Sample records for solar system finally

  1. Final Environmental Assessment: Solar Panel Systems at Joint Base McGuire-Dix-Lakehurst New Jersey

    DTIC Science & Technology

    2012-03-01

    FINAL ENVIRONMENTAL ASSESSMENT Solar Panel Systems at Joint Base McGuire-Dix-Lakehurst, New Jersey MARCH 2012...Final Environmental Assessment : Solar Panel Systems at Joint Base McGuire-Dix-Lakehurst New Jersey 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Purpose Finding of No Significant Impact (FONSI) Environmental Assessment (EA

  2. Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-07-01

    This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heatmore » exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.« less

  3. Solar Hot Water for an Industrial Laundry--Fresno, California

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report describes an integrated wastewater-heat recovery system and solar preheating system to supply part of hot-water requirements of an industrial laundry. Large retrofit solar-water-heating system uses lightweight collectors.

  4. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... solar photovoltaic (``PV'') panel systems contain both U.S. and foreign-origin raw materials and... of origin of the solar PV panel system described above for the purposes of U.S. government... transformation has occurred; however, no one factor is determinative. In this case, the solar PV systems are...

  5. National Community Solar Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupert, Bart

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groupsmore » of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative« less

  6. El Toro Library Solar Heating and Cooling Demonstration Project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report is divided into a number of essentially independent sections, each of which covers a specific topic. The sections, and the topics covered, are as follows. Section 1 provides a brief summary description of the solar energy heating and cooling system including the key final design parameters. Section 2 contains a copy of the final Acceptance Test Report. Section 3 consists of a reduced set of final updated as-built mechanical, electrical, control and instrumentations drawings of the solar energy heating and cooling system. Section 4 provides a summary of system maintenance requirements, in the form of a maintenance schedulemore » which lists necessary maintenance tasks to be performed at monthly, quarterly, semi-annual, and annual intervals. Section 5 contains a series of photographs of the final solar energy system installation, including the collector field and the mechanical equipment room. Section 6 provides a concise summary of system operation and performance for the period of December 1981 through June 1982, as measured, computed and reported by Vitro Laboratories Division of Automation Industries, Inc., for the DOE National Solar Data Network. Section 7 provides a summary of key as-built design parameters, compared with the corresponding original design concept parameters. Section 8 provides a description of a series of significant problems encountered during construction, start-up and check-out of the solar energy heating and cooling system, together with the method employed to solve the problem at the time and/or recommendations for avoiding the problem in the future design of similar systems. Appendices A through H contain the installation, operation and maintenance submittals of the various manufacturers on the major items of equipment in the system. Reference CAPE-2823.« less

  7. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  8. Final system instrumentation design package for Decade 80 solar house

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The final configuration of the Decade 80 solar house to monitor and collect system performance data is presented. A review demonstrated by actual operation that the system and the data acquisition subsystem operated satisfactorily and installation of instrumentation was in accordance with the design. This design package is made up of (1) site and system description, (2) operating and control modes, and (3) instrumentation program (including sensor schematic).

  9. Solar thermal repowering systems integration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  10. Development, testing, and certification of Owens-Illinois model SEC-601 solar energy collector system

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    The final results are presented of the additional development work on the existing air-cooled solar energy collector subsystem for use with solar heating and cooling systems. The report discusses the intended use of the final report, describes the deliverable end items, lists program objectives, relates how they were accomplished, deals with problems encountered during fabrication and testing, and includes a certification statement of performance. The report shows that the products developed are marketable and suitable for public use.

  11. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume II. Detailed results. [New York, Atlanta, Omaha, and Albuquerque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-06-01

    The mixed-strategy analysis was a tradeoff analysis between energy-conservation methods and an alternative energy source (solar) considering technical and economic benefits. The objective of the analysis was to develop guidelines for: reducing energy requirements; reducing conventional fuel use; and identifying economic alternatives for building owners. The analysis was done with a solar system in place. This makes the study unique in that it is determining the interaction of energy conservation with a solar system. The study, therefore, established guidelines as to how to minimize capital investment while reducing the conventional fuel consumption through either a larger solar system or anmore » energy-conserving technique. To focus the scope of energy-conservation techniques and alternative energy sources considered, five building types (house, apartment buildings, commercial buildings, schools, and office buildings) were selected. Finally, the lists of energy-conservation techniques and alternative energy sources were reduced to lists of manageable size by using technical attributes to select the best candidates for further study. The resultant energy-conservation techniques were described in detail and installed costs determined. The alternative energy source reduced to solar. Building construction characteristics were defined for each building for each of four geographic regions of the country. A mixed strategy consisting of an energy-conservation technique and solar heating/hot water/cooling system was analyzed, using computer simulation to determine the interaction between energy conservation and the solar system. Finally, using FEA fuel-price scenarios and installed costs for the solar system and energy conservation techniques, an economic analysis was performed to determine the cost effectiveness of the combination. (MCW)« less

  12. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  13. Solar power satellite system definition study. Volume 2, part 3: Final briefing, 16 May 1980, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Alternatives to the microwave transmission system previously defined Solar Power Satellite Systems were investigated. These were the laser power transmission, transportation systems, and an analysis or solid state power transmission. The advantages of each system are presented.

  14. Solar radiation alert system : final report.

    DOT National Transportation Integrated Search

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  15. The Composition of the Protosolar Disk and the Formation Conditions for Comets

    NASA Astrophysics Data System (ADS)

    Willacy, K.; Alexander, C.; Ali-Dib, M.; Ceccarelli, C.; Charnley, S. B.; Doronin, M.; Ellinger, Y.; Gast, P.; Gibb, E.; Milam, S. N.; Mousis, O.; Pauzat, F.; Tornow, C.; Wirström, E. S.; Zicler, E.

    2015-12-01

    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today.

  16. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  17. Solar Technology Validation Project - USS Data, LLC: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  18. Solar Technology Validation Project - RES Americas: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, S.

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  19. Passive solar addition to therapeutic pre-school. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-10-01

    This project consisted of designing and constructing a passive solar system on a new classroom addition to the Peanut Butter and Jelly Therapeutic Pre-School in Albuquerque, NM. The purpose of this project was to demonstrate the applicability of solar space heating systems to large institutional buildings, and to demonstrate the energy and cost savings available through the use of such systems. Preliminary estimates indicated that the passive solar systems will provide about 90 percent of the heating and cooling needs for the new classroom addition to the school.

  20. Plant engineers solar energy handbook. [Includes glossaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-21

    This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less

  1. 75 FR 80068 - Notice of Availability of the Final Environmental Impact Report/Final Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... would carry electricity from several renewable energy projects proposed in and around the Ivanpah Valley, including the Ivanpah Solar Energy Generation System currently under construction by BrightSource Energy..., Nevada, which would serve as a connector hub for solar energy generated in the Ivanpah Valley area. The...

  2. Solar applications of thermal energy storage. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.; Taylor, L.; DeVries, J.

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  3. Technical Assistance for Southwest Solar Technologies Inc. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie

    2012-07-01

    Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwestmore » Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.« less

  4. Disposal of radioactive iodine in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Defield, J. G.

    1978-01-01

    The possibility of space disposal of iodine waste from nuclear power reactors is investigated. The space transportation system utilized relies upon the space shuttle, a liquid hydrogen/liquid oxygen orbit transfer vehicle, and a solid propellant final stage. The iodine is assumed to be in the form of either an iodide or an iodate, and calculations assume that the final destination is either solar orbit or solar system escape. It is concluded that space disposal of iodine is feasible.

  5. SafeConnect Solar - Final Scientific/Technical Report (Updated)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNish, Zachary

    2016-02-03

    Final Scientific/Technical Report from Tier 0 SunShot Incubator award for hardware-based solution to reducing soft costs of installed solar. The primary objective of this project was for SafeConnect Solar (“SafeConnect”) to create working proof-of-concept hardware prototypes from its proprietary intellectual property and business concepts for a plug-and-play, safety-oriented hardware solution for photovoltaic solar systems. Specifically, SafeConnect sought to build prototypes of its “SmartBox” and related cabling and connectors, as well as the firmware needed to run the hardware. This hardware is designed to ensure a residential PV system installed with it can address all safety concerns that currently form themore » basis of AHJ electrical permitting and licensing requirements, thereby reducing the amount of permitting and specialized labor required on a residential PV system, and also opening up new sales channels and customer acquisition opportunities.« less

  6. Solar heating system installed at Jackson, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  7. Beyond Pluto: The Search for the Edge of the Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funsten, Herb

    In July, we finally visited the last major body of our solar system, Pluto. But what lies beyond? The stellar wind from our Sun forms an enormous bubble in interstellar space. This “sphere of our Sun,” or heliosphere, extends far beyond Pluto and forms a protective cocoon that shields us from cosmic radiation. In this talk, we will travel to the edge of the solar system, peer into the structure and dynamics of the outer heliosphere as it interacts with the interstellar medium and anticipate the future of the solar system as it moves through our galactic neighborhood.

  8. Formation of solar system analogues - I. Looking for initial conditions through a population synthesis analysis

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; Guilera, O. M.; de Elía, G. C.

    2017-11-01

    Population synthesis models of planetary systems developed during the last ˜15 yr could reproduce several of the observables of the exoplanet population, and also allowed us to constrain planetary formation models. We present our planet formation model, which calculates the evolution of a planetary system during the gaseous phase. The code incorporates relevant physical phenomena for the formation of a planetary system, like photoevaporation, planet migration, gas accretion, water delivery in embryos and planetesimals, a detailed study of the orbital evolution of the planetesimal population, and the treatment of the fusion between embryos, considering their atmospheres. The main goal of this work, unlike other works of planetary population synthesis, is to find suitable scenarios and physical parameters of the disc to form Solar system analogues. We are specially interested in the final planet distributions, and in the final surface density, eccentricity and inclination profiles for the planetesimal population. These final distributions will be used as initial conditions for N-body simulations to study the post-oligarchic formation in a second work. We then consider different formation scenarios, with different planetesimal sizes and different type I migration rates. We find that Solar system analogues are favoured in massive discs, with low type I migration rates, and small planetesimal sizes. Besides, those rocky planets within their habitables zones are dry when discs dissipate. At last, the final configurations of Solar system analogues include information about the mass and semimajor axis of the planets, water contents, and the properties of the planetesimal remnants.

  9. Preliminary design of a solar central receiver for a site-specific repowering application (Saguaro Power Plant). Volume IV. Appendixes. Final report, October 1982-September 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1983-09-01

    The appendixes for the Saguaro Power Plant includes the following: receiver configuration selection report; cooperating modes and transitions; failure modes analysis; control system analysis; computer codes and simulation models; procurement package scope descriptions; responsibility matrix; solar system flow diagram component purpose list; thermal storage component and system test plans; solar steam generator tube-to-tubesheet weld analysis; pipeline listing; management control schedule; and system list and definitions.

  10. Ingham County Geriatric Medical Care Facility solar water-heating system refurbishments. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The tasks of the refurbishment of a damaged solar water heating system are outlined. The system is a closed loop, 50% glycol antifreeze system consisting of 14 rows of 6 series manifolds each containing 6 solar collectors connected in parallel for a total of 504 modules. The Wyle Laboratories' test report for the Revere Model 132 flat plate collector is appended. A collector test plan and photographs are also appended. Reference CAPE-2834. (LS)

  11. Newman Unit 1 advanced solar repowering. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The five appendices give the selection process and system specification of the Newman Unit 1 solar repowering system, including the conceptual design drawings and diagrams; input data for the simulation program; and a review of the most important characteristics of the existing plant. (LEW)

  12. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.

  13. Solar cell power for field instrumentation at White Sands Missile range. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, J.W. Jr..; Reckart, D.H. Jr; Milway, W.B.

    1978-01-01

    The initial phase of an Instrumentation Development Project to explore and document what solar power can do for remote field instrumentation systems is described. The work scope consisted of selection, design, construction, test, and delivery of a solar cell power system for White Sands Missile Range. A Drone Formation Control System Interrogator was selected; a power supply was built and installed in the San Andres Mountain Range at WSMR in late August 1977.

  14. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  15. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  16. Preferences and concerns of potential users in the selection of solar thermal systems for industrial and small utility applications

    NASA Astrophysics Data System (ADS)

    Gresham, J. B.; Kriz, T. A.

    1981-03-01

    To achieve widespread application in the industrial and utility sectors, solar systems must be economically competitive. Economic viability is, in turn, determined by a number of supporting criteria, ranging from system reliability to dispatch characteristics to how the system supports the main product line. In addition, solar systems possess some inherent attributes that may render some of the traditional supporting criteria inappropriate or require their redefinition. Those criteria and their relation to the solar investments are discussed in three steps. First, the main concerns and preferences of the potential users, as identified in recent SERI studies, are identified. Second, the equitability of the resulting decision criteria for solar investments are examined. Finally, the implications of these criteria for solar energy's penetration into these markets are discussed.

  17. Space Solar Power Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  18. Deployment dynamics and control of large-scale flexible solar array system with deployable mast

    NASA Astrophysics Data System (ADS)

    Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping

    2016-10-01

    In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.

  19. Beyond Pluto: The Search for the Edge of the Solar System

    ScienceCinema

    Funsten, Herb

    2018-01-16

    In July, we finally visited the last major body of our solar system, Pluto. But what lies beyond? The stellar wind from our Sun forms an enormous bubble in interstellar space. This “sphere of our Sun,” or heliosphere, extends far beyond Pluto and forms a protective cocoon that shields us from cosmic radiation. In this talk, we will travel to the edge of the solar system, peer into the structure and dynamics of the outer heliosphere as it interacts with the interstellar medium and anticipate the future of the solar system as it moves through our galactic neighborhood.

