Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; Turchi, Craig
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
Zhu, Guangdong; Turchi, Craig
2017-01-27
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Practical Efficiency of Photovoltaic Panel Used for Solar Vehicles
NASA Astrophysics Data System (ADS)
Koyuncu, T.
2017-08-01
In this experimental investigation, practical efficiency of semi-flexible monocrystalline silicon solar panel used for a solar powered car called “Firat Force” and a solar powered minibus called “Commagene” was determined. Firat Force has 6 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor and Commagene has 12 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor. In addition, both solar vehicles have MPPT (Maximum power point tracker), ECU (Electronic control unit), differential, instrument panel, steering system, brake system, brake and gas pedals, mechanical equipments, chassis and frame. These two solar vehicles were used for people transportation in Adiyaman city, Turkey, during one year (June 2010-May 2011) of test. As a result, the practical efficiency of semi-flexible monocrystalline silicon solar panel used for Firat Force and Commagene was determined as 13 % in despite of efficiency value of 18% (at 1000 W/m2 and 25 °C ) given by the producer company. Besides, the total efficiency (from PV panels to vehicle wheel) of the system was also defined as 9%.
Prototype solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
A collection of monthly status reports on the development of eight prototype solar heating and cooling systems is presented. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25, and 75 ton size units.
Prototype solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... in the center of a solar field (called the central receiver). The proposed solar power facility is to... field. The solar collecting tower/central receiver system will generate electric power from sunlight by focusing concentrated solar radiation onto a tower-mounted receiver. The solar collecting tower will be a...
San Diego field operational test of smart call boxes : technical aspects
DOT National Transportation Integrated Search
1997-01-01
Smart call boxes are devices similar to those used as emergency call boxes in California. The basic call box consists of a microprocessor, a cellular transceiver, and a solar power source. The smart call box system also includes data-collection devic...
Smart call box field operational test evaluation : subtest reports
DOT National Transportation Integrated Search
1997-05-01
Smart call boxes are an enhanced version of devices used as emergency call boxes in California. The overall system consists of a microprocessor, a cellular communications transceiver, solar power sources, data collection devices, maintenance computer...
Smart call box field operational test evaluation : summary report
DOT National Transportation Integrated Search
1997-05-01
Smart call boxes are an enhanced version of devices used as emergency call boxes in California. The overall system consists of a microprocessor, a cellular communications transceiver, solar power sources, data collection devices, maintenance computer...
Deployment/retraction mechanism for solar maximum mission high gain antenna system
NASA Technical Reports Server (NTRS)
Bennett, N.; Preiswerk, P.
1979-01-01
A mechanism called a deployment/retraction assembly (DRA) which provides not only a stable, but a deployable platform for the high gain antenna system (HGAS) aboard the Solar Maximum Mission (SMM) spacecraft is described. The DRA also has the capability to retract the system upon command.
Preliminary design package for prototype solar heating system
NASA Technical Reports Server (NTRS)
1978-01-01
A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.
HELIOGate, a Portal for the Heliophysics Community
NASA Astrophysics Data System (ADS)
Pierantoni; Gabriele; Carley, Eoin
2014-10-01
Heliophysics is the branch of physics that investigates the interactions between the Sun and the other bodies of the solar system. Heliophysicists rely on data collected from numerous sources scattered across the Solar System. The data collected from these sources is processed to extract metadata and the metadata extracted in this fashion is then used to build indexes of features and events called catalogues. Heliophysicists also develop conceptual and mathematical models of the phenomena and the environment of the Solar System. More specifically, they investigate the physical characteristics of the phenomena and they simulate how they propagate throughout the Solar System with mathematical and physical abstractions called propagation models. HELIOGate aims at addressing the need to combine and orchestrate existing web services in a flexible and easily configurable fashion to tackle different scientific questions. HELIOGate also offers a tool capable of connecting to size! able computation and storage infrastructures to execute data processing codes that are needed to calibrate raw data and to extract metadata.
NASA Technical Reports Server (NTRS)
Toliver, C.
1977-01-01
Studies were done on the feasibility of placing a solar power station called POwersat, in space. A general description of the engineering features are given as well as a brief discussion of the economic considerations.
CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 8, August 2007
2007-08-01
He challenged anyone to prove or disprove that the solar system was stable. Henri Poincaré, sometimes called the Father of Chaos, was awarded the...the human body and our planet. In other words, examples of open systems are the human body and or solar system where the human body is composed of...interact- ing biological cells and our solar system with planets, stars, etc. They are like an organization where each is engaged in active transactions
Floating Solar Photovoltaics Gaining Ground | State, Local, and Tribal
Gaining Ground January 24, 2017 by Alison Holm Floating solar photovoltaic (PV) systems, so-called flotovoltaics (a trademarked term) or floating solar, represent an emerging application in which PV panels are sited on bodies of water. The PV panel technology used for floating solar applications is very similar
Space Object and Light Attribute Rendering (SOLAR) Projection System
2017-05-08
AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT A state of the art planetarium style projection system...Rendering (SOLAR) Projection System 1 Abstract A state of the art planetarium style projection system called Space Object and Light Attribute Rendering...planetarium style projection system for emulation of a variety of close proximity and long range imaging experiments. University at Buffalo’s Space
Solar Energy Technologies and the Utilization on Native American Tribal Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Kathryn
As an undergraduate researcher, I worked on a new technology called nanofluid-based direct absorption solar collectors (DASC) which is a type of solar water heater that has the potential to be more efficient than traditional solar water heaters. Because of my experience with this type of technology, I decided to look into other types of solar energy technologies which could be used on Native American tribal lands. Some types of solar energy technologies that I wanted to focus on are photovoltaic solar energy systems, passive solar design, and solar water heaters.
NREL Hosts Free Workshop on Residential Solar Energy Systems
a free consumer-oriented workshop Sept. 15 on "Converting Your Home Power Supply to Solar are free and open to the public. Call (303) 275-4087 to make a reservation or for more information
Milestones Toward 50% Efficient Solar Cell Modules
2007-09-01
efficiency, both at solar cells and module level. The optical system consists of a tiled nonimaging concentrating system, coupled with a spectral...which combines a nonimaging optical concentrator (which does not require tracking and is called a static concentrator) with spectral splitting...DESIGN AND RESULTS The optical design is based on non-symmetric, nonimaging optics, tiled into an array. The central issues in the optical system
NASA Astrophysics Data System (ADS)
Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan
2016-02-01
Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.
Qualification test and analysis report: Solar collectors
NASA Technical Reports Server (NTRS)
1978-01-01
Test results show that the Owens-Illinois Sunpak TM Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Peformance Specification and Verification Plan of NASA/MSFC, dated October 28, 1976. The program calls for the development, fabrication, qualification and delivery of an air-cooled solar collector for solar heating, combined heating and cooling, and/or hot water systems.
1983-04-01
In February 1980, a satellite called Solar Maximum Mission Spacecraft, or Solar Max, was launched into Earth's orbit. Its primary objective was to provide a detailed study of solar flares, active regions on the Sun's surface, sunspots, and other solar activities. Additionally, it was to measure the total output of radiation from the Sun. Not much was known about solar activity at that time except for a slight knowledge of solar flares. After its launch, Solar Max fulfilled everyone's expectations. However, after a year in orbit, Solar Max's Altitude Control System malfunctioned, preventing the precise pointing of instruments at the Sun. NASA scientists were disappointed at the lost data, but not altogether dismayed because Solar Max had been designed for Space Shuttle retrievability enabling the repair of the satellite. On April 6, 1984, Space Shuttle Challenger (STS-41C), Commanded by astronaut Robert L. Crippen and piloted by Francis R. Scobee, launched on a historic voyage. This voyage initiated a series of firsts for NASA; the first satellite retrieval, the first service use of a new space system called the Marned Maneuvering Unit (MMU), the first in-orbit repair, the first use of the Remote Manipulator System (RMS), and the Space Shuttle Challenger's first space flight. The mission was successful in retrieving Solar Max. Mission Specialist Dr. George D. Nelson, using the MMU, left the orbiter's cargo bay and rendezvoused with Solar Max. After attaching himself to the satellite, he awaited the orbiter to maneuver itself nearby. Using the RMS, Solar Max was captured and docked in the cargo bay while Dr. Nelson replaced the altitude control system and the coronagraph/polarimeter electronics box. After the repairs were completed, Solar Max was redeposited in orbit with the assistance of the RMS. Prior to the April 1984 launch, countless man-hours were spent preparing for this mission. The crew of Challenger spent months at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS) practicing retrieval maneuvers, piloting the MMU, and training on equipment so they could make the needed repairs to Solar Max. Pictured is Dr. Nelson performing a replacement task on the Solar Max mock-up in the NBS.
1983-01-07
In February 1980, a satellite called Solar Maximum Mission Spacecraft, or Solar Max, was launched into Earth's orbit. Its primary objective was to provide a detailed study of solar flares,active regions on the Sun's surface, sunspots, and other solar activities. Additionally, it was to measure the total output of radiation from the Sun. Not much was known about solar activity at that time except for a slight knowledge of solar flares. After its launch, Solar Max fulfilled everyone's expectations. However, after a year in orbit, Solar Max's Altitude Control System malfunctioned, preventing the precise pointing of instruments at the Sun. NASA scientists were disappointed at the lost data, but not altogether dismayed because Solar Max had been designed for Space Shuttle retrievability enabling the repair of the satellite. On April 6, 1984, Space Shuttle Challenger (STS-41C), Commanded by astronaut Robert L. Crippen and piloted by Francis R. Scobee, launched on a historic voyage. This voyage initiated a series of firsts for NASA; the first satellite retrieval, the first service use of a new space system called the Marned Maneuvering Unit (MMU), the first in-orbit repair, the first use of the Remote Manipulator System (RMS), and the Space Shuttle Challenger's first space flight. The mission was successful in retrieving Solar Max. Mission Specialist Dr. George D. Nelson, using the MMU, left the orbiter's cargo bay and rendezvoused with Solar Max. After attaching himself to the satellite, he awaited the orbiter to maneuver itself nearby. Using the RMS, Solar Max was captured and docked in the cargo bay while Dr. Nelson replaced the altitude control system and the coronagraph/polarimeter electronics box. After the repairs were completed, Solar Max was redeposited in orbit with the assistance of the RMS. Prior to the April 1984 launch, countless man-hours were spent preparing for this mission. The crew of Challenger spent months at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS) practicing retrieval maneuvers, piloting the MMU, and training on equipment so they could make the needed repairs to Solar Max. Pictured is Dr. Nelson performing a replacement task on the Solar Max mock-up in the NBS.
1983-01-07
In February 1980, a satellite called Solar Maximum Mission Spacecraft, or Solar Max, was launched into Earth's orbit. Its primary objective was to provide a detailed study of solar flares,active regions on the Sun's surface, sunspots, and other solar activities. Additionally, it was to measure the total output of radiation from the Sun. Not much was known about solar activity at that time except for a slight knowledge of solar flares. After its launch, Solar Max fulfilled everyone's expectations. However, after a year in orbit, Solar Max's Altitude Control System malfunctioned, preventing the precise pointing of instruments at the Sun. NASA scientists were disappointed at the lost data, but not altogether dismayed because Solar Max had been designed for Space Shuttle retrievability, enabling repair to the satellite. On April 6, 1984, Space Shuttle Challenger (STS-41C), Commanded by astronaut Robert L. Crippen and piloted by Francis R. Scobee, launched on a historic voyage. This voyage initiated a series of firsts for NASA; the first satellite retrieval, the first service use of a new space system called the Marned Maneuvering Unit (MMU), the first in-orbit repair, the first use of the Remote Manipulator System (RMS), and the Space Shuttle Challenger's first space flight. The mission was successful in retrieving Solar Max. Mission Specialist Dr. George D. Nelson, using the MMU, left the orbiter's cargo bay and rendezvoused with Solar Max. After attaching himself to the satellite, he awaited the orbiter to maneuver itself nearby. Using the RMS, Solar Max was captured and docked in the cargo bay while Dr. Nelson replaced the altitude control system and the coronagraph/polarimeter electronics box. After the repairs were completed, Solar Max was redeposited in orbit with the assistance of the RMS. Prior to the April 1984 launch, countless man-hours were spent preparing for this mission. The crew of Challenger spent months at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS) practicing retrieval maneuvers, piloting the MMU, and training on equipment so they could make the needed repairs to Solar Max. Pictured is Dr. Nelson performing a replacement task on the Solar Max mock-up in the NBS.
1983-01-07
In February 1980, a satellite called Solar Maximum Mission Spacecraft, or Solar Max, was launched into Earth's orbit. Its primary objective was to provide a detailed study of solar flares, active regions on the Sun's surface, sunspots, and other solar activities. Additionally, it was to measure the total output of radiation from the Sun. Not much was known about solar activity at that time except for a slight knowledge of solar flares. After its launch, Solar Max fulfilled everyone's expectations. However, after a year in orbit, Solar Max's Altitude Control System malfunctioned, preventing the precise pointing of instruments at the Sun. NASA scientists were disappointed at the lost data, but not altogether dismayed because Solar Max had been designed for Space Shuttle retrievability enabling repair of the satellite. On April 6, 1984, Space Shuttle Challenger (STS-41C), Commanded by astronaut Robert L. Crippen and piloted by Francis R. Scobee, launched on a historic voyage. This voyage initiated a series of firsts for NASA; the first satellite retrieval, the first service use of a new space system called the Marned Maneuvering Unit (MMU), the first in-orbit repair, the first use of the Remote Manipulator System (RMS), and the Space Shuttle Challenger's first space flight. The mission was successful in retrieving Solar Max. Mission Specialist Dr. George D. Nelson, using the MMU, left the orbiter's cargo bay and rendezvoused with Solar Max. After attaching himself to the satellite, he awaited the orbiter to maneuver itself nearby. Using the RMS, Solar Max was captured and docked in the cargo bay while Dr. Nelson replaced the altitude control system and the coronagraph/polarimeter electronics box. After the repairs were completed, Solar Max was redeposited in orbit with the assistance of the RMS. Prior to the April 1984 launch, countless man-hours were spent preparing for this mission. The crew of Challenger spent months at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS) practicing retrieval maneuvers, piloting the MMU, and training on equipment so they could make the needed repairs to Solar Max. Pictured is Dr. Nelson performing a replacement task on the Solar Max mock-up in the NBS.
Snodgrass, Ryan; Gardner, Andrea; Jiang, Li; Fu, Cheng; Cesarman, Ethel; Erickson, David
2016-01-01
Resource-limited settings present unique engineering challenges for medical diagnostics. Diagnosis is often needed for those unable to reach central healthcare systems, making portability and independence from traditional energy infrastructure essential device parameters. In 2014, our group presented a microfluidic device that performed a solar-powered variant of the polymerase chain reaction, which we called solar thermal PCR. In this work, we expand on our previous effort by presenting an integrated, portable, solar thermal PCR system targeted towards the diagnosis of Kaposi’s sarcoma. We call this system KS-Detect, and we now report the system’s performance as a diagnostic tool using pseudo-biopsy samples made from varying concentrations of human lymphoma cell lines positive for the KS herpesvirus (KSHV). KS-Detect achieved 83% sensitivity and 70% specificity at high (≥10%) KSHV+ cell concentrations when diagnosing pseudo-biopsy samples by smartphone image. Using histology, we confirm that our prepared pseudo-biopsies contain similar KSHV+ cell concentrations as human biopsies positive for KS. Through our testing of samples derived from human cell lines, we validate KS-Detect as a viable, portable KS diagnostic tool, and we identify critical engineering considerations for future solar-thermal PCR devices. PMID:26799834
1983-01-07
In February 1980, a satellite called Solar Maximum Mission Spacecraft, or Solar Max, was launched into Earth's orbit. Its primary objective was to provide a detailed study of solar flares, active regions on the Sun's surface, sunspots, and other solar activities. Additionally, it was to measure the total output of radiation from the Sun. Not much was known about solar activity at that time except for a slight knowledge of solar flares. After its launch, Solar Max fulfilled everyone's expectations. However, after a year in orbit, Solar Max's Altitude Control System malfunctioned, preventing the precise pointing of instruments at the Sun. NASA scientists were disappointed at the lost data, but not altogether dismayed because Solar Max had been designed for Space Shuttle retrievability enabling the repair of the satellite. On April 6, 1984, Space Shuttle Challenger (STS-41C), Commanded by astronaut Robert L. Crippen and piloted by Francis R. Scobee, launched on a historic voyage. This voyage initiated a series of firsts for NASA; the first satellite retrieval, the first service use of a new space system called the Marned Maneuvering Unit (MMU), the first in-orbit repair, the first use of the Remote Manipulator System (RMS), and the Space Shuttle Challenger's first space flight. The mission was successful in retrieving Solar Max. Mission Specialist Dr. George D. Nelson, using the MMU, left the orbiter's cargo bay and rendezvoused with Solar Max. After attaching himself to the satellite, he awaited the orbiter to maneuver itself nearby. Using the RMS, Solar Max was captured and docked in the cargo bay while Dr. Nelson replaced the altitude control system and the coronagraph/polarimeter electronics box. After the repairs were completed, Solar Max was redeposited in orbit with the assistance of the RMS. Prior to the April 1984 launch, countless man-hours were spent preparing for this mission. The crew of Challenger spent months at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS) practicing retrieval maneuvers, piloting the MMU, and training on equipment so they could make the needed repairs to Solar Max. Pictured are crew members training on repair tasks.
1983-04-01
In February 1980, a satellite called Solar Maximum Mission Spacecraft, or Solar Max, was launched into Earth's orbit. Its primary objective was to provide a detailed study of solar flares, active regions on the Sun's surface, sunspots, and other solar activities. Additionally, it was to measure the total output of radiation from the Sun. Not much was known about solar activity at that time except for a slight knowledge of solar flares. After its launch, Solar Max fulfilled everyone's expectations. However, after a year in orbit, Solar Max's Altitude Control System malfunctioned, preventing the precise pointing of instruments at the Sun. NASA scientists were disappointed at the lost data, but not altogether dismayed because Solar Max had been designed for Space Shuttle retrievability enabling the repair of the satellite. On April 6, 1984, Space Shuttle Challenger (STS-41C), Commanded by astronaut Robert L. Crippen and piloted by Francis R. Scobee, launched on a historic voyage. This voyage initiated a series of firsts for NASA; the first satellite retrieval, the first service use of a new space system called the Marned Maneuvering Unit (MMU), the first in-orbit repair, the first use of the Remote Manipulator System (RMS), and the Space Shuttle Challenger's first space flight. The mission was successful in retrieving Solar Max. Mission Specialist Dr. George D. Nelson, using the MMU, left the orbiter's cargo bay and rendezvoused with Solar Max. After attaching himself to the satellite, he awaited the orbiter to maneuver itself nearby. Using the RMS, Solar Max was captured and docked in the cargo bay while Dr. Nelson replaced the altitude control system and the coronagraph/polarimeter electronics box. After the repairs were completed, Solar Max was redeposited in orbit with the assistance of the RMS. Prior to the April 1984 launch, countless man-hours were spent preparing for this mission. The crew of Challenger spent months at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS) practicing retrieval maneuvers, piloting the MMU, and training on equipment so they could make the needed repairs to Solar Max. Pictured are crew members training for repair tasks.
NASA Technical Reports Server (NTRS)
1978-01-01
Last year the people of Cleveland, Ohio were troubled by natural gas shortages during one of the coldest winters on record. The severe winter generated a great deal of interest in solar energy as an alternative source of heat. Home owners, home builders and civic officials wanted to know just how much solar energy is available in Cleveland. Now they get a daily report through the city's news media, from information supplied as a community service by NASA's Lewis Research Center. Lewis routinely makes daily measurements of solar energy as part of its continuing research in behalf of the Department of Energy. The measuring device is a sun sensor called a pyranometer (upper photo) located atop a building at the NASA Center. To make the information conveniently available to news media, Lewis developed a Voice Output Integrating Insolometer, an automated system that acquires information from the sun sensor and translates it into a recorded telephone message. The Lewis pyranometer collects sun data for 15 hours daily and measures the total solar energy yield. For reporting to the public, the information is electronically converted to a specific reading. A media representative calling in gets a voice-synthesized announcement of a two or three digit number; the number corresponds to the kilowatt-hours of solar energy that would be available to a typical 500-square-foot solar collector system. Response in Cleveland has been favorable and interest is developing in other parts of the country.
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
Alternatives for Future U.S. Space-Launch Capabilities
2006-10-01
directive issued on January 14, 2004—called the new Vision for Space Exploration (VSE)—set out goals for future exploration of the solar system using...of the solar system using manned spacecraft. Among those goals was a proposal to return humans to the moon no later than 2020. The ultimate goal...U.S. launch capacity exclude the Sea Launch system operated by Boeing in partnership with RSC- Energia (based in Moscow), Kvaerner ASA (based in Oslo
Bizarre Planetary System Artist Concept
2009-05-28
This artist diagram compares our solar system below to the VB 10 star system. Astronomers successfully used the astrometry planet-hunting method for the first time to discover a gas planet, called VB 10b, around a very tiny star, VB 10.
Hybrid PV/diesel solar power system design using multi-level factor analysis optimization
NASA Astrophysics Data System (ADS)
Drake, Joshua P.
Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.
Preliminary design package for prototype solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.
NASA Technical Reports Server (NTRS)
Thomas, N. L.; Chisel, D. M.
1976-01-01
The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.
Solar internal lighting using optical collectors and fibers
NASA Astrophysics Data System (ADS)
Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.
2006-08-01
A system exploiting solar energy, by means of optical collectors and fibres, has been applied for indoor illumination. The project has been called "The Sunflowers" for the property of solar collectors to track solar position during the day. Every "sunflower" contains several solar collectors, each of which is coupled to an optical fibre. The "Sunflower" is provided of mechanical systems and electric accessories for solar tracking. The light focused by the solar collector can be used in two possible ways: for internal illumination with direct solar light; otherwise it can be accumulated for lighting when the sun is not present. The first function is obtained coupling the optical collector to an optical fibre, which transports the solar light in selected points within the showcases. The second one consists in focusing solar light on a photovoltaic cell of the last generation type with high efficiency. In this configuration the photovoltaic cell converts the focused light into electric energy to be used for illumination in case of sun absence. A demonstrative installation has been realised applying this solar illumination system to museum lighting: a prototype has been tested in a prestigious museum in Florence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, E.C. Jr.
1978-03-07
This report is organized in three sections/: solar cooling options for the new Embassy office building, electrification of Fada N' Gourma using solar photovolatic versus conventional energy systems and an overview of the potential for village solar photovoltaic energy utilization in Upper Volta. The analysis indicates that the least-cost alternative for cooling the new offices is to modify existing plans, which call for standard electric room air conditioning units, and to incorporate energy conservation measures in the building construction and operation.
Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System
NASA Astrophysics Data System (ADS)
Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.
2018-01-01
The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.
Prototype solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1979-01-01
A combination of monthly progress reports are presented. It contains a summary of activities and progress made from November 1, 1978, to February 28, 1979. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation.
High-voltage Array Ground Test for Direct-drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; O'Neill, Mark J.
2005-01-01
Development is underway on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for direct drive electric propulsion. These SLA performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for "space tugs" to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLA SEP technology, discuss ground tests already completed, and present plans for future ground tests and future flight tests of SLA SEP systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Weiner, H.
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U. S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides all the information necessary tomore » access the DSPA programs, to input required data and to generate appropriate Design Synthesis or Performance Analysis Output.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Weiner, H.
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides a detailed description of the DSPAmore » Computer Program system and its subprograms. This manual will assist the programmer in revising or updating the several subprograms.« less
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, R. W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1986-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Solar array flight dynamic experiment
NASA Technical Reports Server (NTRS)
Schock, Richard W.
1987-01-01
The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Application of porous medium for efficiency improvement of a concentrated solar air heating system
NASA Astrophysics Data System (ADS)
Prasartkaew, Boonrit
2018-01-01
The objective of this study is to evaluate the thermal efficiency of a concentrated solar collector for a high temperature air heating system. The proposed system consists of a 25-m2 focused multi-flat-mirror solar heliostat equipped with a porous medium solar collector/receiver which was installed on the top of a 3-m tower, called ‘tower receiver’. To know how the system efficiency cloud be improved by using porous medium, the proposed system with and without porous medium were tested and the comparative study was performed. The experimental results reveal that, for the proposed system, application of porous medium is promising, the efficiency can be increased about 2 times compared to the conventional one. In addition, due to the porous medium used in this study was the waste material with very low cost. It can be summarized that the substantial efficiency improvement with very low investment cost of the proposed system seem to be a vital measures for addressing the energy issues.
Solar energy system performance evaluation: seasonal report for IBM System 4 at Clinton, Mississippi
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-07-01
The IBM System 4 Solar Energy System was designed to provide 35 percent of the space heating and 62 percent of the domestic hot water (DHW) preheating for a single-family residence located within the United States. The system is a prepackaged unit called the Remote Solar Assembly which has been integrated into the heating and DHW system in a dormitory in Clinton, Mississippi. The system consists of 259 square feet of Solaron 2001 Series flat-plate-air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing, two 30more » gallon electric water heaters draw water from the preheat tank. A 20 kilowatt, duct mounted, electric heater supplies auxiliary energy. This system which has three modes of system operation was activated September, 1978. A system performance assessment is presented.« less
Asteroid-comet continuum objects in the solar system.
Hsieh, Henry H
2017-07-13
In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Goltz, G.; Kaiser, L. M.; Weiner, H.
1977-01-01
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document establishes the software requirements for the DSPA computer program, discusses the processing that occurs within the program, and defines the necessary interfaces for operation.
2005-08-03
These time-lapse images of a newfound dwarf planet in our solar system, formerly known as 2003 UB313 or Xena, and now called Eris, were taken using the Samuel Oschin Telescope at the Palomar Observatory.
NASA Astrophysics Data System (ADS)
Brothers, P.; Karaki, S.
Using a solar computer simulation package called TRNSYS, simulations of the direct contact liquid-liquid heat exchanger (DCLLHE) solar system and a system with conventional shell-and-tube heat exchanger were developed, based in part on performance measurements of the actual systems. The two systems were simulated over a full year on an hour-by-hour basis at five locations; Boston, Massachusetts, Charleston, South Carolina, Dodge City, Kansas, Madison, Wisconsin, and Phoenix, Arizona. Typically the direct-contact system supplies slightly more heat for domestic hot water and space heating in all locations and about 5 percentage points more cooling as compared to the conventional system. Using a common set of economic parameters and the appropriate federal and state income tax credits, as well as property tax legislation for solar systems in the corresponding states, the results of the study indicate for heating-only systems, the DCLLHE system has a slight life-cycle cost disadvantage compared to the conventional system. For combined solar heating and cooling systems, the DCLLHE has a slight life-cycle cost advantage which varies with location and amounts to one to three percent difference from the conventional system.
Hooke, Rebecca; Pearson, Andy; O'Hagan, John
2014-01-01
Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.
Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort
NASA Technical Reports Server (NTRS)
Ensworth, Clint B., III; McKissock, David B.
1998-01-01
NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.
Modeling the Multi-Body System Dynamics of a Flexible Solar Sail Spacecraft
NASA Technical Reports Server (NTRS)
Kim, Young; Stough, Robert; Whorton, Mark
2005-01-01
Solar sail propulsion systems enable a wide range of space missions that are not feasible with current propulsion technology. Hardware concepts and analytical methods have matured through ground development to the point that a flight validation mission is now realizable. Much attention has been given to modeling the structural dynamics of the constituent elements, but to date an integrated system level dynamics analysis has been lacking. Using a multi-body dynamics and control analysis tool called TREETOPS, the coupled dynamics of the sailcraft bus, sail membranes, flexible booms, and control system sensors and actuators of a representative solar sail spacecraft are investigated to assess system level dynamics and control issues. With this tool, scaling issues and parametric trade studies can be performed to study achievable performance, control authority requirements, and control/structure interaction assessments.
Solar heating and cooling system design and development
NASA Technical Reports Server (NTRS)
1978-01-01
The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.
Measures for diffusion of solar PV in selected African countries
NASA Astrophysics Data System (ADS)
Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon; Pedersen, Mathilde Brix
2017-08-01
This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called 'technology action plans (TAPs)', which were main outputs of the Technology Needs Assessment project implemented in 10 African countries from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donor-led market for institutional systems). The paper finds that governments' strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include support to: local production; financing schemes; tax exemptions; establishment and reinforcement of standards; technical training; and research and development.
Fast Imaging Solar Spectrograph System in New Solar Telescope
NASA Astrophysics Data System (ADS)
Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.
2010-12-01
In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark J.; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA's robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high-energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
Electric power - Photovoltaic or solar dynamic?
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.
1985-01-01
The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.
2017-12-08
A giant cloud appears to expand outward from the sun in all directions in this image from Sept. 28, 2012, which is called a halo CME. This kind of image occurs when a CME moves toward Earth – as here – or directly away from it. Credit: ESA/NASA/SOHO CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two STEREO spacecraft are both currently viewing the far side of the sun. Together these instruments help scientists create a three-dimensional model of any CME as its journey unfolds through interplanetary space. Such information can show why a given characteristic of a CME close to the sun might lead to a given effect near Earth, or any other planet in the solar system...NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less
O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; ...
2018-01-11
As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less
ScienceCast 105: Big Weather on Hot Jupiters
2013-05-24
Astronomers using NASA's Spitzer Space Telescope are making weather maps of an exotic class of exoplanets called "hot Jupiters." What they're finding is wilder than anything we experience here in our own solar system.
On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells
NASA Astrophysics Data System (ADS)
Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru
2014-08-01
This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.
The Copernican Plan: Restructuring the American High School.
ERIC Educational Resources Information Center
Carroll, Joseph M.
A new perspective on the practical problems of changing secondary schools to enhance learning is called "the Copernican Plan" because its implementation would change the schools as completely as Copernicus's ideas changed the perception of our solar system. The plan proposes major restructuring of virtually all the basic systems within a…
Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.
2003-03-01
ANTS (Autonomous Nano Technology Swarm of hundreds of picoclass autonomous spacecraft) have many applications. A version designed for surveying and the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.
2011-12-20
This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.
ERIC Educational Resources Information Center
Cho, Kit Fan
2005-01-01
CCC Kei Wai Primary School (Ma Wan) is a 30-classroom 7-story primary school located at Ma Wan Island. The campus was completed in 2003. There are three arrays of photovoltaic modules installed on the roof with an expected annual yield of 5600 kWh a.c. electricity. This system is supported by a research project called "Building Integrated…
New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.
2003-01-01
It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.
One-year assessment of a solar space/water heater--Clinton, Mississippi
NASA Technical Reports Server (NTRS)
1981-01-01
Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.
2017-12-08
The family home and birthplace of Dr. Robert Goddard in Worcester, Mass. was called Maple Hill and situated at Gates Lane, now called Tollawanda Drive. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
A World-Wide Net of Solar Radio Spectrometers: e-CALLISTO
NASA Astrophysics Data System (ADS)
Benz, A. O.; Monstein, C.; Meyer, H.; Manoharan, P. K.; Ramesh, R.; Altyntsev, A.; Lara, A.; Paez, J.; Cho, K.-S.
2009-04-01
Radio spectrometers of the CALLISTO type to observe solar flares have been distributed to nine locations around the globe. The instruments observe automatically, their data is collected every day via internet and stored in a central data base. A public web-interface exists through which data can be browsed and retrieved. The nine instruments form a network called e-CALLISTO. It is still growing in the number of stations, as redundancy is desirable for full 24 h coverage of the solar radio emission in the meter and low decimeter band. The e-CALLISTO system has already proven to be a valuable new tool for monitoring solar activity and for space weather research.
2017-12-08
A twisted blob of solar material – a hot, charged gas called plasma – can be seen erupting off the side of the sun on Sept. 26, 2014. The image is from NASA's Solar Dynamics Observatory, focusing in on ionized Helium at 60,000 degrees C. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
TIMED solar EUV experiment: preflight calibration results for the XUV photometer system
NASA Astrophysics Data System (ADS)
Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.
1999-10-01
The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.
Blacker than Black Artist Concept
2007-05-09
This artist concept illustrates the hottest planet yet observed in the universe. The scorching ball of gas, a hot Jupiter called HD 149026b, is about 3 times hotter than the rocky surface of Venus, the hottest planet in our solar system.
Thermal Development Test of the NEXT PM1 Ion Engine
NASA Technical Reports Server (NTRS)
Anderson, John R.; Snyder, John S.; VanNoord, Jonathan L.; Soulas, George C.
2010-01-01
NASA's Evolutionary Xenon Thruster (NEXT) is a next-generation high-power ion propulsion system under development by NASA as a part of the In-Space Propulsion Technology Program. NEXT is designed for use on robotic exploration missions of the solar system using solar electric power. Potential mission destinations that could benefit from a NEXT Solar Electric Propulsion (SEP) system include inner planets, small bodies, and outer planets and their moons. This range of robotic exploration missions generally calls for ion propulsion systems with deep throttling capability and system input power ranging from 0.6 to 25 kW, as referenced to solar array output at 1 Astronomical Unit (AU). Thermal development testing of the NEXT prototype model 1 (PM1) was conducted at JPL to assist in developing and validating a thruster thermal model and assessing the thermal design margins. NEXT PM1 performance prior to, during and subsequent to thermal testing are presented. Test results are compared to the predicted hot and cold environments expected missions and the functionality of the thruster for these missions is discussed.
Inner solar system material discovered in the Oort cloud
Meech, Karen J.; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Berdyugina, Svetlana; Keane, Jacqueline V.; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J.
2016-01-01
We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud. PMID:27386512
Inner solar system material discovered in the Oort cloud.
Meech, Karen J; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R; Berdyugina, Svetlana; Keane, Jacqueline V; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J
2016-04-01
We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Charles, Robert W.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Ziegler, Urban; Leng, Gregory J.; Meloche, Nathalie; Bourque, Kevin
2012-01-01
This paper describes building energy system production and usage monitoring using examples from the new RETScreen Performance Analysis Module, called RETScreen Plus. The module uses daily meteorological (i.e., temperature, humidity, wind and solar, etc.) over a period of time to derive a building system function that is used to monitor building performance. The new module can also be used to target building systems with enhanced technologies. If daily ambient meteorological and solar information are not available, these are obtained over the internet from NASA's near-term data products that provide global meteorological and solar information within 3-6 days of real-time. The accuracy of the NASA data are shown to be excellent for this purpose enabling RETScreen Plus to easily detect changes in the system function and efficiency. This is shown by several examples, one of which is a new building at the NASA Langley Research Center that uses solar panels to provide electrical energy for building energy and excess energy for other uses. The system shows steady performance within the uncertainties of the input data. The other example involves assessing the reduction in energy usage by an apartment building in Sweden before and after an energy efficiency upgrade. In this case, savings up to 16% are shown.
Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats
NASA Technical Reports Server (NTRS)
Lewis, Dorothy; Agasid, Elwood Floyd; Ardila, David R.; Hunter, Roger C.; Baker, Christopher E.
2017-01-01
The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for CubeSats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than100 megabits per second (Mbps). A secondary payload called the CubeSat Multispectral Observation System (CUMULOS), is an experimental remote sensing payload also being demonstrated on this mission. A launch date for the ISARA spacecraft is currently pending.
The Main Belt Comets and ice in the Solar System
NASA Astrophysics Data System (ADS)
Snodgrass, Colin; Agarwal, Jessica; Combi, Michael; Fitzsimmons, Alan; Guilbert-Lepoutre, Aurelie; Hsieh, Henry H.; Hui, Man-To; Jehin, Emmanuel; Kelley, Michael S. P.; Knight, Matthew M.; Opitom, Cyrielle; Orosei, Roberto; de Val-Borro, Miguel; Yang, Bin
2017-11-01
We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies.
From stars to dust: looking into a circumstellar disk through chondritic meteorites.
Connolly, Harold C
2005-01-07
One of the most fundamental questions in planetary science is, How did the solar system form? In this special issue, astronomical observations and theories constraining circumstellar disks, their lifetimes, and the formation of planetary to subplanetary objects are reviewed. At present, it is difficult to observe what is happening within disks and to determine if another disk environment is comparable to the early solar system disk environment (called the protoplanetary disk). Fortunately, we have chondritic meteorites, which provide a record of the processes that operated and materials present within the protoplanetary disk.
ANTS: Exploring the Solar System with an Autonomous Nanotechnology Swarm
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S.; Rilee, M.; Truszkowski, W.; Marr, G.
2002-01-01
ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, calls for a large (1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft to prospect the asteroid belt. Additional information is contained in the original extended abstract.
2011-12-16
This frame from an animation shows how the magnetic field lines emanating from our sun spiral out into the solar system as the sun rotates. NASA Voyager 1 is in an area scientists are calling the stagnation region, at the outer layer of the heliosphere.
Moon or Planet? The Exomoon Hunt Continues Artist Concept
2014-04-10
Researchers have detected the first exomoon candidate -- a moon orbiting a planet that lies outside our solar system. Using a technique called microlensing, they observed what could be either a moon and a planet -- or a planet and a star.
2017-12-08
A solar flare associated with the coronal mass ejection seen in this image generated a flurry of fast-moving solar protons. As each one hits the CCD camera on SOHO, it produces a brief snow-like speckle in the image. Credit: NASA/SOHO CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two STEREO spacecraft are both currently viewing the far side of the sun. Together these instruments help scientists create a three-dimensional model of any CME as its journey unfolds through interplanetary space. Such information can show why a given characteristic of a CME close to the sun might lead to a given effect near Earth, or any other planet in the solar system...NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Unaffordable or cost-effective?: introducing an emergency referral system in rural Niger.
Bossyns, Paul; Abache, Ranaou; Abdoulaye, Mahaman Sani; Lerberghe, Wim Van
2005-09-01
An important investment was made in two health districts in Niger to organize an emergency referral system. This study estimates its impact and cost-effectiveness in relation with external determinants. After installing a solar radio network in the health centres, emergency calls and related data were monitored over 7 years and investment and recurrent costs for the system were estimated. The number of emergency calls increased significantly in both districts. In 2003, the total yearly cost for the district amounted to US dollars 14,147, the cost per useful and successful call was US dollars 49 and the cost per inhabitant and per year was about US dollars 0.06. The impressive and immediate impact on the health system, the relatively low recurrent cost and the minimal management requirements for the health service make the investment very worthwhile. Organizing emergency evacuation systems should be a priority for any health district in the world.
Thermal Development Test of the NEXT PM1 ION Engine
NASA Technical Reports Server (NTRS)
Anderson, John R.; Snyder, John Steven; Van Noord, Jonathan L.; Soulas, George C.
2007-01-01
NASA's Evolutionary Xenon Thruster (NEXT) is a next-generation high-power ion thruster under development by NASA as a part of the In-Space Propulsion Technology Program. NEXT is designed for use on robotic exploration missions of the solar system using solar electric power. Potential mission destinations that could benefit from a NEXT Solar Electric Propulsion (SEP) system include inner planets, small bodies, and outer planets and their moons. This range of robotic exploration missions generally calls for ion propulsion systems with deep throttling capability and system input power ranging from 0.6 to 25 kW, as referenced to solar array output at 1 Astronomical Unit (AU). Thermal development testing of the NEXT prototype model 1 (PM1) was conducted at JPL to assist in developing and validating a thruster thermal model and assessing the thermal design margins. NEXT PM1 performance prior to, during and subsequent to thermal testing are presented. Test results are compared to the predicted hot and cold environments expected missions and the functionality of the thruster for these missions is discussed.
First Map of Alien World animation
2007-05-09
This image shows the first-ever map of the surface of an exoplanet, or a planet beyond our solar system. Showing temperature variations across the cloudy tops of a gas giant called HD 189733b, the infrared data is taken by NASA Spitzer Space Telescope.
NASA Technical Reports Server (NTRS)
Sayfi, Elias
2004-01-01
MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.
NASA Astrophysics Data System (ADS)
Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia
2012-02-01
Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.
Evolution of redback radio pulsars in globular clusters
NASA Astrophysics Data System (ADS)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.
2017-02-01
Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.
The Sun/Earth System and Space Weather
NASA Technical Reports Server (NTRS)
Poland, Arthur I.; Fox, Nicola; Lucid, Shannon
2003-01-01
Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.
Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications
Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria
2017-01-01
Abstract Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so‐called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH3CN)4]PF6‐catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. PMID:28644559
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, E. A.; Gee, G. B.
1999-01-01
The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, Edward A.; Gee, G. B.
1999-01-01
The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.
