NASA Technical Reports Server (NTRS)
Goswami, J. N.
1976-01-01
Assuming that the physical properties of solar-wind ions have remained unchanged over the past 4 billion years, the observation of solar-wind ions in lunar breccias with compaction ages greater than 3.2 billion years places constraints on the nature and origin of the ancient lunar magnetic field. Solar-wind ions would not be expected to occur in old lunar breccias if a surface magnetic field of more than 0.03 gauss was present. Several explanations of this phenomenon are consistent with the global lunar dynamo theory of the origin of the lunar dipole field, including a wandering of the lunar dipole axis, late onset of dynamo action, and reversals of the lunar dipole field, producing a long-term field close to zero. Models invoking external field magnetization as the cause of the ancient lunar magnetic field constrain the dipole axis, precluding field reversals, and do not provide an alternative explanation for the observed occurrence of solar-wind ions in lunar breccias.
Using the Solar Polar Magnetic Field for Longterm Predictions of Solar Activity, Solar Cycles 21-25
NASA Astrophysics Data System (ADS)
Pesnell, W. D.; Schatten, K. H.
2017-12-01
We briefly review the dynamo and geomagnetic precursor methods of long-term solar activity forecasting. These methods depend upon the most basic aspect of dynamo theory to predict future activity, future magnetic field arises directly from the amplification of pre-existing magnetic field. We then generalize the dynamo technique, allowing the method to be used at any phase of the solar cycle, to the Solar Dynamo Amplitude (SODA) index. This index is sensitive to the magnetic flux trapped within the Sun's convection zone but insensitive to the phase of the solar cycle. Since magnetic fields inside the Sun can become buoyant, one may think of the acronym SODA as describing the amount of buoyant flux. We will show how effective the SODA Index has been in predicting Solar Cycles 23 and 24, and present a unified picture of earlier estimates of the polar magnetic configuration in Solar Cycle 21 and 22. Using the present value of the SODA index, we estimate that the next cycle's smoothed peak activity will be about 125 ± 30 solar flux units for the 10.7 cm radio flux and a sunspot number of 70 ± 25. This suggests that Solar Cycle 25 will be comparable to Solar Cycle 24. Since the current approach uses data prior to solar minimum, these estimates may improve when the upcoming solar minimum is reached.
Lunar surface magnetometer experiment
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.
1972-01-01
The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.
Special issue on current research in astrophysical magnetism
NASA Astrophysics Data System (ADS)
Kosovichev, Alexander; Lundstedt, Henrik; Brandenburg, Axel
2012-06-01
Much of what Hannes Alfvén envisaged some 70 years ago has now penetrated virtually all branches of astrophysical research. Indeed, magnetic fields can display similar properties over a large range of scales. We have therefore been able to take advantage of the transparency of galaxies and the interstellar medium to obtain measurements inside them. On the other hand, the Sun is much closer, allowing us to obtain a detailed picture of the interaction of flows and magnetic fields at the surface, and more recently in the interior by helioseismology. Moreover, the solar timescales are generally much shorter, making studies of dynamical processes more direct. This special issue on current research in astrophysical magnetism is based on work discussed during a one month Nordita program Dynamo, Dynamical Systems and Topology and comprises papers that fall into four different categories (A)-(D). (A) Papers on small-scale magnetic fields and flows in astrophysics 1. E M de Gouveia Dal Pino, M R M Leão, R Santos-Lima, G Guerrero, G Kowal and A Lazarian Magnetic flux transport by turbulent reconnection in astrophysical flows 2. Philip R Goode, Valentyna Abramenko and Vasyl Yurchyshyn New solar telescope in Big Bear: evidence for super-diffusivity and small-scale solar dynamos? 3. I N Kitiashvili, A G Kosovichev, N N Mansour, S K Lele and A A Wray Vortex tubes of turbulent solar convection The above collection of papers begins with a review of astrophysical reconnection and introduces the concept of dynamos necessary to explain the existence of contemporary magnetic fields both on galactic and solar scales (paper 1). This is complemented by observations with the new Big Bear Solar Observatory telescope, allowing us to see magnetic field amplification on small scales (paper 2). This in turn is complemented by realistic simulations of subsurface and surface flow patterns (paper 3). (B) Papers on theoretical approaches to turbulent fluctuations 4. Nathan Kleeorin and Igor Rogachevskii Growth rate of small-scale dynamo at low magnetic Prandtl numbers 5. Erico L Rempel, Abraham C-L Chian and Axel Brandenburg Lagrangian chaos in an ABC-forced nonlinear dynamo 6. J E Snellman, M Rheinhardt, P J Käpylä, M J Mantere and A Brandenburg Mean-field closure parameters for passive scalar turbulence Research in dynamo theory has been actively pursued for over half a century. It started by trying to understand the large-scale magnetic fields of the Sun and the Earth, and subsequently also in galaxies. Such large-scale fields can nowadays be understood in terms of mean-field dynamo theory that explains the possibility of large-scale field generation under anisotropic conditions lacking mirror symmetry. However, even when none of this is the case, dynamos can still work, and they are called small-scale dynamos that were referred to in paper 2. This was studied originally under the assumption that the flow is smooth compared with the magnetic field, but in the Sun the opposite is the case. This is because viscosity is much smaller than magnetic diffusivity, i.e., their ratio, which is the magnetic Prandtl number, is small. In that case the physics of small-scale dynamos changes, but dynamos still exist even then (paper 4). Tracing the flow lines in nonlinear small-scale dynamos is important for understanding their mixing properties (paper 5). Turbulent mixing is a generic concept that applies not only to magnetic field, but also to passive scalars which are often used as a prototype for studying this. Turbulence simulations have helped tremendously in quantifying the ability of turbulent flows to mix, but the more we know, the more complicated it becomes. It turns out that spatial and temporal coupling is an important consideration for allowing accurate comparison between numerical simulations and mean-field theory (paper 6). (C) The large-scale solar cycle 7. V V Pipin and D D Sokoloff The fluctuating α-effect and Waldmeier relations in the nonlinear dynamo models1 8. Radostin D Simitev and Friedrich H Busse Solar cycle properties described by simple convection-driven dynamos The mean-field concept has helped us constructing detailed models of the solar cycle and to make comparison with observed features of the solar 11-year cycle. One such feature is the Waldmeier relation between growth time and amplitude of the cycle, and there is another relation for the declining part of the cycle. These relations reflect nonlinear aspects of the model and therefore constitute an important test of the model (paper 7). While mean-field theory is a useful concept for modeling solar activity, it must eventually be tested against fully three-dimensional simulations. At present, such simulations are often quite idealized, because only the large scales of the turbulent convection of stars can be resolved. Nevertheless, numerical simulations begin to show many properties that are also seen in the Sun (paper 8). (D) Flow and dynamo properties in spherical shells 9. Maxim Reshetnyak and Pavel Hejda Kinetic energy cascades in quasi-geostrophic convection in a spherical shell 10. Radostin D Simitev and Friedrich H Busse Bistable attractors in a model of convection-driven spherical dynamos As the rotation speed is increased, the flow becomes more strongly constrained by the Coriolis force. In a spherical shell, such a flow is additionally constrained by gravity, or at least by the geometry of the domain. Such flows are called geostrophic. Only now are we beginning to learn about the subtle properties of the kinetic energy cascade in such flows (paper 9). Turbulent systems are highly nonlinear and it is in principle possible to find multiple solutions of the equations even for the same boundary and initial conditions. For turbulent systems, we can only ask about the statistical properties of the solutions, and the question of multiple solutions is then less obvious. However, in turbulent dynamos in convective shells, a nice example has been found where this is possible. A detailed account of this is given in paper 10. Most of the participants of the Nordita program were able to stay for the full month of the program, allowing them to think about new ideas that will be reflected not only in papers on the short term, but also in new projects and collaborations on a larger scale in the years to come. We therefore thank Nordita for providing a stimulating atmosphere and acknowledge the generous support. 1This paper has been published as V V Pipin and D D Sokoloff 2011 Phys. Scr. 84 065903.
Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars
NASA Astrophysics Data System (ADS)
Warnecke, J.; Rheinhardt, M.; Tuomisto, S.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.
2018-01-01
Aims: We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. Methods: We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally (φ) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to the α tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos. Results: We find that the φφ-component of the α tensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.
NASA Astrophysics Data System (ADS)
Strassmeier, Klaus G.
2009-09-01
Starspots are created by local magnetic fields on the surfaces of stars, just as sunspots. Their fields are strong enough to suppress the overturning convective motion and thus block or redirect the flow of energy from the stellar interior outwards to the surface and consequently appear as locally cool and therefore dark regions against an otherwise bright photosphere (Biermann in Astronomische Nachrichten 264:361, 1938; Z Astrophysik 25:135, 1948). As such, starspots are observable tracers of the yet unknown internal dynamo activity and allow a glimpse into the complex internal stellar magnetic field structure. Starspots also enable the precise measurement of stellar rotation which is among the key ingredients for the expected internal magnetic topology. But whether starspots are just blown-up sunspot analogs, we do not know yet. This article is an attempt to review our current knowledge of starspots. A comparison of a white-light image of the Sun (G2V, 5 Gyr) with a Doppler image of a young solar-like star (EK Draconis; G1.5V, age 100 Myr, rotation 10 × Ω Sun) and with a mean-field dynamo simulation suggests that starspots can be of significantly different appearance and cannot be explained with a scaling of the solar model, even for a star of same mass and effective temperature. Starspots, their surface location and migration pattern, and their link with the stellar dynamo and its internal energy transport, may have far reaching impact also for our understanding of low-mass stellar evolution and formation. Emphasis is given in this review to their importance as activity tracers in particular in the light of more and more precise exoplanet detections around solar-like, and therefore likely spotted, host stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hotta, H.; Yokoyama, T.; Rempel, M., E-mail: hotta.h@eps.s.u-tokyo.ac.jp
2014-05-01
We carry out non-rotating high-resolution calculations of the solar global convection, which resolve convective scales of less than 10 Mm. To cope with the low Mach number conditions in the lower convection zone, we use the reduced speed of sound technique (RSST), which is simple to implement and requires only local communication in the parallel computation. In addition, the RSST allows us to expand the computational domain upward to about 0.99 R {sub ☉}, as it can also handle compressible flows. Using this approach, we study the solar convection zone on the global scale, including small-scale near-surface convection. In particular,more » we investigate the influence of the top boundary condition on the convective structure throughout the convection zone as well as on small-scale dynamo action. Our main conclusions are as follows. (1) The small-scale downflows generated in the near-surface layer penetrate into deeper layers to some extent and excite small-scale turbulence in the region >0.9 R {sub ☉}, where R {sub ☉} is the solar radius. (2) In the deeper convection zone (<0.9 R {sub ☉}), the convection is not influenced by the location of the upper boundary. (3) Using a large eddy simulation approach, we can achieve small-scale dynamo action and maintain a field of about 0.15B {sub eq}-0.25B {sub eq} throughout the convection zone, where B {sub eq} is the equipartition magnetic field to the kinetic energy. (4) The overall dynamo efficiency varies significantly in the convection zone as a consequence of the downward directed Poynting flux and the depth variation of the intrinsic convective scales.« less
Oscillating dynamo in the presence of a fossil magnetic field - The solar cycle
NASA Technical Reports Server (NTRS)
Levy, E. H.; Boyer, D.
1982-01-01
Hydromagnetic dynamo generation of oscillating magnetic fields in the presence of an external, ambient magnetic field introduces a marked polarity asymmetry between the two halves of the magnetic cycle. The principle of oscillating dynamo interaction with external fields is developed, and a tentative application to the sun is described. In the sun a dipole moment associated with the stable fluid beneath the convection zone would produce an asymmetrical solar cycle.
Ensemble Kalman Filter Data Assimilation in a Solar Dynamo Model
NASA Astrophysics Data System (ADS)
Dikpati, M.
2017-12-01
Despite great advancement in solar dynamo models since the first model by Parker in 1955, there remain many challenges in the quest to build a dynamo-based prediction scheme that can accurately predict the solar cycle features. One of these challenges is to implement modern data assimilation techniques, which have been used in the oceanic and atmospheric prediction models. Development of data assimilation in solar models are in the early stages. Recently, observing system simulation experiments (OSSE's) have been performed using Ensemble Kalman Filter data assimilation, in the framework of Data Assimilation Research Testbed of NCAR (NCAR-DART), for estimating parameters in a solar dynamo model. I will demonstrate how the selection of ensemble size, number of observations, amount of error in observations and the choice of assimilation interval play important role in parameter estimation. I will also show how the results of parameter reconstruction improve when accuracy in low-latitude observations is increased, despite large error in polar region data. I will then describe how implementation of data assimilation in a solar dynamo model can bring more accuracy in the prediction of polar fields in North and South hemispheres during the declining phase of cycle 24. Recent evidence indicates that the strength of the Sun's polar field during the cycle minima might be a reliable predictor for the next sunspot cycle's amplitude; therefore it is crucial to accurately predict the polar field strength and pattern.
Magnetic Helicity and the Solar Dynamo
NASA Technical Reports Server (NTRS)
Canfield, Richard C.
1997-01-01
The objective of this investigation is to open a new window into the solar dynamo, convection, and magnetic reconnection through measurement of the helicity density of magnetic fields in the photosphere and tracing of large-scale patterns of magnetic helicity in the corona.
Aurora on Uranus - A Faraday disc dynamo mechanism
NASA Technical Reports Server (NTRS)
Hill, T. W.; Rassbach, M. E.; Dessler, A. J.
1983-01-01
A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.
Dynamo theory prediction of solar activity
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1988-01-01
The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.
A Nonmagnetic Differentiated Early Planetary Body
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Benjamin P.; Wang, Jun
2017-06-15
Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<∼1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. This supports a recent conclusion that the solar nebula had dissipated by ∼4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less
First Spectroscopic Detection of Surface Structures on a Normal A-Type Star - The Case of Vega
NASA Astrophysics Data System (ADS)
Böhm, Torsten
2018-04-01
For the first time the existence of spots on the surface of the intermediate mass star Vega has been shown. This unexpected result sets new important constraints on the stellar evolution of intermediate mass stars and in particular on the magnetic field generation mechanisms. Vega (α Lyrae) is an intermediate mass star (spectral class A0) in rapid rotation (Prot = 0.68 d). Since more than 150 years it is a stability reference for photometry. Despite the fact that very small sporadic light variations had been announced in the past, no periodicity had been detected in its light curve. In 2009 a very faint magnetic field has been detected on Vega (Lignières et al., 2009, A&A, 500L, 41) and subsequently also on other stars of the same spectral class (A). While the solar magnetic field is generated by a dynamo mechanism in its convective envelope, the origin of magnetic field in stars exempt of convective envelopes, such as Vega, remains mysterious. One of the characteristics of the solar dynamo is its temporal variability revealed by the appearance or disappearance of solar spots. Are there similar structures on the surface of Vega? 2015 A&A, 577, 64. & Nature Research Highlights
NASA Astrophysics Data System (ADS)
Hood, Alan W.; Hughes, David W.
2011-08-01
This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulations can help to determine the physical processes governing the emergence of sunspots. We discuss the interaction of these emerging fields with the pre-existing coronal field, resulting in a variety of dynamic phenomena.
NASA Astrophysics Data System (ADS)
Belucz, B.; Dikpati, M.; Forgacs-Dajka, E.
2014-12-01
Babcock-Leighton type solar dynamo models with single cell meridional circulation are successful in reproducing many solarcycle features, and recently such a model was applied for solarcycle 24 amplitude prediction. It seems that cycle 24 amplitudeforecast may not be validated. One of the reasons is the assumption of a single cell meridional circulation. Recent observations andtheoretical models of meridional circulation do not indicate a single-celledflow pattern. So it is nessecary to examine the role of complexmulti-cellular circulation patterns in a Babcock-Leighton solar dynamo model in the advection and diffusion dominated regimes.By simulating a Babcock-Leighton solar dynamo model with multi-cellularflow, we show that the presence of a weak, second, high-latitudereverse cell speeds up the cycle and slighty enhances the poleward branch in the butterfly diagram, whereas the presence of a second cellin depth reverses the tilt of the butterfly wing and leads to ananti-solar type feature. If, instead, the butterfly diagram isconstructed from the middle of the convection zone in that case, a solar-like pattern can be retrieved. All the above cases behavequalitatively similar in advection and diffusion-dominated regimes.However, our dynamo with a meridional circulation containing fourcells in latitude behaves distinctly different in the two regimes, producing a solar-like butterfly diagram with fast cycles indiffusion-dominated regime, and a complex branches in the butterflydiagram in the advection-dominated regime. Another interestingfinding from our studies is that a four-celled flow pattern containing two in radius and two in latitude always producesquadrupolar parity as the relaxed solution.
NASA Astrophysics Data System (ADS)
Glatzmaier, G. A.
2010-12-01
There has been considerable interest during the past few years about the banded zonal winds and global magnetic field on Saturn (and Jupiter). Questions regarding the depth to which the intense winds extend below the surface and the role they play in maintaining the dynamo continue to be debated. The types of computer models employed to address these questions fall into two main classes: general circulation models (GCMs) based on hydrostatic shallow-water assumptions from the atmospheric and ocean modeling communities and global non-hydrostatic deep convection models from the geodynamo and solar dynamo communities. The latter class can be further divided into Boussinesq models, which do not account for density stratification, and anelastic models, which do. Recent efforts to convert GCMs to deep circulation anelastic models have succeeded in producing fluid flows similar to those obtained from the original deep convection anelastic models. We describe results from one of the original anelastic convective dynamo simulations and compare them to a recent anelastic dynamo benchmark for giant gas planets. This benchmark is based on a polytropic reference state that spans five density scale heights with a radius and rotation rate similar to those of our solar system gas giants. The resulting magnetic Reynolds number is about 3000. Better spatial resolution will be required to produce more realistic predictions that capture the effects of both the density and electrical conductivity stratifications and include enough of the turbulent kinetic energy spectrum. Important additional physics may also be needed in the models. However, the basic models used in all simulation studies of the global dynamics of giant planets will hopefully first be validated by doing these simpler benchmarks.
Lifetime of the Lunar Dynamo Constrained by the Young Apollo Regolith Breccia 15015
NASA Astrophysics Data System (ADS)
Wang, H.; Weiss, B. P.
2016-12-01
Paleomagnetic studies have shown that a dynamo magnetic field of tens of µT likely existed on the surface of the Moon from at least 4.5 to 3.6 Ga and declined to several µT by 3.3 Ga [Weiss and Tikoo, 2014]. Furthermore, a recent analysis of lunar regolith breccia 15498 found that the lunar surface field was still 5 µT at 1-2.5 Ga [Tikoo et al., 2015]. However, a key unknown is when the dynamo finally ceased. To address this, we studied the melt glass matrix of Apollo lunar regolith breccia 15015. 40Ar/39Ar measurements suggest that the glass formed at 1.0 ± 0.2 Ga [Eglinton et al., 1974], consistent with its trapped 40Ar/36Ar model age of 0.5 ± 0.4 Ga [Fagan et al. 2014]. Hysteresis data indicate a predominately pseudo-single domain grain size, making 15015 an exceptional paleomagnetic recorder among lunar rocks. Alternating field (AF) demagnetization and anhysteretic remanence (ARM) paleointensity experiments found that 15015 subsamples with faces exposed to band-saw cutting at Johnson Space Center contain highly stable natural remanence (NRM) (>420 mT) and yield paleointensities up to 60 µT, but have NRM directions that are highly non-unidirectional across the parent sample. Subsamples taken away from the saw-cut faces (>5 mm depth) contain no stable NRM and formed in a paleofield <0.1 µT (Fig. 1). Thermal demagnetization of band-sawed samples found that their AF-stable NRM demagnetizes by 150ºC, indicating that their stable NRMs are in fact partial thermoremanence (TRM) overprints from the band-saw cutting process, rather than true lunar total TRM. Thus, the lunar surface paleomagnetic field recorded by 15015 was apparently extremely weak (<0.1 µT) at 1.0 Ga. For typically assumed lunar interior parameters, essentially all published models of the lunar dynamo predict surface fields >0.1 µT for > 90% of the time period while the dynamo is active. Such a minimum field is comparable to estimates of the strongest lunar crustal surface fields and below even the weakest known dynamo surface field in the solar system today. Therefore, our 0.1 µT upper limit indicates that the lunar dynamo likely turned off sometime between 2.5 Ga and 1.0 Ga. This timing appears to be consistent with both thermochemical convection due to core crystallization and mantle precession as the major power sources for the late lunar dynamo.
The solar magnetic field: from complexity to simplicity (and back)
NASA Astrophysics Data System (ADS)
Schüssler, Manfred
2017-06-01
The Sun is the only astrophysical object that permits a detailed study of the basic processes governing its magnetic field. Observations reveal stunning complexity due to the interaction with turbulent convection. Numerical simulations and observations strongly suggest that most of the small-scale field is generated by a process called small-scale dynamo action. The fundamental nature of this process makes it a candidate for magnetic field generation in a broad variety of astrophysical settings.On the other hand, the global nature of the 11-year cycle (as exhibited, for instance, by the polarity laws of sunspot groups and the regularly reversing axial dipole field) reveals a surprising simplicity. This suggests a description of the global dynamo process underlying the solar cycle in terms of relatively simple concepts. Insufficient knowledge about the structure of magnetic field and flows in the convection zone requires the introduction of a variety of free parameters (or even free functions), which severely impairs the explanatory power of most such models. However, during the last decades, surface observations of plasma flows and magnetic flux emergence, together with studies of magnetic flux transport, provided crucial information aboutthe workings of the dynamo process. They confirm the visionary approach proposed already in the 1960s by Babcock and Leighton. A recent update of their model permits a full study of the space spanned by the few remaining parameters in order to identify the regions with solar-like solutions.Observations of other cool stars show that the magnetic activity level decreases strongly with stellar rotation rate. The relatively slow rotation of the Sun puts it near to the threshold at which global dynamo action ceases. This suggests a further simplification of the dynamo model in terms of a generic normal form for a weakly nonlinear system. Including the inherent randomness brought about by the flux emergence process leads to a stochastic model whose parameters are fixed by observations. The model results explain the variability of the solar cycle amplitudes from decadal to millennial time scales.
Progress Towards a Time-Dependent Theory of Solar Meridional Flows
NASA Astrophysics Data System (ADS)
Shirley, James H.
2017-08-01
Large-scale meridional motions of solar materials play an important role in flux transport dynamo models. Meridional flows transport surface magnetic flux to polar regions of the Sun, where it may later be subducted and conveyed back towards the equatorial region by a deep return flow in the convection zone. The transported flux may thereafter lead to the generation of new toroidal fields, thereby completing the dynamo cycle. More than two decades of observations have revealed that meridional flow speeds vary substantially with time. Further, a complex morphological variability of meridional flow cells is now recognized, with multiple cell structures detected both in latitude and in depth. ‘Countercells’ with reversed flow directions have been detected at various times. Flow speeds are apparently influenced by the proximity of flows to active regions. This complexity represents a considerable challenge to dynamo modeling efforts. Flows morphology and speed changes may be arbitrarily prescribed in models, but physical realism of model outputs may be questionable, and elusive: The models are ‘trying to hit a moving target.’ Considerations such as these led Belucz et al. (2013; Ap. J. 806:169) to call for “time-dependent theories that can tell us theoretically how this circulation may change its amplitude and form in each hemisphere.” Such a theory now exists for planetary atmospheres (Shirley, 2017; Plan. Sp. Sci. 141, 1-16). Proof of concept for the non-tidal orbit-spin coupling hypothesis of Shirley (2017) was obtained through numerical modeling of the atmospheric circulation of Mars (Mischna & Shirley, 2017; Plan. Sp. Sci. 141, 45-72). Much-improved correspondence of numerical modeling outcomes with observations was demonstrated. In this presentation we will briefly review the physical hypothesis and some prior evidence of its possible role in solar dynamo excitation. We show a strong correlation between observed meridional flow speeds of magnetic features in Cycle 23 with the putative dynamical forcing function. We will also briefly discuss the potential for incorporating orbit-spin coupling accelerations within existing numerical solar dynamo models.
NASA Astrophysics Data System (ADS)
Jabbari, S.; Brandenburg, A.
2014-12-01
Recent studies have suggested a new mechanism that can be used to explain the formation of magnetic spots or bipolar regions in highly stratified turbulent plasmas. According to this model, a large-scale magnetic field suppresses the turbulent pressure, which leads to a negative contribution of turbulence to the effective magnetic pressure. Direct numerical simulations (DNS) have confirmed that the negative contribution is large enough so that the effective magnetic pressure becomes negative and leads to a large-scale instability, which we refer to as negative effective magnetic pressure Instability (NEMPI). NEMPI was used to explain the formation of active regions and sunspots on the solar surface. One step toward improving this model was to combine dynamo in- stability with NEMPI. The dynamo is known to be responsible for the solar large-scale magnetic field and to play a role in solar activity. In this context, we studied stratified turbulent plasmas in spherical geometry, where the background field was generated by alpha squared dynamo. For NEMPI to be excited, the initial magnetic field should be in a proper range, so we used quenching function for alpha. Using the Pencil Code and mean field simulations (MFS), we showed that in the presence of dynamo-generated magnetic fields, we deal with a coupled system, where both instabilities, dynamo and NEMPI, work together and lead to the formation of magnetic structures (Jabbari et al. 2013). We also studied a similar system in plane geometry in the presence of rotation and confirmed that for slow rotation NEMPI works, but as the Coriolis number increases, the rotation suppresses NEMPI. By increasing the Coriolis number even further, the combination of fast rotation and high stratification excites a dynamo, which leads again to a coupled system of dynamo and NEMPI (Jabbari et al. 2014). Another important finding concerning NEMPI is the case where the instability is excited by a vertical magnetic field (Brandenburg et al. 2013). When the field is vertical, the resulting magnetic flux concentrations lead to the magnetic spots and can be of equipartition field strength. DNS, MFS, and implicit large eddy simulations (ILES) confirm that in a proper parameter regime, vertical imposed fields lead to the formation of circular magnetic spots (Brandenburg et al. 2014).
Comparison of solar wind driving of the aurora in the two hemispheres due to the solar wind dynamo
NASA Astrophysics Data System (ADS)
Reistad, Jone Peter; Østgaard, Nikolai; Magnus Laundal, Karl; Haaland, Stein; Tenfjord, Paul; Oksavik, Kjellmar
2014-05-01
Event studies of simultaneous global imaging of the aurora in both hemispheres have suggested that an asymmetry of the solar wind driving between the two hemispheres could explain observations of non-conjugate aurora during specific driving conditions. North-South asymmetries in energy transfer from the solar wind across the magnetopause is believed to depend upon the dipole tilt angle and the x-component of the interplanetary magnetic field (IMF). Both negative tilt (winter North) and negative IMF Bx is expected to enhance the efficiency of the solar wind dynamo in the Northern Hemisphere. By the same token, positive tilt and IMF Bx is expected to enhance the solar wind dynamo efficiency in the Southern Hemisphere. We show a statistical study of the auroral response from both hemispheres using global imaging where we compare results during both favourable and not favourable conditions in each hemisphere. By this study we will address the question of general impact on auroral hemispheric asymmetries by this mechanism - the asymmetric solar wind dynamo. We use data from the Wideband Imaging Camera on the IMAGE spacecraft which during its lifetime from 2000-2005 covered both hemispheres. To ease comparison of the two hemispheres, seasonal differences in auroral brightness is removed as far as data coverage allows by only using events having small dipole tilt angles. Hence, the IMF Bx is expected to be the controlling parameter for the hemispheric preference of strongest solar wind dynamo efficiency in our dataset. Preliminary statistical results indicate the expected opposite behaviour in the two hemispheres, however, the effect is believed to be weak.
Solar activity simulation and forecast with a flux-transport dynamo
NASA Astrophysics Data System (ADS)
Macario-Rojas, Alejandro; Smith, Katharine L.; Roberts, Peter C. E.
2018-06-01
We present the assessment of a diffusion-dominated mean field axisymmetric dynamo model in reproducing historical solar activity and forecast for solar cycle 25. Previous studies point to the Sun's polar magnetic field as an important proxy for solar activity prediction. Extended research using this proxy has been impeded by reduced observational data record only available from 1976. However, there is a recognised need for a solar dynamo model with ample verification over various activity scenarios to improve theoretical standards. The present study aims to explore the use of helioseismology data and reconstructed solar polar magnetic field, to foster the development of robust solar activity forecasts. The research is based on observationally inferred differential rotation morphology, as well as observed and reconstructed polar field using artificial neural network methods via the hemispheric sunspot areas record. Results show consistent reproduction of historical solar activity trends with enhanced results by introducing a precursor rise time coefficient. A weak solar cycle 25, with slow rise time and maximum activity -14.4% (±19.5%) with respect to the current cycle 24 is predicted.
Magnetic flux concentrations from dynamo-generated fields
NASA Astrophysics Data System (ADS)
Jabbari, S.; Brandenburg, A.; Losada, I. R.; Kleeorin, N.; Rogachevskii, I.
2014-08-01
Context. The mean-field theory of magnetized stellar convection gives rise to two distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. Aims: We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an α2 mean-field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. Methods: We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients. Results: DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MFS. As expected for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Conclusions: Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.
Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2014-04-10
We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less
STELLAR DYNAMOS AND CYCLES FROM NUMERICAL SIMULATIONS OF CONVECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubé, Caroline; Charbonneau, Paul, E-mail: dube@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca
We present a series of kinematic axisymmetric mean-field αΩ dynamo models applicable to solar-type stars, for 20 distinct combinations of rotation rates and luminosities. The internal differential rotation and kinetic helicity profiles required to calculate source terms in these dynamo models are extracted from a corresponding series of global three-dimensional hydrodynamical simulations of solar/stellar convection, so that the resulting dynamo models end up involving only one free parameter, namely, the turbulent magnetic diffusivity in the convecting layers. Even though the αΩ dynamo solutions exhibit a broad range of morphologies, and sometimes even double cycles, these models manage to reproduce relativelymore » well the observationally inferred relationship between cycle period and rotation rate. On the other hand, they fail in capturing the observed increase of magnetic activity levels with rotation rate. This failure is due to our use of a simple algebraic α-quenching formula as the sole amplitude-limiting nonlinearity. This suggests that α-quenching is not the primary mechanism setting the amplitude of stellar magnetic cycles, with magnetic reaction on large-scale flows emerging as the more likely candidate. This inference is coherent with analyses of various recent global magnetohydrodynamical simulations of solar/stellar convection.« less
Evidence for a Second Martian Dynamo from Electron Reflection Magnetometry
NASA Technical Reports Server (NTRS)
Lillis, R. J.; Manga, M.; Mitchell, D. L.; Lin, R. P.; Acuna, M. H.
2005-01-01
Present-day Mars does not possess an active core dynamo and associated global magnetic field. However, the discovery of intensely magnetized crust in Mars Southern hemisphere implies that a Martian dynamo has existed in the past. Resolving the history of the Martian core dynamo is important for understanding the evolution of the planet's interior. Moreover, because the global magnetic field provided by an active dynamo can shield the atmosphere from erosion by the solar wind, it may have influenced past Martian climate. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Popova, E.; Zharkova, V. V.; Shepherd, S. J.; Zharkov, S.
2016-12-01
Using the principal components of solar magnetic field variations derived from the synoptic maps for solar cycles 21-24 with Principal Components Analysis (PCA) (Zharkova et al, 2015) we confirm our previous prediction of the upcoming Maunder minimum to occur in cycles 25-27, or in 2020-2055. We also use a summary curve of the two eigen vectors of solar magnetic field oscillations (or two dynamo waves) to extrapolate solar activity backwards to the three millennia and to compare it with relevant historic and Holocene data. Extrapolation of the summary curve confirms the eight grand cycles of 350-400-years superimposed on 22 year-cycles caused by beating effect of the two dynamo waves generated in the two (deep and shallow) layers of the solar interior. The grand cycles in different periods comprise a different number of individual 22-year cycles; the longer the grand cycles the larger number of 22 year cycles and the smaller their amplitudes. We also report the super-grand cycle of about 2000 years often found in solas activity with spectral analysis. Furthermore, the summary curve reproduces a remarkable resemblance to the sunspot and terrestrial activity reported in the past: the recent Maunder Minimum (1645-1715), Dalton minimum (1790-1815), Wolf minimum (1200), Homeric minimum (800-900 BC), the Medieval Warmth Period (900-1200), the Roman Warmth Period (400-10BC) and so on. Temporal variations of these dynamo waves are modelled with the two layer mean dynamo model with meridional circulation revealing a remarkable resemblance of the butterfly diagram to the one derived for the last Maunder minimum in 17 century and predicting the one for the upcoming Maunder minimum in 2020-2055.
COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, L. H.; Xiang, Y. Y.; Dun, G. T.
The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaoticmore » attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.« less
NASA Technical Reports Server (NTRS)
Harvey, Karen L. (Editor)
1992-01-01
Attention is given to a flux-transport model, the effect of fractal distribution on the evolution of solar surface magnetic fields, active nests on the sun, magnetic flux transport in solar active regions, recent advances in stellar cycle research, magnetic intermittency on the sun, a search for existence of large-scale motions on the sun, and new solar cycle data from the NASA/NSO spectromagnetograph. Attention is also given to the solar cycle variation of coronal temperature during cycle 22, the distribution of the north-south asymmetry for the various activity cycles, solar luminosity variation, a two-parameter model of total solar irradiance variation over the solar cycle, the origin of the solar cycle, nonlinear feedbacks in the solar dynamo, and long-term dynamics of the solar cycle.
The Predictability of Advection-dominated Flux-transport Solar Dynamo Models
NASA Astrophysics Data System (ADS)
Sanchez, Sabrina; Fournier, Alexandre; Aubert, Julien
2014-01-01
Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo. Interested in the forecast horizon of such studies, we quantify the predictability window of a representative, advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τ e . The e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average estimate for τ e equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After reviewing these, we discuss their implications for solar cycle prediction.
NASA Astrophysics Data System (ADS)
Proctor, M. R. E.; Matthews, P. C.; Rucklidge, A. M.
2008-02-01
Preface; 1. Magnetic noise and the galactic dynamo; 2. On the oscillation in model Z; 3. Nonlinear dynamos in a spherical shell; 4. The onset of dynamo action in alpha-lambda dynamos; 5. Multifractality, near-singularities and the role of stretching in turbulence; 6. Note on perfect fast dynamo action in a large-amplitude SFS map; 7. A thermally driven disc dynamo; 8. Magnetic instabilities in rapidly rotating systems; 9. Modes of a flux ring lying in the equator of a star; 10. A nonaxisymmetric dynamo in toroidal geometry; 11. Simulating the interaction of convection with magnetic fields in the sun; 12. Experimental aspects of a laboratory scale liquid sodium dynamo model; 13. Influence of the period of an ABC flow on its dynamo action; 14. Numerical calculations of dynamos for ABC and related flows; 15. Incompressible Euler equations; 16. On the quasimagnetostrophic asymptotic approximation related to solar activity; 17. Simple dynamical fast dynamos; 18. A numerical study of dynamos in spherical shells with conducting boundaries; 19. Non-axisymmetric shear layers in a rotating spherical shell; 20. Testing for dynamo action; 21. Alpha-quenching in cylindrical magnetoconvection; 22. On the stretching of line elements in fluids: an approach from different geometry; 23. Instabilities of tidally and precessionally induced flows; 24. Probability distribution of passive scalars with nonlinear mean gradient; 25. Magnetic fluctuations in fast dynamos; 26. A statistical description of MHD turbulence in laboratory plasma; 27. Compressible magnetoconvection in three dimensions; 28. The excitation of nonaxisymmetric magnetic fields in galaxies; 29. Localized magnetic fields in a perfectly conducting fluid; 30. Turbulent dynamo and the geomagnetic secular variation; 31. On-off intermittency: general description and feedback model; 32. Dynamo action in a nearly integrable chaotic flow; 33. The dynamo mechanism in the deep convection zone of the sun; 34. Shearing instabilities in magnetoconvection; 35. On the role of rotation of the internal core relative to the mantle; 36. Evolution of magnetic fields in a swirling jet; 37. Analytic fast dynamo solution for a two-dimensional pulsed flow; 38. On magnetic dynamos in thin accretion disks around compact and young stars; 39. The strong field branch of the Childress-Soward dynamo; 40. Evidence for the suppression of the alpha-effect by weak magnetic fields; 41. Turbulent magnetic transport effects and their relation to magnetic field intermittency; 42. Proving the existence of negative variation of electrical conductivity; 43. Spherical inertial oscillation and convection; 44. Hydrodynamics stability of the ABC flow; 45. Dynamos with ambipolar diffusion; Subject index.
NASA Astrophysics Data System (ADS)
Zeldovich, Ya B.; Ruzmaĭkin, A. A.
1987-06-01
The magnetism of most celestial bodies, i.e., planets, stars, and galaxies, is of hydromagnetic origin. The turbulent hydromagnetic dynamo is the principal mechanism whereby the magnetic field is amplified and maintained, and the theory of this phenomenon has advanced significantly in recent years. This review discusses applications of the theory of the turbulent dynamo to real objects, taking the Sun, the Earth, and the Galaxy as examples. Most of the discussion is concentrated on the large-scale magnetic field averaged over turbulent fluctuations. The average field is amplified and maintained by the average helicity of turbulent motion and large-scale shear flows such as differential rotation. The dynamo theory explains striking phenomena such as geomagnetic field reversal, the solar cycle, and the ring and bisymmetric structure of spiral galaxies.
Properties of Nonlinear Dynamo Waves
NASA Technical Reports Server (NTRS)
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Solar Activity Forecasting for use in Orbit Prediction
NASA Technical Reports Server (NTRS)
Schatten, Kenneth
2001-01-01
Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.
NASA Astrophysics Data System (ADS)
Amory-Mazaudier, C.; Menvielle, M.; Curto, J-J.; Le Huy, M.
2017-12-01
This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern Solar Terrestrial Physics, Atmospheric Physics and Space Weather. In this part A, we introduce knowledge on the Sun-Earth system. We consider the physical process of the dynamo which is present in the Sun, in the core of the Earth and also in the regions between the Sun and the Earth, the solar wind-magnetosphere and the ionosphere. Equations of plasma physics and Maxwell's equations will be recalled. In the Sun-Earth system there are permanent dynamos (Sun, Earth's core, solar wind - magnetosphere, neutral wind - ionosphere) and non-permanent dynamos that are activated during magnetic storms in the magnetosphere and in the ionosphere. All these dynamos have associated electric currents that affect the variations of the Earth's magnetic field which are easily measurable. That is why a part of the tutorial is also devoted to the magnetic indices which are indicators of the electric currents in the Sun-Earth system. In order to understand some results of the part B, we present some characteristics of the Equatorial region and of the electrodynamics coupling the Auroral and Equatorial regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Poppenhaeger, Katja; Wolk, Scott J.
Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scalemore » fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.« less
Chinks in Solar Dynamo Theory: Turbulent Diffusion, Dynamo Waves and Magnetic Helicity
NASA Technical Reports Server (NTRS)
DeLuca, E. E.; Wagner, William J. (Technical Monitor)
2001-01-01
We have investigated the generation of magnetic fields in the Sun using two-dimensional and three-dimensional numerical simulations. The results of our investigations have been presented at scientific meetings and published.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Cameron, R. H.; Schüssler, M., E-mail: jiejiang@nao.cas.cn
The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input basedmore » upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.« less
Latitudinal migration of sunspots based on the ESAI database
NASA Astrophysics Data System (ADS)
Zhang, Juan; Li, Fu-Yu; Feng, Wen
2018-01-01
The latitudinal migration of sunspots toward the equator, which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone, is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation. The Extended time series of Solar Activity Indices (ESAI) elongated the Greenwich observation record of sunspots by several decades in the past. In this study, ESAI’s yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear. It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function. In addition, the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses, providing a particular constraint for solar dynamo models. Indeed, the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period, and it is located at higher latitudinal position, giving evidence to support the Babcock-Leighton dynamo mechanism.
A MODEL FOR INTERFACE DYNAMOS IN LATE K AND EARLY M DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullan, D. J.; MacDonald, J.; Houdebine, E. R., E-mail: mullan@udel.edu
2015-09-10
Measurements of the equivalent width EW(CaK) of emission in the Ca ii K line have been obtained by Houdebine et al. for stars with spectral types from dK5 to dM4. In order to explain the observed variations of EW(CaK) with spectral sub-type, we propose a quantitative model of interface dynamos in low-mass stars. Our model leads to surface field strengths B{sub s} which turn out to be essentially linearly proportional to EW(CaK). This result is reminiscent of the Sun, where Skumanich et al. found that the intensity of CaK emission in solar active regions is linearly proportional to the localmore » field strength.« less
Heliophysics: Evolving Solar Activity and the Climates of Space and Earth
NASA Astrophysics Data System (ADS)
Schrijver, Carolus J.; Siscoe, George L.
2010-09-01
Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.
Heliophysics: Evolving Solar Activity and the Climates of Space and Earth
NASA Astrophysics Data System (ADS)
Schrijver, Carolus J.; Siscoe, George L.
2012-01-01
Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.
Recent Progress in Understanding the Sun's Magnetic Dynamo
NASA Technical Reports Server (NTRS)
Hathaway, David. H.
2004-01-01
100 years ago we thought that the Sun and stars shone as a result of slow gravitational contraction over a few tens of millions of years - putting astronomers at odds with geologists who claimed that the Earth was much, much older. That mystery was solved in the 1920s and 30s with the discovery of nuclear energy (proving that the geologists had it right all along). Other scientific mysteries concerning the Sun have come and gone but three major mysteries remain: 1) How does the Sun produce sunspots with an 11-year cycle? 2) What produces the huge explosions that result in solar flares, prominence eruptions, and coronal mass ejections? and 3) Why is the Sun's outer atmosphere, the corona, so darned hot? Recent progress in solar astronomy reveals a single key to understanding all three of these mysteries.The 11-year time scale for the sunspot cycle indicates the presence of a magnetic dynamo within the Sun. For decades this dynamo was though to operate within the Sun's convection zone - the outmost 30% of the Sun where convective currents transport heat and advect magnetic lines of force. The two leading theories for the dynamo had very different models for the dynamics of the convection zone. Actual measurements of the dynamics using the techniques of helioseismology showed that both of these models had to be wrong some 20 years ago. A thin layer of strongly sheared flow at the base of the convection zone (now called the tachocline) was then taken to be the seat of the dynamo. Over the last 10 years it has become apparent that a weak meridional circulation within the convection zone also plays a key role in the dynamo. This meridional circulation has plasma rising up from the tachocline in the equatorial regions, spreading out toward the poles at a top speed of about 10-20 m/s at the surface, sinking back down to the tachocline in the polar regions, and then flowing back toward the equator at a top speed of about 1-2 m/s in the tachocline itself. Recent dynamo models that include this meridional flow now appear to have some power for predicting the size of future sunspot cycles.
NASA Astrophysics Data System (ADS)
Hazra, Gopal
2018-02-01
In this thesis, various studies leading to better understanding of the 11-year solar cycle and its theoretical modeling with the flux transport dynamo model are performed. Although this is primarily a theoretical thesis, there is a part dealing with the analysis of observational data. The various proxies of solar activity (e.g., sunspot number, sunspot area and 10.7 cm radio flux) from various observatory including the sunspot area records of Kodaikanal Observatory have been analyzed to study the irregular aspects of solar cycles and an analysis has been carried out on the correlation between the decay rate and the next cycle amplitude. The theoretical analysis starts with explaining how the magnetic buoyancy has been treated in the flux transport dynamo models, and advantages and disadvantages of different treatments. It is found that some of the irregular properties of the solar cycle in the decaying phase can only be well explained using a particular treatment of the magnetic buoyancy. Next, the behavior of the dynamo with the different spatial structures of the meridional flow based on recent helioseismology results has been studied. A theoretical model is constructed considering the back reaction due to the Lorentz force on the meridional flows which explains the observed variation of the meridional flow with the solar cycle. Finally, some results with 3D FTD models are presented. This 3D model is developed to handle the Babcock-Leighton mechanism and magnetic buoyancy more realistically than previous 2D models and can capture some important effects connected with the subduction of the magnetic field in polar regions, which are missed in 2D surface flux transport models. This 3D model is further used to study the evolution of the magnetic fields due to a turbulent non-axisymmetric velocity field and to compare the results with the results obtained by using a simple turbulent diffusivity coefficient.
Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo
NASA Astrophysics Data System (ADS)
Augustson, Kyle C.; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri
2015-08-01
The 3-D magnetohydrodynamic (MHD) Anelastic Spherical Harmonic (ASH) code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo generated magnetic fields possesses many time scales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulations relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The time scales that appear to be relevant to the magnetic polarity reversal are also identified.
Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo
NASA Astrophysics Data System (ADS)
Augustson, Kyle; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri
2015-08-01
The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.
GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustson, Kyle; Miesch, Mark; Brun, Allan Sacha
2015-08-20
The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of themore » magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.« less
Stellar Differential Rotation of F-Stars Using DI and ZDI: The Case of HR1817
NASA Astrophysics Data System (ADS)
Marsden, Stephen
2018-04-01
The measure of surface differential rotation via the motion of spots and/or magnetic features on the stellar surface is a critical part of understanding the stellar dynamo. Here we present several epochs of (Zeeman) Doppler imaging of the young late-F star HR1817 from 2001 until 2011. These results show that HR1817 exhibits a high shear of its surface features, significantly above the solar value. It would appear that F stars, with thin convective zones, have surface differential rotation rates much higher than that of low mass stars.
Constraining Substellar Magnetic Dynamos using Brown Dwarf Radio Aurorae
NASA Astrophysics Data System (ADS)
Kao, Melodie Minyu
Brown dwarfs share characteristics with both low-mass stars and gas giant planets, making them useful laboratories for studying physics occurring in objects throughout this low mass and temperature range. Of particular interest in this dissertation is the nature of the engine driving their magnetic fields. Fully convective magnetic dynamos can operate in low mass stars, brown dwarfs, gas giant planets, and even fluid metal cores in small rocky planets. Objects in this wide mass range are capable of hosting strong magnetic fields, which shape much of the evolution of planets and stars: strong fields can protect planetary atmospheres from evaporating, generate optical and infrared emission that masquerade as clouds in the atmospheres of other worlds, and affect planet formation mechanisms. Thus, implications from understanding convective dynamo mechanisms also extend to exoplanet habitability. How the convective dynamos driving these fields operate remains an important open problem. While we have extensive data to inform models of magnetic dynamo mechanisms in higher mass stars like our Sun, the coolest and lowest-mass objects that probe the substellar-planetary boundary do not possess the internal structures necessary to drive solar-type dynamos. A number of models examining fully convective dynamo mechanisms have been proposed but they remain unconstrained by magnetic field measurements in the lowest end of the substellar mass and temperature space. Detections of highly circularly polarized pulsed radio emission provide our only window into magnetic field measurements for objects in the ultracool brown dwarf regime, but these detections are very rare; until this dissertation, only one attempt out of 60 had been successful. The work presented in this dissertation seeks to address this problem and examines radio emission from late L, T, and Y spectral type brown dwarfs spanning 1-6 times the surface temperature of Earth and explores implications for fully convective magnetic dynamo models.
Solar Cycle Variability and Grand Minima Induced by Joy's Law Scatter
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Miesch, Mark S.
2017-08-01
The strength of the solar cycle varies from one cycle to another in an irregular manner and the extreme example of this irregularity is the Maunder minimum when Sun produced only a few spots for several years. We explore the cause of these variabilities using a 3D Babcock--Leighton dynamo. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with flux, tilt angle, and time of emergence all obtain from their observed distributions. The dynamo growth is limited by a tilt quenching.The randomnesses in the BMR emergences make the poloidal field unequal and eventually cause an unequal solar cycle. When observed fluctuations of BMR tilts around Joy's law, i.e., a standard deviation of 15 degrees, are considered, our model produces a variation in the solar cycle comparable to the observed solar cycle variability. Tilt scatter also causes occasional Maunder-like grand minima, although the observed scatter does not reproduce correct statistics of grand minima. However, when we double the tilt scatter, we find grand minima consistent with observations. Importantly, our dynamo model can operate even during grand minima with only a few BMRs, without requiring any additional alpha effect.
No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.
Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L
2016-05-12
Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@auecc.aichi-edu.ac.jp, E-mail: sano@ile.osaka-u.ac.jp
We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α {sup 2}-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceedsmore » in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.« less
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi; Anderson, Jeffrey L.; Mitra, Dhrubaditya
2016-09-01
We implement an Ensemble Kalman Filter procedure using the Data Assimilation Research Testbed for assimilating “synthetic” meridional flow-speed data in a Babcock-Leighton-type flux-transport solar dynamo model. By performing several “observing system simulation experiments,” we reconstruct time variation in meridional flow speed and analyze sensitivity and robustness of reconstruction. Using 192 ensemble members including 10 observations, each with 4% error, we find that flow speed is reconstructed best if observations of near-surface poloidal fields from low latitudes and tachocline toroidal fields from midlatitudes are assimilated. If observations include a mixture of poloidal and toroidal fields from different latitude locations, reconstruction is reasonably good for ≤slant 40 % error in low-latitude data, even if observational error in polar region data becomes 200%, but deteriorates when observational error increases in low- and midlatitude data. Solar polar region observations are known to contain larger errors than those in low latitudes; our forward operator (a flux-transport dynamo model here) can sustain larger errors in polar region data, but is more sensitive to errors in low-latitude data. An optimal reconstruction is obtained if an assimilation interval of 15 days is used; 10- and 20-day assimilation intervals also give reasonably good results. Assimilation intervals \\lt 5 days do not produce faithful reconstructions of flow speed, because the system requires a minimum time to develop dynamics to respond to flow variations. Reconstruction also deteriorates if an assimilation interval \\gt 45 days is used, because the system’s inherent memory interferes with its short-term dynamics during a substantially long run without updating.
NASA Technical Reports Server (NTRS)
Schatten, K. H.; Hedin, A. E.
1986-01-01
Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.
A theoretical model of the variation of the meridional circulation with the solar cycle
NASA Astrophysics Data System (ADS)
Hazra, Gopal; Choudhuri, Arnab Rai
2017-12-01
Observations of the meridional circulation of the Sun, which plays a key role in the operation of the solar dynamo, indicate that its speed varies with the solar cycle, becoming faster during the solar minima and slower during the solar maxima. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the ϕ component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the subadiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis on how the observed inward flow towards the active regions may be produced.
OBSERVATIONS AND MODELING OF NORTH-SOUTH ASYMMETRIES USING A FLUX TRANSPORT DYNAMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetye, Juie; Tripathi, Durgesh; Dikpati, Mausumi
2015-02-01
The peculiar behavior of solar cycle 23 and its prolonged minima has been one of the most studied problems over the past few years. In the present paper, we study the asymmetries in active region magnetic flux in the northern and southern hemispheres during the complete solar cycle 23 and the rising phase of solar cycle 24. During the declining phase of solar cycle 23, we find that the magnetic flux in the southern hemisphere is about 10 times stronger than that in the northern hemisphere; however, during the rising phase of cycle 24, this trend is reversed. The magnetic fluxmore » becomes about a factor of four stronger in the northern hemisphere than in the southern hemisphere. Additionally, we find that there was a significant delay (about five months) in change of the polarity in the southern hemisphere in comparison with the northern hemisphere. These results provide us with hints of how the toroidal fluxes have contributed to the solar dynamo during the prolonged minima in solar cycle 23 and in the rising phase of solar cycle 24. Using a solar flux-transport dynamo model, we demonstrate that persistently stronger sunspot cycles in one hemisphere could be caused by the effect of greater inflows into active region belts in that hemisphere. Observations indicate that greater inflows are associated with stronger activity. Some other change or difference in meridional circulation between hemispheres could cause the weaker hemisphere to become the stronger one.« less
Kinematic solar dynamo models with a deep meridional flow
NASA Astrophysics Data System (ADS)
Guerrero, G. A.; Muñoz, J. D.
2004-05-01
We develop two different solar dynamo models to verify the hypothesis that a deep meridional flow can restrict the appearance of sunspots below 45°, proposed recently by Nandy & Choudhuri. In the first one, a single polytropic approximation for the density profile was taken, for both radiative and convective zones. In the second one, that of Pinzon & Calvo-Mozo, two polytropes were used to distinguish between both zones. The magnetic buoyancy mechanism proposed by Dikpati & Charbonneau was chosen in both models. We have in fact obtained that a deep meridional flow pushes the maxima of toroidal magnetic field towards the solar equator, but, in contrast to Nandy & Choudhuri, a second zone of maximal fields remains at the poles. The second model, although closely resembling the solar standard model of Bahcall et al., gives solar cycles three times longer than observed.
DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov
Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relativelymore » new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.« less
Fluctuation dynamo based on magnetic reconnections
NASA Astrophysics Data System (ADS)
Baggaley, A. W.; Shukurov, A.; Barenghi, C. F.; Subramanian, K.
2010-01-01
We develop a new model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multi-scale flow which models turbulence. Magnetic dissipation occurs only via reconnections of flux ropes. The model is particularly suitable for rarefied plasma, such as the solar corona or galactic halos. We investigate the kinetic energy release into heat, mediated by dynamo action, both in our model and by solving the induction equation with the same flow. We find that the flux rope dynamo is more than an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy released during reconnections has a power-law form with the slope -3, consistent with the solar corona heating by nanoflares. We also present a nonlinear extension of the model. This shows that a plausible saturation mechanism of the fluctuation dynamo is the suppression of turbulent magnetic diffusivity, due to suppression of random stretching at the location of the flux ropes. We confirm that the probability distribution function of the magnetic line curvature has a power-law form suggested by \\citet{Sheck:2002b}. We argue, however, using our results that this does not imply a persistent folded structure of magnetic field, at least in the nonlinear stage.
Understanding Solar Cycle Variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de
The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to amore » generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.« less
Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations.
Strugarek, A; Beaudoin, P; Charbonneau, P; Brun, A S; do Nascimento, J-D
2017-07-14
The magnetic fields of solar-type stars are observed to cycle over decadal periods-11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun's cycle and those of other solar-type stars. Copyright © 2017, American Association for the Advancement of Science.
Initial 60Fe Abundance in the Solar Nebula Constrained by Delayed Onset of a Planetesimal Dynamo
NASA Astrophysics Data System (ADS)
Wang, H.; Weiss, B. P.; Crowley, J.
2017-12-01
The paleomagnetism of meteorites provides evidence for advecting metallic core dynamos and large-scale differentiation on their parent planetesimals. Their small sizes relative to planets enable new opportunities to understand the physics of dynamo generation. Wang et al. [2017] studied the paleomagnetism of three volcanic angrites (D'Orbigny, 4563.37±0.12 Ma; Sahara 99555, 4563.54±0.14 Ma; Asuka 881371, 4562.4±1.6 Ma) and one plutonic angrite (Angra dos Reis, 4556.51±0.11 Ma). Their results show that the older volcanic angrites recorded no detectable paleomagnetic field, while the younger plutonic angrite recorded a paleomagnetic field of 17 µT interpreted as evidence of a core dynamo on the angrite parent body (APB). This indicates that the initiation of the APB dynamo was delayed until sometime between 4 and 11 My after the formation of calcium aluminum-rich inclusions (CAIs) at 4567.30 ± 0.16 Ma. This late timing is consistent with recent planetesimal thermal evolution models invoking shallow magma oceans [Neumann et al. 2014], which predict that planetesimal dynamos would not initiate until the core began to crystallize. It is also consistent with thermal evolution models invoking large-scale magma oceans that considered thermal blanketing of the core by 26Al decay in the mantle [Roberts et al. 2013, Sterenborg and Crowley 2013], which would delay thermal convection dynamos until several My after accretion (occurred <0.25 My after CAIs for the APB [Schiller et al. 2015]) and differentiation. Because the presence of even a small amount of 60Fe in the core could effectively remove the thermal blanketing effect of mantle 26Al, we can use the delay in timing of the dynamo to constrain the abundance of 60Fe on the APB. Our planetesimal thermal evolution models show that if the initial solar nebula 60Fe/56Fe ratio was greater than 5×10-9, the APB core dynamo would have to start earlier than 4 My after CAIs, in contradiction to the paleomagnetic constraints. Thus, we argue that 5×10-9 is an upper limit of the initial 60Fe/56Fe ratio in the solar nebula. This upper limit is consistent with independent isotopic measurements of the Sahara 99555 angrite, which found 60Fe/56Fe ratio of (6.96 ± 1.60)×10-9 [Tang and Dauphas, 2015].
On MHD rotational transport, instabilities and dynamo action in stellar radiation zones
NASA Astrophysics Data System (ADS)
Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.
2009-04-01
Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu
We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed throughmore » the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.« less
Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.
2017-01-01
Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.
Solar activity across the scales: from small-scale quiet-Sun dynamics to magnetic activity cycles
NASA Astrophysics Data System (ADS)
Kitiashvili, I.; Collins, N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.
2017-12-01
Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high-resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.
Jovian Substorms: A Study of Processes Leading to Transient Behavior in the Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Russell, C. T.
2000-01-01
Solar system magnetospheres can be divided into two groups: induced and intrinsic. The induced magnetospheres are produced in the solar wind interaction of the magnetized solar wind with planetary obstacles. Examples of these magnetospheres are those of comets, Venus and Mars. Intrinsic magnetospheres are the cavities formed in the solar wind by the magnetic fields produced by dynamo current systems inside the planets: Mercury, Earth, Jupiter, Saturn, Uranus and Neptune are known to have intrinsic magnetospheres. Intrinsic magnetospheres can be further subdivided as to how the circulating plasma is driven by external or internal processes. The magnetospheres of Mercury and Earth are driven by the solar wind. The magnetospheres of Jupiter and possibly of Saturn are principally driven by internal processes. These processes provide the energy for the powerful jovian radio signals that can be detected easily on the surface of the Earth.
The Effect of "Rogue" Active Regions on the Solar Cycle
NASA Astrophysics Data System (ADS)
Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul
2017-11-01
The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.
Photospheric Magnetic Diffusion by Measuring Moments of Active Regions
NASA Astrophysics Data System (ADS)
Engell, Alexander; Longcope, D.
2013-07-01
Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Gopal; Choudhuri, Arnab Rai; Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu
2017-01-20
We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained bymore » putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.« less
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.; Reyes-Ruiz, Mauricio; Vanhala, Harri A. T.
1993-01-01
A hydromagnetic dynamo provides the best mechanism for contemporaneously producing magnetic fields in a turbulent solar nebula. We investigate the solar nebula in the framework of a steady-state accretion disk model and establish the criteria for a viable nebular dynamo. We have found that typically a magnetic gap exists in the nebula, the region where the degree of ionization is too small for the magnetic field to couple to the gas. The location and width of this gap depend on the particular model; the supposition is that gaps cover different parts of the nebula at different evolutionary stages. We have found, from several dynamical constraints, that the generated magnetic field is likely to saturate at a strength equal to equipartition with the kinetic energy of turbulence. Maxwell stress arising from a large-scale magnetic field may significantly influence nebular structure, and Maxwell stress due to small-scale fields can actually dominate other stresses in the inner parts of the nebula. We also argue that the bulk of nebular gas, within the scale height from the midplane, is stable against Balbus-Hawley instability.
Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandenburg, Axel; Ashurova, Mohira B.; Jabbari, Sarah, E-mail: brandenb@nordita.org
A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that thismore » method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.« less
NASA Technical Reports Server (NTRS)
Parker, E. N.
1987-01-01
The recent determination that the angular velocity Omega of the sun declines downward through the convective zone raises serious questions about the nature of the solar dynamo. The principal qualitative features of the sun are the azimuthal fields that migrate toward the equator in association with an oscillating poloidal field which reverses at about the time of maximum appearance of bipolar magnetic regions. If Omega decreases downward, or is negligible, the horizontal gradient in Omega produces a dynamo with some of these essential characteristics. There is reason to think that the dynamo is confined to the lower half of the convective zone, where alpha has the opposite sign from the usual (alpha of greater than 0 in the northern hemisphere) producing equatorward migration but reversing the sign of the associated poloidal field. Meridional circulation may play an essential role in shaping the dynamo. At the present time it is essential to measure Omega accurately and determine the nature of the meridional circulation.
Instability-driven interfacial dynamo in protoneutron stars
NASA Astrophysics Data System (ADS)
Mastrano, A.; Melatos, A.
2011-10-01
The existence of a tachocline in the Sun has been proven by helioseismology. It is unknown whether a similar shear layer, widely regarded as the seat of magnetic dynamo action, also exists in a protoneutron star. Sudden jumps in magnetic diffusivity η and turbulent vorticity α, for example at the interface between the neutron-finger and convective zones, are known to be capable of enhancing mean-field dynamo effects in a protoneutron star. Here, we apply the well-known, plane-parallel, MacGregor-Charbonneau analysis of the solar interfacial dynamo to the protoneutron star problem and analytically calculate the growth rate under a range of conditions. It is shown that, like the solar dynamo, it is impossible to achieve self-sustained growth if the discontinuities in α, η and shear are coincident and the magnetic diffusivity is isotropic. In contrast, when the jumps in η and α are situated away from the shear layer, self-sustained growth is possible for P≲ 49.8 ms (if the velocity shear is located at 0.3R) or P≲ 83.6 ms (if the velocity shear is located at 0.6R). This translates into stronger shear and/or α-effect than in the Sun. Self-sustained growth is also possible if the magnetic diffusivity is anisotropic, through the Ω×J effect, even when the α, η and shear discontinuities are coincident.
Do habitable worlds require magnetic fields?
NASA Astrophysics Data System (ADS)
Brain, D. A.; Egan, H. L.; Ma, Y. J.; Jarvinen, R.; Jakosky, B. M.; Moore, T. E.; Garcia-Sage, K.
2017-12-01
Of the three terrestrial worlds that have significant atmospheres (Venus, Earth, and Mars), only Earth also possesses a global dynamo magnetic field. This magnetic field is often thought to have shielded the planet from the impinging solar wind, preventing the atmosphere from being stripped away to space. The atmospheres of Mars and Venus, by contrast, are thought to have escaped to space or been dessicated (respectively) due at least in part to their planet's lack of global magnetic field. The assumption that global scale magnetic fields are a necessary requirement for surface habitability is widely used both in the planetary and exoplanetary communities, but this assumption has been called into question in recent years based both on theoretical arguments and on observations returned by spacecraft. Here we summarize the arguments "for" and "against" the importance of magnetic fields for planetary habitability, and review the observations that teach us about the role of magnetic fields. We then identify several ongoing efforts and likely fruitful avenues for determining whether a dynamo field is necessary for life to be possible at a planet's surface.
Exploring a deep meridional flow hypothesis for a circulation dominated solar dynamo model
NASA Astrophysics Data System (ADS)
Guerrero, G. A.; Muñoz, J. D.; de Gouveia dal Pino, E. M.
2005-09-01
Circulation-dominated solar dynamo models, which employ a helioseismic rotation profile and a fixed meridional flow, give a good approximation to the large scale solar magnetic phenomena, such as the 11-year cycle or the so called Hale's law of polarities. Nevertheless, the larger amplitude of the radial shear ∂Ω/∂r at the high latitudes makes the dynamo to produce a strong toroidal magnetic field at high latitudes, in contradiction with the observations of the sunspots (Sporer's Law). A possible solution was proposed by Nandy and Choudhuri in which a deep meridional flow can conduct the magnetic field inside of a stable layer (the radiative core) and then allow that it erupts just at lower latitudes. Although they obtain good results, this hypothesis generates new problems like the mixture of elements in the radiative core (that alters the abundance of the elements) and the transfer of angular momentum. We have recently explored this hypothesis in a different approximation, using the magnetic buoyancy mechanism proposed by Dikpati and Charbonneau (1999) and found that a deep meridional flow pushes the maximum of the toroidal magnetic field towards the solar equator, but, in contrast to Nandy and Choudhuri (2002 ), a second zone of maximum fields remains at the poles. In that work, we have also introduced a bipolytropic density profile in order to better reproduce the stratification in the radiative zone. We here review these results and also discuss a new possible scenario where the tachocline has an ellipsoidal shape, following early helioseismologic observations, and find that the modification of the geometry of the tachocline can lead to results which are in good agreement with observations and opens the possibility to explore in more detail, through the dynamo model, the place where the magnetic field could be really stored.
Dynamo generation of magnetic field in the white dwarf GD 358
NASA Technical Reports Server (NTRS)
Markiel, J. Andrew; Thomas, John H.; Van Horn, H. M.
1994-01-01
On the basis of Whole Earth Telescope observations of the g-mode oscillation spectrum of the white dwarf GD 358, Winget et al. find evidence for significant differential rotation and for a time-varying magnetic field concentrated in the surface layers of this star. Here we argue on theoretical grounds that this magnetic field is produced by an alpha omega dynamo operating in the lower part of a surface convection zone in GD 358. Our argument is based on numerical solutions of the nonlinear, local dynamo equations of Robinson & Durney, with specific parameters based on our detailed models of white-dwarf convective envelopes, and universal constants determined by a calibration with the the Sun's dynamo. The calculations suggest a dynamo cycle period of about 6 years for the fundamental mode, and periods as short as 1 year for the higher-order modes that are expected to dominate in view of the large dynamo number we estimate for GD 358. These dynamo periods are consistent with the changes in the magnetic field of GD 358 over the span of 1 month inferred by Winget et. al. from their observations. Our calculations also suggest a peak dynamo magnetic field strength at the base of the surface convection zone of about 1800 G, which is consistent with the field strength inferred from the observations.
Un modelo de dínamo para ɛ Eridani
NASA Astrophysics Data System (ADS)
Sraibman, L.; Buccino, A. P.; Minotti, F.
2017-10-01
Eridani is an active young K2V star (0.8 Gyr), which exhibits a short and long-term chromospheric cycles of 3 and 13-yr periods, between 1985 and 1992, the star went through a broad activity minimum, similar to the solar Maunder Minimum-state. Motivated by these results, we found in Eridani a great opportunity to test the solar cinematic dynamo model built in sraibman16. In this work we present the components of the magnetic fields in the stellar surface derived from the model. To contrast these results to the registry of activity obtained from stellar observations, we also computed an activity index associated to the magnetic field.
Energy coupling between the solar wind and the magnetosphere
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1981-01-01
A description is given of the path leading to the first approximation expression for the solar wind-magnetosphere energy coupling function (epsilon), which correlates well with the total energy consumption rate (U sub T) of the magnetosphere. It is shown that epsilon is the primary factor controlling the time development of magnetospheric substorms and storms. The finding of this particular expression epsilon indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere make up a dynamo. In fact, the power generated by the dynamo can be identified as epsilon through the use of a dimensional analysis. In addition, the finding of epsilon suggests that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. The finding of epsilon and its implications is considered to have significantly advanced and improved the understanding of magnetospheric processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, R. H.; Schuessler, M., E-mail: cameron@mps.mpg.d
The solar meridional flow is an important ingredient in Babcock-Leighton type models of the solar dynamo. Global variations of this flow have been suggested to explain the variations in the amplitudes and lengths of the activity cycles. Recently, cycle-related variations in the amplitude of the P{sup 1}{sub 2} term in the Legendre decomposition of the observed meridional flow have been reported. The result is often interpreted in terms of an overall variation in the flow amplitude during the activity cycle. Using a semi-empirical model based upon the observed distribution of magnetic flux on the solar surface, we show that themore » reported variations of the P{sup 1}{sub 2} term can be explained by the observed localized inflows into the active region belts. No variation of the overall meridional flow amplitude is required.« less
Emergence of magnetic flux generated in a solar convective dynamo
NASA Astrophysics Data System (ADS)
Chen, Feng; Rempel, Feng, Matthias; Fan, Yuhong
2016-10-01
We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the radiation magnetohydrodynamic simulations of the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere. The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries originate from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted. The leading sides of the emerging flux tubes are up against the downdraft lanes of the giant cells and strongly sheared downward. This leads to the stronger field strength of the leading polarity fields. We find a prograde flow in the emerging flux tube, which is naturally inherited from the solar convective dynamo simulation. The prograde flow gradually becomes a diverging flow as the flux tube rises. The emerging speed is similar to upflow speed of convective motions. The azimuthal average of the flows around a (leading) sunspot reveals a predominant down flow inside the sunspots and a large-scale horizontal inflow at the depth of about 10 Mm. The inflow pattern becomes an outflow in upper most convection zone in the vicinity of the sunspot, which could be considered as moat flows.
Small-scale dynamo magnetism as the driver for heating the solar atmosphere.
Amari, Tahar; Luciani, Jean-François; Aly, Jean-Jacques
2015-06-11
The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together. But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere. Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfvén waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations, chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules and blinkers, and vortices that may be possibly associated with observed solar tornadoes.
The photospheric magnetic flux budget
NASA Technical Reports Server (NTRS)
Schrijver, C. J.; Harvey, K. L.
1994-01-01
The ensemble of bipolar regions and the magnetic network both contain a substantial and strongly variable part of the photospheric magnetic flux at any phase in the solar cycle. The time-dependent distribution of the magnetic flux over and within these components reflects the action of the dynamo operating in the solar interior. We perform a quantitative comparison of the flux emerging in the ensemble of magnetic bipoles with the observed flux content of the solar photosphere. We discuss the photospheric flux budget in terms of flux appearance and disappearance, and argue that a nonlinear dependence exists between the flux present in the photosphere and the rate of flux appearance and disappearance. In this context, we discuss the problem of making quantitative statements about dynamos in cool stars other than the Sun.
Exploring the Flux Tube Paradigm in Solar-like Convection Zones
NASA Astrophysics Data System (ADS)
Weber, Maria A.; Nelson, Nicholas; Browning, Matthew
2017-08-01
In the solar context, important insight into the flux emergence process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized flux tubes. Global-scale dynamo models are only now beginning to capture some aspects of flux emergence. In certain regimes, these simulations self-consistently generate magnetic flux structures that rise buoyantly through the computational domain. How similar are these dynamo-generated, rising flux structures to traditional flux tube models? The work we present here is a step toward addressing this question. We utilize the thin flux tube (TFT) approximation to simply model the evolution of flux tubes in a global, three-dimensional geometry. The TFTs are embedded in convective flows taken from a global dynamo simulation of a rapidly rotating Sun within which buoyant flux structures arise naturally from wreaths of magnetism. The initial conditions of the TFTs are informed by rising flux structures identified in the dynamo simulation. We compare the trajectories of the dynamo-generated flux loops with those computed through the TFT approach. We also assess the nature of the relevant forces acting on both sets of flux structures, such as buoyancy, the Coriolis force, and external forces imparted by the surrounding convection. To achieve the fast <15 day rise of the buoyant flux structures, we must suppress the large retrograde flow established inside the TFTs which occurs due to a strong conservation of angular momentum as they move outward. This tendency is common in flux tube models in solar-like convection zones, but is not present to the same degree in the dynamo-generated flux loops. We discuss the mechanisms that may be responsible for suppressing the axial flow inside the flux tube, and consider the implications this has regarding the role of the Coriolis force in explaining sunspot latitudes and the observed Joy’s Law trend of active regions. Our work aims to provide constraints, and possible calibrations, on the traditional flux tube model as it pertains to the Sun and other spotted stars.
NASA Astrophysics Data System (ADS)
Liu, H.; Richmond, A. D.
2013-12-01
In this study we quantify the contribution of individual large-scale waves to ionospheric electrodynamics, and examine the dependence of the ionospheric perturbations on solar activity. We focus on migrating diurnal tide (DW1) plus mean winds, migrating semidiurnal tide (SW2), quasi-stationary planetary wave 1 (QSPW1), and nonmigrating semidiurnal westward wave 1 (SW1) under northern winter conditions, when QSPW1 and SW1 are climatologically strong. From TIME-GCM simulations under solar minimum conditions, we calculate equatorial vertical ExB drifts due to mean winds and DW1, SW2, SW1 and QSPW1. In particular, wind components of both SW2 and SW1 become large at mid to high latitudes in the E-region, and kernel functions obtained from numerical experiments reveal that they can significantly affect the equatorial ion drift, likely through modulating the E-region wind dynamo. The most evident changes of total ionospheric vertical drift when solar activity is increased are seen around dawn and dusk, reflecting the more dominant role of large F-region Pedersen conductivity and of the F-region dynamo under high solar activity. Therefore, the lower atmosphere driving of the ionospheric variability is more evident under solar minimum conditions, not only because variability is more identifiable in a quieter background, but also because the E-region wind dynamo is more significant. These numerical experiments also demonstrate that the amplitudes, phases and latitudinal and vertical structures of large-scale waves are important in quantifying the ionospheric responses.
Modeling of the coupled magnetospheric and neutral wind dynamos
NASA Technical Reports Server (NTRS)
Thayer, Jeff P.
1993-01-01
The solar wind interaction with the earth's magnetosphere generates electric fields and currents that flow from the magnetosphere to the ionosphere at high latitudes. Consequently, the neutral atmosphere is subject to the dissipation and conversion of this electrical energy to thermal and mechanical energy through Joule heating and Lorentz forcing. As a result of the mechanical energy stored within the neutral wind (caused in part by Lorentz--and pressure gradient--forces set up by the magnetospheric flux of electrical energy), electric currents and fields can be generated in the ionosphere through the neutral wind dynamo mechanism. At high latitudes this source of electrical energy has been largely ignored in past studies, owing to the assumed dominance of the solar wind/magnetospheric dynamo as an electrical energy source to the ionosphere. However, other researchers have demonstrated that the available electrical energy provided by the neutral wind is significant at high latitudes, particularly in the midnight sector of the polar cap and in the region of the magnetospheric convection reversal. As a result, the conclusions of a number of broad ranging high-latitude investigations may be modified if the neutral-wind contribution to high-latitude electrodynamics is properly accounted for. These include the following: studies assessing solar wind-magnetospheric coupling by comparing the cross polar cap potential with solar wind parameters; research based on the alignment of particle precipitation with convection or field aligned current boundaries; and synoptic investigations attributing seasonal variations in the observed electric field and current patterns to external sources. These research topics have been initiated by satellite and ground-based observations and have been attributed to magnetospheric causes. However, the contribution of the neutral wind to the high-latitude electric field and current systems and their seasonal and local time dependence has yet to be quantitatively evaluated. In this program, we are evaluating the coupled magnetospheric and neutral wind dynamos at high latitudes under various conditions. In addition to examining the impact of seasonal variations, we are investigating the consequences of the separate dynamos having pure current-source or voltage-source behaviors.
NASA Astrophysics Data System (ADS)
Yoshimura, H.
1983-08-01
The case of the solar magnetic cycle is investigated as a prototype of the dynamo processes involved in the generation of magnetic fields in astrophysics. Magnetohydrodynamic (MHD) equations are solved using a numerical method with a prescribed velocity field in order follow the movement and deformation. It is shown that a simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the sun. These main flux tubes of the solar cycle are the progenitors of small-scale flux ropes of the solar activity. These findings indicate that magnetic fields can be generated by fluid motions and that MHD equations have a new type of oscillatory solution. It is shown that the solar cycle can be identified with one of these oscillatory solutions. It is proposed that the formation of magnetic flux tubes by streaming plasma flows is a universal mechanism of flux tube formation in astrophysics.
Tiny Stars, Strong Fields: Exploring the Origin of Intense Magnetism in M Stars
NASA Astrophysics Data System (ADS)
Toomre, Juri
The M-type stars are becoming dominant targets in searches for Earth-like planets that could occupy their habitable zones. The low masses and luminosities of M-dwarf central stars make them very attractive for such exoplanetary hunts. The habitable zone of M dwarfs is close to the star due to their low luminosity. Thus possibly habitable planets will have short orbital periods, making their detection feasible both with the transit method (used by Kepler, K2 and soon with TESS) and with the radial velocity approaches. Yet habitability on a planet likely requires both solid surfaces and atmospheres, but also a favorable radiation environment. It is here that the M-dwarf central stars raise major theoretical puzzles, for many of them exhibit remarkably intense and frequent flaring, despite their modest intrinsic luminosities. The super-flares release their energy both in white light and in X-rays, and can be thousands of times brighter than the strongest solar flares. Such striking events must have magnetic origins, likely from fields built by convective dynamos operating in their interiors. Further, recent observations suggest that the surface of some M stars is carpeted with magnetic fields of 3 kG or more. Such field strengths are reminiscent of a sunspot, but here instead cover much of the stellar surface. With M stars now taking center stage in the search for Earthlike planets, it is crucial to begin to understand how convective dynamos may be able to build intense magnetic fields involved with super-flares and vast star spots, and how they depend upon the mass and rotation rate of these stars. We propose to use major 3-D MHD simulations with our Anelastic Spherical Harmonic (ASH) code to study the coupling of turbulent convection, rotation, and magnetism within full spherical domains such as the interior of an M dwarf. This permits the exploration of the magnetic dynamos that must be responsible for the evolving magnetism and intense activity of many M dwarfs. We bring to this our prior experience with studying dynamo processes in the outer convective envelopes of G- (the Sun) and Ftype stars, briefly of M dwarfs, and in full convective cores within more massive A- and B-type stars. Our previous work suggests that M dwarfs could display a broad range of dynamo behavior, from cyclic reversals to more chaotic variations, and further to both weak and strong dynamo states. We will focus on the latter, exploring how superequipartition magnetic fields could be achieved by dynamo action in M dwarfs, as are likely needed to energize super-flares and huge active regions, and what limits the peak field strengths. M-type stars are distinctive in becoming fully convective with decreasing mass at about M3.5 in spectral type (or about 0.35 solar masses). At this transition, a steep rise in the fraction of magnetically active stars is observed that is accompanied by an increasing rotational velocity. Clearly how mass-loss and spin-down can lead to this is of interest in itself. However, here we propose to study the manner in which dynamos operating in fully convective M dwarf interiors beyond the transition may be able to achieve very strong magnetic fields, and how field strengths and apparent magnetic activity increases with rotation rate as suggested by observations. We believe that global connectivity of flows and fields across the core center will admit new classes of strong behavior, as revealed by our B star core dynamos, not realized when a convective envelope is bounded below by a tachocline. These ideas need to be tested in a self-consistent manner with global ASH simulations to gain theoretical insights into what is the origin of the fierce magnetic activity in some of M dwarfs that may be potential hosts to Earth-like planets. Such 3-D MHD simulations, though challenging, are now feasible and would complement the intensive observational searches under way.
The Evolution of the Solar Magnetic Field: A Comparative Analysis of Two Models
NASA Astrophysics Data System (ADS)
McMichael, K. D.; Karak, B. B.; Upton, L.; Miesch, M. S.; Vierkens, O.
2017-12-01
Understanding the complexity of the solar magnetic cycle is a task that has plagued scientists for decades. However, with the help of computer simulations, we have begun to gain more insight into possible solutions to the plethora of questions inside the Sun. STABLE (Surface Transport and Babcock Leighton) is a newly developed 3D dynamo model that can reproduce features of the solar cycle. In this model, the tilted bipolar sunspots are formed on the surface (based on the toroidal field at the bottom of the convection zone) and then decay and disperse, producing the poloidal field. Since STABLE is a 3D model, it is able to solve the full induction equation in the entirety of the solar convection zone as well as incorporate many free parameters (such as spot depth and turbulent diffusion) which are difficult to observe. In an attempt to constrain some of these free parameters, we compare STABLE to a surface flux transport model called AFT (Advective Flux Transport) which solves the radial component of the magnetic field on the solar surface. AFT is a state-of-the-art surface flux transport model that has a proven record of being able to reproduce solar observations with great accuracy. In this project, we implement synthetic bipolar sunspots into both models, using identical surface parameters, and run the models for comparison. We demonstrate that the 3D structure of the sunspots in the interior and the vertical diffusion of the sunspot magnetic field play an important role in establishing the surface magnetic field in STABLE. We found that when a sufficient amount of downward magnetic pumping is included in STABLE, the surface magnetic field from this model becomes insensitive to the internal structure of the sunspot and more consistent with that of AFT.
NASA Technical Reports Server (NTRS)
Smrekar, S.; Chassefiere, E.; Forget, F.; Reme, H.; Mazelle, C.; Blelly, P. -L.; Acuna, M.; Connerney, J.; Purucker, M.; Lin, R.
2000-01-01
Dynamo is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for Dynamo of 120-130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere, and water, from the planet. There is much room for debate on the importance of current atmosphere escape processes in the evolution of the Martian atmosphere, as early "exotic" processes including hydrodynamic escape and impact erosion are traditionally invoked to explain the apparent sparse inventory of present-day volatiles. Yet, the combination of low surface gravity and the absence of a substantial internally generated magnetic field have undeniable effects on what we observe today. In addition to the current losses in the forms of Jeans and photochemical escape of neutrals, there are solar wind interaction-related erosion mechanisms because the upper atmosphere is directly exposed to the solar wind. The solar wind related loss rates, while now comparable to those of a modest comet, nonetheless occur continuously, with the intriguing possibility of important cumulative and/or enhanced effects over the several billion years of the solar system's life. If the detailed history of the Martian internal field could be traced back, and the current escape processes could be understood well enough to model the expected stronger losses under early Sun conditions, one could go a long way toward constraining this part of the mysterious history of Mars' atmosphere.
NASA Astrophysics Data System (ADS)
Featherstone, N. A.; Aurnou, J. M.; Yadav, R. K.; Heimpel, M. H.; Soderlund, K. M.; Matsui, H.; Stanley, S.; Brown, B. P.; Glatzmaier, G.; Olson, P.; Buffett, B. A.; Hwang, L.; Kellogg, L. H.
2017-12-01
In the past three years, CIG's Dynamo Working Group has successfully ported the Rayleigh Code to the Argonne Leadership Computer Facility's Mira BG/Q device. In this poster, we present some our first results, showing simulations of 1) convection in the solar convection zone; 2) dynamo action in Earth's core and 3) convection in the jovian deep atmosphere. These simulations have made efficient use of 131 thousand cores, 131 thousand cores and 232 thousand cores, respectively, on Mira. In addition to our novel results, the joys and logistical challenges of carrying out such large runs will also be discussed.
A Forecast of Reduced Solar Activity and Its Implications for NASA
NASA Technical Reports Server (NTRS)
Schatten, Kenneth; Franz, Heather
2005-01-01
The "Solar Dynamo" method of solar activity forecasting is reviewed. Known generically as a 'precursor" method, insofar as it uses observations which precede solar activity generation, this method now uses the Solar Dynamo Amplitude (SODA) Index to estimate future long-term solar activity. The peak amplitude of the next solar cycle (#24), is estimated at roughly 124 in terms of smoothed F10.7 Radio Flux and 74 in terms of the older, more traditional smoothed international or Zurich Sunspot number (Ri or Rz). These values are significantly smaller than the amplitudes of recent solar cycles. Levels of activity stay large for about four years near the peak in smoothed activity, which is estimated to occur near the 2012 timeflame. Confidence is added to the prediction of low activity by numerous examinations of the Sun s weakened polar field. Direct measurements are obtained by the Mount Wilson Solar Observatory and the Wilcox Solar Observatory. Further support is obtained by examining the Sun s polar faculae (bright features), the shape of coronal soft X-ray "holes," and the shape of the "source surface" - a calculated coronal feature which maps the large scale structure of the Sun s field. These features do not show the characteristics of well-formed polar coronal holes associated with typical solar minima. They show stunted polar field levels, which are thought to result in stunted levels of solar activity during solar cycle #24. The reduced levels of solar activity would have concomitant effects upon the space environment in which satellites orbit. In particular, the largest influences would affect orbit determination of satellites in LEO (Low Earth Orbit), based upon the altered thermospheric and exospheric densities. A decrease in solar activity would result in smaller satellite decay rates, as well as fewer large solar events that can destroy satellite electronic functions. Other effects of reduced solar activity upon the space environment include enhanced galactic cosmic rays and more space debris at low altitudes (from the decay of old satellite parts, etc.). The reasons are well known: namely, solar activity serves to sweep the inner heliosphere of galactic cosmic rays, and lower exospheric densities result in decreased drag on LEO debris, allowing longer lifetimes.
Simulation of an Ice Giant-style Dynamo
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Aurnou, J. M.
2010-12-01
The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.
An Investigation of Turbulent Heat Exchange in the Subtropics
2014-09-30
meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs
Reconnecting flux-rope dynamo.
Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy
2009-11-01
We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.
Using a Magnetic Flux Transport Model to Predict the Solar Cycle
NASA Technical Reports Server (NTRS)
Lyatskaya, S.; Hathaway, D.; Winebarger, A.
2007-01-01
We present the results of an investigation into the use of a magnetic flux transport model to predict the amplitude of future solar cycles. Recently Dikpati, de Toma, & Gilman (2006) showed how their dynamo model could be used to accurately predict the amplitudes of the last eight solar cycles and offered a prediction for the next solar cycle - a large amplitude cycle. Cameron & Schussler (2007) found that they could reproduce this predictive skill with a simple 1-dimensional surface flux transport model - provided they used the same parameters and data as Dikpati, de Toma, & Gilman. However, when they tried incorporating the data in what they argued was a more realistic manner, they found that the predictive skill dropped dramatically. We have written our own code for examining this problem and have incorporated updated and corrected data for the source terms - the emergence of magnetic flux in active regions. We present both the model itself and our results from it - in particular our tests of its effectiveness at predicting solar cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay, E-mail: bidya_karak@physics.iisc.ernet.i
2010-12-01
Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to amore » low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.« less
EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2015-11-10
We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution ofmore » the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.« less
Sharp magnetic structures from dynamos with density stratification
NASA Astrophysics Data System (ADS)
Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Rogachevskii, Igor
2017-05-01
Recent direct numerical simulations (DNS) of large-scale turbulent dynamos in strongly stratified layers have resulted in surprisingly sharp bipolar structures at the surface. Here, we present new DNS of helically and non-helically forced turbulence with and without rotation and compare with corresponding mean-field simulations (MFS) to show that these structures are a generic outcome of a broader class of dynamos in density-stratified layers. The MFS agree qualitatively with the DNS, but the period of oscillations tends to be longer in the DNS. In both DNS and MFS, the sharp structures are produced by converging flows at the surface and might be driven in non-linear stage of evolution by the Lorentz force associated with the large-scale dynamo-driven magnetic field if the dynamo number is at least 2.5 times supercritical.
The stretching of magnetic flux tubes in the convective overshoot region
NASA Technical Reports Server (NTRS)
Fisher, George H.; Mcclymont, Alexander N.; Chou, Dean-Yi
1991-01-01
The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.
IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay; Brandenburg, Axel, E-mail: bbkarak@nordita.org
2016-01-01
The small-scale magnetic field is ubiquitous at the solar surface—even at high latitudes. From observations we know that this field is uncorrelated (or perhaps even weakly anticorrelated) with the global sunspot cycle. Our aim is to explore the origin, and particularly the cycle dependence, of such a phenomenon using three-dimensional dynamo simulations. We adopt a simple model of a turbulent dynamo in a shearing box driven by helically forced turbulence. Depending on the dynamo parameters, large-scale (global) and small-scale (local) dynamos can be excited independently in this model. Based on simulations in different parameter regimes, we find that, when onlymore » the large-scale dynamo is operating in the system, the small-scale magnetic field generated through shredding and tangling of the large-scale magnetic field is positively correlated with the global magnetic cycle. However, when both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field. In this situation, when the large-scale field is weaker than the equipartition value of the turbulence, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. On the other hand, when the large-scale field is stronger than the equipartition value, we observe an anticorrelation between the small-scale field and the large-scale magnetic cycle. This anticorrelation can be interpreted as a suppression of the small-scale dynamo. Based on our studies we conclude that the observed small-scale magnetic field in the Sun is generated by the combined mechanisms of a small-scale dynamo and tangling of the large-scale field.« less
RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light-years away in the constellation Aquila. Gliese 752A is a red dwarf that is one-third the mass of the Sun and slightly more than half its diameter. By contrast, VB10 is physically smaller than the planet Jupiter and only about nine percent the mass of our Sun. This very faint star is near the threshold of the lowest possible mass for a true star (.08 solar masses), below which nuclear fusion processes cannot take place according to current models. A team led by Linsky used Hubble's Goddard High Resolution Spectrograph (GHRS) to make a one-hour long exposure of VB10 on October 12, 1994. No detectable ultraviolet emission was seen until the last five minutes, when bright emission was detected in a flare. Though the star's normal surface temperature is 4,500 degrees Fahrenheit, Hubble's GHRS detected a sudden burst of 270,000 degrees Fahrenheit in the star's outer atmosphere. Linsky attributes this rapid heating to the presence of an intense, but unstable, magnetic field. THE INTERIOR WORKINGS OF A STELLAR DYNAMO Before the Hubble observation, astronomers thought magnetic fields in stars required the same dynamo process which creates magnetic fields on the Sun. In the classic solar model, heat generated by nuclear fusion reactions at the star's center escapes through a radiative zone just outside the core. The heat travels from the radiative core to the star's surface through a convection zone. In this region, heat bubbles to the surface by motions similar to boiling in a pot of water. Dynamos, which accelerate electrons to create magnetic forces, operate when the interior of a star rotates faster than the surface. Recent studies of the Sun indicate its convective zone rotates at nearly the same rate at all depths. This means the solar dynamo must operate in the more rapidly rotating radiative core just below the convective zone. The puzzle is that stars below 20 percent the mass of our Sun do not have radiative cores, but instead transport heat from their core through convection only. The new Hubble observations suggest a magnetic dynamo perhaps of a new type can operate inside these stars. These results are being reported at the 185th meeting of the American Astronomical Society in Tucson, Arizona. * * * * * * * * * * * * The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). JILA is a joint institute of the University of Colorado and the National Institute of Standards and Technology (NIST). Dr. Linsky is a staff member of the Quantum Physics Division of NIST.
Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model
NASA Astrophysics Data System (ADS)
Mandal, Sudip; Karak, Bidya Binay; Banerjee, Dipankar
2017-12-01
In this paper, we explore the evolution of sunspot latitude distribution and explore its relations with the cycle strength. With the progress of the solar cycle, the distributions in two hemispheres from mid-latitudes propagate toward the equator and then (before the usual solar minimum) these two distributions touch each other. By visualizing the evolution of the distributions in two hemispheres, we separate the solar cycles by excluding this hemispheric overlap. From these isolated solar cycles in two hemispheres, we generate latitude distributions for each cycle, starting from cycle 8 to cycle 23. We find that the parameters of these distributions, namely the central latitude (C), width (δ), and height (H), evolve with the cycle number, and they show some hemispheric asymmetries. Although the asymmetries in these parameters persist for a few successive cycles, they get corrected within a few cycles, and the new asymmetries appear again. In agreement with the previous study, we find that distribution parameters are correlated with the strengths of the cycles, although these correlations are significantly different in two hemispheres. The general trend features, i.e., (i) stronger cycles that begin sunspot eruptions at relatively higher latitudes, and (ii) stronger cycles that have wider bands of sunspot emergence latitudes, are confirmed when combining the data from two hemispheres. We explore these features using a flux transport dynamo model with stochastic fluctuations. We find that these features are correctly reproduced in this model. The solar cycle evolution of the distribution center is also in good agreement with observations. Possible explanations of the observed features based on this dynamo model are presented.
CONVECTIVE BABCOCK-LEIGHTON DYNAMO MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miesch, Mark S.; Brown, Benjamin P., E-mail: miesch@ucar.edu
We present the first global, three-dimensional simulations of solar/stellar convection that take into account the influence of magnetic flux emergence by means of the Babcock-Leighton (BL) mechanism. We have shown that the inclusion of a BL poloidal source term in a convection simulation can promote cyclic activity in an otherwise steady dynamo. Some cycle properties are reminiscent of solar observations, such as the equatorward propagation of toroidal flux near the base of the convection zone. However, the cycle period in this young sun (rotating three times faster than the solar rate) is very short ({approx}6 months) and it is unclearmore » whether much longer cycles may be achieved within this modeling framework, given the high efficiency of field generation and transport by the convection. Even so, the incorporation of mean-field parameterizations in three-dimensional convection simulations to account for elusive processes such as flux emergence may well prove useful in the future modeling of solar and stellar activity cycles.« less
ON THE CAUSE OF SOLAR-LIKE EQUATORWARD MIGRATION IN GLOBAL CONVECTIVE DYNAMO SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnecke, Jörn; Käpylä, Petri J.; Käpylä, Maarit J.
2014-11-20
We present results from four convectively driven stellar dynamo simulations in spherical wedge geometry. All of these simulations produce cyclic and migrating mean magnetic fields. Through detailed comparisons, we show that the migration direction can be explained by an αΩ dynamo wave following the Parker-Yoshimura rule. We conclude that the equatorward migration in this and previous work is due to a positive (negative) α effect in the northern (southern) hemisphere and a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported by a strong correlation between negative radial shear and toroidal fieldmore » strength in the region of equatorward propagation.« less
A basal magma ocean dynamo to explain the early lunar magnetic field
NASA Astrophysics Data System (ADS)
Scheinberg, Aaron L.; Soderlund, Krista M.; Elkins-Tanton, Linda T.
2018-06-01
The source of the ancient lunar magnetic field is an unsolved problem in the Moon's evolution. Theoretical work invoking a core dynamo has been unable to explain the magnitude of the observed field, falling instead one to two orders of magnitude below it. Since surface magnetic field strength is highly sensitive to the depth and size of the dynamo region, we instead hypothesize that the early lunar dynamo was driven by convection in a basal magma ocean formed from the final stages of an early lunar magma ocean; this material is expected to be dense, radioactive, and metalliferous. Here we use numerical convection models to predict the longevity and heat flow of such a basal magma ocean and use scaling laws to estimate the resulting magnetic field strength. We show that, if sufficiently electrically conducting, a magma ocean could have produced an early dynamo with surface fields consistent with the paleomagnetic observations.
Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process
NASA Astrophysics Data System (ADS)
Turner, Douglas C.; Ladde, Gangaram S.
2018-03-01
Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.
A joined model for solar dynamo and differential rotation
NASA Astrophysics Data System (ADS)
Kitchatinov, L. L.; Nepomnyashchikh, A. A.
2017-05-01
A model for the solar dynamo, consistent in global flow and numerical method employed with the differential rotation model, is developed. The magnetic turbulent diffusivity is expressed in terms of the entropy gradient, which is controlled by the model equations. The magnetic Prandtl number and latitudinal profile of the alpha-effect are specified by fitting the computed period of the activity cycle and the equatorial symmetry of magnetic fields to observations. Then, the instants of polar field reversals and time-latitude diagrams of the fields also come into agreement with observations. The poloidal field has a maximum amplitude of about 10 Gs in the polar regions. The toroidal field of several thousand Gauss concentrates near the base of the convection zone and is transported towards the equator by the meridional flow. The model predicts a value of about 1037 erg for the total magnetic energy of large-scale fields in the solar convection zone.
The Hottest Hot Jupiters May Host Atmospheric Dynamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T. M.; McElwaine, J. N.
2017-06-01
Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.
Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Miesch, Mark
2017-09-01
We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belucz, Bernadett; Dikpati, Mausumi
2013-12-10
Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does notmore » change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.« less
The Stellar Imager (SI) Mission Concept: Imaging the Surfaces and Interiors of Other Stars
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Oegerle, William R. (Technical Monitor)
2002-01-01
The Stellar Imager (SI) is envisioned as a space-based, uv-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum. baseline of 0.5-km and providing a resolution of 60 micro-arcseconds at 1550 A. It will image stars and binaries with one hundred to one thousand resolution elements on their surface and enable long-term studies of stellar magnetic activity patterns and their evolution with time, for comparison with those on the sun. It will also sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamic the stars in which these dynamos operate. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on times scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the universe. Fitting naturally within the NASA and ESA long-term time lines, SI complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets. in this paper we describe the scientific goals of the mission, the performance requirements needed to address those goals, and the design concepts now under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilpua, E. K. J.; Olspert, N.; Grigorievskiy, A.
We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show thatmore » while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.« less
SIMULATION STUDY OF HEMISPHERIC PHASE-ASYMMETRY IN THE SOLAR CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukuya, D.; Kusano, K., E-mail: kusano@nagoya-u.jp
2017-01-20
Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries. For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard and Kamide recently pointed out that the time gaps of polar field reversal between the northern and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigatemore » the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.« less
Magnetically Sleepy Stars: An X-ray Survey of Candidate Stars in Extended Magnetic Minima
NASA Astrophysics Data System (ADS)
Saar, Steven
2010-09-01
The Sun occasionally slips into periods of extended magnetic quiescence where the normal magnetic cycle largely ceases (e.g., the Maunder minimum). Understanding these episodes is important for understanding non-linear magnetic dynamos and the Earth's radiation budget. We have developed a new method for determining which stars may be in the stellar analog of these magnetic minima. We propose to study five such stars with Chandra ACIS-S. Combined with archival spectra of more stars, we can 1) explore (by proxy) properties of the solar corona in a Maunder-like minimum, 2) determine what stellar properties affect this state, and 3) investigate the coronal product of the residual turbulent dynamo in a solar mass star.
Chinks in Solar Dynamo Theory: Turbulent Diffusion, Dynamo Waves and Magnetic Helicity
NASA Technical Reports Server (NTRS)
DeLuca, E. E.; Hurlburt, N.
1998-01-01
In this first year of our investigation we explored the role of compressibility and stratification in the dissipation of magnetic fields. The predictions of Mean Field Electrodynamics have been questioned because of the strong feedback of small scale magnetic structure on the velocity fields. In 2-D, this nonlinear feedback results in a lengthening of the turbulent decay time. In 3-D alpha-quenching is predicted. Previous studies assumed a homogeneous fluid. This first year we present recent results from 2-D compressible MHD decay simulations in a highly stratified atmosphere that more closely resembles to solar convection zone. We have applied for NCCS T3E time to assist in the performance of our 3-D calculations.
Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.
2017-12-01
Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.
NASA Astrophysics Data System (ADS)
Roudier, Th.; Švanda, M.; Ballot, J.; Malherbe, J. M.; Rieutord, M.
2018-04-01
Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s-1 and few m s-1, respectively. These flows also have a cycle-related components, namely the torsional oscillations. Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time-distance helioseismology. Methods: Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied. Results: The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude. Conclusions: We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.
Mars' paleomagnetic field as the result of a single-hemisphere dynamo.
Stanley, Sabine; Elkins-Tanton, Linda; Zuber, Maria T; Parmentier, E Marc
2008-09-26
Mars' crustal magnetic field was most likely generated by dynamo action in the planet's early history. Unexplained characteristics of the field include its strength, concentration in the southern hemisphere, and lack of correlation with any surface features except for the hemispheric crustal dichotomy. We used numerical dynamo modeling to demonstrate that the mechanisms proposed to explain crustal dichotomy formation can result in a single-hemisphere dynamo. This dynamo produces strong magnetic fields in only the southern hemisphere. This magnetic field morphology can explain why Mars' crustal magnetic field intensities are substantially stronger in the southern hemisphere without relying on any postdynamo mechanisms.
NASA Astrophysics Data System (ADS)
Scafetta, Nicola
2016-04-01
The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which would be produced mostly by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts that during low solar activity periods, the solar cycle length tends to be longer, as some researchers have claimed. These results clearly indicate that both solar and climate oscillations are linked to planetary motion and, furthermore, their timing can be reasonably hindcast and forecast for decades, centuries and millennia. Scafetta, N.: Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. J. Atmos. Sol.- Terr. Phys. 80, 296-311 (2012). Scafetta, N.: Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol.-Terr. Phys. 81-82, 27-40 (2012). Scafetta, N.: Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques. Astrophys. Space Sci. 354, 275-299 (2014).
The Complexity of Solar and Geomagnetic Indices
NASA Astrophysics Data System (ADS)
Pesnell, W. Dean
2017-08-01
How far in advance can the sunspot number be predicted with any degree of confidence? Solar cycle predictions are needed to plan long-term space missions. Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Statistical and timeseries analyses of the sunspot number are often used to predict solar activity. These methods have not been completely successful as the solar dynamo changes over time and one cycle's sunspots are not a faithful predictor of the next cycle's activity. In some ways, using these techniques is similar to asking whether the stock market can be predicted. It has been shown that the Dow Jones Industrial Average (DJIA) can be more accurately predicted during periods when it obeys certain statistical properties than at other times. The Hurst exponent is one such way to partition the data. Another measure of the complexity of a timeseries is the fractal dimension. We can use these measures of complexity to compare the sunspot number with other solar and geomagnetic indices. Our concentration is on how trends are removed by the various techniques, either internally or externally. Comparisons of the statistical properties of the various solar indices may guide us in understanding how the dynamo manifests in the various indices and the Sun.
MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalfe, T. S.; Mathur, S.; Buccino, A. P.
2013-02-01
The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed bymore » the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.« less
Sleuthing the Dynamo: the Final Frontier
NASA Astrophysics Data System (ADS)
Ayres, Thomas
1996-07-01
Innovative technologies are opening new windows into the Sun;from its hidden interior to the far reaches of its turbulentouter envelope: rare-earth detectors for solar neutrinos; theGONG project for helioseismology; SOHO for high-resolutionXUV spectroscopy, and YOHKOH for coronal X-ray imaging. Atthe same time, a fleet of space observatories--ROSAT, EUVE,ASCA, and HST itself--are providing unprecedented views ofthe vacuum-UV and X-ray emissions of stars in our Galacticneighborhood. These seemingly unrelated developments are infact deeply connected. A central issue of solar-stellarphysics is the nature and origin of magnetic activity: thelink between the interior dynamics of a late-type star and theviolent state of its outermost coronal layers. As solarphysicists are unlocking the secrets of the hydromagneticDynamo deep inside the Sun, we and others have beendocumenting the early evolution of the Dynamo and itsassociated external gas-dynamic activity. In particular, wehave obtained HST/FOS spectra of ten young solar-type starsin three nearby open clusters--the Hyades, Pleiades, andAlpha Persei--ranging in age from 50 Myr to 600 Myr. We havesupplemented the HST spectroscopy with deep ROSAT pointings, and ground-based studies. Here, we will continue the HSTside of our project by obtaining FUV spectra of two AlphaPerseids from our original program (but not yet observed),and high-S/N follow-up measurements of the hyperactive PleiadH II 314.
The Case Against an Early Lunar Dynamo Powered by Core Convection
NASA Astrophysics Data System (ADS)
Evans, Alexander J.; Tikoo, Sonia M.; Andrews-Hanna, Jeffrey C.
2018-01-01
Paleomagnetic analyses of lunar samples indicate that the Moon had a dynamo-generated magnetic field with 50 μT surface field intensities between 3.85 and 3.56 Ga followed by a period of much lower (≤ 5 μT) intensities that persisted beyond 2.5 Ga. However, we determine herein that there is insufficient energy associated with core convection—the process commonly recognized to generate long-lived magnetic fields in planetary bodies—to sustain a lunar dynamo for the duration and intensities indicated. We find that a lunar surface field of ≤1.9 μT could have persisted until 200 Ma, but the 50 μT paleointensities recorded by lunar samples between 3.85 and 3.56 Ga could not have been sustained by a convective dynamo for more than 28 Myr. Thus, for a continuously operating, convective dynamo to be consistent with the early lunar paleomagnetic record, either an exotic mechanism or unknown energy source must be primarily responsible for the ancient lunar magnetic field.
Finke, K; Tilgner, A
2012-07-01
We study numerically the dynamo transition of an incompressible electrically conducting fluid filling the gap between two concentric spheres. In a first series of simulations, the fluid is driven by the rotation of a smooth inner sphere through no-slip boundary conditions, whereas the outer sphere is stationary. In a second series a volume force intended to simulate a rough surface drives the fluid next to the inner sphere within a layer of thickness one-tenth of the gap width. We investigate the effect of the boundary layer thickness on the dynamo threshold in the turbulent regime. The simulations show that the boundary forcing simulating the rough surface lowers the necessary rotation rate, which may help to improve spherical dynamo experiments.
Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field.
Heyner, Daniel; Wicht, Johannes; Gómez-Pérez, Natalia; Schmitt, Dieter; Auster, Hans-Ulrich; Glassmeier, Karl-Heinz
2011-12-23
The observed weakness of Mercury's magnetic field poses a long-standing puzzle to dynamo theory. Using numerical dynamo simulations, we show that it could be explained by a negative feedback between the magnetospheric and the internal magnetic fields. Without feedback, a small internal field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength saturated at a much lower level, compatible with the observations at Mercury. The classical saturation mechanism via the Lorentz force was replaced by the external field impact. The resulting surface field was dominated by uneven harmonic components. This will allow the feedback model to be distinguished from other models once a more accurate field model is constructed from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.
Equatorial ionospheric response to the 2015 St. Patrick's Day magnetic storm
NASA Astrophysics Data System (ADS)
Huang, C.; Wilson, G. R.; Hairston, M. R.; Zhang, Y.; Wang, W.; Liu, J.
2016-12-01
The geomagnetic storm on 17 March 2015 was the strongest storm during solar cycle 24 and caused significant disturbances in the global ionosphere. We present measurements of the Defense Meteorological Satellite Program satellites and identify the dynamic response of the equatorial ionosphere to the storm. Large penetration and disturbance dynamo electric fields are detected in both the dusk and the dawn sectors, and the characteristics of the electric fields are dramatically different in the two local time sectors. Penetration electric field is strong in the evening sector, but disturbance dynamo electric field is dominant in the dawn sector. The dynamo process is first observed in the post-midnight sector 4 hours after the beginning of the storm main phase and lasts for 31 hours, covering the major part of the storm main phase and the initial 20 hours of the recovery phase. The dynamo vertical ion drift is upward (up to 200 m/s) in the post-midnight sector and downward (up to 80 m/s) in the early morning sector. The dynamo zonal ion drift is westward at these locations and reaches 100 m/s. The dynamo process causes large enhancements of the oxygen ion concentration, and the variations of the oxygen ion concentration are well correlated with the vertical ion drift. The observations suggest that disturbance dynamo becomes dominant in the post-midnight equatorial ionosphere even during the storm main phase when disturbance neutral winds arrive there. The results provide new insight into storm-time equatorial ionospheric dynamics.
Could giant basin-forming impacts have killed Martian dynamo?
Kuang, W; Jiang, W; Roberts, J; Frey, H V
2014-01-01
The observed strong remanent crustal magnetization at the surface of Mars suggests an active dynamo in the past and ceased to exist around early to middle Noachian era, estimated by examining remagnetization strengths in extant and buried impact basins. We investigate whether the Martian dynamo could have been killed by these large basin-forming impacts, via numerical simulation of subcritical dynamos with impact-induced thermal heterogeneity across the core-mantle boundary. We find that subcritical dynamos are prone to the impacts centered on locations within 30° of the equator but can easily survive those at higher latitudes. Our results further suggest that magnetic timing places a strong constraint on postimpact polar reorientation, e.g., a minimum 16° polar reorientation is needed if Utopia is the dynamo killer. PMID:26074641
Could Giant Basin-Forming Impacts Have Killed Martian Dynamo?
NASA Technical Reports Server (NTRS)
Kuang, W.; Jiang, W.; Roberts, J.; Frey, H. V.
2014-01-01
The observed strong remanent crustal magnetization at the surface of Mars suggests an active dynamo in the past and ceased to exist around early to middle Noachian era, estimated by examining remagnetization strengths in extant and buried impact basins. We investigate whether the Martian dynamo could have been killed by these large basin-forming impacts, via numerical simulation of subcritical dynamos with impact-induced thermal heterogeneity across the core-mantle boundary. We find that subcritical dynamos are prone to the impacts centered on locations within 30 deg of the equator but can easily survive those at higher latitudes. Our results further suggest that magnetic timing places a strong constraint on postimpact polar reorientation, e.g., a minimum 16 deg polar reorientation is needed if Utopia is the dynamo killer.
Could giant basin-forming impacts have killed Martian dynamo?
Kuang, W; Jiang, W; Roberts, J; Frey, H V
2014-11-28
The observed strong remanent crustal magnetization at the surface of Mars suggests an active dynamo in the past and ceased to exist around early to middle Noachian era, estimated by examining remagnetization strengths in extant and buried impact basins. We investigate whether the Martian dynamo could have been killed by these large basin-forming impacts, via numerical simulation of subcritical dynamos with impact-induced thermal heterogeneity across the core-mantle boundary. We find that subcritical dynamos are prone to the impacts centered on locations within 30° of the equator but can easily survive those at higher latitudes. Our results further suggest that magnetic timing places a strong constraint on postimpact polar reorientation, e.g., a minimum 16° polar reorientation is needed if Utopia is the dynamo killer.
Measurements of dynamo effect on double-CHI pulse ST plasmas on HIST
NASA Astrophysics Data System (ADS)
Ito, K.; Hanao, T.; Ishihara, M.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
Coaxial Helicity injection (CHI) is an efficient current-drive method used in spheromak and spherical torus (ST) experiments. An anticipated issue for CHI is achieving good energy confinement, since it relies on the magnetic relaxation and dynamo. This is essentially because CHI cannot drive a dynamo directly inside a closed magnetic flux surface. Thus, it is an important issue to investigate dynamo effect to explore CHI current drive mechanisms in a new approach such as Multi-pulsing CHI method. To study the dynamo model with two-fluid Hall effects, we have started from the generalized Ohm law. We have measured each MHD dynamo term and Hall dynamo term separately by using Mach probe and Hall probe involving 3-axis magnetic pick-up coils. The result shows that the induced electric field due to MHD dynamo is large enough to sustain the mean toroidal current against resistive decay in the core region. In the other hand, the anti-dynamo effect in the MHD dynamo term is observed in the central open flux column (OFC) region. From the viewpoint of two-fluid theory, ion diamagnetic drift is opposite to the electron diamagnetic drift, maybe resulting in the anti-dynamo effect. Hall dynamo may arise from the fluctuating electron diamagnetic current due to high electron density gradient which is large in the OFC region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai, E-mail: ghazra@physics.iisc.ernet.in
The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation betweenmore » the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.« less
Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011
2014-12-01
20 Figure 8. FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules
NASA Astrophysics Data System (ADS)
Munoz-Jaramillo, Andres
2016-05-01
The arrival of a highly interconnected digital age with practically limitless data storage capacity has brought with it a significant shift in which scientific data is stored and distributed (i.e. from being in the hands of a small group of scientists to being openly and freely distributed for anyone to use). However, the vertiginous speed at which hardware, software, and the nature of the internet changes has also sped up the rate at which data is lost due to formatting obsolescence and loss of access.This poster is meant to advertise the creation of a highly permanent data repository (within the context of Harvard's Dataverse), curated to contain datasets of high relevance for the study, and prediction of the solar dynamo, solar cycle, and long-term solar variability. This repository has many advantages over traditional data storage like the assignment of unique DOI identifiers for each database (making it easier for scientist to directly cite them), and the automatic versioning of each database so that all data are able to attain salvation.
Dynamo-based scheme for forecasting the magnitude of solar activity cycles
NASA Technical Reports Server (NTRS)
Layden, A. C.; Fox, P. A.; Howard, J. M.; Sarajedini, A.; Schatten, K. H.
1991-01-01
This paper presents a general framework for forecasting the smoothed maximum level of solar activity in a given cycle, based on a simple understanding of the solar dynamo. This type of forecasting requires knowledge of the sun's polar magnetic field strength at the preceding activity minimum. Because direct measurements of this quantity are difficult to obtain, the quality of a number of proxy indicators already used by other authors is evaluated, which are physically related to the sun's polar field. These indicators are subjected to a rigorous statistical analysis, and the analysis technique for each indicator is specified in detail in order to simplify and systematize reanalysis for future use. It is found that several of these proxies are in fact poorly correlated or uncorrelated with solar activity, and thus are of little value for predicting activity maxima. Also presented is a scheme in which the predictions of the individual proxies are combined via an appropriately weighted mean to produce a compound prediction. The scheme is then applied to the current cycle 22, and a maximum smoothed international sunspot number of 171 + or - 26 is estimated.
NASA Astrophysics Data System (ADS)
Kumari, K.; Oberheide, J.
2017-12-01
Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.
Toward a Self-Consistent Dynamical Model of the NSSL
NASA Astrophysics Data System (ADS)
Matilsky, Loren
2018-01-01
The advent of helioseismology has revealed in detail the internal differential rotation profile of the Sun. In particular, the presence of two boundary layers, the tachocline at the bottom of the convection zone (CZ) and the Near Surface Shear Layer (NSSL) at the top of the CZ, has remained a mystery. These two boundary layers may have significant consequences for the internal dynamo that operates the Sun's magnetic field, and so understanding their dynamics is an important step in solar physics and in the theory of solar-like stellar structure in general. In this talk, we analyze three numerical models of hydrodynamic convection in rotating spherical shells with varying degrees of stratification in order to understand the dynamical balance of the solar near-surface shear layer (NSSL). We find that with sufficient stratification, a boundary layer with some characteristics of the NSSL develops at high latitudes, and it is maintained purely an inertial balance of torques in which the viscosity is negligible. An inward radial flux of angular momentum from the Reynold's stress (as has been predicted by theory) is balanced by the poleward latitudinal flux of angular momentum due to the meridional circulation. We analyze the similarities of the near surface shear in our models to that of the Sun, and find that the solar NSSL is most likely maintained by the inertial balance our simulations display at high latitudes, but with a modified upper boundary condition.
A STUDY OF THE HEMISPHERIC ASYMMETRY OF SUNSPOT AREA DURING SOLAR CYCLES 23 AND 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Partha; Choudhary, D. P.; Gosain, Sanjay, E-mail: partha240@yahoo.co.in, E-mail: parthares@gmail.com, E-mail: debiprasad.choudhary@csun.edu, E-mail: sgosain@nso.edu
2013-05-10
Solar activity indices vary over the Sun's disk, and various activity parameters are not considered to be symmetric between the northern and southern hemispheres of the Sun. The north-south asymmetry of different solar indices provides an important clue to understanding subphotospheric dynamics and solar dynamo action, especially with regard to nonlinear dynamo models. In the present work, we study the statistical significance of the north-south asymmetry of sunspot areas for the complete solar cycle 23 (1996-2008) and rising branch of cycle 24 (first 45 months). The preferred hemisphere in each year of cycles 23 and 24 has been identified bymore » calculating the probability of hemispheric distribution of sunspot areas. The statistically significant intermediate-term periodicities of the north-south asymmetry of sunspot area data have also been investigated using Lomb-Scargle and wavelet techniques. A number of short- and mid-term periods including the best-known Rieger one (150-160 days) are detected in cycle 23 and near Rieger-type periods during cycle 24, and most of them are found to be time variable. We present our results and discuss their possible explanations with the help of theoretical models and observations.« less
Solar Terrestrial Relations Observatory (STEREO)
NASA Technical Reports Server (NTRS)
Davila, Joseph M.; SaintCyr, O. C.
2003-01-01
The solar magnetic field is constantly generated beneath the surface of the Sun by the solar dynamo. To balance this flux generation, there is constant dissipation of magnetic flux at and above the solar surface. The largest phenomenon associated with this dissipation is the Coronal Mass Ejection (CME). The Solar and Heliospheric Observatory (SOHO) has provided remarkable views of the corona and CMEs, and served to highlight how these large interplanetary disturbances can have terrestrial consequences. STEREO is the next logical step to study the physics of CME origin, propagation, and terrestrial effects. Two spacecraft with identical instrument complements will be launched on a single launch vehicle in November 2007. One spacecraft will drift ahead and the second behind the Earth at a separation rate of 22 degrees per year. Observation from these two vantage points will for the first time allow the observation of the three-dimensional structure of CMEs and the coronal structures where they originate. Each STEREO spacecraft carries a complement of 10 instruments, which include (for the first time) an extensive set of both remote sensing and in-situ instruments. The remote sensing suite is capable of imaging CMEs from the solar surface out to beyond Earth's orbit (1 AU), and in-situ instruments are able to measure distribution functions for electrons, protons, and ions over a broad energy range, from the normal thermal solar wind plasma to the most energetic solar particles. It is anticipated that these studies will ultimately lead to an increased understanding of the CME process and provide unique observations of the flow of energy from the corona to the near-Earth environment. An international research program, the International Heliophysical Year (IHY) will provide a framework for interpreting STEREO data in the context of global processes in the Sun-Earth system.
MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2011-09-01
This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less
Core Problem: Does the CV Parent Body Magnetization require differentiation?
NASA Astrophysics Data System (ADS)
O'Brien, T.; Tarduno, J. A.; Smirnov, A. V.
2016-12-01
Evidence for the presence of past dynamos from magnetic studies of meteorites can provide key information on the nature and evolution of parent bodies. However, the suggestion of a past core dynamo for the CV parent body based on the study of the Allende meteorite has led to a paradox: a core dynamo requires differentiation, evidence for which is missing in the meteorite record. The key parameter used to distinguish core dynamo versus external field mechanisms is absolute field paleointensity, with high values (>>1 μT) favoring the former. Here we explore the fundamental requirements for absolute field intensity measurement in the Allende meteorite: single domain grains that are non-interacting. Magnetic hysteresis and directional data define strong magnetic interactions, negating a standard interpretation of paleointensity measurements in terms of absolute paleofield values. The Allende low field magnetic susceptibility is dominated by magnetite and FeNi grains, whereas the magnetic remanence is carried by an iron sulfide whose remanence-carrying capacity increases with laboratory cycling at constant field values, indicating reordering. The iron sulfide and FeNi grains are in close proximity, providing mineralogical context for interactions. We interpret the magnetization of Allende to record the intense early solar wind with metal-sulfide interactions amplifying the field, giving the false impression of a higher field value in some prior studies. An undifferentiated CV parent body is thus compatible with Allende's magnetization. Early solar wind magnetization should be the null hypothesis for evaluating the source of magnetization for chondrites and other meteorites.
Procyon: A New Candidate for the Dynamo Clinical Trial
NASA Astrophysics Data System (ADS)
Ayres, Thomas
2015-09-01
Procyon (Alp CMi; F5IV-V) is a bright, nearby subgiant; similar in X-ray emission to the Sun, but very different in mass, luminosity, and evolutionary status. Historical Mt Wilson CaII monitoring was inconclusive whether Procyon has a solar-like 11-yr magnetic cycle, or instead is a "flat-activity" star, as might be guessed from its late-MS-age. However, CaII is a poor magnetic proxy for F-types owing to low spectral contrast. X-rays are better. In fact, Procyon - with some X-ray/UV attention over the past two decades - is an excellent candidate for the ongoing "Dynamo Clinical Trial" sponsored by Chandra, XMM, and HST; ultimately to provide a "calibration" of novel theoretical models that seek to couple the inside Dynamo with the outside corona.
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1990-01-01
Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.
Dynamical systems for modeling evolution of the magnetic field of the Sun, stars and planets
NASA Astrophysics Data System (ADS)
Popova, E.
2016-12-01
The magnetic activity of the Sun, stars and planets are connected with a dynamo process based on the combined action of the differential rotation and the alpha-effect. Application of this concept allows us to get different types of solutions which can describe the magnetic activity of celestial bodies. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the spherical shell where dynamo process operates. It was shown the possibility of coexistence of quiasi-biennial oscillations, 22-year cycle, and grand minima of magnetic activity which is consistent with the observational data for the solar activity. We obtained different regimes (oscillations, vacillations, dynamo-bursts) depending on a value of the dynamo-number, the meridional circulation, and thickness of the spherical shell. We discuss features of these regimes and compare them with the observed features of the magnetic fields of the Sun, stars and Earth. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário, E-mail: s.hazra@iiserkol.ac.in, E-mail: dariopassos@ist.utl.pt, E-mail: dnandi@iiserkol.ac.in
Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspotmore » cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.« less
A two-billion-year history for the lunar dynamo.
Tikoo, Sonia M; Weiss, Benjamin P; Shuster, David L; Suavet, Clément; Wang, Huapei; Grove, Timothy L
2017-08-01
Magnetic studies of lunar rocks indicate that the Moon generated a core dynamo with surface field intensities of ~20 to 110 μT between at least 4.25 and 3.56 billion years ago (Ga). The field subsequently declined to <~4 μT by 3.19 Ga, but it has been unclear whether the dynamo had terminated by this time or just greatly weakened in intensity. We present analyses that demonstrate that the melt glass matrix of a young regolith breccia was magnetized in a ~5 ± 2 μT dynamo field at ~1 to ~2.5 Ga. These data extend the known lifetime of the lunar dynamo by at least 1 billion years. Such a protracted history requires an extraordinarily long-lived power source like core crystallization or precession. No single dynamo mechanism proposed thus far can explain the strong fields inferred for the period before 3.56 Ga while also allowing the dynamo to persist in such a weakened state beyond ~2.5 Ga. Therefore, our results suggest that the dynamo was powered by at least two distinct mechanisms operating during early and late lunar history.
A two-billion-year history for the lunar dynamo
Tikoo, Sonia M.; Weiss, Benjamin P.; Shuster, David L.; Suavet, Clément; Wang, Huapei; Grove, Timothy L.
2017-01-01
Magnetic studies of lunar rocks indicate that the Moon generated a core dynamo with surface field intensities of ~20 to 110 μT between at least 4.25 and 3.56 billion years ago (Ga). The field subsequently declined to <~4 μT by 3.19 Ga, but it has been unclear whether the dynamo had terminated by this time or just greatly weakened in intensity. We present analyses that demonstrate that the melt glass matrix of a young regolith breccia was magnetized in a ~5 ± 2 μT dynamo field at ~1 to ~2.5 Ga. These data extend the known lifetime of the lunar dynamo by at least 1 billion years. Such a protracted history requires an extraordinarily long-lived power source like core crystallization or precession. No single dynamo mechanism proposed thus far can explain the strong fields inferred for the period before 3.56 Ga while also allowing the dynamo to persist in such a weakened state beyond ~2.5 Ga. Therefore, our results suggest that the dynamo was powered by at least two distinct mechanisms operating during early and late lunar history. PMID:28808679
Subphotospheric current systems and flares
NASA Technical Reports Server (NTRS)
Hudson, Hugh S.
1987-01-01
Subphotospheric current systems inferred from recent vector magnetograph observations imply the existence of electric currents penetrating the photosphere and thus flowing deep in the solar convection zone. These currents presumably originate in an internal dynamo that supplies the observed photospheric magnetic fields through the buoyant motions of the initially deeply-buried flux tubes. The coronal fields resulting from this process therefore must carry slowly-varying currents driven by emfs remote from the surface. These currents may then drive solar-flare energy release. This paper discusses the consequences of such a deep origin of the coronal parallel currents. Simple estimates for a large active region suggest a mean current-closure depth of not less than 10,000 km, with a subphotospheric inductance of not less than 100 H and a subphotospheric stored energy of not less than 10 to the 33rd ergs.
The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO)
NASA Technical Reports Server (NTRS)
Scherrer, Philip Hanby; Schou, Jesper; Bush, R. I.; Kosovichev, A. G.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; Zhao, J.; Title, A. M.;
2011-01-01
The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.
Evidence of Active MHD Instability in EULAG-MHD Simulations of Solar Convection
NASA Astrophysics Data System (ADS)
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul
2015-11-01
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos & Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
On Solar Cycle Predictions and Reconstructions
2008-12-01
the At present it is still not fully clear whether solar activity optical assumptions (Wilson 1994; Beck el al. I995; Hathaway is purely stochastic... Beck et al. 1995). The Waldmeier effect was found to be a result of (or at least consistent with) var- ious dynamo models, starting with non-linear...Geophys. Res. Lett., 35, 1.20109 Beck . R., Hilbrecht, H., Reinsch, K., & Volker, P. 1995. Solar Astronomy Handbook (Richmond: Willmann-Bell) Beer. J
Magnetic helicity of the global field in solar cycles 23 and 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Pevtsov, A. A.
2014-07-01
For the first time we reconstruct the magnetic helicity density of the global axisymmetric field of the Sun using the method proposed by Brandenburg et al. and Pipin et al. To determine the components of the vector potential, we apply a gauge which is typically employed in mean-field dynamo models. This allows for a direct comparison of the reconstructed helicity with the predictions from the mean-field dynamo models. We apply this method to two different data sets: the synoptic maps of the line-of-sight magnetic field from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) andmore » vector magnetic field measurements from the Vector Spectromagnetograph (VSM) on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) system. Based on the analysis of the MDI/SOHO data, we find that in solar cycle 23 the global magnetic field had positive (negative) magnetic helicity in the northern (southern) hemisphere. This hemispheric sign asymmetry is opposite to the helicity of the solar active regions, but it is in agreement with the predictions of mean-field dynamo models. The data also suggest that the hemispheric helicity rule may have reversed its sign during the early and late phases of cycle 23. Furthermore, the data indicate an imbalance in magnetic helicity between the northern and southern hemispheres. This imbalance seems to correlate with the total level of activity in each hemisphere in cycle 23. The magnetic helicity for the rising phase of cycle 24 is derived from SOLIS/VSM data, and qualitatively its latitudinal pattern is similar to the pattern derived from SOHO/MDI data for cycle 23.« less
Time-Resolved Records of Magnetic Activity on the Pallasite Parent Body and Psyche
NASA Astrophysics Data System (ADS)
Bryson, J. F. J.; Nichols, C. I. O.; Herrero-Albillos, J.; Kronast, F.; Kasama, T.; Alimadadi, H.; van der Laan, G.; Nimmo, F.; Harrison, R. J.
2014-12-01
Although many small bodies apparently generated dynamo fields in the early solar system, the nature and temporal evolution of these fields has remained enigmatic. Time-resolved records of the Earth's planetary field have been essential in understanding the dynamic history of our planet, and equivalent information from asteroids could provide a unique insight into the development of the solar system. Here we present time-resolved records of magnetic activity on the main-group pallasite parent body and (16) Psyche, obtained using newly-developed nanomagnetic imaging techniques. For the pallasite parent body, the inferred field direction remained relatively constant and the intensity was initially stable at ~100 μT before it decreased in two discrete steps down to 0 μT. We interpret this behaviour as due to vigorous dynamo activity driven by compositional convection in the core, ultimately transitioning from a dipolar to multipolar field as the inner core grew from the bottom-up. For Psyche (measured from IVA iron meteorites), the inferred field direction reversed, while the intensity remained stable at >50 μT. Psyche cooled rapidly as an unmantled core, although the resulting thermal convection alone cannot explain these observations. Instead, this behaviour required top-down core solidification, and is attributed either to compositional convection (if the core also solidified from the bottom-up) or convection generated directly by top-down solidification (e.g. Fe-snow). The mechanism governing convection in small body cores is an open question (due partly to uncertainties in the direction of core solidification), and these observations suggest that unconventional (i.e. not thermal) mechanisms acted in the early solar system. These mechanisms are very efficient at generating convection, implying a long-lasting and widespread epoch of dynamo activity among small bodies in the early solar system.
SYSTEMATIC REGULARITY OF HEMISPHERIC SUNSPOT AREAS OVER THE PAST 140 YEARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, L. H.; Xiang, Y. Y.; Qu, Z. N.
2016-03-15
Solar magnetic activity varies with time in the two hemispheres in different ways. The hemispheric interconnection of solar activity phenomena provides an important clue to understanding the dynamical behavior of solar dynamo actions. In this paper, several analysis approaches are proposed to analyze the systematic regularity of hemispheric asynchronism and amplitude asymmetry of long-term sunspot areas during solar cycles 9–24. It is found that, (1) both the hemispheric asynchronism and the amplitude asymmetry of sunspot areas are prevalent behaviors and are not anomalous, but the hemispheric asynchronism exhibits a much more regular behavior than the amplitude asymmetry; (2) the phase-leadingmore » hemisphere returns back to the identical hemisphere every 8 solar cycles, and the secular periodic pattern of hemispheric phase differences follows 3 (south leading) + 5 (north leading) solar cycles, which probably corresponds to the Gleissberg cycle; and (3) the pronounced periodicities of (absolute and normalized) asymmetry indices and lines of synchronization (LOSs) are not identical: the significant periodic oscillations are 80.65 ± 6.31, 20.91 ± 0.40, and 13.45 ± 0.16 years for the LOS values, and 51.34 ± 2.48, 8.83/8.69 ± 0.07, and 3.77 ± 0.02 years for the (absolute and normalized) asymmetry indices. The analysis results improve our knowledge on the hemispheric interrelation of solar magnetic activity and may provide valuable constraints for solar dynamo models.« less
The Solar Wind Source Cycle: Relationship to Dynamo Behavior
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Li, Y.; Lee, C. O.; Jian, L. K.; Petrie, G. J. D.; Arge, C. N.
2017-12-01
Solar cycle trends of interest include the evolving properties of the solar wind, the heliospheric medium through which the Sun's plasmas and fields interact with Earth and the planets -including the evolution of CME/ICMEs enroute. Solar wind sources include the coronal holes-the open field regions that constantly evolve with solar magnetic fields as the cycle progresses, and the streamers between them. The recent cycle has been notably important in demonstrating that not all solar cycles are alike when it comes to contributions from these sources, including in the case of ecliptic solar wind. In particular, it has modified our appreciation of the low latitude coronal hole and streamer sources because of their relative prevalence. One way to understand the basic relationship between these source differences and what is happening inside the Sun and on its surface is to use observation-based models like the PFSS model to evaluate the evolution of the coronal field geometry. Although the accuracy of these models is compromised around solar maximum by lack of global surface field information and the sometimes non-potential evolution of the field related to more frequent and widespread emergence of active regions, they still approximate the character of the coronal field state. We use these models to compare the inferred recent cycle coronal holes and streamer belt sources of solar wind with past cycle counterparts. The results illustrate how (still) hemispherically asymmetric weak polar fields maintain a complex mix of low-to-mid latitude solar wind sources throughout the latest cycle, with a related marked asymmetry in the hemispheric distribution of the ecliptic wind sources. This is likely to be repeated until the polar field strength significantly increases relative to the fields at low latitudes, and the latter symmetrize.
NASA Technical Reports Server (NTRS)
1978-01-01
Abstracts of 63 papers accepted for publication are presented. Topics cover geomagnetism in the context of planetary magnetism, lunar magnetism, the dynamo theory and nondynamo processes, comparative planetary magnetism (terrestrial and outer planets), meteoritic magnetism, and the early solar magnetic field. Author and subject indexes are provided.
Modelling the dynamo in fully convective M-stars
NASA Astrophysics Data System (ADS)
Yadav, Rakesh Kumar; Christensen, Ulrich; Morin, Julien; Wolk, Scott; Poppenhaeger, Katja; Reiners, Ansgar; gastine, Thomas
2017-05-01
M-stars are among the most active and numerous stars in our galaxy. Their activity plays a fundamentally important role in shaping the exoplanetary biosphere since the habitable zones are very close to these stars. Therefore, modeling M-star activity has become a focal point in habitability studies. The fully convective members of the M-star population demand more immediate attention due to the discovery of Earth-like exoplanets around our stellar neighbors Proxima Centauri and TRAPPIST-1 which are both fully convective. The activity of these stars is driven by their convective dynamo, which may be fundamentally different from the solar dynamo due the absence of radiative cores. We model this dynamo mechanism using high-resolution 3D anelastic MHD simulations. To understand the evolution of the dynamo mechanism we simulate two cases, one with a fast enough rotation period to model a star in the `saturated' regime of the rotation-activity realtionship and the other with a slower period to represent cases in the `unsaturated' regime. We find the rotation period fundamentally controls the behavior of the dynamo solution: faster rotation promotes strong magnetic fields (of order kG) on both small and large length scales and the dipolar component of the magnetic field is dominant and stable, however, slower rotation leads to weaker magnetic fields which exhibit cyclic behavior. In this talk, I will present the simulation results and discuss how we can use them to interpret several observed features of the M-star activity.
Torsional Oscillations in a Global Solar Dynamo
NASA Astrophysics Data System (ADS)
Beaudoin, P.; Charbonneau, P.; Racine, E.; Smolarkiewicz, P. K.
2013-02-01
We characterize and analyze rotational torsional oscillations developing in a large-eddy magnetohydrodynamical simulation of solar convection (Ghizaru, Charbonneau, and Smolarkiewicz, Astrophys. J. Lett. 715, L133, 2010; Racine et al., Astrophys. J. 735, 46, 2011) producing an axisymmetric, large-scale, magnetic field undergoing periodic polarity reversals. Motivated by the many solar-like features exhibited by these oscillations, we carry out an analysis of the large-scale zonal dynamics. We demonstrate that simulated torsional oscillations are not driven primarily by the periodically varying large-scale magnetic torque, as one might have expected, but rather via the magnetic modulation of angular-momentum transport by the large-scale meridional flow. This result is confirmed by a straightforward energy analysis. We also detect a fairly sharp transition in rotational dynamics taking place as one moves from the base of the convecting layers to the base of the thin tachocline-like shear layer formed in the stably stratified fluid layers immediately below. We conclude by discussing the implications of our analyses with regard to the mechanism of amplitude saturation in the global dynamo operating in the simulation, and speculate on the possible precursor value of torsional oscillations for the forecast of solar-cycle characteristics.
2013-09-30
Figure 1 – Measurement systems installed on R/V Roger Revelle for DYNAMO /LASP. Inset map shows locations of land-based sounding stations...oceanographic moorings and the research vessels Mirai and Revelle during the intensive observation period of DYNAMO . The black line outlines the flight...under which each dominates. Transmission profile plus near-surface mixing measurements from LASP/ DYNAMO are being used to assess bounds on the
NASA Technical Reports Server (NTRS)
Parker, E. N.
1994-01-01
It is proposed that the observed 500 G intensity of the magnetic fields emerging through the surface of the Sun can be understood from the Bernoulli effect in the upwelling Omega-loops of magnetic field. It is also proposed that the inferred 10(exp 5) G azimuthal flux bundles below the base of the convective zone can be understood as a consequence of the large-scale buoyancy associated with the upwelling fluid in and around the rising Omega-loop. The process fits in naturally with the Babcock-Leighton form of the solar alpha-omega-dynamo. The emerging Omega-loop implies the coherence of the upwelling all the way from the bottom of the convective zone, enhancing the convective heat transport to account for the observed variation of the solar irradiance by about two parts in 10(exp 3).
Using Jupiter's gravitational field to probe the Jovian convective dynamo.
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-03-23
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection.