  20. Facilitating Deployment of Community Solar PV systems on Rooftops and Vacant Land in Northeast IL - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Deborah; Oakleaf, Laura

    The Cook County Community Solar project set out to unlock the potential of community solar in the Chicago region with lessons that could be applied nationally. One of the first steps was to prove out the potential market. This was done through an opportunity assessment which showed there is over 9,000 megawatts worth of site capacity available for community solar projects in Cook County – nearly enough to offset all of Cook County’s residential electricity use. The assessment also showed that almost 75% of Cook County households are not able to invest directly in solar photovoltaic systems due to amore » variety of issues from physical barriers such as shading, or condition of the roof, to financial barriers such as lack of roof ownership, or the up-front costs of installation. Because of these barriers, community solar is an essential part of making the benefits of renewable energy available to all of the residents of Cook County. In addition to the opportunity assessment the project team also worked with the over 200 individuals who participated in the stakeholder advisory group to develop a number of other products including: 1) an Economic & Policy Barriers Resolutions and Work Plan document which laid out best practices to address the policy barriers that existed at the time (May of 2016) 2) Value Proposition Report I and Report II which summarize the value of community solar to potential developers and subscribers, 3) The Community Solar Business Case Tool, which provides a flexible financial model that projects the costs and befits to the system developer and subscriber for a project, 4) Bill Crediting Analysis and the 5) Final Report. The Final Report contains 15 case studies which prove that community solar projects are economically feasible in Cook County with a variety of sites, solar designs, ownership and subscriber models.« less

  1. The optical design and simulation of the collimated solar simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Tao

    2018-01-01

    The solar simulator is a lighting device that can simulate the solar radiation. It has been widely used in the testing of solar cells, satellite space environment simulation and ground experiment, test and calibration precision of solar sensor. The solar simulator mainly consisted of short—arc xenon lamp, ellipsoidal reflectors, a group of optical integrator, field stop, aspheric folding mirror and collimating reflector. In this paper, the solar simulator's optical system basic size are given by calculation. Then the system is optically modeled with the Lighttools software, and the simulation analysis on solar simulator using the Monte Carlo ray -tracing technique is conducted. Finally, the simulation results are given quantitatively by diagrammatic form. The rationality of the design is verified on the basis of theory.

  2. The formation of the solar system

    NASA Astrophysics Data System (ADS)

    Pfalzner, S.; Davies, M. B.; Gounelle, M.; Johansen, A.; Münker, C.; Lacerda, P.; Portegies Zwart, S.; Testi, L.; Trieloff, M.; Veras, D.

    2015-06-01

    The solar system started to form about 4.56 Gyr ago and despite the long intervening time span, there still exist several clues about its formation. The three major sources for this information are meteorites, the present solar system structure and the planet-forming systems around young stars. In this introduction we give an overview of the current understanding of the solar system formation from all these different research fields. This includes the question of the lifetime of the solar protoplanetary disc, the different stages of planet formation, their duration, and their relative importance. We consider whether meteorite evidence and observations of protoplanetary discs point in the same direction. This will tell us whether our solar system had a typical formation history or an exceptional one. There are also many indications that the solar system formed as part of a star cluster. Here we examine the types of cluster the Sun could have formed in, especially whether its stellar density was at any stage high enough to influence the properties of today’s solar system. The likelihood of identifying siblings of the Sun is discussed. Finally, the possible dynamical evolution of the solar system since its formation and its future are considered.

  3. Solar domestic hot water system installed at Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This is the final technical report of the solar energy system located at LaQuinta Motor Inn, Texas City, Texas. The system was designed to supply 63 percent of the total hot water load for a new 98 unit motor inn. The solar energy system consists of a 2100 square feet Raypack liquid flat plate collector subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10 to the 8th power Btu/year. Abstracts from the site files, specification references, drawings, installation, operation, and maintenance instructions are included.

  4. An Assessment of Need for Developing and Implementing Technical and Skilled Worker Training for the Solar Energy Industry. Final Report.

    ERIC Educational Resources Information Center

    Orsak, Charles G., Jr.; And Others

    The objective of this project was to determine the need for manpower training in solar energy technology and report it on a regional and/or state basis. Three basic questions were to be answered by the project: (1) Based on a survey of solar heating and cooling systems equipment, what types of systems are being manufactured? (2) What is the…

  5. Preliminary design of a solar central receiver for a site-specific repowering application (Saguaro Power Plant). Volume III. Specifications. Final report, October 1982-September 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1983-09-01

    This volume on specifications for the Saguaro Power Plant includes the following: subsystem interface definition document; solar collector subsystem specification; receiver specification; thermal energy storage specification; solar steam generator specification; and master control system specification.

  6. Solar Heating and Cooling of Buildings: Phase 0. Executive Summary. Final Report.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Baltimore, MD.

    After the Westinghouse Electric Corporation made a comprehensive analysis of the technical, economic, social, environmental, and institutional factors affecting the feasibility of utilizing solar energy for heating and cooling buildings, it determined that solar heating and cooling systems can become competitive in most regions of the country in…

  7. Solar Mosaic Inc. Mosaic Home Solar Loan SunShot 9 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Colin James

    The 6686 Mosaic SunShot award has helped Solar Mosaic Inc to progress from an early stage startup focused on commercial crowdfunding to a leading multi-state residential solar lender. The software platform is now used by the majority of the nation's top solar installers and offers a variety of simple home solar loans. Mosaic is has originated approximately $1Bil in solar loans to date to put solar on over 35k rooftops. The company now lends to homeowners with a wide range of credit scores across multiple states and mitigates boundaries preventing them from profiting from ownership of a home solar system.more » The project included milestones in 5 main categories: 1. Lending to homeowners outside of CA 2. Lending to homeowners with FICO scores under 700 3. Packaging O&M with the home solar loan 4. Allowing residential installers to process home solar loans via API 5. Lowering customer acquisition costs below $1500 This report includes a detailed review of the final results achieved and key findings.« less

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    Aids Solar Power in Hawaii Inverter load rejection overvoltage tests completed by NREL with partner the report, Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report. Based % of minimum daytime load (MDL) to 250% of MDL. If those increases are implemented, they will represent

  9. Solar-Heated and Cooled Office Building--Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  10. Streamline, Organizational, Legislative and Administrative Response to Permitting, PV Market Share, and Solar Energy Costs (Broward Go SOLAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, Jeffery D.

    2013-08-28

    Broward County and its partners (the Go SOLAR Team), operating under a Department of Energy Rooftop Solar Challenge Agreement, designed, developed and implemented an online permitting system for rooftop solar PV systems. This is a single web based system with a single permit fee that will issue a permit, with a set of design plans preapproved by partner building officials, within one hour. The system is currently available at gosolar.broward.org for use within any of the partner Authorities Having [permitting] Jurisdiction (AHJ). Additionally, the Go SOLAR Team researched, developed and to the extent feasible, implemented three best management practices tomore » make a fertile environment for the new online permit system. These included Net Metering and Interconnection Standards, Solar-Friendly Financing, and Planning and Zoning Ordinances. Finally, the team implemented a substantial outreach effort to advocate for the development of solar in Broward County, with an emphasis on Solar Rights, concluding with a Go SOLAR Fest day and a half conference with over 1,200 attendees and 50 exhibitors. The Go SOLAR project was completed on time, under DOE’s budgeted amount, and all project objectives were met or exceeded.« less

  11. 50 kW on-site concentrating solar photovoltaic power system. Phase I: design. Final report, 1 June 1978-28 February 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittman, P F

    1979-03-30

    This contract is part of a three phase program to design, fabricate, and operate a solar photovoltaic electric power system with concentrating optics. The system will be located beside a Local Operating Headquarters of the Georgia Power Company in Atlanta, Georgia and will provide part of the power for the on-site load. Fresnel lens concentrators will be used in 2-axis tracking arrays to focus solar energy onto silicon solar cells producing a peak power output of 56 kW. The present contract covers Phase I which has as its objective the complete design of the system and necessary subsystems.

  12. Cost effective solar hot water system for Econo-Travel Motor Hotel located at Richmond, Virginia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-09-01

    The final report is presented of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 5408 Williamsburg Road, Richmond, Virginia. The description of the system is given along with the final cost breakdown, expected performance data and expected payback time for the installed system is estimated to be approximately five (5) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryersmore » used for the laundry. The success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.« less

  13. Cost effective solar hot water system for Econo-Travel Motor Hotel located at Bluefield, West Virginia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 3400 Cumberland Road, Bluefield, West Virginia. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately five (5) years instead of the 7.73 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for themore » laundry. The success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.« less

  14. Solar power satellite system definition study, volume 5. Phase 2: Final briefing

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A briefing outline of the definition study is presented. Topics discussed include: Solar Power Satellite (SPS) research and development, definition study, operations control, transportation, solid state SPS, pilot link analysis, and offshore space center.

  15. The feasibility of solar energy usage on Red River Army Depot. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowder, G.W.

    This feasibility study considers the usage of solar energy to heat and cool the main office buildings on the Red River Army Depot, Texarkana Texas. Solar energy costs are compared with the present heating and cooling system costs with an economic analysis using the annual worth and present worth methods. (GRA)

  16. Model Solar Energy Training Program II. Final Report, July 1, 1981-June 30, 1982.

    ERIC Educational Resources Information Center

    Talcott Mountain Science Center, Avon, CT.

    Trained personnel will be needed in the future to install solar energy heating and hot water systems, and public school vocational education teachers will be needed to train these technicians. A project to train high school vocational teachers so that they can teach their students about solar energy concepts, manufacturing techniques, testing, and…

  17. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  18. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  19. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    PubMed

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  20. New PSA high concentration solar furnace SF40

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose; Cañadas, Inmaculada; Zarza, Eduardo

    2016-05-01

    A new solar furnace has been designed and built at Plataforma Solar de Almería. In this work, its main components such as heliostat, concentrator, attenuator and test table, and the method used to align them are described. Other equipment like the auxiliary systems necessary for the solar operation, vacuum chamber and gas system are outlined too. Finally, the thermal characteristics of the focus were measured during a test campaign, where different planes along the optical axis were scanned with a radiometer, and the peak flux was obtained and is presented in the last section of this report.

  1. Oxidative degradation and toxicity reduction of trichloroethylene (TCE) in water using TiO2/solar light: comparative study of TiO2 slurry and immobilized systems.

    PubMed

    Cho, Il-Hyoung; Park, Jae-Hong; Kim, Young-Gyu

    2005-01-01

    A solar-driven, photocatalyzed degradation system using TiO2 slurry and immobilized systems was constructed and applied to the degradation of trichloroethylene (TCE) contaminated water using TiO2 with solar light. The experiments were carried out under constant weather conditions on a sunny day. Solar photocatalytic treatment efficiency of the solar light/TiO2 slurry system was compared with that of the solar light/TiO2 immobilized system. The operation of the solar light/TiO2 slurry and immobilized systems showed 100% (TiO2 slurry system), 80% (TiO2 immobilized system) degradation of the TCE after 6 h, with a chloride production yield of approximately 89% (TiO2 slurry system), 72% (TiO2 immobilized system). The oxidants such as H2O2 and S2O8(2-) in the TiO2 slurry and immobilized systems increased TCE degradation rate by suppressing the electron/hole recombination process. The degradation rate and relative toxicity reduction of TCE followed the order of solar light/TiO2 slurry + S2O8(2-) > solar light/TiO2 slurry + H2O2 > solar light/TiO2 immobilized + S2O8(2-) > solar light/TiO2 slurry > solar light/TiO2 immobilized + H2O2 > solar light/TiO2 immobilized. Finally, following to the toxicity result, the acute toxicity was reduced by below toxicity endpoint (EC50 concentration) following the treatment. It means that many of the metabolites of TCE reduction are less toxic to Vibrio fischeri than the parent compound. Based on these results, TCE can be efficiently and safely treated in a solar-driven, photocatalyzed degradation system.

  2. Solair heater program: solair applications study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-12-01

    General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Othermore » attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.« less

  3. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, P.L.

    As the Oct. 31 deadline for an initial design review approaches, the four participants in the Energy Research and Development Administration's (ERDA) industrial process hot water program are putting the final touches to plans for solar systems that will supplement conventional energy sources in the textile, food processing, concrete block and cleaning industries. Participating in the project are AAI Corp., Baltimore, which designed a solar hot water system for the concrete block curing operation of York Building Products Co., Harrisburg, Pa.; Acurex Corp., Mountain View, Calif., which designed a solar hot water system for a can washing line at themore » Campbell Soup Co. plant in Sacramento, Calif.; General Electric Co., Philadelphia, which designed a solar hot water system for Riegel Textile Corp., La France, S.C.; and Jacobs Engineering Co., Pasadena, Calif., which designed a solar hot water and steam system for commercial laundry use at American Linen Supply in El Centro., Calif. (MCW)« less

  5. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    ERIC Educational Resources Information Center

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  6. Solar Heating Experiment on the Grover Cleveland School, Boston, Massachusetts. Final Report.

    ERIC Educational Resources Information Center

    General Electric Co., Philadelphia, PA. Space Div.

    General Electric Company was one of four contractors who received a contract in early January 1974 to design, build, and install a solar heating experiment in a public school. The overall objective of this program was to obtain data that would assist in evaluating the applicability of solar heating systems in large metropolitan areas. This data…

  7. Electrical design for origami solar panels and a small spacecraft test mission

    NASA Astrophysics Data System (ADS)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  8. Optical Diagnostic System for Solar Sails: Phase 1 Final Report

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.

    2004-01-01

    NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.

  9. Wangen EVS-solarhouse with a positive balance sheet

    NASA Astrophysics Data System (ADS)

    1980-05-01

    The results achieved with a solar house after one year of operation are reviewed. It is stressed that conventional solar collectors are not sufficient for heating the test house. Further, improvements are also needed for the task of hot water heating. Other disadvantages of solar collectors and of heatpumps working only with ambient air are discussed. It is demonstrated that a heat pump system using solar absorbers and a heat storage tank of damp soil, achieved the best results. In addition, such solar absorbers can be used in a decorative fashion, such as fences, which improves their marketability. Finally, it is noted that the widespread use of such systems will require an adequate supply of electricity.

  10. Gray's Ferry project: Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A three-story rowhouse building was retrofitted to demonstrate solar heating and energy conservation in the Philadelphia, PA area. The retrofit included a solar greenhouse, a Trombe wall, and a solar hot water system. The Phase II Project funding was used for four specific endeavors: (1) tours; (2) brochures/literature; (3) a slide show presentation; and (4) signage showing the design of the active and passive solar systems. Three special workshops and more than fifteen tours of the building were given. A DOE funded study showed that a Trombe wall was the most cost-effective solar application for the 183,000 two-story brick rowmore » houses in the city. (BCS)« less

  11. The Masdar Institute solar platform: A new research facility in the UAE for development of CSP components and thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Calvet, Nicolas; Martins, Mathieu; Grange, Benjamin; Perez, Victor G.; Belasri, Djawed; Ali, Muhammad T.; Armstrong, Peter R.