Water's Early Journey in a Solar System (Artist Concept)
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Spitzer Space Telescope observed a fledgling solar system like the one depicted in this artist's concept, and discovered deep within it enough water vapor to fill the oceans on Earth five times. This water vapor starts out in the form of ice in a cloudy cocoon (not pictured) that surrounds the embryonic star, called NGC 1333-IRAS 4B (buried in center of image). Material from the cocoon, including ice, falls toward the center of the cloud. The ice then smacks down onto a dusty pre-planetary disk circling the stellar embryo (doughnut-shaped cloud) and vaporizes. Eventually, this water might make its way into developing planets.Features of volcanic activity on various bodies of the Solar system
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.
2018-05-01
The bark of many cosmic bodies is in motion due to the displacement of tectonic plates on magma. Outpouring of molten magma through cracks in the bark is called volcano eruption. Such eruptions create new forms of relief, new types of rocks and landscapes; they differ in chemical composition, thermal conditions, etc. That is, volcanoes themselves form new types of resources on the bodies of the Solar system. There are three main types of volcanoes: basaltic, andesitic and cryo or ice volcanoes. The first and second types of eruptions are typical for planets of terrestrial type and for some satellites of the planets.
International Space Station (ISS)
2000-12-05
Astronaut Joseph R. Tanner, STS-97 mission specialist, is seen during a session of Extravehicular Activity (EVA), performing work on the International Space Station (ISS). Part of the Remote Manipulator System (RMS) arm and a section of the newly deployed solar array panel are in the background. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system on board the ISS. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.
2014-04-17
NASA's Kepler mission has discovered the first Earth-size planet orbiting in the habitable zone of a star outside our solar system. The newly discovered planet is called Kepler-186f and is about 10 percent larger than Earth.
NREL and Hawaiian Electric Navigate Uncharted Waters of Energy
potential grid impact of adding customer-side storage to rooftop solar systems-a scenario that could soon Systems Integration Facility's (ESIF's) power hardware-in-the-loop capability. NREL's ESIF was one of the justify activation of a specific grid support function called "volt-var control" for all new
Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust
NASA Technical Reports Server (NTRS)
Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.
2009-01-01
Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.
2017-12-08
STEREO witnessed the March 5, 2013, CME from the side of the sun – Earth is far to the left of this picture. While the SOHO images show a halo CME, STEREO shows the CME clearly moving away from Earth. Credit: NASA/STEREO --- CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two STEREO spacecraft are both currently viewing the far side of the sun. Together these instruments help scientists create a three-dimensional model of any CME as its journey unfolds through interplanetary space. Such information can show why a given characteristic of a CME close to the sun might lead to a given effect near Earth, or any other planet in the solar system. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
OHO captured this image of a CME from the side – but the structure looks much different from the classic light bulb CME. The filament of material bursting off the sun has a helical magnetic structure, which is unraveling like a piece of yarn during the eruption. Credit: ESA/NASA/SOHO..---..CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two STEREO spacecraft are both currently viewing the far side of the sun. Together these instruments help scientists create a three-dimensional model of any CME as its journey unfolds through interplanetary space. Such information can show why a given characteristic of a CME close to the sun might lead to a given effect near Earth, or any other planet in the solar system...NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Four different instruments on SOHO show a large CME on Nov. 6, 1997. The sun is at the center, with three coronagraph images of different sizes around it. The streaks of white light are from protons hitting the SOHO cameras producing a snowy effect typical of a significant flare. ..Credit: NASA/SOHO..---..CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two STEREO spacecraft are both currently viewing the far side of the sun. Together these instruments help scientists create a three-dimensional model of any CME as its journey unfolds through interplanetary space. Such information can show why a given characteristic of a CME close to the sun might lead to a given effect near Earth, or any other planet in the solar system...NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
On the dayside mantle region around those nonmagnetic solar system bodies which have ionosphere
NASA Astrophysics Data System (ADS)
Szego, K.; Sagdeev, R. Z.; Shapiro, V. D.; Shevchenko, V. I.
1992-08-01
The properties of the plasma environments close to the dayside obstacle boundary of nonmagnetic planets with ionospheres are compared to study the effects of turbulent wave-particle processes. Data are examined from Pioneer-Venus, Phobos-2, and Giotto/Vega data regarding Venus, Mars, and Comet P/Halley, respectively. The equivalent of the MHD obstacle boundary on the dayside is investigated with attention given to the wave-particle processes. A magnetic cavity is found to exist in observations and theory within the magnetosphere where the solar-wind magnetic field does not penetrate. The ionosphere penetrates the boundary, and a region is defined where the solar wind and the planetary/cometary plasma overlap. The region is called a mantle region in which: (1) the solar wind decelerates and the magnetic field piles up; (2) two counterstreaming ion populations exist; and (3) solar wind and body ions interact via wave-particle interaction.
Engineered nanomaterials for solar energy conversion.
Mlinar, Vladan
2013-02-01
Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.
Dynamic Modeling of Solar Dynamic Components and Systems
NASA Technical Reports Server (NTRS)
Hochstein, John I.; Korakianitis, T.
1992-01-01
The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.
Magnetic energy storage and the nightside magnetosphere-ionosphere coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, W.; Pekker, M.; Doxas, I.
1998-05-01
The change m in the magnetic energy stored m in the Earth`s magnetotail as a function of the solar wind, BIF conditions are investigated using an empirical magnetic field model. The results are used to calculate the two normal modes contained m in the low-dimensional global model called WINDMI for the solar wind driven magnetosphere-ionosphere system. The coupling of the magnetosphere-ionosphere (MI) through the nightside region 1 current loop transfers power to the ionosphere through two modes: a fast (period of minutes) oscillation and a slow (period of one hour) geotail cavity mode. The solar wind drives both modes mmore » in the substorm dynamics.« less
2000-11-30
Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000, carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
2000-11-30
Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000 carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
Techno-economıc Analysıs of Evacuated Tube Solar Water Heater usıng F-chart Method
NASA Astrophysics Data System (ADS)
Fayaz, H.; Rahim, N. A.; Saidur, R.; Hasanuzzaman, M.
2018-05-01
Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in recent decades. Solar water heating systems based on thermal collector alone or connected with photovoltaic called as photovoltaic-thermal (PVT) are practical applications to replace the use of electrical water heaters but weather dependent performance of these systems is not linear. Therefore on the basis of short term or average weather conditions, accurate analysis of performance is quite difficult. The objective of this paper is to show thermal and economic analysis of evacuated tube collector solar water heaters. Analysis done by F-Chart shows that evacuated tube solar water heater achieves fraction value of 1 to fulfil hot water demand of 150liters and above per day for a family without any auxiliary energy usage. Evacuated tube solar water heater show life cycle savings of RM 5200. At water set temperature of 100°C, RM 12000 is achieved and highest life cycle savings of RM 6100 at the environmental temperature of 18°C are achieved. Best thermal and economic performance is obtained which results in reduction of household greenhouse gas emissions, reduction of energy consumption and saves money on energy bills.
2017-12-08
Caption: This image from June 20, 2013, at 11:15 p.m. EDT shows the bright light of a solar flare on the left side of the sun and an eruption of solar material shooting through the sun’s atmosphere, called a prominence eruption. Shortly thereafter, this same region of the sun sent a coronal mass ejection out into space. --- On June 20, 2013, at 11:24 p.m., the sun erupted with an Earth-directed coronal mass ejection or CME, a solar phenomenon that can send billions of tons of particles into space that can reach Earth one to three days later. These particles cannot travel through the atmosphere to harm humans on Earth, but they can affect electronic systems in satellites and on the ground. Experimental NASA research models, based on observations from NASA’s Solar Terrestrial Relations Observatory and ESA/NASA’s Solar and Heliospheric Observatory show that the CME left the sun at speeds of around 1350 miles per second, which is a fast speed for CMEs. Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they funnel energy into Earth's magnetic envelope, the magnetosphere, for an extended period of time. The CME’s magnetic fields peel back the outermost layers of Earth's fields changing their very shape. Magnetic storms can degrade communication signals and cause unexpected electrical surges in power grids. They also can cause aurora. Storms are rare during solar minimum, but as the sun’s activity ramps up every 11 years toward solar maximum – currently expected in late 2013 -- large storms occur several times per year. In the past, geomagnetic storms caused by CMEs of this strength and direction have usually been mild. Read more: 1.usa.gov/14OxuEe Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Caption: This image from June 20, 2013, at 11:15 p.m. EDT shows the bright light of a solar flare on the left side of the sun and an eruption of solar material shooting through the sun’s atmosphere, called a prominence eruption. Shortly thereafter, this same region of the sun sent a coronal mass ejection out into space. --- On June 20, 2013, at 11:24 p.m., the sun erupted with an Earth-directed coronal mass ejection or CME, a solar phenomenon that can send billions of tons of particles into space that can reach Earth one to three days later. These particles cannot travel through the atmosphere to harm humans on Earth, but they can affect electronic systems in satellites and on the ground. Experimental NASA research models, based on observations from NASA’s Solar Terrestrial Relations Observatory and ESA/NASA’s Solar and Heliospheric Observatory show that the CME left the sun at speeds of around 1350 miles per second, which is a fast speed for CMEs. Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they funnel energy into Earth's magnetic envelope, the magnetosphere, for an extended period of time. The CME’s magnetic fields peel back the outermost layers of Earth's fields changing their very shape. Magnetic storms can degrade communication signals and cause unexpected electrical surges in power grids. They also can cause aurora. Storms are rare during solar minimum, but as the sun’s activity ramps up every 11 years toward solar maximum – currently expected in late 2013 -- large storms occur several times per year. In the past, geomagnetic storms caused by CMEs of this strength and direction have usually been mild. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
1999-01-01
This video gives a brief history of the Jet Propulsion Laboratory, current missions and what the future may hold. Scenes includes various planets in the solar system, robotic exploration of space, discussions on the Hubble Space Telescope, the source of life, and solar winds. This video was narrated by Jodie Foster. Animations include: close-up image of the Moon; close-up images of the surface of Mars; robotic exploration of Mars; the first mapping assignment of Mars; animated views of Jupiter; animated views of Saturn; and views of a Giant Storm on Neptune called the Great Dark Spot.
Solar Photovoltaic Technology Basics | NREL
For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the
Solar and Drag Sail Propulsion: From Theory to Mission Implementation
NASA Technical Reports Server (NTRS)
Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy
2014-01-01
Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC, and began its mission after it was ejected from the FASTSAT into Earth orbit, where it remained for several weeks before deorbiting as planned. NASA recently selected two small satellite missions for study as part of the Advanced Exploration Systems (AES) Program, both of which will use solar sails to enable their scientific objectives. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Near Earth Asteroid (NEA) Scout mission will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interests for possible future human exploration. Both are being studied for possible launch in 2017. The Planetary Society's privately funded LightSail-A and -B cubesat-class spacecraft are nearly complete and scheduled for launch in 2015 and 2016, respectively. MMA Design launched their DragNet deorbit system in November 2013, which will deploy from the STPSat-3 spacecraft as an end of life deorbit system. The University of Surrey is building a suite of cubesat class drag and solar sail systems that will be launched beginning in 2015. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric rockets. For example, the NASA Heliophysics Decadal Survey identifies no less than three such missions for possible flight before the mid-2020's. Solar and drag sail propulsion technology is no longer merely an interesting theoretical possibility; it has been demonstrated in space and is now a critical technology for science and solar system exploration.
500 Watt Solar AMTEC Power System for Small Spacecraft.
1995-03-01
Thermal Modeling of High Efficiency AMTEC Cells ," Proceedings of the 24th National Heat Transfer Conference. Journal Article 12. SPACE...power flow calculation is the power required by the AMTEC cells which is the cell output power over the cell efficiency . The system model also...Converter ( AMTEC ) cell , called the multi-tube cell , integrated with an individual Thermal Energy Storage (TES) unit. The
2017-12-08
This CME image from Oct. 7, 2012, captured by two instruments on STEREO, shows the eruption from its base out into space. The base of the CME near the sun is seen in extreme ultraviolet light emitted directly from the solar material; the growing loop is seen in visible light. Credit: NASA/STEREO CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two STEREO spacecraft are both currently viewing the far side of the sun. Together these instruments help scientists create a three-dimensional model of any CME as its journey unfolds through interplanetary space. Such information can show why a given characteristic of a CME close to the sun might lead to a given effect near Earth, or any other planet in the solar system...NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Heating of the Solar Corona and its Loops
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
2009-01-01
At several million degrees, the solar corona is more than two orders of magnitude hotter than the underlying solar surface. The reason for these extreme conditions has been a puzzle for decades and is considered one of the fundamental problems in astrophysics. Much of the coronal plasma is organized by the magnetic field into arch-like structures called loops. Recent observational and theoretical advances have led to great progress in understanding the nature of these loops. In particular, we now believe they are bundles of unresolved magnetic strands that are heated by storms of impulsive energy bursts called nanoflares. Turbulent convection at the solar surface shuffles the footpoints of the strands and causes them to become tangled. A nanoflare occurs when the magnetic stresses reach a critical threshold, probably by way of a mechanism called the secondary instability. I will describe our current state of knowledge concerning the corona, its loops, and how they are heated.
International Space Station (ISS)
2000-12-04
This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Takahashi, Masaki
2014-12-01
In this study, we propose a new attitude determination system, which we call Irradiance-based Attitude Determination (IRAD). IRAD employs the characteristics and geometry of solar panels. First, the sun vector is estimated using data from solar panels including current, voltage, temperature, and the normal vectors of each solar panel. Because these values are obtained using internal sensors, it is easy for rovers to provide redundancy for IRAD. The normal vectors are used to apply to various shapes of rovers. Second, using the gravity vector obtained from an accelerometer, the attitude of a rover is estimated using a three-axis attitude determination method. The effectiveness of IRAD is verified through numerical simulations and experiments that show IRAD can estimate all the attitude angles (roll, pitch, and yaw) within a few degrees of accuracy, which is adequate for planetary explorations.
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Merrill, Raymond G.; Qu, Min
2016-01-01
NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.
Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.
Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper
2017-08-10
Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Recognizing a need for a coordinated approach to resolve energy problems, certain members of the Organization for Economic Cooperation and Development (OECD) met in September 1974 and agreed to develop an International Energy Program. The International Energy Agency (IEA) was established within the OECD to administer, monitor and execute this International Energy Program. In July 1975, Solar Heating and Cooling was selected as one of the sixteen technology fields for multilateral cooperation. Five project areas, called tasks, were identified for cooperative activities within the IEA Program to Develop and Test Solar Heating and Cooling Systems. The objective of one taskmore » was to obtain improved basic resource information for the design and operation of solar heating and cooling systems through a better understanding of the required insolation (solar radiation) and related weather data, and through improved techniques for measurement and evaluation of such data. At the February 1976 initial experts meeting in Norrkoeping, Sweden, the participants developed the objective statement into two subtasks. (1) an insolation handbook; and (2) a portable meteorological instrument package. This handbook is the product of the first subtask. The objective of this handbook is to provide a basis for a dialogue between solar scientists and meteorologists. Introducing the solar scientist to solar radiation and related meteorological data enables him to better express his scientific and engineering needs to the meteorologist; and introducing the meteorologist to the special solar radiation and meteorological data applications of the solar scientist enables him to better meet the needs of the solar energy community.« less
The Hitchhiker's Guide to the Outer Solar System
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Quadrelli, Marco; Lantoine, Gregory; Backes, Paul; Lopez Ortega, Alejandro; Grip, Havard; Yen, Chen-Wan; Jewitt, David
2015-01-01
We propose a novel deep space propulsion method called the Comet Hitchhiker. The concept is to perform momentum exchange with small bodies (i.e., asteroid and comet) using an extendable/retrievable tether and a harpoon. Unlike previously proposed tethered fly-by, the use of extendable tether enables to change the relative speed with a target. Hence Hitchhiker would be a prospective means of providing orbit insertion deltaV, particularly for rendezvous missions to small bodies in the outer Solar System such as Kuiper belt objects and Centaurs, which are not easily manageable with chemical propulsion or solar electric propulsion. Furthermore, by applying regenerative brake during a hitchhike maneuver, a Hitchhiker can harvest energy. The stored energy can be used to make a departure from the target by quickly retrieving the tether, which we call a inverse hitchhike maneuver. By repeating hitchhike and inverse Hitchhike maneuvers, a Hitchhiker could perform a mission to rendezvous with multiple targets efficiently, which we call a multi-hitchhike mission. We derive the basic equation of Hitchhiker, namely the Space Hitchhike Equation, which relates the specific strength and mass fraction of tether to achievable ?V. We then perform detailed feasibility analysis through finite element simulations of tether as well as hypervelocity impact simulations of the harpoon using the Adaptive Mesh Refinement Objected-oriented C++ (AMROC) algorithm. The analysis results suggest that a hitchhike maneuver with deltaV = approximately 1.5km/s is feasible with flight proven materials such as Kevlar/Zylon tether and tungsten harpoon. A carbon nanotube tether, combined with diamond harpoon, would enable approximately 10 km/s hitchhike maneuver. Finally, we present two particular mission scenarios for Hitchhiker: Pluto rendezvous and a multi-hitchhike mission to the Themis family asteroids in the main belt.
Discharge transient coupling in large space power systems
NASA Technical Reports Server (NTRS)
Stevens, N. John; Stillwell, R. P.
1990-01-01
Experiments have shown that plasma environments can induce discharges in solar arrays. These plasmas simulate the environments found in low earth orbits where current plans call for operation of very large power systems. The discharges could be large enough to couple into the power system and possibly disrupt operations. Here, the general concepts of the discharge mechanism and the techniques of coupling are discussed. Data from both ground and flight experiments are reviewed to obtain an expected basis for the interactions. These concepts were applied to the Space Station solar array and distribution system as an example of the large space power system. The effect of discharges was found to be a function of the discharge site. For most sites in the array discharges would not seriously impact performance. One location at the negative end of the array was identified as a position where discharges could couple to charge stored in system capacitors. This latter case could impact performance.
The Solar Connections Observatory for Planetary Environments
NASA Astrophysics Data System (ADS)
Oliversen, R. J.; Harris, W. M.
2002-05-01
The NASA Sun-Earth Connection theme roadmap calls for comparative studies of planetary, cometary, and local interstellar medium (LISM) interaction with the Sun and solar variability. Through such studies, we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the STP, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap, we propose a mission to study the solar interaction with bodies throughout our solar system and the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/UV telescope operating from a heliocentric, Earth-trailing orbit that provides high observing efficiency, sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high resolution (R>105) H Ly-α emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. The other planets and comets will be monitored in long duration campaigns centered, when possible, on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using the combination of SCOPE observations and models including MHD, general circulation, and radiative transfer, we will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.
Solar Innovation Infographic | Solar Research | NREL
from the sun for about 200 years. Over the past 40 years, solar energy technologies have made electricity - voltage - which is called the PV effect. 1839 - Edmond Becquerel discovered that the sun can
CSPonD demonstrative project: Start-up process of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Grange, Benjamin; Perez, Victor G.; Tetreault-Friend, Melanie; Codd, Daniel S.; Calvet, Nicolas; Slocum, Alexander S.
2017-06-01
The current concept of commercial concentrated solar power (CSP) plants, based on the concept of a solar field, receiver, storage and power block, experienced significant growth in the past decades. The power block is the most well know part of the plant, while solar field depends on the receiver technology. The dominant receiver technologies are parabolic troughs and central towers. Most thermal energy storage (TES) relies on two tanks of molten salts, one hot and one cold serviced by pumps and piping systems. In spite of the technical development level achieved by these systems, efficiency is limited, mainly caused by thermal losses in piping, parasitic losses due to electric tracing and pumping and receiver limitations. In order to mitigate the these issues, a new concept called Concentrated Solar Power on Demand (CSPonD), was developed, consisting of a direct absorption Solar Salt CSP receiver which simultaneously acts as TES tank. Currently, in the frame of the flagship collaborative project between the Masdar Institute (UAE) and the Massachusetts Institute of Technology (USA) a 25 kW demonstrative prototype is in its final building phase at the Masdar Institute Solar Platform. The present paper, explains the demonstration prototype based on the CSPonD concept, with emphasis on the planned start-up process for the facility.
Two different sources of water for the early solar nebula.
Kupper, Stefan; Tornow, Carmen; Gast, Philipp
2012-06-01
Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.
Transformative Small Body Science Enabled with Pan-STARSS Survey Data
NASA Astrophysics Data System (ADS)
Meech, Karen J.; Kleyna, Jan T.; Keane, Jacqueline V.; Hainaut, Olivier R.; MIcheli, Marco
2018-01-01
In the first 5 Myr of Solar System formation, gas imprinted a local chemical signature on the planetesimals which were subsequently redistributed during planet formation. Decades-long ground- and space-based studies have tried to map our solar system’s protoplanetary disk chemistry using volatiles in comets. We now know that comet volatiles (H2O, CO, CO2 and organics) have distinct chemical classes. This data contradicts traditional ideas that all volatile-rich bodies formed in the outer disk. In-situ space comet missions have suggested, however, that comets preserve their pristine volatile inventory, and perhaps even their heritage of ices prior to the protoplanetary disk. Recently, a profusion of dynamical models has been developed that can reproduce some of the key characteristics of today’s solar system. Some models require significant giant planet migration, while others do not. The UH-led Pan-STARRS1 survey (PS1) can offer transformative insight into small bodies and the early solar system, providing a preview of LSST. In 2013 PS1 discovered an asteroidal object on a long-period comet orbit, the first of a class of tailless objects informally called Manxes. The second Manx discovered had a surface composition similar to inner solar system rocky S-type material, suggesting the intriguing possibility that we are looking at fresh inner solar system Earth-forming material, preserved for billions of years in the Oort cloud. Currently 10-15 of these objects are discovered each year, with PS1 dominating the discoveries. The number of rocky inner solar system Manx objects can be used to constrain solar system formation models. PS1 is also very good at discovering faint active objects at large distances, including the remarkable discovery of a comet active beyond 16 au from the sun. By searching the PS1 database once these discoveries are made, it is possible to extend the orbit arc backwards in time, allowing us to model the activity, and understand the chemistry and physics of ices and activity in the outer solar system. These discoveries will help us tie together chemistry and dynamics in our solar system with new resolved ALMA observations of protoplanetary disks. Support from NSF grants AST-1617015, 1413736.
Electric Utility Industry Experience with Geomagnetic Disturbances
1991-09-01
the auroral electrojets or currents that result from solar-emitted particles during geomagnetic storms is provided by the aurora borealis , often called...on wire-based communication systems. As early as 1860 it was noted that during intense periods of the aurora borealis , telegraphic systems were... San Diego , CA 92186-5154. 221. Jaycor, M. Schultz, Jr., 1608 Spring Hill Road, Vienna, VA 22182-2270. 222. Joint Strategic Target Planning Staff, The
The planar multijunction cell - A new solar cell for earth and space
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr.; Chai, A.-T.; Goradia, C.
1980-01-01
A new family of high-voltage solar cells, called the planar multijunction (PMJ) cell is being developed. The new cells combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell area. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.
Using the Bombardment History of the Moon to Understand Planet Formation
NASA Astrophysics Data System (ADS)
Bottke, W. F.; NASA/NLSI CenterLunar Origin; Evolution (CLOE)
2011-12-01
The Moon is unique. It is the only object that is both relatively accessible and still bears scars from practically every epoch of solar system formation. This is both a challenge and a blessing. It is a challenge because to understand the Moon's complex bombardment history, we need to understand the formation and evolution of the solar system as a whole. It is a blessing because the Moon is an irreplaceable resource for the study of events that have shaped the Earth and other planets. For example, we can now show the Moon's bombardment history can be broken into several episodes defined by planet formation processes. The earliest phase lasts for several hundreds of My after the first solids form. Here many planets grow via a new process called "planetesimal-driven migration", with embryos moving outward in the disk by gravitationally-scattering planetesimals. This mobility assists accretion and may explain the interesting properties of certain worlds (e.g., Mars). In the outer solar system, the giant planets form on different orbits than their observed ones via a variety of processes that we are still struggling to understand. The evidence they had a different configuration, however, can be found in (i) the orbital distribution of the asteroid belt, with particular unusual asteroids residing where Jupiter used to have its mean motion resonances, and (ii) in the lunar crater record, with the oldest craters formed at half the impact velocity than more recent ones. The lunar impact flux over this interval constrains how these worlds evolved. The second episode occurred near 4.1 Ga and is often called the "Nice model". It was triggered by a dynamical instability taking place among the giant planets, who quickly moved to their current orbits via interactions with both themselves and comet-like planetesimals scattered out of a disk residing beyond 12 AU. A by-product of this planetary reconfiguration was the ejection of comets and asteroids from stable reservoirs across this solar system. Some hit the Moon and produced the so-called lunar "cataclysm", with impact velocities nearly the same as current values. This velocity change allows us to use craters to predict that this episode started near the formation time of lunar basin Nectaris. The episode's end is often thought to be marked across the solar system by the formation of the last lunar basin Orientale near 3.7 Ga. However, basin-forming projectiles liberated by this event continued to hit Earth throughout the Archean and likely persisted until ~2.5 Ga. The implications of this for the history of our biosphere are likely to be profound. The final episode, which lasted billions of years, is defined by collision events in the asteroid belt, which deliver impactors to the inner solar system via dynamical processes. This period likely contains both "lulls" and intervals of steeply higher impact rates via asteroid showers. While the history of this period is still poorly understood, correlations between the lunar crater record and family-forming events in the main belt suggest impacts have influenced, perhaps significantly, the evolution of life on Earth.
2017-12-08
There's no way to tell from this SOHO image whether the halo CME on March 5, 2013, originated from the front or far of the sun. But the STEREO spacecraft were watching the sun from the sides and showed it was from the far side. The bright planet is Venus. Credit: NASA/SOHO CME WEEK: What To See in CME Images Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant, expanding clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME WEEK from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with. When a coronal mass ejection blasts off the sun, scientists rely on instruments called coronagraphs to track their progress. Coronagraphs block out the bright light of the sun, so that the much fainter material in the solar atmosphere -- including CMEs -- can be seen in the surrounding space. CMEs appear in these images as expanding shells of material from the sun's atmosphere -- sometimes a core of colder, solar material (called a filament) from near the sun's surface moves in the center. But mapping out such three-dimensional components from a two-dimensional image isn't easy. Watch the slideshow to find out how scientists interpret what they see in CME pictures. The images in the slideshow are from the three sets of coronagraphs NASA currently has in space. One is on the joint European Space Agency and NASA Solar and Heliospheric Observatory, or SOHO. SOHO launched in 1995, and sits between Earth and the sun about a million miles away from Earth. The other two coronagraphs are on the two spacecraft of the NASA Solar Terrestrial Relations Observatory, or STEREO, mission, which launched in 2006. The two STEREO spacecraft are both currently viewing the far side of the sun. Together these instruments help scientists create a three-dimensional model of any CME as its journey unfolds through interplanetary space. Such information can show why a given characteristic of a CME close to the sun might lead to a given effect near Earth, or any other planet in the solar system...NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DAPHNE: Energy Generation and storage, using Solar Sails
NASA Astrophysics Data System (ADS)
Argelagós Palau, Ana Maria; Savio Bradford, Brandon
Space travel is still in it's adolescent stages. Having embarked beyond the limit of our atmosphere for a mere 50 years, it is easy to imagine how much is yet to be discovered, in other solar systems and our own. One of the main factors that slow us down is the need for Energy. Long distance space travel requires a lot of energy, both for propulsion and operations alike. The principle of solar sails shows that the momentum of solar energy can be used beneficially, as can be seen in NASA's Sun-Jammer project. So, why not generate energy from this system? The DAPHNE system will utilize the simple principle of wind mills that is used here on Earth; using the force created by Solar wind to rotate an axle that in turn, generates energy. And this mill can be used to recharge spacecraft that need to fly further than it's own initial energy system will allow. Another benefit to developing this system is the fact that it is an alternative to nuclear energy generation for space, that a lot of modern research is being done on. The DAPHNE system can be considered a solution to long term propellant storage in space for interplanetary and interstellar travel. This paper proposes the design of an energy recharge technology, we called DAPHNE, which will utilize Nanotechnology, using solar sails to generate and store energy for future long-distance space craft to dock with, recharge and continue on their journey/mission. Examples of spacecraft in development that might benefit from a recharging station are the LISA Pathfinder, terrestrial exploration missions and eventually, the long interstellar missions that will be launched in the distant future. Thereby, allowing mankind to push the boundaries of our solar system and accelerate our ability to know what's out there. This technology would help the future generations of Space researchers move further than we can.
Solar Eclipse Computer API: Planning Ahead for August 2017
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve
2016-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
Dose and linear energy transfer spectral measurements for the supersonic transport program
NASA Technical Reports Server (NTRS)
Philbrick, R. B.
1972-01-01
The purpose of the package, called the high altitude radiation instrumentation system (HARIS), is to measure the radiation hazard to supersonic transport passengers from solar and galactic cosmic rays. The HARIS includes gaseous linear energy transfer spectrometer, a tissue equivalent ionization chamber, and a geiger meuller tube. The HARIS is flown on RB-57F aircraft at 60,000 feet. Data from the HARIS are reduced to give rad and rem dose rates measured by the package during the flights. Results presented include ambient data obtained on background flights, altitude comparison data, and solar flare data.
Thermal response of solar receiver aperture plates during sun walk-off
NASA Technical Reports Server (NTRS)
Wen, L.; Roschke, J.
1982-01-01
The tracking mechanism for a point-focusing concentrator may be subject to failure. If this should occur, the solar image will travel across the aperture plate, and it may also impinge on the adjacent support structure. Such an event is called 'sun walk-off'. The present investigation is concerned with the transient response of different aperture plate materials to the intense heating produced in a typical walk-off situation for parabolic dish concentrators. Receivers for two solar module systems are considered, including a high-temperature receiver that utilizes a 2-milliradian (mrad) concentrator, and a lower-temperature receiver which is coupled with a 4-mrad concentrator. It is found that during a walk-off situation the solar image travels in a straight line in the radial direction. The results obtained for a copper aperture plate were disappointing. It appears that passive metallic plates without cooling or other protective support cannot withstand the intense heating.
NASA Technical Reports Server (NTRS)
1983-01-01
Ron Urban's International Ice Shows set up portable ice rinks for touring troupes performing on temporary rinks at amusement parks, sports arenas, dinner theaters, shopping malls and civic centers. Key to enhanced rink portability, fast freezing and maintaining ice consistency is a mat of flexible tubing called ICEMAT, an offshoot of a solar heating system developed by Calmac, Mfg. under contract with Marshall.
LighSail Students Testing - ELaNa XI
2014-09-23
Students Alex Diaz and Riki Munakata of California Polytechnic State University testing the LightSail CubeSat. LightSail is a citizen-funded technology demonstration mission sponsored by the Planetary Society using solar propulsion for CubeSats. The spacecraft is designed to “sail” on the energy of solar photons striking the thin, reflective sail material. The first LightSail mission is designed to test the spacecraft’s critical systems, including the sequence to autonomously deploy a Mylar solar sail with an area of 32 square meters (344 square feet). The Planetary Society is planning a second, full solar sailing demonstration flight for 2016. Light is made of packets of energy called photons. While photons have no mass, they have energy and momentum. Solar sails use this momentum as a method of propulsion, creating flight by light. LightSail’s solar sail is packaged into a three-unit CubeSat about the size of a loaf of bread. Launched by NASA’s CubeSat Launch Initiative on the ELaNa XI mission as an auxiliary payload aboard the U.S. Air Force X-37B space plane mission on May 20, 2015.
What is a Sungrazing Comet? [hd video
2013-11-27
Sungrazing comets are a special class of comets that come very close to the sun at their nearest approach, a point called perihelion. To be considered a sungrazer, a comet needs to get within about 850,000 miles from the sun at perihelion. Many come even closer, even to within a few thousand miles. Being so close to the sun is very hard on comets for many reasons. They are subjected to a lot of solar radiation which boils off their water or other volatiles. The physical push of the radiation and the solar wind also helps form the tails. And as they get closer to the sun, the comets experience extremely strong tidal forces, or gravitational stress. In this hostile environment, many sungrazers do not survive their trip around the sun. Although they don't actually crash into the solar surface, the sun is able to destroy them anyway. Many sungrazing comets follow a similar orbit, called the Kreutz Path, and collectively belong to a population called the Kreutz Group. In fact, close to 85% of the sungrazers seen by the SOHO satellite are on this orbital highway. Scientists think one extremely large sungrazing comet broke up hundreds, or even thousands, of years ago, and the current comets on the Kreutz Path are the leftover fragments of it. As clumps of remnants make their way back around the sun, we experience a sharp increase in sungrazing comets, which appears to be going on now. Comet Lovejoy, which reached perihelion on December 15, 2011 is the best known recent Kreutz-group sungrazer. And so far, it is the only one that NASA's solar-observing fleet has seen survive its trip around the sun. Comet ISON, an upcoming sungrazer with a perihelion of 730,000 miles on November 28, 2013, is not on the Kreutz Path. In fact, ISON's orbit suggests that it may gain enough momentum to escape the solar system entirely, and never return. Before it does so, it will pass within about 40 million miles from Earth on December 26th. More information on this topic available at: www.nasa.gov/content/goddard/timeline-of-comet-ison-s-dan... Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Tinetti, Giovanna
2014-01-01
Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets—mainly radial velocity and transit—or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even ‘just’ in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current ‘understanding’. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy. PMID:24664916
Tinetti, Giovanna
2014-04-28
Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.
NASA Technical Reports Server (NTRS)
Dlugach, Zh. M.; Mishchenko, M. I.
2013-01-01
The results of photometric and polarimetric observations carried out for some bright atmosphere-less bodies of the Solar system near the zero phase angle reveal the simultaneous existence of two spectacular optical phenomena, the so-called brightness and polarization opposition effects. In a number of studies, these phenomena were explained by the influence of coherent backscattering. However, in general, the interference concept of coherent backscattering can be used only in the case where the particles are in the far-field zones of each other, i.e., when the scattering medium is rather rarefied. Because of this, it is important to prove rigorously and to demonstrate that the coherent backscattering effect may also exist in densely packed scattering media like regolith surface layers of celestial bodies. From the results of the computer modeling performed with the use of numerically exact solutions of the macroscopic Maxwell equations for discrete random media with different packing densities of particles, we studied the origin and evolution of all the opposition phenomena predicted by the coherent backscattering theory for low-packing-density media. It has been shown that the predictions of this theory remain valid for rather high-packing densities of particles that are typical, in particular, of regolith surfaces of the Solar system bodies. The results allow us to conclude that both opposition effects observed simultaneously in some high-albedo atmosphereless bodies of the Solar system are caused precisely by coherent backscattering of solar light in the regolith layers composed of microscopic particles.
NASA Astrophysics Data System (ADS)
Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.; Gatti, Raymond C.; Peters, Micheal B.
1994-07-01
In this paper, we strive to achieve three goals: (1) to describe a continuous-thrusting space-fusion-propulsion engine called the Mirror Fusion Propulsion System (MFPS), (2) to describe MFPS' ability to accomplish two candidate outer-solar-system (OSS) missions using various levels of advanced technology identified in the laboratory, and (3) to describe some interesting safety features of MFPS that include continuous mission-abort capability, magnetic-field-shielding against solar particle events (SPE), and performance of in-orbit characterization of the target body's natural resources (prior to human landings) using fusion-neutrons, x-rays, and possibly the neutralized thrust beam. The first OSS mission discussed is a mission to the Saturnian system, primarily exploration and resource- characterization driven, with emphasis on minimizing the Earth-to-Saturn and return-trip flight times. The other OSS mission discussed is an economically-driven mission to Uranus, stopping first to perform in-orbit resource characterization of the major moons of Uranus prior to human landing, and then returning to earth with a payload consisting of 3He (removed from the Uranian atmosphere or extracted from the Uranian moons) to be used in a future earth-based fusion-power industry.
Cavity radiation model for solar central receivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipps, F.W.
1981-01-01
The Energy Laboratory of the University of Houston has developed a computer simulation program called CREAM (i.e., Cavity Radiations Exchange Analysis Model) for application to the solar central receiver system. The zone generating capability of CREAM has been used in several solar re-powering studies. CREAM contains a geometric configuration factor generator based on Nusselt's method. A formulation of Nusselt's method provides support for the FORTRAN subroutine NUSSELT. Numerical results from NUSSELT are compared to analytic values and values from Sparrow's method. Sparrow's method is based on a double contour integral and its reduction to a single integral which is approximatedmore » by Guassian methods. Nusselt's method is adequate for the intended engineering applications, but Sparrow's method is found to be an order of magnitude more efficient in many situations.« less
NASA Astrophysics Data System (ADS)
Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin
2018-05-01
It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient–induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors.
International Space Station (ISS)
2000-12-07
In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
NASA Astrophysics Data System (ADS)
Mainzer, A.; Bauer, J.; Grav, T.; Masiero, J.; Cutri, R. M.; Dailey, J.; Eisenhardt, P.; McMillan, R. S.; Wright, E.; Walker, R.; Jedicke, R.; Spahr, T.; Tholen, D.; Alles, R.; Beck, R.; Brandenburg, H.; Conrow, T.; Evans, T.; Fowler, J.; Jarrett, T.; Marsh, K.; Masci, F.; McCallon, H.; Wheelock, S.; Wittman, M.; Wyatt, P.; DeBaun, E.; Elliott, G.; Elsbury, D.; Gautier, T., IV; Gomillion, S.; Leisawitz, D.; Maleszewski, C.; Micheli, M.; Wilkins, A.
2011-04-01
The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations.
2000-11-30
Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
NASA Technical Reports Server (NTRS)
2005-01-01
This artist's concept illustrates a solar system that is a much younger version of our own. Dusty disks, like the one shown here circling the star, are thought to be the breeding grounds of planets, including rocky ones like Earth. Astronomers using NASA's Spitzer Space Telescope spotted some of the raw ingredients for DNA and protein in one such disk belonging to a star called IRS 46. The ingredients, gaseous precursors to DNA and protein called acetylene and hydrogen cyanide, were detected in the star's inner disk, the region where scientists believe Earth-like planets would be most likely to form.Cosmological evolution and Solar System consistency of massive scalar-tensor gravity
NASA Astrophysics Data System (ADS)
de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás
2017-09-01
The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.
NASA Astrophysics Data System (ADS)
Bennouna, El Ghali; Mimet, Abdelaziz; Frej, Hicham
2016-05-01
The importance of thermal storage for commercial CSP (concentrated Solar Power) plants has now become obvious, this regardless of the solar technology used and the power cycle. The availability of a storage system to a plant operator brings a lot of possibilities for production management, cash flow optimization and grid stabilizing. In particular, and depending on plant location and local grid strategy, thermal storage can contribute, when wisely used, to control production and adapt it to the demand and / or power unbalances and varying prices. Storage systems design, sizing and configuration are proper to each power plant, hence systems that are now widely installed within large commercial solar plants are not necessarily suited for small scale decentralized production, and will not have the same effects. In this paper the benefits of thermal storage are studied for a 1MWe CSP plant with an ORC (Organic Rankine Cycle), this plant has many specific features which call for a detail analysis about the appropriate storage design and optimum operating strategies for decentralized solutions.
Shock Effects on Cometary-Dust Simulants
NASA Technical Reports Server (NTRS)
Lederer, Susan M.; Jensen, Elizabeth; Wooden, Diane H.; Lindsay, Sean S.; Smith, Douglas H.; Nakamura-Messenger, Keiko; Keller, Lindsay P.; Cardenas, Francisco; Cintala, Mark J.; Montes, Roland
2014-01-01
While comets are perhaps best known for their ability to put on spectacular celestial light shows, they are much more than that. Composed of an assortment of frozen gases mixed with a collection of dust and minerals, comets are considered to be very primitive bodies and, as such, they are thought to hold key information about the earliest chapters in the history of the solar system. (The dust and mineral grains are usually called the "refractory" component, indicating that they can survive much higher temperatures than the ices.) It has long been thought, and spacecraft photography has confirmed, that comets suffer the effects of impacts along with every other solar system body. Comets spend most of their lifetimes in the Kuiper Belt, a region of the solar system between 30 and 50 times the average distance of the Earth from the Sun, or the Oort Cloud, which extends to approximately 1 light year from the Sun. Those distances are so far from the Sun that water ice is the equivalent of rock, melting or vaporizing only through the action of strong, impact-generated shock waves.