Using Jupiter’s gravitational field to probe the Jovian convective dynamo
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-01-01
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection. PMID:27005472
STELLAR EVIDENCE THAT THE SOLAR DYNAMO MAY BE IN TRANSITION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalfe, Travis S.; Egeland, Ricky; Van Saders, Jennifer
2016-07-20
Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation–age relations for stars older than the Sun. The evolutionary picture that emerges is surprising: beyond middle-age the efficiency of magnetic braking is dramatically reduced, implying a fundamental change in angular momentum loss beyond a critical Rossby number (Ro ∼ 2). We compile published chromospheric activity measurements for the sample of Kepler asteroseismic targets that were used to establish themore » new rotation–age relations. We use these data along with a sample of well-characterized solar analogs from the Mount Wilson HK survey to develop a qualitative scenario connecting the evolution of chromospheric activity to a fundamental shift in the character of differential rotation. We conclude that the Sun may be in a transitional evolutionary phase, and that its magnetic cycle might represent a special case of stellar dynamo theory.« less
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1974-01-01
Review of recent progress in magnetospheric physics, in particular, in understanding the magnetospheric substorm. It is shown that a number of magnetospheric phenomena can now be understood by viewing the solar wind-magnetosphere interaction as an MHD dynamo; auroral phenomena are powered by the dynamo. Also, magnetospheric responses to variations of the north-south and east-west components of the interplanetary magnetic field have been identified. The magnetospheric substorm is entirely different from the responses of the magnetosphere to the southward component of the interplanetary magnetic field. It may be associated with the formation of a neutral line within the plasma sheet and with an enhanced reconnection along the line. A number of substorm-associated phenomena can be understood by noting that the new neutral line formation is caused by a short-circuiting of a part of the magnetotail current.
Periodicities in the X-ray Emission from the Solar Corona: SphinX and SOXS Observations
NASA Astrophysics Data System (ADS)
Steślicki, M.; Awasthi, A. K.; Gryciuk, M.; Jain, R.
The structure and evolution of the solar magnetic field is driven by a magnetohydrodynamic dynamo operating in the solar interior, which induces various solar activities that exhibit periodic variations on different timescales. Therefore, probing the periodic nature of emission originating from the solar corona may provide insights of the convection-zone-photosphere-corona coupling processes. We present the study of the mid-range periodicities, between rotation period (˜27 days) and the Schwabe cycle period (˜11 yr), in the solar soft X-ray emission, based on the data obtained by two instruments: SphinX and SOXS in various energy bands.
EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensionalmore » instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.« less
NASA Astrophysics Data System (ADS)
Baliunas, S. L.
2004-05-01
Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.
The precession dynamo experiment at HZDR
NASA Astrophysics Data System (ADS)
Giesecke, A.; Albrecht, T.; Gerbeth, G.; Gundrum, T.; Nore, C.; Stefani, F.; Steglich, C.
2013-12-01
Most planets of the solar system are accompanied by a magnetic field with a large scale structure. These fields are generated by the dynamo effect, the process that provides for the transfer of kinetic energy from a flow of a conducting fluid into magnetic energy. In case of planetary dynamos it is generally assumed that these flows are driven by thermal and/or chemical convection but other driving sources like libration, tidal forcing or precession are possible as well. Precessional forcing, in particular, has been discussed since long as an at least additional power source for the geodynamo. A fluid flow of liquid sodium, solely driven by precession, will be the source for magnetic field generation in the next generation dynamo experiment currently under development at the Helmholz-Zentrum Dresden-Rossendorf (HZDR). In contrast to previous dynamo experiments no internal blades, propellers or complex systems of guiding tubes will be used for the optimization of the flow properties. However, in order to reach sufficiently high magnetic Reynolds numbers required for the onset of dynamo action rather large dimensions of the container are necessary making the construction of the experiment a challenge. At present state a small scale water experiment is running in order to estimate the hydrodynamic flow properties in dependence of precession angle and precession rate. The measurements are utilized in combination with numerical simulations of the hydrodynamic case as input data for kinematic simulations of the induction equation. The resulting growth rates and the corresponding critical magnetic Reynolds numbers will provide a restriction of the useful parameter regime and will allow an optimization of the experimental configuration.
NASA Astrophysics Data System (ADS)
Klausner, Virginia; Papa, Andres; Mendes, Odim; Oliveira Domingues, Margarete
It is well known that any of the components of the magnetic field measured on the Earth's surface presents characteristic frequencies with 24, 12, 8 and 6-hour period. Those typical kinds of oscillations of the geomagnetic field are known as solar quiet variation and are primary due to the global thermotidal wind systems which conduct currents flowing in the "dynamo region" of the ionosphere, the E-region. In this study, the horizontal component amplitude observed by ground-based observatories belonged to the INTERMAGNET network have been used to analyze the global pattern variance of the Sq variation. In particular we focused our attention on Vassouras Observatory (VSS), Rio de Janeiro, Brazil, which has been active since 1915. In the next years, a brazilian network of magnetometers will be implemented and VSS can be used as reference. This work aims mainly to highlight and interpret these quiet daily variations over the Brazilian sector compared to the features from other magnetic stations reasonably distributed over the whole Earth's surface. The methodological approach is based on wavelet cross-correlation technique. This technique is useful to isolate the period of the spectral components of geomagnetic field in each station and to correlate them as function of scale (period) between VSS and the other stations. The wavelet cross-correlation coefficient strongly depends on the scale. We study the geomagnetically quiet days at equinox and solstice months during low and high solar activity. As preliminary remarks, the results show that the records in the magnetic stations have primary a latitudinal dependence affected by the time of year and level of solar activity. On the other hand, records of magnetic stations located at the same dip latitude but at different longitude presented some peculiarities. These results indicated that the winds driven the dynamo are very sensitive of the location of the geomagnetic station, i. e., its effects depend upon the direction of the Earth's main field with respect to a local driving electric field direction.
Magnetic fields in non-convective regions of stars.
Braithwaite, Jonathan; Spruit, Henk C
2017-02-01
We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields.
Magnetic fields in non-convective regions of stars
Braithwaite, Jonathan
2017-01-01
We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields. PMID:28386410
Numerical study of laminar plasma dynamo in cylindrical and spherical geometries
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Bayliss, Adam; Ebrahimi, Fatima; Forest, Cary; Schnack, Dalton
2009-05-01
We have performed the numerical investigation of possibility of laminar dynamo in two new experiments, Plasma Couette and Plasma Dynamo, which have been designed at the University of Wisconsin-Madison. The plasma is confined by a strong multipole magnetic field localized at the boundary of cylindrical (Plasma Couette) or spherical (Plasma Dynamo) chamber. Electrodes positioned between the magnet rings can be biased with arbitrary potentials so that Lorenz force ExB drives any given toroidal velocity profile at the surface. Using the extended MHD code, NIMROD, we have modeled several types of plasma flows appropriate for dynamo excitation. It is found that for high magnetic Reynolds numbers the counter-rotating von Karman flow (in cylinder) and Dudley-James flow (in sphere) can lead to self-generation of non-axisymmetric magnetic field. This field saturates at certain amplitude corresponding to a new stable equilibrium. The structure of this equilibrium is considered.
Basin-forming impacts on Mars and the coupled thermal evolution of the interior
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Roberts, J. H.
2015-12-01
The youngest of the Noachian giant impact basins on Mars, are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present and that a core dynamo was not operating at the time those basins formed. Shock heating from this sequence of basin-forming impacts modified the pattern of mantle convection. The heating produced by the eight largest impacts (Acidalia, Amazonis, Ares, Chryse, Daedalia, Hellas, Scopolus, and Utopia) penetrates below the core-mantle boundary (CMB). Here, we extend previous workon coupled thermal evolution into 3D, in order to accurately model the spatial relationship between impact basins. At the time of each impact we introduce a temperature perturbation resulting from shock heating into the core and mantle. Stratification of the core occurs very quickly compared to mantle dynamics, and we horizontally average the temperature in the core.We model mantle convection using the 3D finite element code CitcomS, and the thermal evolution of the core using a 1D parameterization.Each impact alters the pattern of mantle dynamics and a significant amount of impact melt is produced in the near surface. However, only the outermost part of the core is affected; the inner core temperature is still adiabatic. Immediately following the impact, the inner core may remain convective. The top of the core will cool by conduction into the deeper core faster than across the CMB, deepening the zone of stable stratification. Further core cooling results in formation of a convecting zone at the top of the core that propagates downwards as the thermal gradient becomes adiabatic at greater depths. Our goal is to obtain a better estimate of the time scale for restoration of post-impact core dynamo activity. Because the disappearance of the magnetic field exposes the early atmosphere to solar wind activity, constraining the history of the dynamo is critical for understanding climate evolution and habitability of the surface.
MAGNETOHYDRODYNAMIC SIMULATION-DRIVEN KINEMATIC MEAN FIELD MODEL OF THE SOLAR CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, Corinne; Charbonneau, Paul; Bouchat, Amelie, E-mail: corinne@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca, E-mail: amelie.bouchat@mail.mcgill.ca
We construct a series of kinematic axisymmetric mean-field dynamo models operating in the {alpha}{Omega}, {alpha}{sup 2}{Omega} and {alpha}{sup 2} regimes, all using the full {alpha}-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An {alpha}{sup 2}{Omega} mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields thatmore » share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with {alpha}{sup 2} and {alpha}{Omega} mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating {alpha}{sup 2} solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.« less
POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.
2014-09-20
The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical datamore » sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.« less
A new look at sunspot formation using theory and observations
NASA Astrophysics Data System (ADS)
Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.
2017-10-01
Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.
International Space Station Columbus Payload SoLACES Degradation Assessment
NASA Technical Reports Server (NTRS)
Harman, William; Schmidl, William; Mikatarian, Ron; Soares, Carlos; Schmidtke, Gerhard; Erhardt, Christian
2014-01-01
SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 100 um). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers). The SolACES payload includes a set of 4 spectrometers that measure the solar EUV flux from 17 nm to 220 nm. One of these 4 spectrometers failed early on (before deployment). EUV data is important in understanding the solar dynamo. Also, EUV flux is the source of most of the ionization that produces the ionosphere plasma. Plasma production is important in understanding the ionosphere environment. The ionosphere conditions affect many subjects including spacecraft charging, dynamo processes, instabilities, and communications. The 3 remaining spectrometers have collected valuable data during the historically low solar cycle 24. Some of this data will be presented. A significant trend in degradation of the remaining SolACES spectrometers was observed towards the end of CY2010 (GMT 310) through mid CY 2011 (GMT 132). The Principle Investigators of SolACES initiated a Mission Evaluation Room (MER) Chit to request an investigation of the degradation in CY 2011 (GMT 230). The Boeing Space Environments team was asked to respond to the ESA initiated MER Chit request to investigate the cause of the degradation. This paper will discuss the findings of that investigation.
NASA Astrophysics Data System (ADS)
Mursula, K.; Hiltula, T.
2004-10-01
Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since the 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2∘ tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a “flip-flop” type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.
Dynamo action and magnetic buoyancy in convection simulations with vertical shear
NASA Astrophysics Data System (ADS)
Guerrero, G.; Käpylä, P. J.
2011-09-01
Context. A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. Aims: We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. Methods: We perform numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. Results: We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker tachoclines allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e. those with the largest amplitudes of the initial field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also observed in lower values of the turbulent velocity and in perturbations of approximately three per cent on the shear profile. Conclusions: The results indicate that buoyancy is a common phenomena when the magnetic field is amplified through dynamo action in a narrow layer. It is, however, very hard for the field to rise up to the surface without losing its initial coherence.
NASA Astrophysics Data System (ADS)
Panasenco, O.; Velli, M.; Panasenco, A.; Lionello, R.
2017-12-01
The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona - active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Mid-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of pseudostreamers shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at thepseudostreamer base low in the corona. We review and model possible coronal magnetic configurations and solar wind plasma properties at different distances from the solar surface that may be observed by Parker Solar Probe and Solar Orbiter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil
2016-07-20
Solar activity undergoes a variation over timescales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14–24. We found that the Rieger-type periods occur in all cycles, but they are cycle dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185–195more » days during the weak cycles 14–15 and 24 and a periodicity of 155–165 days during the stronger cycles 16–23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonics of fast Rossby waves with m = 1 and n = 4, where m ( n ) indicates the toroidal (poloidal) wavenumbers, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14–24. Our estimations suggest a field strength of ∼40 kG for the stronger cycles and ∼20 kG for the weaker cycles.« less
The rotation-activity relation in M dwarfs
NASA Astrophysics Data System (ADS)
Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry L.; Calkins, Michael L.; Mink, Jessica D.
2017-01-01
Main sequence stars with masses below approximately 0.35 solar masses are fully-convective, and are expected to have a different type of magnetic dynamo than solar-type stars. Observationally, the dynamo mechanism can be probed through the relationship between rotation and magnetic activity, and the evolution of these properties. Though M dwarfs are the most common type of star in the galaxy, a lack of observational constraints at ages beyond 1 Gyr has hampered studies of the rotation-activity relation. To address this, we have made new measurements of rotation and magnetic activity in nearby, field-age M dwarfs. Combining our 386 rotation period measurements and 247 new optical spectra with data from the literature, we are able to probe the rotation-activity in M dwarfs with masses from 0.1 to 0.6 solar masses. We observe a threshold in the mass--period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. We confirm that the activity of rapidly rotating M dwarfs maintains a saturated value. We have measured rotation periods as long as 140 days, allowing us to probe the unsaturated regime in detail. Our data show a clear power-law decay in relative H-alpha luminosity as a function Rossby number. We discuss implications for the magnetic dynamo mechanism.We acknowledge funding from the National Science Foundation, the David and Lucile Packard Foundation Fellowship for Science and Engineering, and the John Templeton Foundation. E.R.N. acknowledges support from the NSF through a Graduate Research Fellowship and an Astronomy and Astrophysics Postdoctoral Fellowship.
A deep dynamo generating Mercury's magnetic field.
Christensen, Ulrich R
2006-12-21
Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.
An impact-driven dynamo for the early Moon.
Le Bars, M; Wieczorek, M A; Karatekin, O; Cébron, D; Laneuville, M
2011-11-09
The origin of lunar magnetic anomalies remains unresolved after their discovery more than four decades ago. A commonly invoked hypothesis is that the Moon might once have possessed a thermally driven core dynamo, but this theory is problematical given the small size of the core and the required surface magnetic field strengths. An alternative hypothesis is that impact events might have amplified ambient fields near the antipodes of the largest basins, but many magnetic anomalies exist that are not associated with basin antipodes. Here we propose a new model for magnetic field generation, in which dynamo action comes from impact-induced changes in the Moon's rotation rate. Basin-forming impact events are energetic enough to have unlocked the Moon from synchronous rotation, and we demonstrate that the subsequent large-scale fluid flows in the core, excited by the tidal distortion of the core-mantle boundary, could have powered a lunar dynamo. Predicted surface magnetic field strengths are on the order of several microteslas, consistent with palaeomagnetic measurements, and the duration of these fields is sufficient to explain the central magnetic anomalies associated with several large impact basins.
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions
Barnes, R.
2015-01-01
Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.
Driscoll, P E; Barnes, R
2015-09-01
The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.
Meridional Circulation Dynamics from 3D Magnetohydrodynamic Global Simulations of Solar Convection
NASA Astrophysics Data System (ADS)
Passos, Dário; Charbonneau, Paul; Miesch, Mark
2015-02-01
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 {{R}⊙ }). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.
Grand minima and equatorial symmetry breaking in axisymmetric dynamo models
NASA Astrophysics Data System (ADS)
Brooke, John M.; Pelt, Jaan; Tavakol, Reza; Tworkowski, Andrew
1998-04-01
We consider the manner in which time-periodic solutions of an axisymmetric dynamo model can undergo breaking of equatorial symmetry, i.e. loss of pure dipolar or quadrupolar symmetry. By considering the symmetry group underlying the solutions, we show that the fluctuations responsible for the symmetry-breaking can be constrained such that they are in resonance with the former solution. They can then be amplified until they are comparable in magnitude to the former solution. If the bifurcation is supercritical, the amplitude of the fluctuation is stabilised and a stable mixed parity limit cycle is formed. If it is subcritical it gives rise to a recently identified form of intermittency, called icicle intermittency. This produces episodes in which the original solution and the fluctuation are almost exactly synchronised and the fluctuation grows exponentially in amplitude, interrupted by brief episodes where synchronicity is lost and the amplitude of the fluctuation declines rapidly by several orders of magnitude. During these latter episodes there is a significant dip in the amplitude of the total magnetic field. This model-independent analysis can produce quantitative predictions for the behaviour of this bifurcation and we provide evidence for this behaviour by analysing timeseries from four different mean-field dynamo models, where intermittency is observed without the need for stochastic, or chaotically driven, forcing terms in the dynamo equations. We compare these results with recent work on intermittency in dynamo models and consider their relevance to the intermittency present in solar and stellar cycles.
Non-axisymmetric α2Ω-dynamo waves in thin stellar shells
NASA Astrophysics Data System (ADS)
Bassom, Andrew P.; Kuzanyan, Kirill M.; Sokoloff, Dmitry; Soward, Andrew M.
2005-04-01
Linear α2Ω-dynamo waves are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified one-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo waves in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85-133) considered the modulation of dynamo waves, linked to a latitudinal-dependent local α-effect and radial gradient of the zonal shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers Rαf(θ) and RΩg(θ). The modulated Parker wave, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent zonal flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo waves with azimuthal wave number m. We find that the critical dynamo number Dc = RαRΩ is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα ≠ 0 there may exist a band of wave numbers 0 < m < m† for which the non-axisymmetric modes have a smaller Dc than in the axisymmetric case. Here m† is regarded as a continuous function of Rα with the property m†→0 as Rα→0 and the band is only non-empty when m† >1, which happens for sufficiently large Rα. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker wave of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω*(θp). Since the critical dynamo number Dc = RαRΩ is O (1) for small Rα, the condition m† > 1 for non-axisymmetric mode preference imposes an upper limit on the size of |dΩ*/dθ|.
Measurements of Photospheric and Chromospheric Magnetic Fields
NASA Astrophysics Data System (ADS)
Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca
2017-09-01
The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.
Global Solar Magnetology and Reference Points of the Solar Cycle
NASA Astrophysics Data System (ADS)
Obridko, V. N.; Shelting, B. D.
2003-11-01
The solar cycle can be described as a complex interaction of large-scale/global and local magnetic fields. In general, this approach agrees with the traditional dynamo scheme, although there are numerous discrepancies in the details. Integrated magnetic indices introduced earlier are studied over long time intervals, and the epochs of the main reference points of the solar cycles are refined. A hypothesis proposed earlier concerning global magnetometry and the natural scale of the cycles is verified. Variations of the heliospheric magnetic field are determined by both the integrated photospheric i(B r )ph and source surface i(B r )ss indices, however, their roles are different. Local fields contribute significantly to the photospheric index determining the total increase in the heliospheric magnetic field. The i(B r )ss index (especially the partial index ZO, which is related to the quasi-dipolar field) determines narrow extrema. These integrated indices supply us with a “passport” for reference points, making it possible to identify them precisely. A prominent dip in the integrated indices is clearly visible at the cycle maximum, resulting in the typical double-peak form (the Gnevyshev dip), with the succeeding maximum always being higher than the preceding maximum. At the source surface, this secondary maximum significantly exceeds the primary maximum. Using these index data, we can estimate the progression expected for the 23rd cycle and predict the dates of the ends of the 23rd and 24th cycles (the middle of 2007 and December 2018, respectively).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Cameron, R. H.; Schmitt, D.
We studied the effect of the perturbation of the meridional flow in the activity belts detected by local helioseismology on the development and strength of the surface magnetic field at the polar caps. We carried out simulations of synthetic solar cycles with a flux transport model, which follows the cyclic evolution of the surface field determined by flux emergence and advective transport by near-surface flows. In each hemisphere, an axisymmetric band of latitudinal flows converging toward the central latitude of the activity belt was superposed onto the background poleward meridional flow. The overall effect of the flow perturbation is tomore » reduce the latitudinal separation of the magnetic polarities of a bipolar magnetic region and thus diminish its contribution to the polar field. As a result, the polar field maximum reached around cycle activity minimum is weakened by the presence of the meridional flow perturbation. For a flow perturbation consistent with helioseismic observations, the polar field is reduced by about 18% compared to the case without inflows. If the amplitude of the flow perturbation depends on the cycle strength, its effect on the polar field provides a nonlinearity that could contribute to limiting the amplitude of a Babcock-Leighton type dynamo.« less
Zharkova, V. V.; Shepherd, S. J.; Popova, E.; Zharkov, S. I.
2015-01-01
We derive two principal components (PCs) of temporal magnetic field variations over the solar cycles 21–24 from full disk magnetograms covering about 39% of data variance, with σ = 0.67. These PCs are attributed to two main magnetic waves travelling from the opposite hemispheres with close frequencies and increasing phase shift. Using symbolic regeression analysis we also derive mathematical formulae for these waves and calculate their summary curve which we show is linked to solar activity index. Extrapolation of the PCs backward for 800 years reveals the two 350-year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past including the Maunder and Dalton minimum. The summary curve calculated for the next millennium predicts further three grand cycles with the closest grand minimum occurring in the forthcoming cycles 26–27 with the two magnetic field waves separating into the opposite hemispheres leading to strongly reduced solar activity. These grand cycle variations are probed by α − Ω dynamo model with meridional circulation. Dynamo waves are found generated with close frequencies whose interaction leads to beating effects responsible for the grand cycles (350–400 years) superimposed on a standard 22 year cycle. This approach opens a new era in investigation and confident prediction of solar activity on a millenium timescale. PMID:26511513
NASA Technical Reports Server (NTRS)
Kosovichev, A. G.
1996-01-01
The layer of transition from the nearly rigid rotation of the radiative interior to the latitudinal differential rotation of the convection zone plays a significant role in the internal dynamics of the Sun. Using rotational splitting coefficients of the p-mode frequencies, obtained during 1986-1990 at the Big Bear Solar Observatory, we have found that the thickness of the transitional layer is 0.09 +/- 0.04 solar radii (63 +/- 28 Mm), and that most of the transition occurs beneath the adiabatically stratified part of the convection zone, as suggested by the dynamo theories of the 22 yr solar activity cycle.
Meridional Flow Measurements: Comparisons Between Ring Diagram Analysis and Fourier-Hankel Analysis
NASA Astrophysics Data System (ADS)
Zaatri, A.; Roth, M.
2008-09-01
The meridional circulation is a weak flow with amplitude in the order of 10 m/s on the solar surface. As this flow could be responsible for the transport of magnetic flux during the solar cycle it has become a crucial ingredient in some dynamo models. However, only less is known about the overall structure of the meridional circulation. Helioseismology is able to provide information on the structure of this flow in the solar interior. One widely used helioseismic technique for measuring frequency shifts due to horizontal flows in the subsurface layers of the sun is the ring diagram analyis (Corbard et al. 2003). It is based on the analysis of frequency shifts in the solar oscillation power spectrum as a function of the orientation of the wave vector. This then allows drawing conclusions on the strength of meridional flow, too. Ring diagram analysis is currently limited to the analysis of the wave field in only a small region on the solar surface. Consequently, information on the solar interior can only be inferred down to a depth of about 16 Mm. Another helioseismology method that promises to estimate the meridional flow strength down to greater depths is the Fourier-Hankel analysis (Krieger et al. 2007). This technique is based on a decomposition of the wave field in poleward and equatorward propagating waves. A possible frequency shift between them is then due to the meridional flow. We have been motivated for carrying out a comparative study between the two techniques to measure the meridional flow. We investigate the degree of coherence between the two methods by analyzing the same data sets recorded by the SOHO-MDI and GONG instruments.
Observations of magnetic fields on solar-type stars
NASA Technical Reports Server (NTRS)
Marcy, G. W.
1982-01-01
Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.
MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Wolk, Scott J.; Christensen, Ulrich R.
2016-12-20
The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristicsmore » of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.« less
The importance of wind-flux feedbacks during the November CINDY-DYNAMO MJO event
NASA Astrophysics Data System (ADS)
Riley Dellaripa, Emily; Maloney, Eric; van den Heever, Susan
2015-04-01
High-resolution, large-domain cloud resolving model (CRM) simulations probing the importance of wind-flux feedbacks to Madden-Julian Oscillation (MJO) convection are performed for the November 2011 CINDY-DYNAMO MJO event. The work is motivated by observational analysis from RAMA buoys in the Indian Ocean and TRMM precipitation retrievals that show a positive correlation between MJO precipitation and wind-induced surface fluxes, especially latent heat fluxes, during and beyond the CINDY-DYNAMO time period. Simulations are done using Colorado State University's Regional Atmospheric Modeling System (RAMS). The domain setup is oceanic and spans 1000 km x 1000 km with 1.5 km horizontal resolution and 65 stretched vertical levels centered on the location of Gan Island - one of the major CINDY-DYNAMO observation points. The model is initialized with ECMWF reanalysis and Aqua MODIS sea surface temperatures. Nudging from ECMWF reanalysis is applied at the domain periphery to encourage realistic evolution of MJO convection. The control experiment is run for the entire month of November so both suppressed and active, as well as, transitional phases of the MJO are modeled. In the control experiment, wind-induced surface fluxes are activated through the surface bulk aerodynamic formula and allowed to evolve organically. Sensitivity experiments are done by restarting the control run one week into the simulation and controlling the wind-induced flux feedbacks. In one sensitivity experiment, wind-induced surface flux feedbacks are completely denied, while in another experiment the winds are kept constant at the control simulations mean surface wind speed. The evolution of convection, especially on the mesoscale, is compared between the control and sensitivity simulations.
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk
2011-01-01
Various manifestations of solar activity cause disturbances known as space weather effects in the interplanetary space, near-Earth environment, and all the Earth's "spheres. Longterm variations in the frequency, intensity and relative importance of the manifestations of solar activity are due to the slow changes in the output of the solar dynamo, and they define space climate. Space climate governs long-term variations in geomagnetic activity and is the primary natural driver of terrestrial climate. To understand how the variable solar activity affects the Earth's environment, geomagnetic activity and climate on both short and long time scales, we need to understand the origins of solar activity itself and its different manifestations, as well as the sequence of coupling processes linking various parts of the system. This session provides a forum to discuss the chain of processes and relations from the Sun to the Earth's surface: the origin and long-term and short-term evolution of solar activity, initiation and temporal variations in solar flares, CMEs, coronal holes, the solar wind and its interaction with the terrestrial magnetosphere, the ionosphere and its connection to the neutral dominated regions below and the plasma dominated regions above, the stratosphere, its variations due to the changing solar activity and its interactions with the underlying troposphere, and the mechanisms of solar influences on the lower atmosphere on different time-scales. Particularly welcome are papers highlighting the coupling processes between the different domains in this complex system.
NASA Astrophysics Data System (ADS)
Milingo, Jackie; Saar, Steven; Marschall, Laurence
2018-01-01
We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period
Heavy Metal - Exploring a magnetised metallic asteroid
NASA Astrophysics Data System (ADS)
Wahlund, Jan-Erik; Andrews, David; Futaana, Yoshifumi; Masters, Adam; Thomas, Nicolas; De Sanctis, Maria Cristina; Herique, Alain; Retherford, Kurt; Tortora, Paolo; Trigo-Rodriguez, Joseph; Ivchenko, Nickolay; Simon, Sven
2017-04-01
We propose a spacecraft mission (Heavy Metal) to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×10(19) kg make it one of the largest and densest of asteroids, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. The M5 mission Heavy Metal will investigate if (16) Psyche is the exposed metallic core of a planetesimal, formed early enough to melt and differentiate. High-resolution mapping of the surface in optical, IR, UV and radar wavebands, along with the determination of the shape and gravity field will be used to address the formation and subsequent evolution of (16) Psyche, determining the origin of metallic asteroids. It is conceivable that a cataclysmic collision with a second body led to the ejection of all or part of the differentiated core of the parent body. Measurements at (16) Psyche therefore provide a possibility to directly examine an iron-rich planetary core, similar to that expected at the center of all the major planets including Earth. A short-lived dynamo producing a magnetic field early in the life of (16) Psyche could have led to a remnant field (of tens of micro Tesla) being preserved in the body today. (16) Psyche is embedded in the variable flow of the solar wind. Whereas planetary magnetospheres and induced magnetospheres are the result of intense dynamo fields and dense conductive ionospheres presenting obstacles to the solar wind, (16) Psyche may show an entirely new 'class' of interaction as a consequence of its lack of a significant atmosphere, the extremely high bulk electrical conductivity of the asteroid, and the possible presence of intense magnetic fields retained in iron-rich material. The small characteristic scale of (16) Psyche ( 200 km) firmly places any solar wind interaction in the "sub-MHD" scale, in which kinetic plasma effects must be considered. Heavy Metal will investigate if (16) Psyche has an extended magnetosphere by mapping the local plasma density, composition, energy state and dynamics around the body, along with the magnetic field. By accurately mapping any internally retained magnetic field of (16) Psyche, we will address the origin of any magnetization (the possible remains of an early magnetic dynamo). The Heavy Metal spacecraft will be launched from Earth with an Ariane 6.2 rocket in the time window 2029 - 2031, and by using electric propulsion, along with a possible gravity assist manoeuvre by Mars, arrive at (16) Psyche some 4 - 4.5 years later. The S/C is then planned to orbit the body for a period of 1 year, and release a CubeSat for close up studies.
Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity
NASA Technical Reports Server (NTRS)
Richon, K.; Schatten, K.
2003-01-01
We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty in the long-range predictions remains, requiring future monitoring, we do not expect the next cycle's + 2-sigma value will rise significantly above solar cycle #23's activity level.
NASA Technical Reports Server (NTRS)
Brice, N. M.
1973-01-01
The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Allen belt is attributed to solar wind particles diffused in toward the planet by dynamo electric fields from ionospheric neutral winds, and the consequences of this theory are indicated.
A Solar Cycle Prediction Puzzle's PossibleExplanation?
NASA Astrophysics Data System (ADS)
Luhmann, Janet
2007-05-01
A long-standing and intriguing puzzle of the last few decades has been Joan Feynman's (1982) discovery that the solar cycle (sunspot number) maximum trends follow the level of geomagnetic activity during the prior minimum phase. Recently Hathaway (GRL 33, 2006) used this relationship to make a prediction of the size of the next solar maximum. But the physical reason why this should work at all remains a matter of speculation. Although it has been suggested that geomagnetic activity around solar minimum is determined by the terrestrial magnetosphere's response to high speed solar wind streams which seem to often characterize the declining phase of the cycle, why should the occurrence of these streams portend the new solar maximum? Our improving understanding of solar wind sources may hold the key, and also tell us something useful about the solar dynamo.
The fast kinematic magnetic dynamo and the dissipationless limit
NASA Technical Reports Server (NTRS)
Finn, John M.; Ott, Edward
1990-01-01
The evolution of the magnetic field in models that incorporate chaotic field line stretching, field cancellation, and finite magnetic Reynolds number is examined analytically and numerically. Although the models used here are highly idealized, it is claimed that they display and illustrate typical behavior relevant to fast magnetic dynamic behavior. It is shown, in particular, that consideration of magnetic flux through a finite fixed surface provides a simple and effective way of deducing fast dynamo behavior from the zero resistivity equation. Certain aspects of the fast dynamo problem can thus be reduced to a study of nonlinear dynamic properties of the underlying flow.
The magnetic tides of Honolulu
Love, Jeffrey J.; Rigler, Erin Joshua
2013-01-01
We review the phenomenon of time-stationary, periodic quiet-time geomagnetic tides. These are generated by the ionospheric and oceanic dynamos, and, to a lesser-extent, by the quiet-time magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. We examine historical time series of hourly magnetic-vector measurements made at the Honolulu observatory. We construct high-resolution, frequency-domain Lomb-periodogram and maximum-entropy power spectra that reveal a panorama of stationary harmonics across periods from 0.1 to 10000.0-d, including harmonics that result from amplitude and phase modulation. We identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semi-diurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. We provide evidence that a method intended for separating the ionospheric and oceanic dynamo signals by midnight subsampling of observatory data time series is prone to frequency-domain aliasing. The tidal signals we summarize in this review can be used to test our fundamental understanding of the dynamics of the quiet-time ionosphere and magnetosphere, induction in the ocean and in the electrically conducting interior of the Earth, and they are useful for defining a quiet-time baseline against which magnetospheric-storm intensity is measured.
MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passos, Dário; Charbonneau, Paul; Miesch, Mark, E-mail: dariopassos@ist.utl.pt
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone atmore » mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.« less
NASA Astrophysics Data System (ADS)
He, Han; Wang, Huaning; Zhang, Mei; Mehrabi, Ahmad; Yan, Yan; Yun, Duo
2018-05-01
The light curves of solar-type stars present both periodic fluctuation and flare spikes. The gradual periodic fluctuation is interpreted as the rotational modulation of magnetic features on the stellar surface and is used to deduce magnetic feature activity properties. The flare spikes in light curves are used to derive flare activity properties. In this paper, we analyze the light curve data of three solar-type stars (KIC 6034120, KIC 3118883, and KIC 10528093) observed with Kepler space telescope and investigate the relationship between their magnetic feature activities and flare activities. The analysis shows that: (1) both the magnetic feature activity and the flare activity exhibit long-term variations as the Sun does; (2) unlike the Sun, the long-term variations of magnetic feature activity and flare activity are not in phase with each other; (3) the analysis of star KIC 6034120 suggests that the long-term variations of magnetic feature activity and flare activity have a similar cycle length. Our analysis and results indicate that the magnetic features that dominate rotational modulation and the flares possibly have different source regions, although they may be influenced by the magnetic field generated through a same dynamo process.
REVIEWS OF TOPICAL PROBLEMS: Magnetospheres of planets with an intrinsic magnetic field
NASA Astrophysics Data System (ADS)
Belenkaya, Elena S.
2009-08-01
This review presents modern views on the physics of magnetospheres of Solar System planets having an intrinsic magnetic field, and on the structure of magnetospheric magnetic fields. Magnetic fields are generated in the interiors of Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune via the dynamo mechanism. These fields are so strong that they serve as obstacles for the plasma stream of the solar wind. A magnetosphere surrounding a planet forms as the result of interaction between the solar wind and the planetary magnetic field. The dynamics of magnetospheres are primary enforced by solar wind variations. Each magnetosphere is unique. The review considers common and individual sources of magnetic fields and the properties of planetary magnetospheres.
Maximizing Science Return: A Representative Trajectory for Dynamo
NASA Technical Reports Server (NTRS)
Lyons, Daniel T.
1999-01-01
This presentation discusses a possible Dynamo Orbit for a future Mars global surveyor. The goal of the proposed orbit is to allow for the greatest amount of mapping of the Martian surface during the mission. The presentation discusses the dynamic pressure, periapsis altitude, the Apoapsis Altitude, the aerodynamic heating rate,and the change in velocity during the aerobraking phase of the orbit and the orbital insertion.
A new simple dynamo model for solar activity cycle
NASA Astrophysics Data System (ADS)
Yokoi, Nobumitsu; Schmitt, Dieter
2015-04-01
The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).
Detection of the Magnetospheric Emissions from Extrasolar Planets
NASA Astrophysics Data System (ADS)
Lazio, J.
2014-12-01
Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The authors acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" workshop organized by the Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus J.; Siscoe, George L.
2010-11-01
Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliūnas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliūnas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.
Heliophysics 3 Volume Paperback Set
NASA Astrophysics Data System (ADS)
Schrijver, Carolus J.; Siscoe, George L.
2013-03-01
Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliunas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliunas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.
Deep Convection, Magnetism and Solar Supergranulation
NASA Astrophysics Data System (ADS)
Lord, J. W.
We examine the effect of deep convection and magnetic fields on solar supergranulation. While supergranulation was originally identified as a convective flow from relatively great depth below the solar surface, recent work suggests that supergranules may originate near the surface. We use the MURaM code to simulate solar-like surface convection with a realistic photosphere and domain size up to 197 x 197 x 49 Mm3. This yields nearly five orders of magnitude of density contrast between the bottom of the domain and the photosphere which is the most stratified solar-like convection simulations that we are aware of. Magnetic fields were thought to be a passive tracer in the photosphere, but recent work suggests that magnetism could provide a mechanism that enhances the supergranular scale flows at the surface. In particular, the enhanced radiative losses through long lived magnetic network elements may increase the lifetime of photospheric downflows and help organize low wavenumber flows. Since our simulation does not have sufficient resolution to resolve increased cooling by magnetic bright points, we artificially increase the radiative cooling in elements with strong magnetic flux. These simulations increase the cooling by 10% for magnetic field strength greater than 100 G. We find no statistically significant difference in the velocity or magnetic field spectrum by enhancing the radiative cooling. We also find no differences in the time scale of the flows or the length scales of the magnetic energy spectrum. This suggests that the magnetic field is determined by the flows and is largely a passive tracer. We use these simulations to construct a two-component model of the flows: for scales smaller than the driving (integral) scale (which is four times the local density scale height) the flows follow a Kolmogorov (k-5/3) spectrum, while larger scale modes decay with height from their driving depth (i.e. the depth where the wavelength of the mode is equal to the driving (integral) scale). This model reproduces the MURaM results well and suggests that the low wavenumber power in the photosphere imprints from below. In particular, the amplitude of the driving (integral) scale mode at each depth determines how much power imprints on the surface flows. This is validated by MURaM simulations of varying depth that show that increasing depths contribute power at a particular scale (or range of scales) that is always at lower wavenumbers than shallower flows. The mechanism for this imprinting remains unclear but, given the importance of the balances in the continuity equation to determining the spectrum of the flows, we suggest that pressure perturbations in the convective upflows are the imprinting mechanism. By comparing the MURaM simulations to SDO/HMI observations (using the coherent structure tracking code to compute the inferred horizontal velocities on both data sets), we find that the simulations have significant excess power for scales larger than supergranulation. The only way to match observations is by using an artificial energy flux to transport the solar luminosity for all depths greater than 10 Mm below the photosphere (down to the bottom of the domain at 49 Mm depth). While magnetic fields from small-scale dynamo simulations help reduce the rms velocity required to transport the solar luminosity below the surface, this provides only a small reduction in low wavenumber power in the photosphere. The convective energy transport in the Sun is constrained by theoretical models and the solar radiative luminosity. The amplitude or scale of the convective flows that transport the energy, however, are not constrained. The strong low wavenumber flows found in these local simulations are also present in current generation global simulations. While local or global dynamo magnetic fields may help suppress these large-scale flows, the magnetic fields must be substantially stronger throughout the convection domains for these simulations to match observations. The significant decrease in low wavenumber flow amplitude in the artificial energy flux simulation that matches the observed photospheric horizontal velocity spectrum suggests that convection in the Sun transports the solar luminosity with much weaker large-scale flows. This suggests that we do not understand how convective transport works in the Sun for depths greater than 10 Mm below the photosphere.
Activity cycles in members of young loose stellar associations
NASA Astrophysics Data System (ADS)
Distefano, E.; Lanzafame, A. C.; Lanza, A. F.; Messina, S.; Spada, F.
2017-10-01
Context. Magnetic cycles analogous to the solar cycle have been detected in tens of solar-like stars by analyzing long-term time series of different magnetic activity indexes. The relationship between the cycle properties and global stellar parameters is not fully understood yet. One reason for this is the lack of long-term time series for stars covering a wide range of stellar parameters. Aims: We searched for activity cycles in a sample of 90 young solar-like stars with ages between 4 and 95 Myr with the aim to investigate the properties of activity cycles in this age range. Methods: We measured the length Pcyc of a given cycle by analyzing the long-term time series of three different activity indexes: the period of rotational modulation, the amplitude of the rotational modulation and the median magnitude in the V band. For each star, we also computed the global magnetic activity index ⟨ IQR ⟩ that is proportional to the amplitude of the rotational modulation and can be regarded as a proxy of the mean level of the surface magnetic activity. Results: We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars of the sample. The lack of correlation between Pcyc and Prot and the position of our targets in the Pcyc/Prot-Ro-1 diagram suggest that these stars belong to the so-called transitional branch and that the dynamo acting in these stars is different from the solar dynamo and from that acting in the older Mt. Wilson stars. This statement is also supported by the analysis of the butterfly diagrams whose patterns are very different from those seen in the solar case. We computed the Spearman correlation coefficient rS between Pcyc, ⟨ IQR ⟩ and various stellar parameters. We found that Pcyc in our sample is uncorrelated with all the investigated parameters. The ⟨ IQR ⟩ index is positively correlated with the convective turnover timescale, the magnetic diffusivity timescale τdiff, and the dynamo number DN, whereas it is anti-correlated with the effective temperature Teff, the photometric shear ΔΩphot and the radius RC at which the convective zone is located. We investigated how Pcyc and ⟨ IQR ⟩ evolve with the stellar age. We found that Pcyc is about constant and that ⟨ IQR ⟩ decreases with the stellare age in the range 4-95 Myr. Finally we investigated the magnetic activity of the star AB Dor A by merging All Sky Automatic Survey (ASAS) time series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as Pcyc = 16.78 ± 2 yr and we also found shorter secondary cycles with lengths of 400 d, 190 d, and 90 d, respectively. Tables 2 and 3 and Time series are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A58
The effect of giant impactors on the magnetic field energy of an early Martian dynamo.
NASA Astrophysics Data System (ADS)
Drummond, McGregor; Thieulot, Cedric; Monteux, Julien
2016-04-01
Through the cratering record embedded on its surface, Mars is one of the key planets required for investigating the formation and impact frequency in the early history of our Solar System. This record also holds clues to the events that may have caused the observed hemispheric dichotomy and cessation of the magnetic field that was present within the first 500 Myr of the planets' formation. We investigate the influence of giant impacts on the early Martian dynamo using the numerical dynamo modelling code PARODY-JA [1]. We hypothesize that the input heat from a giant impact will decrease the total heat flux at the CMB through mantle heating which leads to a decrease in the Rayleigh number of the core. As boundary conditions for the heat flux anomaly size, we use numerical results of a 750 km diameter impactor from the Monteux and Arkani-Hamed, 2014 [2] study which investigated impact heating and core merging of giant impacts in early Mars. We also determine the decrease in Rayleigh number from the change in total heat flux at the CMB using these results, where the decrease after impact is due to shock heating at the CMB. We calculate the time-averaged total magnetic field energy for an initial homogeneous heat flux model using a range of Rayleigh numbers (5 x 103 - 1 x 10^5). The Rayleigh number is then decreased for three new models - homogeneous, north pole impact and equatorial impact - and the time-averaged energy again determined. We find that the energy decreases more in our impact models, compared with the homogeneous, along with a variation in energy between the north pole and equatorial impact models. We conclude that giant impacts in Mars' early history would have decreased the total magnetic energy of the field and the decrease in energy is also dependent on the location of the impact. The magnetic field could have been disrupted beyond recovery from a planetesimal-sized collision; such as the suggested Borealis basin forming impact, or through the cumulative effect of multiple large impactors; such as Utopia, Hellas and Isidis basin forming impacts. [1] Aubert, J., Aurnou, J. & Wicht, J., 2008. The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int., 172, 945--956. [2] Monteux, J., Arkani-Hamed, J., 2014. Consequences of giant impacts in early Mars: core merging and Martian dynamo evolution. J. Geophys. Res. (Planets) 119, 480--505.
A dynamo model of magnetic activity in solar-like stars with different rotational velocities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.
We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} ofmore » the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.« less
The Role of Diffusivity Quenching in Flux-transport Dynamo Models
NASA Astrophysics Data System (ADS)
Guerrero, Gustavo; Dikpati, Mausumi; de Gouveia Dal Pino, Elisabete M.
2009-08-01
In the nonlinear phase of a dynamo process, the back-reaction of the magnetic field upon the turbulent motion results in a decrease of the turbulence level and therefore in a suppression of both the magnetic field amplification (the α-quenching effect) and the turbulent magnetic diffusivity (the η-quenching effect). While the former has been widely explored, the effects of η-quenching in the magnetic field evolution have rarely been considered. In this work, we investigate the role of the suppression of diffusivity in a flux-transport solar dynamo model that also includes a nonlinear α-quenching term. Our results indicate that, although for α-quenching the dependence of the magnetic field amplification with the quenching factor is nearly linear, the magnetic field response to η-quenching is nonlinear and spatially nonuniform. We have found that the magnetic field can be locally amplified in this case, forming long-lived structures whose maximum amplitude can be up to ~2.5 times larger at the tachocline and up to ~2 times larger at the center of the convection zone than in models without quenching. However, this amplification leads to unobservable effects and to a worse distribution of the magnetic field in the butterfly diagram. Since the dynamo cycle period increases when the efficiency of the quenching increases, we have also explored whether the η-quenching can cause a diffusion-dominated model to drift into an advection-dominated regime. We have found that models undergoing a large suppression in η produce a strong segregation of magnetic fields that may lead to unsteady dynamo-oscillations. On the other hand, an initially diffusion-dominated model undergoing a small suppression in η remains in the diffusion-dominated regime.