    2016-05-01

    Masdar Institute established a new solar platform dedicated to research and development of concentrated solar power (CSP), and thermal energy storage systems. The facility includes among others, state of the art solar resource assessment apparatuses, a 100 kW beam down CSP plant that has been adapted to research activity, one independent 100 kW hot-oil loop, and new thermal energy storage systems. The objective of this platform is to develop cost efficient CSP solutions, promote and test these technologies in extreme desert conditions, and finally develop local expertise. The purpose of this paper is not to present experimental results, but more to give a general overview of the different capabilities of the Masdar Institute Solar Platform.

  12. SAM Technical Review Committee Final Report: Summary and Key Recommendations from the Onsite TRC Meeting Held April 22-23, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, S.; Janzou, S.

    2013-08-01

    The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).

  13. Building America Case Study: Side-by-Side Testing of Water Heating Systems: Results from 2013-2014 Evaluation Final Report, Cocoa, FL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothgeb, Stacey K; Colon, C.; Martin, E.

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  14. Building America Case Study: Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Colon and E. Martin

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  15. Evaluation of installed solar systems at Navy, Army, and Air Force Bases. Final report, October 1984-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlak, E.R.

    1986-05-01

    This report presents a summary of the results of site-evaluation inspection conducted at Navy, Army, and Air Force base. The solar systems evaluated included space heating, space cooling, and domestic hot water system. The systems range in size from small two-collector systems to large arrays installed on barracks, mess halls, office buildings, etc. These operational results are presented so that future designs will benefit from the lesson learned in this study.

  16. Cost effective solar hot water system for Econo-Travel Motor Hotel, Chesapeake, Virginia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-12-01

    The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 4725 W. Military Highway, Chesapeake, Virginia, is presented. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers usedmore » for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.« less

  17. Cost effective solar hot water system for Econo-Travel Motor Hotel located at Woodbrdge, VA. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-11-01

    The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 13317 Gordon Boulevard, Woodbridge, Virginia is given. The description of the system along with the final breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 7.2 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used formore » the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.« less

  18. Solar energy system economic evaluation final report for SEMCO-Loxahatchee, Loxahatchee National Wildlife refuge, Palm Beach County, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Economic analysis of the solar energy system installed at Loxahatchee, was developed for Loxahatchee and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis was accomplished based on the technical and economic models in the f Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system costs over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables was also investigated. The results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  19. 75 FR 47591 - Environmental Impacts Statements; Notice Of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Thomas 559-784-1500 ext. 1164. EIS No. 20100292, Final EIS, BLM, CA, Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal... Generation Station (GGS) Project, Proposes to Modify its Interconnection Agreement, Basin Electric Power...

  20. Solar Systems and Energy Management Controls. Final Report, 1982-83.

    ERIC Educational Resources Information Center

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This project was conducted by the Bergen County Vocational-Technical Schools (1) to develop a practical awareness of energy conservation and management techniques for both commercial and domestic applications; (2) to develop four training courses to teach solar troubleshooting and maintenance, commercial energy management control, domestic energy…

  1. Development, testing, and certification of life sciences engineering solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1978-01-01

    Results are presented for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 square feet collector panel.

  2. An innovative deployable solar panel system for Cubesats

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-02-01

    One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.

  3. Development and Implementation of Training Curriculum/Program in Solar Heating and Cooling at the Technician Level, December 1, 1976 - November 30, 1977. Final Report.

    ERIC Educational Resources Information Center

    Kuhnle, Carl J., Jr.

    The program proposal is designed to address the increasing demand for trained personnel to support the installation and maintenance of solar energy systems at residential and commercial sites. The three main objectives of the proposed program are: (1) to develop a flexible curricula to train a solar heating and cooling workforce; (2) to identify…

  4. Voyager Approaches Final Frontier Artist Concept

    NASA Image and Video Library

    2003-12-12

    An artist's concept illustrates the positions of the Voyager spacecraft in relation to structures formed around our Sun by the solar wind. Also illustrated is the termination shock, a violent region the spacecraft must pass through before reaching the outer limits of the solar system. At the termination shock, the supersonic solar wind abruptly slows from an average speed of 400 kilometers per second to less than 100 kilometer per second (900,000 to less than 225,000 miles per hour). Beyond the termination shock is the solar system's final frontier, the heliosheath, a vast region where the turbulent and hot solar wind is compressed as it presses outward against the interstellar wind that is beyond the heliopause. A bow shock likely forms as the interstellar wind approaches and is deflected around the heliosphere, forcing it into a teardrop-shaped structure with a long, comet-like tail. The exact location of the termination shock is unknown, and it originally was thought to be closer to the Sun than Voyager 1 currently is. As Voyager 1 cruised ever farther from the Sun, it confirmed that all the planets are inside an immense bubble blown by the solar wind and the termination shock was much more distant. http://photojournal.jpl.nasa.gov/catalog/PIA04927

  5. Systems efficiency and specific mass estimates for direct and indirect solar-pumped closed-cycle high-energy lasers in space

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1978-01-01

    Based on expected advances in technology, the maximum system efficiency and minimum specific mass have been calculated for closed-cycle CO and CO2 electric-discharge lasers (EDL's) and a direct solar-pumped laser in space. The efficiency calculations take into account losses from excitation gas heating, ducting frictional and turning losses, and the compressor efficiency. The mass calculations include the power source, radiator, compressor, fluids, ducting, laser channel, optics, and heat exchanger for all of the systems; and in addition the power conditioner for the EDL's and a focusing mirror for the solar-pumped laser. The results show the major component masses in each system, show which is the lightest system, and provide the necessary criteria for solar-pumped lasers to be lighter than the EDL's. Finally, the masses are compared with results from other studies for a closed-cycle CO2 gasdynamic laser (GDL) and the proposed microwave satellite solar power station (SSPS).

  6. Results of solar electric thrust vector control system design, development and tests

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1973-01-01

    Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.

  7. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    DOE PAGES

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less

  8. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  9. A comprehensive solar energy system analysis data base in Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    Goddard, J. P.

    1978-01-01

    The history of a comprehensive solar energy system analysis data base developed by NASA/Marshall Space Flight Center and the University of Alabama is presented, along with its current status. The Marshall Information Retrieval and Data Storage (MIRADS) system was chosen for the data base, and feedback systems were arranged to cope with changes in the needs of the program management for the type of data gathered. The final structure of the data base consists of 22 files divided into 6 topical sections: summaries, climatological, utility rates, architectural, equipment, and economics. The data base offers help to the solar industry in two ways: it provides information and it serves as a model for users trying to establish the climatic and socioeconomic variables they should take into account when they examine a potential market for solar energy equipment.

  10. Solar Energy Economics Revisited: The Promise and Challenge of Orbiting Reflectors for World Energy Supply

    NASA Technical Reports Server (NTRS)

    Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.

    1978-01-01

    A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.

  11. Discovery management workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two dozen participants assembled under the direction of the NASA Solar System Exploration Division (SEED) April 13-15, 1993. Participants supported the goals of cheaper and faster solar system exploration. The workshop concluded that the Discovery Program concept and goals are viable. Management concerns are articulated in the final report. Appendix A includes lists of participants in alphabetical order, by functional area, and by organization type. Appendix B includes the agenda for the meeting.

  12. 75 FR 44278 - Notice of Availability of the Final Environmental Impact Statement for the Imperial Valley Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... mirrors concentrate solar energy onto the solar receiver of the PCU. The project also includes an..., LVRAB109AA01] Notice of Availability of the Final Environmental Impact Statement for the Imperial Valley Solar... Management Plan (RMP) Amendment/Final Environmental Impact Statement (EIS) for the Imperial Valley Solar, LLC...

  13. Accurately Calculating the Solar Orientation of the TIANGONG-2 Ultraviolet Forward Spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, S.

    2018-04-01

    The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit), and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  14. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less

  15. Places Only Sails Can Go

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Heaton, Andrew F.; Garbe, Gregory P.

    2003-01-01

    Solar sails are a near term, low thrust, propellantless propulsion technology suitable for orbital maneuvering, station keeping, and attitude control applications for small payloads. Furthermore, these functions can be highly integrated, reducing mass, cost and complexity. The solar sail concept is based on momentum exchange with solar flux reflected from a large, deployed thin membrane. Thrust performance increases as the square of the distance to the sun. In comparison to conventional chemical systems, there are missions where solar sails are vastly more and less economical. The less attractive applications involve large payloads, outer solar system transfers, and short trip times. However, for inclination changes and station keeping at locations requiring constant thrust, the solar sail is the only economical option for missions of more than a few weeks duration. We compare the location and energies required for these applications between solar sails, advanced electric propulsion, and conventional rockets. We address the effect on mass fraction to understand solar sail mission cost and capability. Finally, the benefit of potential applications to near term science missions is reported.

  16. Availability model of stand-alone photovoltaic system

    NASA Astrophysics Data System (ADS)

    Mazurek, G.

    2017-08-01

    In this paper we present a simple, empirical model of stand-alone photovoltaic power system availability. The model is a final result of five-year long studies and ground measurements of solar irradiation carried out in Central Europe. The obtained results facilitate sizing of PV modules that have to be installed with taking into account system's availability level in each month of a year. The model can be extended to different geographical locations, with help of local meteorological data or solar irradiation datasets derived from satellite measurements.

  17. The pathways of C: from AGB stars, to the Interstellar Medium, and finally into the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Garcia-Hernandez, D. A.

    2011-05-01

    The origin, and role of C in the formation of first solar system aggregates is described. Stellar grains evidence demonstrates that Asymptotic Giant Branch (AGB) stars were nearby to the solar nebula at the time of solar system formation. Such stars continue to burn H and He in shells that surround the C-O core. During their evolution, flashes occur in the He shell and the C, and O produced are eventually dredged up into the star's envelop and then to the stellar surface, and finally masively ejected to the interstellar medium (IM). Once in a molecular cloud, the electrophilicity of C makes this element reactable with the surrounding gas to produce different molecular species. Primitive meteorites, particularly these known as chondrites, preserved primeval materials of the disk. The abundances of short-lived radionuclides (SLN), inferred to have been present in the early solar system (ESS), are a constraint on the birth and early evolution of the solar system as their relatively short half lives do not allow the observed abundances to be explained by galactic chemical evolution processes. We present a model of a 6.5 solar masses star of solar metallicity that simultaneously match the abundances of SLNs inferred to have been present in the ESS by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of SLNs and consolidation of chondrites equal to 0.53 Myr [2]. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. The AGB stars released O- and C-rich gas with important oxidizing implications to first solar system materials as recently detected in circumstellar environments [3]. REF: [1] Lada C.J. and Lada E.A. 2003. Ann. Rev. A&A. 41: 57; [2] Trigo-Rodriguez J.M. et al. 2009. MAPS 44: 627; [3] Decin L. et al. 2010. Nature 467: 64.

  18. Provenance of the terrestrial planets.

    PubMed

    Wetherill, G W

    1994-01-01

    Earlier work on the simultaneous accumulation of the asteroid belt and the terrestrial planets is extended to investigate the relative contribution to the final planets made by material from different heliocentric distances. As before, stochastic variations intrinsic to the accumulation processes lead to a variety of final planetary configurations, but include systems having a number of features similar to our solar system. Fifty-nine new simulations are presented, from which thirteen are selected as more similar to our solar system than the others. It is found that the concept of "local feeding zones" for each final terrestrial planet has no validity for this model. Instead, the final terrestrial planets receive major contributions from bodies ranging from 0.5 to at least 2.5 AU, and often to greater distances. Nevertheless, there is a correlation between the final heliocentric distance of a planet and its average provenance. Together with the effect of stochastic fluctuations, this permits variation in the composition of the terrestrial planets, such as the difference in the decompressed density of Earth and Mars. Biologically important light elements, derived from the asteroidal region, are likely to have been significant constituents of the Earth during its formation.

  19. Simulation of a solar-assisted absorption air conditioning system for applications in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.Y.; Hernandez, H.R.; Gonzalez, J.E.

    1995-11-01

    Regions without conventional fuel sources have felt the need for the development of new technologies for air conditioning applications as cost of electrical energy production has continually risen the cost of air conditioning by conventional means. This paper deals with the simulation of a solar-assisted absorption system for air conditioning application in Puerto Rico. A simple thermodynamic model for the solar assisted absorption system has been developed. A solar energy based thermal storage system along with an auxiliary heater is used to provide the required energy in the generator of this absorption system. Results from a parametric analysis to studymore » the influence of the absorber, generator, condenser and evaporator temperatures, on the COP of the system are presented in this paper. The influence of two different refrigerant/absorbent pairs, water/lithium bromide and water/lithium-chloride have also been studied. A sub-system consisting of an array of flat plate solar collectors along with a hot water storage is modeled and verified with the data from an already existing system operating in Sacramento. Finally, off-design performance of a 35 kW solar-assisted absorption system is simulated to report the auxiliary heating requirement for a typical summer day operation in southern Puerto Rico.« less

  20. The early evolution of the inner solar system: a meteoritic perspective.

    PubMed

    O'D Alexander, C M; Boss, A P; Carlson, R W

    2001-07-06

    Formation of the solar system may have been triggered by a stellar wind. From then on, the solar system would have followed a conventional evolutionary path, including the formation of a disk and bipolar jets. The now extinct short-lived radionuclides beryllium-10 and, possibly, manganese-53 that were present in meteorites probably resulted from energetic particle irradiation within the solar system. Calcium-aluminum-rich inclusions (the oldest known solar system solids) and chondrules could have been produced by the bipolar jets, but it is more likely that they formed during localized events in the asteroid belt. The chondritic meteorites formed within the temperature range (100 to 400 kelvin) inferred for the midplane of classical T Tauri disks at 2 to 3 astronomical units from their central stars. However, these meteorites may retain a chemical memory of earlier times when midplane temperatures were much higher. Dissipation of the solar nebula occurred within a few million years of solar system formation, whereas differentiation of asteroidal-sized bodies occurred within 5 to 15 million years. The terrestrial planets took approximately 100 million years to form. Consequently, they would have accreted already differentiated bodies, and their final assembly was not completed until after the solar nebula had dispersed. This implies that water-bearing asteroids and/or icy planetesimals that formed near Jupiter are the likely sources of Earth's water.