SARSAT: A rescue system for ships and airplanes
NASA Technical Reports Server (NTRS)
1980-01-01
The SARSAT rescue system is described and alternative systems discussed, with SARSAT functioning as either independent satellite within an emergency call system or as an additional search and rescue payload of another satellite system. Geostationary and polar orbits are compared. A low cost SARSAT rescue system utilizing four satellites in a quasi solar, sun synchronized orbit at 1000 kilometers is proposed. Three multiple start satellites in a 57 degree orbit, with a fourth satellite in reserve at a lower orbit are described. Alternative transport systems are discussed and a recommended time table from project approval to launch is given.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
...: http://www.blm.gov/az/st/en/prog/energy/solar/quartzsite_solar_energy.html . FOR FURTHER INFORMATION... . Persons who use a telecommunications device for the deaf (TDD) may call the Federal Information Relay.... You will receive a reply during normal business hours. SUPPLEMENTARY INFORMATION: Quartzsite Solar...
Raju, Leo; Milton, R S; Mahadevan, Senthilkumaran
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations.
Raju, Leo; Milton, R. S.; Mahadevan, Senthilkumaran
2016-01-01
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations. PMID:27127802
Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit
NASA Astrophysics Data System (ADS)
Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.
2017-11-01
In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.
NEAT: a spatial telescope to detect nearby exoplanets using astrometry
NASA Astrophysics Data System (ADS)
Crouzier, Antoine
2015-01-01
With the present state of exoplanet detection techniques, none of the rocky planets of the Solar System would be discovered, yet their presence is a very strong constraint on the scenarios of formation of planetary systems. Astrometry, by measuring the reflex effect of planets on their central host stars, lead us to the mass of planets and to their orbit determination. This technique is used frequently and is very successful to determine the masses and the orbits of binary stars. From space, it is possible to use differential astrometry around nearby Solar-type stars to detect exoplanets down to one Earth mass in habitable zone, where the sensitivity of the technique is optimal. Finding habitable Earths in the Solar neighborhood would be a major step forward for exoplanet detection and these planets would be prime targets for attempting to find life outside of the Solar System, by searching for bio-markers in their atmospheres. A scientific consortium has formed to promote this kind of astrometric space mission. A mission called NEAT (Nearby Earth Astrometric Telescope) has been proposed to ESA in 2010. A laboratory testbed called NEAT-demo was assembled at IPAG, its main goal is to demonstrate CCD detector calibration to the required accuracy. During my PhD, my activities were related to astrophysical aspects as well as instrumental aspects of the mission. Regarding the scientific case, I compiled a catalog of mission target stars and reference stars (needed for the differential astrometric measurements) and I estimated the scientific return of NEAT-like missions in terms of number of detected exoplanets and their parameter distributions. The second aspect of the PhD is relative to the testbed, which mimics the NEAT telescope configuration. I am going to present the testbed itself, the data analysis methods and the results. An accuracy of 3e-4 pixel was obtained for the relative positions of artificial stars and we have determined that measures of pixel positions by the metrology is currently limited by stray light.
AI techniques in geomagnetic storm forecasting
NASA Astrophysics Data System (ADS)
Lundstedt, Henrik
This review deals with how geomagnetic storms can be predicted with the use of Artificial Intelligence (AI) techniques. Today many different Al techniques have been developed, such as symbolic systems (expert and fuzzy systems) and connectionism systems (neural networks). Even integrations of AI techniques exist, so called Intelligent Hybrid Systems (IHS). These systems are capable of learning the mathematical functions underlying the operation of non-linear dynamic systems and also to explain the knowledge they have learned. Very few such powerful systems exist at present. Two such examples are the Magnetospheric Specification Forecast Model of Rice University and the Lund Space Weather Model of Lund University. Various attempts to predict geomagnetic storms on long to short-term are reviewed in this article. Predictions of a month to days ahead most often use solar data as input. The first SOHO data are now available. Due to the high temporal and spatial resolution new solar physics have been revealed. These SOHO data might lead to a breakthrough in these predictions. Predictions hours ahead and shorter rely on real-time solar wind data. WIND gives us real-time data for only part of the day. However, with the launch of the ACE spacecraft in 1997, real-time data during 24 hours will be available. That might lead to the second breakthrough for predictions of geomagnetic storms.
The Lunar Regolith as a Recorder of Cosmic History
NASA Technical Reports Server (NTRS)
Cooper, Bonnie; McKay, D.; Riofrio, L.
2012-01-01
The Moon can be considered a giant tape recorder containing the history of the solar system and Universe. The lunar regolith (soil) has recorded the early history of the Moon, Earth, the solar system and Universe. A major goal of future lunar exploration should be to find and play back existing fragments of that tape . By reading the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 Gyr, and the less intense bombardment occurring since that time. This impact history is preserved on the Moon as regolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history of the Earth and Moon possibly had profound effects on the origin and development of life. Decrease in meteor bombardment allowed life to develop on Earth. Life may have developed first on another body, such as Mars, then arrived via meteorite on Earth. The solar system may have experienced bursts of severe radiation from the Sun, other stars, or from unknown sources. The lunar regolith has recorded this radiation history in the form of implanted solar wind, solar flare materials and radiation damage. Lunar soil can be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar tape recorder can provide detailed information on specific portions of solar and stellar variability. Data from the Moon also offers clues as to whether so-called fundamental constants have changed over time.
Solar Cycle Effects on Equatorial Electrojet Strength and Low Latitude Ionospheric Variability (P10)
NASA Astrophysics Data System (ADS)
Veenadhari, B.; Alex, S.
2006-11-01
veena_iig@yahoo.co.in The most obvious indicators of the activity of a solar cycle are sunspots, flares, plages, and soon. These are intimately linked to the solar magnetic fields, heliospheric processes which exhibit complex but systematic variations. The changes in geomagnetic activity, as observed in the ground magnetic records follow systematic correspondence with the solar activity conditions. Thus the transient variations in the magnetic field get modified by differing solar conditions. Also the solar cycle influences the Earth causing changes in geomagnetic activity, the magnetosphere and the ionosphere. Daily variations in the ground magnetic field are produced by different current systems in the earth’s space environment flowing in the ionosphere and magnetosphere which has a strong dependence on latitude and longitude of the location. The north-south (Horizontal) configuration of the earth’s magnetic field over the equator is responsible for the narrow band of current system over the equatorial latitudes and is called the Equatorial electrojet (EEJ) and is a primary driver for Equatorial Ionization anomaly (EIA). Equatorial electric fields and plasma drifts play the fundamental roles on the morphology of the low latitude ionosphere and strongly vary during geomagnetically quiet and disturbed periods. Quantitative study is done to illustrate the development process of EEJ and its influence on ionospheric parameters. An attempt is also made to examine and discuss the response of the equatorial electrojet parameters to the fast varying conditions of solar wind and interplanetary parameters.
Thermal State-of-Charge in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Hall, Carsie A., Jr.; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.
1998-01-01
A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.
Solar energy from spinach and toothpaste: fabrication of a solar cell in schools
NASA Astrophysics Data System (ADS)
Siemsen, F.; Bunk, A.; Fischer, K.; Korneck, F.; Engel, H.; Roux, D.
1998-01-01
We will show how pupils can make a solar cell with spinach, toothpaste and a few other items found in any school laboratory. This device is called a Graetzel cell, and could trigger off a revolution in photovoltaic technology.
NASA Astrophysics Data System (ADS)
Dandouras, I.; Yamauchi, M.; Rème, H.; De Keyser, J.; Marghitu, O.; Fazakerley, A.; Grison, B.; Kistler, L.; Milillo, A.; Nakamura, R.; Paschalidis, N.; Paschalis, A.; Pinçon, J.-L.; Sakanoi, T.; Wieser, M.; Wurz, P.; Yoshikawa, I.; Häggström, I.; Liemohn, M.; Tian, F.
2017-09-01
ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmospheric composition over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets, which is essential for habitability.
Status of Solar Sail Propulsion: Moving Toward an Interstellar Probe
NASA Technical Reports Server (NTRS)
Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV
2006-01-01
NASA's In-Space Propulsion Technology Program has developed the first-generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first-generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams-per-square meter. A rigorous, multiyear technology development effort culminated last year in the testing of two different 20-meter solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding, and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails, including one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. The proposed mission is called the Interstellar Probe. The Interstellar Probe might be accomplished in several ways. A 200-meter sail, with an areal density approaching 1 gram-per-square meter, could accelerate a robotic probe to the very edge of the solar system in just under 20 years from launch. A sail using the technology just demonstrated could make the same mission, but take significantly longer. Conventional chemical propulsion systems would require even longer flight times. Spinner sails of the type being explored by the Japanese may also be a good option, but the level of maturity in that technology is not clear. While the technology to support a 200-meter, ultralightweight sail mission is not yet in hand, the recent NASA investments in solar sail technology are an essential first step toward making it a reality. This paper will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and the plan to advance the technology to the point where the Interstellar Probe mission can be flown.
On the Influence of the Solar Bi-Cycle on Comic Ray Modulatio
NASA Astrophysics Data System (ADS)
Lifter, N. Part Xxvii: A. Defect Of The Solar Dynamo. B.; Scissors, K.; Sprucener, H.
In this presentation we propose a new paradigm that explains the different lengths of individual solar Hale cycles. It proves beneficial to distinguish between a so-called inHale and ex-Hale cycle, which together form the solar bi-cycle. We carefully analyzed the influence of so-called complex mode excitations (CMEs) on comic ray modulation, in particular on the drifts of the comic isotope O+3 , which we found to induce characteristic anisotropies. This comic isotope anisotropy (CIA) is caused by the wellknown north-south asymmetry (NSA) and can be observed as a rare Forbush increase (FBI). The latter is linked to the solar magnetic field which appears to have a chaotic behaviour (for details see part I-XXVI). Especially during an ex-Hale cycle magnetic flux is pseudo-pneumatically escaping through a coronal hole. Consequently, the solar dynamo can no longer operate efficiently, i.e. is defect.
Electron acceleration to high energies at quasi-parallel shock waves in the solar corona
NASA Technical Reports Server (NTRS)
Mann, G.; Classen, H.-T.
1995-01-01
In the solar corona shock waves are generated by flares and/or coronal mass ejections. They manifest themselves in solar type 2 radio bursts appearing as emission stripes with a slow drift from high to low frequencies in dynamic radio spectra. Their nonthermal radio emission indicates that electrons are accelerated to suprathermal and/or relativistic velocities at these shocks. As well known by extraterrestrial in-situ measurements supercritical, quasi-parallel, collisionless shocks are accompanied by so-called SLAMS (short large amplitude magnetic field structures). These SLAMS can act as strong magnetic mirrors, at which charged particles can be reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two SLAMS and reach suprathermal and relativistic velocities. This mechanism of accelerating electrons is discussed for circumstances in the solar corona and may be responsible for the so-called 'herringbones' observed in solar type 2 radio bursts.
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.
2018-05-01
Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.
NASA Astrophysics Data System (ADS)
D'Alto, Nick
2002-07-01
The history and construction of working models of the solar system, called orreries, are described in this article. Fascinated by orreries, the founding fathers of America were men of science who often made references to the orbits of the planets when describing their view of the new world. American, David Rittenhouse, who helped draft the first constitution for the state of Pennsylvania, was a builder of orreries.
Rapid Analysis and Manufacturing Propulsion Technology (RAMPT)
NASA Technical Reports Server (NTRS)
Fikes, John C.
2018-01-01
NASA's strategic plan calls for the development of enabling technologies, improved production methods, and advanced design and analysis tools related to the agency's objectives to expand human presence in the solar system. NASA seeks to advance exploration, science, innovation, benefits to humanity, and international collaboration, as well as facilitate and utilize U.S. commercial capabilities to deliver cargo and crew to space.
Survey of Long-Term Technology Forecasting Methodologies
2002-11-01
called for include an integrated demand information architecture, a TransAtmospheric Vehicle (TAV), and development of a space-based laser ( SBL ) system...Program,” NASA TM-1998-208400, 1998 (see http://www.grc.nasa.gov/WWW/ bpp /TM-1998-208400.htm ). Also available in Missions to the Outer Solar System and...November 1997, Presented at Plenary Session III Views of Future STAIF, Jan. 27, 1998, Albuquerque, NM (see http://www.lerc.nasa.gov/ WWW/ bpp /TM-97-206241
Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)
NASA Astrophysics Data System (ADS)
Lindholm, D. M.; Ware DeWolfe, A.; Wilson, A.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.
2011-12-01
The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD, http://lasp.colorado.edu/lisird/) web site to provide access to a comprehensive set of solar irradiance measurements and related datasets. Current data holdings include products from NASA missions SORCE, UARS, SME, and TIMED-SEE. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as Total Solar Irradiance (TSI). Other datasets include solar indices, spectral and flare models, solar images, and more. The LISIRD web site features updated plotting, browsing, and download capabilities enabled by dygraphs, JavaScript, and Ajax calls to the LASP Time Series Server (LaTiS). In addition to the web browser interface, most of the LISIRD datasets can be accessed via the LaTiS web service interface that supports the OPeNDAP standard. OPeNDAP clients and other programming APIs are available for making requests that subset, aggregate, or filter data on the server before it is transported to the user. This poster provides an overview of the LISIRD system, summarizes the datasets currently available, and provides details on how to access solar irradiance data products through LISIRD's interfaces.
Ishii, Hope A; Bradley, John P; Bechtel, Hans A; Brownlee, Donald E; Bustillo, Karen C; Ciston, James; Cuzzi, Jeffrey N; Floss, Christine; Joswiak, David J
2018-06-26
The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous ( a -) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a- silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a- silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a- silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds. Copyright © 2018 the Author(s). Published by PNAS.
Development of circuit model for arcing on solar panels
NASA Astrophysics Data System (ADS)
Mehta, Bhoomi K.; Deshpande, S. P.; Mukherjee, S.; Gupta, S. B.; Ranjan, M.; Rane, R.; Vaghela, N.; Acharya, V.; Sudhakar, M.; Sankaran, M.; Suresh, E. P.
2010-02-01
The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 μs duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator and conductor, arc resistance, stored charge in the solar cell coverglass and the external capacitor that simulates wire harness. A close correlation between the experiments and circuit model results has been observed.
Galilean-invariant scalar fields can strengthen gravitational lensing.
Wyman, Mark
2011-05-20
The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.
On the Nature and Timing of Giant Planet Migration in the Solar System
NASA Astrophysics Data System (ADS)
Agnor, Craig B.
2016-05-01
Giant planet migration is a natural outcome of gravitational scattering and planet formation processes (Fernandez & Ip 1984). There is compelling evidence that the solar system's giant planets experienced large-scale migration involving close approaches between planets as well as smooth radial migration via planetesimal scattering. Aspects of giant planet migration have been invoked to explain many features of the outer solar system including the resonant structure of the Kuiper Belt (e.g., Malhotra 1993, Levison et al. 2008), the eccentricities of Jupiter and Saturn (Tsiganis et al. 2005, Morbidelli et al. 2009), the capture of Jupiter's Trojan companions (Morbidelli et al. 2005) and the capture of irregular planetary satellites (e.g., Nesvorny et al. 2007) to name a few. If this migration epoch occurred after the formation of the inner planets, then it may also explain the so-called lunar Late Heavy Bombardment (Gomes et al. 2005). This scenario necessarily requires coeval terrestrial and migrating giant planets. Recent N-body integrations exploring this issue have shown that giant planet migration may excite the terrestrial system via nodal and apsidal secular resonances (e.g., Brasser et al. 2013), may drive the terrestrial planets to crossing orbits (Kaib & Chambers 2016) or alternatively leave the inner solar system in a state closely resembling the observed one (Roig et al. 2016). The factors accounting for the large range of outcomes remain unclear. Using linear secular models and N-body simulations I am identifying and characterising the principal aspects of giant planet migration that excite the terrestrial planets' orbits. I will present these results and discuss how they inform the nature and timing of giant planet migration in the solar system.
Probing the Structure of Our Solar System's Edge
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-02-01
The boundary between the solar wind and the interstellar medium (ISM) at the distant edge of our solar system has been probed remotely and directly by spacecraft, but questions about its properties persist. What can models tell us about the structure of this region?The Heliopause: A Dynamic BoundarySchematic illustrating different boundaries of our solar system and the locations of the Voyager spacecraft. [Walt Feimer/NASA GSFCs Conceptual Image Lab]As our solar system travels through interstellar space, the magnetized solar wind flows outward and pushes back on the oncoming ISM, forming a bubble called the heliosphere. The clash of plasmas generates a boundary region called the heliopause, the shape of which depends strongly on the properties of the solar wind and the local ISM.Much of our understanding of the outer heliosphere and the local ISM comes from observations made by the International Boundary Explorer (IBEX) and the Voyager 1 and Voyager 2 spacecraft. IBEX makes global maps of the flux of neutral atoms, while Voyagers 1 and 2 record the plasma density and magnetic field parameters along their trajectories as they exit the solar system. In order to interpret the IBEX and Voyager observations, astronomers rely on complex models that must capture both global and local effects.Simulations of the plasma density in the meridional plane of the heliosphere due to the interaction of the solar wind with the ISM for the case of a relatively dense ISM with a weak magnetic field. [Adapted from Pogorelov et al. 2017]Modeling the Edge of the Solar SystemIn this study, Nikolai Pogorelov (University of Alabama in Huntsville) and collaborators use a hybrid magneto-hydrodynamical (MHD) and kinetic simulation to capture fully the physical processes happening in the outer heliosphere.MHD models have been used to understand many aspects of plasma flow in the heliosphere. However, they struggle to capture processes that are better described kinetically, like charge exchange or plasma instabilities. Fully kinetic models, on the other hand, are too computationally expensive to be used for global time-dependent simulations.In order to combine the strengths of MHD and kinetic models, the authors also use adaptive mesh refinement a technique in which the grid size is whittled down at key locations where small-scale physics can have a large effect to resolve the important kinetic processes taking place at the heliopause while lowering the overall computational cost.Physics of the BorderTop: Simulation results for the plasma density observed by Voyager 1 along its trajectory. Bottom: Voyager 1 observations of plasma waves. An increase in the plasma wave frequency corresponds to an increase in the ambient plasma density. Click for a closer look. [Adapted from Pogorelov et al. 2017]The authors varied the ISMs density and magnetic field, exploring how this changed the interaction between the ISM and the solar wind. Among their many results, the authors found:There exists a plasma density drop and magnetic field strength increase in the ISM, just beyond the heliopause. This narrow boundary region is similar to a plasma depletion layer formed upstream from the Earths magnetopause as the solar wind streams around it.The authors model for the plasma density along the trajectory of Voyager 1 is consistent with the actual plasma density inferred from Voyager 1s measurements.The heliospheric magnetic field likely dissipates in the region between the termination shock the point at which the solar wind speed drops below the speed of sound and the heliopause.While this work by Pogorelov and collaborators has brought to light new aspects of the boundary between the solar wind and the ISM, the challenge of linking data and models continues. Future simulations will help us further interpret observations by IBEX and the Voyager spacecraft and advance our understanding of how our solar system interacts with the surrounding ISM.CitationN. V. Pogorelov et al 2017ApJ8459. doi:10.3847/1538-4357/aa7d4f
NASA Astrophysics Data System (ADS)
Ragulskaya, Mariya; Rudenchik, Evgeniy; Gromozova, Elena; Voychuk, Sergei; Kachur, Tatiana
The study of biotropic effects of modern space weather carries the information about the rhythms and features of adaptation of early biological systems to the outer space influence. The influence of cosmic rays, ultraviolet waves and geomagnetic field on early life has its signs in modern biosphere processes. These phenomena could be experimentally studied on present-day biological objects. Particularly inorganic polyphosphates, so-called "fossil molecules", attracts special attention as the most ancient molecules which arose in inanimate nature and have been accompanying biological objects at all stages of evolution. Polyphosphates-containing graves of yeast's cells of Saccharomyces cerevisiae strain Y-517, , from the Ukrainian Collection of Microorganisms was studied by daily measurements during 2000-2013 years. The IZMIRAN daily data base of physiological parameters dynamics during 2000-2013 years were analyzed simultaneously (25 people). The analysis showed significant simultaneous changes of the statistical parameters of the studied biological systems in 2004 -2006. The similarity of simultaneous changes of adaptation strategies of human organism and the cell structures of Saccharomyces cerevisiae during the 23-24 cycles of solar activity are discussed. This phenomenon could be due to a replacement of bio-effective parameters of space weather during the change from 23rd to 24th solar activity cycle and nonstandard geophysical peculiarities of the 24th solar activity cycle. It could be suggested that the observed similarity arose as the optimization of evolution selection of the living systems in expectation of probable prolonged period of low solar activity (4-6 cycles of solar activity).
NASA Technical Reports Server (NTRS)
Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2004-01-01
This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.
A Study of Defense Applications of Space Solar Power
NASA Astrophysics Data System (ADS)
Jaffe, Paul
2010-01-01
Space solar power (SSP) is generally considered to be the collection in space of energy from the sun and its wireless transmission from space for use on earth. It has been observed that the implementation of such a system could offer energy security, environmental, and technological advantages to those who would undertake its development. A study conducted by the Naval Research Laboratory (NRL) sought to determine if unique, cost effective, and efficient approaches exist for supplying significant power on demand for Navy, Marine Corps, or other Department of Defense applications by employing a space-based solar power system. The study was initiated by and prepared for top NRL management in part as a result of the publication of the National Security Space Office's (NSSO) report "Space-Based Solar Power as an Opportunity for Strategic Security." The NSSO report's recommendations included statements calling for the U.S. Government to conduct analyses, retire technical risk, and become an early demonstrator for SBSP. It should be noted that the principal objective of the NRL study differed significantly from that of the multitude of previous studies performed in reference to SBSP in that it focused on defense rather than utility grid applications.
International Space Station (ISS)
2000-12-07
In this image, planet Earth, some 235 statute miles away, forms the back drop for this photo of STS-97 astronaut and mission specialist Joseph R. Tanner, taken during the third of three space walks. The mission's goal was to perform the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.
Multiwavelength Observations of Recent Comets
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.;
2013-01-01
Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.
Practical design considerations for photovoltaic power station
NASA Astrophysics Data System (ADS)
Swanson, T. D.
Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.
Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.
Chai, Zhisheng; Zhang, Nannan; Sun, Peng; Huang, Yi; Zhao, Chuanxi; Fan, Hong Jin; Fan, Xing; Mai, Wenjie
2016-10-05
The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design. The "threads" (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.
Filling in the Gaps: Xenoliths in Meteorites are Samples of "Missing" Asteroid Lithologies
NASA Technical Reports Server (NTRS)
Zolensky, Mike
2016-01-01
We know that the stones that fall to earth as meteorites are not representative of the full diversity of small solar system bodies, because of the peculiarities of the dynamical processes that send material into Earth-crossing paths [1] which result in severe selection biases. Thus, the bulk of the meteorites that fall are insufficient to understand the full range of early solar system processes. However, the situation is different for pebble- and smaller-sized objects that stream past the giant planets and asteroid belts into the inner solar system in a representative manner. Thus, micrometeorites and interplanetary dust particles have been exploited to permit study of objects that do not provide meteorites to earth. However, there is another population of materials that sample a larger range of small solar system bodies, but which have received little attention - pebble-sized foreign clasts in meteorites (also called xenoliths, dark inclusions, clasts, etc.). Unfortunately, most previous studies of these clasts have been misleading, in that these objects have simply been identified as pieces of CM or CI chondrites. In our work we have found this to be generally erroneous, and that CM and especially CI clasts are actually rather rare. We therefore test the hypothesis that these clasts sample the full range of small solar system bodies. We have located and obtained samples of clasts in 81 different meteorites, and have begun a thorough characterization of the bulk compositions, mineralogies, petrographies, and organic compositions of this unique sample set. In addition to the standard e-beam analyses, recent advances in technology now permit us to measure bulk O isotopic compositions, and major- though trace-element compositions of the sub-mm-sized discrete clasts. Detailed characterization of these clasts permit us to explore the full range of mineralogical and petrologic processes in the early solar system, including the nature of fluids in the Kuiper belt and the outer main asteroid belt, as revealed by the mineralogy of secondary phases.
Cost effective solar hot water system for econo-travel motor hotel located at Hampton, VA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-11-01
This paper gives the final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 2708 Mercury Boulevard, Hampton, Virginia. The description of the system along with the final cost breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryersmore » used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-12-01
The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 4725 W. Military Highway, Chesapeake, Virginia, is presented. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers usedmore » for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-11-01
The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 13317 Gordon Boulevard, Woodbridge, Virginia is given. The description of the system along with the final breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 7.2 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used formore » the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.« less
Oria, Prisca A; Alaii, Jane; Ayugi, Margaret; Takken, Willem; Leeuwis, Cees
2015-08-01
To investigate community adherence to recommended behaviours for proper deployment of solar-powered mosquito trapping systems (SMoTS) after 3- to 10-week use. Solar-powered mosquito trapping system, which also provided power for room lighting and charging mobile phones, were installed in houses in Rusinga Island, western Kenya. We used a structured checklist for observations and a semi-structured questionnaire for interviews in 24 homesteads. We also analysed the subject of 224 community calls to the project team for technical maintenance of SMoTS. Most respondents cared for SMoTS by fencing, emptying and cleaning the trap. Our observations revealed that most traps were fenced, clean and in good working condition. A significantly higher proportion of community calls was lighting-related. Lighting was the main reason respondents liked SMoTS because it reduced or eliminated expenditure on kerosene. However, some respondents observed they no longer heard sounds of mosquitoes inside their houses. All respondents reportedly slept under insecticide-treated nets (ITNs) before receiving SMoTS. After receiving SMoTS, most respondents reportedly continued to use ITNs citing that the project advised them to do so. Some beach residents stopped using ITNs because they no longer heard mosquitoes or due to heat discomfort caused by lights. Electricity-related incentives played a greater role in encouraging adherence to recommended behaviours for proper deployment of SMoTS than the potential health benefits in the early stages of the intervention. Although energy-related financial incentives may play a role, they are insufficient to ensure adherence to health advice, even in the short term. Ongoing community engagement and research monitors and addresses adherence to recommended behaviours including continuation of current malaria control strategies. © 2015 John Wiley & Sons Ltd.
Young Stars in Orion May Solve Mystery of Our Solar System
NASA Astrophysics Data System (ADS)
2001-09-01
Scientists may have to give the Sun a little more credit. Exotic isotopes present in the early Solar System--which scientists have long-assumed were sprinkled there by a powerful, nearby star explosion--may have instead been forged locally by our Sun during the colossal solar-flare tantrums of its baby years. The isotopes--special forms of atomic nuclei, such as aluminum-26, calcium-41, and beryllium-10--can form in the X-ray solar flares of young stars in the Orion Nebula, which behave just like our Sun would have at such an early age. The finding, based on observations by the Chandra X-ray Observatory, has broad implications for the formation of our own Solar System. Eric Feigelson, professor of astronomy and astrophysics at Penn State, led a team of scientists on this Chandra observation and presents these results in Washington, D.C., today at a conference entitled "Two Years of Science with Chandra". "The Chandra study of Orion gives us the first chance to study the flaring properties of stars resembling the Sun when our solar system was forming," said Feigelson. "We found a much higher rate of flares than expected, sufficient to explain the production of many unusual isotopes locked away in ancient meteorites. If the young stars in Orion can do it, then our Sun should have been able to do it too." Scientists who study how our Solar System formed from a collapsed cloud of dust and gas have been hard pressed to explain the presence of these extremely unusual chemical isotopes. The isotopes are short-lived and had to have been formed no earlier than the creation of the Solar System, some five billion years ago. Yet these elements cannot be produced by a star as massive as our Sun under normal circumstances. (Other elements, such as silver and gold, were created long before the creation of the solar system.) The perplexing presence of these isotopic anomalies, found in ancient meteoroids orbiting the Earth, led to the theory that a supernova explosion occurred very close to the Solar System's progenitor gas cloud, simultaneously triggering its collapse and seeding it with short-lived isotopes. Solar flares could produce such isotopes, but the flares would have to be hundreds of thousands of times more powerful and hundreds of times more frequent than those our Sun generates. Enter the stars in the Orion Nebula. This star-forming region has several dozen new stars nearly identical to our Sun, only much younger. Feigelson's team used Chandra to study the flaring in these analogs of the early Sun and found that nearly all exhibit extremely high levels of X-ray flaring--powerful and frequent enough to forge many of the kinds of isotopes found in the ancient meteorites from the early solar system. "This is a very exciting result for space X-ray astronomy," said Donald Clayton, Centennial Professor of Physics and Astronomy at Clemson University. "The Chandra Penn State team has shown that stellar-flare acceleration produces radioactive nuclei whether we want them or not. Now the science debate can concentrate on whether such irradiation made some or even all of the extinct radioactivities that were present when our solar system was formed, or whether some contamination of our birth molecular cloud by external material is also needed." "This is an excellent example of how apparently distant scientific fields, like X-ray astronomy and the origins of solar systems, can in fact be closely linked," said Feigelson. The Orion observation was made with Chandra's Advanced CCD Imaging Spectrometer, which was conceived and developed for NASA by Penn State and Massachusetts Institute of Technology under the leadership of Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Penn State. The Penn State observation team includes Pat Broos, James Gaffney, Gordon Garmire, Leisa Townsley and Yohko Tsuboi. Collaborators also include Lynne Hillenbrand of CalTech and Steven Pravdo of the NASA Jet Propulsion Laboratory. Background: Isotopes are atoms whose nuclei have different numbers of neutrons. Many isotopes are unstable, or radioactive, and decay into other elements. A famous example is carbon-14 whose decay gives scientists the opportunity to date organic materials over thousands of years. A rare type of ancient meteorite called carbonaceous chondrites, which are rocks from the Asteroid Belt whose orbits are perturbed and fall to the Earth, date back to the formation of our Solar System 4.55 billion years ago. Studying carbonaceous chondrites gives us a unique window on conditions in the solar nebula when the Sun and Solar System were forming. Certain portions of carbonaceous chondrites, small melted pebbles called Calcium-Aluminum-rich Inclusions or CAIs, have unusually high abundances of decay products of rare, short-lived isotopes. These include beryllium-10, calcium-41, 26-aluminum and 53-manganese, among others. Explaining the presence of these short-lived isotopes, which do not appear anywhere else in solar system material, has been one of the toughest challenges of solar system science. The favored explanation has been that a star exploded in a supernova and triggered a nearby cloud of dust and gas to collapse to form our Sun and planetary system. But conditions have to be carefully adjusted for this model, and it cannot be widely applied to all stars. The principal alternative model is that energetic particles from violent flares hit particles in the solar nebula and transformed some of their atoms to radioactive isotopes. A drawback to this model has been that the level of flaring needed, around 100,000 times the flaring level of the Sun today, was thought to be impossibly high. However, the X-ray observations reported here give direct evidence for just this high level of flaring. In addition, this model readily applied to all young stars and solar systems, not just a few.
Degradation of FEP thermal control materials returned from the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Zuby, Thomas M.; Degroh, Kim K.; Smith, Daniela C.
1995-01-01
After an initial 3.6 years of space flight, the Hubble Space Telescope was serviced through a joint effort with the NASA and the European Space Agency. Multi-layer insulation (MLI) was retrieved from the electronics boxes of the two magnetic sensing systems (MSS), also called the magnetometers, and from the returned solar array (SA-I) drive arm assembly. The top layer of each MLI assembly is fluorinated ethylene propylene (FEP, a type of Teflon). Dramatic changes in material properties were observed when comparing areas of high solar fluence to areas of low solar fluence. Cross sectional analysis shows atomic oxygen (AO) erosion values up to 25.4 mu m (1 mil). Greater occurrences of through-thickness cracking and surface microcracking were observed in areas of high solar exposure. Atomic force microscopy (AFM) showed increases in surface microhardness measurements with increasing solar exposure. Decreases in FEP tensile strength and elongation were measured when compared to non-flight material. Erosion yield and tensile results are compared with FEP data from the Long Duration Exposure Facility. AO erosion yield data, solar fluence values, contamination, micrometeoroid or debris impact sites, and optical properties are presented.
MuSICa image slicer prototype at 1.5-m GREGOR solar telescope
NASA Astrophysics Data System (ADS)
Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.
2014-07-01
Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.
From first generation biofuels to advanced solar biofuels.
Aro, Eva-Mari
2016-01-01
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.
Advanced instrumentation for Solar System gravitational physics
NASA Astrophysics Data System (ADS)
Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.
2010-05-01
The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser tracking, will be discussed.
Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.
1996-01-01
The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar System.
3D visualization of solar wind ion data from the Chang'E-1 exploration
NASA Astrophysics Data System (ADS)
Zhang, Tian; Sun, Yankui; Tang, Zesheng
2011-10-01
Chang'E-1 (abbreviation CE-1), China's first Moon-orbiting spacecraft launched in 2007, carried equipment called the Solar Wind Ion Detector (abbreviation SWID), which sent back tens of gigabytes of solar wind ion differential number flux data. These data are essential for furthering our understanding of the cislunar space environment. However, to fully comprehend and analyze these data presents considerable difficulties, not only because of their huge size (57 GB), but also because of their complexity. Therefore, a new 3D visualization method is developed to give a more intuitive representation than traditional 1D and 2D visualizations, and in particular to offer a better indication of the direction of the incident ion differential number flux and the relative spatial position of CE-1 with respect to the Sun, the Earth, and the Moon. First, a coordinate system named Selenocentric Solar Ecliptic (SSE) which is more suitable for our goal is chosen, and solar wind ion differential number flux vectors in SSE are calculated from Geocentric Solar Ecliptic System (GSE) and Moon Center Coordinate (MCC) coordinates of the spacecraft, and then the ion differential number flux distribution in SSE is visualized in 3D space. This visualization method is integrated into an interactive visualization analysis software tool named vtSWIDs, developed in MATLAB, which enables researchers to browse through numerous records and manipulate the visualization results in real time. The tool also provides some useful statistical analysis functions, and can be easily expanded.
Interplanetary propulsion using inertial fusion
NASA Technical Reports Server (NTRS)
Orth, Charles D.; Hoffman, Nate; Murray, Kathy; Klein, Gail; Diaz, Franklin Chang
1987-01-01
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short duration manned mission performance exceeding other technologies. A study was conducted to assess the systems aspects of inertial as applied to such missions, based on the conceptual engine design of Hyde (1983). The required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel is described. Preliminary design details are given for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days.
The Solar Connections Observatory for Planetary Environments (SCOPE):
NASA Astrophysics Data System (ADS)
Oliversen, R.; Harris, W.; Ballester, G.; Bougher, S.; Broadfoot, L.; Combi, M.; Cravens, T.; Gombosi, T.; Herbert, F.; Joseph, C.; Kozyra, J.; Limaye, S.; Morgenthaler, J.; Paxton, L.; Roesler, F.; Sandel, W.; Ben Jaffel, L.
2001-12-01
The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets and local interstellar medium (LISM) interact with and respond to changes in the solar wind and UV radiation field. Each planet interaction is unique and defined by solar input and local conditions of magnetic field strength and orientation, rotation rate, heliocentric distance, internal plasma, and ionospheric conductivity and circulation. Because the different elements of the environment respond to external and internal influences that are variable on many temporal and spatial scales, the study of a planetary system requires simultaneous understanding of the solar wind and diagnostics of the sun-planet interaction including auroral intensity and variation, upper atmospheric circulation and composition, and the distribution of neutrals and plasmas near the planet. The Solar Connections Observatory for Planetary Environments (SCOPE) is a mission to study Solar interactions from the level of planetary upper atmospheres to the heliopause. SCOPE consists of a binocular EUV/FUV telescope that provides high spatial resolution imaging, broadband spectro-imaging, and high-resolution H Ly-alpha line spectroscopy between 55-290 nm. SCOPE will study planetary environments as examples of the solar connection and map the distribution of interplanetary H and the interaction of LISM plasma with the solar wind at the heliopause. A key to the SCOPE approach is to include Earth in its research objectives. SCOPE will monitor terrestrial auroral energy deposition and leverage local measurements of the solar wind and propagation models to derive the expected conditions at Superior planets that will be observed in annual opposition campaigns. This will permit direct comparison of planetary and terrestrial responses to the same solar wind stream. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.
Solar wind speed and He I (1083 nm) absorption line intensity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakamada, Kazuyuki; Kojima, Masayoshi; Kakinuma, Takakiyo
1991-04-01
Since the pattern of the solar wind was relatively steady during Carrington rotations 1,748 through 1,752 in 1984, an average distribution of the solar windspeed on a so-called source surface can be constructed by superposed epoch analysis of the wind values estimated by the interplanetary scintillation observations. The average distribution of the solar wind speed is then projected onto the photosphere along magnetic field lines computed by a so-called potential model with the line-of-sight components of the photospheric magnetic fields. The solar wind speeds projected onto the photosphere are compared with the intensities of the He I (1,083 nm) absorptionmore » line at the corresponding locations in the chromosphere. The authors found that there is a linear relation between the speeds and the intensities. Since the intensity of the He I (1,083 nm) absorption line is coupled with the temperature of the corona, this relation suggests that some physical mechanism in or above the photosphere accelerates coronal plasmas to the solar wind speed in regions where the temperature is low. Further, it is suggested that the efficiency of the solar wind acceleration decreases as the coronal temperature increases.« less
The Solar Connections Observatory for Planetary Environments
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)
2002-01-01
The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.
Spherical cows in the sky with fab four
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaloper, Nemanja; Sandora, McCullen, E-mail: kaloper@physics.ucdavis.edu, E-mail: mesandora@ucdavis.edu
2014-05-01
We explore spherically symmetric static solutions in a subclass of unitary scalar-tensor theories of gravity, called the 'Fab Four' models. The weak field large distance solutions may be phenomenologically viable, but only if the Gauss-Bonnet term is negligible. Only in this limit will the Vainshtein mechanism work consistently. Further, classical constraints and unitarity bounds constrain the models quite tightly. Nevertheless, in the limits where the range of individual terms at large scales is respectively Kinetic Braiding, Horndeski, and Gauss-Bonnet, the horizon scale effects may occur while the theory satisfies Solar system constraints and, marginally, unitarity bounds. On the other hand,more » to bring the cutoff down to below a millimeter constrains all the couplings scales such that 'Fab Fours' can't be heard outside of the Solar system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.
In this work we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system of themore » detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less
Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.; ...
2016-02-16
In this study we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm 2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system ofmore » the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.
In this study we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm 2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system ofmore » the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less
Life of the Earth in the solar atmosphere (multimedia manual)
NASA Astrophysics Data System (ADS)
Kononovich, E. V.; Smirnova, O. B.; Matveychuk, T. V.; Jakunina, G. V.; Krasotkin, S. A.
2006-08-01
The purpose of this manual is to illustrate the major physical processes occurring in the Sun - Earth system and ecology of the planet life. The material includes three individual parts: "The Earth", "The Sun" and "The solar-terrestrial connections". Sections do not require cross-references since each of them is self-complete. Inside the sections the material is located in sequences based on the principle: from simple to complex. The material is designed for students of the senior classes of high school and junior university level interested by the problem. The section "The Earth" is devoted to the description of the basic characteristics of the planet: internal structure, magnetic field, lithosphere and an atmosphere together with various occurring in them tectonic, hydro- and atmospheric processes. The top layers of an atmosphere, an ionosphere, a zone of polar lights, radiating belts, magnetosphere are also considered. The section "The Sun" includes the following subsections: the Sun as a star, internal structure of the Sun, Solar atmosphere, solar activity, cyclicity of the solar activity, helioseismology. In the section "The solar-terrestrial connections" the previous material is used to present the influence of the active solar processes on the most various aspects of a terrestrial life: ecological, biological, mental, social, economic and so forth. The problem of forecasting of the solar activity as the key parameter determining a condition of the so-called space weather is considered.
The Evolution of a Planet-Forming Disk Artist Concept Animation
2004-12-09
This frame from an animation shows the evolution of a planet-forming disk around a star. Initially, the young disk is bright and thick with dust, providing raw materials for building planets. In the first 10 million years or so, gaps appear within the disk as newborn planets coalesce out of the dust, clearing out a path. In time, this planetary "debris disk" thins out as gravitational interactions with numerous planets slowly sweep away the dust. Steady pressure from the starlight and solar winds also blows out the dust. After a few billion years, only a thin ring remains in the outermost reaches of the system, a faint echo of the once-brilliant disk. Our own solar system has a similar debris disk -- a ring of comets called the Kuiper Belt. Leftover dust in the inner portion of the solar system is known as "zodiacal dust." Bright, young disks can be imaged directly by visible-light telescopes, such as NASA's Hubble Space Telescope. Older, fainter debris disks can be detected only by infrared telescopes like NASA's Spitzer Space Telescope, which sense the disks' dim heat. http://photojournal.jpl.nasa.gov/catalog/PIA07099
Saving the Inner Solar System with an Early Instability
NASA Astrophysics Data System (ADS)
Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.