NASA Technical Reports Server (NTRS)
Ashrafi, S.
1991-01-01
K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.
Inversions of the Ledoux discriminant: a closer look at the tachocline
NASA Astrophysics Data System (ADS)
Buldgen, Gaël; Salmon, S. J. A. J.; Godart, M.; Noels, A.; Scuflaire, R.; Dupret, M. A.; Reese, D. R.; Colgan, J.; Fontes, C. J.; Eggenberger, P.; Hakel, P.; Kilcrease, D. P.; Richard, O.
2017-11-01
Modelling the base of the solar convective envelope is a tedious problem. Since the first rotation inversions, solar modellers are confronted with the fact that a region of very limited extent has an enormous physical impact on the Sun. Indeed, it is the transition region from differential to solid body rotation, the tachocline, which furthermore is influenced by turbulence and is also supposed to be the seat of the solar magnetic dynamo. Moreover, solar models show significant disagreement with the sound-speed profile in this region. In this Letter, we show how helioseismology can provide further constraints on this region by carrying out an inversion of the Ledoux discriminant. We compare these inversions for standard solar sodels built using various opacity tables and chemical abundances and discuss the origins of the discrepancies between solar models and the Sun.
A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution
NASA Astrophysics Data System (ADS)
Evans, A. J.; Zuber, M. T.; Weiss, B. P.; Tikoo, S. M.
2014-05-01
While recent analyses of lunar samples indicate the Moon had a core dynamo from at least 4.2-3.56 Ga, mantle convection models of the Moon yield inadequate heat flux at the core-mantle boundary to sustain thermal core convection for such a long time. Past investigations of lunar dynamos have focused on a generally homogeneous, relatively dry Moon, while an initial compositionally stratified mantle is the expected consequence of a postaccretionary lunar magma ocean. Furthermore, recent re-examination of Apollo samples and geophysical data suggests that the Moon contains at least some regions with high water content. Using a finite element model, we investigate the possible consequences of a heterogeneously wet, compositionally stratified interior for the evolution of the Moon. We find that a postoverturn model of mantle cumulates could result in a core heat flux sufficiently high to sustain a dynamo through 2.5 Ga and a maximum surface, dipolar magnetic field strength of less than 1 μT for a 350-km core and near ˜2 μT for a 450-km core. We find that if water was transported or retained preferentially in the deep interior, it would have played a significant role in transporting heat out of the deep interior and reducing the lower mantle temperature. Thus, water, if enriched in the lower mantle, could have influenced core dynamo timing by over 1.0 Gyr and enhanced the vigor of a lunar core dynamo. Our results demonstrate the plausibility of a convective lunar core dynamo even beyond the period currently indicated by the Apollo samples.
NASA Technical Reports Server (NTRS)
Wang, Hailan; Su, Wenying; Loeb, Norman G.; Achuthavarier, Deepthi; Schubert, Siegfried D.
2017-01-01
The daily surface and atmospheric radiative fluxes from NASA Clouds and the Earths RadiantEnergy System (CERES) Synoptic 1 degree (SYN1deg) Ed3A are among the most widely used data to studycloud-radiative feedback. The CERES SYN1deg data are based on Fu-Liou radiative transfer computations thatuse specific humidity (Q) and air temperature (T) from NASA Global Modeling and Assimilation Office (GMAO)reanalyses as inputs and are therefore subject to the quality of those fields. This study uses in situ Q and Tobservations collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign toaugment the input stream used in the NASA GMAO reanalysis and assess the impact on the CERES dailysurface and atmospheric longwave estimates. The results show that the assimilation of DYNAMOobservations considerably improves the vertical profiles of analyzed Q and T over and near DYNAMO stationsby moistening and warming the lower troposphere and upper troposphere and drying and cooling themid-upper troposphere. As a result of these changes in Q and T, the computed CERES daily surface downwardlongwave flux increases by about 5 W m(exp -2), due mainly to the warming and moistening in the lowertroposphere; the computed daily top-of-atmosphere (TOA) outgoing longwave radiation increases by2-3 W m(exp -2) during dry periods only. Correspondingly, the estimated local atmospheric longwave radiativecooling enhances by about 5 W m(exp -2) (7-8 W m(exp -2)) during wet (dry) periods. These changes reduce the bias inthe CERES SYN1deg-like daily longwave estimates at both the TOA and surface and represent animprovement over the DYNAMO region.
A High-Resolution Merged Wind Dataset for DYNAMO: Progress and Future Plans
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Mecikalski, John; Li, Xuanli; Chronis, Themis; Castillo, Tyler; Hoover, Kacie; Brewer, Alan; Churnside, James; McCarty, Brandi; Hein, Paul;
2015-01-01
In order to support research on optimal data assimilation methods for the Cyclone Global Navigation Satellite System (CYGNSS), launching in 2016, work has been ongoing to produce a high-resolution merged wind dataset for the Dynamics of the Madden Julian Oscillation (DYNAMO) field campaign, which took place during late 2011/early 2012. The winds are produced by assimilating DYNAMO observations into the Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) system. Data sources from the DYNAMO campaign include the upper-air sounding network, radial velocities from the radar network, vector winds from the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) satellite instruments, the NOAA High Resolution Doppler Lidar (HRDL), and several others. In order the prep them for 3DVAR, significant additional quality control work is being done for the currently available TOGA and SMART-R radar datasets, including automatically dealiasing radial velocities and correcting for intermittent TOGA antenna azimuth angle errors. The assimilated winds are being made available as model output fields from WRF on two separate grids with different horizontal resolutions - a 3-km grid focusing on the main DYNAMO quadrilateral (i.e., Gan Island, the R/V Revelle, the R/V Mirai, and Diego Garcia), and a 1-km grid focusing on the Revelle. The wind dataset is focused on three separate approximately 2-week periods during the Madden Julian Oscillation (MJO) onsets that occurred in October, November, and December 2011. Work is ongoing to convert the 10-m surface winds from these model fields to simulated CYGNSS observations using the CYGNSS End-To-End Simulator (E2ES), and these simulated satellite observations are being compared to radar observations of DYNAMO precipitation systems to document the anticipated ability of CYGNSS to provide information on the relationships between surface winds and oceanic precipitation at the mesoscale level. This research will improve our understanding of the future utility of CYGNSS for documenting key MJO processes.
On the dynamo generation of flux ropes in the Venus ionosphere
NASA Technical Reports Server (NTRS)
Luhmann, J. G.; Elphic, R. C.
1985-01-01
Small scale magnetic field structures or 'flux ropes' observed in the ionosphere of Venus can be interpreted as the result of a kinematic dynamo process acting on weak seed fields. The seed fields result from the prevailing downward convection of magnetic flux from the vicinity of the ionopause, while small scale fluctuations in the velocity of the ionospheric plasma, which can be caused by collisional coupling to gravity waves in the neutral atmosphere, provide the mechanism by which the field is twisted and redistributed into features of similar scale. This mechanism naturally explains some of the average properties of flux ropes such as the variation of their characteristics with altitude and solar zenith angle. It also elucidates the relationship between the large scale and small scale ionospheric magnetic fields.
Understanding lunar magnetic field through magnetization and dynamo mechanism
NASA Astrophysics Data System (ADS)
Singh, K. H.; Kuang, W.
2016-12-01
It has been known that the Moon does not have an active global magnetic field. But past missions to the Moon (e.g. Apollo missions, Lunar Prospector) have detected magnetic anomalies in many areas on the lunar surface. They carry rich information about geophysical processes on and within the Moon, thus central for understanding the structure and dynamics in the interior, e.g. the core and the suggested magma ocean. One unsettling problem for understanding the lunar magnetic anomaly is its origin. There have been several mechanisms suggested in the past, either on the anomalies in specific regions, or only at the conceptual stage. The latter include the paleo dynamo. The lunar dynamo mechanism is conceptually very simple: lunar crustal magnetization was acquired in an internal magnetic field that was generated and maintained by dynamo action in the lunar core. Could this simple mechanism suffice to explain most of the observed lunar magnetic anomalies? We present our theoretical calculations of possible paleo-lunar magnetic field strengths based on paleomagnetic measurements of Apollo samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil
Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generally asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyze the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19–23, which had remarkable north–south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19–20), we obtained the periodicity of 160–165 daysmore » in the stronger northern hemisphere and 180–190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21–23) display the periodicity of 155–160 days in the stronger southern hemisphere and 175–188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north–south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity, we estimated the magnetic field strength in the layer as 45–49 kG in more active hemispheres (north during cycles 19–20 and south during cycles 21–23) and 33–40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during cycles 20–23 reveals no clear north–south asymmetry, which needs to be explained in the future.« less
The Initiation of Solar Eruptions by Flux Emergence
NASA Astrophysics Data System (ADS)
Leake, J. E.; Linton, M.; Antiochos, S. K.
2013-12-01
Understanding the mechanism for the initiation of solar eruptions, or coronal mass ejections (CMEs), is a vital step in the prediction of space weather. There are a number of different theoretical and numerical magnetic models for the initiation of CMEs, and to some extent they all rely on idealized initial conditions or boundary conditions. These idealizations typically involve the presence of pre-formed sheared magnetic fields in the corona, which contain enough free energy to drive an eruption, or the generation of sheared magnetic fields by velocity/electric field boundary flows. The roots of coronal magnetic fields lie in the convection zone, and to understand the CME initiation mechanism, we must understand how these convection zone fields emerge from the high beta convection zone into the low beta corona. Using visco-resistive MHD numerical simulations, we show how simple convection zone magnetic fields that are consistent with our understanding of the solar dynamo can dynamically emerge through the photosphere/chromosphere and into the corona and form sheared magnetic structures which are capable of erupting and creating CMEs. These results extend current CME models by introducing increased realism and removing the idealized initial coronal field conditions and kinematic boundary conditions, which is an important step in relating space weather and the Sun's dynamo generation of magnetic field. This work was funded by NASA's 'Living With a Star' program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.
2015-07-15
An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.
The analysis of initial Juno magnetometer data using a sparse magnetic field representation
NASA Astrophysics Data System (ADS)
Moore, Kimberly M.; Bloxham, Jeremy; Connerney, John E. P.; Jørgensen, John L.; Merayo, José M. G.
2017-05-01
The Juno spacecraft, now in polar orbit about Jupiter, passes much closer to Jupiter's surface than any previous spacecraft, presenting a unique opportunity to study the largest and most accessible planetary dynamo in the solar system. Here we present an analysis of magnetometer observations from Juno's first perijove pass (PJ1; to within 1.06 RJ of Jupiter's center). We calculate the residuals between the vector magnetic field observations and that calculated using the VIP4 spherical harmonic model and fit these residuals using an elastic net regression. The resulting model demonstrates how effective Juno's near-surface observations are in improving the spatial resolution of the magnetic field within the immediate vicinity of the orbit track. We identify two features resulting from our analyses: the presence of strong, oppositely signed pairs of flux patches near the equator and weak, possibly reversed-polarity patches of magnetic field over the polar regions. Additional orbits will be required to assess how robust these intriguing features are.
Presidential Address: Turbulent magnetic fields in the Sun
NASA Astrophysics Data System (ADS)
Weiss, Nigel
2001-06-01
Nigel Weiss recounts his Presidential Address 2001, given to the RAS A&G Ordinary Meeting on 9 February 2001. Recent high-resolution observations, from the ground and from space, have revealed the fine structure of magnetic features at the surface of the Sun. At the same time, advances in computing power have at last made it possible to develop models of turbulent magnetoconvection that can be related to these observations. The key features of flux emergence and annihilation, as observed by the MDI experiment on SOHO, are reproduced in kinematic calculations, while three-dimensional numerical experiments reveal the dynamical processes that are involved. The pattern of convection depends on the strength of the magnetic field: as the mean field decreases, slender rising plumes give way to a regime where magnetic flux is separated from the motion and then to one where locally intense magnetic fields nestle between broad and vigorously convecting plumes. Moreover, turbulent convection is itself able to act as a small-scale dynamo, generating disordered fields near the solar surface.
Surface activity and oscillation amplitudes of red giants in eclipsing binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; Jackiewicz, J.; Appourchaux, T.
2014-04-10
Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, andmore » where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.« less
Subgrid Scale Modeling in Solar Convection Simulations using the ASH Code
NASA Technical Reports Server (NTRS)
Young, Y.-N.; Miesch, M.; Mansour, N. N.
2003-01-01
The turbulent solar convection zone has remained one of the most challenging and important subjects in physics. Understanding the complex dynamics in the solar con- vection zone is crucial for gaining insight into the solar dynamo problem. Many solar observatories have generated revealing data with great details of large scale motions in the solar convection zone. For example, a strong di erential rotation is observed: the angular rotation is observed to be faster at the equator than near the poles not only near the solar surface, but also deep in the convection zone. On the other hand, due to the wide range of dynamical scales of turbulence in the solar convection zone, both theory and simulation have limited success. Thus, cutting edge solar models and numerical simulations of the solar convection zone have focused more narrowly on a few key features of the solar convection zone, such as the time-averaged di erential rotation. For example, Brun & Toomre (2002) report computational finding of differential rotation in an anelastic model for solar convection. A critical shortcoming in this model is that the viscous dissipation is based on application of mixing length theory to stellar dynamics with some ad hoc parameter tuning. The goal of our work is to implement the subgrid scale model developed at CTR into the solar simulation code and examine how the differential rotation will be a affected as a result. Specifically, we implement a Smagorinsky-Lilly subgrid scale model into the ASH (anelastic spherical harmonic) code developed over the years by various authors. This paper is organized as follows. In x2 we briefly formulate the anelastic system that describes the solar convection. In x3 we formulate the Smagorinsky-Lilly subgrid scale model for unstably stratifed convection. We then present some preliminary results in x4, where we also provide some conclusions and future directions.
Geology, geochemistry, and geophysics of the Moon: Status of current understanding
NASA Astrophysics Data System (ADS)
Jaumann, R.; Hiesinger, H.; Anand, M.; Crawford, I. A.; Wagner, R.; Sohl, F.; Jolliff, B. L.; Scholten, F.; Knapmeyer, M.; Hoffmann, H.; Hussmann, H.; Grott, M.; Hempel, S.; Köhler, U.; Krohn, K.; Schmitz, N.; Carpenter, J.; Wieczorek, M.; Spohn, T.; Robinson, M. S.; Oberst, J.
2012-12-01
The Moon is key to understanding both Earth and our Solar System in terms of planetary processes and has been a witness of the Solar System history for more than 4.5 Ga. Building on earlier telescopic observations, our knowledge about the Moon was transformed by the wealth of information provided by Apollo and other space missions. These demonstrated the value of the Moon for understanding the fundamental processes that drive planetary formation and evolution. The Moon was understood as an inert body with its geology mainly restricted to impact and volcanism with associated tectonics, and a relative simple composition. Unlike Earth, an absence of plate tectonics has preserved a well-defined accretion and geological evolution record. However recent missions to the Moon show that this traditional view of the lunar surface is certainly an over simplification. For example, although it has long been suspected that ice might be preserved in cold traps at the lunar poles, recent results also indicate the formation and retention of OH- and H2O outside of polar regions. These volatiles are likely to be formed as a result of hydration processes operating at the lunar surface including the production of H2O and OH by solar wind protons interacting with oxygen-rich rock surfaces produced during micrometeorite impact on lunar soil particles. Moreover, on the basis of Lunar Prospector gamma-ray data, the lunar crust and underlying mantle has been found to be divided into distinct terranes that possess unique geochemical, geophysical, and geological characteristics. The concentration of heat producing elements on the nearside hemisphere of the Moon in the Procellarum KREEP Terrane has apparently led to the nearside being more volcanically active than the farside. Recent dating of basalts has shown that lunar volcanism was active for almost 3 Ga, starting at about 3.9-4.0 Ga and ceasing at ˜1.2 Ga. A recent re-processing of the seismic data supports the presence of a partially molten layer at the base of the mantle and shows not only the presence of a 330 km liquid core, but also a small solid inner core. Today, the Moon does not have a dynamo-generated magnetic field like that of the Earth. However, remnant magnetization of the lunar crust and the paleomagnetic record of some lunar samples suggest that magnetization was acquired, possibly from an intrinsic magnetic field caused by an early lunar core dynamo. In summary, the Moon is a complex differentiated planetary object and much remains to be explored and discovered, especially regarding the origin of the Moon, the history of the Earth-Moon system, and processes that have operated in the inner Solar System over the last 4.5 Ga. Returning to the Moon is therefore the critical next stepping-stone to further exploration and understanding of our planetary neighborhood.
GHRS Spectra of the Very Low Mass Star VB 10 (M8 Ve)
NASA Astrophysics Data System (ADS)
Linsky, J. L.; Wood, B.; Brown, A.
1994-12-01
We report on ultraviolet spectra of the M8 Ve star VB10 = Gl 752B, probably the coolest and lowest mass star observed so far in the ultraviolet. This star is of great interest because it lies almost at the end of the main sequence where stars are thought to be fully convective and solar-type dynamo processes should not be present. On 1994 October 12 we observed the brighter companion Gl 752A (M3 Ve) and then offset to VB10. Both stars were observed with the G140L grating on the HST Goddard High Resolution Spectrograph. The spectrum of Gl 752A shows the expected transition region lines of solar-type stars consisting of C III 1175 Angstroms, H I Lyman-alpha , N V 1240 Angstroms, O I 1304 Angstroms, C II 1335 Angstroms, Si IV 1400 Angstroms, C IV 1550 Angstroms, He II 1640 Angstroms, and others. The spectrum of VB10, on the other hand, provided a surprise. Our spectra of this star consists of 11 integrations, each of about 5 minutes duration. The first 10 integrations show no emission features with very small upper limits to the surface fluxes in the transition region lines. The last integration, however, shows strong emission in the C II, Si IV, and C IV lines, which we interpret as a flare. The VB10 spectra imply that there is little if any continuous heating of the transition regions of the very coolest M dwarf stars. Instead, there is only transient emission during major realignments of the magnetic field. By contrast, hotter stars show continuous emission in the transition region lines, indicating a continuous heating process or a large number of small flares (microflaring). This change in behavior may be due to the absence of radiative cores in the coolest M dwarfs and the inability of the solar-type alpha -omega dynamo to operate in stars without an interface between a radiative core and a convective envelope. Our data indicate that the coolest M dwarfs nevertheless do have magnetic fields. This work is supported by NASA Interagency Transfer S-56460-D to the National Institute of Standards and Technology.
Effects of enhanced stratification on equatorward dynamo wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Käpylä, Petri J.; Mantere, Maarit J.; Cole, Elizabeth
We present results from simulations of rotating magnetized turbulent convection in spherical wedge geometry representing parts of the latitudinal and longitudinal extents of a star. Here we consider a set of runs for which the density stratification is varied, keeping the Reynolds and Coriolis numbers at similar values. In the case of weak stratification, we find quasi-steady dynamo solutions for moderate rotation and oscillatory ones with poleward migration of activity belts for more rapid rotation. For stronger stratification, the growth rate tends to become smaller. Furthermore, a transition from quasi-steady to oscillatory dynamos is found as the Coriolis number ismore » increased, but now there is an equatorward migrating branch near the equator. The breakpoint where this happens corresponds to a rotation rate that is about three to seven times the solar value. The phase relation of the magnetic field is such that the toroidal field lags behind the radial field by about π/2, which can be explained by an oscillatory α{sup 2} dynamo caused by the sign change of the α-effect about the equator. We test the domain size dependence of our results for a rapidly rotating run with equatorward migration by varying the longitudinal extent of our wedge. The energy of the axisymmetric mean magnetic field decreases as the domain size increases and we find that an m = 1 mode is excited for a full 2π azimuthal extent, reminiscent of the field configurations deduced from observations of rapidly rotating late-type stars.« less
Global solar wind variations over the last four centuries.
Owens, M J; Lockwood, M; Riley, P
2017-01-31
The most recent "grand minimum" of solar activity, the Maunder minimum (MM, 1650-1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth's magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima.
NASA Astrophysics Data System (ADS)
Christensen, Ulrich R.
2017-06-01
The Earth's magnetic field has been known for centuries. Since the mid-20th century space missions carrying vector magnetometers showed that most, but not all, solar system planets have a global magnetic field of internal origin. They also revealed a surprising diversity in terms of field strength and morphology. While Jupiter's field, like that of Earth, is dominated by a dipole moderately tilted relative to the planet's spin axis, with multipole components being subordinate but not negligible, the fields of Uranus and Neptune are multipole-dominated, whereas those of Saturn und Mercury are highly symmetric relative to the rotation axis. Planetary magnetism originates from a dynamo process, which requires a fluid and electrically conducting region in the interior with sufficiently rapid and complex flow. The magnetic fields are of interest for three reasons: (1) They provide ground truth for dynamo theory, which is a fundamental and not completely solved physical problem; (2) the magnetic field controls how the planet interacts with its space environment, for example, the solar wind; and (3) the existence (or nonexistence) and the properties of the field allow us to draw inferences on the constitution, dynamics, and thermal evolution of the planet's interior. For example, the lack of global magnetic fields at Mars and Venus can be explained if their iron cores, although liquid, are stably stratified. Numerical simulations of the geodynamo—in which convective flow in a rapidly rotating spherical shell representing the outer liquid iron core of the Earth leads to induction of electric currents and the associated magnetic field—have successfully reproduced many observed properties of the geomagnetic field. They have also provided guidelines on the factors controlling magnetic field strength and, tentatively, their morphology. For numerical reasons the simulations must employ viscosities far greater than those inside planets, and it is debatable whether they truly capture the correct physics of planetary dynamo processes. Nonetheless, such models have been adapted to test concepts for explaining magnetic field properties of other planets. For example, they show that a stable stratified conducting layer above the dynamo region is a plausible cause for the strongly axisymmetric magnetic fields of Mercury or Saturn.
Influence of magnetic pressure on stellar structure: A Mechanism for solar variability
NASA Technical Reports Server (NTRS)
Schatten, K. H.; Endal, A. S.
1980-01-01
A physical mechanism is proposed that couples the Sun's dynamo magnetic field to its gravitational potential energy. The mechanism involves the isotropic field pressure resulting in a lifting force on the convective envelope, thereby raising its potential energy. Decay of the field due to solar activity allows the envelop to subside and releases this energy, which can augment the otherwise steady solar luminosity. Equations are developed and applied to the Sun for several field configurations. The best estimate model suggests that uniform luminosity variations as large as 0.02% for half a sunspot cycle may occur. Brief temporal variations or the rotation of spatial structures could allow larger excursions in the energy released.
Building Reliable Forecasts of Solar Activity
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina; Wray, Alan; Mansour, Nagi
2017-01-01
Solar ionizing radiation critically depends on the level of the Sun’s magnetic activity. For robust physics-based forecasts, we employ the procedure of data assimilation, which combines theoretical modeling and observational data such that uncertainties in both the model and the observations are taken into account. Currently we are working in two major directions: 1) development of a new long-term forecast procedure on time-scales of the 11-year solar cycle, using a 2-dimensional mean-field dynamo model and synoptic magnetograms; 2) development of 3-dimensional radiative MHD (Magnetohydrodynamic) simulations to investigate the origin and precursors of local manifestations of magnetic activity, such as the formation of magnetic structures and eruptive dynamics.
SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.
A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it hasmore » an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.« less
NASA Astrophysics Data System (ADS)
Li, Yuanlong; Han, Weiqing; Shinoda, Toshiaki; Wang, Chunzai; Lien, Ren-Chieh; Moum, James N.; Wang, Jih-Wang
2013-10-01
The effects of solar radiation diurnal cycle on intraseasonal mixed layer variability in the tropical Indian Ocean during boreal wintertime Madden-Julian Oscillation (MJO) events are examined using the HYbrid Coordinate Ocean Model. Two parallel experiments, the main run and the experimental run, are performed for the period of 2005-2011 with daily atmospheric forcing except that an idealized hourly shortwave radiation diurnal cycle is included in the main run. The results show that the diurnal cycle of solar radiation generally warms the Indian Ocean sea surface temperature (SST) north of 10°S, particularly during the calm phase of the MJO when sea surface wind is weak, mixed layer is thin, and the SST diurnal cycle amplitude (dSST) is large. The diurnal cycle enhances the MJO-forced intraseasonal SST variability by about 20% in key regions like the Seychelles-Chagos Thermocline Ridge (SCTR; 55°-70°E, 12°-4°S) and the central equatorial Indian Ocean (CEIO; 65°-95°E, 3°S-3°N) primarily through nonlinear rectification. The model also well reproduced the upper-ocean variations monitored by the CINDY/DYNAMO field campaign between September-November 2011. During this period, dSST reaches 0.7°C in the CEIO region, and intraseasonal SST variability is significantly amplified. In the SCTR region where mean easterly winds are strong during this period, diurnal SST variation and its impact on intraseasonal ocean variability are much weaker. In both regions, the diurnal cycle also has a large impact on the upward surface turbulent heat flux QT and induces diurnal variation of QT with a peak-to-peak difference of O(10 W m-2).
Driving Solar Giant Cells through the Self-organization of Near-surface Plumes
NASA Astrophysics Data System (ADS)
Nelson, Nicholas J.; Featherstone, Nicholas A.; Miesch, Mark S.; Toomre, Juri
2018-06-01
Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which yield the Sun’s observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution simulations a variety of codes have encountered what has been termed the convection conundrum. As these simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D global convection simulations where driving is non-local and may provide a new approach toward addressing the convection conundrum.
First Results of the Juno Magnetometer Investigation in Jupiter's Magnetosphere
NASA Astrophysics Data System (ADS)
Connerney, Jack; Oliversen, Ronald; Espley, Jared; Kotsiaros, Stavros; Joergensen, John; Joergensen, Peter; Merano, Jose; Denver, Troelz; Benn, Mathias; Bloxham, Jeremy; Bolton, Scott; Levin, Steve
2017-04-01
The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, after a Jupiter Orbit Insertion (JOI) main engine burn lasting 35 minutes. Juno's science instruments were not powered during the critical maneuver sequence ( 5 days) but were fully operational shortly afterward. The 53.5-day capture orbit provides Juno's science instruments with the opportunity to sample the Jovian environment close up (to 1.06 Jovian radii, Rj) and in polar orbit extending to the outer reaches of the Jovian magnetosphere. Jupiter's gravity and magnetic fields will be globally mapped with unprecedented accuracy as Juno conducts a study of Jupiter's interior structure and composition, as well as the first comprehensive exploration of the polar magnetosphere. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. The first few periapsis passes available to date revealed an extraordinary spatial variation of the magnetic field close to the planet's surface, suggesting that Juno may be sampling the field closer to the dynamo region than widely anticipated, i.e., portending a dynamo surface extending to relatively large radial distance ( 0.9Rj?). We present the first observations of Jupiter's magnetic field obtained in close proximity to the planet, and speculate on what wonders await as more longitudes are drawn across the global map (32 polar orbits separated by <12° longitude) that the Juno mission was designed to acquire.
Thermal evolution of a partially differentiated H chondrite parent body
NASA Astrophysics Data System (ADS)
Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.
2016-12-01
It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.
Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol
1995-01-01
We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.
The Starspots of HAT-P-11: Evidence for a Solar-like Dynamo
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Hebb, Leslie; Davenport, James R. A.; Rohn, Graeme; Hawley, Suzanne L.
2017-09-01
We measure the starspot radii and latitude distribution on the K4 dwarf HAT-P-11 from Kepler short-cadence photometry. We take advantage of starspot occultations by HAT-P-11’s highly misaligned planet to compare the spot size and latitude distributions to those of sunspots. We find that HAT-P-11’s spots are distributed in latitude much like sunspots near the solar activity maximum, with a mean spot latitude of ≈16° ± 1°. The majority of HAT-P-11’s starspots have physical sizes that closely resemble the sizes of sunspots at solar maximum. We estimate the mean spotted area coverage on HAT-P-11 to be {3}-1+6 % , roughly two orders of magnitude greater than the typical solar spotted area.
Flow instabilities of magnetic flux tubes. IV. Flux storage in the solar overshoot region
NASA Astrophysics Data System (ADS)
Işık, E.; Holzwarth, V.
2009-12-01
Context: Flow-induced instabilities of magnetic flux tubes are relevant to the storage of magnetic flux in the interiors of stars with outer convection zones. The stability of magnetic fields in stellar interiors is of importance to the generation and transport of solar and stellar magnetic fields. Aims: We consider the effects of material flows on the dynamics of toroidal magnetic flux tubes located close to the base of the solar convection zone, initially within the overshoot region. The problem is to find the physical conditions in which magnetic flux can be stored for periods comparable to the dynamo amplification time, which is of the order of a few years. Methods: We carry out nonlinear numerical simulations to investigate the stability and dynamics of thin flux tubes subject to perpendicular and longitudinal flows. We compare the simulations with the results of simplified analytical approximations. Results: The longitudinal flow instability induced by the aerodynamic drag force is nonlinear in the sense that the growth rate depends on the perturbation amplitude. This result is consistent with the predictions of linear theory. Numerical simulations without friction show that nonlinear Parker instability can be triggered below the linear threshold of the field strength, when the difference in superadiabaticity along the tube is sufficiently large. A localised downflow acting on a toroidal tube in the overshoot region leads to instability depending on the parameters describing the flow, as well as the magnetic field strength. We determined ranges of the flow parameters for which a linearly Parker-stable magnetic flux tube is stored in the middle of the overshoot region for a period comparable to the dynamo amplification time. Conclusions: The longitudinal flow instability driven by frictional interaction of a flux tube with its surroundings is relevant to determining the storage time of magnetic flux in the solar overshoot region. The residence time for magnetic flux tubes with 2 × 1021 Mx in the convective overshoot layer can be comparable to the dynamo amplification time, provided that the average speed and the duration of an external downflow do not exceed about 50 m s -1 and 100 days, respectively, and that the lateral extension of the flow is smaller than about 10°. Appendix C and movies are only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Raju, K. P.
2018-05-01
The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.
On Mars' atmospheric sputtering after MAVEN first two years
NASA Astrophysics Data System (ADS)
Leblanc, F.; Modolo, R.; Curry, S.; Luhmann, J. G.; Lillis, R.; Chaufray, J. Y.; Hara, T.; McFadden, J.; Halekas, J.; Eparvier, F.; Larson, D.; Connerney, J.; Jakosky, B.
2017-09-01
Mars may have lost a significant part of its atmosphere into space along its history, in particular since the end of its internal dynamo, 4.1 Gyr ago. The sputtering of the atmosphere by precipitating planetary picked up ions accelerated by the solar wind is one of the processes that could have significantly contributed to this atmospheric escape. We here present a two years base analysis of MAVEN observation of the precipitating flux, in particular the dependency of the precipitating intensity with solar zenith angle and used this measurement to model the expected escape rate and exosphere induced by this precipitation.
Sun's influence on climate: Explored with SDO
NASA Astrophysics Data System (ADS)
Lundstedt, H.
2010-09-01
Stunning images and movies recorded of the Sun, with Solar Dynamics Observatory (SDO), makes one wonder: How would this change our view on the Sun-Earth climate coupling? SDO shows a much more variable Sun, on all spatial and temporal scales. Detailed pictures of solar storms are foreseen to improve our understanding of the direct Sun-Earth coupling. Dynamo models, described by dynamical systems using input from helioseismic observations, are foreseen to improve our knowledge of the the Sun's cyclic influence on climate. Both the direct-, and the cycle-influence will be discussed in view of the new SDO observations.
NASA Astrophysics Data System (ADS)
Weiss, Benjamin; Carporzen, L.; Elkins-Tanton, L.; Shuster, D. L.; Ebel, D. S.; Gattacceca, J.; Binzel, R. P.
2010-10-01
The origin of remanent magnetization in the CV carbonaceous chondrite Allende has been a longstanding mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Here we report that Allende's magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a > 20 microtesla field 8-9 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been the generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos (Weiss et al. 2010), suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core (Elkins-Tanton et al. 2010). This suggests that asteroids with differentiated interiors could be present today but masked under chondritic surfaces. In fact, CV chondrites are spectrally similar to many members of the Eos asteroid family whose spectral diversity has been interpreted as evidence for a partially differentiated parent asteroid (Mothe-Diniz et al. 2008). CV chondrite spectral and polarimetric data also resemble those of asteroid 21 Lutetia (e.g., Belskaya et al. 2010), recently encountered by the Rosetta spacecraft. Ground-based measurements of Lutetia indicate a high density of 2.4-5.1 g cm-3 (Drummond et al. 2010), while radar data seem to rule out a metallic surface composition (Shepard et al. 2008). If Rosetta spacecraft measurements confirm a high density and a CV-like surface composition for Lutetia, then we propose Lutetia may be an example of a partially differentiated carbonaceous chondrite parent body. Regardless, the very existence of primitive achondrites, which contain evidence of both relict chondrules and partial melting, are prima facie evidence for the formation of partially differentiated bodies.
Lifetime of the solar nebula constrained by meteorite paleomagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huapei; Weiss, Benjamin P.; Bai, Xue-Ning
We present that a key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation ofmore » chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. In conclusion, the core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.« less
Lifetime of the solar nebula constrained by meteorite paleomagnetism.
Wang, Huapei; Weiss, Benjamin P; Bai, Xue-Ning; Downey, Brynna G; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R; Zucolotto, Maria E
2017-02-10
A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation. Copyright © 2017, American Association for the Advancement of Science.
On the Influence of the Solar Bi-Cycle on Comic Ray Modulatio
NASA Astrophysics Data System (ADS)
Lifter, N. Part Xxvii: A. Defect Of The Solar Dynamo. B.; Scissors, K.; Sprucener, H.
In this presentation we propose a new paradigm that explains the different lengths of individual solar Hale cycles. It proves beneficial to distinguish between a so-called inHale and ex-Hale cycle, which together form the solar bi-cycle. We carefully analyzed the influence of so-called complex mode excitations (CMEs) on comic ray modulation, in particular on the drifts of the comic isotope O+3 , which we found to induce characteristic anisotropies. This comic isotope anisotropy (CIA) is caused by the wellknown north-south asymmetry (NSA) and can be observed as a rare Forbush increase (FBI). The latter is linked to the solar magnetic field which appears to have a chaotic behaviour (for details see part I-XXVI). Especially during an ex-Hale cycle magnetic flux is pseudo-pneumatically escaping through a coronal hole. Consequently, the solar dynamo can no longer operate efficiently, i.e. is defect.
Lifetime of the solar nebula constrained by meteorite paleomagnetism
Wang, Huapei; Weiss, Benjamin P.; Bai, Xue-Ning; ...
2017-02-10
We present that a key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation ofmore » chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. In conclusion, the core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.« less
NASA Technical Reports Server (NTRS)
Pesnell, William Dean
2012-01-01
Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.
Planetary Magnetic Fields: Planetary Interiors and Habitability
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team
2016-06-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for Space Studies for their hospitality and attention to detail, such that the Study participants could turn their attention to focused discussions and innovative ideas. We also thank Charles ("Chuck") Carter of Eagre Games, Inc., for his assistance with graphics.
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg
2017-05-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Aurnou, J. M.; Aubert, J.
2009-04-01
Due to the absence of an atmosphere and proximity to the Sun, Mercury's surface temperature varies laterally by several 100s K, even when averaged over long time periods. The dominant variation in time-averaged surface T occurs from pole to equator (~225 K) [1]. The resonant relationship between Mercury's orbit and rotation results in a smaller longitudinal variation (~100 K) [1]. Here we demonstrate, using models of mantle convection in a 3-D spherical shell, that this stationary lateral variation in surface temperature has a small but significant influence on mantle convection and on the lateral variation of heat flux across the core-mantle boundary (CMB). We evaluate the possible observational signature of this laterally-varying convection in terms of boundary topography, stress distribution, gravity and moment of inertia tensor. We furthermore test whether the lateral variation in CMB flux is capable of driving a thermal wind dynamo, i.e., weak dynamo action with no internally-driven core convective motions. For Mercury's mantle we assume a dry olivine rheology including both diffusion creep and disclocation creep with rheological parameters such as activation energy and volume taken from the synthesis of [2]. We assume decaying radiogenic heat sources with the same concentration as in the bulk silicate Earth, and a parameterised model of core cooling. The models are run for 4.5 Ga from a relatively hot initial state with random initial perturbations. We use the code StagYY, which uses a finite-volume discretization on a spherical yin-yang grid and a multigrid solver [3]. Results in spherical axisymmetric geometry, compare a case with constant surface temperature to one with a latitude-dependent surface temperature. The system forms about 3 convection cells from pole to equator. Although the results look similar to first order, in the latitude-dependent case the convection is noticably more sluggish and colder towards the pole. In CMB flux, both cases display large oscillations due to convection cells. A pole-to-equator trend is superimposed on this for the case with laterally-varying surface temperature. Although the amplitude of this long-wavelength variation is smaller than that of the within-cell variation, its long-wavelength nature might be effective in driving thermal winds in the core. Results in a full 3-D spherical shell indicate that convection adopts a cellular structure with a polygonal network of downwellings and plume-like upwellings, as is usually obtained for stagnant lid convection, for example, in the recent 3-D spherical Mercury models of [4]. This is in notable contrast to the models of [5], in which linear upwellings were obtained. This difference could be because the initial perturbations used by [5] used a small number of low-order spherical harmonics, i.e., a long-wavelength pattern with particular symmetries, whereas our initial perturbations are random white noise. The origin of this difference requires further investigation. The pattern of CMB heat flux shows a strong l=2, m=0 pattern, again with superimposed small-scale variations due to convection cells. The surface geoid displays an very dominant (2,0) pattern, which would be a strong diagnostic of this behaviour. These models are being further analysed for boundary topography and stress distribution. Models of planetary dynamos have traditionally depended upon the concept that secular cooling and internal radioactive decay are responsible for genererating convective fluid motions within the core [e.g. 6]. Some models, of Earth's dynamo in particular, also include thermal winds --shear flows driven by heat flux variations along the core-mantle boundary -- that modify the dynamo process [e.g. 7]. We have now shown, following the work of [8], that thermal winds themselves are capable of driving dynamo action in planetary cores (Fig. 4). In fully self-consistent, three-dimensional models, we find that thermal wind dynamos do not require a net heat flux to emanate from the core and can operate even when the core fluid is neutrally stratified. In these models, the dynamo is powered externally by thermal energy stored in the mantle. This dynamo mechanism can occur on planetary bodies, such as Mercury, which are likely to have weak net heat fluxes from their cores but possess significant core-mantle boundary heat flux variations (Figures 1 - 3). We plan to use the pattern of CMB heat flux from the mantle models as a boundary condition for core models, in order to determine the feasibility of thermal wind dynamo action occurring in Mercury's core. References [1] Aharonson, O., et al. (2004) EPSL, 218, 261-268. [2] Karato, S. and Wu, P. (1993) Sci., 260, 771-778. [3] Tackley, P. J. (2008) PEPI, doi: 10.1016/j.pepi.2008.08.005.. [4] Breuer, D. et al. (2007) Sp. Sci. Rev., 132, 229-260. [5] King, S. D. (2008) Nature Geoscience, 1, 229-232. [5] Heimpel, M. H. et al. (2005) EPSL, 236, 542-557. [7] Willis, A., et al. (2007) PEPI, 165, 83-92. [8] Sarson, G., (2003) PRSL A, 459, 1241-1259. [9] Aubert, J., et al. (2008) GJI, 172, 945-956.
Magnetic fields driven by tidal mixing in radiative stars
NASA Astrophysics Data System (ADS)
Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer
2018-04-01
Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.; Lee, L.-H.; Saito, T.
1991-01-01
It is shown that the offset tilted dipole model of Uranus and Neptune, deduced from the spherical harmonic analysis of the Voyager magnetic field observation, can be represented fairly well by the combined field of an axial and an auxiliary dipole; the latter is roughly oriented in the east-west direction and is located near the surface of the core in low latitude. The present dynamo theories of planetary magnetism consider an axial dipolar field as an essential element, since the planetary rotation plays a vital role in the dynamo process. On the other hand, the auxiliary dipoles may be a result of leakage of the toroidal field, like a pair of sunspots on the photosphere, which is also an essential part of the dynamo process.
Consequences of high effective Prandtl number on solar differential rotation and convective velocity
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto
2018-04-01
Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.
Earth's Paleomagnetosphere and Planetary Habitability
NASA Astrophysics Data System (ADS)
Tarduno, J. A.; Blackman, E. G.; Oda, H.; Bono, R. K.; Carroll-Nellenback, J.; Cottrell, R. D.; Nimmo, F.
2017-12-01
The geodynamo is thought to play an important role in protecting Earth's hydrosphere, vital for life as we know it, from loss due to the erosive potential of the solar wind. Here we consider the mechanisms and history of this shielding. A larger core dynamo magnetic field strength provides more pressure to abate the solar wind dynamic pressure, increasing the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. The important variable is not mass capture but energy transfer, which does not scale linearly with magnetosphere size. Moreover, the ordered field provides the magnetic topology for recapturing atmospheric components in the opposite hemisphere such that the net global loss might not be greatly affected. While a net protection role for magnetospheres is suggested, forcing by the solar wind will change with stellar age. Paleomagnetism utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a reduced magnetopause of 5 Earth radii, implying the potential for some atmospheric loss. Terrestrial zircons from the Jack Hills (Western Australia) and other localities host magnetic inclusions, whose magnetization has now been recorded by a new generation of ultra-sensitive 3-component SQUID magnetometer (U. Rochester) and SQUID microscope (GSJ/AIST). Paleointensity data suggest the presence of a terrestrial dynamo and magnetic shielding for Eoarchean to Hadean times, at ages as old as 4.2 billion years ago. However, the magnetic data suggest that for intervals >100,000 years long, magnetopause standoff distances may have reached 3 to 4 Earth radii or less. The early inception of the geodynamo, which probably occurred shortly after the lunar-forming impact, its continuity, and an early robust hydrosphere, appear to be key ingredients for Earth's long-term habitability.
Maunder's Butterfly Diagram in the 21st Century
NASA Technical Reports Server (NTRS)
Hathaway, David H.
2005-01-01
E. Walter Maunder created his first "Butterfly Diagram" showing the equatorward drift of the sunspot latitudes over the course of each of two solar cycles in 1903. This diagram was constructed from data obtained through the Royal Greenwich Observatory (RGO) starting in 1874. The RGO continued to acquire data up until 1976. Fortunately, the US Air Force (USAF) and the US National Oceanic and Atmospheric Administration (NOAA) have continued to acquire similar data since that time. This combined RGO/USAF/NOAA dataset on sunspot group positions and areas now extends virtually unbroken from the 19th century to the 21st century. The data represented in the Butterfly Diagram contain a wealth of information about solar activity and the solar cycle. Solar activity (as represented by the sunspots) appears at mid-latitudes at the start of each cycle. The bands of activity spread in each hemisphere and then drift toward the equator as the cycle progresses. Although the equator itself tends to be avoided, the spread of activity reaches the equator at about the time of cycle maximum. The cycles overlap at minimum with old cycle spots appearing near the equator while new cycle spots emerge in the mid-latitudes. Large amplitude cycles tend to have activity starting at higher latitudes with the activity spreading to higher latitudes as well. Large amplitude cycles also tend to be preceded by earlier cycles with faster drift rates. These drift rates may be tied to the Sun s meridional circulation - a component in many dynamo theories for the origin of the sunspot cycle. The Butterfly Diagram must be reproduced in any successful dynamo model for the Sun.
NASA Astrophysics Data System (ADS)
Hori, K.; Teed, R. J.; Jones, C. A.
2018-03-01
We investigate slow magnetic Rossby waves in convection-driven dynamos in rotating spherical shells. Quasi-geostrophic waves riding on a mean zonal flow may account for some of the geomagnetic westward drifts and have the potential to allow the toroidal field strength within the planetary fluid core to be estimated. We extend the work of Hori et al. (2015) to include a wider range of models, and perform a detailed analysis of the results. We find that a predicted dispersion relation matches well with the longitudinal drifts observed in our strong-field dynamos. We discuss the validity of our linear theory, since we also find that the nonlinear Lorentz terms influence the observed waveforms. These wave motions are excited by convective instability, which determines the preferred azimuthal wavenumbers. Studies of linear rotating magnetoconvection have suggested that slow magnetic Rossby modes emerge in the magnetostrophic regime, in which the Lorentz and Coriolis forces are in balance in the vorticity equation. We confirm this to be predominant balance for the slow waves we have detected in nonlinear dynamo systems. We also show that a completely different wave regime emerges if the magnetic field is not present. Finally we report the corresponding radial magnetic field variations observed at the surface of the shell in our simulations and discuss the detectability of these waves in the geomagnetic secular variation.
Global solar wind variations over the last four centuries
Owens, M. J.; Lockwood, M.; Riley, P.