  1. Instrumentation for Mars Environments

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1997-01-01

    The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.

  2. Update of the ISTP Solar Maximum Mission: ISTP Project Scientist for Theory and Ground-Based Observations

    NASA Technical Reports Server (NTRS)

    Curtis, Steve

    1999-01-01

    Building upon the numerous successes of the pre-solar maximum International Solar Terrestrial Physics (ISTP) mission, the ISTP Solar Maximum Mission is expected to produce new insights into global flow of energy, momentum, and mass, from the Sun, through the heliosphere, into the magnetosphere and to their final deposition in the terrestrial upper atmosphere/ionosphere system. Of particular interest is the determination of the geo-effectiveness of solar events, principally Coronal Mass Ejections (CMEs). Given the expected increased frequency and strength of CMEs during the Solar Maximum period, a major advance in our understanding of nature of the coupling of CMEs to the magnetosphere-ionosphere-atmosphere system is expected. The roles during this time of the various ISTP assets will be discussed. These assets will include the SOHO, Wind, Polar, and Geotail spacecraft, the ground-based observing networks and the theory tools.

  3. NASA Strategic Roadmap Committees Final Roadmaps. Volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Volume 1 contains NASA strategic roadmaps for the following Advanced Planning and Integration Office (APIO) committees: Earth Science and Applications from Space; Sun - Solar System Connection. Volume 2 contains NASA strategic roadmaps for the following APIO committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-like Planets; Universe Exploration, as well as membership rosters and charters for all APIO committees, including those above and the following: Exploration Transportation System; Nuclear Systems; Robotic and Human Lunar Exploration; Aeronautical Technologies; Space Shuttle; International Space Station; Education.

  4. Papaya drying and waste conversion system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-02-12

    This project, performed under United States Department of Energy Small-scale Appropriate Energy Technology Grant, involves demonstration of an integrated system using solar energy to process off-grade or reject fruit into marketable food products. The integrated system consists of three phases: (1) solar dehydration of usable fruit; (2) solar vacuum distillation of fermented wastes (peelings, rinds, skins, and seeds) to produce an ethanol fuel to use as a backup source of heat for dehydration; and (3) land reclamation by mixing stillage and compost with volcanic cinder and ash to produce on marginal land a rich soil suitable for growing more cropsmore » to dry. Although the system is not 100% complete the investigators have demonstrated that a small business can efficiently use solar energies in an integrated fashion to process waste into food, improve the quality of the land, and provide meaningful jobs in a region of very high unemployment.« less

  5. Sample Return from Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Orgel, L.; A'Hearn, M.; Bada, J.; Baross, J.; Chapman, C.; Drake, M.; Kerridge, J.; Race, M.; Sogin, M.; Squyres, S.

    With plans for multiple sample return missions in the next decade, NASA requested guidance from the National Research Council's SSB on how to treat samples returned from solar system bodies such as planetary satellites, asteroids and comets. A special Task Group assessed the potential for a living entity to be included in return samples from various bodies as well as the potential for large scale effects if such an entity were inadvertently introduced into the Earth's biosphere. The Group also assessed differences among solar system bodies, identified investigations that could reduce uncertainty about the bodies, and considered risks of returned samples compared to natural influx of material to the Earth in the form of interplanetary dust particles, meteorites and other small impactors. The final report (NRC, 1998) provides a decision making framework for future missions and makes recommendations on how to handle samples from different planetary satellites and primitive solar system bodies

  6. Saguaro Power Plant Solar Repowering Project. Volume II. System requirements specification. Final technical report, September 1979-July 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1980-07-01

    This specification defines the system and subsystem characteristics, design requirements, and system environmental requirements for the Saguaro Power Plant Solar Repowering Project. This project involves the solar repowering of all (120.2 MWe gross) of the 115 MWe net power No. One steam-Rankine unit of the Arizona Public Service Company's Saguaro station. The receiver heat transport fluid is draw salt (60% sodium nitrate and 40% potassium nitrate) that is also used to provide 3.8 hours of sensible heat thermal energy storage. The quad-cavity type receiver is mounted on a tower within a single surrounding collector field of 10,500 second generation heliostats.

  7. From bump to clump - Theories of the origin of the solar system 1900-1960

    NASA Astrophysics Data System (ADS)

    Brush, S. G.

    The development of theories of the origin of the solar system is recounted, emphasizing the contributions of Chamberlin, Russell and Urey. Laplace's nebular hypothesis and the objections to it, Chamberlin's explanation of how accreting planetesimals can produce planets with forward rotation, and the Jeffreys-Jeans tidal hypothesis are discussed. Russell's refutation of the latter and the influence of findings on the chemistry of the sun are described. Modern contributions by Lindblad, Whipple, and Alfven, which strengthened the planetesimal hypothesis and accounted for the low angular velocity of the sun, are assessed. Finally, the postwar revival of the nebular hypothesis and Urey's ideas on the chemistry of the solar system are discussed.

  8. 77 FR 67662 - Notice of Availability of the Desert Harvest Solar Project Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... decommission a solar photovoltaic electricity generating facility with a proposed output of 150 megawatts and a... CACA 49491] Notice of Availability of the Desert Harvest Solar Project Final Environmental Impact...) Plan Amendment and Final Environmental Impact Statement (EIS) for the Desert Harvest Solar Project and...

  9. Solar Hot Water for Motor Inn--Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

  10. Chaos in the Solar System

    NASA Technical Reports Server (NTRS)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  11. 76 FR 65532 - Notice of Availability of the Final Environmental Impact Statement for the Proposed Sonoran Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... consumption. Sub-alternative Al would use PV technology instead of solar thermal technology to reduce water...; AZA34187] Notice of Availability of the Final Environmental Impact Statement for the Proposed Sonoran Solar... (BLM) has prepared a Final Environmental Impact Statement (EIS) for the Sonoran Solar Energy Project...

  12. Solar energy system economic evaluation for Seeco Lincoln, Lincoln, Nebraska. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    The economic analysis of the solar energy system that was installed at Lincoln, Nebraska is developed for this and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over projected twenty year life: life cycle savings, year of positive savings and year of payback formore » the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.« less

  13. Solar space heating system at the Seeley G. Mudd Education Building, Pacific School of Religion, 1798 Scenic Avenue, Berkeley California 94708. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Large areas of south facing glass allow winter sunlight to penetrate the building, while overhangs provide summer shading. High ceilings allow deep penetration of this light for space heating and natural lighting. Massive construction stores solar radiation for evening warmth and provides a buffer from extreme temperature fluctuations. Natural ventilation will provide cooling. The system consists of 720 square feet of roof-mounted, liquid, flat plate solar collectors and three 350 gallon fiberglass storage tanks. The acceptance and performance tests are discussed. Also discusseed are: collector selection, construction contract, costs, and economics.

  14. In-Space Transportation for GEO Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Donnahue, Benjamin B.; Henley, Mark W.

    1999-01-01

    This report summarizes results of study tasks to evaluate design options for in-space transportation of geostationary Space Solar Power Satellites. Referring to the end-to-end architecture studies performed in 1988, this current activity focuses on transportation of Sun Tower satellite segments from an initial low Earth orbit altitude to a final position in geostationary orbit (GEO; i.e., 35,786 km altitude, circular, equatorial orbit). This report encompasses study activity for In-Space Transportation of GEO Space Solar Power (SSP) Satellites including: 1) assessment of requirements, 2) design of system concepts, 3) comparison of alternative system options, and 4) assessment of potential derivatives.

  15. Landsat 7 Solar Array Testing Experiences

    NASA Technical Reports Server (NTRS)

    Helfrich, Daniel

    2000-01-01

    This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

  16. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  17. Development, testing, and certification of the Northrup, Inc., ML series concentrating solar collector model NSC-01-0732

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    A summary is presented of the additional development work on the existing ML Series concentrating solar collector for use with solar heating and cooling systems. The report discusses the intended use of the final report, describes the development hardware, lists deliverable end items, deals with problems encountered during fabrication and testing, and includes certification statements of performance. This report shows that the products developed are marketable and suitable for public use.

  18. A Systems Study to Determine the Attractiveness of Solar System Bodies and Sites for Eventual Human Exploration

    NASA Technical Reports Server (NTRS)

    Andringa, Jason M.; Gray, Andrew A.

    2005-01-01

    A pre-phase A idea-generation team at the Jet Propulsion Laboratory (JPL), has conducted a study to rank all locations in the solar system based on attractiveness for human exploration. The process used to perform the study was composed of the following primary steps: determination of criteria (including value, cost, and risk criteria) upon which to rate sites in the solar system; weighting of the criteria based upon importance to eventual human exploration; selection of sites to consider and assignment of team members to the task of advocating the benefits of particular sites; rating the sites in both the short- and longterm based on team member presentations and team discussions; compilation of a score based on criteria weights and individual ratings. Finally a comparison of the total scores of different sites was completed to determine a ranking of all the bodies and sites in the solar system. Sensitivity analysis was also performed to determine how weightings affect the rankings.

  19. Thermal re-design of the Galileo spacecraft for a Venus-earth-earth-gravity assist (VEEGA) trajectory

    NASA Technical Reports Server (NTRS)

    Reeve, R.

    1989-01-01

    The cancellation of the Centaur upper stage program in the aftermath of the Challenger tragedy forced a redesign of the flight trajectory of the Galileo spacecraft to Jupiter, i.e., from a direct trajectory to the Venus-earth-earth-gravity-assist (VEEGA) trajectory on the lower energy two-stage inertial upper stage (IUS), with the result that the spacecraft would be exposed to more than twofold increase in peak solar irradiance. This paper describes the general system-level thermal redesign effort for the Galileo spacecraft, from the start of feasibility studies to its final implementation. Results indicate that the addition of sunshades and the generous utilization of second-surface aluminized Kapton surface material for reflecting high percentages of incident solar irradiation would 'harden' the spacecraft's existing thermal protection system adequately, provided that sun-pointing at the relatively higher solar irradiance levels could be maintained. The final miximum flight temperature predictions for the spacecraft's subsystem thermal designs are given.

  20. How to harvest efficient laser from solar light

    NASA Astrophysics Data System (ADS)

    Zhao, Changming; Guan, Zhe; Zhang, Haiyang

    2018-02-01

    Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.

  1. The Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS)

    NASA Astrophysics Data System (ADS)

    Rivkin, A.; Cohen, B. A.; Barnouin, O. S.; Chabot, N. L.; Ernst, C. M.; Klima, R. L.; Helbert, J.; Sternovsky, Z.

    2015-12-01

    The asteroids preserve information from the earliest times in solar system history, with compositions in the population reflecting the material in the solar nebula and experiencing a wide range of temperatures. Today they experience ongoing processes, some of which are shared with larger bodies but some of which are unique to their size regime. They are critical to humanity's future as potential threats, resource sites, and targets for human visitation. However, over twenty years since the first spacecraft encounters with asteroids, they remain poorly understood. The mission we propose here, the Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS), explores the diversity of asteroids to understand our solar system's past history, its present processes, and future opportunities and hazards. MANTIS addresses many of NASA's highest priorities as laid out in its 2014 Science Plan and provides additional benefit to the Planetary Defense and Human Exploration communities via a low-risk, cost-effective tour of the near-Earth and inner asteroid belt. MANTIS visits the materials that witnessed solar system formation and its earliest history, addressing the NASA goal of exploring and observing the objects in the solar system to understand how they formed and evolve. MANTIS measures OH, water, and organic materials via several complementary techniques, visiting and sampling objects known to have hydrated minerals and addressing the NASA goal of improving our understanding of the origin and evolution of life on Earth. MANTIS studies the geology and geophysics of nine diverse asteroids, with compositions ranging from water-rich to metallic, representatives of both binary and non-binary asteroids, and sizes covering over two orders of magnitude, providing unique information about the chemical and physical processes shaping the asteroids, addressing the NASA goal of advancing the understanding of how the chemical and physical processes in our solar system operate, interact, and evolve. Finally, the set of measurements carried out by MANTIS at near-Earth and main-belt asteroids will by definition characterize objects in the solar system that pose threats to Earth or offer resources for human exploration, a final goal in the NASA Science Plan.

  2. On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Edmondson, J. K.

    2012-11-01

    The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.

  3. Phase I, open-cycle absorption solar cooling. Part IV. Executive summary analysis and resolution of critical issues and recommendations for Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.D.

    The objective of this project is to advance lower cost solar cooling technology with the feasibility analysis, design and evaluation of proof-of-concept open cycle solar cooling concepts. The work is divided into three phases, with planned completion of each phase before proceeding with the following phase: Phase I - performance/economic/environmental related analysis and exploratory studies; Phase II - design and construction of an experimental system, including evaluative testing; Phase III - extended system testing during operation and engineering modifications as required. For Phase I, analysis and resolution of critical issues were completed with the objective of developing design specifications formore » an improved prototype OCA system.« less

  4. Operation and maintenance of the Sol-Dance Building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaultney, J.R.

    1980-07-29

    A 16,400 square foot general office facility has its primary heating provided by a flat plate solar system using hydronic storage and water-to-air transfer coils for distribution. Backup heat is provided by 10 individually controlled air source heat pumps ranging from 3 tons to 5 tons in capacity. These heat pumps also contain electric resistive elements for use during extremely low ambient temperatures. Cooling is also provided by the heat pumps. Each of the two buildings contains a separate domestic hot water system. Primary heat is provided by a closed loop solar unit with electric elements providing backup heat. Amore » 10,000 gallon black steel water tank provides heat storage.« less

  5. Sokaogon Chippewa Community Emission-Free and Treaty Resource Protection Clean Energy Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quade, Ron

    Final Report for DOE project DE-IE0000036 The Sokaogon Chippewa Community received a tribal clean energy initiative grant and installed a community wide solar system estimated to produce 606 kw of carbon free clean energy on seventeen (17) tribal buildings and three (3) residential homes significantly reducing the tribes’ energy bills over the life of the system, potentially saving the tribe up to $2.7 million in energy savings over a thirty (30) year time span. Fifteen (15) solar installations utilized aluminum roof-top mounting systems while two (2) installations utilized a ground mount aluminum racking system.

  6. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  7. An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun

    In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.

  8. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    NASA Astrophysics Data System (ADS)

    Cen, Zhaohui

    2017-09-01

    Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT) is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.