2018-04-01
An orbital instability between the solar system’s giant planets (the so-called Nice Model) has been shown to greatly disturb the orbits of the young terrestrial planets. Undesirable outcomes such as over-excitated orbits, ejections and collisions can be avoided if the instability occurs before the inner planets are fully formed. Such a scenario also has the advantage of limiting the mass and formation time of Mars when it occurs within several million years (Myr) of gas disk dissipation. The dynamical effects of the instability cause many small embryos and planetesimals to scatter away from the forming Mars, and lead to heavy mass depletion in the Asteroid Belt. We present new simulations of this scenario that demonstrate its ability to accurately reproduce the eccentricity, inclination and resonant structures of the Asteroid Belt. Furthermore, we perform simulations using an integration scheme which accounts for the fragmentation of colliding bodies. The final terrestrial systems formed in these simulations provide a better match to the actual planets' compact mass distribution and dynamically cold orbits. An early instability scenario is thus very successful at simultaneously replicating the dynamical state of both the inner and outer solar system.
2008-03-01
solar telescope to study solar physics. — Develop technologies for a three-satellite constellation called Kua Fu to study solar activity that will...consist of one satellite to monitor solar activity and two others to study the aurora. • International cooperation. Participate in the Sino...Russian Mars environment exploration plan, the World Space Observatory Ultraviolet Project,50 and the Sino-French Small Satellite Solar Flare Exploration
Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin
2018-05-25
It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Gravitational anomalies in the solar system?
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2015-02-01
Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.
Psyche's UV Reflectance Spectra: Exploring the origins of the largest exposed-core metallic asteroid
NASA Astrophysics Data System (ADS)
Becker, Tracy
2016-10-01
(16) Psyche is the largest of the M-class asteroids, and is presumed to be the exposed core of a differentiated asteroid stripped of its mantle through hit-and-run collisions. However, other origins for Psyche have been proposed, including that it formed from a highly-reduced, metal rich material in the inner solar system or that its surface is olivine that has been space weathered. If (16) Psyche is an exposed core, then studying its properties enhances our understanding of the cores of all terrestrial planets, including the Earth's. If it accreted in the inner part of the solar system and was later injected into the asteroid belt, then Psyche sheds light on the conditions and subsequent evolution of the early solar system. Lastly, if Psyche is weathered olivine, then olivine may be more abundant in the solar system than currently measured, rectifying the so-called Great Dunite Shortage. Our program to obtain high-resolution UV spectra of Psyche with the COS G140L mode and the STIS NUV MAMA G230L mode to measure spectral signatures between 90 - 315 nm is designed to distinguish between the 3 hypothesized cases. These observations will enable identification of absorption bands, especially Fe-O charge transfer bands and will be sensitive to spectral blueing that occurs at UV wavelengths for space-weathered objects. When combined, the presence of these UV features, or not, provides a novel test of Psyche formation theories.
NASA Technical Reports Server (NTRS)
Tarter, Jill C.; Rothschild, Lynn J.
2012-01-01
The planetary environment around a star will be assaulted with various amounts of radiation. including solar and ionizing radiation. The amount and type varies with the type of star, the distance from the star, time of day, and other variables. While some radiation is critical to life on Earth, especially from 400-750 nm (so-called visible and photosynthetically active radiation), the effects of ultraviolet and ionizing radiation can be hazardous and even deadly. This is because life is based on organic carbon, which is susceptible to radiation damage. Radiation regimes in our own solar system address specifically radiation in our solar system with a main sequence star. The possibility remains of planets around red dwarfs. Such stars are much smaller in mass than the Sun (between 0.5 and .08 M(sub Sun), and so their temperature and stellar luminosity are low and peaked in the red. Since red dwarfs comprise about 75% of all stars in the galaxy, the possibility of life on planets around red dwarfs has been examined.
Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbey, Ross; Ross, Brian
2013-06-03
This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.
Mechanical design of a low concentration ratio solar array for a space station application
NASA Technical Reports Server (NTRS)
Biss, M. S.; Hsu, L.
1983-01-01
This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.
Photosymbiotic giant clams are transformers of solar flux.
Holt, Amanda L; Vahidinia, Sanaz; Gagnon, Yakir Luc; Morse, Daniel E; Sweeney, Alison M
2014-12-06
'Giant' tridacnid clams have evolved a three-dimensional, spatially efficient, photodamage-preventing system for photosymbiosis. We discovered that the mantle tissue of giant clams, which harbours symbiotic nutrition-providing microalgae, contains a layer of iridescent cells called iridocytes that serve to distribute photosynthetically productive wavelengths by lateral and forward-scattering of light into the tissue while back-reflecting non-productive wavelengths with a Bragg mirror. The wavelength- and angle-dependent scattering from the iridocytes is geometrically coupled to the vertically pillared microalgae, resulting in an even re-distribution of the incoming light along the sides of the pillars, thus enabling photosynthesis deep in the tissue. There is a physical analogy between the evolved function of the clam system and an electric transformer, which changes energy flux per area in a system while conserving total energy. At incident light levels found on shallow coral reefs, this arrangement may allow algae within the clam system to both efficiently use all incident solar energy and avoid the photodamage and efficiency losses due to non-photochemical quenching that occur in the reef-building coral photosymbiosis. Both intra-tissue radiometry and multiscale optical modelling support our interpretation of the system's photophysics. This highly evolved 'three-dimensional' biophotonic system suggests a strategy for more efficient, damage-resistant photovoltaic materials and more spatially efficient solar production of algal biofuels, foods and chemicals.
Results of Evaluation of Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Woodcock, Gordon; Byers, Dave
2003-01-01
The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.
Feasibility study of dish/stirling power systems in Turkey
NASA Astrophysics Data System (ADS)
Zilanlı, Gülin Acarol; Eray, Aynur
2017-06-01
In this study, two different commercial dish/stirling systems, SES (Stirling Energy Systems) and WGA-ADDS (WGAssociates - Advanced Dish Development System), are modeled using the "System Advisor Model" (SAM) modeling software in designated settlement areas. Both systems are modeled for the US state of Albuquerque, where they were designed, and Turkish provinces of Ankara, Van, Muğla, Mersin, Urfa and Konya. At first, the dish/stirling system is optimized according to the power output values and the system loss parameters. Then, the layout of the solar field is designed with an installed capacity of 600kW both of SES and WGA-ADDS systems, Upon securing the most suitable layout, the system is modeled for the aforementioned settlements using the optimum output values gathered from the parametric analysis. As a result of the simulation studies, the applicability of this model is discussed according to the power output and the efficiency. Although Turkey is located in an area called "the sun belt" where solar energy technologies can be used, there is no advanced application of these systems. This study aims to discuss the application of these systems in detail and to pave the way for future studies in this field.
NASA Astrophysics Data System (ADS)
Tanaka, Makoto; Taguchi, Mikio; Matsuyama, Takao; Sawada, Toru; Tsuda, Shinya; Nakano, Shoichi; Hanafusa, Hiroshi; Kuwano, Yukinori
1992-11-01
A new type of a-Si/c-Si heterojunction solar cell, called the HIT (Heterojunction with Intrinsic Thin-layer) solar cell, has been developed based on ACJ (Artificially Constructed Junction) technology. A conversion efficiency of more than 18% has been achieved, which is the highest ever value for solar cells in which the junction was fabricated at a low temperature (<200°C).
FIP effect for minor heavy solar wind ions as seen with SOHO/CELIAS/MTOF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidrich-Meisner, Verena, E-mail: heidrich@physik.uni-kiel.de; Berger, Lars; Wimmer-Schweingruber, Robert F.
A recent paper [Shearer et al., 2014] reported that during solar maximum Ne showed a surprisingly low abundance. This leads to the question whether other elements show the same behavior. The good mass resolution of Mass-Time-Of-Flight (MTOF) as part of the Charge ELement and Isotope Analysis System (CELIAS) on the Solar Helioshperic Observatory (SOHO) allows to investigate the composition of heavy minor elements in different types of solar wind. We restrict this study to slow solar wind, where the characterisation of slow solar wind is taken from Xu and Borovsky, 2014. This classification scheme requires magnet field information. Since SOHOmore » does not carry a magnetometer, we use the Magnetometer (MAG) of the Advanced Composition Explorer (ACE) instead. The Solar Wind Ion Composition Spectrometer (ACE/SWICS) also provides composition data for cross-calibration and charge-state distributions as input for the transmission function of MTOF whenever the two spacecraft can be expected to observe the same type of wind. We illustrate the MTOF’s capability to determine the solar wind abundance compared to the photospheric abundance (called the FIP ratio in the following) for rare elements like Ti or Cr on long-time scales as a proof of concept for our analysis. And in this brief study, measurements with both ACE/SWICS indicate that the observed elements exhibit a (weak) dependence on the solar cycle, whereas the MTOF measurements are inconclusive.« less
Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.
2005-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars.
NASA Astrophysics Data System (ADS)
Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf
2011-10-01
In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.
Towards legitimacy of the solar geoengineering research enterprise
Stephens, Jennie C.
2018-01-01
Mounting evidence that even aggressive reductions in net emissions of greenhouse gases will be insufficient to limit global climate risks is increasing calls for atmospheric experiments to better understand the risks and implications of also deploying solar geoengineering technologies to reflect sunlight and rapidly lower surface temperatures. But solar geoengineering research itself poses significant environmental and geopolitical risks. Given limited societal awareness and public dialogue about this climate response option, conducting such experiments without meaningful societal engagement could galvanize opposition to solar geoengineering research from civil society, including the most climate vulnerable communities who are among its intended beneficiaries. Here, we explore whether and how a solar geoengineering research enterprise might be developed in a way that promotes legitimacy as well as scientific credibility and policy relevance. We highlight the distinctive responsibilities of researchers and research funders to ensure that solar geoengineering research proposals are subject to legitimate societal review and scrutiny, recommend steps they can take to strive towards legitimacy and call on them to be explicitly open to multiple potential outcomes, including the societal rejection or considerable alteration of the solar geoengineering research enterprise. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610369
Towards legitimacy of the solar geoengineering research enterprise.
Frumhoff, Peter C; Stephens, Jennie C
2018-05-13
Mounting evidence that even aggressive reductions in net emissions of greenhouse gases will be insufficient to limit global climate risks is increasing calls for atmospheric experiments to better understand the risks and implications of also deploying solar geoengineering technologies to reflect sunlight and rapidly lower surface temperatures. But solar geoengineering research itself poses significant environmental and geopolitical risks. Given limited societal awareness and public dialogue about this climate response option, conducting such experiments without meaningful societal engagement could galvanize opposition to solar geoengineering research from civil society, including the most climate vulnerable communities who are among its intended beneficiaries. Here, we explore whether and how a solar geoengineering research enterprise might be developed in a way that promotes legitimacy as well as scientific credibility and policy relevance. We highlight the distinctive responsibilities of researchers and research funders to ensure that solar geoengineering research proposals are subject to legitimate societal review and scrutiny, recommend steps they can take to strive towards legitimacy and call on them to be explicitly open to multiple potential outcomes, including the societal rejection or considerable alteration of the solar geoengineering research enterprise.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.
Towards legitimacy of the solar geoengineering research enterprise
NASA Astrophysics Data System (ADS)
Frumhoff, Peter C.; Stephens, Jennie C.
2018-05-01
Mounting evidence that even aggressive reductions in net emissions of greenhouse gases will be insufficient to limit global climate risks is increasing calls for atmospheric experiments to better understand the risks and implications of also deploying solar geoengineering technologies to reflect sunlight and rapidly lower surface temperatures. But solar geoengineering research itself poses significant environmental and geopolitical risks. Given limited societal awareness and public dialogue about this climate response option, conducting such experiments without meaningful societal engagement could galvanize opposition to solar geoengineering research from civil society, including the most climate vulnerable communities who are among its intended beneficiaries. Here, we explore whether and how a solar geoengineering research enterprise might be developed in a way that promotes legitimacy as well as scientific credibility and policy relevance. We highlight the distinctive responsibilities of researchers and research funders to ensure that solar geoengineering research proposals are subject to legitimate societal review and scrutiny, recommend steps they can take to strive towards legitimacy and call on them to be explicitly open to multiple potential outcomes, including the societal rejection or considerable alteration of the solar geoengineering research enterprise. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
Efficient Cells Cut the Cost of Solar Power
NASA Technical Reports Server (NTRS)
2013-01-01
If you visit Glenn Research Center, you might encounter a photovoltaic (PV) array that looks unlike anything you've ever seen. In fact, what one would normally identify as the panel is actually a series of curved mirrors called solar concentrators, engineered to reflect sunlight rather than absorb it. These concentrators gather, intensify, and focus sun beams upward, aiming at a fixture containing specialized silicon concentrated PV chips the actual solar cells. If you stay by the array for a while, you'll notice that the solar concentrators follow the path of the sun throughout the day, changing position to best capture and utilize the sunlight. The specialized chips that make the technology possible are the brainchild of Bernard Sater, an engineer who had worked at Glenn since the early 1960s before retiring to pursue his unique ideas for harnessing solar power. Sater contributed to multiple PV projects in the latter part of his career at the Center, including research and development on the International Space Station s solar arrays. In his spare time, he enjoyed tinkering with new approaches to solar power, experiments that resulted in the system installed at Glenn today. Sater s basic idea had two components. First, he wanted to create a silicon cell that was smaller, more efficient, and much lower cost than those available at the time. To ensure that the potential of such a chip could be realized, he also planned on pairing it with a system that could concentrate sunlight and focus it directly on the cell. When he retired from Glenn in 1994 to focus on researching and developing the technology full time, Sater found that NASA was interested in the concept and ready to provide funding, facilities, and expertise in order to assist in its development.
Improved Statistical Model Of 10.7-cm Solar Radiation
NASA Technical Reports Server (NTRS)
Vedder, John D.; Tabor, Jill L.
1993-01-01
Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.
2009-01-13
CAPE CANAVERAL, Fla. -- Ball Aerospace and Technology workers conduct a light test on the solar array panels of NASA's Kepler spacecraft. A NASA Discovery mission, Kepler is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Kepler will hunt for planets using a specialized one-meter diameter telescope called a photometer to measure the small changes in brightness caused by the transits. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. After processing at Astrotech, Kepler will be carried to its launch pad at Cape Canaveral Air Force Station. NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5 atop a United Launch Alliance Delta II rocket. Photo credit: NASA/Kim Shiflett
2009-01-13
CAPE CANAVERAL, Fla. -- Lights are reflected on the solar array panels of NASA's Kepler spacecraft during illumination testing. A NASA Discovery mission, Kepler is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Kepler will hunt for planets using a specialized one-meter diameter telescope called a photometer to measure the small changes in brightness caused by the transits. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. After processing at Astrotech, Kepler will be carried to its launch pad at Cape Canaveral Air Force Station. NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5 atop a United Launch Alliance Delta II rocket. Photo credit: NASA/Kim Shiflett
2009-01-13
CAPE CANAVERAL, Fla. -- Ball Aerospace and Technology workers conduct a light test on the solar array panels of NASA's Kepler spacecraft. A NASA Discovery mission, Kepler is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Kepler will hunt for planets using a specialized one-meter diameter telescope called a photometer to measure the small changes in brightness caused by the transits. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. After processing at Astrotech, Kepler will be carried to its launch pad at Cape Canaveral Air Force Station. NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5 atop a United Launch Alliance Delta II rocket. Photo credit: NASA/Kim Shiflett
2009-01-13
CAPE CANAVERAL, Fla. -- Ball Aerospace and Technology workers conduct a light test on the solar array panels of NASA's Kepler spacecraft. A NASA Discovery mission, Kepler is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Kepler will hunt for planets using a specialized one-meter diameter telescope called a photometer to measure the small changes in brightness caused by the transits. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. After processing at Astrotech, Kepler will be carried to its launch pad at Cape Canaveral Air Force Station. NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5 atop a United Launch Alliance Delta II rocket. Photo credit: NASA/Kim Shiflett
Integrated Solar-Energy-Harvesting and -Storage Device
NASA Technical Reports Server (NTRS)
whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian
2004-01-01
A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.
2009-01-13
CAPE CANAVERAL, Fla. -- Ball Aerospace and Technology workers conduct a light test on the solar array panels of NASA's Kepler spacecraft. A NASA Discovery mission, Kepler is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Kepler will hunt for planets using a specialized one-meter diameter telescope called a photometer to measure the small changes in brightness caused by the transits. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. After processing at Astrotech, Kepler will be carried to its launch pad at Cape Canaveral Air Force Station. NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5 atop a United Launch Alliance Delta II rocket. Photo credit: NASA/Kim Shiflett
Silicon dendritic web material
NASA Technical Reports Server (NTRS)
Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.
1982-01-01
The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.
Silicon dendritic web material
NASA Astrophysics Data System (ADS)
Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.
1982-03-01
The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.
Test bench HEATREC for heat loss measurement on solar receiver tubes
NASA Astrophysics Data System (ADS)
Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo
2016-05-01
In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.
2017-12-08
Magnetic arcs of solar material spewing from our favorite sphere of hot plasma, the sun. Magnetic arcs of solar material held their shapes fairly well as they spiraled above two solar active regions over 18 hours on Jan. 11-12, 2017. The charged solar material, called plasma, traces out the magnetic field lines above the active regions when viewed in wavelengths of extreme ultraviolet light, captured here by NASA’s Solar Dynamics Observatory. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold for easy viewing. Credit: NASA/SDO
Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination.
Feenstra, J; Six, I F; Asselbergs, M A H; van Leest, R H; de Wild, J; Meijerink, A; Schropp, R E I; Rowan, A E; Schermer, J J
2015-05-07
The inability of solar cell materials to convert all incident photon energy into electrical current, provides a fundamental limit to the solar cell efficiency; the so called Shockley-Queisser (SQ) limit. A process termed upconversion provides a pathway to convert otherwise unabsorbed low energy photons passing through the solar cell into higher energy photons, which subsequently can be redirected back to the solar cell. The combination of a semi-transparent InGaP solar cell with lanthanide upconverters, consisting of ytterbium and erbium ions doped in three different host materials (Gd2O2S, Y2O3 and NaYF4) is investigated. Using sub-band gap light of wavelength range 890 nm to 1045 nm with a total accumulated power density of 2.7 kW m(-2), a distinct photocurrent was measured in the solar cell when the upconverters were applied whereas a zero current was measured without upconverter. Furthermore, a time delay between excitation and emission was observed for all upconverter systems which can be explained by energy transfer upconversion. Also, a quadratic dependence on the illumination intensity was observed for the NaYF4 and Y2O3 host material upconverters. The Gd2O2S host material upconverter deviated from the quadratic illumination intensity dependence towards linear behaviour, which can be attributed to saturation effects occurring at higher illumination power densities.
Solar thermal harvesting for enhanced photocatalytic reactions.
Hashemi, Seyyed Mohammad Hosseini; Choi, Jae-Woo; Psaltis, Demetri
2014-03-21
The Shockley-Queisser limit predicts a maximum efficiency of 30% for single junction photovoltaic (PV) cells. The rest of the solar energy is lost as heat and due to phenomena such as reflection and transmission through the PV and charge carrier recombination. In the case of photocatalysis, this maximum value is smaller since the charge carriers should be transferred to acceptor molecules rather than conductive electrodes. With this perspective, we realize that at least 70% of the solar energy is available to be converted into heat. This is specifically useful for photocatalysis, since heat can provide more kinetic energy to the reactants and increase the number of energetic collisions leading to the breakage of chemical bonds. Even in natural photosynthesis, at the most 6% of the solar spectrum is used to produce sugar and the rest of the absorbed photons are converted into heat in a process called transpiration. The role of this heating component is often overlooked; in this paper, we demonstrate a coupled system of solar thermal and photocatalytic decontamination of water by titania, the most widely used photocatalyst for various photo reactions. The enhancement of this photothermal process over solely photocatalytic water decontamination is demonstrated to be 82% at 1× sun. Our findings suggest that the combination of solar thermal energy capture with photocatalysis is a suitable strategy to utilize more of the solar spectrum and improve the overall performance.
MODIS Solar Diffuser On-orbit Performance
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Chen, H.; Choi, T.; Sun, J.; Angal, A.
2008-01-01
MODIS is a key instrument for the NASA Earth Observing System (EOS), currently operated on both the Terra and Aqua missions. Each MODIS instrument has 20 reflective solar bands (RSBs) and 16 thermal emissive bands (TEBs). MODIS RSB on-orbit calibration is reflectance based using an on-board solar diffuser (SD). The SD bi-directional reflectance factors (BRFs) were characterized pre-launch using reference diffuser samples, which are traceable to NIST reflectance standards. The SD BRF on-orbit degradation (or change) is tracked by another onboard device, called the solar diffuser stability monitor (SDSM). The SDSM is operated during each scheduled SD calibration event, making alternate observations of direct sunlight and the diffusely reflected sunlight from the SD. The time series of the ratios of SDSM's SD view to its Sun view provide SD degradation information. This paper presents and compares the Terra and Aqua MODIS SD on-orbit performance. Results show that the SD on-orbit degradation depends on the amount of solar exposure of the SD plate. In addition, it is strongly wavelengthdependent, with a larger degradation rate at shorter wavelengths. For Terra MODIS, an SD door anomaly occurred in May 2003 that led to a decision to fix the door permanently at an "open" position. Since then, the SD degradation rate has significantly increased due to more frequent solar exposure. As expected, the SD on-orbit performance directly impacts the RSB calibration performance. The lessons learned from MODIS on-orbit calibration will provide useful insights into the development and operation of future SD calibration systems.
The HEXITEC Hard X-Ray Pixelated CdTe Imager for Fast Solar Observations
NASA Technical Reports Server (NTRS)
Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen
2016-01-01
There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic imaging. Such observations would present ground breaking opportunities to study the poorly understood high energy processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state detectors sensitive to high energy X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) detector system, called HEXITEC (High Energy X-ray Imaging Technology). It is an 80 x 80 array of 250 micron independent pixels sensitive in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's imaging capability, energy resolution, high read out rate, and reveal it to be ideal for such future instruments.
Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing
NASA Astrophysics Data System (ADS)
Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.
2017-01-01
Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.
2007-06-20
KENNEDY SPACE CENTER, FLA. -- At Astrotech, the Dawn spacecraft is on display for a media showing. On each side are the folded solar array panels. The "box" in the upper center is the visual and infrared mapping spectrometer, which is designed to measure how much radiation of different "colors" is reflected or emitted by an object. At the bottom, under cover, is one of the ion propulsion thrusters. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/Kim Shiflett
HELIO: The Heliophysics Integrated Observatory
NASA Technical Reports Server (NTRS)
Bentley, R. D.; Csillaghy, A.; Aboudarham, J.; Jacquey, C.; Hapgood, M. A.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Fox, P.;
2011-01-01
Heliophysics is a new research field that explores the Sun-Solar System Connection; it requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO, the Heliophysics Integrated Observatory, will facilitate this study by creating an integrated e-Infrastructure that has no equivalent anywhere else. It will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains. HELIO was proposed under a Research Infrastructure call in the Capacities Programme of the European Commission's 7th Framework Programme (FP7). The project was selected for negotiation in January 2009; following a successful conclusion to these, the project started on 1 June 2009 and will last for 36 months.
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin placing the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin securing the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians are securing the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
Coronal Loops Reveal Magnetic Dance
2015-01-20
Magnetic Dance: Solar material traces out giant magnetic fields soaring through the sun to create what's called coronal loops. Here they can be seen as white lines in a sharpened AIA image from Oct. 24, 2014, laid over data from SDO's Helioseismic Magnetic Imager, which shows magnetic fields on the sun's surface in false color. Credit: NASA/SDO/HMI/AIA/LMSAL Read more: www.nasa.gov/content/goddard/sdo-telescope-collects-its-1... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-01-04
On Jan. 4, 2017 NASA announced the selection of two missions to explore previously unexplored asteroids. The first mission, called Lucy, will study asteroids, known as Trojan asteroids, trapped by Jupiter’s gravity. The Psyche mission will explore a very large and rare object in the solar system’s asteroid belt that’s made of metal, and scientists believe might be the exposed core of a planet that lost its rocky outer layers from a series of violent collisions. Lucy is targeted for launch in 2021 and Psyche in 2023. Both missions have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 million years after the birth of our sun.
NASA Technical Reports Server (NTRS)
Atwell, William; Tylka, Allan; Dietrich, William; Badavi, Francis; Rojdev, Kristina
2011-01-01
Several methods for analyzing the particle spectra from extremely large solar proton events, called Ground-Level Enhancements (GLEs), have been developed and utilized by the scientific community to describe the solar proton energy spectra and have been further applied to ascertain the radiation exposures to humans and radio-sensitive systems, namely electronics. In this paper 12 GLEs dating back to 1956 are discussed, and the three methods for describing the solar proton energy spectra are reviewed. The three spectral fitting methodologies are EXP [an exponential in proton rigidity (R)], WEIB [Weibull fit: an exponential in proton energy], and the Band function (BAND) [a double power law in proton rigidity]. The EXP and WEIB methods use low energy (MeV) GLE solar proton data and make extrapolations out to approx.1 GeV. On the other hand, the BAND method utilizes low- and medium-energy satellite solar proton data combined with high-energy solar proton data deduced from high-latitude neutron monitoring stations. Thus, the BAND method completely describes the entire proton energy spectrum based on actual solar proton observations out to 10 GeV. Using the differential spectra produced from each of the 12 selected GLEs for each of the three methods, radiation exposures are presented and discussed in detail. These radiation exposures are then compared with the current 30-day and annual crew exposure limits and the radiation effects to electronics.
NASA Astrophysics Data System (ADS)
Hancock, L. O.; Povenmire, H.
2010-12-01
Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring system’s orbital elements and structure. Our work concludes that rings may exist in Earth’s equatorial plane and in the plane of the lunar orbit, that such rings are filamentary structures comprising segments of geologically homogeneous material flung into earth’s orbit at distinct periods of lunar volcanism, and that earth’s weather may indeed be very strongly affected by the rings. In closing, until the time of the lunar landing in 1969, the moon was considered geologically dead. But today, we have multiple lines of evidence that the Moon is still volcanically active. According to our study, this volcanism may affect weather and climate considerably. If lunar volcanism and weather on Earth are linked, then a satisfactory understanding of lunar volcanism is called for by considerations of human welfare. The subsistence farmer has an immediate need to know what is true about our Moon; food security depends on it.
NASA Technical Reports Server (NTRS)
Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.
2005-01-01
In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.
Alien Asteroid Belt Compared to our Own
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction
NASA Astrophysics Data System (ADS)
Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.
2018-05-01
3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.
Looking for Life in the Ocean Worlds of the Outer Solar System
NASA Astrophysics Data System (ADS)
Lunine, Jonathan I.; Waite, J. Hunter
2016-04-01
Interest in searching for life in the outer solar system has intensified recently with the new start of the Europa Multiple Flyby Mission and the insertion through a NASA community announcement of an Ocean Worlds (Titan and Enceladus) theme in the list of possible New Frontiers Missions. As part of a Discovery proposal called "Enceladus Life Finder", or ELF, a multidisciplinary team of scientists led by the authors developed a set of measurements for determining the habitability of Enceladus' internal ocean and the presence of biological activity therein, obtained by flying through Enceladus' plume. We call this set of measurements "Life's intrinsic forensic evidence", or LIFE. The LIFE protocol is implemented by flying two mass spectrometers through the plume -one optimized for gas and the other for ice. The measurements and information derived therefrom cut to the heart of what biological activity does that distinguishes it from abiotic processes. They also tightly constrain the essential parameters of ocean habitability including pH, redox state, available free energy and temperature of any active hydrothermal systems on the floor of the Enceladus ocean. In addition to Enceladus, such a protocol is applicable to Europa should deep-seated plumes be present there, Further, with appropriate modifications from terrestrial-type biochemistry, LIFE is potentially applicable to testing for exotic biochemistries in the seas of Titan. In this talk we will focus on the basic concept of the LIFE protocol and explain its application to each of these bodies.
The role of Fizeau interferometry in planetary science
NASA Astrophysics Data System (ADS)
Conrad, Albert R.
2016-08-01
Historically, two types of interferometer have been used to the study of solar system objects: coaxial and Fizeau. While coaxial interferometers are well-suited to a wide range of galactic and extra-galactic science cases, solar system science cases are, in most cases, better carried out with Fizeau imagers. Targets of interest in our solar system are often bright and compact, and the science cases for these objects often call for a complete, or nearly complete, image at high angular resolution. For both methods, multiple images must be taken at varying baselines to reconstruct an image. However, with the Fizeau technique that number is far fewer than it is for the aperture synthesis method employed by co-axial interferometers. In our solar system, bodies rotate and their surfaces are sometimes changing over yearly, or even weekly, time scales. Thus, the need to be able to exploit the high angular resolution of an interferometer with only a handful of observations taken on a single night, as is the case for Fizeau interferometers, gives a key advantage to this technique. The aperture of the Large Binocular Telescope (LBT), two 8.4 circular mirrors separated center-to-center by 14.4 meters, is optimal for supporting Fizeau interferometry. The first of two Fizeau imagers planned for LBT, the LBT Interferometer (LBTI),1 saw first fringes in 2010 and has proven to be a valuable tool for solar system studies. Recent studies of Jupiters volcanic moon Io have yielded results that rely on the angular resolution provided by the full 23-meter baseline of LBT Future studies of the aurora at Jupiters poles and the shape and binarity of asteroids are planned. While many solar system studies can be carried out on-axis (i.e., using the target of interest as the beacon for both adaptive optics correction and fringe tracking), studies such as Io-in-eclipse, full disk of Jupiter and Mars, and binarity of Kuiper belt objects, require off-axis observations (i.e., using one or more nearby guide-moons or stars for adaptive optics correction and fringe tracking). These studies can be plagued by anisoplanatism, or cone effect. LINC-NIRVANA (LN),2 the first multi-conjugate adaptive optics system (MCAO) on an 8-meter class telescope in the northern hemisphere, provides a solution to the ill-effects of anisoplanatism. One of the LN ground layer wave front sensors was tested on LBT during 2014.3-5 Longer term, an upgrade planned for LN will establish its original role as the second LBT Fizeau imager. The full-disk study of several solar system bodies, most notably large and/or nearby bodies such as Jupiter and Mars which span tens of arcseconds, would be best studied with LN. We will review the past accomplishments of Fizeau interferometry with LBTI, present plans for using that instrument for future solar system studies, and, lastly, explore the unique solar system studies that require the LN MCAO system combined with Fizeau interferometry.
Investigating the origins of the Irregular satellites using Cladistics
NASA Astrophysics Data System (ADS)
Holt, Timothy; Horner, Jonti; Tylor, Christopher; Nesvorny, David; Brown, Adrian; Carter, Brad
2017-10-01
The irregular satellites of Jupiter and Saturn are thought to be objects captured during a period of instability in the early solar system. However, the precise origins of these small bodies remain elusive. We use cladistics, a technique traditionally used by biologists, to help constrain the origins of these bodies. Our research contributes to a growing body of work that uses cladistics in astronomy, collectively called astrocladistics. We present one of the first instances of cladistics being used in a planetary science context. The analysis uses physical and compositional characteristics of three prograde Jovian irregular satellites (Themisto, Leda & Himalia), five retrograde Jovian irregular satellites (Ananke, Carme, Pasiphae, Sinope & Callirrhoe), along with Phoebe, a retrograde irregular satellite of Saturn, and several other regular Jovian and Saturnian satellites. Each of these members are representatives of their respective taxonomic groups. The irregular satellites are compared with other well-studied solar system bodies, including satellites, terrestrial planets, main belt asteroids, comets, and minor planets. We find that the Jovian irregular satellites cluster with asteroids and Ceres. The Saturnian satellites studied here are found to form an association with the comets, adding to the narrative of exchange between the outer solar system and Saturnian orbital space. Both of these results demonstrate the utility of cladistics as an analysis tool for the planetary sciences.
Journey to the center of the galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaisson, E.
1980-08-01
The solar system is a member of the Orion Arm of the Milky Way, far from the center of the Galaxy. This article takes the reader on a hypothetical journey from the solar system to the center of the Galaxy. Results from radio and infrared studies are used to suggest what such a journey might reveal. Traveling from the solar system toward the center, one crosses the Cygnus Arm, then the Sagittarius Arm, and then the so-called Three-kiloparsec Arm. The Arms contain a mixture of young stars as well as lots of gas and dust. Radio studies show that themore » Three-kiloparsec Arm is more like a ring than an arm. Inside this ring, is another ring composed of giant molecular clouds. Radio and infrared astronomers have discovered that the heart of the Galaxy is composed of matter in most perplexing states. There are three regions known within this innermost thousand light-years. First, there is a large zone of thin, hot ionized gas. Within this, there is a whirlpool of dense, warm matter. And further embedded, there seems to be a small supermassive object at the center. Possibly this object could be a blackhole. Researchers are continuing to examine, monitor, and model this mysterious region, the galactic nuclei. (SC)« less
NASA Astrophysics Data System (ADS)
Rodrigues, Davi C.; Mauro, Sebastião; de Almeida, Álefe O. F.
2016-10-01
General relativity extensions based on renormalization group effects are motivated by a known physical principle and constitute a class of extended gravity theories that have some unexplored unique aspects. In this work we develop in detail the Newtonian and post-Newtonian limits of a realization called renormalization group extended general relativity (RGGR). Special attention is given to the external potential effect, which constitutes a type of screening mechanism typical of RGGR. In the Solar System, RGGR depends on a single dimensionless parameter ν¯⊙, and this parameter is such that for ν¯⊙=0 one fully recovers GR in the Solar System. Previously this parameter was constrained to be |ν¯ ⊙|≲10-21 , without considering the external potential effect. Here we show that under a certain approximation RGGR can be cast in a form compatible with the parametrized post-Newtonian (PPN) formalism, and we use both the PPN formalism and the Laplace-Runge-Lenz technique to put new bounds on ν¯⊙, either considering or not the external potential effect. With the external potential effect the new bound reads |ν¯ ⊙|≲10-16 . We discuss the possible consequences of this bound on the dark matter abundance in galaxies.
Magnetospheric Multiscale (MMS) [video
2014-05-09
MMS Spacecraft Animation The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. These processes occur in all astrophysical plasma systems but can be studied in situ only in our solar system and most efficiently only in Earth's magnetosphere, where they control the dynamics of the geospace environment and play an important role in the processes known as "space weather." Learn more about MMS at www.nasa.gov/mms Learn more about MMS at www.nasa.gov/mms Credit NASA/Goddard The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Magnetospheric Multiscale (MMS)
2017-12-08
MMS Spacecraft Animation The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. These processes occur in all astrophysical plasma systems but can be studied in situ only in our solar system and most efficiently only in Earth's magnetosphere, where they control the dynamics of the geospace environment and play an important role in the processes known as "space weather." Learn more about MMS at www.nasa.gov/mms Learn more about MMS at www.nasa.gov/mms Credit NASA/Chris Gunn The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Reconstructions of solar irradiance on centennial time scales
NASA Astrophysics Data System (ADS)
Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo
Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.
Understanding the Physical Nature of Coronal "EIT Waves".
Long, D M; Bloomfield, D S; Chen, P F; Downs, C; Gallagher, P T; Kwon, R-Y; Vanninathan, K; Veronig, A M; Vourlidas, A; Vršnak, B; Warmuth, A; Žic, T
2017-01-01
For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory . In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.
A novel concentrator with zero-index metamaterial for space solar power station
NASA Astrophysics Data System (ADS)
Huang, Jin; Chu, Xue-mei; Fan, Jian-yu; Jin, Qi-bao; Duan, Zhu-zhu
2017-03-01
Space solar power station (SSPS) is a comprehensive system that continuously collects solar energy in space and transmits it to ground with a wireless power transmission (WPT) system. These systems have great potential to provide large-scale energy. To increase the efficiency and reduce the weight and cost of the photovoltaic (PV) components, a huge light-weighted concentrator was introduced in the latest SSPS concepts, such as integrated symmetrical concentrator (ISC) and arbitrarily large phased array (ALPHA). However, for typical SSPS running in Geostationary Earth Orbit (GEO), the sunlight direction varies with time, leading to a great challenge for concentrator design. In ISC, the two-dimensional mast is used to realize sun-tracking. However, a multi-thousand-ton structure is difficult to control precisely in space. For this reason, ALPHA comprises a large number of individually pointed thin-film reflectors to intercept sunlight, mounted on the non-moving structure. However, the real-time adjustment of the thousands of reflectors is still an open problem. Furthermore, the uniformity of the time of the power generation (UTPG) is another factor evaluating the system. Therefore, this paper proposes a novel concentrator based on zero-index metamaterial (ZIM) called Thin-film Energy Terminator (SSPS-TENT). This will aid the control of the massive reflectors while avoiding the rotation of the overall system, the control of the massive reflectors and the influence of the obliquity of the ecliptic. Also, an optimization design method is proposed to increase its solar energy collecting efficiency (ECE) and flux distribution (FD). The ray-tracing simulation results show that the ECE is more than 96% of the day. In terms of the FD, the uniformity varies from 0.3057 to 0.5748. Compared with ALPHA, the UTPG is more stable.
Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Becker, Werner; Kramer, Michael; Sesana, Alberto
2018-02-01
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_{GW}˜ 10^{-9} - 10^{-7} Hz) gravitational waves. We present the current status and provide an outlook for the future.
Seattle's System for Evaluating Energy Options
NASA Technical Reports Server (NTRS)
Logie, P.; Macdonald, M. J.
1982-01-01
In 1975, the City Council developed a blueprint called "Energy 1990" for meeting Seattle's future electric energy needs. Priorities for addressing or offsetting expected growth in demand are in order: (1) conservation; (2) hydroelectricity; (3) other renewable sources such as wind, biomass, solar, and geothermal energy; (4) abundant nonrenewable resources such as coal, and (5) other renewables. An energy resources planning group was formed and a data base was established. Resource options were investigated and the recommendations were published.
2018-04-18
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.
NASA Astrophysics Data System (ADS)
Miyake, S.; Kataoka, R.; Sato, T.
2016-12-01
The solar modulation of galactic cosmic rays (GCRs), which is the variation of the terrestrial GCR flux caused by the heliospheric environmental change, is basically anti-correlated with the solar activity with so-called 11-year periodicity. In the current weak solar cycle 24, we expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude during the solar cycles 24, 25, and 26, we have developed the time-dependent and three-dimensional model of the solar modulation of GCRs. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind velocity, the strength of the interplanetary magnetic field, and its tilt angle. We solve the curvature and gradient drift motion of GCRs in the heliospheric magnetic field, and therefore reproduce the 22-year variation of the solar modulation of GCRs. It is quantitatively confirmed that our model reproduces the energy spectra observed by BESS and PAMELA. We then calculate the variation of the GCR energy spectra during the solar cycles 24, 25, and 26, by extrapolating the solar wind parameters and tilt angle. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In this presentation, we report the quantitative forecast values of the solar modulation of GCRs, neutron monitor counting rate, and the radiation dose at flight altitude up to the cycle 26, including the discussion of the charge sign dependence on those results.
Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.