2017-01-01
The most recent “grand minimum” of solar activity, the Maunder minimum (MM, 1650–1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth’s magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima. PMID:28139769
Onset of a planetesimal dynamo
NASA Astrophysics Data System (ADS)
Wang, H.; Weiss, B. P.; Wang, J.; Chen-Wiegart, Y. C. K.; Downey, B. G.; Suavet, C. R.; Andrade Lima, E.; Zucolotto, M. E.
2014-12-01
The paleomagnetism of achondritic meteorites provides evidence for advecting metallic core dynamos and large-scale differentiation on their parent planetesimals. The small sizes of these bodies (~102 km) enable a new opportunity to understand the physics of dynamo generation in a size regime with distinct thermal evolution parameters that are more accessible to model than planets. One key unknown about planetesimal dynamos is their onset time. Theoretical studies have suggested that it might occur instantaneously after large-scale melting (Weiss et al. 2008, Elkins-Tanton et al. 2011) while others have argued that a dynamo could be delayed by ~6 My (Sterenborg and Crowley 2013) or longer. Here we present the first paleomagnetic study that has constrained the onset time of a planetesimal dynamo, which has key implications for the physics of core formation, planetary thermal evolution and dynamo generation mechanisms. Our study focused on angrites, a group of ancient basaltic achondrites from near the surface of an early differentiated planetesimal. With unshocked, unbrecciated textures and Pb/Pb ages ranging from only ~3-10 My younger than the formation of calcium aluminum inclusions (CAIs), they are among the oldest known and best preserved planetary igneous rocks. We used a new CO2 + H2 gas mixture system (Suavet et al. 2014) for controlled oxygen fugacity thermal paleointensity experiments on two of the oldest angrites (D'Orbigny and SAH 99555; 4564.4 Ma) and a younger angrite (Angra dos Reis; 4557.7 Ma). For D'Orbigny and SAH 99555, we found that the natural remanence (NRM) demagnetizes at much lower temperatures than lab-applied thermoremanence (TRM), indicating that their NRMs are dominantly overprints from the Earth's field and hand magnets. In contrast, the NRM of Angra dos Reis behaves similarly to a TRM, confirming its thermal origin. We estimate the paleointensities to be < 0.2 µT for D'Orbigny and SAH 99555 and ~10 µT for Angra dos Reis. This indicates that the angrite parent body dynamo originated between 3 and 10 My after CAI formation. Our results are consistent with planetesimal evolution models calling for dynamos delayed by mantle heating due to radiogenic 26Al. Furthermore, these data suggest that external nebular fields in the angrite parent body region had declined to < 0.2 μT at 3 My after CAI formation.
Electric fields in the ionosphere
NASA Technical Reports Server (NTRS)
Kirchhoff, V. W. J. H.
1975-01-01
F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2014-01-01
The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.
Tsunami: ocean dynamo generator.
Sugioka, Hiroko; Hamano, Yozo; Baba, Kiyoshi; Kasaya, Takafumi; Tada, Noriko; Suetsugu, Daisuke
2014-01-08
Secondary magnetic fields are induced by the flow of electrically conducting seawater through the Earth's primary magnetic field ('ocean dynamo effect'), and hence it has long been speculated that tsunami flows should produce measurable magnetic field perturbations, although the signal-to-noise ratio would be small because of the influence of the solar magnetic fields. Here, we report on the detection of deep-seafloor electromagnetic perturbations of 10-micron-order induced by a tsunami, which propagated through a seafloor electromagnetometer array network. The observed data extracted tsunami characteristics, including the direction and velocity of propagation as well as sea-level change, first to verify the induction theory. Presently, offshore observation systems for the early forecasting of tsunami are based on the sea-level measurement by seafloor pressure gauges. In terms of tsunami forecasting accuracy, the integration of vectored electromagnetic measurements into existing scalar observation systems would represent a substantial improvement in the performance of tsunami early-warning systems.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2006-01-01
The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.
Morphology of Pseudostreamers and Solar Wind Properties
NASA Astrophysics Data System (ADS)
Panasenco, Olga; Velli, Marco
2016-05-01
The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona - active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop the specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates the conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Middle-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers (PSs) if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of PSs shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at the PS base low in the corona.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajaguru, S. P.; Antia, H. M., E-mail: rajaguru@iiap.res.in
We present and discuss results from time–distance helioseismic measurements of meridional circulation (MC) in the solar convection zone using 4 yr of Doppler velocity observations by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using a built-in mass conservation constraint in terms of the stream function, we invert helioseismic travel times to infer the MC in the solar convection zone. We find that the return flow that closes the MC is possibly beneath the depth of 0.77 R{sub ⊙}. We discuss the significance of this result in relation to other helioseismic inferences published recently and possible reasons for the differences inmore » the results. Our results show clearly the pitfalls involved in the measurements of material flows in the deep solar interior given the current limits on the signal-to-noise ratio and our limited understanding of systematics in the data. We also discuss the implications of our results for the dynamics of solar interior and popular solar dynamo models.« less
A SOLAR CYCLE LOST IN 1793-1800: EARLY SUNSPOT OBSERVATIONS RESOLVE THE OLD MYSTERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usoskin, Ilya G.; Mursula, Kalevi; Arlt, Rainer
2009-08-01
Because of the lack of reliable sunspot observations, the quality of the sunspot number series is poor in the late 18th century, leading to the abnormally long solar cycle (1784-1799) before the Dalton minimum. Using the newly recovered solar drawings by the 18-19th century observers Staudacher and Hamilton, we construct the solar butterfly diagram, i.e., the latitudinal distribution of sunspots in the 1790s. The sudden, systematic occurrence of sunspots at high solar latitudes in 1793-1796 unambiguously shows that a new cycle started in 1793, which was lost in the traditional Wolf sunspot series. This finally confirms the existence of themore » lost cycle that has been proposed earlier, thus resolving an old mystery. This Letter brings the attention of the scientific community to the need of revising the sunspot series in the 18th century. The presence of a new short, asymmetric cycle implies changes and constraints to sunspot cycle statistics, solar activity predictions, and solar dynamo theories, as well as for solar-terrestrial relations.« less
NASA Astrophysics Data System (ADS)
Yamazaki, Y.
2015-12-01
The relationship between ionospheric dynamo currents and neutral winds is examined using the Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM). The simulation is run for May and June 2009 with variable neutral winds but with constant solar and magnetospheric energy inputs, which ensures that day-to-day changes in the solar quiet (Sq) current system arise only from lower atmospheric forcing. The intensity and focus position of the simulated Sq current system exhibit large day-to-day variability, as is also seen in ground magnetometer data. We show how the day-to-day variation of the Sq current system relate to variable winds at various altitudes, latitudes, and longitudes.
The Unusual Minimum of Cycle 23: Observations and Interpretation
NASA Astrophysics Data System (ADS)
Martens, Petrus C.; Nandy, D.; Munoz-Jaramillo, A.
2009-05-01
The current minimum of cycle 23 is unusual in its long duration, the very low level to which Total Solar Irradiance (TSI) has fallen, and the small flux of the open polar fields. The deep minimum of TSI seems to be related to an unprecedented dearth of polar faculae, and hence to the small amount of open flux. Based upon surface flux transport models it has been suggested that the causes of these phenomena may be an unusually vigorous meridional flow, or even a deviation from Joy's law resulting in smaller Joy angles than usual for emerging flux in cycle 23. There is also the possibility of a connection with the recently inferred emergence in polar regions of bipoles that systematically defy Hale's law. Much speculation has been going on as to the consequences of this exceptional minimum: are we entering another global minimum, is this the end of the 80 year period of exceptionally high solar activity, or is this just a statistical hiccup? Dynamo simulations are underway that may help answer this question. As an aside it must be mentioned that the current minimum of TSI puts an upper limit in the TSI input for global climate simulations during the Maunder minimum, and that a possible decrease in future solar activity will result in a very small but not insignificant reduction in the pace of global warming.
Dynamo magnetic-field generation in turbulent accretion disks
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1991-01-01
Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1985-01-01
It is pointed out that magnetospheric substorms are perhaps the most basic type of disturbances which occur throughout the magnetosphere. There is little doubt that the energy for magnetospheric substorms is delivered from the sun to the magnetosphere by the solar wind, and theoretical and observational studies have been conducted to uncover the processes associated with the energy transfer from the solar wind to the magnetosphere, and the subsequent processes leading to various magnetospheric substorm phenomena. It has been widely accepted that explosive magnetic reconnection supplies the energy for magnetospheric substorm processes. It is indicated that the auroral phenomena must be various manifestations of a large-scale electrical discharge process which is powered by the solar wind-magnetosphere dynamo. Certain problems regarding explosive magnetic reconnection are discussed.
Paleointensity, solar wind and magnetopause 3.45 billion years ago (Invited)
NASA Astrophysics Data System (ADS)
Tarduno, J. A.; Cottrell, R. D.; Watkeys, M. K.; Hofmann, A.; Doubrovine, P. V.; Nelson, J.; Usui, Y.
2009-12-01
The standoff of the solar wind by the magnetic field produced by a core dynamo defines atmospheric shielding and prevention of volatile loss important for the evolution of a habitable planet. Yet little is known about magnetic field strength for the earliest Earth. Therefore, the potential for intense radiation from the young, rapidly rotating Sun modifying the atmosphere is uncertain. We report Thellier paleointensity results from single silicate crystals bearing magnetic inclusions that indicate the presence of a Paleoarchean geodynamo between 3.40 and 3.45 billion years ago. The field is somewhat weaker than the current field and when combined with the a greater solar wind pressure suggest steady-state Paleoarchean magnetopause standoff distances similar to those observed during recent solar storms. We will discuss efforts to further extend the paleointensity record, using single crystals with magnetic inclusions, such as zircons, eroded from older igneous rocks and now found within Archean sedimentary units.
Equatorial ionospheric electrodynamics during solar flares
NASA Astrophysics Data System (ADS)
Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding
2017-05-01
Previous investigations on ionospheric responses to solar flares focused mainly on the photoionization caused by the increased X-rays and extreme ultraviolet irradiance. However, little attention was paid to the related electrodynamics. In this letter, we explored the equatorial electric field (EEF) and electrojet (EEJ) in the ionosphere at Jicamarca during flares from 1998 to 2008. It is verified that solar flares increase dayside eastward EEJ but decrease dayside eastward EEF, revealing a negative correlation between EEJ and EEF. The decreased EEF weakens the equatorial fountain effect and depresses the low-latitude electron density. During flares, the enhancement in the Cowling conductivity may modulate ionospheric dynamo and decrease the EEF. Besides, the decreased EEF is closely related to the enhanced ASY-H index that qualitatively reflects Region 2 field-aligned current (R2 FAC). We speculated that solar flares may also decrease EEF through enhancing R2 FAC that leads to an overshielding-like effect.
On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1993-01-01
A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.
Kinematic Dynamo In Turbulent Circumstellar Disks
NASA Technical Reports Server (NTRS)
Stepinski, T.
1993-01-01
Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.
2015-06-24
physically . While not distinct from IH models, they require inner boundary magnetic field and plasma property values, the latter not currently measured...initialization for the computational grid. Model integration continues until a physically consistent steady-state is attained. Because of the more... physical basis and greater likelihood of realistic solutions, only MHD-type coronal models were considered in the review. There are two major types of
Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline
NASA Astrophysics Data System (ADS)
Zaqarashvili, Teimuraz
2018-03-01
The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.
Dynamo action and magnetic buoyancy in convection simulations with vertical shear
NASA Astrophysics Data System (ADS)
Guerrero, G.; Käpylä, P.
2011-10-01
A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also observed in lower values of the turbulent velocity and in perturbations of approximately three per cent on the shear profile.
Bashful ballerina: Southward shifted heliospheric current sheet
NASA Astrophysics Data System (ADS)
Mursula, K.; Hiltula, T.
2003-11-01
It is known since long [Rosenberg and Coleman, 1969] that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.
Bashful Ballerina: Southward shifted Heliospheric Current Sheet
NASA Astrophysics Data System (ADS)
Mursula, K.; Hiltula, T.
It is known since long (Rosenberg and Coleman, 1969) that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.
NASA Astrophysics Data System (ADS)
Harrison, R. J.; Bryson, J. F.; Kasama, T.; Church, N. S.; Herrero Albillos, J.; Kronast, F.; Ghidini, M.; Redfern, S. A.; van der Laan, G.; Tyliszczak, T.
2013-12-01
Paleomagnetic signals recorded by meteorites provide compelling evidence that the liquid cores of differentiated asteroids generated magnetic dynamo fields. Here we argue that magnetic nanostructures unique to meteoritic Fe-Ni metal are capable of carrying a time-resolved record of asteroid dynamo activity, a prospect that could revolutionise our understanding of the thermochemical conditions of differentiated bodies in the early solar system. Using a combination of high-resolution magnetic imaging techniques (including electron holography, magnetic force microscopy, X-ray photoemission electron microscopy and scanning transmission X-ray microscopy) we reveal the origins of the dramatic changes in magnetic properties that are associated with the transition from kamacite - tetrataenite rim - cloudy zone - plessite, typical of Fe-Ni intergrowths. The cloudy zone is comprised of nanoscale islands of tetrataenite (FeNi) coherently intergrown with a hitherto unobserved soft magnetic phase (Fe3Ni). The tetrataenite island diameter decreases with increasing lateral distance from the tetrataenite rim. Exchange coupling between the hard tetrataenite islands and the soft matrix phase leads to an exchange spring effect that lowers the tetrataenite switching field and causes a systematic variation in microcoercivity throughout the cloudy zone. The cloudy zone displays a complex interlocking magnetic domain pattern caused by uniaxial single domain tetrataenite islands with easy axes distributed along all three of the possible <100> crystallographic orientations. The coarse and intermediate cloudy zones contain a random distribution of all three easy axes. The fine cloudy zone, on the other hand, contains one dominant easy axis direction. This easy axis distribution suggests that strong interaction fields (either magnetic or stress) were present in this region at the time of tetrataenite formation, which likely originated from the neighbouring plessite. The easy axis distribution in the coarse and intermediate cloudy zone indicates a lack of interaction fields present at the time of formation, implying that deviations from randomness could be used to detect the presence of an external (e.g. dynamo) field. Zoned metallic grains within chondritic meteorites originating from the top ~5-10% of a differentiated asteroid may have formed their cloudy zones while the core was generating a dynamo field. In this case, as the cloudy zone formed continuously over a period of 10-100 Ma it had the potential to encode sequential information regarding the dynamo field as the spinodal microstructure developed laterally. Thus the local magnetic structure as a function of position throughout the cloudy zone could relate to the time dependence of an asteroid dynamo field. The experimental and analysis methods presented in this study could, in principle, be used to measure the relative strength (proportion of dominant easy axis) and direction (direction of dominant easy axis) of an asteroid dynamo field over ~100 Ma.
Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1991-01-01
An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.
Exploration of Mercury: The MESSENGER Mission
NASA Astrophysics Data System (ADS)
McNutt, Ralph
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA’s Discovery Program, has been collecting orbital observations of Mercury since March 2011. Elemental remote sensing of Mercury’s surface indicates that the moderately volatile elements Na, K, and S are not depleted relative to other terrestrial planets. Orbital images document widespread evidence for ancient volcanic activity ranging from effusive to explosive eruptions. High-resolution images have revealed the presence of irregular rimless depressions or “hollows” likely produced by the loss to diurnal heating or sputtering of some volatile-rich material. Polar deposits in permanently shadowed high-latitude regions are dominated by water ice on the basis of neutron spectrometry, surface reflectance, and thermal modeling with measured topography; in most locations the ice is covered by 10-30 cm of anomalously dark volatile material postulated to consist of complex organic compounds. The tectonic history of Mercury is dominated by greater planetary contraction than previously recognized; long-wavelength changes in topography postdated the emplacement of large expanses of volcanic plains. Gravity and topography measurements indicate that mascons and crustal thinning are associated with some impact basins. Mercury’s internal magnetic field is that of a dipole offset from the planet’s center by ~0.2 Mercury radii, a geometry difficult to reconcile with existing dynamo models. Magnetospheric measurements have revealed a highly time-variable and spatially structured particle environment. Despite complex feedbacks among the exosphere, magnetosphere, and surface, the large-scale structure of the exosphere - dominated by Na, Ca, and Mg - shows seasonal variations in general agreement with those expected from variations in solar flux with Mercury true anomaly but little variation with changing solar conditions. Energetic electron events are regular features of Mercury’s magnetosphere, but the causative acceleration mechanism remains a topic of study. MESSENGER is now in a second extended mission. Solar gravitational forces reduce the periapsis altitude between successive orbits. Orbit-correction maneuvers will yield four extended intervals when the periapsis altitude will be 15 to 25 km, and once the remaining propellant is consumed the spacecraft will impact the surface in late March 2015. During this low-altitude campaign, the unprecedented high-resolution views of the surface will help elucidate many of the processes that have shaped Mercury’s surface. MESSENGER’s low-altitude observations will also illuminate the consequences of precipitating ions and energetic electrons at Mercury, the response of the exosphere and magnetosphere to solar wind conditions during the declining phase of the solar cycle, and short-wavelength components of the internal magnetic and gravity fields and their implications for crustal magmatism and the mechanical evolution of Mercury’s lithosphere.
Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid
NASA Astrophysics Data System (ADS)
Bryson, James F. J.; Weiss, Benjamin P.; Harrison, Richard J.; Herrero-Albillos, Julia; Kronast, Florian
2017-08-01
The direction in which a planetary core solidifies has fundamental implications for the feasibility and nature of dynamo generation. Although Earth's core is outwardly solidifying, the cores of certain smaller planetary bodies have been proposed to inwardly solidify due to their lower central pressures. However, there have been no unambiguous observations of inwardly solidified cores or the relationship between this solidification regime and planetary magnetic activity. To address this gap, we present the results of complimentary paleomagnetic techniques applied to the matrix metal and silicate inclusions within the IVA iron meteorites. This family of meteorites has been suggested to originate from a planetary core that had its overlaying silicate mantle removed by collisions during the early solar system. This process is thought to have produced a molten ball of metal that cooled rapidly and has been proposed to have inwardly solidified. Recent thermal evolution models of such a body predict that it should have generated an intense, multipolar and time-varying dynamo field. This field could have been recorded as a remanent magnetisation in the outer, cool layers of a solid crust on the IVA parent core. We find that the different components in the IVA iron meteorites display a range of paleomagnetic fidelities, depending crucially on the cooling rate of the meteorite. In particular, silicate inclusions in the quickly cooled São João Nepomuceno meteorite are poor paleomagnetic recorders. On the other hand, the matrix metal and some silicate subsamples from the relatively slowly cooled Steinbach meteorite are far better paleomagnetic recorders and provide evidence of an intense (≳100 μT) and directionally varying (exhibiting significant changes on a timescale ≲200 kyr) magnetic field. This is the first demonstration that some iron meteorites record ancient planetary magnetic fields. Furthermore, the observed field intensity, temporal variability and dynamo lifetime are consistent with thermal evolution models of the IVA parent core. Because the acquisition of remanent magnetisation by some IVA iron meteorites require that they cooled below their Curie temperature during the period of dynamo activity, the magnetisation carried by Steinbach also provides strong evidence favouring the inward solidification of its parent core.
NASA Astrophysics Data System (ADS)
Hood, Lon
2010-05-01
Previous analyses of Lunar Prospector magnetometer (MAG) and electron reflectometer (ER) data have shown that impact processes played an important role in producing the observed crustal magnetization. In particular, the largest areas of strong anomalies occur antipodal to the youngest large basins and correlative studies indicate that basin ejecta materials are important anomaly sources. Models suggest that transient fields generated by the expansion of impact vapor-melt clouds in the presence of an initial solar wind magnetic field are sufficient to explain the antipodal anomalies (Hood and Artemieva, Icarus, v. 193, p. 485, 2008). However, analyses of ER data have also shown that some anomalies are present within Nectarian-aged basins including Moscoviense, Mendel-Rydberg, and Crisium (Halekas et al., Meteorit. Planet. Sci., v. 38, p. 565, 2003). These latter anomalies could be due either to thermoremanence (TRM) in impact melt or to shock remanence in the central uplift. The former interpretation would require a long-lived, steady magnetizing field, consistent with a core dynamo, while the latter interpretation could in principle be explained by an impact-generated field. Here, LP MAG data are applied to produce more detailed regional maps of magnetic anomalies within selected Nectarian basins. Anomalies within the Crisium basin, in particular, are located inside the inner rim edges and are clearly genetically associated with the basin (rather than being due to ejecta from younger basins superposed on Crisium). An analysis of the vector field components shows that the directions of magnetization of the two main sources are close to parallel within the errors of the modeling. These anomalies are therefore most probably due to TRM of impact melt that cooled in a steady, large-scale field. In addition, the paleomagnetic pole position calculated for the strongest and most isolated anomaly lies close to the present rotational pole. Assuming no true polar wander since the Crisium impact and that the lunar dynamo behaved similarly to presently existing terrestrial planet dynamos, they are therefore consistent with the existence of a lunar dynamo field.
On large-scale dynamo action at high magnetic Reynolds number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cattaneo, F.; Tobias, S. M., E-mail: smt@maths.leeds.ac.uk
2014-07-01
We consider the generation of magnetic activity—dynamo waves—in the astrophysical limit of very large magnetic Reynolds number. We consider kinematic dynamo action for a system consisting of helical flow and large-scale shear. We demonstrate that large-scale dynamo waves persist at high Rm if the helical flow is characterized by a narrow band of spatial scales and the shear is large enough. However, for a wide band of scales the dynamo becomes small scale with a further increase of Rm, with dynamo waves re-emerging only if the shear is then increased. We show that at high Rm, the key effect ofmore » the shear is to suppress small-scale dynamo action, allowing large-scale dynamo action to be observed. We conjecture that this supports a general 'suppression principle'—large-scale dynamo action can only be observed if there is a mechanism that suppresses the small-scale fluctuations.« less
Experimental realization of dynamo action: present status and prospects
NASA Astrophysics Data System (ADS)
Giesecke, André; Stefani, Frank; Gundrum, Thomas; Gerbeth, Gunter; Nore, Caroline; Léorat, Jacques
2013-07-01
In the last decades, the experimental study of dynamo action has made great progress. However, after the dynamo experiments in Karlsruhe and Riga, the von-Kármán-Sodium (VKS) dynamo is only the third facility that has been able to demonstrate fluid flow driven self-generation of magnetic fields in a laboratory experiment. Further progress in the experimental examination of dynamo action is expected from the planned precession driven dynamo experiment that will be designed in the framework of the liquid sodium facility DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies). In this paper, we briefly present numerical models of the VKS dynamo that demonstrate the close relation between the axisymmetric field observed in that experiment and the soft iron material used for the flow driving impellers. We further show recent results of preparatory water experiments and design studies related to the precession dynamo and delineate the scientific prospects for the final set-up.
Dynamo Induced by Time-periodic Force
NASA Astrophysics Data System (ADS)
Wei, Xing
2018-03-01
To understand the dynamo driven by time-dependent flow, e.g., turbulence, we investigate numerically the dynamo induced by time-periodic force in rotating magnetohydrodynamic flow and focus on the effect of force frequency on the dynamo action. It is found that the dynamo action depends on the force frequency. When the force frequency is near resonance the force can drive dynamo, but when it is far away from resonance dynamo fails. In the frequency range near resonance to support dynamo, the force frequency at resonance induces a weak magnetic field and magnetic energy increases as the force frequency deviates from the resonant frequency. This is opposite to the intuition that a strong flow at resonance will induce a strong field. It is because magnetic field nonlinearly couples with fluid flow in the self-sustained dynamo and changes the resonance of driving force and inertial wave.
Hilbert-Huang transform analysis of long-term solar magnetic activity
NASA Astrophysics Data System (ADS)
Deng, Linhua
2018-04-01
Astronomical time series analysis is one of the hottest and most important problems, and becomes the suitable way to deal with the underlying dynamical behavior of the considered nonlinear systems. The quasi-periodic analysis of solar magnetic activity has been carried out by various authors during the past fifty years. In this work, the novel Hilbert-Huang transform approach is applied to investigate the yearly numbers of polar faculae in the time interval from 1705 to 1999. The detected periodicities can be allocated to three components: the first one is the short-term variations with periods smaller than 11 years, the second one is the mid- term variations with classical periods from 11 years to 50 years, and the last one is the long-term variations with periods larger than 50 years. The analysis results improve our knowledge on the quasi-periodic variations of solar magnetic activity and could be provided valuable constraints for solar dynamo theory. Furthermore, our analysis results could be useful for understanding the long-term variations of solar magnetic activity, providing crucial information to describe and forecast solar magnetic activity indicators.
Gisdon, Florian J; Culka, Martin; Ullmann, G Matthias
2016-10-01
Conjugate peak refinement (CPR) is a powerful and robust method to search transition states on a molecular potential energy surface. Nevertheless, the method was to the best of our knowledge so far only implemented in CHARMM. In this paper, we present PyCPR, a new Python-based implementation of the CPR algorithm within the pDynamo framework. We provide a detailed description of the theory underlying our implementation and discuss the different parts of the implementation. The method is applied to two different problems. First, we illustrate the method by analyzing the gauche to anti-periplanar transition of butane using a semiempirical QM method. Second, we reanalyze the mechanism of a glycyl-radical enzyme, namely of 4-hydroxyphenylacetate decarboxylase (HPD) using QM/MM calculations. In the end, we suggest a strategy how to use our implementation of the CPR algorithm. The integration of PyCPR into the framework pDynamo allows the combination of CPR with the large variety of methods implemented in pDynamo. PyCPR can be used in combination with quantum mechanical and molecular mechanical methods (and hybrid methods) implemented directly in pDynamo, but also in combination with external programs such as ORCA using pDynamo as interface. PyCPR is distributed as free, open source software and can be downloaded from http://www.bisb.uni-bayreuth.de/index.php?page=downloads . Graphical Abstract PyCPR is a search tool for finding saddle points on the potential energy landscape of a molecular system.
Generation of Currents in Weakly Ionized Plasmas through a Collisional Dynamo
NASA Astrophysics Data System (ADS)
Dimant, Yakov; Oppenheim, Meers; Fletcher, Alex
2016-10-01
Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. We argue that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for the current formation, ∇ × (U-> × B->) ≠ ∂ B-> / ∂ t , where U-> is the neutral flow velocity, B-> is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ̂ . For many systems, the displacement current, ∂ B-> / ∂ t , is negligible, making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates electrojets plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law. Work supported by NSF/DOE Grant PHY-1500439.
NASA Astrophysics Data System (ADS)
Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.
2016-08-01
In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.
Integral equation approach to time-dependent kinematic dynamos in finite domains
NASA Astrophysics Data System (ADS)
Xu, Mingtian; Stefani, Frank; Gerbeth, Gunter
2004-11-01
The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples—the α2 dynamo model with radially varying α and the Bullard-Gellman model—illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α2 dynamo in rectangular domains.
Estimating the Magnetic Field Strength in Hot Jupiters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu
A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. Wemore » find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.« less
NASA Astrophysics Data System (ADS)
Hams, J. E.
2015-12-01
This session will present educational activities developed for an introductory Oceanography lecture and laboratory class by NOAA Teacher-at-Sea Jacquelyn Hams following participation in Leg 3 of Project DYNAMO (Dynamics of the Madden-Julian Oscillation) in November-December 2011. The Madden-Julian Oscillation (MJO) is an important tropical weather phenomenon with origins in the Indian Ocean that impacts many other global climate patterns such as the El Nino Southern Oscillation (ENSO), Northern Hemisphere monsoons, tropical storm development, and pineapple express events. The educational activities presented include a series of lessons based on the observational data collected during Project DYNAMO which include atmospheric conditions, wind speeds and direction, surface energy flux, and upper ocean turbulence and mixing. The lessons can be incorporated into any introductory Oceanography class discussion on ocean properties such as conductivity, temperature, and density, ocean circulation, and layers of the atmosphere. A variety of hands-on lessons will be presented ranging from short activities used to complement a lecture to complete laboratory exercises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia de Andrade, L. C.
Vishik's anti-dynamo theorem is applied to a nonstretched twisted magnetic flux tube in Riemannian space. Marginal or slow dynamos along curved (folded), torsioned (twisted), and nonstretching flux tubes plasma flows are obtained. Riemannian curvature of the twisted magnetic flux tube is computed in terms of the Frenet curvature in the thin tube limit. It is shown that, for nonstretched filaments, fast dynamo action in the diffusive case cannot be obtained, in agreement with Vishik's argument that fast dynamos cannot be obtained in nonstretched flows. Instead of a fast dynamo, a nonuniform stretching slow dynamo is obtained. An example is given,more » which generalizes plasma dynamo laminar flows, recently presented by Wang et al. [Phys Plasmas 9, 1491 (2002)], in the case of low magnetic Reynolds number Re{sub m}{>=}210. Curved and twisting Riemannian heliotrons, where nondynamo modes are found even when stretching is present, shows that the simple presence of stretching is not enough for the existence of dynamo action. In this paper, folding plays the role of Riemannian curvature and can be used to cancel magnetic fields, not enhancing the dynamo action. Nondynamo modes are found for certain values of torsion, or Frenet curvature (folding) in the spirit of the anti-dynamo theorem. It is also shown that curvature and stretching are fundamental for the existence of fast dynamos in plasmas.« less
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Tsurutani, B. T.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Runge, T.
2013-02-01
We study solar wind-ionosphere coupling through the late declining phase/solar minimum and geomagnetic minimum phases during the last solar cycle (SC23) - 2008 and 2009. This interval was characterized by sequences of high-speed solar wind streams (HSSs). The concomitant geomagnetic response was moderate geomagnetic storms and high-intensity, long-duration continuous auroral activity (HILDCAA) events. The JPL Global Ionospheric Map (GIM) software and the GPS total electron content (TEC) database were used to calculate the vertical TEC (VTEC) and estimate daily averaged values in separate latitude and local time ranges. Our results show distinct low- and mid-latitude VTEC responses to HSSs during this interval, with the low-latitude daytime daily averaged values increasing by up to 33 TECU (annual average of ~20 TECU) near local noon (12:00 to 14:00 LT) in 2008. In 2009 during the minimum geomagnetic activity (MGA) interval, the response to HSSs was a maximum of ~30 TECU increases with a slightly lower average value than in 2008. There was a weak nighttime ionospheric response to the HSSs. A well-studied solar cycle declining phase interval, 10-22 October 2003, was analyzed for comparative purposes, with daytime low-latitude VTEC peak values of up to ~58 TECU (event average of ~55 TECU). The ionospheric VTEC changes during 2008-2009 were similar but ~60% less intense on average. There is an evidence of correlations of filtered daily averaged VTEC data with Ap index and solar wind speed. We use the infrared NO and CO2 emission data obtained with SABER on TIMED as a proxy for the radiation balance of the thermosphere. It is shown that infrared emissions increase during HSS events possibly due to increased energy input into the auroral region associated with HILDCAAs. The 2008-2009 HSS intervals were ~85% less intense than the 2003 early declining phase event, with annual averages of daily infrared NO emission power of ~ 3.3 × 1010 W and 2.7 × 1010 W in 2008 and 2009, respectively. The roles of disturbance dynamos caused by high-latitude winds (due to particle precipitation and Joule heating in the auroral zones) and of prompt penetrating electric fields (PPEFs) in the solar wind-ionosphere coupling during these intervals are discussed. A correlation between geoeffective interplanetary electric field components and HSS intervals is shown. Both PPEF and disturbance dynamo mechanisms could play important roles in solar wind-ionosphere coupling during prolonged (up to days) external driving within HILDCAA intervals.
Coherent nonhelical shear dynamos driven by magnetic fluctuations at low Reynolds numbers
Squire, J.; Bhattacharjee, A.
2015-10-28
Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire & Bhattacharjee—pertain to the "magnetic shear-current effect" as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis bymore » enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. Furthermore, these illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.« less
COHERENT NONHELICAL SHEAR DYNAMOS DRIVEN BY MAGNETIC FLUCTUATIONS AT LOW REYNOLDS NUMBERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, J.; Bhattacharjee, A., E-mail: jsquire@caltech.edu
2015-11-01
Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results—serving as a follow up to the results of Squire and Bhattacharjee—pertain to the “magnetic shear-current effect” as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis bymore » enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. These illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism.« less
Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields
NASA Astrophysics Data System (ADS)
Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration
2011-10-01
Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.
Love, Jeffrey J.; Rigler, J.
2012-01-01
[1] Analysis is made of the geomagnetic-activityaaindex covering solar cycle 11 to the beginning of 24, 1868–2011. Autocorrelation shows 27.0-d recurrent geomagnetic activity that is well-known to be prominent during solar-cycle minima; some minima also exhibit a smaller amount of 13.5-d recurrence. Previous work has shown that the recent solar minimum 23–24 exhibited 9.0 and 6.7-d recurrence in geomagnetic and heliospheric data, but those recurrence intervals were not prominently present during the preceding minima 21–22 and 22–23. Using annual-averages and solar-cycle averages of autocorrelations of the historicalaadata, we put these observations into a long-term perspective: none of the 12 minima preceding 23–24 exhibited prominent 9.0 and 6.7-d geomagnetic activity recurrence. We show that the detection of these recurrence intervals can be traced to an unusual combination of sectorial spherical-harmonic structure in the solar magnetic field and anomalously low sunspot number. We speculate that 9.0 and 6.7-d recurrence is related to transient large-scale, low-latitude organization of the solar dynamo, such as seen in some numerical simulations.
What we learn from eclipsing binaries in the ultraviolet
NASA Technical Reports Server (NTRS)
Guinan, Edward F.
1990-01-01
Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.
The Buildup of a Scale-free Photospheric Magnetic Network
NASA Astrophysics Data System (ADS)
Thibault, K.; Charbonneau, P.; Crouch, A. D.
2012-10-01
We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.
Relationship between Birkeland current regions, particle precipitation, and electric fields
NASA Technical Reports Server (NTRS)
De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.
1993-01-01
The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.
The nuclear dynamo; Can a nuclear tornado annihilate nations
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, J.R. Jr.
1991-01-01
This paper reports on the development of the hypothesis of a nuclear dynamo for a controlled nuclear fusion reactor. This dynamo hypothesis suggests properties for a nuclear tornado that could annihilate nations if accidentally triggered by a single high yield to weight nuclear weapon detonation. The formerly classified reports on ignition of the atmosphere, the properties of a nuclear dynamo, methods to achieve a nuclear dynamo in the laboratory, and the analogy of a nuclear dynamo to a nuclear tornado are discussed. An unclassified international study of this question is urged.
Impact-generated magnetic fields on the Moon : a magnetohydrodynamic numerical investigation
NASA Astrophysics Data System (ADS)
Oran, Rona; Shprits, Yuri; Weiss, Benjamin; Gombosi, Tamas
2015-04-01
Natural remanent magnetization has been identified in lunar rocks, the lunar crust, and a diversity of meteorites. Much of this magnetization is thought to have been produced by cooling a core dynamo mag-netic field. However, the identification of lunar crustal magnetic anomalies at the antipodes of four of the five youngest large (>600 km diameter) impact basins has motivated the alternative hypothesis that the lunar crust could have been magnetized by the impacts. In particular, it has been proposed that highly conducting ionized vapor produced by a basin-forming impact interacts with the ambient solar wind plasma surrounding the Moon to amplify the ambient solar wind magnetic field or any core dynamo field. In this picture, as the ionized vapor cloud expands around the Moon, it pushes and compresses the solar wind plasma into a small region at the antipodal point. The conservation of magnetic flux then leads to an enhanced magnetic field in the compressed plasma. This field can then be recorded as shock remanent magnetization by crustal materials at the antipodal point following the impact of converging basin ejecta. A key requirement for the impact-generated fields hypothesis is that the compressed field be suffi-ciently strong to explain the lunar paleointensities (at least tens of μT) and maintained at the antipodal point for a sufficiently long time (several hours) for the ejecta to arrive and impact the surface. Previous simulations of the expansion of the vapor cloud found that the enhanced field will be strong enough (per-haps reaching hundreds of μT) and will remain at the antipodal site for a sufficiently long time (>1 day) for the arrival of incoming ejecta. However, these studies did not include an explicit calculation of the interaction of the magnetized solar wind plasma with the vapor cloud. Rather, the cloud evolution under the lunar gravity was simulated in the purely hydrodynamic regime. The vapor cloud structure at certain times was used to derive a simplified picture of what the effects would be on an ambient magnetized plasma using general magnetohydrodynamic (MHD) arguments. The solar wind drag acting on the cloud, as well as MHD effects such as field lines stretching and magnetic reconnection were not taken into ac-count. With the advances made in computational MHD models in recent years, we can now revisit these ear-lier important models. Our goal is to perform the first MHD simulations of an impact-generated vapor cloud expanding in the solar wind around the Moon, using BATSRUS, a 3D highly-parallelized versatile MHD code developed at the University of Michigan, in order to self-consistently test the previous estima-tions of the strength and duration of the magnetic field enhancement at the antipodal points. We will con-sider different MHD processes, such as: 1) the finite resistivity of the lunar mantle 2) magnetic diffusion between the solar wind and the initially non-magnetized cloud, 3) magnetic reconnection at the antipode, and 4) viscous drag and the transport of magnetic flux due to solar wind motion, and 4) MHD instabili-ties. This will allow us to systematically examine whether impact-generated fields can indeed be respon-sible for the formation of crustal field enhancements on the Moon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Subhamoy; Mandal, Sudip; Banerjee, Dipankar, E-mail: dipu@iiap.res.in
The Ca ii K spectroheliograms spanning over a century (1907–2007) from Kodaikanal Solar Observatory, India, have recently been digitized and calibrated. Applying a fully automated algorithm (which includes contrast enhancement and the “Watershed method”) to these data, we have identified the supergranules and calculated the associated parameters, such as scale, circularity, and fractal dimension. We have segregated the quiet and active regions and obtained the supergranule parameters separately for these two domains. In this way, we have isolated the effect of large-scale and small-scale magnetic fields on these structures and find a significantly different behavior of the supergranule parameters overmore » solar cycles. These differences indicate intrinsic changes in the physical mechanism behind the generation and evolution of supergranules in the presence of small-scale and large-scale magnetic fields. This also highlights the need for further studies using solar dynamo theory along with magneto-convection models.« less
2006-09-30
disturbances from the lower atmosphere and ocean affect the upper atmosphere and how this variability interacts with the variability generated by solar and...represents “ general circulation model.” Both models include self-consistent ionospheric electrodynamics, that is, a calculation of the electric fields...and currents generated by the ionospheric dynamo, and consideration of their effects on the neutral dynamics. The TIE-GCM is used for studies that
RS CVn binaries: Testing the solar-stellar dynamo connection
NASA Technical Reports Server (NTRS)
Dempsey, R.
1995-01-01
We have used the Extreme Ultraviolet Explorer satellite to study the coronal emission from the EUV-bright RS CVn binaries Sigma2 CrB, observed February 10-21, 1994, and II Peg, observed October 1-5, 1993. We present time-resolved and integrated EUV short-, medium-, and long-wavelength spectra for these binaries. Sigma2 CrB shows significant first-order emission features in the long-wavelength region. The coronal emission distributions and electron densities are estimated for those active coronae dominated by high temperature plasma.
Kinematic dynamo action in square and hexagonal patterns.
Favier, B; Proctor, M R E
2013-11-01
We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.
Chandra Observations of Magnetic White Dwarfs and Their Theoretical Implications
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.; Six, N. Frank (Technical Monitor)
2002-01-01
Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is strong observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. Since these fields are likely to be generated by dynamo action and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs.
Evolution of Starspots on LO Pegasi
NASA Astrophysics Data System (ADS)
Harmon, Robert; Bloodgood, Felise; Martin, Alec; Pellegrin, Kyle
2018-01-01
LO Pegasi is a young solar analog, a K main-sequence star that rotates with a period of 10.1538 hr. The rapid rotation yields a strong stellar dynamo associated with large starspots on the surface, which are regions where the magnetic field inhibits the convective transport of energy from below, so that the spots are cooler and thus darker than the surrounding photosphere. The star thus exhibits rotational modulation of its light curve as the starspots are carried into and out of view of Earth. CCD images of LO Peg were acquired at Perkins Observatory in Delaware, OH through standard B, V, R, and I photometric filters from 2017 June 1 to July 20. After subtracting dark frames and flat fielding the images, differential aperture photometry was performed to yield light curves through each of the four filters. The resulting light curves that were then analyzed via the Light-curve Inversion program created by one of us (Harmon) to produce surface maps. Our observations indicated that LO Pegasi’s light curve changed in both amplitude and shape between 2017 June and July, while its maximum brightness did not change. We present maps corresponding to these two distinct light curves, along with maps for data acquired from 2006-2016.
Heliophysics: Active Stars, their Astrospheres, and Impacts on Planetary Environments
NASA Astrophysics Data System (ADS)
Schrijver, C. J.; Bagenal, F.; Sojka, J. J.
2016-04-01
Preface; 1. Introduction Carolus J. Schrijver, Frances Bagenal and Jan J. Sojka; 2. Solar explosive activity throughout the evolution of the Solar System Rachel Osten; 3. Astrospheres, stellar winds, and the interstellar medium Brian Wood and Jeffrey L. Linsky; 4. Effects of stellar eruptions throughout astrospheres Ofer Cohen; 5. Characteristics of planetary systems Debra Fischer and Ji Wang; 6. Planetary dynamos: updates and new frontiers Sabine Stanley; 7. Climates of terrestrial planets David Brain; 8. Upper atmospheres of the giant planets Luke Moore, Tom Stallard and Marina Garland; 9. Aeronomy of terrestrial upper atmospheres David E. Siskind and Stephen W. Bougher; 10. Moons, asteroids, and comets interacting with their surroundings Margaret G. Kivelson; 11. Dusty plasmas Mihály Horányi; 12. Energetic-particle environments in the Solar System Norbert Krupp; 13. Heliophysics with radio scintillation and occultation Mario M. Bisi; Appendix 1. Authors and editors; List of illustrations; List of tables; References; Index.
Induced and permanent magnetism on the moon - Structural and evolutionary implications.
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Dyal, P.; Colburn, D. S.; Mihalov, J. D.; Parkin, C. W.; Smith, B. F.; Schubert, G.; Schwartz, K.
1971-01-01
It is shown that the moon possesses an extraordinary response to induction from the solar wind due to a combination of a high interior electrical conductivity together with a relatively resistive crustal layer into which the solar wind dynamic pressure forces back the induced field. The dark side response, devoid of solar wind pressure, is approximately that expected for the vacuum case. These data permit an assessment of the interior conductivity and an estimate of the thermal gradient in the crustal region. The discovery of a large permanent magnetic field at the Apollo 12 site corresponds approximately to the paleomagnetic residues discovered in both Apollo 11 and 12 rock samples. The implications regarding an early lunar magnetic field are discussed and it is shown that among the various conjectures regarding the early field the most prominent are either an interior dynamo or an early approach to the earth though no extant model is free of difficulties.
Quasi-geostrophic dynamo theory
NASA Astrophysics Data System (ADS)
Calkins, Michael A.
2018-03-01
The asymptotic theory of rapidly rotating, convection-driven dynamos in a plane layer is discussed. A key characteristic of these quasi-geostrophic dynamos is that the Lorentz force is comparable in magnitude to the ageostrophic component of the Coriolis force, rather than the leading order component that yields geostrophy. This characteristic is consistent with both observations of planetary dynamos and numerical dynamo investigations, where the traditional Elssasser number, ΛT = O (1) . Thus, while numerical dynamo simulations currently cannot access the strongly turbulent flows that are thought to be characteristic of planetary interiors, it is argued that they are in the appropriate geostrophically balanced regime provided that inertial and viscous forces are both small relative to the leading order Coriolis force. Four distinct quasi-geostrophic dynamo regimes are discussed, with each regime characterized by a unique magnetic to kinetic energy density ratio and differing dynamics. The axial torque due to the Lorentz force is shown to be asymptotically small for such quasi-geostrophic dynamos, suggesting that 'Taylor's constraint' represents an ambiguous measure of the primary force balance in a rapidly rotating dynamo.
Core rotational dynamics and geological events
Greff-Lefftz; Legros
1999-11-26
A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.
NASA Technical Reports Server (NTRS)
Strauss, H. R.
1986-01-01
A resonant fast dynamo is found in chaotic shear flows. The dynamo effect is produced by resonant perturbations of the velocity field, similar to resonant diffusion in plasma physics. The dynamo is called fast because the flow produces an electric field independent of the fluid resistivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchio, A.; Meduri, D.; Carbone, V.