  9. Solar heating and cooling system for an office building at Reedy Creek Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-08-01

    This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water withmore » a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.« less

  10. Theoretical studies of volatile processes in the outer solar system

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1991-01-01

    Four studies of volatile processes in the outer solar system are discussed. Researchers suggest that the convective and conductive regions of Triton's atmosphere join at the tropopause near 10 km. A model of volatile transport on Triton's surface was constructed that predicts that Triton's surface north of 15 degrees north latitude is experiencing deposition of nitrogen frosts, as are the bright portions of the south polar cap near the equator. Also discussed are numerical models of the evolution of Titan's surface and atmosphere. Results of a study of the rheology of ammonia-water liquids were applied to the icy satellites of the outer solar system. Finally, the researchers examined the frictional heating, sublimation, and re-condensation of grains free-falling into the solar nebula from a surrounding interstellar cloud. The sublimation model includes the effect of various volatile species and accounts for the poor radiating properties of small grains using Mie theory.

  11. Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott; hide

    2010-01-01

    This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,

  12. In-situ measurement of concentrated solar flux and distribution at the aperture of a central solar receiver

    NASA Astrophysics Data System (ADS)

    Ferriere, Alain; Volut, Mikael; Perez, Antoine; Volut, Yann

    2016-05-01

    A flux mapping system has been designed, implemented and experimented at the top of the Themis solar tower in France. This system features a moving bar associated to a CCD video camera and a flux gauge mounted onto the bar used as reference measurement for calibration purpose. Images and flux signal are acquired separately. The paper describes the equipment and focus on the data processing to issue the distribution of flux density and concentration at the aperture of the solar receiver. Finally, the solar power entering into the receiver is estimated by integration of flux density. The processing is largely automated in the form of a dedicated software with fast execution. A special attention is paid to the accuracy of the results, to the robustness of the algorithm and to the velocity of the processing.

  13. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  14. Direct solar heating for Space Station application

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    Early investigations have shown that a large percentage of the power generated on the Space Station will be needed in the form of high-temperature thermal energy. The most efficient method of satisfying this requirement is through direct utilization of available solar energy. A system concept for the direct use of solar energy on the Space Station, including its benefits to customers, technologists, and designers of the station, is described. After a brief discussion of energy requirements and some possible applications, results of selective tradeoff studies are discussed, showing area reduction benefits and some possible configurations for the practical use of direct solar heating. Following this is a description of system elements and required technologies. Finally, an assessment of available contributive technologies is presented, and a Space Shuttle Orbiter flight experiment is proposed.

  15. The Jupiter System Observer: Probing the Foundations of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Senske, D.; Prockter, L.; Collins, G.; Cooper, J.; Hendrix, A.; Hibbitts, K.; Kivelson, M.; Orton, G.; Schubert, G.; Showman, A.; Turtle, E.; Williams, D.; Kwok, J.; Spilker, T.; Tan-Wang, G.

    2007-12-01

    Galileo's observations in the 1600's of the dynamic system of Jupiter and its moons launched a revolution in understanding the way planetary systems operate. Now, some 400 years later, the discovery of extra solar planetary systems with Jupiter-sized bodies has led to a similar revolution in thought regarding how these systems form and evolve. From the time of Galileo, the Jovian system has been viewed as a solar system in miniature, providing a laboratory to study, diverse and dynamic processes in a single place. The icy Galilean satellites provide a window into solar system history by preserving in their cratering records a chronology dating back nearly 4.5 By and extending to the present. The continuously erupting volcanoes of Io may provide insight into the era when magma oceans were common. The discovery of an internally generated magnetic field at Ganymede, one of only three terrestrial bodies to possess such a field, is a place to gain insight as to how dynamos work. The confirmation and characterization of icy satellite subsurface oceans impacts the way habitability is considered. Understanding the composition and volatile inventory of Jupiter can shed light into how planets accrete from the solar nebulae. Finally, like our sun, Jupiter influences its system through its extensive magnetic field. In early 2007, NASA's Science Mission Directorate formed four Science Definition Teams (SDTs) to formulate science goals and objectives in anticipation of the initiation of a flagship-class mission to the outer solar system (Europa, Jupiter system, Titan and Enceladus). The Jupiter System Observer (JSO) mission concept emphasizes overall Jupiter system science: 1) Jupiter and its atmosphere, 2) the geology and geophysics of the Galilean satellites (Io, Europa, Ganymede and Callisto), 3) the magnetosphere environment - both Jupiter's and Ganymede's&pand 4) interactions within the system. Focusing on the unique geology, presence of an internal magnetic field and evidence for a subsurface ocean, the final mission destination will be in orbit around Ganymede. As conceived, JSO will return a wealth of data to provide significant advancement in understanding the foundations of planetary systems.

  16. 78 FR 45268 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... decommission the Ocotillo Sol Solar Project, a solar photovoltaic (PV) power plant facility, on approximately... Applicant's Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final Environmental...

  17. Thai student existing understanding about the solar system model and the motion of the stars

    NASA Astrophysics Data System (ADS)

    Anantasook, Sakanan; Yuenyong, Chokchai

    2018-01-01

    The paper examined Thai student existing understanding about the solar system model and the motion of the stars. The participants included 141 Grade 9 students in four different schools of the Surin province, Thailand. Methodology regarded interpretive paradigm. The tool of interpretation included the Student Celestial Motion Conception Questionnaire (SCMCQ) and informal interview. Given understandings in the SCMCQ were read through and categorized according to students' understandings. Then, students were further probed as informal interview. Students' understandings in each category were counted and percentages computed. Finally, students' understandings across four different schools were compared and contrasted using the percentage of student responses in each category. The findings revealed that most students understand about Sun-Moon-Earth (SME) system and solar system model as well, they can use scientific explanations to explain the celestial objects in solar system and how they orbiting. Unfortunately, most of students (more than 70%) never know about the Polaris, the North Star, and 90.1% of them never know about the ecliptic, and probably also the 12 zodiac constellations. These existing understanding suggested some ideas of teaching and learning about solar system model and the motion of the stars. The paper, then, discussed some learning activities to enhance students to further construct meaning about solar system model and the motion of the stars.

  18. A review on highlights and feasibility studies on solar energy utilization in Malaysia

    NASA Astrophysics Data System (ADS)

    Wahid, Siti Sufiah Abd; Ramli, Mohd Sufian; Noorden, Zulkarnain Ahmad; Hassan, Khairul Kamarudin; Azli, Shakira Azeehan

    2017-08-01

    Over the years, solar has been one of the main substitutes of electricity resources worldwide including Malaysia in effort to reduce the dependency on the conventional fossil fuel. In this paper, the status of solar energy in Malaysia Plans is investigated while the techniques used in various techno-economic and economic feasibility studies on the implementation of solar energy system are analyzed. The state of awareness and understanding on solar energy among Malaysians is also determined. It has been found that a mathematical formulation method as well as an iterative technique which both consider lots of uncertainties are capable in optimally designing a photovoltaic, PV system while minimizing the cost. Meanwhile, a financial model using probabilistic and sensitivity analysis is able to provide the potential investors with the profitability of a PV project. Finally, several surveys has proven that Malaysian people are lack of awareness, information thus interest on solar technology. Therefore, in evaluating the feasibilities of a PV system, it is suggested that considerations on all solar-related variables must be taken into account while at the same time the Government of Malaysia, GoM should play the main role by providing more aggressive programmes and schemes in order to educate and expose Malaysian citizens with knowledge and skills on solar energy.

  19. Cost effective solar hot water system for econo-travel motor hotel located at Hampton, VA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-11-01

    This paper gives the final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 2708 Mercury Boulevard, Hampton, Virginia. The description of the system along with the final cost breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryersmore » used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es; Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg; Gutmann, Johannes

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data ofmore » the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.« less

  1. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  2. High temperature process steam application at the Southern Union Refining Company, Hobbs, New Mexico. Solar energy in the oil patch. Final report, Phase III: operation, maintenance, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, L.E.; McGuire, D.R.

    1984-05-01

    This final report summarizes the technical reports for Phase III of this project. The third phase included the operation, maintenance, upgrade and performance reporting of a 10,080 square foot Solar Industrial Process Heat System installed at the Famariss Energy Refinery of Southern Union Refining Company near Hobbs, New Mexico. This report contains a description of the upgraded system, and a summary of the overall operation, maintenance and performance of the installed system. The results of the upgrade activities can be seen in the last two months of operational data. Steam production was significantly greater in peak flow and monthly totalmore » than at any previous time. Also monthly total cost savings was greatly improved even though natural gas costs remain much lower than originally anticipated.« less

  3. The systems impact of a concentrated solar array on a Jupiter orbiter

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.

    1981-01-01

    Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.

  4. The formation of the solar system - Consensus, alternatives, and missing factors

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1989-01-01

    The current status on the theories of the solar-system formation is overviewed with emphasis placed on the principal concepts and processes involved. These processes include the formation of about 1 to 10 km diam planetesimals from the dust of the solar nebula; the physical processes that govern the interaction of these planetesimals with one another, which control their size and their velocity distribution; the circumstances that determine the way in which the planetesimals grow into planetary embryos; the processes that are likely to be important during the final stages of accumulation; and the possible origin of differences between the accumulation of the terrestrial planets, the giant planets, and the asteroids.

  5. Forecast Method of Solar Irradiance with Just-In-Time Modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Takanobu; Goto, Yusuke; Terazono, Takahiro; Wakao, Shinji; Oozeki, Takashi

    PV power output mainly depends on the solar irradiance which is affected by various meteorological factors. So, it is required to predict solar irradiance in the future for the efficient operation of PV systems. In this paper, we develop a novel approach for solar irradiance forecast, in which we introduce to combine the black-box model (JIT Modeling) with the physical model (GPV data). We investigate the predictive accuracy of solar irradiance over wide controlled-area of each electric power company by utilizing the measured data on the 44 observation points throughout Japan offered by JMA and the 64 points around Kanto by NEDO. Finally, we propose the application forecast method of solar irradiance to the point which is difficulty in compiling the database. And we consider the influence of different GPV default time on solar irradiance prediction.

  6. 76 FR 47608 - Notice of Availability of the Final Environmental Impact Statement for the Rice Solar Energy, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... on privately owned land, would contain the power block, a central receiver or tower, a solar field... Availability of the Final Environmental Impact Statement for the Rice Solar Energy, LLC Rice Solar Energy... Desert Conservation Area (CDCA) Plan Amendment for the Rice Solar Energy Project (RSEP) in Riverside...

  7. 75 FR 63503 - Notice of Availability of Final Environmental Impact Statement for the Solar Millennium, Amargosa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... for the Solar Millennium, Amargosa Farm Road Solar Power Project, Nye County, NV AGENCY: Bureau of... Amargosa Farm Road Solar Power Project, Nye County, Nevada, and by this notice is announcing its availability. DATES: The BLM will not issue a final decision on the Amargosa Farm Road Solar Power Project for...

  8. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The final design, performance analysis, and economic analysis of a solar hot water system for curing concrete blocks at the new Rotoclave block fabricating plant being built by the York Building Products Co. Inc. at Harrisburg, Pa. are presented. The system will use AAI Corporation's 24/1 concentrating collectors. (WHK)

  10. sl2-x7-615

    NASA Image and Video Library

    2013-09-10

    SL2-X7-615 (22 June 1973) --- An overhead view of the Skylab 1 space station cluster in Earth orbit photographed from the Skylab 2 Command/Service Module during the final ?fly around? inspection by the CSM. The space station is sharply contrasted against a black sky background. Note the deployed parasol solar shield which shades the Orbital Workshop where the micrometeoroid shield is missing. The one remaining OWS solar array system wing has been fully deployed successfully. The OWS solar panel on the opposite side is missing completely. Photo credit: NASA

  11. A review of exoplanetary biosignatures

    NASA Astrophysics Data System (ADS)

    Grenfell, John Lee

    2017-11-01

    We review the field of exoplanetary biosignatures with a main focus upon atmospheric gas-phase species. Due to the paucity of data in Earth-like planetary atmospheres a common approach is to extrapolate knowledge from the Solar System and Early Earth to Earth-like exoplanets. We therefore review the main processes (e.g. atmospheric photochemistry and transport) affecting the most commonly-considered species (e.g. O2, O3, N2O, CH4 etc.) in the context of the modern Earth, Early Earth, the Solar System and Earth-like exoplanets. We consider thereby known abiotic sources for these species in the Solar System and beyond. We also discuss detectability issues related to atmospheric biosignature spectra such as band strength and uniqueness. Finally, we summarize current space agency roadmaps related to biosignature science in an exoplanet context.

  12. Teaching About the Sun-Earth Connection

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    This talk will be about the Sun: how it changes with time, its magnetic cycle, flares, and the solar wind. The solar wind and what space is like between the Sun and Earth will be presented. Also, the Earth, its magnetic field, how the solar wind interacts with the Earth, Aurora, and how these affect human systems will be discussed. These interactions dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). Some simple classroom activities will be presented that can be done using new data from space that is available daily on the internet, and how you can use the internet to get space questions answered within about 1 day. Finally, some career opportunities for jobs related to space for the future will be discussed.

  13. Electric propulsion - Characteristics, applications, and status

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Dulgeroff, C. R.; Poeschel, R. L.

    1981-01-01

    As chemical propulsion systems were achieving their ultimate capability for planetary exploration, space scientists were developing solar electric propulsion as the propulsion system need for future missions. This paper provides a comparative review of the principles of ion thruster and chemical rocket operations and discusses the current status of the 30-cm mercury ion thruster development and the specifications imposed on the 30-cm thruster by the Solar Electric Propulsion System program. The 30-cm thruster operating range, efficiency, wear out lifetime, and interface requirements are described. Finally, the areas of 30-cm thruster technology that remain to be refined are discussed.