ERIC Educational Resources Information Center
Flavin, Christopher
Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…
Birth of an Earth-like Planet (Artist concept)
NASA Technical Reports Server (NTRS)
2007-01-01
This artist's conception shows a binary-star, or two-star, system, called HD 113766, where astronomers suspect a rocky Earth-like planet is forming around one of the stars. At approximately 10 to 16 million years old, astronomers suspect this star is at just the right age for forming rocky planets. The system is located approximately 424 light-years away from Earth. The two yellow spots in the image represent the system's two stars. The brown ring of material circling closest to the central star depicts a huge belt of dusty material, more than 100 times as much as in our asteroid belt, or enough to build a Mars-size planet or larger. The rocky material in the belt represents the early stages of planet formation, when dust grains clump together to form rocks, and rocks collide to form even more massive rocky bodies called planetesimals. The belt is located in the middle of the system's terrestrial habitable zone, or the region around a star where liquid water could exist on any rocky planets that might form. Earth is located in the middle of our sun's terrestrial habitable zone. Using NASA's Spitzer Space Telescope, astronomers learned that the belt material in HD 113866 is more processed than the snowball-like stuff that makes up infant solar systems and comets, which contain pristine ingredients from the early solar system. However, it is not as processed as the stuff found in mature planets and asteroids. This means that the dust belt is made out of just the right mix of materials to be forming an Earth-like planet. It is composed mainly of rocky silicates and metal sulfides (like fool's gold), similar to the material found in lava flows. The white outer ring shows a concentration of icy dust also detected in the system. This material is at the equivalent position of the asteroid belt in our solar system, but only contains about one-sixth as much material as the inner ring. Astronomers say it is not clear from the Spitzer observations if anything is occurring in the icy belt, but they believe it could be a source of water later on for the planet that grows from the inner warm ring.NASA's SDO Observes Largest Sunspot of the Solar Cycle
2017-12-08
On Oct. 18, 2014, a sunspot rotated over the left side of the sun, and soon grew to be the largest active region seen in the current solar cycle, which began in 2008. Currently, the sunspot is almost 80,000 miles across -- ten Earth's could be laid across its diameter. Sunspots point to relatively cooler areas on the sun with intense and complex magnetic fields poking out through the sun's surface. Such areas can be the source of solar eruptions such as flares or coronal mass ejections. So far, this active region – labeled AR 12192 -- has produced several significant solar flares: an X-class flare on Oct. 19, an M-class flare on Oct. 21, and an X-class flare on Oct. 22, 2014. The largest sunspot on record occurred in 1947 and was almost three times as large as the current one. Active regions are more common at the moment as we are in what's called solar maximum, which is the peak of the sun's activity, occurring approximately every 11 years. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Power System Simulation for Policymaking and Making Policymakers
NASA Astrophysics Data System (ADS)
Cohen, Michael Ari
Power system simulation is a vital tool for anticipating, planning for and ultimately addressing future conditions on the power grid, especially in light of contemporary shifts in power generation, transmission and use that are being driven by a desire to utilize more environmentally responsible energy sources. This dissertation leverages power system simulation and engineering-economic analysis to provide initial answers to one open question about future power systems: how will high penetrations of distributed (rooftop) solar power affect the physical and economic operation of distribution feeders? We find that the overall impacts of distributed solar power (both positive and negative) on the feeders we modeled are minor compared to the overall cost of energy, but that there is on average a small net benefit provided by distributed generation. We then describe an effort to make similar analyses more accessible to a non-engineering (high school) audience by developing an educational video game called "Griddle" that is based on the same power system simulation techniques used in the first study. We describe the design and evaluation of Griddle and find that it demonstrates potential to provide students with insights about key power system learning objectives.
Measurement of Global Radiation using Photovoltaic Panels
NASA Astrophysics Data System (ADS)
Veroustraete, Frank; Bronders, Jan; Lefevre, Filip; Mensink, Clemens
2014-05-01
The Vito Unit - Environmental and Spatial Aspects (RMA) - for many of its models makes use of global solar radiation. From this viewpoint and also from the notion that this variable is seldom measured or available at the local scale and at high multi-temporal frequencies, it can be stated that many models are fed with low quality estimates of global solar radiation at the local to regional scales. A project was initiated called SUNSPIDER with the following objective. To make use of photovoltaic solar panels to measure solar radiation at the highest spatio-temporal resolution, from the local to the regional scales and from minutes to years. To integrate the measured solar fields in different application fields like, plant systems and agriculture, agro-meteorology and hydrology and last but not least solar energy applications. In Belgium about 250.000 PV installations have been built leading to about 6% electric power supply from photovoltaics on a yearly basis. Last year in June, the supply reached a peak of more than 20% of the total power input on the Belgian grid. A database of Belgian residential solar panel sites will be compiled. The database will serve as an input to an inverted PV model to be able to perform radiation calculations specifically for each of the validated panel sites based on minutely logged power data. Data acquisition for these sites will start each time a site is validated and hence imported in the database. Keywords: Photovoltaic Panels; PV modelling; Global Radiation.
Interplanetary propulsion using inertial fusion
NASA Technical Reports Server (NTRS)
Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.
1987-01-01
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.
A segmented ion engine design for solar electric propulsion systems
NASA Technical Reports Server (NTRS)
Brophy, John R.
1992-01-01
A new ion engine design, called a segmented ion engine, is described which is capable of reducing the required ion source life time for small body rendezvous missions from 18,000 h to about 8,000 h. The use of SAND ion optics for the engine accelerator system makes it possible to substantially reduce the cost of demonstrating the required engine endurance. It is concluded that a flight test of a 5-kW xenon ion propulsion system on the ELITE spacecraft would enormously reduce the cost and risk of using ion propulsion on a planetary vehicle by addressing systems level issues associated with flying a spacecraft radically different from conventional planetary vehicles.
Advanced Energy Conversion Technologies and Architectures for Earth and Beyond
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.
2006-01-01
Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming system in a space solar power application. Near-term uses of this SLA-laser-SLA system may include terrestrial and space exploration in near Earth space. Later uses may include beamed power for bases or vehicles on Mars. Strategies for developing energy infrastructures in space which utilize this technology are presented. This dual use system produces electrical energy efficiently from either coherent light, such as from a highly coherent laser, or from conventional solar illumination. This allows, for example, supplementing solar energy with energy provided by highly coherent laser illumination during periods of low solar illumination or no illumination. This reduces the need for batteries and alternate sources of power. The capability of using laser illumination in a lowest order Gaussian laser mode provides means for transmitting power optically with maximum efficiency and precision over the long distances characteristic of space. A preliminary receiving system similar to that described here, has been produced and tested under solar and laser illumination. A summary of results is given.
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians secure all sides of the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lift the sun shade to be installed over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, a technician looks at the sun shade (foreground) to be installed over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lift the sun shade toward the Dawn spacecraft to install it on the high gain antenna. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, a technician secures one side of the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At At Astrotech, the Dawn spacecraft is on display with the recently installed sun shade over the high gain antenna. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- At Astrotech, a technician secures one side of the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
Scope for solar hydrogen power plants along Indian coasts
NASA Astrophysics Data System (ADS)
Hajra, Debdyut; Mukhopadhyay, Swarnav
2016-09-01
Energy is at the core of economic growth and development in the present day world. But relentless and unchecked use of harmful energy resources like fossil fuels (coil and oil), nuclear energy has taken a toll on mother nature. The energy coffers are being rapidly depleted and within a few years all of them will become empty, leaving nothing for the future generations to build on. Their constant usage has degraded the air quality and given way to land and water pollution. Scientists and world leaders have initiated a call for action to shift our dependence from currently popular energy sources to cleaner and renewable energy sources. Search for such energy sources have been going on for many years. Solar energy, wind energy, ocean energy, tidal energy, biofuel, etc. have caught the attention of people. Another such important which has become popular is 'Solar Hydrogen'. Many visionary scientists have called hydrogen the energy of the future. It is produced from water by direct or indirect use of sunlight in a sustainable manner. This paper discusses the current energy scenario, the importance of solar-hydrogen as a fuel and most importantly the scope for solar hydrogen power plants along Indian coastline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillingham, Kenneth; Bollinger, Bryan
This is the final report for a systematic, evidence-based project using an unprecedented series of large-scale field experiments to examine the effectiveness and cost-effectiveness of novel approaches to reduce the soft costs of solar residential photovoltaics. The approaches were based around grassroots marketing campaigns called ‘Solarize’ campaigns, that were designed to lower costs and increase adoption of solar technology. This study quantified the effectiveness and cost-effectiveness of the Solarize programs and tested new approaches to further improve the model.
Solar and Drag Sail Propulsion: From Theory to Mission Implementation
NASA Technical Reports Server (NTRS)
Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy
2014-01-01
Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC, and began its mission after it was was ejected from the FASTSAT into Earth orbit, where it remained for several weeks before deorbiting as planned. NASA recently selected two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use solar sails to enable their scientific objectives. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Near Earth Asteroid (NEA) Scout mission will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Both are planned for launch in 2017. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric rockets. For example, the NASA Heliophysics Decadal Survey identifies no less than three such missions for possible flight before the mid-2020's. Solar sail propulsion technology is no longer an intesting theoretical possibility; it has been demonstrated in space and is now a critical technology for science and solar system exploration.
Electron Radiation Belts of the Solar System
NASA Astrophysics Data System (ADS)
Mauk, Barry; Fox, Nicola
To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).
Space Station Freedom solar array containment box mechanisms
NASA Technical Reports Server (NTRS)
Johnson, Mark E.; Haugen, Bert; Anderson, Grant
1994-01-01
Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.
Rework of the ERA software system: ERA-8
NASA Astrophysics Data System (ADS)
Pavlov, D.; Skripnichenko, V.
2015-08-01
The software system that has been powering many products of the IAA during decades has undergone a major rework. ERA has capabilities for: processing tables of observations of different kinds, fitting parameters to observations, integrating equations of motion of the Solar system bodies. ERA comprises a domain-specific language called SLON, tailored for astronomical tasks. SLON provides a convenient syntax for reductions of observations, choosing of IAU standards to use, applying rules for filtering observations or selecting parameters for fitting. Also, ERA includes a table editor and a graph plotter. ERA-8 has a number of improvements over previous versions such as: integration of the Solar system and TT xA1 TDB with arbitrary number of asteroids; option to use different ephemeris (including DE and INPOP); integrator with 80-bit floating point. The code of ERA-8 has been completely rewritten from Pascal to C (for numerical computations) and Racket (for running SLON programs and managing data). ERA-8 is portable across major operating systems. The format of tables in ERA-8 is based on SQLite. The SPICE format has been chosen as the main format for ephemeris in ERA-8.
NASA Captures Images of a Late Summer Flare
2014-08-25
On Aug. 24, 2014, the sun emitted a mid-level solar flare, peaking at 8:16 a.m. EDT. NASA's Solar Dynamics Observatory captured images of the flare, which erupted on the left side of the sun. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M5 flare. M-class flares are ten times less powerful than the most intense flares, called X-class flares. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
2011-01-01
The Sun's magnetic field permeates its atmosphere - ranging from the solar photosphere (the visible "surface") to the corona above. Think of this field as a collection of invisible rubber bands that are slowly stretched and twisted until they eventually reach a breaking point, When the field breaks, it releases a small amount of energy, known as a nanoflare. Millions of nanoflares occur every second, and the combined effect heats the solar corona to more than 1 million kelvins, hundreds of times hotter than the photosphere. The super-heated gas emits X-ray and ultraviolet radiation; Earth's upper atmosphere absorbs it, which changes our atmosphere's properties. This can disrupt communication, navigation, and surveillance systems, and also alter the orbits of satellites. On much larger scales, huge sections of the corona explosively erupt in coronal mass ejections (CMEs) and solar flares. CMEs directed toward Earth cause geomagnetic storms, which can wreck havoc on electrical power grids and produce widespread blackouts. Highly energetic particles can damage or even disable critical spacecraft components. Intense radiation from flares has the same effects as nanoflares, but to a greater degree. The need to understand how solar phenomena impact Earth has led to an important science field called space weather.
Kotov during Albedo Experiment in the SM
2013-11-18
ISS038-E-005022 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.
Kotov during Albedo Experiment in the SM
2013-11-18
ISS038-E-005014 (20 Nov. 2013) --- At a window in the International Space Station’s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth’s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station’s power supply. The light reflection phenomenon is measured in units called albedo.
Kotov during Albedo Experiment in the SM
2013-11-18
ISS038-E-005023 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.
Kotov during Albedo Experiment in the SM
2013-11-18
ISS038-E-005031 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.
Kotov during Albedo Experiment in the SM
2013-11-18
ISS038-E-005016 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.
Kotov during Albedo Experiment in the SM
2013-11-18
ISS038-E-005019 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.
2007-06-21
KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers check the attachments of the Dawn spacecraft onto the upper stage booster. The two elements are being mated for launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-21
KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers help guide the Dawn spacecraft toward the upper stage booster below. The two elements will be mated for launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2007-06-21
KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers secure the attachments of the Dawn spacecraft onto the upper stage booster. The two elements are being mated for launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
2018-04-18
A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.
Planning the 8-meter Chinese Giant Solar Telescope
NASA Astrophysics Data System (ADS)
Beckers, Jacques M.; Liu, Z.; Deng, Y.; Ji, H.
2013-07-01
The Chinese Giant Solar Telescope (CGST) will be a diffraction limited solar telescope optimized for the near-infrared (NIR) spectral region (0.8 - 2.5 microns). Its diffraction limit will be reached by the incorporation of Multi-Conjugate Adaptive Optics (MCAO) enhanced by image restoration techniques to achieve uniform (u.v) plane coverage over the angular spatial frequency region allowed by its 8-meter aperture. Thus it will complement the imaging capabilities of 4-meter telescopes being planned elsewhere which are optimized for the visible (VIS) spectral region (300 - 1000 nm) In the NIR spectral regions the CGST will have access to unique spectral features which will improve the diagnostics of the solar atmosphere. These include the CaII lines near 860 nm , the HeI lines near 1083 nm, the 1074 nm FeXIII coronal lines, the large Zeeman-split FeI line at 1548 nm, and (v) the H- continuum absorption minimum at 1.6 micron. Especially in sunspot umbrae the simultaneous observation of continua and lines across the NIR spectral range will cover a substantial depth range in the solar atmosphere. Of course the mid- and far- infrared regions are also available for unequalled high-angular resolution solar observations, for example, in the Hydrogen Bracket lines, CO molecular bands, and the MgI emission line at 12.3 microns. The CGST is a so-called ring telescope in which the light is captured by a 1 meter wide segmented ring or by a ring of 7 smaller off-axis aperture telescopes. The open central area of the telescope is large. The advantages of such a ring configuration is that (a) it covers all the spatial frequencies out to those corresponding to its outer diameter, (b) its circular symmetry makes it polarization neutral, (c) its large central hole helps thermal control, and (d) it provides ample space for the MCAO system and instrumentation in the Gregorian focus. Even though optimized for the NIR, we expect to use the CGST also at visible wavelengths in the so-called “Partial Adaptive Optics” (PAO) mode (Applied Optics 31,424,1992) to obtain angular resolution twice that of a 4-meter telescope if their observations indicate that higher resolution is desirable. The CGST is a Chinese solar community project.
Advanced Power System Analysis Capabilities
NASA Technical Reports Server (NTRS)
1997-01-01
As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.
Modeling the Variable Heliopause Location
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-03-01
In 2012, Voyager 1 zipped across the heliopause. Five and a half years later, Voyager 2 still hasnt followed its twin into interstellar space. Can models of the heliopause location help determine why?How Far to the Heliopause?Artists conception of the heliosphere with the important structures and boundaries labeled. [NASA/Goddard/Walt Feimer]As our solar system travels through the galaxy, the solar outflow pushes against the surrounding interstellar medium, forming a bubble called the heliosphere. The edge of this bubble, the heliopause, is the outermost boundary of our solar system, where the solar wind and the interstellar medium meet. Since the solar outflow is highly variable, the heliopause is constantly moving with the motion driven by changes inthe Sun.NASAs twin Voyager spacecraft were poisedto cross the heliopause after completingtheir tour of the outer planets in the 1980s. In 2012, Voyager 1 registered a sharp increase in the density of interstellar particles, indicating that the spacecraft had passed out of the heliosphere and into the interstellar medium. The slower-moving Voyager 2 was set to pierce the heliopause along a different trajectory, but so far no measurements have shown that the spacecraft has bid farewell to oursolar system.In a recent study, ateam of scientists led by Haruichi Washimi (Kyushu University, Japan and CSPAR, University of Alabama-Huntsville) argues that models of the heliosphere can help explain this behavior. Because the heliopause location is controlled by factors that vary on many spatial and temporal scales, Washimiand collaborators turn to three-dimensional, time-dependent magnetohydrodynamics simulations of the heliosphere. In particular, they investigate how the position of the heliopause along the trajectories of Voyager 1 and Voyager 2 changes over time.Modeled location of the heliopause along the paths of Voyagers 1 (blue) and 2 (orange). Click for a closer look. The red star indicates the location at which Voyager 1 crossed the heliopause. The current location of Voyager 2 is marked with a red circle. [Washimi et al. 2017]A Time-Varying BarrierThe authorsconsider the impact that solar flares, coronal mass ejections, and other disturbances in the solar outflow have on the heliopause distance. These solar disturbances intermingle as they travel outward to form what the authors call global merged interaction regions.Using their hydrodynamical simulations, Washimi and collaborators capture the complex behavior of the global merged interaction regions as they propagate through the termination shock and collide with the heliopause. Part of the shock is transmitted into the local interstellar medium, while part of it is reflected back toward and collides with the termination shock, which is pushed toward the Sun. This complex interplay of transmitted and reflected shocks combined with the nonuniformity of the local interstellar medium causes the heliopause location to vary dramatically in time as well as space.What Does this Mean for Voyager 2?Washimi and collaborators find that the location of the heliopause along the trajectories of Voyagers 1 and 2 has changed considerably over the past decade. In particular, they find that the heliopause has been pushed outward over the past few years due to an increase in the solar wind ram pressure. According to their simulations, Voyager 2 is currently traveling outward faster than the heliopause is advancing, which means that the spacecraft should soon cross the boundary perhaps even thisyear to become Earths second interstellar messenger.CitationHaruichi Washimi et al 2017 ApJL 846 L9. doi:10.3847/2041-8213/aa8556
NASA Astrophysics Data System (ADS)
Braxmaier, Claus; Dittus, Hansjörg; Foulon, Bernard; Göklü, Ertan; Grimani, Catia; Guo, Jian; Herrmann, Sven; Lämmerzahl, Claus; Ni, Wei-Tou; Peters, Achim; Rievers, Benny; Samain, Étienne; Selig, Hanns; Shaul, Diana; Svehla, Drazen; Touboul, Pierre; Wang, Gang; Wu, An-Ming; Zakharov, Alexander F.
2012-10-01
ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test General Relativity with an improvement in sensitivity of over 3 orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals.For this mission, accurate pulse timing with an ultra-stable clock, and a drag-free spacecraft with reliable inertial sensor are required. T2L2 has demonstrated the required accurate pulse timing; rubidium clock on board Galileo has mostly demonstrated the required clock stability; the accelerometer on board GOCE has paved the way for achieving the reliable inertial sensor; the demonstration of LISA Pathfinder will provide an excellent platform for the implementation of the ASTROD I drag-free spacecraft. These European activities comprise the pillars for building up the mission and make the technologies needed ready. A second mission, ASTROD or ASTROD-GW (depending on the results of ASTROD I), is envisaged as a three-spacecraft mission which, in the case of ASTROD, would test General Relativity to one part per billion, enable detection of solar g-modes, measure the solar Lense-Thirring effect to 10 parts per million, and probe gravitational waves at frequencies below the LISA bandwidth, or in the case of ASTROD-GW, would be dedicated to probe gravitational waves at frequencies below the LISA bandwidth to 100 nHz and to detect solar g-mode oscillations. In the third phase (Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD bandwidth. This paper on ASTROD I is based on our 2010 proposal submitted for the ESA call for class-M mission proposals, and is a sequel and an update to our previous paper (Appouchaux et al., Exp Astron 23:491-527, 2009; designated as Paper I) which was based on our last proposal submitted for the 2007 ESA call. In this paper, we present our orbit selection with one Venus swing-by together with orbit simulation. In Paper I, our orbit choice is with two Venus swing-bys. The present choice takes shorter time (about 250 days) to reach the opposite side of the Sun. We also present a preliminary design of the optical bench, and elaborate on the solar physics goals with the radiation monitor payload. We discuss telescope size, trade-offs of drag-free sensitivities, thermal issues and present an outlook.
Multiple scattering in particulate planetary surfaces
NASA Astrophysics Data System (ADS)
Muinonen, Karri; Peltoniemi, Jouni; Markkanen, Johannes; Penttilä, Antti; Videen, Gorden
2015-08-01
There are two ubiquitous phenomena observed at small solar phase angles (the Sun-Object-Observer angle) from, for example, asteroids and transneptunian objects. First, a nonlinear increase of brightness is observed toward the zero phase angle in the magnitude scale that is commonly called the opposition effect. Second, the scattered light is observed to be partially linearly polarized parallel to the Sun-Object-Observer plane that iscommonly called the negative polarization surge.The observations can be interpreted using a radiative-transfer coherent-backscattering Monte Carlo method (RT-CB, Muinonen 2004) that makes use of a so-called phenomenological fundamental single scatterer (Muinonen and Videen 2012). For the validity of RT-CB, see Muinonen et al. (2012). The method can allow us to put constraints on the size, shape, and refractive index of the fundamental scatterers.In the present work, we extend the RT-CB method for the specific case of a macroscopic medium of electric dipole scatterers. For the computation of the interactions, the far-field approximation inherent in the RT-CB method is replaced by an exact treatment, allowing us to account for, e.g., the so-called near-field effects. The present method constitutes the first milestone in the development of a multiple-scattering method, where the so-called ladder and maximally crossed cyclical diagrams of the multiple electromagnetic interactions are rigorously computed. We expect to utilize the new methods in the spectroscopic, photometric, and polarimetric studies of asteroids, as well as in the interpretation of radar echoes from small Solar System bodies.Acknowledgments. The research is funded by the ERC Advanced Grant No 320773 entitled Scattering and Absorption of Electromagnetic Waves in Particulate Media (SAEMPL).K. Muinonen, Waves in Random Media 14, 365 (2004).K. Muinonen, K., and G. Videen, JQSRT 113, 2385 (2012).K. Muinonen, M. I. Mishchenko, J. M. Dlugach, E. Zubko, A. Penttilä,and G. Videen, ApJ 760, 118 (2012).
NASA Astrophysics Data System (ADS)
Brown, Robert H.; Soderblom, Laurence A.
In August of 1989, while flying by Neptune's largest satellite Triton, Voyager 2 made another of its stunning discoveries in its epic journey through the outer solar system. First seen by one of us (LAS) and Tammy Becker (also of the USGS), after stereoscopic examination of a group of images taken very near Voyager's closest approach to the satellite, were at least two, geyser-like plumes spewing almost perfectly vertical columns of material 1-km across roughly 8-km high into Triton's atmosphere; there the columns were sheared by stratospheric winds into 100-km-long, dark clouds thought to composed of condensed nitrogen mixed with organic particles. Triton's plumes may be the most unique of all the manifestations of geologic activity on satellites in the outer solar system in that their energy source may be sunlight trapped below Triton's surface in a so-called "solid-state greenhouse". This talk will focus on the physical characteristics of those plumes, and on the various mechanisms proposed to explain their presence and apparent persistence on Triton.
Science goals and mission concept for the future exploration of Titan and Enceladus
NASA Astrophysics Data System (ADS)
Tobie, G.; Teanby, N. A.; Coustenis, A.; Jaumann, R.; Raulin, F.; Schmidt, J.; Carrasco, N.; Coates, A. J.; Cordier, D.; De Kok, R.; Geppert, W. D.; Lebreton, J.-P.; Lefevre, A.; Livengood, T. A.; Mandt, K. E.; Mitri, G.; Nimmo, F.; Nixon, C. A.; Norman, L.; Pappalardo, R. T.; Postberg, F.; Rodriguez, S.; Schulze-Makuch, D.; Soderblom, J. M.; Solomonidou, A.; Stephan, K.; Stofan, E. R.; Turtle, E. P.; Wagner, R. J.; West, R. A.; Westlake, J. H.
2014-12-01
Saturn's moons, Titan and Enceladus, are two of the Solar System's most enigmatic bodies and are prime targets for future space exploration. Titan provides an analogue for many processes relevant to the Earth, more generally to outer Solar System bodies, and a growing host of newly discovered icy exoplanets. Processes represented include atmospheric dynamics, complex organic chemistry, meteorological cycles (with methane as a working fluid), astrobiology, surface liquids and lakes, geology, fluvial and aeolian erosion, and interactions with an external plasma environment. In addition, exploring Enceladus over multiple targeted flybys will give us a unique opportunity to further study the most active icy moon in our Solar System as revealed by Cassini and to analyse in situ its active plume with highly capable instrumentation addressing its complex chemistry and dynamics. Enceladus' plume likely represents the most accessible samples from an extra-terrestrial liquid water environment in the Solar system, which has far reaching implications for many areas of planetary and biological science. Titan with its massive atmosphere and Enceladus with its active plume are prime planetary objects in the Outer Solar System to perform in situ investigations. In the present paper, we describe the science goals and key measurements to be performed by a future exploration mission involving a Saturn-Titan orbiter and a Titan balloon, which was proposed to ESA in response to the call for definition of the science themes of the next Large-class mission in 2013. The mission scenario is built around three complementary science goals: (A) Titan as an Earth-like system; (B) Enceladus as an active cryovolcanic moon; and (C) Chemistry of Titan and Enceladus - clues for the origin of life. The proposed measurements would provide a step change in our understanding of planetary processes and evolution, with many orders of magnitude improvement in temporal, spatial, and chemical resolution over that which is possible with Cassini-Huygens. This mission concept builds upon the successes of Cassini-Huygens and takes advantage of previous mission heritage in both remote sensing and in situ measurement technologies.
Astrometry of Solar System Objects with Gaia
NASA Astrophysics Data System (ADS)
Hestroffer, Daniel J.; Arenou, Frederic; Desmars, Josselin; Robert, Vincent; Thuillot, William; Arlot, Jean-Eudes; Carry, Benoit; David, Pedro; Eggl, Siegfried; Fabricius, Claus; Kudryashova, Maria; Lainey, Valery; Spoto, Federica; Tanga, Paolo; Gaia DPAC
2016-10-01
The Gaia ESA space mission will provide astrometric observations of a large number of celestial bodies, with unprecedented accuracy, and in an homogenous reference frame (to become the optical ICRF). The Gaia satellite is monitoring regularly the whole celestial sphere, with one complete scan in about 6month, down to approximately magnitude V≤20.7. It will provide after its nominal lifetime, (5 years, 2014-2019) about 70 astrometric points for several hundred thousands of solar system objects, asteroids from the Near-Earth region to Centaurs and bright TNOs, as well as planetary satellites and comets. The highly precise astrometric and photometric data is bound to lead to huge advances in the science of small Small Solar System Bodies (e.g. Tanga et al. 2016 P\\&SS, Hestroffer et al. 2014 COSPAR #40 ; Mignard et al. 2007 EMP).The first Gaia data release (GDR#1) is foreseen for Q3-2016 and will provide highly precise positions of selected stars down to mag V≈20. While solar system objets data is foreseen for the next data release (in 2017), science of Solar System will also highly benefit from the Gaia stellar catalogue. We will present the status of the satellite and Gaia mission, and details on the stellar data that will be published in this GDR#1. We discuss the catalogue content, number of stars, parameters and precisions, and the process of cross-matching and validation. We also touch upon the construction of combined Tycho-Gaia TGAS catalogue.A Gaia data daily processing is devoted to the identification of Solar System Objects. During this process the detection of new (or critical) objects arises and leads to the triggering of scientific alerts to be found on the web gaiafunsso.imcce.fr. We have also set up an international follow-up network called Gaia-FUN-SSO to validate the detection in space. For this goal, in case of detection the observational data must be sent to the MPC by the observers. Besides, Gaia should benefit for the classical astrometric reduction, for future as well as for past observations, which is part of the NAROO project (Robert et al. 2015 A&A). We will also touch upon the next releases steps, and the SSO data from Gaia observations that will be published.
NASA's 2004 In-Space Propulsion Refocus Studies for New Frontiers Class Missions
NASA Technical Reports Server (NTRS)
Witzberger, Kevin E.; Manzella, David; Oh, David; Cupples, Mike
2006-01-01
The New Frontiers (NF) program is designed to provide opportunities to fulfill the science objectives for top priority, medium class missions identified in the Decadal Solar System Exploration Survey. This paper assesses the applicability of the In-Space Propulsion s (ISP) Solar Electric Propulsion (SEP) technologies for representative NF class missions that include a Jupiter Polar Orbiter with Probes (JPOP), Comet Surface Sample Return (CSSR), and two different Titan missions. The SEP technologies evaluated include the 7-kW, 4,100-second NASA's Evolutionary Xenon Thruster (NEXT), the 3-kW, 2,700-second Hall thruster, and two different NASA Solar Electric Propulsion Technology Readiness (NSTAR) thrusters that are variants of the Deep Space 1 (DS1) thruster. One type of NSTAR, a 2.6-kW, 3,100-second thruster, will be the primary propulsion system for the DAWN mission that is scheduled to launch in 2006; the other is an "enhanced", higher power variant (3.8-kW, 4,100-second) and is so-called because it uses NEXT system components such as the NEXT power processing unit (PPU). The results show that SEP is applicable for the CSSR mission and a Titan Lander mission. In addition, NEXT has improved its applicability for these types of missions by modifying its thruster performance relative to its performance at the beginning of this study.
A-Track: A New Approach for Detection of Moving Objects in FITS Images
NASA Astrophysics Data System (ADS)
Kılıç, Yücel; Karapınar, Nurdan; Atay, Tolga; Kaplan, Murat
2016-07-01
Small planet and asteroid observations are important for understanding the origin and evolution of the Solar System. In this work, we have developed a fast and robust pipeline, called A-Track, for detecting asteroids and comets in sequential telescope images. The moving objects are detected using a modified line detection algorithm, called ILDA. We have coded the pipeline in Python 3, where we have made use of various scientific modules in Python to process the FITS images. We tested the code on photometrical data taken by an SI-1100 CCD with a 1-meter telescope at TUBITAK National Observatory, Antalya. The pipeline can be used to analyze large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.
NASA Astrophysics Data System (ADS)
Nguyen Thai, Chinh; Temitope Seun, Oluwadare; Le Thi, Nhung; Schuh, Harald
2017-04-01
The sun has its own seasons with an average duration of about 11 years. In this time, the sun enters a period of increased activity called the solar maximum and a period of decreased activity called the solar minimum. Cycles span from one minimum to the next. The current solar cycle is 24, which began on January 4, 2008 and is expected to be ended in 2019. During this period, the ionosphere changes its thickness and its characteristics as well. The change is most complicated and unpredictable at the equatorial latitudes in a band around 150 northward and 150 southward from the equator. Thailand is located in these regions is known as one of the countries most affected by the ionosphere change. Ionospheric information such as the vertical total electron content (VTEC) and scintillation indices can be extracted from the measurements of GNSS dual-frequency receivers. In this study, a Matlab tool is programmed to calculate some ionosphere parameters from the normal RINEX observation file including VTEC value, amplitude scintillation S4 index and others. The value of VTEC at one IGS station in Thailand (13.740N, 100.530E) is computed for almost one full solar cycle, that is 8 years, from 2009 to 2016. From these results, we are able to derive the rules of TEC variation over time and its dependence on solar activity in the equatorial regions. The change of VTEC is estimated in diurnal, seasonal and annual variation for the latest solar cycle. The solar cycle can be represented in several ways, in this paper we use the sunspot number and the F10.7 cm radio flux to describe the solar activity. The correlation coefficients between these solar indices and the monthly maximum of VTEC value are around 0.87, this indicates a high dependence of the ionosphere on solar activity. Besides, a scintillation map derived from GNSS data is displayed to indicate the intensity of scintillation activity.
Artist concept of Solar Backscatter UV (SBUV) measurement technique on TIROS
NASA Technical Reports Server (NTRS)
1989-01-01
Artist concept titled OZONE MEASUREMENT TECHNIQUE shows how the Solar Backscatter Ultraviolet (UV) 2 (SBUV-2) on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites (NOAA-9 and NOAA-11) works. Ozone is derived from the 'SBUV' instrument from the ratio of the observed backscattered radiance to the solar irradiance in the ultraviolet. This is called the ultraviolet albedo. During STS-34 Shuttle Solar Backscatter Ultraviolet (SSBUV) instruments in Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB) will calibrate the instruments onboard the TIROS satellites. SSBUV is managed by Goddard Space Flight Center (GSFC).
Development of Chemical and Mechanical Cleaning Procedures for Genesis Solar Wind Samples
NASA Technical Reports Server (NTRS)
Schmeling, M.; Jurewicz, A. J. G.; Gonzalez, C.; Allums, K. K.; Allton, J. H.
2018-01-01
The Genesis mission was the only mission returning pristine solar material to Earth since the Apollo program. Unfortunately, the return of the spacecraft on September 8, 2004 resulted in a crash landing shattering the solar wind collectors into smaller fragments and exposing them to desert soil and other debris. Thorough surface cleaning is required for almost all fragments to allow for subsequent analysis of solar wind material embedded within. However, each collector fragment calls for an individual cleaning approach, as contamination not only varies by collector material but also by sample itself.
Design of a power management and distribution system for a thermionic-diode powered spacecraft
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.
1996-01-01
The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force's Integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TMD's) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TDM-emitters reach peak temperatures of approximately 2200K, and the TID-collectors are run at approximately 1000K. Because of the high Specific Impulse (I(sup sp)) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN&C, power, etc., a substantial increase in payload weight is possible. This potentially allows for a stepdown in the required launch vehicle size or class for similar payload weight using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1000W(sub e) at 28+/-6V(sub dc) to the payload/spacecraft from a maximum TID generation capability of 1070W(sub e) at 2200K. Producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TID's are the responsibilities of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed herein.
Brayton cycle solarized advanced gas turbine
NASA Technical Reports Server (NTRS)
1986-01-01
Described is the development of a Brayton Engine/Generator Set for solar thermal to electrical power conversion, authorized under DOE/NASA Contract DEN3-181. The objective was to design, fabricate, assemble, and test a small, hybrid, 20-kW Brayton-engine-powered generator set. The latter, called a power conversion assembly (PCA), is designed to operate with solar energy obtained from a parobolic dish concentrator, 11 meters in diameter, or with fossil energy supplied by burning fuels in a combustor, or by a combination of both (hybrid model). The CPA consists of the Brayton cycle engine, a solar collector, a belt-driven 20-kW generator, and the necessary control systems for automatic operation in solar-only, fuel-only, and hybrid modes to supply electrical power to a utility grid. The original configuration of the generator set used the GTEC Model GTP36-51 gas turbine engine for the PCA prime mover. However, subsequent development of the GTEC Model AGT101 led to its selection as the powersource for the PCA. Performance characteristics of the latter, thermally coupled to a solar collector for operation in the solar mode, are presented. The PCA was successfully demonstrated in the fuel-only mode at the GTEC Phoenix, Arizona, facilities prior to its shipment to Sandia National Laboratory in Albuquerque, New Mexico, for installation and testing on a test bed concentractor (parabolic dish). Considerations relative to Brayton-engine development using the all-ceramic AGT101 when it becomes available, which would satisfy the DOE heat engine efficiency goal of 35 to 41 percent, are also discussed in the report.
Actividad solar del ciclo 23. Predicción del máximo y fase decreciente utilizando redes neuronales
NASA Astrophysics Data System (ADS)
Parodi, M. A.; Ceccatto, H. A.; Piacentini, R. D.; García, P. J.
Different methods have been proposed in order to predict the maximum amplitude of solar cycles, either as a consequence of the intrinsic importance of this event and because of its relation with solar storms and possible effects upon satellites, communication systems, etc. In this work, a neural network solar activity prediction is presented, measured through the sunspot number (SSN). The 16-units neural network, with a 12:3:1 architecture, was trained in a ``feed-forward" propagation way and learning by the so called ``back propagation rule". The annual mean SSN data in the 1700-1975 and 1987-1998 periods were used as the training set. The solar cycle 21 (1976-1986) was taken as the cross-validation data set. After performing the network training we obtained a prediction of the maximum annual mean for the current solar cycle 23, SSNmax= 135 ±17 at the year 2000, which is 13% smaller than the International Consensus Commitee's mean maximum prediction obtained through ``precursor techniques". On the other hand, our prediction is only about 4% smaller than the Consensus's neural network mean prediction. A ``multiple step" prediction technique was also performed and SSN annual mean predicted values for the near-maximum (from the present year 1999 to beyond the maximum) and the declining activity of solar cycle 23 are presented in this work. The sensibility of predictions is also tested. To do so, we changed the interval width and comparated our results with those of a previous neural network prediction and those of others authors using differents methods.
Engineering cyanobacteria for fuels and chemicals production.
Zhou, Jie; Li, Yin
2010-03-01
The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.
Mercury Transit (Composite Image)
2017-12-08
On May 9, 2016, Mercury passed directly between the sun and Earth. This event – which happens about 13 times each century – is called a transit. NASA’s Solar Dynamics Observatory, or SDO, studies the sun 24/7 and captured the entire seven-and-a-half-hour event. This composite image of Mercury’s journey across the sun was created with visible-light images from the Helioseismic and Magnetic Imager on SDO. Image Credit: NASA's Goddard Space Flight Center/SDO/Genna Duberstein NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Geodetic Space Weather Monitoring by means of Ionosphere Modelling
NASA Astrophysics Data System (ADS)
Schmidt, Michael
2017-04-01
The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via modelling the ionosphere and detecting and forecasting its disturbances. At present a couple of nations, such as the US, UK, Japan, Canada and China, are taken the threats from extreme space weather events seriously and support the development of observing strategies and fundamental research. However, (extreme) space weather events are in all their consequences on the modern highly technologized society, causative global problems which have to be treated globally and not regionally or even nationally. Consequently, space weather monitoring must include (1) all space-geodetic observation techniques and (2) geodetic evaluation methods such as data combination, real-time modelling and forecast. In other words, geodetic space weather monitoring comprises the basic ideas of GGOS and will provide products such as forecasts of severe solar events in order to initiate necessary activities to protect the infrastructure of modern society.
NASA Technical Reports Server (NTRS)
Wolfgang, R.; Natarajan, T.; Day, J.
1987-01-01
A feedback control system, called an auxiliary array switch, was designed to connect or disconnect auxiliary solar panel segments from a spacecraft electrical bus to meet fluctuating demand for power. A simulation of the control system was used to carry out a number of design and analysis tasks that could not economically be performed with a breadboard of the hardware. These tasks included: (1) the diagnosis of a stability problem, (2) identification of parameters to which the performance of the control system was particularly sensitive, (3) verification that the response of the control system to anticipated fluctuations in the electrical load of the spacecraft was satisfactory, and (4) specification of limitations on the frequency and amplitude of the load fluctuations.
On the Possibility of Habitable Trojan Planets in Binary Star Systems.
Schwarz, Richard; Funk, Barbara; Bazsó, Ákos
2015-12-01
Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.
Planetesimals Born Big by Clustering Instability?
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.
2017-01-01
Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability.
Planetesimals Born Big by Clustering Instability?
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.
2017-01-01
Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability
Tracking Waves from Sunspots Gives New Solar Insight
2017-12-08
While it often seems unvarying from our viewpoint on Earth, the sun is constantly changing. Material courses through not only the star itself, but throughout its expansive atmosphere. Understanding the dance of this charged gas is a key part of better understanding our sun – how it heats up its atmosphere, how it creates a steady flow of solar wind streaming outward in all directions, and how magnetic fields twist and turn to create regions that can explode in giant eruptions. Now, for the first time, researchers have tracked a particular kind of solar wave as it swept upward from the sun's surface through its atmosphere, adding to our understanding of how solar material travels throughout the sun. Scientists analyzed sunspot images from a trio of observatories -- including the Big Bear Solar Observatory, which captured this footage -- to make the first-ever observations of a solar wave traveling up into the sun’s atmosphere from a sunspot. Tracking solar waves like this provides a novel tool for scientists to study the atmosphere of the sun. The imagery of the journey also confirms existing ideas, helping to nail down the existence of a mechanism that moves energy – and therefore heat – into the sun’s mysteriously-hot upper atmosphere, called the corona. A study on these results was published Oct. 11, 2016, in The Astrophysical Journal Letters. Image credit: Zhao et al/NASA/SDO/IRIS/BBSO Read more: go.nasa.gov/2dRv80g NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
An equatorial coronal hole at solar minimum
NASA Technical Reports Server (NTRS)
Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.
1997-01-01
The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.
High-energy particles associated with solar flares
NASA Technical Reports Server (NTRS)
Sakurai, K.; Klimas, A. J.
1974-01-01
High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.
CrossVit: enhancing canopy monitoring management practices in viticulture.
Matese, Alessandro; Vaccari, Francesco Primo; Tomasi, Diego; Di Gennaro, Salvatore Filippo; Primicerio, Jacopo; Sabatini, Francesco; Guidoni, Silvia
2013-06-13
A new wireless sensor network (WSN), called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption.