2012-04-10
The spatio-temporal dynamics of the solar magnetic field has been investigated by using NSO/Kitt Peak magnetic synoptic maps covering the period 1976 August-2003 September. The field radial component, for each heliographic latitude, has been decomposed in intrinsic mode functions through the Empirical Mode Decomposition in order to investigate the time evolution of the various characteristic oscillating modes at different latitudes. The same technique has also been applied on synoptic maps of the meridional and east-west components, which were derived from the observed line-of-sight projection of the field by using the differential rotation. Results obtained for the {approx}22 yr cycle, relatedmore » to the polarity inversions of the large-scale dipolar field, show an antisymmetric behavior with respect to the equator in all the field components and a marked poleward flux migration in the radial and meridional components (from about -35 Degree-Sign and +35 Degree-Sign in the southern and northern hemispheres, respectively). The quasi-biennial oscillations (QBOs) are also identified as a fundamental timescale of variability of the magnetic field and associated with poleward magnetic flux migration from low latitudes around the maximum and descending phase of the solar cycle. Moreover, signs of an equatorward drift, at a {approx}2 yr rate, seem to appear in the radial and toroidal components. Hence, the QBO patterns suggest a link to a dynamo action. Finally, the high-frequency component of the magnetic field, at timescales less than 1 yr, provides the most energetic contribution and it is associated with the outbreaks of the bipolar regions on the solar surface.« less
Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?
NASA Astrophysics Data System (ADS)
Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.
2017-02-01
In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo mechanisminvolving magnetorotational instability (MRI). This dynamo may notably contribute to explaining the time-variability of various accreting systems, as high-resolution simulations of MRI dynamo turbulence exhibit statistical self-organization into large-scale cyclic dynamics. However, understanding the physics underlying these statistical states and assessing their exact astrophysical relevance is theoretically challenging. The study of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has highlighted the role of turbulent magnetic diffusion in the seeming impossibility of a dynamo at low magnetic Prandtl number (Pm), a common regime in disks. Arguably though, these simple laminar structures may not be fully representative of the complex, statistically self-organized states expected in astrophysical regimes. Here, we aim at closing this seeming discrepancy by reporting the numerical discovery of exactly periodic, yet semi-statistical "chimeral MRI dynamo states" which are the organized outcome of a succession of MRI-unstable, non-axisymmetric dynamical stages of different forms and amplitudes. Interestingly, these states, while reminiscent of the statistical complexity of turbulent simulations, involve the same physical principles as simpler laminar cycles, and their analysis further confirms the theory that subcritical turbulent magnetic diffusion impedes the sustainment of an MRI dynamo at low Pm. Overall, chimera dynamo cycles therefore offer an unprecedented dual physical and statistical perspective on dynamos in rotating shear flows, which may prove useful in devising more accurate, yet intuitive mean-field models of time-dependent turbulent disk dynamos. Movies associated to Fig. 1 are available at http://www.aanda.org
Do steady fast magnetic dynamos exist?
NASA Technical Reports Server (NTRS)
Finn, John M.; Ott, Edward; Hanson, James D.; Kan, Ittai
1989-01-01
This paper considers the question of the existense of a steady fast kinematic magnetic dynamo for a conducting fluid with a steady velocity field and vanishingly small electrical resistivity. The analysis of examples of steady dynamos, found by considering the zero-resistivity dynamics, indicated that, for sufficiently small resistivity, dynamo action can indeed occur in steady smooth three-dimensional chaotic fluid flows and that fast dynamos should consequently be a typical occurrence for such flows.
Neutron star dynamos and the origins of pulsar magnetism
NASA Technical Reports Server (NTRS)
Thompson, Christopher; Duncan, Robert C.
1993-01-01
Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.
Salient Features of the New Sunspot Number Time Series
NASA Astrophysics Data System (ADS)
Ahluwalia, H. S.; Ygbuhay, R. C.
2016-12-01
Recently Clette et al. (Space Sci. Rev. 186, 35, 2014) completed the first revision of the international sunspot number SSN(V2) since its creation by Wolf in 1849 SSN(V1) starting in 1700 and ending in May 2015. The yearly values of SSN(V2) are larger than those of SSN(V1) but the secular trend in their timelines both exhibit a gradual descent after Cycle 21 minimum resulting in greatly reduced activity for Cycle 24. It has two peaks; one in 2012 due to activity in the north hemisphere (NH) and the other in 2014 due to excess activity in the south hemisphere (SH). The N-S excess of hemispheric SSNs is examined for 1950 - 2014, in relation to the time variations of the solar polar field for 1976 - 2015, covering five complete solar cycles (19 - 23) and parts of the bordering two (18, 24). We find that SH tends to become progressively more active in the declining phase of the cycles reaching an extreme value that gave rise to a second higher peak in October 2014 in the smoothed SSNs accompanied by a strong solar polar field in SH. There may be a Gleissberg cyclicity in the asymmetric solar dynamo operation. The continuing descent of the secular trend in SSNs implies that we may be near a Dalton-level grand minimum. The low activity spell may last well past 2060, accompanied by a stable but reduced level of the space weather/climate. Fourier spectrum of the time domain of SSNs shows no evidence of the 208 year/cycle (ypc) (DeVries/Suess cycle) seen in the cosmogenic radionuclide ({}^{10}Be) concentration in the polar ice cores and {}^{14}C record in trees indicating that 208 ypc peak may be of non-solar origin. It may arise from the climate process(es) that change(s) the way radionuclides are deposited on polar ice. It should be noted that we only have {˜} 400 years of SSN data, so it is possible that DeVries/Suess cycle is really driven by the Sun but for now we do not have any evidence of that; there is no known physical process linking 208 ypc to solar dynamo operation.
Comparison of magnetic helicity close to the sun and in magnetic clouds
NASA Astrophysics Data System (ADS)
Rust, D.
Magnetic helicity is present in the solar atmosphere - as inferred from vector magnetograph measurements, solar filaments, S-shaped coronal structures known as sigmoids, and sunspot whorls. I will survey the possible solar sources of this magnetic helicity. Included are fieldline footpoint motions, effects of Coriolis forces, effects of convection, shear associated with differential rotation, and, of course, the internal dynamo. Besides the survey of possible local mechanisms for helicity generation, I will consider the global view of the flow of helicity from the sun into interplanetary space. The principal agents by which the sun sheds helicity are coronal mass ejections (CMEs). They are often associated with interplanetary magnetic clouds (MCs), whose fields are regularly probed with sensitive spacecraft magnetometers. MCs yield more direct measurements of helicity. They show that each MC carries helicity away from the sun. A major issue in solar-heliospheric research is whether the amount of helicity that MCs carry away in a solar cycle can be accounted for by the helicity generation mechanisms proposed so far. The NASA Solar and Heliospheric Physics Program supports this work under grants NAG5- 7921 and NAG 5-11584.
The effect of collisionality and diamagnetism on the plasma dynamo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, H.; Yagi, Y.; Hattori, K.
1995-04-28
Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha
We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via themore » integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales.« less
The Nature of Grand Minima and Maxima from Fully Nonlinear Flux Transport Dynamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inceoglu, Fadil; Arlt, Rainer; Rempel, Matthias, E-mail: finceoglu@aip.de
We aim to investigate the nature and occurrence characteristics of grand solar minimum and maximum periods, which are observed in the solar proxy records such as {sup 10}Be and {sup 14}C, using a fully nonlinear Babcock–Leighton type flux transport dynamo including momentum and entropy equations. The differential rotation and meridional circulation are generated from the effect of turbulent Reynolds stress and are subjected to back-reaction from the magnetic field. To generate grand minimum- and maximum-like periods in our simulations, we used random fluctuations in the angular momentum transport process, namely the Λ-mechanism, and in the Babcock–Leighton mechanism. To characterize themore » nature and occurrences of the identified grand minima and maxima in our simulations, we used the waiting time distribution analyses, which reflect whether the underlying distribution arises from a random or a memory-bearing process. The results show that, in the majority of the cases, the distributions of grand minima and maxima reveal that the nature of these events originates from memoryless processes. We also found that in our simulations the meridional circulation speed tends to be smaller during grand maximum, while it is faster during grand minimum periods. The radial differential rotation tends to be larger during grand maxima, while it is smaller during grand minima. The latitudinal differential rotation, on the other hand, is found to be larger during grand minima.« less
The Sun's Meridional Circulation - not so Deep
NASA Astrophysics Data System (ADS)
Hathaway, David H.
2011-05-01
The Sun's global meridional circulation is evident as a slow poleward flow at its surface. This flow is observed to carry magnetic elements poleward - producing the Sun's polar magnetic fields as a key part of the 11-year sunspot cycle. Flux Transport Dynamo models for the sunspot cycle are predicated on the belief that this surface flow is part of a circulation which sinks inward at the poles and returns to the equator in the bottom half of the convection zone - at depths between 100 and 200 Mm. Here I use the advection of the supergranule cells by the meridional flow to map the flow velocity in latitude and depth. My measurements show that the equatorward return flow begins at a depth of only 35 Mm - the base of the Sun's surface shear layer. This is the first clear (10 sigma) detection of the meridional return flow. While the shallow depth of the return flow indicates a false foundation for Flux Transport Dynamo models it helps to explain the different meridional flow rates seen for different features and provides a mechanism for selecting the characteristic size of supergranules.
NASA Astrophysics Data System (ADS)
Gaur, Vinod K.
The article begins with a reference to the first rational approaches to explaining the earth's magnetic field notably Elsasser's application of magneto-hydrodynamics, followed by brief outlines of the characteristics of planetary magnetic fields and of the potentially insightful homopolar dynamo in illuminating the basic issues: theoretical requirements of asymmetry and finite conductivity in sustaining the dynamo process. It concludes with sections on Dynamo modeling and, in particular, the Geo-dynamo, but not before some of the evocative physical processes mediated by the Lorentz force and the behaviour of a flux tube embedded in a perfectly conducting fluid, using Alfvén theorem, are explained, as well as the traditional intermediate approaches to investigating dynamo processes using the more tractable Kinematic models.
A long-lived lunar core dynamo.
Shea, Erin K; Weiss, Benjamin P; Cassata, William S; Shuster, David L; Tikoo, Sonia M; Gattacceca, Jérôme; Grove, Timothy L; Fuller, Michael D
2012-01-27
Paleomagnetic measurements indicate that a core dynamo probably existed on the Moon 4.2 billion years ago. However, the subsequent history of the lunar core dynamo is unknown. Here we report paleomagnetic, petrologic, and (40)Ar/(39)Ar thermochronometry measurements on the 3.7-billion-year-old mare basalt sample 10020. This sample contains a high-coercivity magnetization acquired in a stable field of at least ~12 microteslas. These data extend the known lifetime of the lunar dynamo by 500 million years. Such a long-lived lunar dynamo probably required a power source other than thermochemical convection from secular cooling of the lunar interior. The inferred strong intensity of the lunar paleofield presents a challenge to current dynamo theory.
A potential thermal dynamo and its astrophysical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingam, Manasvi, E-mail: mlingam@princeton.edu; Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544; Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu
2016-05-15
It is shown that thermal turbulence, not unlike the standard kinetic and magnetic turbulence, can be an effective driver of a mean-field dynamo. In simple models, such as hydrodynamics and magnetohydrodynamics, both vorticity and induction equations can have strong thermal drives that resemble the α and γ effects in conventional dynamo theories; the thermal drives are likely to be dominant in systems that are endowed with subsonic, low-β turbulence. A pure thermal dynamo is quite different from the conventional dynamo in which the same kinetic/magnetic mix in the ambient turbulence can yield a different ratio of macroscopic magnetic/vortical fields. Themore » possible implications of the similarities and differences between the thermal and non-thermal dynamos are discussed. The thermal dynamo is shown to be highly important in the stellar and planetary context, and yields results broadly consistent with other theoretical and experimental approaches.« less
Dynamo onset as a first-order transition: lessons from a shell model for magnetohydrodynamics.
Sahoo, Ganapati; Mitra, Dhrubaditya; Pandit, Rahul
2010-03-01
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (PrM-1,ReM) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.
Convection and magnetic field generation in the interior of planets (August Love Medal Lecture)
NASA Astrophysics Data System (ADS)
Christensen, U. R.
2009-04-01
Thermal convection driven by internal energy plays a role of paramount importance in planetary bodies. Its numerical modeling has been an essential tool for understanding how the internal engine of a planet works. Solid state convection in the silicate or icy mantles is the cause of endogenic tectonic activity, volcanism and, in the case of Earth, of plate motion. It also regulates the energy budget of the entire planet, including that of its core, and controls the presence or absence of a dynamo. The complex rheology of solid minerals, effects of phase transitions, and chemical heterogeneity are important issues in mantle convection. Examples discussed here are the convection pattern in Mars and the complex morphology of subducted slabs that are observed by seismic tomography in the Earth's mantle. Internally driven convection in the deep gas envelopes of the giant planets is possibly the cause for the strong jet streams at the surfaces that give rise to their banded appearance. Modeling of the magnetohydrodynamic flow in the conducting liquid core of the Earth has been remarkably successful in reproducing the primary properties of the geomagnetic field. As an examplefor attempts to explain also secondary properties, I will discuss dynamo models that account for the thermal coupling to the mantle. The understanding of the somewhat enigmatic magnetic fields of some other planets is less advanced. Here I will show that dynamos that operate below a stable conducting layer in the upper part of the planetary core can explain the unusual magnetic field properties of Mercury and Saturn. The question what determines the strength of a dynamo-generated magnetic field has been a matter of debate. From a large set of numerical dynamo simulations that cover a fair range of control parameters, we find a rule that relates magnetic field strength to the part of the energy flux that is thermodynamically available to be transformed into other forms of energy. This rules predicts correctly not only the magnetic field strength of planets with sufficiently simple dynamos (Earth and Jupiter), but also that of rapidly rotating stars.
NASA Astrophysics Data System (ADS)
Christensen, Ulrich R.; Wicht, Johannes
2008-07-01
A substantial part of Mercury's iron core may be stably stratified because the temperature gradient is subadiabatic. A dynamo would operate only in a deep sublayer. We show that such a situation arises for a wide range of values for the heat flow and the sulfur content in the core. In Saturn the upper part of the metallic hydrogen core could be stably stratified because of helium depletion. The magnetic field is unusually weak in the case of Mercury and unusually axisymmetric at Saturn. We study numerical dynamo models in rotating spherical shells with a stable outer region. The control parameters are chosen such that the magnetic Reynolds number is in the range of expected Mercury values. Because of its slow rotation, Mercury may be in a regime where the dipole contribution to the internal magnetic field is weak. Most of our models are in this regime, where the dynamo field consists mainly of rapidly varying higher multipole components. They can hardly pass the stable conducting layer because of the skin effect. The weak low-degree components vary more slowly and control the structure of the field outside the core, whose strength matches the observed field strength at Mercury. In some models the axial dipole dominates at the planet's surface and in others the axial quadrupole is dominant. Differential rotation in the stable layer, representing a thermal wind, is important for attenuating non-axisymmetric components in the exterior field. In some models that we relate to Saturn the axial dipole is intrinsically strong inside the dynamo. The surface field strength is much larger than in the other cases, but the stable layer eliminates non-axisymmetric modes. The Messenger and Bepi Colombo space missions can test our predictions that Mercury's field is large-scaled, fairly axisymmetric, and shows no secular variations on the decadal time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiefer, René; Schad, Ariane; Roth, Markus
2017-09-10
Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies.more » If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.« less
NASA Astrophysics Data System (ADS)
Kiefer, René; Schad, Ariane; Roth, Markus
2017-09-01
Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.
Persistence and origin of the lunar core dynamo
Suavet, Clément; Weiss, Benjamin P.; Cassata, William S.; Shuster, David L.; Gattacceca, Jérôme; Chan, Lindsey; Garrick-Bethell, Ian; Head, James W.; Grove, Timothy L.; Fuller, Michael D.
2013-01-01
The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ∼13 μT. These data extend the known lifetime of the lunar dynamo by ∼160 My and indicate that the field was likely continuously active until well after the final large basin-forming impact. This likely excludes impact-driven changes in rotation rate as the source of the dynamo at this time in lunar history. Rather, our results require a persistent power source like precession of the lunar mantle or a compositional convection dynamo. PMID:23650386
Transition from large-scale to small-scale dynamo.
Ponty, Y; Plunian, F
2011-04-15
The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The dynamo mechanism is governed by a generalized α effect, which includes both the usual α effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized α effect scales as O(Rm(-1)), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.
Dynamo transition in low-dimensional models.
Verma, Mahendra K; Lessinnes, Thomas; Carati, Daniele; Sarris, Ioannis; Kumar, Krishna; Singh, Meenakshi
2008-09-01
Two low-dimensional magnetohydrodynamic models containing three velocity and three magnetic modes are described. One of them (nonhelical model) has zero kinetic and current helicity, while the other model (helical) has nonzero kinetic and current helicity. The velocity modes are forced in both these models. These low-dimensional models exhibit a dynamo transition at a critical forcing amplitude that depends on the Prandtl number. In the nonhelical model, dynamo exists only for magnetic Prandtl number beyond 1, while the helical model exhibits dynamo for all magnetic Prandtl number. Although the model is far from reproducing all the possible features of dynamo mechanisms, its simplicity allows a very detailed study and the observed dynamo transition is shown to bear similarities with recent numerical and experimental results.
Persistence and origin of the lunar core dynamo.
Suavet, Clément; Weiss, Benjamin P; Cassata, William S; Shuster, David L; Gattacceca, Jérôme; Chan, Lindsey; Garrick-Bethell, Ian; Head, James W; Grove, Timothy L; Fuller, Michael D
2013-05-21
The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ~13 μT. These data extend the known lifetime of the lunar dynamo by ~160 My and indicate that the field was likely continuously active until well after the final large basin-forming impact. This likely excludes impact-driven changes in rotation rate as the source of the dynamo at this time in lunar history. Rather, our results require a persistent power source like precession of the lunar mantle or a compositional convection dynamo.
Theories for the origin of lunar magnetism
NASA Technical Reports Server (NTRS)
Daily, W. D.; Dyal, P.
1979-01-01
This paper reviews the major theories which have been proposed to explain the remanent magnetism found in the lunar crust. A total of nine different mechanisms for lunar magnetism are discussed and evaluated in light of the theoretical and experimental constraints pertinent to lunar magnetism. It is concluded that none of these theories in their present state of development satisfy all the known constraints. However, the theories which agree best with the present understanding of the moon are meteorite impact magnetization, thermoelectric dynamo field generation, and an early solar wind field.
NASA Astrophysics Data System (ADS)
Girish, T. E.; Eapen, P. E.
2008-12-01
From a study of thunder/lightning observations in Trivandrum (near dip equator) for selected years between 1853 and 2005, we could find an inverse relation of the same with sunspot activity and associations with enhancements in diurnal range of local geomagnetic declination. The results seem to suggest lightning-associated modulation of E-region dynamo currents in the equatorial ionosphere and the thunderstorm activity near dip equator probably acts as a moderator to regulate electric potential gradient changes in the global electric circuit due to solar activity changes.
Top-down freezing in a Fe-FeS core and Ganymede's present-day magnetic field
NASA Astrophysics Data System (ADS)
Rückriemen, Tina; Breuer, Doris; Spohn, Tilman
2018-06-01
Ganymede's core most likely possesses an active dynamo today, which produces a magnetic field at the surface of ∼ 719 nT. Thermochemical convection triggered by cooling of the core is a feasible power source for the dynamo. Experiments of different research groups indicate low pressure gradients of the melting temperatures for Fe-FeS core alloys at pressures prevailing in Ganymede's core ( < 10 GPa). This may entail that the core crystallizes from the top instead of from the bottom as is expected for Earth's core. Depending on the core sulfur concentration being more iron- or more sulfur-rich than the eutectic concentration either snowing iron crystals or a solid FeS layer can form at the top of the core. We investigate whether these two core crystallization scenarios are capable of explaining Ganymede's present magnetic activity. To do so, we set up a parametrized one-dimensional thermal evolution model. We explore a wide range of parameters by running a large set of Monte Carlo simulations. Both freezing scenarios can explain Ganymede's present-day magnetic field. Dynamos of iron snow models are rather young ( < 1 Gyr), whereas dynamos below the FeS layer can be both young and much older ( ∼ 3.8 Gyr). Successful models preferably contain less radiogenic heat sources in the mantle than the chondritic abundance and show a correlation between the reference viscosity in the mantle and the initial core sulfur concentration.
NASA Astrophysics Data System (ADS)
Hood, L. L.; Spudis, P. D.
2016-11-01
Approximate maps of the lunar crustal magnetic field at low altitudes in the vicinities of the three Imbrian-aged impact basins, Orientale, Schrödinger, and Imbrium, have been constructed using Lunar Prospector and Kaguya orbital magnetometer data. Detectable anomalies are confirmed to be present well within the rims of Imbrium and Schrödinger. Anomalies in Schrödinger are asymmetrically distributed about the basin center, while a single isolated anomaly is most clearly detected within Imbrium northwest of Timocharis crater. The subsurface within these basins was heated to high temperatures at the time of impact and required long time periods (up to 1 Myr) to cool below the Curie temperature for metallic iron remanence carriers (1043 K). Therefore, consistent with laboratory analyses of returned samples, a steady, long-lived magnetizing field, i.e., a former core dynamo, is inferred to have existed when these basins formed. The asymmetrical distribution within Schrödinger suggests partial demagnetization by later volcanic activity when the dynamo field was much weaker or nonexistent. However, it remains true that anomalies within Imbrian-aged basins are much weaker than those within most Nectarian-aged basins. The virtual absence of anomalies within Orientale where impact melt rocks (the Maunder Formation) are exposed at the surface is difficult to explain unless the dynamo field was much weaker during the Imbrian period.
Castaño-Díez, Daniel; Kudryashev, Mikhail; Stahlberg, Henning
2017-02-01
Cryo electron tomography allows macromolecular complexes within vitrified, intact, thin cells or sections thereof to be visualized, and structural analysis to be performed in situ by averaging over multiple copies of the same molecules. Image processing for subtomogram averaging is specific and cumbersome, due to the large amount of data and its three dimensional nature and anisotropic resolution. Here, we streamline data processing for subtomogram averaging by introducing an archiving system, Dynamo Catalogue. This system manages tomographic data from multiple tomograms and allows visual feedback during all processing steps, including particle picking, extraction, alignment and classification. The file structure of a processing project file structure includes logfiles of performed operations, and can be backed up and shared between users. Command line commands, database queries and a set of GUIs give the user versatile control over the process. Here, we introduce a set of geometric tools that streamline particle picking from simple (filaments, spheres, tubes, vesicles) and complex geometries (arbitrary 2D surfaces, rare instances on proteins with geometric restrictions, and 2D and 3D crystals). Advanced functionality, such as manual alignment and subboxing, is useful when initial templates are generated for alignment and for project customization. Dynamo Catalogue is part of the open source package Dynamo and includes tools to ensure format compatibility with the subtomogram averaging functionalities of other packages, such as Jsubtomo, PyTom, PEET, EMAN2, XMIPP and Relion. Copyright © 2016. Published by Elsevier Inc.
Modeling of the coupled magnetospheric and neutral wind dynamos
NASA Technical Reports Server (NTRS)
Thayer, Jeffrey P.
1994-01-01
This report summarizes the progress made in the first year of NASA Grant No. NAGW-3508 entitled 'Modeling of the Coupled Magnetospheric and Neutral Wind Dynamos.' The approach taken has been to impose magnetospheric boundary conditions with either pure voltage or current characteristics and solve the neutral wind dynamo equation under these conditions. The imposed boundary conditions determine whether the neutral wind dynamo will contribute to the high-latitude current system or the electric potential. The semi-annual technical report, dated December 15, 1993, provides further detail describing the scientific and numerical approach of the project. The numerical development has progressed and the dynamo solution for the case when the magnetosphere acts as a voltage source has been evaluated completely using spectral techniques. The simulation provides the field-aligned current distribution at high latitudes due to the neutral wind dynamo. A number of geophysical conditions can be simulated to evaluate the importance of the neutral wind dynamo contribution to the field-aligned current system. On average, field-aligned currents generated by the neutral wind dynamo contributed as much as 30 percent to the large-scale field-aligned current system driven by the magnetosphere. A term analysis of the high-latitude neutral wind dynamo equation describing the field aligned current distribution has also been developed to illustrate the important contributing factors involved in the process. The case describing the neutral dynamo response for a magnetosphere acting as a pure current generator requires the existing spectral code to be extended to a pseudo-spectral method and is currently under development.
Generation of a Large-scale Magnetic Field in a Convective Full-sphere Cross-helicity Dynamo
NASA Astrophysics Data System (ADS)
Pipin, V. V.; Yokoi, N.
2018-05-01
We study the effects of the cross-helicity in the full-sphere large-scale mean-field dynamo models of a 0.3 M ⊙ star rotating with a period of 10 days. In exploring several dynamo scenarios that stem from magnetic field generation by the cross-helicity effect, we found that the cross-helicity provides the natural generation mechanisms for the large-scale scale axisymmetric and nonaxisymmetric magnetic field. Therefore, the rotating stars with convective envelopes can produce a large-scale magnetic field generated solely due to the turbulent cross-helicity effect (we call it γ 2-dynamo). Using mean-field models we compare the properties of the large-scale magnetic field organization that stems from dynamo mechanisms based on the kinetic helicity (associated with the α 2 dynamos) and cross-helicity. For the fully convective stars, both generation mechanisms can maintain large-scale dynamos even for the solid body rotation law inside the star. The nonaxisymmetric magnetic configurations become preferable when the cross-helicity and the α-effect operate independently of each other. This corresponds to situations with purely γ 2 or α 2 dynamos. The combination of these scenarios, i.e., the γ 2 α 2 dynamo, can generate preferably axisymmetric, dipole-like magnetic fields at strengths of several kGs. Thus, we found a new dynamo scenario that is able to generate an axisymmetric magnetic field even in the case of a solid body rotation of the star. We discuss the possible applications of our findings to stellar observations.
On the stellar rotation-activity connection
NASA Technical Reports Server (NTRS)
Rosner, R.
1983-01-01
The relationship between rotation rates and surface activity in late-type dwarf stars is explored in a survey of recent theoretical and observational studies. Current theoretical models of stellar-magnetic-field production and coronal activity are examined, including linear kinematic dynamo theory, nonlinear dynamos using approximations, and full numerical simulations of the MHD equations; and some typical results are presented graphically. The limitations of the modeling procedures and the constraints imposed by the physics are indicated. The statistical techniques used in establishing correlations between various observational parameters are analyzed critically, and the methods developed for quasar luminosity functions by Avni et al. (1980) are used to evaluate the effects of upper detection bounds, incomplete samples, and missing data for the case of rotation and X-ray flux data.
Simulations of plasma dynamo in cylindrical and spherical geometries
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Forest, Cary; Schnack, Dalton; Ebrahimi, Fatima
2010-11-01
We have performed the numerical investigation of plasma flow and possibility of dynamo effect in Madison Plasma Couette Experiment (MPCX) and Madison Plasma Dynamo Experiment (MPDX), which are being installed at the University of Wisconsin- Madison. Using the extended MHD code, NIMROD, we have studied several types of plasma flows appropriate for dynamo excitation. Calculations are done for isothermal compressible plasma model including two-fluid effects (Hall term), which is beyond the standard incompressible MHD picture. It is found that for magnetic Reynolds numbers exceeding the critical one the counter-rotating Von Karman flow (in cylinder) and Dudley- James flow (in sphere) result in self-generation of magnetic field. Depending on geometry and plasma parameters this field can either saturate at certain amplitude corresponding to a new stable equilibrium (laminar dynamo) or lead to turbulent dynamo. It is shown that plasma compressibility results in increase of the critical magnetic Reynolds number while two- fluid effects change the level of saturated dynamo field. The work is supported by NSF.
Herault, J; Rincon, F; Cossu, C; Lesur, G; Ogilvie, G I; Longaretti, P-Y
2011-09-01
The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and nonaxisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large-scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understanding the transitional and statistical properties of subcritical magnetorotational turbulence.
A study of the kinematic dynamo equation with time-dependent coefficients
NASA Technical Reports Server (NTRS)
Ko, Chung-Ming
1990-01-01
During an active star formation epoch the interstellar medium of a galaxy is in a hyperactive state, and the average turbulent velocity is higher than in the long periods between star formation epochs. The galactic magnetic field generated by dynamo action depends strongly on the turbulent velocity, so that generation of magnetic field should vary with star formation activity. This paper is a preliminary study of the kinematic dynamo equation with time-dependent coefficients simulating the time dependence of the star formation activities. Ko and Parker argued in a simple model that the thickness of the dynamo region is the most sensitive dynamo parameter. The present work shows that the effect of inflating the galactic disk suddenly is to transform a stationary magnetic field into a growing field while keeping the profile more or less intact. Plane wave solutions for a dynamo with power-law time-dependent parameters show that the field may decay first and then grow, and vice versa, which is quite different from a constant parameter dynamo.
Limited role of spectra in dynamo theory: coherent versus random dynamos.
Tobias, Steven M; Cattaneo, Fausto
2008-09-19
We discuss the importance of phase information and coherence times in determining the dynamo properties of turbulent flows. We compare the kinematic dynamo properties of three flows with the same energy spectrum. The first flow is dominated by coherent structures with nontrivial phase information and long eddy coherence times, the second has random phases and long-coherence time, the third has nontrivial phase information, but short coherence time. We demonstrate that the first flow is the most efficient kinematic dynamo, owing to the presence of sustained stretching and constructive folding. We argue that these results place limitations on the possible inferences of the dynamo properties of flows from the use of spectra alone, and that the role of coherent structures must always be accounted for.
Bistability and chaos in the Taylor-Green dynamo.
Yadav, Rakesh K; Verma, Mahendra K; Wahi, Pankaj
2012-03-01
Using direct numerical simulations, we study dynamo action under Taylor-Green forcing for a magnetic Prandtl number of 0.5. We observe bistability with weak- and strong-magnetic-field branches. Both the dynamo branches undergo subcritical dynamo transition. We also observe a host of dynamo states including constant, periodic, quasiperiodic, and chaotic magnetic fields. One of the chaotic states originates through a quasiperiodic route with phase locking, while the other chaotic attractor appears to follow the Newhouse-Ruelle-Takens route to chaos. We also observe intermittent transitions between quasiperiodic and chaotic states for a given Taylor-Green forcing.
Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10.
Ness, N F; Behannon, K W; Lepping, R P; Whang, Y C; Schatten, K H
1974-07-12
Results are presented from a preliminary analysis of data obtained near Mercury on 29 March 1974 by the NASA-GSFC magnetic field experiment on Mariner 10. Rather unexpectedly, a very well-developed, detached bow shock wave, which develops as the super-Alfvénic solar wind interacts with the planet, has been observed. In addition, a magnetosphere-like region, with maximum field strength of 98 gammas at closest approach (704 kilometers altitude), has been observed, contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow is global in size, but the origin of the enhanced magnetic field has not yet been uniquely established. The field may be intrinsic to the planet and distorted by interaction with the solar wind. It may also be associated with a complex induction process whereby the planetary interior-atmosphere-ionosphere interacts with the solar wind flow to generate the observed field by a dynamo action. The complete body of data favors the preliminary conclusion that Mercury has an intrinsic magnetic field. If this is correct, it represents a major scientific discovery in planetary magnetism and will have considerable impact on studies of the origin of the solar system.
Sub- and Quasi-Centurial Cycles in Solar and Geomagnetic Activity Data Series
NASA Astrophysics Data System (ADS)
Komitov, B.; Sello, S.; Duchlev, P.; Dechev, M.; Penev, K.; Koleva, K.
2016-07-01
The subject of this paper is the existence and stability of solar cycles with durations in the range of 20-250 years. Five types of data series are used: 1) the Zurich series (1749-2009 AD), the mean annual International sunspot number Ri, 2) the Group sunspot number series Rh (1610-1995 AD), 3) the simulated extended sunspot number from Extended time series of Solar Activity Indices (ESAI) (1090-2002 AD), 4) the simulated extended geomagnetic aa-index from ESAI (1099-2002 AD), 5) the Meudon filament series (1919-1991 AD). Two principally independent methods of time series analysis are used: the T-R periodogram analysis (both in standard and ``scanning window'' regimes) and the wavelet-analysis. The obtained results are very similar. A strong cycle with a mean duration of 55-60 years is found to exist in all series. On the other hand, a strong and stable quasi 110-120 years and ˜200-year cycles are obtained in all of these series except in the Ri one. The high importance of the long term solar activity dynamics for the aims of solar dynamo modeling and predictions is especially noted.
The Evolution of Active Regions
NASA Astrophysics Data System (ADS)
Green, Lucie
2016-10-01
The solar corona is a highly dynamic environment which exhibits the largest releases of energy in the Solar System in the form of solar flares and coronal mass ejections. This activity predominantly originates from active regions, which store and release free magnetic energy and dominate the magnetic face of the Sun. Active regions can be long-lived features, being affected by the Sun's convective flows, differential rotation and meridional flows. The Sun's global coronal field can be seen as the superposed growth and subsequent diffusion of all previously formed active regions. This talk will look at active regions as an observable product of the solar dynamo and will discuss the physical processes that are at play which lead to the storage and release of free magnetic energy. What happens to flux that emerges into the corona so that it goes down an evolutionary path that leads to dynamic activity? And how does this activity vary with active region age? When an active region reaches the end of its lifetime, his much of the magnetic flux is recycled back into subsequent solar cycles? The current status of observations and modelling will be reviewed with a look to the future and fundamental questions that are still be be answered.
Predictability and Coupled Dynamics of MJO During DYNAMO
2013-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predictability and Coupled Dynamics of MJO During DYNAMO ... DYNAMO time period. APPROACH We are working as a team to study MJO dynamics and predictability using several models as team members of the ONR DRI...associated with the DYNAMO experiment. This is a fundamentally collaborative proposal that involves close collaboration with Dr. Hyodae Seo of the
A study of the required Rayleigh number to sustain dynamo with various inner core radius
NASA Astrophysics Data System (ADS)
Nishida, Y.; Katoh, Y.; Matsui, H.; Kumamoto, A.
2017-12-01
It is widely accepted that the geomagnetic field is sustained by thermal and compositional driven convections of a liquid iron alloy in the outer core. The generation process of the geomagnetic field has been studied by a number of MHD dynamo simulations. Recent studies of the ratio of the Earth's core evolution suggest that the inner solid core radius ri to the outer liquid core radius ro changed from ri/ro = 0 to 0.35 during the last one billion years. There are some studies of dynamo in the early Earth with smaller inner core than the present. Heimpel et al. (2005) revealed the Rayleigh number Ra of the onset of dynamo process as a function of ri/ro from simulation, while paleomagnetic observation shows that the geomagnetic field has been sustained for 3.5 billion years. While Heimpel and Evans (2013) studied dynamo processes taking into account the thermal history of the Earth's interior, there were few cases corresponding to the early Earth. Driscoll (2016) performed a series of dynamo based on a thermal evolution model. Despite a number of dynamo simulations, dynamo process occurring in the interior of the early Earth has not been fully understood because the magnetic Prandtl numbers in these simulations are much larger than that for the actual outer core.In the present study, we performed thermally driven dynamo simulations with different aspect ratio ri/ro = 0.15, 0.25 and 0.35 to evaluate the critical Ra for the thermal convection and required Ra to maintain the dynamo. For this purpose, we performed simulations with various Ra and fixed the other control parameters such as the Ekman, Prandtl, and magnetic Prandtl numbers. For the initial condition and boundary conditions, we followed the dynamo benchmark case 1 by Christensen et al. (2001). The results show that the critical Ra increases with the smaller aspect ratio ri/ro. It is confirmed that larger amplitude of buoyancy is required in the smaller inner core to maintain dynamo.
Castaño-Díez, Daniel; Kudryashev, Mikhail; Arheit, Marcel; Stahlberg, Henning
2012-05-01
Dynamo is a new software package for subtomogram averaging of cryo Electron Tomography (cryo-ET) data with three main goals: first, Dynamo allows user-transparent adaptation to a variety of high-performance computing platforms such as GPUs or CPU clusters. Second, Dynamo implements user-friendliness through GUI interfaces and scripting resources. Third, Dynamo offers user-flexibility through a plugin API. Besides the alignment and averaging procedures, Dynamo includes native tools for visualization and analysis of results and data, as well as support for third party visualization software, such as Chimera UCSF or EMAN2. As a demonstration of these functionalities, we studied bacterial flagellar motors and showed automatically detected classes with absent and present C-rings. Subtomogram averaging is a common task in current cryo-ET pipelines, which requires extensive computational resources and follows a well-established workflow. However, due to the data diversity, many existing packages offer slight variations of the same algorithm to improve results. One of the main purposes behind Dynamo is to provide explicit tools to allow the user the insertion of custom designed procedures - or plugins - to replace or complement the native algorithms in the different steps of the processing pipeline for subtomogram averaging without the burden of handling parallelization. Custom scripts that implement new approaches devised by the user are integrated into the Dynamo data management system, so that they can be controlled by the GUI or the scripting capacities. Dynamo executables do not require licenses for third party commercial software. Sources, executables and documentation are freely distributed on http://www.dynamo-em.org. Copyright © 2012 Elsevier Inc. All rights reserved.
Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.
Guervilly, Céline; Brummell, Nicholas H
2012-10-01
We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.
Magnetic Helicity and Planetary Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2012-01-01
A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter
NASA Astrophysics Data System (ADS)
Weiss, Benjamin P.; Tikoo, Sonia M.
2014-12-01
The inductive generation of magnetic fields in fluid planetary interiors is known as the dynamo process. Although the Moon today has no global magnetic field, it has been known since the Apollo era that the lunar rocks and crust are magnetized. Until recently, it was unclear whether this magnetization was the product of a core dynamo or fields generated externally to the Moon. New laboratory and spacecraft measurements strongly indicate that much of this magnetization is the product of an ancient core dynamo. The dynamo field persisted from at least 4.25 to 3.56 billion years ago (Ga), with an intensity reaching that of the present Earth. The field then declined by at least an order of magnitude by ∼3.3 Ga. The mechanisms for sustaining such an intense and long-lived dynamo are uncertain but may include mechanical stirring by the mantle and core crystallization.
Axial dipolar dynamo action in the Taylor-Green vortex.
Krstulovic, Giorgio; Thorner, Gentien; Vest, Julien-Piera; Fauve, Stephan; Brachet, Marc
2011-12-01
We present a numerical study of the magnetic field generated by the Taylor-Green vortex. We show that periodic boundary conditions can be used to mimic realistic boundary conditions by prescribing the symmetries of the velocity and magnetic fields. This gives insight into some problems of central interest for dynamos: the possible effect of velocity fluctuations on the dynamo threshold, and the role of boundary conditions on the threshold and on the geometry of the magnetic field generated by dynamo action. In particular, we show that an axial dipolar dynamo similar to the one observed in a recent experiment can be obtained with an appropriate choice of the symmetries of the magnetic field. The nonlinear saturation is studied and a simple model explaining the magnetic Prandtl number dependence of the super- and subcritical nature of the dynamo transition is given.
Magnetized Turbulent Dynamo in Protogalaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonid Malyshkin; Russell M. Kulsrud
The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperaturemore » is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.« less
Statistical properties of solar Hα flare activity
NASA Astrophysics Data System (ADS)
Deng, Linhua; Zhang, Xiaojuan; An, Jianmei; Cai, Yunfang
2017-12-01
Magnetic field structures on the solar atmosphere are not symmetric distribution in the northern and southern hemispheres, which is an important aspect of quasi-cyclical evolution of magnetic activity indicators that are related to solar dynamo theories. Three standard analysis techniques are applied to analyze the hemispheric coupling (north-south asymmetry and phase asynchrony) of monthly averaged values of solar Hα flare activity over the past 49 years (from 1966 January to 2014 December). The prominent results are as follows: (1) from a global point of view, solar Hα flare activity on both hemispheres are strongly correlated with each other, but the northern hemisphere precedes the southern one with a phase shift of 7 months; (2) the long-range persistence indeed exists in solar Hα flare activity, but the dynamical complexities in the two hemispheres are not identical; (3) the prominent periodicities of Hα flare activity are 17 years full-disk activity cycle and 11 years Schwabe solar cycle, but the short- and mid-term periodicities cannot determined by monthly time series; (4) by comparing the non-parametric rescaling behavior on a point-by-point basis, the hemispheric asynchrony of solar Hα flare activity are estimated to be ranging from several months to tens of months with an average value of 8.7 months. The analysis results could promote our knowledge on the long-range persistence, the quasi-periodic variation, and the hemispheric asynchrony of solar Hα flare activity on both hemispheres, and possibly provide valuable information for the hemispheric interrelation of solar magnetic activity.
NASA Astrophysics Data System (ADS)
Huang, C.
2017-12-01
We will present two distinct phenomena related to the postsunset vertical plasma drift and equatorial spread F (ESF) observed by the Communication/Navigation Outage Forecasting System satellite over six years. The first phenomenon is the behavior of the prereversal enhancement (PRE) of the vertical plasma drift during geomagnetic storms. Statistically, storm-time disturbance dynamo electric fields cause the PRE to decrease from 30 to 0 m/s when Dst changes from -60 to -100 nT, but the PRE does not show obvious variations when Dst varies from 0 to -60 nT. The observations show that the storm activities affect the evening equatorial ionosphere only for Dst < -60 nT and that the dynamo electric field becomes dominant during the storm recovery phase. The second phenomenon is the relationship between the PRE and the generation of ESF. It is found that the occurrence of large-amplitude ESF irregularities is well correlated with the PRE and that the occurrence of small-amplitude ESF irregularities does not show a clear pattern at low solar activity but is anti-correlated with large-amplitude irregularities and the PRE at moderate solar activity. That is, the months and longitudes with high occurrence probability of large-amplitude irregularities are exactly those with low occurrence probability of small-amplitude irregularities, and vice versa. The generation of large-amplitude ESF irregularities is controlled by the PRE, and the generation of small-amplitude ESF irregularities may be caused by gravity waves and other disturbances, rather than by the PRE.
Prandtl-number Effects in High-Rayleigh-number Spherical Convection
NASA Astrophysics Data System (ADS)
Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.
2018-03-01
Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.
Predictability and Coupled Dynamics of MJO During DYNAMO
2013-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predictability and Coupled Dynamics of MJO During DYNAMO ...Model (LIM) for MJO predictions and apply it in retrospective cross-validated forecast mode to the DYNAMO time period. APPROACH We are working as...a team to study MJO dynamics and predictability using several models as team members of the ONR DRI associated with the DYNAMO experiment. This is a
NASA Astrophysics Data System (ADS)
Onohara, Amelia Naomi; Staciarini Batista, Inez; Prado Batista, Paulo
2018-03-01
The main purpose of this study is to investigate the four-peak structure observed in the low-latitude equatorial ionosphere by the FORMOSAT/COSMIC satellites. Longitudinal distributions of NmF2 (the density of the F layer peak) and hmF2 (ionospheric F2-layer peak height) averages, obtained around September equinox periods from 2007 to 2015, were submitted to a bi-spectral Fourier analysis in order to obtain the amplitudes and phases of the main waves. The four-peak structure in the equatorial and low-latitude ionosphere was present in both low and high solar activity periods. This kind of structure possibly has tropospheric origins related to the tidal waves propagating from below that modulate the E-region dynamo, mainly the eastward non-migrating diurnal tide with wavenumber 3 (DE3, E
for eastward). This wave when combined with the migrating diurnal tide (DW1, W
for westward) presents a wavenumber-4 (wave-4) structure under a synoptic view. Electron densities observed during 2008 and 2013 September equinoxes revealed that the wave-4 structures became more prominent around or above the F-region altitude peak (˜ 300-350 km). The four-peak structure remains up to higher ionosphere altitudes (˜ 800 km). Spectral analysis showed DE3 and SPW4 (stationary planetary wave with wavenumber 4) signatures at these altitudes. We found that a combination of DE3 and SPW4 with migrating tides is able to reproduce the wave-4 pattern in most of the ionospheric parameters. For the first time a study using wave variations in ionospheric observations for different altitude intervals and solar cycle was done. The conclusion is that the wave-4 structure observed at high altitudes in ionosphere is related to effects of the E-region dynamo combined with transport effects in the F region.
A long-lived lunar dynamo driven by continuous mechanical stirring.
Dwyer, C A; Stevenson, D J; Nimmo, F
2011-11-09
Lunar rocks contain a record of an ancient magnetic field that seems to have persisted for more than 400 million years and which has been attributed to a lunar dynamo. Models of conventional dynamos driven by thermal or compositional convection have had difficulty reproducing the existence and apparently long duration of the lunar dynamo. Here we investigate an alternative mechanism of dynamo generation: continuous mechanical stirring arising from the differential motion, due to Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core beneath. We show that the fluid motions and the power required to drive a dynamo operating continuously for more than one billion years and generating a magnetic field that had an intensity of more than one microtesla 4.2 billion years ago are readily obtained by mechanical stirring. The magnetic field is predicted to decrease with time and to shut off naturally when the Moon recedes far enough from Earth that the dissipated power is insufficient to drive a dynamo; in our nominal model, this occurred at about 48 Earth radii (2.7 billion years ago). Thus, lunar palaeomagnetic measurements may be able to constrain the poorly known early orbital evolution of the Moon. This mechanism may also be applicable to dynamos in other bodies, such as large asteroids.