  14. Stem Inc. SunShot Incubator Program Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butterfield, Karen

    In this Energy Storage Control Algorithms project, Stem sought to develop tools and control algorithms to increase the value and reduce balance-of-system and grid integration costs associated with adding distributed solar generation to the grid. These advances fell under the headings SolarScope and SolarController. Stem sought to create initial market traction with a fully commercialized product for the solar industry to size storage systems (SolarScope) as well as a solar intermittency-mitigation framework for utilities (SolarController) in the course of the project. The company sought to align strategic growth plans and enable the rollout of the products to broader audiences inmore » multiple geographic regions by leveraging the major solar companies in the national market as partners. Both final products were both intended to be commercialized. They are: SolarScope: Analysis tool to identify viable PV + storage projects and thereby expedite the sales and interconnection processes. SolarScope combines customer load data, PV production estimates, utility rate tariff, and simulated storage into a simple user interface for PV developers. Developers can easily identify viable solar + storage sites without the need for complex and time consuming, site-by-site spreadsheet modeling. SolarContoller: Tool to autonomously dispatch distributed storage in order to mitigate voltage fluctuation and reduce curtailment. SolarController co-optimizes, in real time, storage dispatch for circuit stability and curtailment reduction, enabling higher penetrations of PV. SolarController is automated, not requiring utility dispatch or management, as Stem hardware senses grid voltage, frequency, customer load, PV production, and power factor. In the end the two products met with different outcomes. SolarScope was tested by potential users, and continues to be used as a foundational platform for partnership with key solar industry partners. SolarController, on the other hand, was successful in lab testing but was not commercialized due to a lack of marketability and lack of interested customer base. Together the development of these two products marked a material step forward for Stem; and a new milestone along the pathway of integration for the solar and storage industries. SolarScope is leading to real, out-of-the-lab project development in storage + solar for the commercial customer sector. Meanwhile SolarController has opened the eyes of regulators and utility executives alike to the potential of distributed solar and by doing so, has moved the conversation forward for the integration of distributed energy resources more broadly on the grid.« less

  15. 75 FR 7029 - Notice of Availability of the Final Environmental Assessment for Solar Roof Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... Assessment for Solar Roof Project AGENCY: United States Geological Survey. ACTION: Notice of availability... Final Environmental Assessment for the Solar Roof Project and by this notice is announcing its... Individuals wishing to receive copies of the Environmental Assessment for the Solar Roof Project should...

  16. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  17. The Optical Design of a System using a Fresnel Lens that Gathers Light for a Solar Concentrator and that Feeds into Solar Alignment Optics

    NASA Technical Reports Server (NTRS)

    Wilkerson, Gary W.; Huegele, Vinson

    1998-01-01

    The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.

  18. Lead-acid batteries in solar photovoltaic power systems for marine aids to navigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trenchard, S.E.

    1981-10-01

    Since 1974, the U.S. Coast Guard has been testing lead-acid batteries in solar photovoltaic-powered systems for aids to navigation. Three types of lead-acid batteries, distinguished by the composition of their grid material, have been tested: lead-antimony grid, lead-calcium grid, and pure-lead grid. This report contains a comparison of the charging characteristics and the charge-discharge cycling behavior of each grid type. All types were remarkably similar qualitatively in their daily as well as annual cycling behavior but the significance of the quantitative differences offer distinctive tradeoffs. This report presents models for water usage, depth-of-discharge, and post-cycle capacity for various levels ofmore » voltage regulation. Based on the post-cycle capacity tests, the effect of grid strength, grid thickness, and operating conditions on life expectancy are presented. A final discussion presents the results of a field deployment of solar photovoltaic-powered aids to navigation in the Miami, Florida area. Potential solutions to the battery terminal corrosion and bird guano problems observed are discussed.« less

  19. municipal recreation center is heated and cooled by solar energy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Major fraction of energy requirements for community building is ksupplied by Sun. The 238 flat plate solar collectors are roof mounted on single story structure enclosing gymnasium, locker area, and health care clinic; heat exchanger transfers collected energy to 6,000 gallon storage tank. Final report chronicles project from inception to completion, documenting performance, costs, operating modes, and data acquisition system. Appendix contains manufacturers' product literature and engineering drawings.

  20. Photovoltaic energy system at an Alaskan site. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, D.K.; Briggs, R.W.

    1991-01-01

    The study presented herein provides information gathered over several years on the availability of solar energy and its utilization by a photovoltaic (PV) system installed near Fairbanks (65 N latitude) to demonstrate its feasibility. The study addresses both theoretical and experimental investigations on the potential of solar energy for interior Alaska. Three theoretical approaches are described for calculation solar radiation using American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), Liu-Jordan, and Collares-Pereira and Rabl models. Computer programs for these theories have been included in the Appendix of the report. The actual test setup of a PV system withmore » all its auxiliary components installed in Haystack (near Fairbanks) and the electrical loads run by it have been described in detail. Four and one-half years of solar radiation measurements and operational experience with the system are documented. Finally, comparisons are made between the measured solar radiation with previous measurements done at the Geophysical Institute of the University of Alaska Fairbanks, and the calculated values from the three models cited earlier. The information from the study should be useful to interested users in interior Alaska and perhaps to other countries of the world located in similar northern latitudes.« less

  1. Past, present and future of passive homes in solar village 3, Athens

    NASA Astrophysics Data System (ADS)

    Kalogridis, Achilles

    Solar village 3 in Pefki, Athens, was part of an ambitious program for the promotion of solar technology, applied to a large scale social housing scheme, designed in mid 80's and firstly inhabited in the early 1990's. Among the aims of the project was the demonstration of the latest of technology in active solar systems and passive techniques, incorporated in a new settlement's layout and houses' building envelop, in order to create an energy saving, comfortable environment. More than fifteen years later, the housing complex remains the largest residential development of bioclimatic "solar" architecture in Athens, with the active and passive solar systems providing space and water heating for about 1750 inhabitants. The study focuses in the passive solar systems that have been applied to a number of the buildings of the settlement. The systems provide space heating with no need of any active mechanism, however with demand of the participation of the end users for their proper operation. The essay reviews various previous studies, monitoring reports and criticisms that have appeared throughout the past years, and identifies how the houses perform today, through a recent survey, sample monitoring and thermal comfort simulation. The report records things that have changed, features which worked well or others that did not and comments on the residents' behaviour. Interesting findings come into question, regarding the passive solar systems, their integration into the building's design, their current condition and their contribution to energy savings and thermal comfort conditions. Finally, current plans concerning the future of the settlement are highlighted, and considerations about the houses sustainability are suggested.

  2. 77 FR 76477 - Notice of Availability of the Final Environmental Impact Statement for the Quartzsite Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... traditional steam turbine generators. The Project would contain the central receiver or tower, a solar field... the Final Environmental Impact Statement for the Quartzsite Solar Energy Project and the Yuma Field...: Notice of Availability. SUMMARY: Quartzsite Solar Energy (QSE) has requested to interconnect the...

  3. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation aremore » provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.« less

  4. Costs and description of a solar-energy system--Austin, Texas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Heating and cooling system uses Fresnel lens concentrating collectors. Major system components are 36 collectors, 1,500 gallon thermal storage tank, absorption cooler, cooling tower, heating coil, pumps, heat exchanger, and backup heating and air conditioning. Final report includes detailed breakdown of component and installation costs for seven project subsystems.

  5. High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative (SUNGRIN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeker, Rick; Steurer, Mischa; Faruque, MD Omar

    The report provides results from the Sunshine State Solar Grid Initiative (SUNGRIN) high penetration solar PV deployment project led by Florida State University’s (FSU) Center for Advanced Power Systems (CAPS). FSU CAPS and industry and university partners have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation. SUNGRIN has made significant contributions in the development of simulation-assisted techniques, tools, insight and understanding associated with solar PV effects on electric power system (EPS) operation and the evaluation of mitigation options for maintaining reliable operation. An important element of the project was themore » partnership and participation of six major Florida utilities and the Florida Reliability Coordinating Council (FRCC). Utilities provided details and data associated with actual distribution circuits having high-penetration PV to use as case studies. The project also conducted foundational work supporting future investigations of effects at the transmission / bulk power system level. In the final phase of the project, four open-use models with built-in case studies were developed and released, along with synthetic solar PV data sets, and tools and techniques for model reduction and in-depth parametric studies of solar PV impact on distribution circuits. Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goriely, S.; Chamel, N.; Pearson, J. M.

    The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A>60 stable nuclei observed in nature. In recent years nuclear astrophysicists have developed more and more sophisticated r-process models, eagerly trying to add new astrophysical or nuclear physics ingredients to explain the solar system composition in a satisfactory way.We show here that the decompression of the neutron star matter may provide suitable conditions for a robust r-processing. After decompression, the inner crust material gives rise to an abundance distribution for A>130 nuclei similar to the one observed inmore » the solar system. Similarly, the outer crust if heated at a temperature of about 8 10{sup 9} K before decompression is made of exotic neutron-rich nuclei with a mass distribution close to the 80{<=}A{<=}130 solar one. During the decompression, the free neutrons (initially liberated by the high temperatures) are re-captured leading to a final pattern similar to the solar system distribution.« less

  7. Integration of concentrated solar power (CSP) and circulating fluidized bed (CFB) power plants - final results of the COMBO-CFB project

    NASA Astrophysics Data System (ADS)

    Suojanen, Suvi; Hakkarainen, Elina; Kettunen, Ari; Kapela, Jukka; Paldanius, Juha; Tuononen, Minttu; Selek, Istvan; Kovács, Jenö; Tähtinen, Matti

    2017-06-01

    Hybridization of solar energy together with another energy source is an option to provide heat and power reliably on demand. Hybridization allows decreasing combustion related fuel consumption and emissions, assuring stable grid connection and cutting costs of concentrated solar power technology due to shared power production equipment. The research project "Integration of Concentrated Solar Power (CSP) and Circulating Fluidized Bed (CFB) Power Plants" (COMBO-CFB) has been carried out to investigate the technical possibilities and limitations of the concept. The main focus was on the effect of CSP integration on combustion dynamics and on the joint power cycle, and on the interactions of subsystems. The research provides new valuable experimental data and knowhow about dynamic behaviour of CFB combustion under boundary conditions of the hybrid system. Limiting factors for maximum solar share in different hybridization schemes and suggestions for enhancing the performance of the hybrid system are derived.

  8. Solar System Studies in the Infrared with the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Stansberry, J. A.; Cleve, J. Van; Burgdorf, M. J.; Fernandez, Y. R.; Meadows, V. S.; Reach, W. T.

    2004-01-01

    The Spitzer Space Telescope, formerly known as SIRTF, is a cryogenic telescope (85 cm diameter) operating in a heliocentric orbit trailing the Earth. Its three instruments provide capabilities for spectroscopy, wide-field and small-field imaging at many wavelengths in the range 3.5-160 microns. Observations to be executed in the first two years in programs defined by the Guaranteed Time Observer (GTO) group (the authors of this presentation) consist of photometry, spectroscopy, and radiometry of many Solar System objects, including Titan and other satellites of the outer planets, Pluto, Centaurs, trans-Neptunian objects, comers, asteroids, Uranus, and Neptune. At the time of the preparation of this abstract, some preliminary observations have been made, but the final calibration and reduction of the data are still in progress. The latest results of the Solar System investigations will be presented here.

  9. Particulate photocatalysts for overall water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  10. Final report on the portable weather station.

    DOT National Transportation Integrated Search

    2010-03-01

    This station was required to have air temperature, relative humidity, wind speed and direction, and : pavement temperature sensors of similar quality to the traditional RWIS sensors, have an integrated solar : powered battery system, and be trailer...

  11. Studies of Solar Wind Interaction and Ionospheric Processes at Venus and Mars

    NASA Technical Reports Server (NTRS)

    Bogan, Denis (Technical Monitor); Nagy, Andrew F.

    2003-01-01

    This is the final report summarizing the work done during the last three years under NASA Grant NAG5-8946. Our efforts centered on a systematic development of a new generation of three dimensional magneto-hydrodynamic (MHD) numerical code, which models the interaction processes of the solar wind or fast flowing magnetospheric plasma with 'non-magnetic' solar system bodies (e.g. Venus, Mars, Europa, Titan). We have also worked on a number of different, more specific and discrete studies, as various opportunities arose. In the next few pages we briefly summarize these efforts.

  12. Final Report. Solar Assist for Administration Building and Community Gym/Pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Synder, Randy; Bresette, Joseph

    2015-06-23

    Tonto Apache Tribe applied to the Department of Energy’s “Tribal Energy Program” for the “Community Scale Clean Energy Projects” in Indian Country in 2013 to implement a solar project to reduce energy use in two tribal buildings. Total estimated project cost was $804,140, with the Department and Tribe each providing 50% of the project costs. Photovoltaic systems totaling 75 kW on the Administration Building and 192 kW on the Gymnasium were installed. We used roof tops and installed canopies in adjacent parking areas for mounting the systems. The installed systems were designed to offset 65% of the facilities electric load.

  13. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    NASA Technical Reports Server (NTRS)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  14. Solar Cogeneration of Electricity and Hot Water at DoD Installations

    DTIC Science & Technology

    2014-05-01

    the cogeneration system displaces more energy (the impact is not 4-5X because the GHG intensity factors for offsetting electricity generation and...FINAL REPORT Solar Cogeneration of Electricity and Hot Water at DoD Installations ESTCP Project EW-201248 MAY 2014 Ratson Morad... Cogeneration of Electricity and Hot Water at DoD Installations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  15. Estimation of available global solar radiation using sunshine duration over South Korea

    NASA Astrophysics Data System (ADS)

    Das, Amrita; Park, Jin-ki; Park, Jong-hwa

    2015-11-01

    Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.

  16. Solar Dynamics Observatory Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Kristin, D.; Bourkland, L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; Morgenstern, Wendy M.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed.

  17. Solar Versus Fission Surface Power for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; hide

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  18. Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Arakawa, H.; Shiraishi, C.; Tatemoto, M.; Kishida, H.; Usui, D.; Suma, A.; Takamisawa, A.; Yamaguchi, T.

    2007-09-01

    Photocatalytic and photoelectrochemical approaches to solar hydrogen production in our group were introduced. In photocatalytic water splitting system using NiO x/ TiO II powder photocatalyst with concentrated Na IICO 3 aqueous solution, solar energy conversion efficiency to H II and O II production (STH efficiency) was 0.016%. In addition, STH efficiency of visible light responding photocatalyst, NiOx/ promoted In 0.9Ni 0.1TaO 4, was estimated at 0.03%. In photoelectrochemical system using an oxide semiconductor film phptoelectrode, STH efficiencies of meosporous TiO II (Anatase) , mesoporous visible light responding S-doped TiO II (Anatase) and WO 3 film were 0.32-0.44% at applied potential of 0.35 V vs NHE, 0.14% at 0.55 V and 0.44% at 0.9 V, respectively. Finally, solar hydrogen production by tandem cell system composed of an oxide semiconductor photoelectrode, a Pt wire counter electrode and a dye-sensitized solar cell (DSC) was investigated. As photoelectrodes, meosporous TiO II (Anatase), mesoporous S-doped TiO II (Anatase), WO 3, BiVO 4 and Fe IIO 3 film were tested. STH efficiency of tandem cell system composed of a WO 3 film photoelectrode, and a two-series-connected DSC (Voc = 1.4 V) was 2.5-2.8%. In conclusion, it is speculated that more than 5% STH efficiency will be obtained by tandem cell system composed of an oxide semiconductor photoelectrode and a two-series-connected DSC in near future. This suggests a cost-effective and practical application of this system for solar hydrogen production.