CrossVit: Enhancing Canopy Monitoring Management Practices in Viticulture
Matese, Alessandro; Vaccari, Francesco Primo; Tomasi, Diego; Di Gennaro, Salvatore Filippo; Primicerio, Jacopo; Sabatini, Francesco; Guidoni, Silvia
2013-01-01
A new wireless sensor network (WSN), called CrossVit, and based on MEMSIC products, has been tested for two growing seasons in two vineyards in Italy. The aims are to evaluate the monitoring performances of the new WSN directly in the vineyard and collect air temperature, air humidity and solar radiation data to support vineyard management practices. The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering; Nodes level is based on a network of peripheral nodes consisting of a MDA300 sensor board and Iris module and equipped with thermistors for air temperature, photodiodes for global and diffuse solar radiation, and an HTM2500LF sensor for relative humidity. The communication levels are: WSN links between gateways and sensor nodes by ZigBee, and long-range GSM/GPRS links between gateways and the server farm level. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity, detecting the differences between the canopy treatments applied. The performance of CrossVit, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power consumption. PMID:23765273
Combining Thermal And Structural Analyses
NASA Technical Reports Server (NTRS)
Winegar, Steven R.
1990-01-01
Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.
Formation of Heliospheric Arcs of Slow Solar Wind
NASA Technical Reports Server (NTRS)
Higginson, A. K.; Antiochos, S. K.; Devore, C. R.; Wyper, P. F.; Zurbuchen, T. H.
2017-01-01
A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun's atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.
Formation of Heliospheric Arcs of Slow Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.
A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun’s atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchangemore » reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.« less
Solar activity as driver for the Dark Age Grand Solar Minimum
NASA Astrophysics Data System (ADS)
Neuhäuser, Ralph; Neuhäuser, Dagmar
2017-04-01
We will discuss the role of solar activity for the temperature variability from AD 550 to 840, roughly the last three centuries of the Dark Ages. This time range includes the so-called Dark Age Grand Solar Minimum, whose deep part is dated to about AD 650 to 700, which is seen in increased radiocarbon, but decreased aurora observations (and a lack of naked-eye sunspot sightings). We present historical reports on aurorae from all human cultures with written reports including East Asia, Near East (Arabia), and Europe. To classify such reports correctly, clear criteria are needed, which are also discussed. We compare our catalog of historical aurorae (and sunspots) as well as C-14 data, i.e. solar activity proxies, with temperature reconstructions (PAGES). After increased solar activity until around AD 600, we see a dearth of aurorae and increased radiocarbon production in particular in the second half of the 7th century, i.e. a typical Grand Solar Minimum. Then, after about AD 690 (the maximum in radiocarbon, the end of the Dark Age Grand Minimum), we see increased auroral activity, decreasing radiocarbon, and increasing temperature until about AD 775. At around AD 775, we see the well-known strong C-14 variability (solar activity drop), then immediately another dearth of aurorae plus high C-14, indicating another solar activity minimum. This is consistent with a temperature depression from about AD 775 on into the beginning of the 9th century. Very high solar activity is then seen in the first four decades with four aurora clusters and three simultaneous sunspot clusters, and low C-14, again also increasing temperature. The period of increasing solar activity marks the end of the so-called Dark Ages: While auroral activity increases since about AD 793, temperature starts to increase quite exactly at AD 800. We can reconstruct the Schwabe cycles with aurorae and C-14 data. In summary, we can see a clear correspondence of the variability of solar activity proxies and surface temperature reconstructions. This indicates that solar activity is an important climate driver.
NREL Technique Leads to Improved Perovskite Solar Cells | News | NREL
), devised a method to improve perovskite solar cells, making them more efficient and reliable with higher according to the skills of the researchers making perovskites at different laboratories, to somewhere cell. The scientists from NREL and SJTU came up with a better method, using what's called the Ostwald
Correlation of Solar X-ray Flux and SID Modified VLF Signal Strength
2015-03-26
accomplished by a research group from Cambridge in the late 1940s. The group recorded the 16 kHz signal of the transmitter in Rugby , England, with the call...Patterson AFB, OH 2013. 3. American Geophysical Union . “Biggest Ever Solar Flare was Even Bigger than Thought,” Science Daily, 16 March 2004
A comparison of renewable energy technologies using two simulation softwares: HOMER and RETScreen
NASA Astrophysics Data System (ADS)
Ramli, Mohd Sufian; Wahid, Siti Sufiah Abd; Hassan, Khairul Kamarudin
2017-08-01
This paper concerns on modelling renewable energy technologies including PV standalone system (PVSS) and wind standalone system (WSS) as well as PV-wind hybrid system (PVWHS). To evaluate the performance of all power system configurations in term of economic analysis and optimization, simulation tools called HOMER and RETScreen are used in this paper. HOMER energy modeling software is a powerful tool for designing and analyzing hybrid power systems, which contains a mix of conventional generators, wind turbines, solar photovoltaic's, hydropower, batteries, and other inputs. RETScreen uses a Microsoft Excel-based spreadsheet model that consists of a set of workbooks which calculates the annual average energy flows with adjustment factors to account for temporal effects such as solar-load coincidence. Sizes of equipments are calculated and inserted as inputs to HOMER and RETScreen. The result obtained are analyzed and discussed. The cost per kWh to generate electricity using the PVSS system to supply the average demand of 8.4 kWh/day ranges between RM 1.953/kWh to RM 3.872/kWh. It has been found that the PVSS gives the lowest cost of energy compared to the other proposed two technologies that have been simulated by using HOMER and RETScreen.
A New Remote Communications Link to Reduce Residential PV Solar Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Randy; Sugiyama, Rod
Monitoring of PV/DER site production is expensive to install and unreliable. Among third party systems providers, lost communications links are a growing concern. Nearly 20% of links are failing, provisioning is complex, recovery is expensive, production data is lost, and access is fragmented. FleetLink is a new concept in DER system communications, purpose built for lowering the cost of maintaining active contact with residential end user sites and ensuring that production data is reliably available to third party systems providers. Systems providers require accurate, secure system monitoring and reporting of production data and system faults while driving down overall costsmore » to compete effectively. This plug and play, independently operating communications solution lowers the cost of fleet contact from typically .08 dollars-$.12/W down to .02 dollars -.03/W including installation and maintenance expenses. FleetLink establishes a breakthrough in simplicity that facilitates rapid expansion of residential solar by reducing initial capital outlay and lowering installation labor time and skill levels. The solution also facilitates higher DER installation growth rates by driving down maintenance costs and eliminating communications trouble calls. This is accomplished by the FleetLink’s unique network technology that enables dynamic network configuration for fast changes, and active, self-healing DER site contact for uptime assurance. Using an open source network framework with proprietary, application specific enhancements, FleetLink independently manages connectivity, security, recovery, grid control communications, and fleet expansion while presenting a compliant SunSpec interface to the third party operations centers. The net system cost savings of at least .05 dollars/W supports the SunShot cost goals and the flexibility and scalability of the solution accelerates the velocity and ubiquitous adoption of solar.« less
The Role of Solar Eclipses in El Nino/La Nina Events
NASA Astrophysics Data System (ADS)
Chiu, B. C.
2005-08-01
The first hint of the fact that solar eclipses mark the enhanced storms called El Nino or La Nina, came from the article by Robert Allan on analysis of frequencies of these events (2001, perhaps Fourier analysis). One mystery was the cause of a cycle with period 15 to 20 years. But the Saros Series of solar eclipses has a period of 18+ years. Then we had the data from Galapagos Islands for the whole 20th century (Philander 2004). The graph of high and low temperatures indicates El Ninos and La Ninas. A search through charts of solar eclipses for those with good locations for bringing high tides at the Tropics, gave a good picture: those at the eastern coast of the pacific Ocean gave El Ninos, and those at the west gave La Ninas. More than half of the peaks and troughs on the temperature graph can be identified with solar eclipses. We looked more closely at a few events that caused great storms. They are described in J. M. Nash's book, ``El Nino" (2002). The most striking case is that of the 1998 Feb. 22 solar eclipse, which corresponds to the so-called El Nino of 1997-98. In conclusion, I would say that the annual El nino effect is due to the sun's travel between the Tropic of Cancer and Tropic of Capricorn. But the enhanced El Niino/La Nina is due to the coming together of sun and moon in the solar eclipses, which seem to come irregularly.
The Instruments and Capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats
NASA Astrophysics Data System (ADS)
Moore, Christopher S.; Caspi, Amir; Woods, Thomas N.; Chamberlin, Phillip C.; Dennis, Brian R.; Jones, Andrew R.; Mason, James P.; Schwartz, Richard A.; Tolbert, Anne K.
2018-02-01
The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 (5 × 10^{-8} - 5 ×10^{-5} W m^{-2}) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batory, S.S.
1981-01-01
The research objective was to learn more about the consumer's acceptance or rejection process toward a major residential energy innovation, a solar-generated water heating system. An experiment was conducted that evaluated one aspect of solar's commercialization, the persuasion stage in new-product-adoption decision making. A test of source credibility and monetary incentive effects on the consumer's decision-making processes was carried out. The experiment contained two message sources: the Department of Energy (a high credibility source) and a homebuilder (a moderate credibility source), and three levels of incentives, a tax credit equal to 40% of the solar unit purchase price, a 20%more » tax credit, and no tax credit. Subjects were randomly assigned to either a control group or one of six experimental treatments in a 2 x 3 fixed-effects factorial design. Subjects were 226 adult homeowners drawn from the suburbs of Baltimore, Maryland. The research postulated and tested a process of acceptance or rejection of innovations which was based on a cognitive-response/cognitive-structure paradigm of decision making. This process is called the persuasion stage by adoption theorists. Cognitive responses, beliefs, attitudes, and behavioral measures were the dependent variables. Consumers were shown to confront or debate incoming information by comparing it to their existing cognitive structure. This comparison process generated cognitive responses which led to changes in beliefs, attitudes, and behavior toward the innovation. The findings confirm that the federal government's intervention in the marketplace is having a favorable effect on the adoption decision process toward solar-generated water heating.« less
NASA Technical Reports Server (NTRS)
Fernandez, Juan M.
2017-01-01
State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar sail missions for such composite boom systems are already under consideration and development at NASA, as well as mission studies that will benefit from planned scaled-up versions of the composite boom technologies to be introduced. The paper presents ongoing research and development of thin-shell rollable composite booms designed under the particular stringent and challenging system requirements of relatively large solar sails housed on small satellites. These requirements will be derived and listed. Several new boom concepts are proposed and other existing ones are improved upon using thin-ply composite materials to yield unprecedented compact deployable structures. Some of these booms are shown in Fig. 1. For every boom to be introduced the scalable fabrication process developed to keep the overall boom system cost down will be shown. Finally, the initial results of purposely designed boom structural characterization test methods with gravity off-loading will be presented to compare their structural performance under expected and general load cases.
Direct normal irradiance related definitions and applications: The circumsolar issue
Blanc, P.; Espinar, B.; Geuder, N.; ...
2014-10-21
The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ≈10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptancemore » function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “ Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is evidenced, and its potential contribution is evaluated for typical atmospheric conditions. Thus, thorough analysis of performance of concentrating solar systems, it is recommended that, in addition to the conventional DNI related to 2.5° half-angle of today’s pyrheliometers, solar resource data sets also report the sunshape, the circumsolar contribution or the circumsolar ratio (CSR).« less
NASA Astrophysics Data System (ADS)
Mikhailova, G. A.; Mikhailov, Y. M.
Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the parameters of the lower ionosphere. Solar flares cause magnetic and ionosphere storms, which lead up to additional ionisation in the D and E layers and lowering of the upper boundary of cavity. That decreases the resonance frequencies of the cavity. Thus, the state of the human habitat proves to be dependent on the solar activity through variations of the parameters of the lower ionosphere, which govern variations of the Schuman resonances. These variations we suppose to measure on "Kompass-2" and "Vulcan" satellites.
Solar System Observing with the Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
Cleve, J. Van; Meadows, V. S.; Stansberry, J.
2003-01-01
SIRTF is NASA's Space Infrared Telescope Facility. Currently planned for launch on 15 Apr 2003, it is the final element in NASA's Great Observatories Program. SIRTF has an 85 cm diameter f/12 lightweight beryllium telescope, cooled to lekss than 5.5K. It is diffraction-limited at 6.5 microns, and has wavelengthcoverage from 3-180 microns. Its estimated lifetime (limited by cryogen) is 2.5 years at minimum, with a goal of 5+ years. SIRTF has three instruments, IRAC, IRS, and MIPS. IRAC (InfraRed Array Camera) provides simultaneous images at wavelengths of 3.6, 4.5, 5.8, and 8.0 microns. IRS (InfraRed Spectrograph) has 4 modules providing low-resolution (R=60-120) spectra from 5.3 to 40 microns, high-resolution (R=600) spectra from 10 to 37 microns, and an autonomous target acquisition system (PeakUp) which includes small-field imaging at 15 microns. MIPS (Multiband Imaging Photometer for SIRTF)} does imaging photometry at 24, 70, and 160 m and low-resolution (R=15-25) spectroscopy (SED) between 55 and 96 microns. The SIRTF Guaranteed Time Observers (GTOs) are planning to observe Outer Solar System satellites and planets, extinct comets and low-albedo asteroids, Centaurs and Kuiper Belt Objects, cometary dust trails, and a few active short-period comets. The GTO programs are listed in detail in the SIRTF Reserved Observations Catalog (ROC). We would like to emphasize that there remain many interesting subjects for the General Observers (GO). Proposal success for the planetary observer community in the first SIRTF GO proposal cycle (GO-1) determines expectations for future GO calls and Solar System use of SIRTF, so we would like promote a strong set of planetary GO-1 proposals. Towards that end, we present this poster, and we will convene a Solar System GO workshop 3.5 months after launch.
NASA Astrophysics Data System (ADS)
Dandouras, Iannis; Yamauchi, Masatoshi; Rème, Henri; De Keyser, Johan; Marghitu, Octav; Fazakerley, Andrew; Grison, Benjamin; Kistler, Lynn; Milillo, Anna; Nakamura, Rumi; Paschalidis, Nikolaos; Paschalis, Antonis; Pinçon, Jean-Louis; Sakanoi, Takeshi; Wieser, Martin; Wurz, Peter; Yoshikawa, Ichiro; Häggström, Ingemar; Liemohn, Mike; Tian, Feng
2017-04-01
ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The spatial distribution and temporal variability of the flux of these species and their isotopic composition will be for the first time systematically investigated in an extended altitude range, from the exobase/upper ionosphere (500 km altitude) up to the magnetosphere. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmosphere over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets. To achieve this goal, a slowly spinning spacecraft is proposed equipped with a suite of instruments developed and supplied by an international consortium. These instruments will detect the upper atmosphere and magnetosphere escaping populations by a combination of in-situ measurements and of remote-sensing observations.
Pujol Nadal, Ramon; Martínez Moll, Víctor
2013-10-20
Fixed-mirror solar concentrators (FMSCs) use a static reflector and a moving receiver. They are easily installable on building roofs. However, for high-concentration factors, several flat mirrors would be needed. If curved mirrors are used instead, high-concentration levels can be achieved, and such a solar concentrator is called a curved-slats fixed-mirror solar concentrator (CSFMSC), on which little information is available. Herein, a methodology is proposed to characterize the CSFMSC using 3D ray-tracing tools. The CSFMSC shows better optical characteristics than the FMSC, as it needs fewer reflector segments for achieving the same concentration and optical efficiency.
SAEVe: A Long Duration Small Sat Class Venus Lander - Seismic and Atmospheric Exploration of Venus
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Ghail, Richard; Gilmore, Martha; Hunter, Gary; Kiefer, Walter; Limaye, Sanjay; Pauken, Michael; Tolbert, Carol; Wilson, Colin
2017-01-01
NASA's science mission directorate has put increasing emphasis on innovative, smaller, and lower cost missions to achieve their science objectives. One example of this was the recent call by the Planetary Science Division for cube and small satellite concepts expected to cost $100M or less, not including launch and weighing less than 180kg. Over 100 proposals were submitted suggesting that indeed this is a size of mission worthy of being considered in future planning. Nineteen missions were selected for study, one being a long-lived Venus mission called SAEVe, for Seismic and Atmospheric Exploration of Venus. The science objectives and relevance of SAEVe include: Is Venus seismically active? What can we learn about its crust (thickness and composition) and its interior (lithosphere, mantle, and core)? What can be learned about its evolutionary history or about the planet / atmosphere interactions? SAEVe begins to address these science questions with simple, but capable, instrumented probes that can survive on the surface of Venus and take temporal measurements over months something never attempted before. The data returned will further our understanding of the solar system and Earth, and aid in meeting the NASA Science Plan goal to ascertain the content, origin, and evolution of the solar system and the chemical and physical processes in our solar system. SAEVe is delivered to Venus as a ride-along on another mission to Venus. Its two small probes are placed into the Venus atmosphere via a single Stardust-like entry capsule, are ejected at different times, free fall, and decelerate in the thickening atmosphere to touchdown under 8 m/s2 or less. The probes will begin taking measurements and transmitting important parameters at or near the surface and will focus on measurements like seismic activity, heat flux, wind speed and direction, basic chemical abundances, temperature, and pressure. At preset intervals, the probes acquire the science measurements and beam the data to the orbiting host spacecraft. SAEVe will serve as a highly capable precursor and pave the way for larger and more complex lander missions to explore Venus.
Analysis of Roll Steering for Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Pederson, Dylan, M.; Hojnicki, Jeffrey, S.
2012-01-01
Nothing is more vital to a spacecraft than power. Solar Electric Propulsion (SEP) uses that power to provide a safe, reliable, and, most importantly, fuel efficient means to propel a spacecraft to its destination. The power performance of an SEP vehicle s solar arrays and electrical power system (EPS) is largely influenced by the environment in which the spacecraft is operating. One of the most important factors that determines solar array power performance is how directly the arrays are pointed to the sun. To get the most power from the solar arrays, the obvious solution is to point them directly at the sun at all times. Doing so is not a problem in deep space, as the environment and pointing conditions that a spacecraft faces are fairly constant and are easy to accommodate, if necessary. However, large and sometimes rapid variations in environmental and pointing conditions are experienced by Earth orbiting spacecraft. SEP spacecraft also have the additional constraint of needing to keep the thrust vector aligned with the velocity vector. Thus, it is important to analyze solar array power performance for any vehicle that spends an extended amount of time orbiting the Earth, and to determine how much off-pointing can be tolerated to produce the required power for a given spacecraft. This paper documents the benefits and drawbacks of perfectly pointing the solar arrays of an SEP spacecraft spiraling from Earth orbit, and how this might be accomplished. Benefits and drawbacks are defined in terms of vehicle mass, power, volume, complexity, and cost. This paper will also look at the application of various solar array pointing methods to future missions. One such pointing method of interest is called roll steering . Roll steering involves rolling the entire vehicle twice each orbit. Roll steering, combined with solar array gimbal tracking, is used to point the solar arrays perfectly towards the sun at all points in the orbit, while keeping the vehicle thrusters aligned in the velocity direction. Roll steering is particularly attractive for a recently proposed mission that involves a spiral trajectory from low Earth orbit (LEO) to the Earth-Moon Lagrange Point 1 (E-M L1). During the spiral, the spacecraft will spend over 300 days experiencing the full spectrum of near-earth environments and solar array pointing conditions. An extensive study of the application of SEP (and roll steering) to this spiral mission is included, highlighting the ultimate goal of reduced vehicle cost and mass. Tools used for this analysis include the Systems Power Analysis for Capability Evaluation (Refs. 1 and 2) (SPACE) electrical power systems code, and SEP trajectory simulation tools developed at NASA Glenn Research Center.
2007-06-21
KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers check the movement of the Dawn spacecraft, at left, toward the upper stage booster at right. The two elements will be mated for launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
Sagan, C.; Thompson, W. R.; Khare, B. N.
1985-01-01
Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.
DERMA: A Melanoma Diagnosis Platform Based on Collaborative Multilabel Analog Reasoning
Golobardes, Elisabet; Corral, Guiomar; Puig, Susana; Malvehy, Josep
2014-01-01
The number of melanoma cancer-related death has increased over the last few years due to the new solar habits. Early diagnosis has become the best prevention method. This work presents a melanoma diagnosis architecture based on the collaboration of several multilabel case-based reasoning subsystems called DERMA. The system has to face up several challenges that include data characterization, pattern matching, reliable diagnosis, and self-explanation capabilities. Experiments using subsystems specialized in confocal and dermoscopy images have provided promising results for helping experts to assess melanoma diagnosis. PMID:24578629
Space Applications of Mass Spectrometry. Chapter 31
NASA Technical Reports Server (NTRS)
Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard
2010-01-01
Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.
2018-04-15
The SpaceX Falcon 9 rocket is rolled out to Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, with NASA's Transiting Exoplanet Survey Satellite (TESS) secured in its payload fairing. TESS will launch on the Falcon 9 no earlier than 6:51 p.m. EDT on April 18. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.
An SDO/AIA-Observed Filament Eruption Triggered by a Lid-Removal Onset Mechanism
NASA Astrophysics Data System (ADS)
Sterling, A. C.; Moore, R. L.; Falconer, D. A.; Knox, J. M.
2013-12-01
An eruption of a solar filament often presages the onset of a more general solar eruption, often leading to a solar flare and coronal mass ejection (CME). Among the mechanisms suggested for triggering eruptions are flux cancelation, flux emergence, tether-cutting reconnection, and breakout reconnection. Here we present an example of a filament eruption due to a different trigger mechanism, which we call ``lid removal,'' whereby a magnetic structure overlying the filament is removed by a preceding adjacent eruption, rendering MHD unstable the magnetic system containing the filament and resulting in the subsequent eruption of the filament. This filament eruption occurred on 23 Jan 2013, and was well-seen in SDO/AIA 193 Ang images. Prior to its eruption the filament was at an approximately constant height above the solar surface for ~4 hours, before smoothly lifting off. Evidence for the overlying ``lid'' field was difficult to discern in 193 Ang images, but was apparent in hotter coronal images, such as SDO/AIA 335. Removal of the lid field was due to an eruption of that field visible in the hotter-corona images. In this way, the lid-removal filament-eruption mechanism is similar to recent observations of connected or cascading eruptions originating from magnetically-linked locations.
Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales
NASA Astrophysics Data System (ADS)
Berrilli, F.; Scardigli, S.; Giordano, S.
2013-02-01
The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2 - 10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.
Spectral Calibration of the MSFC Solar Ultraviolet Magnetograph
NASA Technical Reports Server (NTRS)
West, Edward; Kobayashi, Ken; Cirtain, Jonathan; Gary, Allen; Davis, John; Reader, Joseph
2009-01-01
This paper describes the scientific goals of a sounding rocket program called the Solar Ultraviolet Magnetograph Investigation (SUMI), presents a brief description of the optics that were developed to meet those goals and discusses the spectral, spatial and polarization characteristics of SUMI's Toroidal Variable-Line-Space (TVLS) gratings; which are critical to SUMI's measurements of the magnetic field in the Sun's transition region.
Temporal variations in the position of the heliospheric equator
NASA Astrophysics Data System (ADS)
Obridko, V. N.; Shelting, B. D.
2008-08-01
It is shown that the centroid of the heliospheric equator undergoes quasi-periodic oscillations. During the minimum of the 11-year cycle, the centroid shifts southwards (the so-called bashful-ballerina effect). The direction of the shift reverses during the solar maximum. The solar quadrupole is responsible for this effect. The shift is compared with the tilt of the heliospheric current sheet.
An Observation Knowledgebase for Hinode Data
NASA Astrophysics Data System (ADS)
Hurlburt, Neal E.; Freeland, S.; Green, S.; Schiff, D.; Seguin, R.; Slater, G.; Cirtain, J.
2007-05-01
We have developed a standards-based system for the Solar Optical and X Ray Telescopes on the Hinode orbiting solar observatory which can serve as part of a developing Heliophysics informatics system. Our goal is to make the scientific data acquired by Hinode more accessible and useful to scientists by allowing them to do reasoning and flexible searches on observation metadata and to ask higher-level questions of the system than previously allowed. The Hinode Observation Knowledgebase relates the intentions and goals of the observation planners (as-planned metadata) with actual observational data (as-run metadata), along with connections to related models, data products and identified features (follow-up metadata) through a citation system. Summaries of the data (both as image thumbnails and short "film strips") serve to guide researchers to the observations appropriate for their research, and these are linked directly to the data catalog for easy extraction and delivery. The semantic information of the observation (Field of view, wavelength, type of observable, average cadence etc.) is captured through simple user interfaces and encoded using the VOEvent XML standard (with the addition of some solar-related extensions). These interfaces merge metadata acquired automatically during both mission planning and an data analysis (see Seguin et. al. 2007 at this meeting) phases with that obtained directly from the planner/analyst and send them to be incorporated into the knowledgebase. The resulting information is automatically rendered into standard categories based on planned and recent observations, as well as by popularity and recommendations by the science team. They are also directly searchable through both and web-based searches and direct calls to the API. Observations details can also be rendered as RSS, iTunes and Google Earth interfaces. The resulting system provides a useful tool to researchers and can act as a demonstration for larger, more complex systems.
Classification of Initial conditions required for Substorm prediction.
NASA Astrophysics Data System (ADS)
Patra, S.; Spencer, E. A.
2014-12-01
We investigate different classes of substorms that occur as a result of various drivers such as the conditions in the solar wind and the internal state of the magnetosphere ionosphere system during the geomagnetic activity. In performing our study, we develop and use our low order physics based nonlinear model of the magnetosphere called WINDMI to establish the global energy exchange between the solar wind, magnetosphere and ionosphere by constraining the model results to satellite and ground measurements. On the other hand, we make quantitative and qualitative comparisons between our low order model with available MHD, multi-fluid and ring current simulations in terms of the energy transfer between the geomagnetic tail, plasma sheet, field aligned currents, ionospheric currents and ring current, during isolated substorms, storm time substorms, and sawtooth events. We use high resolution solar wind data from the ACE satellite, measurements from the CLUSTER and THEMIS missions satellites, and ground based magnetometer measurements from SUPERMAG and WDC Kyoto, to further develop our low order physics based model. Finally, we attempt to answer the following questions: 1) What conditions in the solar wind influence the type of substorm event. This includes the IMF strength and orientation, the particle densities, velocities and temperatures, and the timing of changes such as shocks, southward turnings or northward turnings of the IMF. 2) What is the state of the magnetosphere ionosphere system before an event begins. These are the steady state conditions prior to an event, if they exist, which produce the satellite and ground based measurements matched to the WINDMI model. 3) How does the prior state of the magnetosphere influence the transition into a particular mode of behavior under solar wind forcing. 4) Is it possible to classify the states of the magnetosphere into distinct categories depending on pre-conditioning, and solar wind forcing conditions? 5) Can we predict the occurrence of substorms with any confidence?
Time Dependent Tomography of the Solar Corona in Three Spatial Dimensions
NASA Astrophysics Data System (ADS)
Butala, M. D.; Frazin, R. A.; Kamalabadi, F.
2006-12-01
The combination of the soon to be launched STEREO mission with SOHO will provide scientists with three simultaneous space-borne views of the Sun. The increase in available measurements will reduce the data acquisition time necessary to obtain 3D coronal electron density (N_e) estimates from coronagraph images using a technique called solar rotational tomography (SRT). However, the data acquisition period will still be long enough for the corona to dynamically evolve, requiring time dependent solar tomography. The Kalman filter (KF) would seem to be an ideal computational method for time dependent SRT. Unfortunately, the KF scales poorly with problem size and is, as a result, inapplicable. A Monte Carlo approximation to the KF called the localized ensemble Kalman filter was developed for massive applications and has the promise of making the time dependent estimation of the 3D coronal N_e possible. We present simulations showing that this method will make time dependent tomography in three spatial dimensions computationally feasible.
Using Decision Procedures to Build Domain-Specific Deductive Synthesis Systems
NASA Technical Reports Server (NTRS)
VanBaalen, Jeffrey; Roach, Steven; Lau, Sonie (Technical Monitor)
1998-01-01
This paper describes a class of decision procedures that we have found useful for efficient, domain-specific deductive synthesis. These procedures are called closure-based ground literal satisfiability procedures. We argue that this is a large and interesting class of procedures and show how to interface these procedures to a theorem prover for efficient deductive synthesis. Finally, we describe some results we have observed from our implementation. Amphion/NAIF is a domain-specific, high-assurance software synthesis system. It takes an abstract specification of a problem in solar system mechanics, such as 'when will a signal sent from the Cassini spacecraft to Earth be blocked by the planet Saturn?', and automatically synthesizes a FORTRAN program to solve it.
An ocean bottom seismic observatory with near real-time telemetry
NASA Astrophysics Data System (ADS)
Berger, J.; Laske, G.; Babcock, J.; Orcutt, J.
2016-02-01
We describe a new technology that can provide near real-time telemetry of sensor data from the ocean bottom without a moored buoy or a cable to shore. The breakthrough technology that makes this system possible is an autonomous surface vehicle called a Wave Glider developed by Liquid Robotics, Inc. of Sunnyvale, CA, which harvests wave and solar energy for motive and electrical power. We present results from several deployments of a prototype system that demonstrate the feasibility of this concept. We also demonstrated that a wave glider could tow a suitably designed ocean bottom package with acceptable loss of speed. With further development such a system could be deployed autonomously and provide real-time telemetry of data from seafloor sensors.
NASA Astrophysics Data System (ADS)
Mustafaoglu, Mustafa Sinan
Some of the main energy issues in developing countries are high dependence on non-renewable energy sources, low energy efficiency levels and as a result of this high amount of CO2 emissions. Besides, a common problem of many countries including developing countries is economic inequality problem. In the study, solar photovoltaic policies of Germany, Japan and the USA is analyzed through a quantitative analysis and a new renewable energy support mechanism called Socio Feed-in Tariff Mechanism (SocioFIT) is formed based on the analysis results to address the mentioned issues of developing countries as well as economic inequality problem by using energy savings as a funding source for renewable energy systems. The applicability of the mechanism is solidified by the calculations in case of an implementation of the mechanism in Turkey.
2014-11-14
A filament (which at one point had an eerie similarity to a snake) broke away from the sun and out into space (Nov. 1, 2014). The video covers just over three hours of activity. This kind of eruptive event is called a Hyder flare. These are filaments (elongated clouds of gases above the sun's surface) that erupt and cause a brightening at the sun's surface, although no active regions are in that area. It did thrust out a cloud of particles but not towards Earth. The images were taken in the 304 Angstrom wavelength of extreme UV light. Credit: NASA/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Numerical simulations of particle orbits around 2060 Chiron
NASA Technical Reports Server (NTRS)
Stern, S. A.; Jackson, A. A.; Boice, D. C.
1994-01-01
Scattered light from orbiting or coorbiting dust is a primary signature by which Earth-based observers study the activity and atmosphere of the unusual outer solar system object 2060 Chiron. Therefore, it is important to understand the lifetime, dynamics, and loss rates of dust in its coma. We report here dynamical simulations of particles in Chiron's collisionless coma. The orbits of 17,920 dust particles were numerically integrated under the gravitational influence of Chiron, the Sun, and solar radiation pressure. These simulations show that particles ejected from Chiron are more likely to follow suborbital trajectories, or to escape altogether, than to enter quasistable orbits. Significant orbital lifetimes can only be achieved for very specific launch conditions. These results call into question models of a long-term, bound coma generated by discrete outbursts, and instead suggest that Chiron's coma state is closely coupled to the nearly instantaneous level of Chiron's surface activity.
Eclipse-Like Events on This Week @NASA – August 18, 2017
2017-08-18
ena such as the Aug. 21, 2017 solar eclipse can inspire awe, but scientists can also use eclipse-like events to learn more about the universe. For instance, a total eclipse, or an occultation in scientific terms – happens when a celestial body completely blocks light from a star, like our sun. This type of event can help astronomers learn more about an object’s atmosphere, including whether it might be surrounded by rings or other planetary matter. During a similar event, called a transit, variations in light that result when a closer object passes in front of a star, but only blocks a small part of the star, have been used by missions such as our Kepler space telescope, to discover new planets outside our solar system. Also, SpaceX Launches Science, Supplies to Space Station, New Communications Satellite Launched, Cassini Begins Final Five Orbits around Saturn and Spacewalk aboard the Space Station!
1999-01-27
In the Payload Hazardous Servicing Facility, the Stardust spacecraft waits to be encased in a protective canister for its move to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. Stardust is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006
Snaking Filament Eruption [video
2014-11-14
A filament (which at one point had an eerie similarity to a snake) broke away from the sun and out into space (Nov. 1, 2014). The video covers just over three hours of activity. This kind of eruptive event is called a Hyder flare. These are filaments (elongated clouds of gases above the sun's surface) that erupt and cause a brightening at the sun's surface, although no active regions are in that area. It did thrust out a cloud of particles but not towards Earth. The images were taken in the 304 Angstrom wavelength of extreme UV light. Credit: NASA/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Pickup Ions in the Plasma Environments of Mars, Comets, and Enceladus
NASA Astrophysics Data System (ADS)
Cravens, T.; Rahmati, A.; Sakai, S.; Madanian, H.; Larson, D. E.; Lillis, R. J.; Halekas, J. S.; Goldstein, R.; Burch, J. L.; Clark, G. B.; Jakosky, B. M.
2015-12-01
Ions created within a flowing plasma by ionization of neutrals respond to the electric and magnetic fields associated with the flow becoming what are called pick-up ions (PUI). PUI play an important role in many solar system plasma environments and affect the energy and momentum balance of the plasma flow. PUI have been observed during several recent space missions and PUI data will be compared and interpreted using models. Pick-up oxygen ions were observed in the solar wind upstream of Mars by the Solar Energetic Particle (SEP) and Solar Wind Ion Analyzer (SWIA) instruments on NASA's MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft. The pick-up oxygen ions are created when atoms in the hot corona are ionized by solar radiation and charge exchange with solar wind protons. The ion fluxes measured by SEP can constrain the oxygen escape rate from Mars. PUI were also been detected at distances of 10 - 100 km from the nucleus of comet 67P/Churyumov- Gerasimenko (67P/CG) by plasma instruments (IES and ICA) onboard the Rosetta Orbiter when the comet was at 3 AU. The newly-born cometary ions are accelerated by the solar wind motional electric field but remain un-magnetized, as suggested by pre-encounter models (Rubin et al., 2014). The inner magnetosphere of Saturn and the water plume of the icy satellite Enceladus provide a third example of PUI. H2O+ ions created by ionization of neutral water producing ions that are picked-up by the co-rotating magnetospheric plasma flow. These ions then undergo a complex interaction with the plume gas including collisions that convert most H2O+ ions to H3O+, as measured by the Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft.
NASA's Best-Observed X-Class Flare of All Time
2014-05-07
The March 29, 2014, X-class flare appears as a bright light on the upper right in this image from SDO, showing light in the 304 Angstrom wavelength. This wavelength shows material on the sun in what's called the transition region, where the chromosphere transitions into the upper solar atmosphere, the corona. Some light of the flare is clearly visible, but the flare appears brighter in other images that show hotter temperature material. Credit: NASA/SDO/AIA -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
ESA scientist discovers a way to shortlist stars that might have planets
NASA Astrophysics Data System (ADS)
2002-02-01
Traces of the disc surrounding our Solar System Credits: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA Traces of the disc surrounding our Solar System Traces of the disc surrounding our Solar System. The blue band curving across this image is created by the dust disc surrounding our Solar System. Viewed from afar this would show up as a bright ring surrounding the Sun. The bright band running across the centre of the image is from dust in our Galaxy. This image, taken by the COBE satellite, is a composite of three far-infrared wavelengths (60, 100, and 240 microns). (Photo: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA) Disc surrounding the Sun Credits: Brad Smith (University of Hawaii), Glenn Schneider (University of Arizona), and NASA Viewed from afar our Solar System would have a bright disc surrounding the Sun Viewed from afar our Solar System would have a bright dust disc surrounding the Sun similar to the disc surrounding this star. This image, taken with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a dust ring around a star called HR 4796A. The image was taken on March 15, 1998. (Photo: Brad Smith (University of Hawaii), Glenn Schneider (University of Arizona), and NASA) Ulysses in flight configuration hi-res Size hi-res: 117 Kb Credits: ESA/Dave Hardy Ulysses at Jupiter encounter Ulysses in flight configuration passing by Jupiter. Remarkably, their discovery gives astronomers a way to determine which other stars in the Galaxy are most likely to harbour planets and allows mission planners to draw up a 'short-list' of stars to be observed by ESA's future planet-search missions, Eddington and Darwin. The discovery of the Solar System's dust ring strengthens the idea that such features around mature stars are signposts to planetary systems. The reason for this is that planetary systems are thought to condense from a cloud of gas and dust. Planets form near the central star, where the material is densest. However, at great distances from the star, the gas and dust is sparse and can coalesce only into a vast band of small, icy bodies. In our Solar System, they form the so-called Edgeworth-Kuiper belt that extends out beyond the orbit of Neptune. Any remaining dust is lost to deep space. Ordinarily, dust is either incorporated into larger celestial bodies or ejected from the Solar System. For it still to be present today, means that something is replenishing it. "In order to sustain such a ring, 50 tonnes of dust have to be generated every second," says Landgraf. He and his colleagues believe that collisions between the icy remnants of the Edgeworth-Kuiper belt create the Solar System's dust ring. If the same is going on in other planetary systems, then those stars will also have dusty rings around them. "If you have a dust disc around a star that's not particularly young, then it's extremely interesting because the dust has to come from somewhere. The only explanation is that the star has planets, comets, asteroids or other bodies that collide and generate the dust," says Malcolm Fridlund, ESA's study scientist for Darwin, the mission under development to search for life-supporting planets around other stars. To trace the collisions in the Edgeworth-Kuiper Belt, Landgraf and colleagues had to do some celestial detective work. They began by sifting through data from the 1970s and early 1980s, when NASA space probes Pioneer 10 and 11 first found dust particles of unknown origin beyond Saturn's orbit. The hypothesis of dust coming from comets was discarded: in fact near the Earth, comets give off dust; beyond Saturn, however, they freeze and shed little material. So, no one knew whether the Pioneer dust grains were coming from inside the Solar System - from a source other than comets - or beyond it from the interstellar space. Now, using data from ESA's Ulysses spacecraft, which has been orbiting the poles of the Sun for more than 10 years, Landgraf and colleagues have been able to rule out an origin beyond the Solar System. The Ulysses data shows that dust grains of interstellar origin are considerably smaller than interplanetary dust grains, which originate in the Solar System. The interstellar grains detected by Ulysses are typically ten to a hundred times smaller than the smallest grain that could be detected by Pioneer. Thus, the Pioneer grains have to be made somewhere within our Solar System. So, by a process of elimination and computer simulations, the scientists came to the conclusion that the only possible source of the dust is the collisions between the small, icy objects in the Edgeworth-Kuiper belt. Since these are the remnants of planet formation, the team believe that planetary systems around other stars will also produce constantly replenishing dust rings. From the number of dust particles detected by the Pioneers, Landgraf and colleagues were able to calculate the density of dust in the ring. "There's only one dust particle every 50 cubic kilometres but it's enough for a bright dust ring like those we see around other stars," says Landgraf. Indeed, a number of such features have been observed shining brightly at infrared wavelengths around stars such as Vega and Epsilon Eridani. Future missions, such as ESA's Herschel mission will search for many more and take detailed pictures of them. As these images become available, astronomers will be able to predict the sizes and orbits of giant planets within the alien solar system. "If we see a similar dust ring around a main sequence star (a mature star, like the Sun), we'll know it must have asteroids or comets. If we see gaps in the dust ring, it will probably have planets which are sweeping away the dust as they orbit," says Landgraf. The result slots into place another piece of the puzzle for those scientists working on ESA's missions that will search for extrasolar planets, as it will allow them to draw up a well motivated list of target stars based upon whether they are surrounded by dust rings. "This finding has exciting implications for both missions," confirms Fridlund. The full details of Landgraf's results will be published in a future issue of The Astrophysical Journal.
NASA Astrophysics Data System (ADS)
Huang, J. Y.; Tung, C. P.