Magnetic dynamo action at low magnetic Prandtl numbers.
Malyshkin, Leonid M; Boldyrev, Stanislav
2010-11-19
Amplification of magnetic field due to kinematic turbulent dynamo action is studied in the regime of small magnetic Prandtl numbers. Such a regime is relevant for planets and stars interiors, as well as for liquid-metal laboratory experiments. A comprehensive analysis based on the Kazantsev-Kraichnan model is reported, which establishes the dynamo threshold and the dynamo growth rates for varying kinetic helicity of turbulent fluctuations. It is proposed that in contrast with the case of large magnetic Prandtl numbers, the kinematic dynamo action at small magnetic Prandtl numbers is significantly affected by kinetic helicity, and it can be made quite efficient with an appropriate choice of the helicity spectrum.
Generation of large-scale magnetic fields by small-scale dynamo in shear flows
NASA Astrophysics Data System (ADS)
Squire, Jonathan; Bhattacharjee, Amitava
2015-11-01
A new mechanism for turbulent mean-field dynamo is proposed, in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the ``shear-current'' effect. The dynamo is studied using a variety of computational and analytic techniques, both when the magnetic fluctuations arise self-consistently through the small-scale dynamo and in lower Reynolds number regimes. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects. This work was supported by a Procter Fellowship at Princeton University, and the US Department of Energy Grant DE-AC02-09-CH11466.
Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence
NASA Astrophysics Data System (ADS)
Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.
2013-12-01
Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).
2014-09-30
for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations R. Michael Hardesty CIRES/University of Colorado/NOAA 325...the RV-Revell during legs 2 & 3 of the DYNAMO experiement to help characterize vertical transport through the boundary layer and to build statistics...obtained during DYNAMO , and to investigate whether cold pools that emanate from convection organize the interplay between humidity and convection and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forest, Cary B.
The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamomore » Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.« less
Weiss, Benjamin P; Tikoo, Sonia M
2014-12-05
The inductive generation of magnetic fields in fluid planetary interiors is known as the dynamo process. Although the Moon today has no global magnetic field, it has been known since the Apollo era that the lunar rocks and crust are magnetized. Until recently, it was unclear whether this magnetization was the product of a core dynamo or fields generated externally to the Moon. New laboratory and spacecraft measurements strongly indicate that much of this magnetization is the product of an ancient core dynamo. The dynamo field persisted from at least 4.25 to 3.56 billion years ago (Ga), with an intensity reaching that of the present Earth. The field then declined by at least an order of magnitude by ∼3.3 Ga. The mechanisms for sustaining such an intense and long-lived dynamo are uncertain but may include mechanical stirring by the mantle and core crystallization. Copyright © 2014, American Association for the Advancement of Science.
Galerkin analysis of kinematic dynamos in the von Kármán geometry
NASA Astrophysics Data System (ADS)
Marié, L.; Normand, C.; Daviaud, F.
2006-01-01
We investigate dynamo action by solving the kinematic dynamo problem for velocity fields of the von Kármán type between two coaxial counter-rotating propellers in a cylinder. A Galerkin method is implemented that takes advantage of the symmetries of the flow and their subsequent influence on the nature of the magnetic field at the dynamo threshold. Distinct modes of instability have been identified that differ by their spatial and temporal behaviors. Our calculations give the result that a stationary and antisymmetric mode prevails at the dynamo threshold. We then present a quantitative analysis of the results based on the parametric study of four interaction coefficients obtained by reduction of our initially large eigenvalue problem. We propose these coefficients to measure the relative importance of the different mechanisms at play in the von Kármán kinematic dynamo.
The stability of nonlinear dynamos and the limited role of kinematic growth rates
NASA Astrophysics Data System (ADS)
Brandenburg, A.; Krause, F.; Meinel, R.; Moss, D.; Tuominen, I.
1989-04-01
The growth rate behavior of several kinematic dynamo models was investigated in the context of the observation that, as a rule, a magnetic field of a single symmetry dominates in the sun and other cosmic objects. For all dynamo models considered, it is shown that, as the dynamo numbers increase, the kinematic growth rates of fields of different parities are asymptotically equal, indicating that growth rates do not dominate the final state of the field. The possibility that the stability of different solutions of nonlinear dynamos determines the final state was then investigated. Dynamo models in spherical geometry were found in which both symmetric and antisymmetric solutions are stable. The kind of symmetry finally established depends in these cases on the initial conditions, i.e., on the history of the object. It is noted that the basic mechanism stabilizing or destabilizing different solutions is not well understood.
Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo.
Kaplan, E J; Brown, B P; Rahbarnia, K; Forest, C B
2012-06-01
This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field. The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a dynamo magnetic field.
Generation of dynamo magnetic fields in thin Keplerian disks
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1990-01-01
The combined action of nonuniform rotation and helical convection in protoplanetary disks, in the Galaxy, or in accretion disks surrounding black holes and other compact objects, enables an alpha-omega dynamo to generate a large-scale magnetic field. In this paper, the properties of such magnetic fields are investigated using a two-dimensional, partially numerical method. The structures of the lowest-order steady state and oscillatory modes are calculated for two kinds of external boundary conditions. A quadruple, steady state, highly localized mode is the most easily excited for low values of the dynamo number. The results indicate that, except under special conditions, disk dynamo modes tend to consist of relatively localized rings structures. For large values of the dynamo number, the magnetic field consists of a number of quasi-independent, spatially localized modes generated in various concentric rings filling the disk inward of a dynamo generation 'front'.
Effect of the Lorentz force on on-off dynamo intermittency.
Alexakis, Alexandros; Ponty, Yannick
2008-05-01
An investigation of the dynamo instability close to the threshold produced by an ABC forced flow is presented. We focus on the on-off intermittency behavior of the dynamo and the countereffect of the Lorentz force in the nonlinear stage of the dynamo. The Lorentz force drastically alters the statistics of the turbulent fluctuations of the flow and reduces their amplitude. As a result, much longer bursts (on phases) are observed than is expected based on the amplitude of the fluctuations in the kinematic regime of the dynamo. For large Reynolds numbers, the duration time of the on phase follows a power law distribution, while for smaller Reynolds numbers the Lorentz force completely kills the noise and the system transits from a chaotic state into a laminar time periodic flow. The behavior of the on-off intermittency as the Reynolds number is increased is also examined. The connections with dynamo experiments and theoretical modeling are discussed.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2012-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission
Bipolar Jets Launched by a Mean-field Accretion Disk Dynamo
NASA Astrophysics Data System (ADS)
Fendt, Christian; Gaßmann, Dennis
2018-03-01
By applying magnetohydrodynamic simulations, we investigate the launching of jets driven by a disk magnetic field generated by a mean-field disk dynamo. Extending our earlier studies, we explore the bipolar evolution of the disk α 2Ω-dynamo and the outflow. We confirm that a negative dynamo-α leads to a dipolar field geometry, whereas positive values generate quadrupolar fields. The latter remain mainly confined to the disk and cannot launch outflows. We investigate a parameter range for the dynamo-α ranging from a critical value below which field generation is negligible, {α }0,{crit}=-0.0005, to α 0 = ‑1.0. For weak | {α }0| ≤slant 0.07, two magnetic loop structures with opposite polarity may arise, which leads to reconnection and disturbs the field evolution and accretion-ejection process. For a strong dynamo-α, a higher poloidal magnetic energy is reached, roughly scaling with {E}mag}∼ | {α }0| , which also leads to higher accretion and ejection rates. The terminal jet speed is governed by the available magnetic energy and increases with the dynamo-α. We find jet velocities on the order of the inner disk Keplerian velocity. For a strong dynamo-α, oscillating dynamo modes may occur that can lead to a pulsed ejection. This is triggered by an oscillating mode in the toroidal field component. The oscillation period is comparable to the Keplerian timescale in the launching region, thus too short to be associated with the knots in observed jets. We find a hemispherically asymmetric evolution for the jet and counter-jet in the mass flux and field structure.
When did the lunar core dynamo cease?
NASA Astrophysics Data System (ADS)
Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.
2013-12-01
Remanent magnetization in the lunar crust and in returned Apollo samples has long suggested that the Moon formed a metallic core and an ancient dynamo magnetic field. Recent paleomagnetic investigations of lunar samples demonstrate that the Moon had a core dynamo which produced ~30-110 μT surface fields between at least 4.2 and 3.56 billion years ago (Ga). Tikoo et al. (1) recently found that the field declined to below several μT by 3.19 Ga. However, given that even values of a few μT are at the upper end of the intensities predicted by dynamo theory for this late in lunar history, it remains uncertain when the lunar dynamo actually ceased completely. Determining this requires a young lunar rock with extraordinarily high magnetic recording fidelity. With this goal, we are conducting a new analysis of young regolith breccia 15498. Although the breccia's age is currently uncertain, the presence of Apollo 15-type mare basalt clasts provides an upper limit constraint of ~3.3 Ga, while trapped Ar data suggest a lithification age of ~1.3 Ga. In stark contrast to the multidomain character of virtually all lunar crystalline rocks, the magnetic carriers in 15498 are on average pseudo-single domain to superparamagnetic, indicating that the sample should provide high-fidelity paleointensity records. A previous alternating field (AF) and thermal demagnetization study of 15498 by Gose et al. (2) observed that the sample carries stable remanent magnetization which persists to unblocking temperatures of at least 650°C. Using a modified Thellier technique, they reported a paleointensity of 2 μT. Although this value may have been influenced by spurious remanence acquired during pretreatment with AF demagnetization, our results confirm the presence of an extremely stable (blocked to coercivities >290 mT) magnetization in the glassy matrix. We also found that this magnetization is largely unidirectional across mutually oriented subsamples. The cooling timescale of this rock (~1 hour) likely precludes impact fields as a source of thermoremanent magnetization. Our paleointensity experiments and Ar/Ar thermochronometry, currently in progress, should permit us to determine whether this remanence was acquired from a late lunar core dynamo. (1) Tikoo et al. (2012) Proc. Lunar Planet Sci. Conf. 43rd, #2691. (2) Gose et al. (1973) The Moon (7), p. 196-201.
Searching for the fastest dynamo: laminar ABC flows.
Alexakis, Alexandros
2011-08-01
The growth rate of the dynamo instability as a function of the magnetic Reynolds number R(M) is investigated by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1/2-dimensional flow for which A=B and C=0 (and all permutations). (b) The second type of flow that results in a dynamo is the one for which A=B≃2C/5 (and permutations). (c) The most symmetric flow, A=B=C, is the third type of flow that results in a dynamo. (d) As R(M) is increased, the A=B=C flow stops being a dynamo and transitions from a local maximum to a third-order saddle point. (e) At larger R(M), the A=B=C flow reestablishes itself as a dynamo but remains a saddle point. (f) At the largest examined R(M), the growth rate of the 2 1/2-dimensional flows starts to decay, the A=B=C flow comes close to a local maximum again, and the flow A=B≃2C/5 (and permutations) results in the fastest dynamo with growth rate γ≃0.12 at the largest examined R(M). For the ABC flows that are driven at the second largest available length scale, it is found that (a) the 2 1/2-dimensional flows A=B,C=0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b) The most symmetric flow, A=B=C, is the second type of flow that results in a dynamo. It is, and it remains, a local maximum. (c) At larger R(M), the flow A=B≃2C/5 (and permutations) appears as the third type of flow that results in a dynamo. As R(M) is increased, it becomes the flow with the largest growth rate. The growth rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines appears equally important in determining the fastest dynamo flow.
Sunspot Time Series: Passive and Active Intervals
NASA Astrophysics Data System (ADS)
Zięba, S.; Nieckarz, Z.
2014-07-01
Solar activity slowly and irregularly decreases from the first spotless day (FSD) in the declining phase of the old sunspot cycle and systematically, but also in an irregular way, increases to the new cycle maximum after the last spotless day (LSD). The time interval between the first and the last spotless day can be called the passive interval (PI), while the time interval from the last spotless day to the first one after the new cycle maximum is the related active interval (AI). Minima of solar cycles are inside PIs, while maxima are inside AIs. In this article, we study the properties of passive and active intervals to determine the relation between them. We have found that some properties of PIs, and related AIs, differ significantly between two group of solar cycles; this has allowed us to classify Cycles 8 - 15 as passive cycles, and Cycles 17 - 23 as active ones. We conclude that the solar activity in the PI declining phase (a descending phase of the previous cycle) determines the strength of the approaching maximum in the case of active cycles, while the activity of the PI rising phase (a phase of the ongoing cycle early growth) determines the strength of passive cycles. This can have implications for solar dynamo models. Our approach indicates the important role of solar activity during the declining and the rising phases of the solar-cycle minimum.
Solar Changes and Climate Changes. (Invited)
NASA Astrophysics Data System (ADS)
Feynman, J.
2009-12-01
During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.
Nonlinear dynamo action in a precessing cylindrical container.
Nore, C; Léorat, J; Guermond, J-L; Luddens, F
2011-07-01
It is numerically demonstrated by means of a magnetohydrodynamics code that precession can trigger the dynamo effect in a cylindrical container. When the Reynolds number, based on the radius of the cylinder and its angular velocity, increases, the flow, which is initially centrosymmetric, loses its stability and bifurcates to a quasiperiodic motion. This unsteady and asymmetric flow is shown to be capable of sustaining dynamo action in the linear and nonlinear regimes. The magnetic field thus generated is unsteady and quadrupolar. These numerical evidences of dynamo action in a precessing cylindrical container may be useful for an experiment now planned at the Dresden sodium facility for dynamo and thermohydraulic studies in Germany.
MESSENGER: The Discovery Mission to Mercury
NASA Astrophysics Data System (ADS)
McNutt, R. L.; Solomon, S. C.; Gold, R. E.; Domingue, D. L.
2004-12-01
NASA's MErcury, Surface, Space ENvironment, GEochenistry, and Ranging (MESSENGER) spacecraft, launched on 3 August 2004, has begun its voyage to initiate a new era in our understanding of the terrestrial planets. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: What planetary formational processes led to Mercury's high metal/silicate ratio? What is the geological history of Mercury? What are the nature and origin of Mercury's magnetic field? What are the structure and state of Mercury's core? What are the radar-reflective materials at Mercury's poles? What are the important volatile species and their sources and sinks on and near Mercury? Planet formational hypotheses will be tested by measuring the surface abundances of major elements by X-ray and gamma-ray spectrometry. The geological history will be determined from high-resolution color imaging of the heavily cratered highlands, intercrater plains, and smooth plains. MESSENGER will provide detailed views of both the Caloris basin and its antipodal terrain. Topographic, mineralogical, and elemental abundance data will be used to seek evidence of volcanic features and units. Measurement of Mercury's magnetic field and its interaction with the solar wind will distinguish the intrinsic dipole and quadrupole components while separating these from the current systems driven by solar-wind-induced convection. The structure of the internal field will put constraints on dynamo models. Such models will also be constrained by measuring Mercury's libration to determine the extent of a fluid outer core. Both water ice and sulfur have been postulated as major constituents of the high-radar-backscatter polar deposits. MESSENGER will combine gamma-ray and neutron spectrometry of the surface with ultraviolet spectrometry and in situ particle measurements to detect both neutral and charged species originating from the surface. Such measurements will address the sources and sinks of volatiles and their couplings with the surface on a global basis as well as the nature of the polar deposits. To broaden scientific participation in the mission, the MESSENGER project is working with NASA to establish a Participating Scientist Program. The MESSENGER team is also continuing its informal interaction with members of the BepiColombo project to maximize the overall scientific return from both missions.
Effect of Cross-Correlation on Geomagnetic Forecast Accuracies
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Wei, Zigang; Tangborn, Andrew
2011-01-01
Surface geomagnetic observation can determine up to degree L = 14 time-varying spherical harmonic coefficients of the poloidal magnetic field. Assimilation of these coefficients to numerical dynamo simulation could help us understand better the dynamical processes in the Earth's outer core, and to provide more accurate forecast of geomagnetic secular variations (SV). In our previous assimilation studies, only the poloidal magnetic field in the core is corrected by the observations in the analysis. Unobservable core state variables (the toroidal magnetic field and the core velocity field) are corrected via the dynamical equations of the geodynamo. Our assimilation experiments show that the assimilated core state converges near the CMB, implying that the dynamo state is strongly constrained by surface geomagnetic observations, and is pulled closer to the truth by the data. We are now carrying out an ensemble of assimilation runs with 1000 years of geomagnetic and archeo/paleo magnetic record. In these runs the cross correlation between the toroidal and the poloidal magnetic fields is incorporated into the analysis. This correlation is derived from the physical boundary conditions of the toroidal field at the core-mantle boundary (CMB). The assimilation results are then compared with those of the ensemble runs without the cross-correlation, aiming at understanding two fundamental issues: the effect of the crosscorrelation on (1) the convergence of the core state, and (2) the SV prediction accuracies. The constrained dynamo solutions will provide valuable insights on interpreting the observed SV, e.g. the near-equator magnetic flux patches, the core-mantle interactions, and possibly other geodynamic observables.
Science & Technology Review September 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aufderheide III, M B
2005-07-19
This month's issue has the following articles: (1) The Pursuit of Fusion Energy--Commentary by William H. Goldstein; (2) A Dynamo of a Plasma--The self-organizing magnetized plasmas in a Livermore fusion energy experiment are akin to solar flares and galactic jets; (3) How One Equation Changed the World--A three-page paper by Albert Einstein revolutionized physics by linking mass and energy; (4) Recycled Equations Help Verify Livermore Codes--New analytic solutions for imploding spherical shells give scientists additional tools for verifying codes; and (5) Dust That.s Worth Keeping--Scientists have solved the mystery of an astronomical spectral feature in interplanetary dust particles.
Short term variations in Jupiter's synchrotron radiation derived from VLA data analysis
NASA Astrophysics Data System (ADS)
Kita, H.; Misawa, H.; Tsuchiya, F.; Morioka, A.
2011-12-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons in the strong magnetic field of the inner magnetosphere, and it is the most effective prove for remote sensing of Jupiter's radiation belt from the Earth. Although JSR has been thought to be stable for a long time, intensive observations for JSR have made after the collisions of comet P/SL9 to Jupiter in 1994, and these observations revealed short term variations of JSR on time scale of days to weeks. However, the mechanisms which cause the short term variations of total flux density and brightness distribution have not been revealed well. In order to reveal the mechanism of short term variations of JSR more precisely, we have made radio image analysis using the NRAO (National Radio Astronomy Observatory) archived data of the VLA [*]. Brice and McDonough [1973, Icarus] proposed a scenario for the short term variations: i.e, the solar UV/EUV heating for Jupiter's upper atmosphere drives neutral wind perturbations and then the induced dynamo electric field leads to enhancement of radial diffusion. It is also suggested that induced dynamo electric field produce dawn-dusk electric potential difference, which cause dawn-dusk asymmetry in electron spatial distribution and emission distribution. So far the following results have been indicated for the short term variations. Miyoshi et al. [1999, GRL] showed that a short term variation event at 2.3GHz is well correlate to solar UV/EUV flux variations. Tsuchiya et al. [2010, Adv. Geosci.] showed that JSR at 325MHz and 785MHz have short term variations. These JSR observations confirmed the existence of the short term variation which is caused by solar UV/EUV. However, the effect of solar UV/EUV heating on the spatial distribution of JSR has never been confirmed, so this study is the first attempt to confirm the solar UV/EUV effect on spatial distribution of JSR. We have selected the data observed from 28th Jan. to 5th Feb. 2000 at 327MHz. During the period, solar UV/EUV flux expected on Jupiter showed almost monotonic increase. It is expected from the analysis for the period that the enhancement of radial diffusion caused by solar UV/EUV heating produces total flux enhancement and dawn-dusk asymmetry of the emission distribution of the JSR. We can therefore examine the scenario by measuring total flux density and dawn-dusk peak emission ratio of JSR, and their relationships to the variation of solar UV/EUV activity. A preliminary result shows that total flux density variations occurred corresponding to the solar UV/EUV variations, but we couldn't find variations in the dawn-dusk asymmetry above the one rms level calculated from the background image. *The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Varying the forcing scale in low Prandtl number dynamos
NASA Astrophysics Data System (ADS)
Brandenburg, A.; Haugen, N. E. L.; Li, Xiang-Yu; Subramanian, K.
2018-06-01
Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with large-scale dynamos. However, the possibility of small-scale dynamos being excited at small and intermediate ratios of viscosity to magnetic diffusivity (the magnetic Prandtl number) has been debated, and the possibility of them depending on the large-scale forcing wavenumber has been raised. Here we show, using four values of the forcing wavenumber, that the small-scale dynamo does not depend on the scale-separation between the size of the simulation domain and the integral scale of the turbulence, i.e., the forcing scale. Moreover, the spectral bottleneck in turbulence, which has been implied as being responsible for raising the excitation conditions of small-scale dynamos, is found to be invariant under changing the forcing wavenumber. However, when forcing at the lowest few wavenumbers, the effective forcing wavenumber that enters in the definition of the magnetic Reynolds number is found to be about twice the minimum wavenumber of the domain. Our work is relevant to future studies of small-scale dynamos, of which several applications are being discussed.
Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodo, G.; Rossi, P.; Cattaneo, F.
We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We usemore » this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.« less
Measurements of dynamo electric field and momentum transport induced by fluctuations on HIST
NASA Astrophysics Data System (ADS)
Hirono, H.; Hanao, T.; Hyobu, T.; Ito, K.; Matsumoto, K.; Nakayama, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2012-10-01
Coaxial Helicity injection (CHI) is an efficient current-drive method used in spheromak and spherical torus (ST) experiments. It is an important issue to investigate dynamo effect to explore CHI current drive mechanisms. To establish the dynamo model with two-fluid Hall effects, we verify the parallel mean-field Ohm's law balance. The spatial profiles of the MHD/Hall dynamo electric fields are measured by using Mach probe and Hall probe involving 3-axis magnetic pick-up coils. The MHD/Hall fluctuation-induced electromotive forces are large enough to sustain the mean toroidal current against the resistive decay. We have measured the electron temperature and the density with great accuracy by using a new electrostatic probe with voltage sweeping. The result shows that the electron temperature is high in the core region and low in the central open flux column (OFC), and the electron density is highest in the OFC region. The Hall dynamo becomes more dominant in a lower density region compared to the MHD dynamo. In addition, the fluctuation-induced Maxwell and Reynolds stresses are calculated to examine the fast radial transport of momentum from the OFC to the core region during the dynamo drive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebrahimi, Fatima
2014-07-31
Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport,more » we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.« less
Kuang, Zheng; Ji, Zhicheng
2018-01-01
Abstract Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. PMID:29325176
Our Dynamic Sun (Hannes Alfvén Medal Lecture)
NASA Astrophysics Data System (ADS)
Priest, Eric
2017-04-01
The Sun, an object of worship for early civilisations, is the main source of light and life on Earth and of our space weather, with many subtle effects on our environment. The lecture will introduce you to the Sun and its dynamic phenomena, and will aim to show how our understanding of many aspects of the Sun has been revolutionized over the past few years by current spacecraft observations and models. Much of the dynamic behaviour is driven by the magnetic field since, in the outer atmosphere (or corona), it represents by far the largest source of energy. The interior of the Sun, revealed by solar seismology, possesses a strong shear layer at the base of the convection zone, where sunspot magnetic fields are generated. But a small-scale dynamo is also operating near the surface of the Sun, generating magnetic fields that thread the lowest layer of the solar atmosphere, the photosphere, in a turbulent convective state. Above the photosphere lies the highly dynamic fine-scale chromosphere and beyond that the rare corona at high temperatures exceeding one million degrees K. Magnetic mechanisms for heating the corona (an intriguing puzzle) will be described. Other puzzles include the structure of giant flux ropes, known as prominences, which have complex fine structure. Occasionally, they erupt and produce huge ejections of mass and magnetic field (coronal mass ejections), which can disrupt the space environment of the Earth. When such eruptions originate in active regions around sunspots, they are also associated with solar flares, where magnetic energy is converted to kinetic, heat and fast particle energy. A new theory will be presented for the origin of the twist that is observed in erupting prominences.
NASA Astrophysics Data System (ADS)
Title, Alan; DeRosa, Marc
2016-10-01
The continuous full disk observations provided by the Atmospheric Imaging Assembly (AIA ) can give an observer the impression that many flare eruptions are causally related to one another. However, both detailed analyses of a number of events as well as several statistical studies have provided only rare examples or weak evidence of causal behavior. Since the mechanisms of flare triggering are not well understood, the lack of hard evidence is not surprising. For this study we looked instead for groups of flares (flare clusters) in which successive flares occur within a fixed time - the selection time. The data set used for the investigation is the flare waiting times provided by the X-ray flare detectors on the Geostationary Operational Environmental Satellites (GOES). We limited the study to flares of magnitude C5 and greater obtained during cycles 21, 22, 23, and 24. The GOES field of view includes the entire visible surface. While many flares in a cluster may come from the same active region, the larger clusters often have origins in multiple regions. The longest C5 cluster found with a linking window of 36 hours in cycles 21, 22, 23,and 24 was 54, 82, 42, and 18 days, respectively. X flares also cluster. A superposed epoch analyses demonstrates that there is a pronounced enhancement of number of C5 and and above flares that are centered on the X flare clusters. We suggest that this behavior implies that a component of the observed coordinated behavior originates from the MHD processes driven by the solar dynamo that in turn creates unstable states in the solar atmosphere. The relationship between flare clusters and magnetic centers of activity was explored as was the correlation between high flare rates and significant changes in the total solar magnetic flux,
Why does substorm-associated auroral surge travel westward?
NASA Astrophysics Data System (ADS)
Ebihara, Y.; Tanaka, T.
2018-01-01
A substorm is a long-standing unsolved issue in solar-terrestrial physics. One of the big challenges is to explain reasonably the evolution of the morphological structure of the aurora associated with the substorm. The sudden appearance of a bright aurora and an auroral surge traveling westward (westward traveling surge, WTS) are noticeable features of the aurora during the substorm expansion phase. By using a global magnetohydrodynamics (MHD) simulation, we obtained the following results regarding the WTS. When the interplanetary magnetic field turns southward, a persistent dynamo appears in the cusp/mantle region, driving the two-cell magnetospheric convection. Then, the substorm growth phase begins. When magnetic reconnection takes place in the magnetotail, plasma is accelerated earthward in the plasma sheet, and accelerated toward the equatorial plane in the lobe. The second dynamo appears in the near-Earth region, which is closely associated with the generation of the field-aligned current (FAC) on the nightside. When the FAC reaches the ionosphere, the aurora becomes bright, and the onset of the expansion phase begins. In the ionosphere, the conductivity is intensified in the bright aurora due to the precipitation of accelerated electrons. The conductivity gradient gives rise to the overflow of the Hall current, which acts as the third dynamo. The overflow results in the accumulation of space charge, which causes a divergent electric field. The divergent electric field generates a thin, structured upward FAC adjacent to the bright aurora. The opposite process takes place on the opposite side of the bright aurora. In short, the upward FAC increases (appearance of aurora) at the leading edge of the surge, and decreases (disappearance of aurora) at the trailing edge of the surge. By repeating these processes, the surge seems to travel westward.
Final Technical Report for DOE DE-FG02-05ER54831 "Laboratory Studies of Dynamos."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forest, Cary B.
Laboratory Studies of Dynamos: Executive Summary. The self-generation of magnetic fields by astrophysical bodies like planets, stars, accretion disks, galaxies, and even galaxy clusters arises due to a mechanism referred to as a homogeneous dynamo. It is quite simple to demonstrate the generation of a magnetic fi eld from a rotating copper disk coupled with a coil of wire, a device known as the homopolar dynamo. The device works like a magnetic fi eld ampli er with a feedback circuit: the differential rotation of a metal disk past an infinitesimally small seed magnetic field induces currents in the disk which,more » when coupled to a coil winding, can amplify the field until it becomes strong enough to slow the rotation of the disk. What is remarkable is that the same type of circuit may be achieved in a flowing conducting fluid such as a liquid metal in the case of planetary dynamos or a plasma in the case of astrophysical dynamos. The complexity of describing planetary and stellar dynamos despite their ubiquity and the plethora of observational data from the Earth and the Sun motivates the demonstration of a laboratory homogenous dynamo. To create a homogenous dynamo, one first needs a su fficiently large, fast flow of a highly conducting fluid that the velocity shear in the fluid can bend magnetic field lines. With a high Rm-flow, the magnetic fi eld can be ampli ed by the stretching action provided by di fferential rotation. The other critical ingredient is a flow geometry that provides feedback so that the ampli ed eld reinforces the initial in nitesimal seed field - a mechanism that recreates the feedback provided by the coil of wire in the homopolar dynamo. In the Madison Dynamo Experiment, this combination of magnetic ampli cation and feedback is feasible in the simple geometry of two counter-rotating helical vortices in a 1 meter-diameter spherical vessel lled with liquid sodium. For an optimal helical pitch of the flow the threshold for exciting a dynamo is predicted from laminar flow modeling to be at peak flow speeds of 5 m/s. Liquid metals tend to have viscosities similar to that of water yielding inviscid flows. Whereas the timescale for the dynamo instability is on the resistive dissipation time, the timescale for hydrodynamic instability of the shear layer is quite short meaning that the shear layer required to generate the magnetic eld is broken up by Kelvin-Helmholtz instabilities. The eddies generated by large-scale flow drive instabilities at progressively smaller scale giving rise to a cascade of turbulent eddies driven at the largest scale of the experiment. The major contribution of the Madison Dynamo Experiment has been quantifying the role this turbulence plays in the generation of magnetic elds. Overall, the Madison Dynamo Experiment has now operated for about 1 decade and carried out experiments related to magnetic fi eld generation by turbulent flows of liquid metal. The principle thrust of research and indeed the main scienti fic outcomes are related to how turbulent flows create and transport magnetic fi elds.« less
Facilitating dynamo action via control of large-scale turbulence.
Limone, A; Hatch, D R; Forest, C B; Jenko, F
2012-12-01
The magnetohydrodynamic dynamo effect is considered to be the major cause of magnetic field generation in geo- and astrophysical systems. Recent experimental and numerical results show that turbulence constitutes an obstacle to dynamos; yet its role in this context is not totally clear. Via numerical simulations, we identify large-scale turbulent vortices with a detrimental effect on the amplification of the magnetic field in a geometry of experimental interest and propose a strategy for facilitating the dynamo instability by manipulating these detrimental "hidden" dynamics.
Large-scale dynamos in rapidly rotating plane layer convection
NASA Astrophysics Data System (ADS)
Bushby, P. J.; Käpylä, P. J.; Masada, Y.; Brandenburg, A.; Favier, B.; Guervilly, C.; Käpylä, M. J.
2018-05-01
Context. Convectively driven flows play a crucial role in the dynamo processes that are responsible for producing magnetic activity in stars and planets. It is still not fully understood why many astrophysical magnetic fields have a significant large-scale component. Aims: Our aim is to investigate the dynamo properties of compressible convection in a rapidly rotating Cartesian domain, focusing upon a parameter regime in which the underlying hydrodynamic flow is known to be unstable to a large-scale vortex instability. Methods: The governing equations of three-dimensional non-linear magnetohydrodynamics (MHD) are solved numerically. Different numerical schemes are compared and we propose a possible benchmark case for other similar codes. Results: In keeping with previous related studies, we find that convection in this parameter regime can drive a large-scale dynamo. The components of the mean horizontal magnetic field oscillate, leading to a continuous overall rotation of the mean field. Whilst the large-scale vortex instability dominates the early evolution of the system, the large-scale vortex is suppressed by the magnetic field and makes a negligible contribution to the mean electromotive force that is responsible for driving the large-scale dynamo. The cycle period of the dynamo is comparable to the ohmic decay time, with longer cycles for dynamos in convective systems that are closer to onset. In these particular simulations, large-scale dynamo action is found only when vertical magnetic field boundary conditions are adopted at the upper and lower boundaries. Strongly modulated large-scale dynamos are found at higher Rayleigh numbers, with periods of reduced activity (grand minima-like events) occurring during transient phases in which the large-scale vortex temporarily re-establishes itself, before being suppressed again by the magnetic field.
THE COMBINED EFFECT OF PRECESSION AND CONVECTION ON THE DYNAMO ACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xing, E-mail: xing.wei@sjtu.edu.cn; Princeton University Observatory, Princeton, NJ 08544
2016-08-20
To understand the generation of the Earth’s magnetic field and those of other planets, we numerically investigate the combined effect of precession and convection on dynamo action in a spherical shell. Convection alone, precession alone, and the combined effect of convection and precession are studied at the low Ekman number at which the precessing flow is already unstable. The key result is that although precession or convection alone are not strong enough to support the dynamo action, the combined effect of precession and convection can support the dynamo action because of the resonance of precessional and convective instabilities. This resultmore » may explain why the geodynamo has been maintained for such a long time compared to the Martian dynamo.« less
Nonlinear restrictions on dynamo action. [in magnetic fields of astrophysical objects
NASA Technical Reports Server (NTRS)
Vainshtein, Samuel I.; Cattaneo, Fausto
1992-01-01
Astrophysical dynamos operate in the limit of small magnetic diffusivity. In order for magnetic reconnection to occur, very small magnetic structures must form so that diffusion becomes effective. The formation of small-scale fields is accompanied by the stretching of the field lines and therefore by an amplification of the magnetic field strength. The back reaction of the magnetic field on the motions leads to the eventual saturation of the dynamo process, thus posing a constraint on the amount of magnetic flux that can be generated by dynamo action, It is argued that in the limit of small diffusivity only a small amount of flux, many orders of magnitude less than the observed fluxes, can be created by dynamo processes.
Dynamo threshold detection in the von Kármán sodium experiment.
Miralles, Sophie; Bonnefoy, Nicolas; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier; Boisson, Jean; Daviaud, François; Dubrulle, Bérengère
2013-07-01
Predicting dynamo self-generation in liquid metal experiments has been an ongoing question for many years. In contrast to simple dynamical systems for which reliable techniques have been developed, the ability to predict the dynamo capacity of a flow and the estimate of the corresponding critical value of the magnetic Reynolds number (the control parameter of the instability) has been elusive, partly due to the high level of turbulent fluctuations of flows in such experiments (with kinetic Reynolds numbers in excess of 10(6)). We address these issues here, using the von Kármán sodium experiment and studying its response to an externally applied magnetic field. We first show that a dynamo threshold can be estimated from analysis related to critical slowing down and susceptibility divergence, in configurations for which dynamo action is indeed observed. These approaches are then applied to flow configurations that have failed to self-generate magnetic fields within operational limits, and we quantify the dynamo capacity of these configurations.
On Non-Universality of Solar-Terrestrial Connections
NASA Astrophysics Data System (ADS)
Pustilnik, Lev; Yom Din, Gregory
The discussion on the principal possibility of a causal chain from solar activity and space weather to the earth weather and agriculture price dynamics continues over 200 years from the first publication of Herschel (1801) up to the current time. We analyze main arguments of the two sides and show that the root of the critics of this possibility lies in the wide accepted conception of the universality of the solar-terrestrial connection (that can appear, for example, in daily and seasonal variations) what suggest that the effect can be observed in any historical period and in any region. We show that this expectation is not correct because of the solar-terrestrial connections generated by different sides of solar activity with different agents of solar magnetic dynamo process that have different and non-stable phase patterns. We remind that the realization of the causal chain “solar activity/space weather” - “earth weather” - “crops” -“market reaction” may have a place only in specific historical periods and in specific zones where and when the three necessary conditions hold true. This limitation leads to one of four possible scenarios of the market reaction. We show that the critical arguments used for rejecting a principal possibility of the causal connection “solar activity” - Earth agriculture markets” are based on neglecting the three necessary conditions for realization of this connection, and on analyzing periods and regions when and where the necessary conditions are not hold.
Japanese Next Solar Mission: SOLAR-C
NASA Astrophysics Data System (ADS)
Sakao, T.; Solar-C, W. G.
2008-09-01
We present introductory overview on the next Japanese solar mission, SOLAR-C, which has been envisaged following the success of Hinode (SOLAR-B) mission. Two plans, Plan A and Plan B, are under extensive study from science objectives as well as engineering point of view. Plan A aims to perform out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to be originated. The baseline orbit for Plan A is a circular orbit of 1 AU distance from the Sun, with its inclination at around, or greater than, 40 degrees. Plan B pursues small-scale plasma processes and structures in the solar atmosphere which attract growing interest, following Hinode discoveries, for understanding fully dynamism and magnetic nature of the atmosphere. With Plan B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. There has been wide and evolving support for the SOLAR-C mission not only from solar physics community but also from related research areas in Japan. We request SOLAR-C to be launched in mid. 2010s. Following the highly-successful achievements of international collaboration for Yohkoh and Hinode, we strongly hope the SOLAR-C mission be realized under extensive collaboration with European and U.S. partners. Japanese SOLAR-C working group was officially approved by ISAS/JAXA in December 2007 for mission studies and promoting international collaboration. It is expected that a single mission plan is to be proposed after one year of investigation on Plan A and Plan B.
A GLOBAL GALACTIC DYNAMO WITH A CORONA CONSTRAINED BY RELATIVE HELICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, A.; Mangalam, A., E-mail: avijeet@iiap.res.in, E-mail: mangalam@iiap.res.in
We present a model for a global axisymmetric turbulent dynamo operating in a galaxy with a corona that treats the parameters of turbulence driven by supernovae and by magneto-rotational instability under a common formalism. The nonlinear quenching of the dynamo is alleviated by the inclusion of small-scale advective and diffusive magnetic helicity fluxes, which allow the gauge-invariant magnetic helicity to be transferred outside the disk and consequently to build up a corona during the course of dynamo action. The time-dependent dynamo equations are expressed in a separable form and solved through an eigenvector expansion constructed using the steady-state solutions ofmore » the dynamo equation. The parametric evolution of the dynamo solution allows us to estimate the final structure of the global magnetic field and the saturated value of the turbulence parameter α{sub m}, even before solving the dynamical equations for evolution of magnetic fields in the disk and the corona, along with α-quenching. We then solve these equations simultaneously to study the saturation of the large-scale magnetic field, its dependence on the small-scale magnetic helicity fluxes, and the corresponding evolution of the force-free field in the corona. The quadrupolar large-scale magnetic field in the disk is found to reach equipartition strength within a timescale of 1 Gyr. The large-scale magnetic field in the corona obtained is much weaker than the field inside the disk and has only a weak impact on the dynamo operation.« less
Chandra Observations of Magnetic White Dwarfs and their Theoretical Implications
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.
2003-01-01
Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.
Temporal relations between magnetic bright points and the solar sunspot cycle
NASA Astrophysics Data System (ADS)
Utz, Dominik; Muller, Richard; Van Doorsselaere, Tom
2017-12-01
The Sun shows a global magnetic field cycle traditionally best visible in the photosphere as a changing sunspot cycle featuring roughly an 11-year period. In addition we know that our host star also harbours small-scale magnetic fields often seen as strong concentrations of magnetic flux reaching kG field strengths. These features are situated in inter-granular lanes, where they show up bright as so-called magnetic bright points (MBPs). In this short paper we wish to analyse an homogenous, nearly 10-year-long synoptic Hinode image data set recorded from 2006 November up to 2016 February in the G-band to inspect the relationship between the number of MBPs at the solar disc centre and the relative sunspot number. Our findings suggest that the number of MBPs at the solar disc centre is indeed correlated to the relative sunspot number, but with the particular feature of showing two different temporal shifts between the decreasing phase of cycle 23 including the minimum and the increasing phase of cycle 24 including the maximum. While the former is shifted by about 22 months, the latter is only shifted by less than 12 months. Moreover, we introduce and discuss an analytical model to predict the number of MBPs at the solar disc centre purely depending on the evolution of the relative sunspot number as well as the temporal change of the relative sunspot number and two background parameters describing a possibly acting surface dynamo as well as the strength of the magnetic field diffusion. Finally, we are able to confirm the plausibility of the temporal shifts by a simplistic random walk model. The main conclusion to be drawn from this work is that the injection of magnetic flux, coming from active regions as represented by sunspots, happens on faster time scales than the removal of small-scale magnetic flux elements later on.
NASA Astrophysics Data System (ADS)
Gusain, S.
2017-12-01
We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.
The vorticity of Solar photospheric flows on the scale of granulation
NASA Astrophysics Data System (ADS)
Pevtsov, A. A.
2016-12-01
We employ time sequences of images observed with a G-band filter (λ4305Å) by the Solar Optical Telescope (SOT) on board of Hinode spacecraft at different latitude along solar central meridian to study vorticity of granular flows in quiet Sun areas during deep minimum of solar activity. Using a feature correlation tracking (FCT) technique, we calculate the vorticity of granular-scale flows. Assuming the known pattern of vertical flows (upward in granules and downward in intergranular lanes), we infer the sign of kinetic helicity of these flows. We show that the kinetic helicity of granular flows and intergranular vortices exhibits a weak hemispheric preference, which is in agreement with the action of the Coriolis force. This slight hemispheric sign asymmetry, however, is not statistically significant given large scatter in the average vorticity. The sign of the current helicity density of network magnetic fields computed using full disk vector magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) does not show any hemispheric preference. The combination of these two findings suggests that the photospheric dynamo operating on the scale of granular flows is non-helical in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in
We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar tomore » that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.« less
Magnetic Eigenmode Analysis of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Nornberg, M. D.; Forest, C. B.; Kendrick, Roch; O'Connell, R.; Spence, E. J.
2004-11-01
The magnetic field generated by a spherical homogeneous liquid-sodium dynamo is explored in terms of the magnetic eigenmodes predicted by Dudley and James. The flow geometry chosen corresponds to the T2S2 flow and is created by two counter-rotating propellers driven by 100HP motors with flow velocities up to 15 m/s. A perturbative magnetic field is generated by pulsing a set axial field coils. The largest growing eigenmode is predicted by linear analysis to be a strong equatorial-dipole field. The field is measured using an array of Hall probes both on the surface of the sphere and within the sphere. From the measured field the growth or decay rates of the magnetic eigenmodes are determined. Turbulence in the flow is expected to give rise to modifications of the growth rates and the structure of the eigenmodes.
On the seat of the solar cycle
NASA Technical Reports Server (NTRS)
Gough, D.
1981-01-01
A discussion of some of the issues raised in connection with the seat of the solar cycle are presented. Is the cycle controlled by a strictly periodic oscillator that operates in the core, or is it a turbulent dynamo confined to the convection zone and possibly a thin boundary layer beneath it? Sunspot statistics are discussed, with a view to ascertaining the length of the memory of the cycle, without drawing a definitive conclusion. Also discussed are some of the processes that might bring about variations delta L and delta R in the luminosity and the radius of the photosphere. It appears that the ratio W = delta lnR/delta lnL increases with the depth of the disturbance that produces the variations, so that imminent observations might determine whether or not the principal dynamical processes are confined to only the outer layers of the Sun.
Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet
NASA Technical Reports Server (NTRS)
Cole, Keith D.
1993-01-01
The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
Hotta, H; Rempel, M; Yokoyama, T
2016-03-25
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. Copyright © 2016, American Association for the Advancement of Science.
Primordial heating of asteroidal parent bodies
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Reynolds, R. T.
1979-01-01
Most meteorites show evidence of thermal processing either because of metamorphic changes or as a result of melting and differentiation. Proposed mechanisms for supplying this energy generally rely upon short-lived radioisotopes or electrical induction, though accretion is sometimes mentioned, and more exotic models have been discussed. Interest in isotopic heating has been heightened by the discovery of Al-26 in Allende inclusions and also by the proposal that a lunar core and dynamo resulted from the radioactive decay of superheavy elements during the early solar system. Electrical induction as a heat source can be scaled to a broad range of solar system conditions, but corroborative evidence for these conditions is inconclusive. The accretion mechanism is probably not viable for the asteroidal and meteorite parent bodies, because the high kinetic energy requirement is inconsistent with the formation of the objects and their regoliths in the presence of a weak gravitational field.
History of Solar Magnetic Fields Since George Ellery Hale
NASA Astrophysics Data System (ADS)
Stenflo, J. O.
2017-09-01
As my own work on the Sun's magnetic field started exactly 50 years ago at Crimea in the USSR, I have been a participant in the field during nearly half the time span since Hale's discovery in 1908 of magnetic fields in sunspots. The present historical account is accompanied by photos from my personal slide collection, which show a number of the leading personalities who advanced the field in different areas: measurement techniques, from photographic to photoelectric and imaging methods in spectro-polarimetry; theoretical foundations of MHD and the origin of cosmic magnetic fields (birth of dynamo theory); the quest for increased angular resolution from national projects to international consortia (for instruments both on ground and in space); introduction of the Hanle effect in astrophysics and the Second Solar Spectrum as its playground; small-scale nature of the field, the fundamental resolution limit, and transcending it by resolution-independent diagnostics.
Chaos in the sunspot cycle - Analysis and prediction
NASA Technical Reports Server (NTRS)
Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.
1991-01-01
The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.