  19. An overview of the Earth system science of solar geoengineering: Overview of the earth system science of solar geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.

    Solar geoengineering has been proposed as a means to cool the planet by increasing the reflection of sunlight back to space, for example by injecting reflective aerosol particles into the middle atmosphere. Such proposals are not able to physically substitute for mitigation of greenhouse gas emissions as a response to the risks of climate change, but might eventually be applied as a complementary approach to reduce climate risks. Thus, the Earth system consequences of solar geoengineering are central to understanding its potentials and risks. Here we review the state-of-the-art knowledge about geoengineering by stratospheric sulphate aerosol injection. We examine themore » common responses found in studies of an idealized form of solar geoengineering, in which the intensity of incoming sunlight is directly reduced in models. The studies reviewed are consistent in suggesting that solar geoengineering would generally reduce the differences in climate in comparison to future scenarios with elevated greenhouse gas concentrations and no solar geoengineering. However, it is clear that a solar geoengineered climate would be novel in some respects, for example a notable reduction in the intensity of the hydrological cycle. We provide an overview of the unique aspects of the response to stratospheric aerosol injection and the uncertainties around its consequences. We also consider the issues raised by the partial control over the climate that solar geoengineering would allow. Finally, this overview also highlights the key research gaps that will need to be resolved in order to effectively guide future decisions on the potential use of solar geoengineering.« less

  20. MLP based LOGSIG transfer function for solar generation monitoring

    NASA Astrophysics Data System (ADS)

    Hashim, Fakroul Ridzuan; Din, Muhammad Faiz Md; Ahmad, Shahril; Arif, Farah Khairunnisa; Rizman, Zairi Ismael

    2018-02-01

    Solar panel is one of the renewable energy that can reduce the environmental pollution and have a wide potential of application. The exact solar prediction model will give a big impact on the management of solar power plants and the design of solar energy systems. This paper attempts to use Multilayer Perceptron (MLP) neural network based transfer function. The MLP network can be used to calculate the temperature module (TM) in Malaysia. This can be done by simulating the collected data of four weather variables which are the ambient temperature (TA), local wind speed (VW), solar radiation flux (GT) and the relative humidity (RH) as the input into the neural network. The transfer function will be applied to the 14 types of training. Finally, an equation from the best training algorithm will be deduced to calculate the temperature module based on the input of weather variables in Malaysia.

  1. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.

    PubMed

    Kim, Mee Rahn; Ma, Dongling

    2015-01-02

    Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.

  2. The effects of solar Reimers η on the final destinies of Venus, the Earth, and Mars

    NASA Astrophysics Data System (ADS)

    Guo, Jianpo; Lin, Ling; Bai, Chunyan; Liu, Jinzhong

    2016-04-01

    Our Sun will lose sizable mass and expand enormously when it evolves to the red giant branch phase and the asymptotic giant branch phase. The loss of solar mass will push a planet outward. On the contrary, solar expansion will enhance tidal effects, and tidal force will drive a planet inward. Will our Sun finally engulf Venus, the Earth, and Mars? In the literature, one can find a large number of studies with different points of view. A key factor is that we do not know how much mass the Sun will lose at the late stages. The Reimers η can describe the efficiency of stellar mass-loss and greatly affect solar mass and solar radius at the late stages. In this work, we study how the final destinies of Venus, the Earth, and Mars can be depending on Reimers η chosen. In our calculation, the Reimers η varies from 0.00 to 0.75, with the minimum interval 0.0025. Our results show that Venus will be engulfed by the Sun and Mars will most probably survive finally. The fate of the Earth is uncertain. The Earth will finally be engulfed by the Sun while η <0.4600, and it will finally survive while η ≥ 0.4600. New observations indicate that the average Reimers η for solar-like stars is 0.477. This implies that Earth may survive finally.

  3. Tracing the journey of the Sun and the Solar siblings through the Milky Way

    NASA Astrophysics Data System (ADS)

    Martínez-Barbosa, Carmen Adriana

    2016-04-01

    This thesis is focused on studying the motion of the Sun and the Solar siblings through the Galaxy. The Solar siblings are stars that were born with the Sun in the same molecular cloud 4.6 Gyr ago. In the first part of the thesis, we present an efficient method to calculate the evolution of small systems embedded in larger systems. Generalizations of this method are used to calculate the motion of the Sun and the Solar siblings in an analytical potential containing a central bar and spiral arms. By integrating the orbit of the Sun backwards in time, we determine its birth radius and the amount of radial migration experienced by our star. The birth radius of the Sun is used to investigate the evolution and disruption of the Sun's birth cluster. Depending on the Galaxy model parameters, the present-day phase-space distribution of the Solar siblings might be quite different. We used these data to predict the regions in the Galaxy where it will be more likely to search for So! lar siblings in the future. Finally, we compute the stellar encounters experienced by the Sun along its orbit and their role on the stability of the outer Solar System.

  4. Experimental System of Solar Adsorption Refrigeration with Concentrated Collector.

    PubMed

    Yuan, Z X; Li, Y X; Du, C X

    2017-10-18

    To improve the performance of solar adsorption refrigeration, an experimental system with a solar concentration collector was set up and investigated. The main components of the system were the adsorbent bed, the condenser, the evaporator, the cooling sub-system, and the solar collector. In the first step of the experiment, the vapor-saturated bed was heated by the solar radiation under closed conditions, which caused the bed temperature and pressure to increase. When the bed pressure became high enough, the bed was switched to connect to the condenser, thus water vapor flowed continually from the bed to the condenser to be liquefied. Next, the bed needed to cool down after the desorption. In the solar-shielded condition, achieved by aluminum foil, the circulating water loop was opened to the bed. With the water continually circulating in the bed, the stored heat in the bed was took out and the bed pressure decreased accordingly. When the bed pressure dropped below the saturation pressure at the evaporation temperature, the valve to the evaporator was opened. A mass of water vapor rushed into the bed and was adsorbed by the zeolite material. With the massive vaporization of the water in the evaporator, the refrigeration effect was generated finally. The experimental result has revealed that both the COP (coefficient of the performance of the system) and the SCP (specific cooling power of the system) of the SAPO-34 zeolite was greater than that of the ZSM-5 zeolite, no matter whether the adsorption time was longer or shorter. The system of the SAPO-34 zeolite generated a maximum COP of 0.169.

  5. Final Test and Evaluation Results from the Solar Two Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO

    Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the projectmore » was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.« less

  6. New Details about Interstellar Visitor on This Week @NASA – November 24, 2017

    NASA Image and Video Library

    2017-11-24

    New data reveal that the interstellar asteroid that recently zipped through our solar system is rocky, cigar-shaped, and has a somewhat reddish hue. It’s the first confirmed object from another star observed in our solar system, and was discovered Oct. 19 by the University of Hawaii’s Pan-STARRS1 telescope team, funded by NASA’s Near-Earth Object Observations Program. The telescope team named it ‘Oumuamua (oh MOO-uh MOO-uh) – Hawaiian for “a messenger from afar arriving first.” The unusually-shaped asteroid, which is up to a quarter mile long and perhaps 10 times as long as it is wide, may provide new clues into how other solar systems formed. Also, Advanced Weather Satellite Launched, James Webb Space Telescope Completes Final Cryogenic Testing, Recurring Martian Streaks: Flowing Sand, Not Water? and Happy Thanksgiving, from Space!

  7. Solar power satellites - Technical, social and political implications

    NASA Astrophysics Data System (ADS)

    Knelman, F. H.

    Solar power satellite systems (SPS) are examined, together with their environmental and social impacts and the energy policies necessary for their construction. The energy source, the sun, is acceptable to advocates of decentralized technologies, while the conversion system is fitted to large institutions. However, large-scale power plants are subject to persistent malfunctions, and the approximately 50 sq km SPS solar array is projected to suffer from at least recurring cell contact failures. The power could also be generated by heat engines for transmission by either laser or microwaves. Numerous feasibility and cost-benefit studies are still required, including defining the transmission beam's effects on the atmosphere, ionosphere, and human health. Furthermore, the resource allocations, capital costs, insurance, and institutional problems still need clarification, as do the design, logistics, and development of an entire new, much larger launch system based on Shuttle technology. Finally, the military defensibility of the SPS power station is questioned.

  8. Progress on alternative energy resources

    NASA Astrophysics Data System (ADS)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  9. 77 FR 76067 - Notice of Availability of a Proposed Land Use Plan Amendment and Final Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... Statement for the Proposed McCoy Solar Energy Project, CA AGENCY: Bureau of Land Management, Interior... amendment and final environmental impact statement (EIS) for the McCoy Solar Energy Project (project)--a photovoltaic solar electricity generation [[Page 76068

  10. Study of the feasibility of utilizing solar, wind, and geothermal energy in Hobbs, New Mexico. Final report. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B.J.; Huettner, D.A.; Murry, D.

    The objective of this study was to provide an economic analysis of the various solar options for Hobbs, New Mexico. In so doing, an assessment of the current state of the art in solar research was obtained. Cost estimates were provided assuming capacity 100 MW. These options were: Central Receiver, Cylindrical Trough, Parabolic Dish Non-Brayton, Parabolic Dish Brayton, Fixed Mirror Distributed Focus, Dispersed Photovoltaic ERDA Goal, and Dispersed Photovoltaic Present Quote. Three scenarios were used to analyze all of the solar options relative to conventional fossil systems and nuclear alternatives. A total of thirty-two different options were considered. Results andmore » conclusions are presented. (MHR)« less

  11. Data Reduction and Analysis from the SOHO Spacecraft

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.

    1999-01-01

    This paper presents a final report on Data Reduction and Analysis from The SOHO Spacecraft from November 1, 1996-October 31, 1999. The topics include: 1) Instrumentation; 2) Health of Instrument; 3) Solar Wind Web Page; 3) Data Analysis; and 4) Science. This paper also includes appendices describing routine SOHO (Solar and Heliospheric Observatory) tasks, SOHO Science Procedures in the UMTOF (University Mass Determining Time-of-Flight) System, SOHO Programs on UMTOF and a list of publications.

  12. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Montgomery, Edward E.; Montgomery, Sandy; Adams, Charles L.

    2007-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.

  13. Multiple-etalon systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these observatories.

  14. New Constraints on the Abundance of 60Fe in the Early Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas

    Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). In this paper, we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS.more » Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/ 58Ni versus 56Fe/ 58Ni yields an initial 60Fe/ 56Fe ratio for this chondrule of (3.8 ± 6.9) × 10 -8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/ 58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/ 56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Finally, supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system's initial amount of 60Fe.« less

  15. New Constraints on the Abundance of 60Fe in the Early Solar System

    DOE PAGES

    Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas; ...

    2018-04-19

    Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). In this paper, we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS.more » Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/ 58Ni versus 56Fe/ 58Ni yields an initial 60Fe/ 56Fe ratio for this chondrule of (3.8 ± 6.9) × 10 -8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/ 58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/ 56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Finally, supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system's initial amount of 60Fe.« less

  16. Site selection for MSFC operational tests of solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The criteria, methodology, and sequence aspects of the site selection process are presented. This report organized the logical thought process that should be applied to the site selection process, but final decisions are highly selective.

  17. Ultrafast Electron Dynamics in Solar Energy Conversion.

    PubMed

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  18. DC Linked Hybrid Generation System with an Energy Storage Device including a Photo-Voltaic Generation and a Gas Engine Cogeneration for Residential Houses

    NASA Astrophysics Data System (ADS)

    Lung, Chienru; Miyake, Shota; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    For the past few years, a hybrid generation system including solar panel and gas cogeneration is being used for residential houses. Solar panels can generate electronic power at daytime; meanwhile, it cannot generate electronic power at night time. But the power consumption of residential houses usually peaks in the evening. The gas engine cogeneration system can generate electronic power without such a restriction, and it also can generate heat power to warm up house or to produce hot water. In this paper, we propose the solar panel and gas engine co-generation hybrid system with an energy storage device that is combined by dc bus. If a black out occurs, the system still can supply electronic power for special house loads. We propose the control scheme for the system which are related with the charging level of the energy storage device, the voltage of the utility grid which can be applied both grid connected and stand alone operation. Finally, we carried out some experiments to demonstrate the system operation and calculation for loss estimation.

  19. Traffic & rural intersection monitoring with a solar-based infrared wireless system : phase 2 final report, long term effect and justification for further analysis, May 2008 [summary].

    DOT National Transportation Integrated Search

    2008-05-01

    This study concerns the development and evaluation of a dynamic speed monitoring (DSM) system for use at rural intersections. The purpose of the DSM system is to give traffic speed feedback to drivers via an advisory sign, with the goals of improving...

  20. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1997-01-01

    This is a NASA Origins of Solar Systems research program, and this NASA Headquarters grant has now been transferred to a new grant at NASA GSFC (NAG5-4082). Thus the need for this 'Final Report' on a project that is not, in fact, complete. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to "standard" theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Our program consists of modeling collisions in the Kuiper Belt and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper Belt collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model is to be used to study the evolution of surface mass density and the object-size spectrum in the disk.