2017-12-01
There is an important book called "Peasant Calendar" in the Chinese society. The Peasant Calendar is originally based on the orbit of the Sun and each year is divided into 24 solar terms. Each term has its own special meaning and conception. For example, "Spring Begins" means the end of winter and the beginning of spring. In Taiwan, 24 solar terms play an important role in agriculture because farmers always use the Peasant Calendar to decide when to sow. However, the current solar term in Taiwan is fixed about 15 days. This way doesn't show the temporal variability of climate and also can't truly reflect the regional climate characteristics in different areas.The number of days in each solar term should be more flexible. Since weather is associated with climate, all weather phenomena can be regarded as a multiple fluctuation signal. In this research, 30 years observation data of surface temperature and precipitation from 1976 2016 are used. The data is cut into different time series, such as a week, a month, six months to one year and so on. Signal analysis tools such as wavelet, change point analysis and Fourier transform are used to determine the length of each solar term. After determining the days of each solar term, statistical tests are used to find the relationships between the length of solar terms and climate turbulent (e.g., ENSO and PDO).For example, one of the solar terms called "Major Heat" should typically be more than 20 days in Taiwan due to global warming and heat island effect. The advance of Peasant Calendar can help farmers to make better decision, controlling crop schedule and using the farmland more efficient. For instance, warmer condition can accelerate the accumulation of accumulated temperature, which is the key of crop's growth stage. The result also can be used on disaster reduction (e.g., preventing agricultural damage) and water resources project.
Model Comparisons For Space Solar Cell End-Of-Life Calculations
NASA Astrophysics Data System (ADS)
Messenger, Scott; Jackson, Eric; Warner, Jeffrey; Walters, Robert; Evans, Hugh; Heynderickx, Daniel
2011-10-01
Space solar cell end-of-life (EOL) calculations are performed over a wide range of space radiation environments for GaAs-based single and multijunction solar cell technologies. Two general semi-empirical approaches will used to generate these EOL calculation results: 1) the JPL equivalent fluence (EQFLUX) and 2) the NRL displacement damage dose (SCREAM). This paper also includes the first results using the Monte Carlo-based version of SCREAM, called MC- SCREAM, which is now freely available online as part of the SPENVIS suite of programs.
Economic analysis of the design and fabrication of a space qualified power system
NASA Technical Reports Server (NTRS)
Ruselowski, G.
1980-01-01
An economic analysis was performed to determine the cost of the design and fabrication of a low Earth orbit, 2 kW photovoltaic/battery, space qualified power system. A commercially available computer program called PRICE (programmed review of information for costing and evaluation) was used to conduct the analysis. The sensitivity of the various cost factors to the assumptions used is discussed. Total cost of the power system was found to be $2.46 million with the solar array accounting for 70.5%. Using the assumption that the prototype becomes the flight system, 77.3% of the total cost is associated with manufacturing. Results will be used to establish whether the cost of space qualified hardware can be reduced by the incorporation of commercial design, fabrication, and quality assurance methods.
NASA Technical Reports Server (NTRS)
Gosling, J. T.
1993-01-01
Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.
Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR
NASA Astrophysics Data System (ADS)
Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.
2016-07-01
An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.
1999-11-30
These five STS-97 crew members posed for a traditional portrait during training. On the front row, left to right, are astronauts Michael J. Bloomfield, pilot; Marc Garneau, mission specialist representing the Canadian Space Agency (CSA); and Brent W. Jett, Jr., commander. In the rear, wearing training versions of the extravehicular mobility unit (EMU) space suits, (left to right) are astronauts Carlos I. Noriega, and Joseph R. Tarner, both mission specialists. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.
Space Weather, Geomagnetic Disturbances and Impact on the High-Voltage Transmission Systems
NASA Technical Reports Server (NTRS)
Pullkkinen, A.
2011-01-01
Geomagnetically induced currents (GIC) affecting the performance of high-voltage power transmission systems are one of the most significant hazards space weather poses on the operability of critical US infrastructure. The severity of the threat was emphasized, for example, in two recent reports: the National Research Council (NRC) report "Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report" and the North American Electric Reliability Corporation (NERC) report "HighImpact, Low-Frequency Event Risk to the North American Bulk Power System." The NRC and NERC reports demonstrated the important national security dimension of space weather and GIC and called for comprehensive actions to forecast and mitigate the hazard. In this paper we will give a brief overview of space weather storms and accompanying geomagnetic storm events that lead to GIC. We will also review the fundamental principles of how GIC can impact the power transmission systems. Space weather has been a subject of great scientific advances that have changed the wonder of the past to a quantitative field of physics with true predictive power of today. NASA's Solar Shield system aimed at forecasting of GIC in the North American high-voltage power transmission system can be considered as one of the ultimate fruits of those advances. We will review the fundamental principles of the Solar Shield system and provide our view of the way forward in the science of GIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, James; Mileva, Ana; Johnston, Josiah
2014-01-01
This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to themore » present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.« less
Voyager: The grandest tour. The mission to the outer planets
NASA Astrophysics Data System (ADS)
1991-04-01
A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.
Voyager: The grandest tour. The mission to the outer planets
NASA Technical Reports Server (NTRS)
1991-01-01
A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.
Reverse Asteroids: Searching for an Effective Tool to Combat Asteroid Belt Misconceptions
NASA Astrophysics Data System (ADS)
Summers, F.; Eisenhamer, B.
2014-12-01
The public 'knows' that asteroid belts are densely packed and dangerous for spaceships to cross. Visuals from "Star Wars" to, unfortunately, the recent "Cosmos" TV series have firmly established this astronomical misconception. However, even scientifically correct graphics, such as the Minor Planet Center's plot of the inner solar system, reinforces that view. Each pixel in the image is more than a million kilometers in width, making an accurate representation of the object density impossible.To address this widespread misconception, we are investigating an educational exercise built around a computer interactive that we call "Reverse Asteroids". In the arcade classic video game, the asteroids came to the player's spaceship. For our reverse implementation, we consider an inquiry-based activity in which the spaceship must go hunting for the asteroids, using a database of real objects in our solar system. Both 3D data visualization and basic statistical analysis play crucial roles in bringing out the true space density within the asteroid belt, and perhaps a reconciliation between imagination and reality. We also emphasize that a partnership of scientists and educators is fundamental to the success of such projects.
Extreme Ultraviolet Explorer. Long look at the next window
NASA Technical Reports Server (NTRS)
Maran, Stephen P.
1991-01-01
The Extreme Ultraviolet Explorer (EUVE) will map the entire sky to determine the existence, direction, brightness, and temperature of thousands of objects that are sources of so-called extreme ultraviolet (EUV) radiation. The EUV spectral region is located between the x-ray and ultraviolet regions of the electromagnetic spectrum. From the sky survey by EUVE, astronomers will determine the nature of sources of EUV light in our galaxy, and infer the distribution of interstellar gas for hundreds of light years around the solar system. It is from this gas and the accompanying dust in space that new stars and solar systems are born and to which evolving and dying stars return much of their material in an endless cosmic cycle of birth, death, and rebirth. Besides surveying the sky, astronomers will make detailed studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they will learn about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation, maybe even quasars. The EUVE mission and instruments are described. The objects that EUVE will likely find are described.
HISCAT: A proposed new scatter facility in Northern Scandinavia
NASA Technical Reports Server (NTRS)
Bostrom, R.; Thide, B.
1986-01-01
It is proposed that a new versatile ionospheric and atmospheric scatter radar be constructed in northern Scandavia through a multinational collaborative effort. The new facility tentatively named HISCAT (High frequency, High power, High latitude, Heating and Ionospheric Scatter facility), should be used for scientific investigations of: the physics of the neutral (middle) atmosphere; fundamental plasma phenomena, natural or artificially induced in the ionosphere; electrodynamic conditions at high altitudes above the auroral region and in the polar cap ionosphere; plasma waves in the solar atmosphere. The system should thus be able to operate as a mesosphere-stratosphere-troposphere (MST) radar, a so-called ionospheric modification facility, incoherent-scatter radar, coherent-scatter radar, and solar radar. Basically, the new facility should be a device that can operate simultaneously on several frequencies in the frequency range 5 to 50 MHz not covered by other instruments. It should comprise: powerful transmitters, capable of delivering a total average power of several megawatts; an advanced phased antenna array of high gain forming one or two steerable and well collimated beams; and an advanced data collection and analysis system.
Solar granulation and statistical crystallography: A modeling approach using size-shape relations
NASA Technical Reports Server (NTRS)
Noever, D. A.
1994-01-01
The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C.S.
The future of the photovoltaic industry is discussed. The success of a small New Jersey high technology solar firm, Chronar, is described. The company started a modern, efficient commercial facility for the manufacture of 1 megawatt capacity amorphous silicon solar cells. The hatch manufacturing process consists of the deposition of the amorphous silicon layers in a machine called a 6 pack named for the six identical glow discharge chambers operated simultaneously by a mini-computer.
The formation of the planetary system
NASA Astrophysics Data System (ADS)
Tscharnuter, W. M.
1984-12-01
The basic ideas concerning solar system formation were developed by Kant (1755) and Laplace (1796) whose starting point was the so-called nebular hypothesis. The great advantage of the nebular hypothesis is that many regularities, e.g. prograde motions of all planets and asteroids in almost coplanar orbits, can be explained. Observations in the radio and infrared region strongly support the nebular hypothesis provided that the angular momentum problem can be solved in some way. Three possibilities are listed: (1) magnetic fields via Alfvén waves which can transport angular momentum from the contracting cloud fragment into the external medium, (2) turbulent friction, (3) gravitational torques exerted by high amplitude spiral or bar-like density waves in the nebula.
Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells.
Tang, Qunwei; Zhu, Wanlu; He, Benlin; Yang, Peizhi
2017-02-28
A great challenge for state-of-the-art solar cells is to generate electricity in all weather. We present here the rapid conversion of carbon quantum dots (CQDs) from carbohydrates (including glucose, maltol, sucrose) for an all-weather solar cell, which comprises a CQD-sensitized mesoscopic titanium dioxide/long-persistence phosphor (m-TiO 2 /LPP) photoanode, a I - /I 3 - redox electrolyte, and a platinum counter electrode. In virtue of the light storing and luminescent behaviors of LPP phosphors, the generated all-weather solar cells can not only convert sunlight into electricity on sunny days but persistently realize electricity output in all dark-light conditions. The maximized photoelectric conversion efficiency is as high as 15.1% for so-called all-weather CQD solar cells in dark conditions.
Planar multijunction high voltage solar cells
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr.; Chai, A. T.; Goradia, C.
1980-01-01
Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.
A scanning defect mapping system for semiconductor characterization
NASA Technical Reports Server (NTRS)
Sopori, Bushnan L.
1994-01-01
We have developed an optical scanning system that generates maps of the spatial distributions of defects in single and polycrystalline silicon wafers. This instrument, called Scanning Defect Mapping System, utilizes differences in the scattering characteristics of dislocation etch pits and grain boundaries from a defect-etched sample to identify and count them. This system simultaneously operates in the dislocation mode and the grain boundary (GB) mode. In the 'dislocation mode,' the optical scattering from the etch pits is used to statistically count dislocations, while ignoring the GB's. Likewise, in the 'grain boundary mode' the system only recognizes the local scattering from the GB's to generate grain boundary distributions. The information generated by this instrument is valuable for material quality control, identifying mechanisms of defect generation and the nature of thermal stresses during the crystal growth, and the solar cell process design.
NASA Technical Reports Server (NTRS)
Dischinger, H. Charles., Jr.; Mullins, Jeffrey B.
2005-01-01
The United States is entering a new period of human exploration of the inner Solar System, and robotic human helpers will be partners in that effort. In order to support integration of these new worker robots into existing and new human systems, a new design standard should be developed, to be called the Robot-Systems Integration Standard (RSIS). It will address the requirements for and constraints upon robotic collaborators with humans. These workers are subject to the same functional constraints as humans of work, reach, and visibility/situational awareness envelopes, and they will deal with the same maintenance and communication interfaces. Thus, the RSIS will be created by discipline experts with the same sort of perspective on these and other interface concerns as human engineers.
NASA Astrophysics Data System (ADS)
Audigié, Pauline; Bizien, Nicolas; Baráibar, Ignacio; Rodríguez, Sergio; Pastor, Ana; Hernández, Marta; Agüero, Alina
2017-06-01
Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 - 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.
Total and Spectral Solar Irradiance Sensor (TSIS) Project Status
NASA Technical Reports Server (NTRS)
Carlisle, Candace
2018-01-01
TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).
Planetary migration in protoplanetary discs and outer Solar System architecture.
NASA Astrophysics Data System (ADS)
Crida, A.; Morbidelli, A.; Tsiganis, K.
2007-08-01
Planets form around stars in gaseous protoplanetary discs. Due to tidal effects, they perturb the gas distribution, which in turn affects their motion. If the planet is massive enough (see for instance Crida et al. 2006 for a criterion), it repels the gas efficiently and opens a gap around its orbit ; then, locked into its gap, the planet follows the disc viscous evolution, which generally consists in accretion onto the central star. This process is called type II migration and leads to the orbital decay of the planet on a timescale shorter than the disc lifetime. After a review of these processes, we will focus on the Solar System giant planets. Strong constraints suggest that they did not migrate significantly. Masset and Snellgrove (2001) have shown that the evolution of 2 giants planets in mean motion resonance in a common gap differs from the evolution of a single planet. For what concerns Jupiter and Saturn, we found that in some conditions on the disc parameter, they can avoid significant migration (Morbidelli and Crida 2007). Adding Uranus and Neptune to the system, six stable fully resonant configurations for the four giants in the gas disc appear. Of course, none of them correspond to the present configuration. However, after the gas disc phase, the system was surrounded by a planetesimal disk. Interactions with this debris disk make the planets slowly evolve, until an instability in reached. This destabilises the planetesimal disc and triggers the Late Heavy Bombardment, while the planets reach their actual position, like in the model by Tsiganis et al (2005) and Gomes et al (2005). Our simulations show a very satisfying case, opening the possibility for a dynamically consistent scenario of the outer Solar System evolution, starting from the gas phase.
Photonic crystal geometry for organic solar cells.
Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T
2009-07-01
We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations.
Extraterrestrial organic matter: a review
NASA Technical Reports Server (NTRS)
Irvine, W. M.
1998-01-01
We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an increasingly debated topic over the last several years. The principal source for such intact organics was probably accretion of interplanetary dust particles of cometary origin.
NASA Astrophysics Data System (ADS)
Corbard, T.; Berthomieu, G.; Provost, J.; Blanc-Feraud, L.
Inferring the solar rotation from observed frequency splittings represents an ill-posed problem in the sense of Hadamard and the traditional approach used to override this difficulty consists in regularizing the problem by adding some a priori information on the global smoothness of the solution defined as the norm of its first or second derivative. Nevertheless, inversions of rotational splittings (e.g. Corbard et al., 1998; Schou et al., 1998) have shown that the surface layers and the so-called solar tachocline (Spiegel & Zahn 1992) at the base of the convection zone are regions in which high radial gradients of the rotation rate occur. %there exist high gradients in the solar rotation profile near %the surface and at the base of the convection zone (e.g. Corbard et al. 1998) %in the so-called solar tachocline (Spiegel & Zahn 1992). Therefore, the global smoothness a-priori which tends to smooth out every high gradient in the solution may not be appropriate for the study of a zone like the tachocline which is of particular interest for the study of solar dynamics (e.g. Elliot 1997). In order to infer the fine structure of such regions with high gradients by inverting helioseismic data, we have to find a way to preserve these zones in the inversion process. Setting a more adapted constraint on the solution leads to non-linear regularization methods that are in current use for edge-preserving regularization in computed imaging (e.g. Blanc-Feraud et al. 1995). In this work, we investigate their use in the helioseismic context of rotational inversions.
Long-period comet impact risk mitigation with Earth-based laser arrays
NASA Astrophysics Data System (ADS)
Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.
2017-09-01
Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.
The Solar system.Stars and constellations
NASA Astrophysics Data System (ADS)
Horia Minda, Octavian
2017-04-01
It is important for students to understand what is in our Solar System. The Students need to know that there are other things besides the Earth, Sun and Moon in the solar sky. The students will learn about the other eight planets and a few other celestial objects like stars and constellations. Constellations are useful because they can help people to recognize stars in the sky. By looking for patterns, the stars and locations can be much easier to spot. The constellations had uses in ancient times. They were used to help keep track of the calendar. This was very important so that people knew when to plant and harvest crops. Another important use for constellations was navigation. By finding Ursa Minor it is fairly easy to spot the North Star (Polaris). Using the height of the North Star in the sky, navigators could figure out their latitude helping ships to travel across the oceans. Objective: 1. The students will be introduced to the origin of the stars they see at night. 2. They will learn that there are groups of stars called constellations. The students will individually create their own constellations. They will be given the chance to tell the class a small story explaining their constellation. Evaluation of Children: The children will be evaluated through the creation of their constellations and ability to work in groups on the computers.
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Wagner, William (Technical Monitor); Esser, Ruth
2004-01-01
The scope of the investigation is to extract information on the properties of the bulk solar wind from the minor ion observations that are provided by instruments on board NASA space craft and theoretical model studies. Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. This study is carried out using solar wind models, coronal observations, and ion calculations in conjunction with the in situ observations.
Solar and stellar flares and their impact on planets
NASA Astrophysics Data System (ADS)
Shibata, Kazunari
Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.
The Sun's X-ray Emission During the Recent Solar Minimum
NASA Astrophysics Data System (ADS)
Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.
2010-02-01
The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.
Data challenges in estimating the capacity value of solar photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Lastly, our analysis also suggests that multiple years’ historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Data Challenges in Estimating the Capacity Value of Solar Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Our analysis also suggests that multiple years' historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Data challenges in estimating the capacity value of solar photovoltaics
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
2017-04-30
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Lastly, our analysis also suggests that multiple years’ historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Solar Corona/Wind Composition and Origins of the Solar Wind
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Gilbert, J. A.; Landi, E.; Shearer, P.; von Steiger, R.; Zurbuchen, T.
2014-12-01
Measurements from ACE and Ulysses have revealed a multifaceted solar wind, with distinctly different kinetic and compositional properties dependent on the source region of the wind. One of the major outstanding issues in heliophysics concerns the origin and also predictability of quasi-stationary slow solar wind. While the fast solar wind is now proven to originate within large polar coronal holes, the source of the slow solar wind remains particularly elusive and has been the subject of long debate, leading to models that are stationary and also reconnection based - such as interchange or so-called S-web based models. Our talk will focus on observational constraints of solar wind sources and their evolution during the solar cycle. In particular, we will point out long-term variations of wind composition and dynamic properties, particularly focused on the abundance of elements with low First Ionization Potential (FIP), which have been routinely measured on both ACE and Ulysses spacecraft. We will use these in situ observations, and remote sensing data where available, to provide constraints for solar wind origin during the solar cycle, and on their correspondence to predictions for models of the solar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None,
1981-09-01
Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)
Development of wireless sensor network for landslide monitoring system
NASA Astrophysics Data System (ADS)
Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.
2017-05-01
A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.
The HESP (High Energy Solar Physics) project
NASA Technical Reports Server (NTRS)
Kai, K.
1986-01-01
A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.
The local time dependence of the anisotropic solar cosmic ray flux.
Smart, D F; Shea, M A
2003-01-01
The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude and longitude of locations on the earth. The latitude effect relates to the geomagnetic shield; the longitude effect relates to local time. For anisotropic solar cosmic ray events the maximum particle flux is always along the interplanetary magnetic field direction, sometimes called the Archimedean spiral path from the sun to the earth. During anisotropic solar cosmic ray event, the locations on the earth viewing "sunward" into the interplanetary magnetic field direction will observe the largest flux (when adjustments are made for the magnetic latitude effect). To relate this phenomena to aircraft routes, for anisotropic solar cosmic ray events that occur during "normal quiescent" conditions, the maximum solar cosmic ray flux (and corresponding solar particle radiation dose) will be observed in the dawn quadrant, ideally at about 06 hours local time. Published by Elsevier Ltd on behalf of COSPAR.
None
2017-12-09
Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%âabout one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%.
Efficient 'Optical Furnace': A Cheaper Way to Make Solar Cells is Reaching the Marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Kuegelgen, T.
In Bhushan Sopori's laboratory, you'll find a series of optical furnaces he has developed for fabricating solar cells. When not in use, they sit there discreetly among the lab equipment. But when a solar silicon wafer is placed inside one for processing, Sopori walks over to a computer and types in a temperature profile. Almost immediately this fires up the furnace, which glows inside and selectively heats up the silicon wafer to 800 degrees centigrade by the intense light it produces. Sopori, a principal engineer at the National Renewable Energy Laboratory, has been researching and developing optical furnace technology formore » around 20 years. He says it's a challenging technology to develop because there are many issues to consider when you process a solar cell, especially in optics. Despite the challenges, Sopori and his research team have advanced the technology to the point where it will benefit all solar cell manufacturers. They are now developing a commercial version of the furnace in partnership with a manufacturer. 'This advanced optical furnace is highly energy efficient, and it can be used to manufacture any type of solar cell,' he says. Each type of solar cell or manufacturing process typically requires a different furnace configuration and temperature profile. With NREL's new optical furnace system, a solar cell manufacturer can ask the computer for any temperature profile needed for processing a solar cell, and the same type of furnace is suitable for several solar cell fabrication process steps. 'In the future, solar cell manufacturers will only need this one optical furnace because it can be used for any process, including diffusion, metallization and oxidation,' Sopori says. 'This helps reduce manufacturing costs.' One startup company, Applied Optical Systems, has recognized the furnace's potential for manufacturing thin-film silicon cells. 'We'd like to develop thin-film silicon cells with higher efficiencies, up to 15 to 18 percent, and we believe this furnace will enable us to do so,' says A. Rangappan, founder and CEO of Applied Optical Systems. Rangappan also says it will take only a few minutes for the optical furnace to process a thin-film solar cell, which reduces manufacturing costs. Overall, he estimates the company's solar cell will cost around 80 cents per watt. For manufacturing these thin-film silicon cells, Applied Optical Systems and NREL have developed a partnership through a cooperative research and development agreement (CRADA) to construct an optical furnace system prototype. DOE is providing $500,000 from its Technology Commercialization Development Fund to help offset the prototype's development costs because of the technology's significant market potential. The program has provided the NREL technology transfer office with a total of $4 million to expand such collaborative efforts between NREL researchers and companies. Applied Optical will construct a small version of the optical furnace based on the prototype design in NREL's process development and integration laboratory through a separate CRADA. This small furnace will only develop one solar cell wafer at a time. Then, the company will construct a large, commercial-scale optical furnace at its own facilities, which will turn out around 1,000 solar cell wafers per hour. 'We hope to start using the optical furnace for manufacturing within four to five years,' Rangappan says. Meanwhile, another partnership using the optical furnace has evolved between NREL and SiXtron Advanced Materials, another startup. Together they'll use the optical furnace to optimize the metallization process for novel antireflective solar cell coatings. The process is not only expected to yield higher efficiencies for silicon-based solar cells, but also lowers processing costs and eliminates safety concerns for manufacturers. Most solar cell manufacturers currently use a plasma-enhanced chemical vapor deposition (PECVD) system with compressed and extremely pyrophoric silane gas (SiH4) for applying passivation antireflective coatings (ARC). If silane is exposed to air, the SiH4 will explode - a serious safety issue for high-volume manufacturers. SiXtron's process uses a solid, silicon-based polymer that's converted into noncompressed, nonexplosive gas, which then flows to a standard PECVD system. 'The solid source is so safe to handle that it can be shipped by FedEx,' says Zbigniew Barwicz, president and CEO of SiXtron. Barwicz says manufacturers can use the same PECVD processing equipment for the SiXtron process that they already use for SiH4, a plug-and-play solution. For this novel passivation ARC process, NREL is helping to optimize the metallization parameters. NREL has developed a new technology called optical processing. One of the applications of this process is fire-through contact formation of silicon solar cells.« less
The real-time SEP forecasting tools of the 'HESPERIA' HORIZON 2020 project
NASA Astrophysics Data System (ADS)
Malandraki, Olga E.; Nunez, Marlon; Heber, Bernd; Labrenz, Johannes; Posner, Arik; Milas, Nick; Tsiropoula, Georgia; Pavlos, Evgenios; Sarlanis, Christos
2017-04-01
In this study, we describe the two real-time prediction tools, that have been developed in the framework of the HESPERIA project based upon the proven concepts UMASEP and REleASE. A major impact on human and robotic space exploration activities is the sudden and prompt occurrence of solar energetic ion events. The fact that near-relativistic electrons (1 MeV electrons have 95% of the speed of light) travel faster than ions (30 MeV protons have 25% of the speed of light) and are always present in Solar Energetic Particle (SEP) events can be used to forecast the arrival of protons from SEP events with real-time measurements of near relativistic electrons. The faster electrons arrive at L1 30 to 90 minutes before the slower protons. The Relativistic Electron Alert System for Exploration (REleASE) forecasting scheme (Posner, 2007) uses this effect to predict the proton flux by utilizing the actual electron flux and the increase of the electron flux in the last 60 minutes. In the framework of the HESPERIA project, a clone of the REleASE system was built in the open source programming language PYTHON. The same forecasting principle with use of the same forecasting matrices were in addition adapted to real-time electron flux measurements from the Electron, Proton & Alpha Monitor (EPAM) onboard the Advanced Composition Explorer (ACE). It is shown, that the REleASE forecasting scheme can be adapted to work with any near relativistic electron flux measurements. Solar energetic particles (SEPs) are sometimes energetic enough and the flux is high enough to cause air showers in the stratosphere and in the troposphere, which are an important ionization source in the atmosphere. >500 MeV solar protons are so energetic that they usually have effects on the ground, producing what is called a Ground Level Enhancement (GLE) event. Within the HESPERIA project a predictor of >500 SEP proton events at the near-earth (e.g. at geostationary orbit) has been developed. In order to predict these events, the UMASEP scheme (Núñez, 2011, 2015) has been used. UMASEP makes a lag-correlation of solar electromagnetic (EM) flux with the particle flux at near-earth. If the correlation is high, the model infers that there is a magnetic connection through which particles are arriving. If, additionally, the intensity of the flux of the associated solar event is also high, then the UMASEP scheme issues a SEP prediction. In the case of the prediction of >500 MeV SEP events, the implemented system, called UMASEP-500, correlates X-ray flux with each of the differential proton fluxes measured by the GOES satellites, and with each of the neutron density fluxes collected by neutron monitor stations around the world. When the correlation estimation surpasses a threshold, and the associated flare is greater than a specific X-ray peak flux, a >500 MeV SEP forecast is issued. Both forecasting tools are operational under the HESPERIA server maintained at the National Observatory of Athens. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA project).
On helium-like 1s2l-1snl prime transitions in solar flare spectra
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Neupert, W. M.; Swartz, M.
1974-01-01
Expected wavelengths and intensities are computed for 1s2l-1snl prime transitions in helium-like ions of the abundant elements from oxygen to iron under coronal conditions. Probable observations of some of these lines in the spectra of solar flares are discussed, and attention is called to a possible reversal of singlet and triplet intensities as compared to laboratory observations.
Maunder, E W (1851-1928) and Maunder, Mrs A S D
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Solar astronomers. Maunder became assistant for spectroscopic and solar observations at the Royal Observatory, Greenwich under GEORGE AIRY, aided by his wife. In 1890, while studying the numbers of sunspots over a 300 year time-span he noticed the scarcity of spots in the period 1645-1715. This so-called Maunder minimum was confirmed by Jack Eddy (1976) to be a real effect rather than simply a...
2017-05-30
A solar prominence at the sun's edge put on quite a display of plasma being pushed and pulled by unstable magnetic fields (May 22-24, 2017). We call them hedgerow prominences because they look somewhat like a hedge of bushes. This is one of the better examples of this type of solar phenomenon than any we have seen in quite some time. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21650
Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.
ERIC Educational Resources Information Center
Longe, Karen M.; McClelland, Michael J.
Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…
Parker Solar Probe Antenna Deployment
2018-04-19
Antenna's on NASA's Parker Solar Probe are deployed for testing at the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center on Thursday, April 19, 2018. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Light Bar Test
2018-06-05
In the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA's Parker Solar Probe. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Polestitters: Using Solar Sails for Constant Real-time Sensing of Earth's Polar Regions
NASA Astrophysics Data System (ADS)
Mulligan, P.; Diedrich, B. L.; Barnes, N.; Derbes, B.
2012-12-01
NASA has funded the Sunjammer mission - a near term demonstration of solar sail technology (2014/15). Sunjammer has the potential to demonstrate stationkeeping out of Earth's orbital plane. This is a first step in achieving "polesitter" orbits with year-round, real-time visibility of Earth's polar regions. Potential applications for such missions are illustrated. Solar sails have long been a concept for spacecraft propulsion that works by exchanging momentum with sunlight reflected by large, lightweight, mirrored sails. In addition to enabling propellantless propulsion throughout the solar system and beyond, their continuous thrust enables artificial Lagrange orbits (ALOs), some of which can be called "polesitter" orbits, with 24-hour, year-round visibility of Earth's polar regions. Several potential Earth remote sensing applications have been identified that address the limited temporal and spatial coverage from traditional polar and geostationary satellites. The Galileo spacecraft during its 1990 Earth flyby acquired imagery and radiometer data similar to the view from a polesitter. The Galileo imagery was used to derive aerosols and cloud variations used in atmospheric motion vector (AMV) derivations. Composites of satellite imagery over the South Pole is routinely used to derive atmospheric motion vectors like those performed regularly from geostationary satellites. The JAXA IKAROS mission flew a 14x14m solar sail past Venus in 2010. Sunjammer will demonstrate a state of the art 38x38m solar sail from Earth to an artificial Lagrange orbit located sunward and north of the sun-Earth L1 point. Traditional spacecraft can orbit naturally occurring Lagrange equilibrium points between the sun and Earth. The low, continuous thrust of solar sails can change where these points occur, creating new orbits with a variety of potential applications including polar remote sensing, space weather monitoring, and polar communications. This figure illustrates a selection of possible solar sail orbits around the sun-Earth L1 and L2 points.
Multi-Reflex Propulsion Systems for Space and Air Vehicles and Energy Transfer for Long Distance
NASA Astrophysics Data System (ADS)
Bolonkin, A.
The purpose of this article is to call attention to the revolutionary idea of light multi-reflection. This idea allows the design of new engines, space and air propulsion systems, storage (of a beam and solar energy), transmitters of energy (to millions of kilometers), creation of new weapons, etc. This method and the main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the immense possibilities of this idea in many fields of engineering - astronautics, aviation, energy, optics, direct converter of light (laser beam) energy to mechanical energy (light engine), to name a few. This article considers the multi-reflex propulsion systems for space and air vehicles and energy transmitter for long distances in space.
Photofermentative hydrogen production from wastes.
Keskin, Tugba; Abo-Hashesh, Mona; Hallenbeck, Patrick C
2011-09-01
In many respects, hydrogen is an ideal biofuel. However, practical, sustainable means of its production are presently lacking. Here we review recent efforts to apply the capacity of photosynthetic bacteria to capture solar energy and use it to drive the nearly complete conversion of substrates to hydrogen and carbon dioxide. This process, called photofermentation, has the potential capacity to use a variety of feedstocks, including the effluents of dark fermentations, leading to the development of various configurations of two-stage systems, or various industrial and agricultural waste streams rich in sugars or organic acids. The metabolic and enzymatic properties of this system are presented and the possible waste streams that might be successfully used are discussed. Recently, various immobilized systems have been developed and their advantages and disadvantages are examined. Copyright © 2011 Elsevier Ltd. All rights reserved.
Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting
NASA Astrophysics Data System (ADS)
Lindsey, Charles; Braun, Douglas
2017-06-01
The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called "p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.
Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting.
Lindsey, Charles; Braun, Douglas
2017-06-01
The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called " p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.
Organic solids produced by electrical discharge in reducing atmospheres - Tholin molecular analysis
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.; Zumberge, J. E.; Sklarew, D. S.; Nagy, B.
1981-01-01
The complex dark brown solid of a class called tholins, produced on passage of an electrical discharge through a roughly equimolar mixture of methane and ammonia with 2.6% water vapor, is analyzed by vacuum pyrolysis followed by gas chromatography and mass spectrometry. Pyrolyzates include a wide range of aliphatic and aromatic nitriles, alkanes, alkenes, aromatic hydrocarbons, pyrrole, and pyridine. This tholin is remarkably stable to 950 C. It and its degradation products are candidate constituents of planetary aerosols in the outer solar system and of the grains in the interstellar medium.
2018-04-16
The SpaceX Falcon 9 rocket is ready to roll out to Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, with NASA's Transiting Exoplanet Survey Satellite (TESS) secured in its payload fairing. TESS will launch on the Falcon 9 no earlier than 6:51 p.m. EDT on April 18. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.
Young Star and Its Infant Planet (Artist animation)
2016-06-20
When a planet such as K2-33b passes in front of its host star, it blocks some of the star's light. Observing this periodic dimming, called a transit, from continual monitoring of a star's brightness, allows astronomers to detect planets outside our solar system with a high degree of certainty. This Neptune-sized planet orbits a star that is between 5 and 10 million years old. In addition to the planet, the star hosts a disk of planetary debris, seen as a bright ring encircling the star. An animation is available at: http://photojournal.jpl.nasa.gov/catalog/PIA20692
NaOH-based high temperature heat-of-fusion thermal energy storage device
NASA Technical Reports Server (NTRS)
Cohen, B. M.; Rice, R. E.
1978-01-01
A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.
New Propulsion Technologies For Exploration of the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. The ASTP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to fission-powered multi-kilowatt systems, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will also be described. Results of recent earth-based technology demonstrations and space tests for many of these new propulsion technologies will be discussed.
Monitoring Effective Doses Received By Air Crews With A Space Weather Application
NASA Astrophysics Data System (ADS)
Lantos, P.
To fulfil new requirements of the European Community concerning monitoring of effective doses received by air crews, the French Aviation Authority has developed an operational system called Sievert. The SIEVERT system is analysed as an exam- ple of Space Weather application. One of its characteristics is to calculate the dose received on-board each flight on the basis of the specific and detailled flight given by companies. Operational models will be used. As input to the models, the system needs monitoring of galactic cosmic rays and of solar flare particles. The French neu- tron monitors located in Kerguelen Islands (South Indian Ocean) and Terre Adélie (Antarctica) will be used for this purpose. Particular attention will be devoted to evo- lution of the system in conjunction with new measurements available in the frame of a permanent validation process.
,
2000-01-01
Many geologic records of climatic and environmental change based on various proxy variables exhibit distinct cyclicities that have been attributed to extraterrestrial forcing. The best known of these are the changes in Earth’s orbital geometry called Milankovitch Cycles, with periodicities of tens to hundreds of thousands of years. However, many cycles seem to have subMilankovitch periodicities, commonly on decadal and centennial scales, similar to those of known solar cycles. A direct connection between solar irradiance (solar constant) and weather and climate has been suggested for more than 100 years but generally rejected by most scientists, who assume that the effect of solar variations would be small. However, recent satellite radiometer measurements and modeling studies indicate that small changes in total solar irradiance could produce global temperature changes of the magnitude suggested for climatic events such as the Little Ice Age (A.D. 1550–1700).
NASA Technical Reports Server (NTRS)
Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.
1994-01-01
The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.
Analysis and Modeling of Parallel Photovoltaic Systems under Partial Shading Conditions
NASA Astrophysics Data System (ADS)
Buddala, Santhoshi Snigdha
Since the industrial revolution, fossil fuels like petroleum, coal, oil, natural gas and other non-renewable energy sources have been used as the primary energy source. The consumption of fossil fuels releases various harmful gases into the atmosphere as byproducts which are hazardous in nature and they tend to deplete the protective layers and affect the overall environmental balance. Also the fossil fuels are bounded resources of energy and rapid depletion of these sources of energy, have prompted the need to investigate alternate sources of energy called renewable energy. One such promising source of renewable energy is the solar/photovoltaic energy. This work focuses on investigating a new solar array architecture with solar cells connected in parallel configuration. By retaining the structural simplicity of the parallel architecture, a theoretical small signal model of the solar cell is proposed and modeled to analyze the variations in the module parameters when subjected to partial shading conditions. Simulations were run in SPICE to validate the model implemented in Matlab. The voltage limitations of the proposed architecture are addressed by adopting a simple dc-dc boost converter and evaluating the performance of the architecture in terms of efficiencies by comparing it with the traditional architectures. SPICE simulations are used to compare the architectures and identify the best one in terms of power conversion efficiency under partial shading conditions.
Sun, the Earth, and Near-Earth Space: A Guide to the Sun-Earth System
NASA Technical Reports Server (NTRS)
Eddy, John A.
2010-01-01
In a world of warmth and light and living things we soon forget that we are surrounded by a vast universe that is cold and dark and deadly dangerous, just beyond our door. On a starry night, when we look out into the darkness that lies around us, the view can be misleading in yet another way: for the brightness and sheer number of stars, and their chance groupings into familiar constellations, make them seem much nearer to each other, and to us, that in truth they are. And every one of them--each twinkling, like a diamond in the sky--is a white-hot sun, much like our own. The nearest stars in our own galaxy--the Milky Way-- are more than a million times further away from us than our star, the Sun. We could make a telephone call to the Moon and expect to wait but a few seconds between pieces of a conversation, or but a few hours in calling any planet in our solar system.
NASA Astrophysics Data System (ADS)
Vörös, Z.; Facskó, G.; Khodachenko, M.; Honkonen, I.; Janhunen, P.; Palmroth, M.
2014-08-01
Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by Dungey (1963) can explain many aspects of solar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the "windsock memory conditioned ram pressure effect." Our nonflux transfer-associated forcing is introduced by a combination of the large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented interplanetary magnetic field (IMF). Using global MHD Grand Unified Magnetosphere Ionosphere Coupling Simulation version 4 simulation results, upstream data from Wind, magnetosheath data from Cluster 1 and distant tail data from the two-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground-based signatures of earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind-magnetosphere interactions.
Feasibility study of the solar scientific instruments for Spacelab/Orbiter
NASA Technical Reports Server (NTRS)
Leritz, J.; Rasser, T.; Stone, E.; Lockhart, B.; Nobles, W.; Parham, J.; Eimers, D.; Peterson, D.; Barnhart, W.; Schrock, S.
1981-01-01
The feasibility and economics of mounting and operating a set of solar scientific instruments in the backup Skylab Apollo Telescope Mount (ATM) hardware was evaluated. The instruments used as the study test payload and integrated into the ATM were: the Solar EUV Telescope/Spectrometer; the Solar Active Region Observing Telescope; and the Lyman Alpha White Light Coronagraph. The backup ATM hardware consists of a central cruciform structure, called the "SPAR', a "Sun End Canister' and a "Multiple Docking Adapter End Canister'. Basically, the ATM hardware and software provides a structural interface for the instruments; a closely controlled thermal environment; and a very accurate attitude and pointing control capability. The hardware is an identical set to the hardware that flow on Skylab.
NASA Astrophysics Data System (ADS)
Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao
2015-05-01
We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.
Build an oven, cook a meal: How solar energy empowered women in Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, J.
1990-12-01
A pilot solar cooking project in the hot, northern province of Guanacaste promises to serve as a model for community groups wanting to build their own solar ovens. An $8,000 (US) grant has been awarded by the Canadian Embassy in Costa Rica to take the Guanacaste project into a second stage in 1990-91. Two construction workshops, with twelve participants in each, are planned in communities near Oriente. Three women from the Oriente group will have paid jobs as organizational facilitators and workshop supervisors. In popular education this is called the multiplier effect - the users of solar cookers construct themore » ovens themselves, and then instruct others to do the same. 3 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stukel, Laura; Hoen, Ben; Adomatis, Sandra
Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings supports a vision of solar photovoltaic (PV) advocates and real estate advocates evolving together to make information about solar homes more accessible to home buyers and sellers and to simplify the process when these homes are resold. The Roadmap is based on a concept in the real estate industry known as automatic population of fields. Auto-population (also called auto-pop in the industry) is the technology that allows data aggregated by an outside industry to be matched automatically with home sale listings in a multiple listingmore » service (MLS).« less
Turbulent Convection and Pulsation Stability of Stars
NASA Astrophysics Data System (ADS)
Xiong, Da-run
2017-10-01
The controversies about the excitation mechanism for low-temperature variables are reviewed: (1) Most people believe that γ Doradus variables are excited by the so-called convective blocking mechanism. Our researches show that the excitation of γ Doradus has no substantial difference from that of δ Scuti. They are two subgroups of a broader type of δ Stuti-γ Doradus stars: δ Scuti is the p-mode subgroup, while γ Doradus is the g-mode subgroup. (2) Most people believe that the solar and stellar solar-like oscillations are damped by convection, and they are driven by the so-called turbulent random excitation mechanism. Our researches show that convection is not solely a damping mechanism for stellar oscillations, otherwise it is unable to explain the Mira and Mira-like variables. By using our non-local and time-dependent theory of convection, we can reproduce not only the pulsationally unstable strip of δ Scuti and γ Doradus variables, but also the solar-like oscillation features of low-luminosity red giants and the Mira-like oscillation features of high-luminosity red giants.
ERIC Educational Resources Information Center
Canipe, Stephen
Rules are provided for this bingo game focusing on terms related to solar, coal, nuclear, hydro, and wind energy. Playing cards and calling cards (to be cut out by the teacher) are also provided. (JN)
Lunar Reconnaissance Orbiter (LRO) Rapid Thermal Design Development
NASA Technical Reports Server (NTRS)
Baker, Charles; Cottingham, Christine; Garrison, Matthew; Melak, Tony; Peabody, Sharon; Powers, Dan
2009-01-01
The Lunar Reconnaissance Orbiter (LRO) project had a rapid development schedule starting with project conception in spring of 2004, instrument and launch vehicle selection late in 2005 and then launch in early 2009. The lunar thermal environment is one of the harshest in our solar system with the heavy infrared loading of the moon due to low albedo, lack of lunar atmosphere, and low effective regolith conduction. This set of constraints required a thermal design which maximized performance (minimized radiator area and cold control heater power) and minimized thermal hardware build at the orbiter level (blanketing, and heater service). The orbiter design located most of the avionics on an isothermalized heat pipe panel called the IsoThermal Panel (ITP). The ITP was coupled by dual bore heat pipes to an Optical Solar Reflector (OSR) covered heat pipe radiator. By coupling all of the avionics to one system, the hardware was simplified. The seven instruments were mainly heritage instruments which resulted in their desired radiators being located by their heritage design. This minimized instrument redesigns and therefore allowed them to be delivered earlier, though it resulted in a more complex orbiter level blanket and heater service design. Three of the instruments were mounted on a tight pointing M55J optical bench that needed to be covered in heaters to maintain pointing. Two were mounted to spacecraft controlled radiators. One was mounted to the ITP Dual Bores. The last was mounted directly to the bus structure on the moon facing panel. The propulsion system utilized four-20 pound insertion thrusters and eight-5 pound attitude control thrusters (ACS) in addition to 1000 kg of fuel in two large tanks. The propulsion system had a heater cylinder and a heated mounting deck for the insertion thrusters which coupled most of the propulsion design together simplifying the heater design. The High Gain Antenna System (HGAS) and Solar Array System (SAS) used dual axis actuator gimbal systems. HGAS required additional boom heaters to cool the approximately 10 W of RF losses thru the rotary joints and wave guides from the 40 W Ka system. By design this module needed a fair amount of heater, blanketing, and radiator complexity. The SAS system required a separate cable wrap radiator to help cool the Solar Array harness which dissipated 30 W thru the actuators and cable wraps. This module also was complex.
A Mythological, Philosophical and Astronomical approach of our solar system
NASA Astrophysics Data System (ADS)
Drivas, Sotirios; Kastanidou, Sofia
2016-04-01
Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.
The Violent Early Solar System, as Told by Lunar Sample Geochronology
NASA Technical Reports Server (NTRS)
Cohen, Barbara
2012-01-01
One of the legacies of the samples collected by the Apollo and Luna missions is the link forged between radiometric ages of rocks and relative ages according to stratigraphic relationships and impact crater size-frequency distributions. Our current understanding of the history of the inner solar system is based on the relative chronology of individual planets, tied to the absolute geochronology of the Moon via these important samples. Samples from these nearside locations reveal a preponderance of impact-disturbed or recrystallized ages between 3.75 and 3.95 billion years. Argon and lead loss (and correlated disturbances in the Rb-Sr system) have been attributed to metamorphism of the lunar crust by an enormous number of impacts in a brief pulse of time, called the Lunar Cataclysm or Late Heavy Bombardment. Subsequent high-precision geochronometric analyses of Apollo samples and lunar highlands meteorites show a wider range of ages, but very few older than 4 Ga. The paucity of ancient impact melt rocks has been interpreted to mean that either that most impact basins formed at this time, or that ejecta from the large, near-side, young basins dominates the Apollo samples. Selenochronology is getting more complicated: new results question meaning of sample ages, crater counts, crater production functions, and the solar system itself. Improved geological mapping of lunar geologic units and boundaries using multiple remote sensing datasets. High-resolution image-based crater counting of discrete geologic units and relating them to location. Improved understanding of the regolith thickness and its global variation (GRAIL). Tying the sampling of impact-melt rocks to the lunar impact flux. Using improved techniques (magnetic fields, diffusion studies, isotopic analysis) on existing samples. New sample return from benchmark craters, particularly SPA, which appears in 2013 Decadal Survey.
1998-06-04
Global color mosaic of Triton, taken in 1989 by Voyager 2 during its flyby of the Neptune system. Color was synthesized by combining high-resolution images taken through orange, violet, and ultraviolet filters; these images were displayed as red, green, and blue images and combined to create this color version. With a radius of 1,350 (839 mi), about 22% smaller than Earth's moon, Triton is by far the largest satellite of Neptune. It is one of only three objects in the Solar System known to have a nitrogen-dominated atmosphere (the others are Earth and Saturn's giant moon, Titan). Triton has the coldest surface known anywhere in the Solar System (38 K, about -391 degrees Fahrenheit); it is so cold that most of Triton's nitrogen is condensed as frost, making it the only satellite in the Solar System known to have a surface made mainly of nitrogen ice. The pinkish deposits constitute a vast south polar cap believed to contain methane ice, which would have reacted under sunlight to form pink or red compounds. The dark streaks overlying these pink ices are believed to be an icy and perhaps carbonaceous dust deposited from huge geyser-like plumes, some of which were found to be active during the Voyager 2 flyby. The bluish-green band visible in this image extends all the way around Triton near the equator; it may consist of relatively fresh nitrogen frost deposits. The greenish areas includes what is called the cantaloupe terrain, whose origin is unknown, and a set of "cryovolcanic" landscapes apparently produced by icy-cold liquids (now frozen) erupted from Triton's interior. http://photojournal.jpl.nasa.gov/catalog/PIA00317
Study of turbulent and shock heated IGM gas with emission line spectroscopy in the Taffy galaxies
NASA Astrophysics Data System (ADS)
Joshi, Bhavin; Appleton, Phil; Blanc, Guillermo; Guillard, Pierre; Freeland, Emily; Peterson, Bradley; Alatalo, Katherine
2018-01-01
We present our results from optical IFU observations of the Taffy system (UGC 12914/15); named so because of the radio emission that stretches between the two galaxies. The Taffy galaxies are a major merger pair of galaxies where two gas-rich spiral galaxies have collided face on and passed through each other. The pair presents an unusually low IR luminosity (L_FIR ~ 4.5 x 10^{10} L_solar) and SFR (~ 0.23 M_solar / yr) for a typical post merger system. It was also found from Spitzer and Chandra observations that the Taffy "bridge" between the galaxies contains large amounts of warm molecular Hydrogen, >4.5 x 10^8 M_solar at 150-175K, and also shows soft X-ray emission. These results hinted at shock heating as a likely mechanism for heating the large amounts of gas in the Taffy bridge and keeping it at these temperatures, after other sources of heating are ruled out. The data we present in this paper are from the VIRUS-P instrument (now called GCMS) on the Harlan J. Smith 2.7m telescope at McDonald Observatory. We detect ionized gas all throughout the Taffy galaxies and in the bridge between them. Interestingly, the ionized gas shows emission line profiles with two velocity components almost all throughout the system. We also show evidence, through line diagnostic (BPT) diagrams, that the velocity component with lower velocity is likely excited by star formation whereas the velocity component with higher velocity is likely excited by shocks. We also find evidence for post-starburst populations in parts of the Taffy system.
Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping
NASA Technical Reports Server (NTRS)
Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas
2010-01-01
During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.
Comet 'Bites the Dust' Around Dead Star
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Infrared Spectrometer Graph This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system. The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain. The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust. This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29-38, is shrouded by a cloud of dust. The data also demonstrate that this dust contains some of the same types of minerals found in comet Hale-Bopp. The findings tell a possible tale of solar system survival. Though the dust seen by Spitzer is likely from a comet that recently perished, its presence suggests that an icy distant ring of comets may still orbit the dead star. These data were collected by Spitzer's infrared spectrometer, an instrument that cracks light open like a geode, revealing its coveted components. In this spectrum, light from the white dwarf is on the left, at ultraviolet and visible wavelengths. The spectrum on the right, at infrared wavelengths longer than about 2 microns, shows much more light than can be explained by a white dwarf alone. The bump seen around a wavelength of 10 microns offers a clue to the source of this excess infrared light. It signifies the presence of silicate minerals, which are found in our own solar system on Earth, in sandy beaches, and in comets and asteroids. These silicate grains appear to be very small like those in comets, so astronomers favor the theory that a comet recently broke apart around the dead star.... arms is common. Dermatologists call it 'actinic purpura', 'solar purpura' or 'Bateman's purpura'. These flat blotches start ... lesion or disease, please consult a dermatologist. Any use, re-creation, dissemination, forwarding or copying of this ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, J. F.; Erdélyi, R., E-mail: robertus@sheffield.ac.uk
2016-05-10
Magneto-acoustic gravity (MAG) waves have been studied intensively in the context of astrophysical plasmas. There are three popular choices of analytic modeling using a Cartesian coordinate system: a magnetic field parallel, perpendicular, or at an angle to the gravitational field. Here, we study a gravitationally stratified plasma embedded in a parallel, so called vertical, magnetic field. We find a governing equation for the auxiliary quantity Θ = p {sub 1}/ ρ {sub 0}, and find solutions in terms of hypergeometric functions. With the convenient relationship between Θ and the vertical velocity component, v {sub z}, we derive the solution formore » v{sub z}. We show that the four linearly independent functions for v{sub z} can also be cast as single hypergeometric functions, rather than the Frobenius series derived by Leroy and Schwartz. We are then able to analyze a case of approximation for a one-layer solution, taking the small wavelength limit. Motivated by solar atmospheric applications, we finally commence study of the eigenmodes of perturbations for a two-layer model using our solutions, solving the dispersion relation numerically. We show that, for a transition between a photospheric and chromospheric plasma embedded in a vertical magnetic field, modes exist that are between the observationally widely investigated three and five minute oscillation periods, interpreted as solar global oscillations in the lower solar atmosphere . It is also shown that, when the density contrast between the layers is large (e.g., applied to photosphere/chromosphere-corona), the global eigenmodes are practically a superposition of the same as in each of the separate one-layer systems.« less
2001-06-02
KENNEDY SPACE CENTER, Fla. -- An L-1011 aircraft called the Stargazer lands at the Skid Strip, Cape Canaveral Air Force Station. Underneath its belly it carries the Orbital Sciences Corp. Pegasus XL launch vehicle with the High Energy Solar Spectroscopic Imager (HESSI) attached. The Pegasus XL will launch the HESSI no earlier than June 12 from CCAFS. The primary mission of HESSI is to explore the basic physics of particle acceleration and energy release in solar flares
2014-03-03
CAPE CANAVERAL, Fla. -- In the Thermal Protection System Facility NASA's Kennedy Space Center in Florida, agency astronaut candidates are briefed on tiles being manufactured for the agency's Orion spacecraft by Tim Wright of Jacobs Technology. Plans call for the Lockheed Martin-built Orion to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station on Exploration Flight Test EFT-1 later this year. The astronaut class of 2013 was selected by NASA after an extensive year-and-a-half search. The new group will help the agency push the boundaries of exploration and travel to new destinations in the solar system. To learn more about the astronaut class of 2013, visit: http://www.nasa.gov/astronauts/2013astroclass.html Photo credit: NASA/Kim Shiflett
Breakeven Prices for Photovoltaics on Supermarkets in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, S.; Clark, N.; Denholm, P.
The photovoltaic (PV) breakeven price is the PV system price at which the cost of PV-generated electricity equals the cost of electricity purchased from the grid. This point is also called 'grid parity' and can be expressed as dollars per watt ($/W) of installed PV system capacity. Achieving the PV breakeven price depends on many factors, including the solar resource, local electricity prices, customer load profile, PV incentives, and financing. In the United States, where these factors vary substantially across regions, breakeven prices vary substantially across regions as well. In this study, we estimate current and future breakeven prices formore » PV systems installed on supermarkets in the United States. We also evaluate key drivers of current and future commercial PV breakeven prices by region. The results suggest that breakeven prices for PV systems installed on supermarkets vary significantly across the United States. Non-technical factors -- including electricity rates, rate structures, incentives, and the availability of system financing -- drive break-even prices more than technical factors like solar resource or system orientation. In 2020 (where we assume higher electricity prices and lower PV incentives), under base-case assumptions, we estimate that about 17% of supermarkets will be in utility territories where breakeven conditions exist at a PV system price of $3/W; this increases to 79% at $1.25/W (the DOE SunShot Initiative's commercial PV price target for 2020). These percentages increase to 26% and 91%, respectively, when rate structures favorable to PV are used.« less
Mars environment and magnetic orbiter scientific and measurement objectives.
Leblanc, F; Langlais, B; Fouchet, T; Barabash, S; Breuer, D; Chassefière, E; Coates, A; Dehant, V; Forget, F; Lammer, H; Lewis, S; Lopez-Valverde, M; Mandea, M; Menvielle, M; Pais, A; Paetzold, M; Read, P; Sotin, C; Tarits, P; Vennerstrom, S
2009-01-01
In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.
NASA Astrophysics Data System (ADS)
Cnossen, Ingrid; Wiltberger, Michael; Ouellette, Jeremy E.
2012-11-01
The angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z axis, sometimes called the “dipole tilt,” varies as a function of UT and season. Observations have shown that the cross-polar cap potential tends to maximize near the equinoxes, when on average μ = 0, with smaller values observed near the solstices. This is similar to the well-known semiannual variation in geomagnetic activity. We use numerical model simulations to investigate the role of two possible mechanisms that may be responsible for the influence of μ on the magnetosphere-ionosphere system: variations in the coupling efficiency between the solar wind and the magnetosphere and variations in the ionospheric conductance over the polar caps. Under southward interplanetary magnetic field (IMF) conditions, variations in ionospheric conductance at high magnetic latitudes are responsible for 10-30% of the variations in the cross-polar cap potential associated with μ, but variations in solar wind-magnetosphere coupling are more important and responsible for 70-90%. Variations in viscous processes contribute slightly to this, but variations in the reconnection rate with μ are the dominant cause. The variation in the reconnection rate is primarily the result of a variation in the length of the section of the separator line along which relatively strong reconnection occurs. Changes in solar wind-magnetosphere coupling also affect the field-aligned currents, but these are influenced as well by variations in the conductance associated with variations in μ, more so than the cross-polar cap potential. This may be the case for geomagnetic activity too.
NASA Astrophysics Data System (ADS)
Spiegl, Tobias; Langematz, Ulrike
2016-04-01
The political, technical and socio-economic developments of the next decades will determine the magnitude of 21st century climate change, since they are inextricably linked to future anthropogenic greenhouse gas emissions. To assess the range of uncertainty that is related to these developments, it is common to assume different emission scenarios for 21st climate projections. While the uncertainties associated with the anthropogenic greenhouse gas forcing have been studied intensely, the contribution of natural climate drivers (particularly solar variability) to recent and future climate change are subject of intense debate. The past 1,000 years featured at least 5 excursions (lasting 60-100 years) of exceptionally low solar activity, induced by a weak magnetic field of the Sun, so called Grand Solar Minima. While the global temperature response to such a decrease in solar activity is assumed to be rather small, nonlinear mechanisms in the climate system might amplify the regional temperature signal. This hypothesis is supported by the last Grand Solar Minimum (the Maunder Minimum, 1645-1715) which coincides with the Little Ice Age, an epoch which is characterized by severe cold and hardship over Europe, North America and Asia. The long-lasting minimum of Solar Cycle 23 as well as the overall weak maximum of Cycle 24 reveal the possibility for a return to Grand Solar Minimum conditions within the next decades. The quantification of the implications of such a projected decrease in solar forcing is of ultimate importance, given the on-going public discussion of the role of carbon dioxide emissions for global warming, and the possible role a cooling due to decreasing solar activity could be ascribed to. Since there is still no clear consensus about the actual strength of the Maunder Minimum, we used 3 acknowledged solar reconstruction datasets that show significant differences in both, total solar irradiance (TSI) and spectral irradiance (SSI) to simulate a future Grand Solar Minimum under RCP6.0 conditions. The results obtained were compared to a RCP6.0 simulation that was carried out using the CCMI recommendations for a 21st century solar forcing. We used the ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry-climate model that incorporates interactive ozone chemistry, a high-resolution shortwave radiation scheme, a high model top (0.01 hPa) and is coupled to a 3D ocean general circulation model. We focused on the regional responses to a future Grand Solar Minimum and interannual variability patterns (i.e. the Northern and Southern Annular Mode (NAM/SAM)).
NASA Study Hints at Possible Change in Water ‘Fingerprint’ of Comet
2017-12-08
A trip past the sun may have selectively altered the production of one form of water in a comet – an effect not seen by astronomers before, a new NASA study suggests. Astronomers from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, observed the Oort cloud comet C/2014 Q2, also called Lovejoy, when it passed near Earth in early 2015. Through NASA’s partnership in the W. M. Keck Observatory on Mauna Kea, Hawaii, the team observed the comet at infrared wavelengths a few days after Lovejoy passed its perihelion – or closest point to the sun. The team focused on Lovejoy’s water, simultaneously measuring the release of H2O along with production of a heavier form of water, HDO. Water molecules consist of two hydrogen atoms and one oxygen atom. A hydrogen atom has one proton, but when it also includes a neutron, that heavier hydrogen isotope is called deuterium, or the “D” in HDO. From these measurements, the researchers calculated the D-to-H ratio – a chemical fingerprint that provides clues about exactly where comets (or asteroids) formed within the cloud of material that surrounded the young sun in the early days of the solar system. Researchers also use the D-to-H value to try to understand how much of Earth’s water may have come from comets versus asteroids. Read more: go.nasa.gov/2lvd6Vt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Stochastic YORP On Real Asteroid Shapes
NASA Astrophysics Data System (ADS)
McMahon, Jay W.
2015-05-01
Since its theoretical foundation and subsequent observational verification, the YORP effect has been understood to be a fundamental process that controls the evolution of small asteroids in the inner solar system. In particular, the coupling of the YORP and Yarkovsky effects are hypothesized to be largely responsible for the transport of asteroids from the main belt to the inner solar system populations. Furthermore, the YORP effect is thought to lead to rotational fission of small asteroids, which leads to the creation of multiple asteroid systems, contact binary asteroids, and asteroid pairs. However recent studies have called into question the ability of YORP to produce these results. In particular, the high sensitivity of the YORP coefficients to variations in the shape of an asteroid, combined with the possibility of a changing shape due to YORP accelerated spin rates can combine to create a stochastic YORP coefficient which can arrest or change the evolution of a small asteroid's spin state. In this talk, initial results are presented from new simulations which comprehensively model the stochastic YORP process. Shape change is governed by the surface slopes on radar based asteroid shape models, where the highest slope regions change first. The investigation of the modification of YORP coefficients and subsequent spin state evolution as a result of this dynamically influenced shape change is presented and discussed.
NASA In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.
NASA's In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstrationmore » program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.« less
NASA Astrophysics Data System (ADS)
Chaplin, W. J.; Jiménez-Reyes, S. J.; Eff-Darwich, A.; Elsworth, Y.; New, R.
2008-04-01
Frequencies, powers and damping rates of the solar p modes are all observed to vary over the 11-yr solar activity cycle. Here, we show that simultaneous variations in these parameters give rise to a subtle cross-talk effect, which we call the `devil in the detail', that biases p-mode frequencies estimated from analysis of long power frequency spectra. We also show that the resonant peaks observed in the power frequency spectra show small distortions due to the effect. Most of our paper is devoted to a study of the effect for Sun-as-a-star observations of the low-l p modes. We show that for these data the significance of the effect is marginal. We also touch briefly on the likely l dependence of the effect, and discuss the implications of these results for solar structure inversions.
InGaP Heterojunction Barrier Solar Cells
NASA Technical Reports Server (NTRS)
Welser, Roger E. (Inventor)
2014-01-01
A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.
EVIDENCE FOR POLAR X-RAY JETS AS SOURCES OF MICROSTREAM PEAKS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neugebauer, Marcia, E-mail: mneugeb@lpl.arizona.edu
2012-05-01
It is proposed that the interplanetary manifestations of X-ray jets observed in solar polar coronal holes during periods of low solar activity are the peaks of the so-called microstreams observed in the fast polar solar wind. These microstreams exhibit velocity fluctuations of {+-}35 km s{sup -1}, higher kinetic temperatures, slightly higher proton fluxes, and slightly higher abundances of the low-first-ionization-potential element iron relative to oxygen ions than the average polar wind. Those properties can all be explained if the fast microstreams result from the magnetic reconnection of bright-point loops, which leads to X-ray jets which, in turn, result in solarmore » polar plumes. Because most of the microstream peaks are bounded by discontinuities of solar origin, jets are favored over plumes for the majority of the microstream peaks.« less
Numerical evaluation of an innovative cup layout for open volumetric solar air receivers
NASA Astrophysics Data System (ADS)
Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz
2016-05-01
This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.
NASA Astrophysics Data System (ADS)
Jarvinen, R.
2011-04-01
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
NASA Astrophysics Data System (ADS)
Jarvinen, Riku
2011-04-01
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
Electronic digital display watch having solar and geographical functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salah, I.M.
1984-10-30
In order to provide easily accessible knowledge of the correlations between time, the geographical locale and the solar positions, the watch in question in addition to time-keeping means capable of displaying the current time also provides means capable of storing, processing in a microprocessor mode and displaying in a particular panel mode data of solar elevation and azimuth as well as date data, a computer performing correlating operations between these various values. Pushbuttons (BPH', BPM', BPB') allow using this watch in various operational and correction situations, and other pushbuttons (BPH, BPM, BPB) allow more specific commands for correction, for searchmore » operations regarding date and place based on the solar data, for storage and call from memory of the various processed data. This watch can easily be implemented as a small wrist watch. It will be advantageously used by those interested in knowing the solar positions, by solar facility engineers, architects, airline pilots, believers in the Moslem faith etc.« less
Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma
NASA Technical Reports Server (NTRS)
Esser, Ruth; Wagner, William (Technical Monitor)
2003-01-01
Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. The goal of the proposal is to make use of ion fractions observed in situ in the solar wind to learn about both, the plasma conditions in the inner corona and the expansion and ion formation itself. This study is carried out using solar wind models, coronal observations, and ion fraction calculations in conjunction with the in situ observations.
The Final Results from the Sudbury Neutrino Observatory
Bellerive, Alain
2017-12-15
The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.
Garrett solar Brayton engine/generator status
NASA Astrophysics Data System (ADS)
Anson, B.
1982-07-01
The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.
NASA Astrophysics Data System (ADS)
2012-12-01
The University of Edinburgh, crowdsourcing website Kaggle and Winton Capital Management have joined forces to launch a competition to identify dark matter haloes. The Scientific Organizing Committee of the RAS National Astronomy Meeting 2013, the UK Solar Physics and Magnetosphere, Ionosphere and Solar-Terrestrial meetings, are seeking nominations for parallel discussion session themes. A winner of the 2012 Move an Asteroid Technical Paper Competition suggests painting asteroids white in order to boost their albedo and take advantage of solar radiation pressure to alter their orbits.
Almost Like Being at Bonneville
2004-03-17
NASA Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called Bonneville. The rover solar panels can be seen in the foreground. 3D glasses are necessary to view this image.
Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I
NASA Technical Reports Server (NTRS)
2004-01-01
The Special Session: Oxygen in the Solar System, I, included the following reports:Oxygen in the Solar System: Origins of Isotopic and Redox Complexity; The Origin of Oxygen Isotope Variations in the Early Solar System; Solar and Solar-Wind Oxygen Isotopes and the Genesis Mission; Solar 18O/17O and the Setting for Solar Birth; Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites; Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples; Tracing Meteorites to Their Sources Through Asteroid Spectroscopy; Redox Conditions Among the Terrestrial Planets; Redox Complexity in Martian Meteorites: Implications for Oxygen in the Terrestrial Planets; Implications of Sulfur Isotopes for the Evolution of Atmospheric Oxygen; Oxygen in the Outer Solar System; and On the Oxidation States of the Galilean Satellites: Implications for Internal Structures.
The impact of climate change on photovoltaic power generation in Europe
Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; López-Romero, Jose María; Thais, Françoise; Bartok, Blanka; Christensen, Ole Bøssing; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin
2015-01-01
Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. PMID:26658608
1999-01-22
The cover is removed from the Stardust spacecraft in the Payload Hazardous Servicing Facility prior to a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006
1999-01-26
In the Payload Hazardous Servicing Facility, workers help guide the overhead crane lifting the Stardust spacecraft. Stardust is being moved in order to mate it with the third stage of a Boeing Delta II rocket. Targeted for launch Feb. 6 from Launch Pad 17-A, Cape Canaveral Air Station, aboard the Delta II rocket, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006
AI techniques for a space application scheduling problem
NASA Technical Reports Server (NTRS)
Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.
1991-01-01
Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).
NASA Astrophysics Data System (ADS)
Gyenge, N.; Baranyi, T.; Ludmány, A.
The solar active longitudes were studied in the northern hemisphere in cycles 22 and 23 by using data of DPD sunspot catalogue. The active longitudes are not fixed in the Carrington system, they have a well recognizable migration path between the descending phase of cycle 21 (from about 1984) and ascending phase of cycle 23 (until about 1996), out of this interval the migration path is ambiguous. The longitudinal distribution on both sides of the path has been computed and averaged for the length of the path. The so-called flip-flop phenomenon, when the activity temporarily gets to the opposite longitude, can also be recognized. The widths of the active domains are fairly narrow in the increasing and decaying phases of cycle 22, their half widths are about 20°-30° for both the main and secondary active belts but it is more flat and stretched around the maximum with a half width of about 60°.
Investigation of phase-change coatings for variable thermal control of spacecraft
NASA Technical Reports Server (NTRS)
Kelliher, W. C.; Young, P. R.
1972-01-01
An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.
Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators
NASA Astrophysics Data System (ADS)
Wang, Jingang; Chong, Junlong; Yang, Jie
2014-10-01
Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.
A study of water electrolysis using ionic polymer-metal composite for solar energy storage
NASA Astrophysics Data System (ADS)
Keow, Alicia; Chen, Zheng
2017-04-01
Hydrogen gas can be harvested via the electrolysis of water. The gas is then fed into a proton exchange membrane fuel cell (PEMFC) to produce electricity with clean emission. Ionic polymer-metal composite (IPMC), which is made from electroplating a proton-conductive polymer film called Nafion encourages ion migration and dissociation of water under application of external voltage. This property has been proven to be able to act as catalyst for the electrolysis of pure water. This renewable energy system is inspired by photosynthesis. By using solar panels to gather sunlight as the source of energy, the generation of electricity required to activate the IPMC electrolyser is acquired. The hydrogen gas is collected as storable fuel and can be converted back into energy using a commercial fuel cell. The goal of this research is to create a round-trip energy efficient system which can harvest solar energy, store them in the form of hydrogen gas and convert the stored hydrogen back to electricity through the use of fuel cell with minimal overall losses. The effect of increasing the surface area of contact is explored through etching of the polymer electrolyte membrane (PEM) with argon plasma or manually sanding the surface and how it affects the increase of energy conversion efficiency of the electrolyser. In addition, the relationship between temperature and the IPMC is studied. Experimental results demonstrated that increases in temperature of water and changes in surface area contact correlate with gas generation.
Towards solar energy storage in the photochromic dihydroazulene-vinylheptafulvene system.
Cacciarini, Martina; Skov, Anders B; Jevric, Martyn; Hansen, Anne S; Elm, Jonas; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Brøndsted Nielsen, Mogens
2015-05-11
One key challenge in the field of exploitation of solar energy is to store the energy and make it available on demand. One possibility is to use photochromic molecules that undergo light-induced isomerization to metastable isomers. Here we present efforts to develop solar thermal energy storage systems based on the dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch. New DHA derivatives with one electron-withdrawing cyano group at position 1 and one or two phenyl substituents in the five-membered ring were prepared by using different synthetic routes. In particular, a diastereoselective reductive removal of one cyano group from DHAs incorporating two cyano groups at position 1 turned out to be most effective. Quantum chemical calculations reveal that the structural modifications provide two benefits relative to DHAs with two cyano groups at position 1: 1) The DHA-VHF energy difference is increased (i.e., higher energy capacity of metastable VHF isomer); 2) the Gibbs free energy of activation is increased for the energy-releasing VHF to DHA back-reaction. In fact, experimentally, these new derivatives were so reluctant to undergo the back-reaction at room temperature that they practically behaved as DHA to VHF one-way switches. Although lifetimes of years are at first attractive, which offers the ultimate control of energy release, for a real device it must of course be possible to trigger the back-reaction, which calls for further iterations in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Lidnis Instrument: Atmosphere And Surface Studies
NASA Astrophysics Data System (ADS)
Leblanc, F.; Chassefiere, E.; Porteneuve, J.; Berthelier, J.-J.; Sarkissian, A.; Meftha, M.; Johnson, R. E.; Chaussidon, M.; Jambon, A.
LIDNIS is a surface instrument for rocky planetary bodies (in particular for Mercury, Mars, the Moon or asteroids) which simultaneously studies the chemical composi- tion of surface material, its gaseous environment and the nature and importance of the atmosphere/surface interaction. A multipurpose mass spectrometer (called NIS for Neutral and Ion spectrometer) placed at the surface of a planetary body would first of all give us information on the local atmosphere, its elementary and isotopic compo- sition and temporal variation. It will also give us the access to the precipitation from the interplanetary space and the products due to this precipitation. The association to NIS of a laser induced desorption (LID) system strong enough to desorb and volatilize the first few tens micro meters of the surface will allow the analysis of the different species present in this layer that is the atmospheric species (volatiles, refractories and products of the interior outgassing), the energetic implanted species along the history of this body (Solar Wind, Solar Energetic Particles and Cosmic Rays) and the inter- nal composition. In the same way as it is usually done in laboratories for the Moon samples, LIDNIS, through a progressive outgassing of the regolith or the rock at the surface, will measure these different groups of species. The purpose of this poster is to describe such an instrument and to show its capabilities with low mass and power to measure efficiently fundamental parameters for our understanding of the origin and evolution of planetary bodies in the solar system.
NASA Technical Reports Server (NTRS)
Rapp, D.
1981-01-01
The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.
Pluri-energy analysis of livestock systems--a comparison of dairy systems in different territories.
Vigne, Mathieu; Vayssières, Jonathan; Lecomte, Philippe; Peyraud, Jean-Louis
2013-09-15
This paper introduces a generic assessment method called pluri-energy analysis. It aims to assess the types of energy used in agricultural systems and their conversion efficiencies. Four types of energy are considered: fossil energy, gross energy contained in the biomass, energy from human and animal labor and solar energy. The method was applied to compare smallholder low-input dairy-production systems, which are common in developing countries, to the high-input systems encountered in OECD countries. The pluri-energy method is useful for analyzing the functioning of agricultural systems by highlighting their modes of energy management. Since most dairy systems in South Mali (SM) are low-input systems, they are primarily based on solar and labor energy types and do not require substantial fossil-energy inputs to produce milk. Farms in Poitou-Charentes (PC) and Bretagne (BR) show intermediate values of fossil-energy use for milk production, similar to that found in the literature for typical European systems. However, fossil-energy use for milk production is higher on PC than BR farms because of a higher proportion of maize silage in the forage area; grazing pastures are more common on BR farms. Farms on Reunion Island (RI) require a relatively large amount of fossil energy to produce milk, mainly because the island context limits the amount of arable land. Consequently, milk production is based on large imports of concentrated feed with a high fossil-energy cost. The method also enables assessment of fossil-energy-use efficiency in order to increase the performance of biological processes in agricultural systems. Comparing the low-input systems represented by SM to the high-input systems represented by RI, PC and BR, an increase in solar-energy conversion, and thus land productivity, was observed due to intensification via increased fossil-energy use. Conversely, though fossil-energy use at the herd level increased milk productivity, its effect on gross-energy conversion by the herd was less evident. Partitioning the total on-farm gross energy produced among animal co-products (milk, meat and manure) highlights the major functions of SM herds, which are managed to produce organic crop fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Apparatus and method for solar coal gasification
Gregg, David W.
1980-01-01
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
Apparatus for solar coal gasification
Gregg, D.W.
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-05-01
HELIAKI is a FORTRAN computer program which simulates the optical/thermal performance of a central receiver solar thermal power plant for the dynamic conversion of solar-generated heat to electricity. The solar power plant which this program simulates consists of a field of individual sun tracking mirror units, or heliostats, redirecting sunlight into a cavity, called the receiver, mounted atop a tower. The program calculates the power retained by that cavity receiver at any point in time or the energy into the receiver over a year's time using a Monte Carlo ray trace technique to solve the multiple integral equations. An artist'smore » concept of this plant is shown.« less
Effects of Cutoffs on Galactic Cosmic-Ray Interactions in Solar-System Matter
NASA Technical Reports Server (NTRS)
Kim, K. J.; Reedy, R. C.; Masarik, J.
2005-01-01
The energetic particles in the galactic cosmic rays (GCR) induce many interactions in a variety of solar-system matter. Cosmogenic nuclides are used to study the histories of meteorites and lunar samples. Gamma rays and neutrons are used to map the compositions of planetary surfaces, such as Mars, the Moon, and asteroids. In almost all of these cases, the spectra of incident GCR particles are fairly similar, with only some modulation by the Sun over an 11-year cycle. Strong magnetic fields can seriously affect the energy spectrum of GCR particles hitting the surface of objects inside the magnetic fields. The Earth s geomagnetic field is strong enough that only GCR particles with magnetic rigidities above approx. 17 GV (a proton energy of approx. 17 GeV) reach the atmosphere over certain regions near the equator. This effect of removing lower-energy GCR particles is called a cutoff. The jovian magnetic fields are so strong that the fluxes of GCR particles hitting the 4 large Galilean satellites are similarly affected. The cutoff at Europa is estimated to be similar to or a little higher than at the Earth s equator.
2001-06-02
KENNEDY SPACE CENTER, Fla. -- An L-1011 aircraft called the Stargazer gets ready to land at the Skid Strip, Cape Canaveral Air Force Station. Underneath its belly it carries the Orbital Sciences Corp. Pegasus XL launch vehicle with the High Energy Solar Spectroscopic Imager (HESSI) attached. The Pegasus XL will launch the HESSI no earlier than June 12 from CCAFS. The primary mission of HESSI is to explore the basic physics of particle acceleration and energy release in solar flares
Kuisma, Mikael J; Lundin, Angelica M; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul
2016-02-25
Molecular photoswitches that are capable of storing solar energy, so-called molecular solar thermal storage systems, are interesting candidates for future renewable energy applications. In this context, substituted norbornadiene-quadricyclane systems have received renewed interest due to recent advances in their synthesis. The optical, thermodynamic, and kinetic properties of these systems can vary dramatically depending on the chosen substituents. The molecular design of optimal compounds therefore requires a detailed understanding of the effect of individual substituents as well as their interplay. Here, we model absorption spectra, potential energy storage, and thermal barriers for back-conversion of several substituted systems using both single-reference (density functional theory using PBE, B3LYP, CAM-B3LYP, M06, M06-2x, and M06-L functionals as well as MP2 calculations) and multireference methods (complete active space techniques). Already the diaryl substituted compound displays a strong red-shift compared to the unsubstituted system, which is shown to result from the extension of the conjugated π-system upon substitution. Using specific donor/acceptor groups gives rise to a further albeit relatively smaller red-shift. The calculated storage energy is found to be rather insensitive to the specific substituents, although solvent effects are likely to be important and require further study. The barrier for thermal back-conversion exhibits strong multireference character and as a result is noticeably correlated with the red-shift. Two possible reaction paths for the thermal back-conversion of diaryl substituted quadricyclane are identified and it is shown that among the compounds considered the path via the acceptor side is systematically favored. Finally, the present study establishes the basis for high-throughput screening of norbornadiene-quadricyclane compounds as it provides guidelines for the level of accuracy that can be expected for key properties from several different techniques.
Performance of Solar Proxy Options of IRI-Plas Model for Equinox Seasons
NASA Astrophysics Data System (ADS)
Sezen, Umut; Gulyaeva, Tamara L.; Arikan, Feza
2018-02-01
International Reference Ionosphere (IRI) is the most acclaimed climatic model of the ionosphere. Since 2009, the range of the IRI model has been extended to the Global Positioning System (GPS) orbital height of 20,000 km in the plasmasphere. The new model, which is called IRI extended to Plasmasphere (IRI-Plas), can input not only the ionosonde foF2 and hmF2 but also the GPS-total electron content (TEC). IRI-Plas has been provided at www.ionolab.org, where online computation of ionospheric parameters is accomplished through a user-friendly interface. The solar proxies that are available in IRI-Plas can be listed as sunspot number (SSN1), SSN2, F10.7, global electron content (GEC), TEC, IG, Mg II, Lyman-α, and GEC_RZ. In this study, ionosonde foF2 data are compared with IRI-Plas foF2 values with the Consultative Committee International Radio (CCIR) and International Union of Radio Science (URSI) model choices for each solar proxy, with or without the GPS-TEC input for the equinox months of October 2011 and March 2015. It has been observed that the best fitting model choices in Root Mean Square (RMS) and Normalized RMS (NRMS) sense are the Jet Propulsion Laboratory global ionospheric maps-TEC input with Lyman-α solar proxy option for both months. The input of TEC definitely lowers the difference between the model and ionosonde foF2 values. The IG and Mg II solar proxies produce similar model foF2 values, and they usually are the second and third best fits to the ionosonde foF2 for the midlatitude ionosphere. In high-latitude regions, Jet Propulsion Laboratory global ionospheric map-TEC inputs to IRI-Plas with Lyman-α, GEC_RZ, and TEC solar proxies are the best choices. In equatorial region, the best fitting solar proxies are IG, Lyman-α, and Mg II.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.
1986-01-01
The goal of this project is the development of an optimization algorithm for use with a solar cell model. It is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junctions depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm has been developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAPID). SCAPID uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the operation of a solar cell. A major obstacle is that the numerical methods used in SCAPID require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the value associated with the maximum efficiency. This problem has been alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution. Adapting SCAPID so that it could be called iteratively by the optimization code provided another means of reducing the cpu time required to complete an optimization. Instead of calculating the entire I-V curve, as is usually done in SCAPID, only the efficiency is calculated (maximum power voltage and current) and the solution from previous calculations is used to initiate the next solution.
Solar Development on Contaminated and Disturbed Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macknick, Jordan; Lee, Courtney; Mosey, Gail
2013-12-01
Land classified as contaminated and disturbed across the United States has the potential to host developments of utility-scale solar power. This report examines the prospect of developing utility- and commercial-scale concentrated solar power (CSP) and solar photovoltaics (PV) technologies on degraded and environmentally contaminated lands. The potential for solar development on contaminated anddisturbed lands was assessed, and for the largest and highest solar resource sites, the economic impacts and feasibility were evaluated. Developing solar power on contaminated and disturbed lands can help create jobs and revitalize local and state economies, and selecting these sites over greenfield sites can potentially havemore » permitting and environmental mitigation advantages. The U.S.Department of Energy (DOE) SunShot goals call for 632 GW of PV and 83 GW of CSP to be deployed by 2050. Conservative land-use estimates of this study (10 acres per megawatt) show that there are disturbed and environmentally contaminated lands throughout the country that could be suitable for utility-scale solar power, and, that there is sufficient land area to meet SunShot solar deployment goals. The purpose of this assessment is to improve the understanding of these sites and facilitate solar developers' selection of contaminated and disturbed sites for development.« less
Generalized Differential Calculus and Applications to Optimization
NASA Astrophysics Data System (ADS)
Rector, Robert Blake Hayden
This thesis contains contributions in three areas: the theory of generalized calculus, numerical algorithms for operations research, and applications of optimization to problems in modern electric power systems. A geometric approach is used to advance the theory and tools used for studying generalized notions of derivatives for nonsmooth functions. These advances specifically pertain to methods for calculating subdifferentials and to expanding our understanding of a certain notion of derivative of set-valued maps, called the coderivative, in infinite dimensions. A strong understanding of the subdifferential is essential for numerical optimization algorithms, which are developed and applied to nonsmooth problems in operations research, including non-convex problems. Finally, an optimization framework is applied to solve a problem in electric power systems involving a smart solar inverter and battery storage system providing energy and ancillary services to the grid.