  1. Development and Testing of the Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, Seth D.; Prather, E. E.; English, T. R.; Desch, S. M.; Keller, J. M.; Collaboration of Astronomy Teaching Scholars CATS

    2011-01-01

    Trying to assess if our students really understand the ideas we present in class can be difficult. Concept inventories are research-validated assessment tools that can provide us with data to better understand whether we are successful in the classroom. The idea for the Solar System Concept Inventory (SSCI) was born after realizing that no concept inventory currently available covered details regarding the formation and evolution of our solar system. Topics were selected by having faculty identify the key concepts they address when teaching about the solar system and interviewing students in order to identify common naive ideas and reasoning difficulties relating to these key topics. Beginning in fall of 2008, a national multi-institutional field test began which would eventually involve nearly 2500 students and 17 instructors from 10 different institutions. After each round of testing, a group of instructors from multiple institutions around the country worked together to analyze the data and revise or eliminate underperforming questions. Each question was examined using a combination of point biserial, percent correct on the pre-test, and item difficulty to determine if the question was properly differentiating student understanding while also ensuring the question was not too easy or too hard. In this talk, I will present an overall outline of the development of the SSCI as well as the final testing results. The final version of the SSCI can be found at http://casa.colorado.edu/ hornstei/ssci/. This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any findings expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

  2. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversionmore » efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.« less

  3. Space-based solar power conversion and delivery systems study. Volume 2: Engineering analysis

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The technical and economic feasibility of Satellite Solar Power Systems was studied with emphasis on the analysis and definition of an integrated strawman configuration concept, from which credible cost data could be estimated. Specifically, system concepts for each of the major subprogram areas were formulated, analyzed, and iterated to the degree necessary for establishing an overall, workable baseline system design. Cost data were estimated for the baseline and used to conduct economic analyses. The baseline concept selected was a 5-GW crystal silicon truss-type photovoltaic configuration, which represented the most mature concept available. The overall results and major findings, and the results of technical analyses performed during the final phase of the study efforts are reported.

  4. GOES-K solar panel inspection at Astrotech

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT.

  5. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  6. Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coimbra, Carlos F. M.

    2016-02-25

    In this project we address multiple resource integration challenges associated with increasing levels of solar penetration that arise from the variability and uncertainty in solar irradiance. We will model the SMUD service region as its own balancing region, and develop an integrated, real-time operational tool that takes solar-load forecast uncertainties into consideration and commits optimal energy resources and reserves for intra-hour and intra-day decisions. The primary objectives of this effort are to reduce power system operation cost by committing appropriate amount of energy resources and reserves, as well as to provide operators a prediction of the generation fleet’s behavior inmore » real time for realistic PV penetration scenarios. The proposed methodology includes the following steps: clustering analysis on the expected solar variability per region for the SMUD system, Day-ahead (DA) and real-time (RT) load forecasts for the entire service areas, 1-year of intra-hour CPR forecasts for cluster centers, 1-year of smart re-forecasting CPR forecasts in real-time for determination of irreducible errors, and uncertainty quantification for integrated solar-load for both distributed and central stations (selected locations within service region) PV generation.« less

  7. Design and Development of NEA Scout Solar Sail Deployer Mechanism

    NASA Technical Reports Server (NTRS)

    Sobey, Alexander R.; Lockett, Tiffany Russell

    2016-01-01

    The 6U (approx.10 cm x 20 cm x 30 cm) cubesat Near Earth Asteroid (NEA) Scout1, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System, will utilize a solar sail as its main method of propulsion throughout its approx.3-year mission to a Near Earth Asteroid. Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems, advance solutions, and build confidence in the final design product. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.

  8. Design and Development of NEA Scout Solar Sail Deployer Mechanism

    NASA Technical Reports Server (NTRS)

    Sobey, Alexander R.; Lockett, Tiffany Russell

    2016-01-01

    The 6U (approximately 10cm x 20cm x 30cm) cubesat Near Earth Asteroid (NEA) Scout1, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System (SLS), will utilize a solar sail as its main method of propulsion throughout its approximately 3 year mission to a Near Earth Asteroid (NEA). Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems, advance solutions, and build confidence in the final design product. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.

  9. Design and development of a brushless, direct drive solar array reorientation system

    NASA Technical Reports Server (NTRS)

    Jessee, R. D.

    1972-01-01

    This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.

  10. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound.

    PubMed

    Expósito, A J; Monteagudo, J M; Durán, A; San Martín, I; González, L

    2018-01-15

    The intensification of the solar photo-Fenton system with ferrioxalate photoactive complexes and ultrasound applied to the mineralization of 15mg/L carbamazepine aqueous solution (CBZ) was evaluated. The experiments were carried out in a solar compound parabolic collector (CPC) pilot plant reactor coupled to an ultrasonic processor. The dynamic behavior of hydroxyl radicals generated under the different studied reaction systems was discussed. The initial concentrations of hydrogen peroxide and ferrous/oxalic acid and pH were found to be the most significant variables (32.79%, 25.98% and 26.04%, respectively). Under the selected optimal conditions ([H 2 O 2 ] 0 =150mg/L; [Fe 2+ ] 0 =2.5mg/L/[(COOH) 2 ] 0 =12.1mg/L; pH=5) CBZ was fully degraded after 5min and 80% of TOC was removed using a solar photo-Fenton system intensified with ferrioxalate (SPFF). However, no improvement in the mineralization using SPFF process combined with ultrasound was observed. More mild pH conditions could be used in the SPFF system if compared to the traditional photo-Fenton (pH 3) acidic systems. Finally, a possible reaction pathway for the mineralization of CBZ by the SPFF system was proposed and therein discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A high school is supplied with solar energy--Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    System preheats 100 percent of domestic hot water and supplies almost half of heating requirements for three story, concrete frame, brick building with basement. Final report includes details of installation, operation and maintenance, contract negotiation, and acceptance test plan.

  12. Space Plasma Shown to Make Satellite Solar Arrays Fail

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1999-01-01

    In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.

  13. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  14. Solar energy system economic evaluation. Final report for SEECO Lincoln, Lincoln, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    The economic analysis of the solar energy system that was installed at Lincoln, Nebraska is developed for this and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback formore » the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Although budget constraints preclude an economic reevaluation of each of the sites, a similar site, Carlsbad, New Nexico, was done. When 1985 escalated values for fuel, costs, mass production, and improved design and installation techniques were applied, a significantly higher degree of savings was realized.« less

  15. Solar Decathlon 2017: Final Report and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incorporated, Energetics

    This final report introduces the Solar Decathlon 2017 Program Administrator, Core Advisory Committee, event sponsors and donors, and regional stakeholders that were integral to the success of Solar Decathlon 2017. The substantial balance of this report presents evaluative metrics and lessons learned about the primary aspects of administering Solar Decathlon 2017, including Project Management, Competition and Site Management, Stakeholder Engagement, Communications, Sponsor Management, Education Programming, and Volunteer Coordination. Several appendices compliment the discussion.

  16. Textile drying using solarized can dryers to demonstrate the application of solar energy to industrial drying or dehydration processes, Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, P.D.; Beesing, M.E.; Bessler, G.L.

    This program has resulted in the installation of a solar energy collection system for providing process heat to a textile drying process. The solar collection subsystem uses 700 square meters (7500 square feet) of parabolic trough, single-axis tracking, concentrating collectors to heat water in a high temperature water (HTW) loop. The solar collectors nominally generate 193/sup 0/C (380/sup 0/F) water with the HTW loop at 1.9 x 10/sup 6/ Pa (275 psi). A steam generator is fueled with the HTW and produces 450 kg/hour (1000 pounds per hour) of process steam at the nominal design point conditions. The solar-generated processmore » steam is at 0.5 x 10/sup 6/ Pa (75 psi) and 160/sup 0/C (321/sup 0/F). It is predicted that the solar energy system will provide 1.2 x 10/sup 6/ MJ/year (1.1 x 10/sup 9/ Btu/year) to the process. This is 46 percent of the direct isolation available to the collector field during the operational hours (300 days/year of the Fairfax mill. The process being solarized is textile drying using can dryers. The can dryers are part of a slashing operation in a WestPoint Pepperell mill in Fairfax, Alabama. Over 50 percent of all woven goods are processed through slashers and dried on can dryers. The collectors were fabricated by Honeywell at a pilot production facility in Minneapolis, Minnesota, under a 3000-square-meter (32,000-square-foot) production run. The collectors and other system components were installed at the site by the Bahnson Service Company and their subcontractors, acting as the project general contractor. System checkout and start-up was conducted. Preliminary system performance was determined from data collected during start-up. System design, fabrication and installation, data analysis, operation and maintenance procedures, and specifications and drawings are presented.« less

  17. Study of multi-kilowatt solar arrays for Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1983-01-01

    A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjuction with low cost optics. The MCC single element concept incident slar radiation is reflected rom a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4 millimeter diameter solar cell. A light catcher cone is used to improve off axis performance. The solar cell is mounted to a heat fin. An element is approximately 13 millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC sngle element with a 21 sq cm entrance aperture and a 20 efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30 sq cm of 11-percent efficiency (at 68 C) silicon solar cells.

  18. The four hundred years of planetary science since Galileo and Kepler.

    PubMed

    Burns, Joseph A

    2010-07-29

    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  19. Final Report to the Department of Energy Renewable Energy and Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaughen, Shasta

    The Pala Band of Mission Indians was awarded a DOE-EERE Solar Energy Grant for FY 2016 and 2017. The project involved installing a 94.8 kW DC photovoltaic (PC) solar system on the Pala Fire Station to offset up to 95% of grid-derived energy and reduce overall CO 2 generation from the facility. Pala successfully installed rooftop and carport-mounted solar panels at the fire station, and to date has generated of 219,227 kWh of energy and offset 274,034 pounds of CO 2. The project was successfully executed, and we recommend other tribes to undertake similar projects if they are located inmore » areas with sufficient solar exposure. DOE should continue to make these funds available to tribes.« less

  20. Predictability of Solar Radiation for Photovoltaics systems over Europe: from short-term to seasonal time-scales

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Petitta, Marcello; Ruti, Paolo

    2014-05-01

    Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromètre Photovoltaïque, Le journal des énergies renouvables, April 2012."

  1. Potential of solar domestic hot water systems in rural areas for greenhouse gas emission reduction in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skowronski, P.; Wisniewski, G.

    Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed,more » and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO{sub 2} and NOx will increase. The emission of CO and CH{sub 4} will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%-45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO{sub 2} emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment. 13 refs., 9 tabs.« less

  2. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    PubMed

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  3. Processing Solvent Dependent Morphology of Diketopyrrolopyrrole (DPP) based Low Band Gap Polymer and PCBM Blends

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Russell, Thomas

    2013-03-01

    Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.

  4. Mars Sample Return Using Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  5. 75 FR 51479 - Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... (EIS) for the Chevron Energy Solutions/Solar Millennium (CESSM), LLC's Blythe Solar Power Plant (BSPP... project and amend the CDCA Plan to prohibit solar energy projects on the project site. The BLM will take..., LVRWB09B2600] Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy...

  6. The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution

    NASA Astrophysics Data System (ADS)

    Khain, Tali; Batygin, Konstantin; Brown, Michael E.

    2018-04-01

    The observation that the orbits of long-period Kuiper Belt objects are anomalously clustered in physical space has recently prompted the Planet Nine hypothesis - the proposed existence of a distant and eccentric planetary member of our Solar System. Within the framework of this model, a Neptune-like perturber sculpts the orbital distribution of distant Kuiper Belt objects through a complex interplay of resonant and secular effects, such that the surviving orbits get organized into apsidally aligned and anti-aligned configurations with respect to Planet Nine's orbit. We present results on the role of Kuiper Belt initial conditions on the evolution of the outer Solar System using numerical simulations. Intriguingly, we find that the final perihelion distance distribution depends strongly on the primordial state of the system, and demonstrate that a bimodal structure corresponding to the existence of both aligned and anti-aligned clusters is only reproduced if the initial perihelion distribution is assumed to extend well beyond 36 AU. The bimodality in the final perihelion distance distribution is due to the permanently stable objects, with the lower perihelion peak corresponding to the anti-aligned orbits and the higher perihelion peak corresponding to the aligned orbits. We identify the mechanisms that enable the persistent stability of these objects and locate the regions of phase space in which they reside. The obtained results contextualize the Planet Nine hypothesis within the broader narrative of solar system formation, and offer further insight into the observational search for Planet Nine.

  7. Achievement of ultrahigh solar concentration with potential for efficient laser pumping.

    PubMed

    Gleckman, P

    1988-11-01

    Measurements are reported of the irradiance produced by a two-stage solar concentrator designed to approach the thermodynamic limit. Sunlight is collected by a 40.6-cm diam parabolic primary which forms a 0.98-cm diam image. The image is reconcentrated by a nonimaging refracting secondary with index n = 1.53 to a final aperture 1.27 mm in diameter. Thus the geometrical concentration ratio is 102, 000. The highest irradiance value achieved was 4.4 +/- 0.2 kW cm(-2), or 56,000 +/- 5000 suns, relative to a solar disk insolation of 800 W m(-2). This is greater than the previous peak solar irradiance record by nearly a factor of 3, and it is 68% of that existing at the solar surface itself. The efficiency with which we concentrated 55 W of sunlight to a small spot suggests that our two-stage system would be an excellent candidate for solar pumping of solid state lasers.

  8. Weight optimization of ultra large space structures

    NASA Technical Reports Server (NTRS)

    Reinert, R. P.

    1979-01-01

    The paper describes the optimization of a solar power satellite structure for minimum mass and system cost. The solar power satellite is an ultra large low frequency and lightly damped space structure; derivation of its structural design requirements required accommodation of gravity gradient torques which impose primary loads, life up to 100 years in the rigorous geosynchronous orbit radiation environment, and prevention of continuous wave motion in a solar array blanket suspended from a huge, lightly damped structure subject to periodic excitations. The satellite structural design required a parametric study of structural configurations and consideration of the fabrication and assembly techniques, which resulted in a final structure which met all requirements at a structural mass fraction of 10%.

  9. Soft Costs Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-05-01

    This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meetmore » their needs, while at the same time creating sustainable solar market conditions.« less

  10. Don't soil your chances with solar energy: Experiments of natural dust accumulation on solar modules and the effect on light transmission

    NASA Astrophysics Data System (ADS)

    Boyle, Liza

    Dust accumulation, or soiling, on solar energy harvesting systems can cause significant losses that reduce the power output of the system, increase pay-back time of the system, and reduce confidence in solar energy overall. Developing a method of estimating soiling losses could greatly improve estimates of solar energy system outputs, greatly improve operation and maintenance of solar systems, and improve siting of solar energy systems. This dissertation aims to develop a soiling model by collecting ambient soiling data as well as other environmental data and fitting a model to these data. In general a process-level approach is taken to estimating soiling. First a comparison is made between mass of deposited particulates and transmission loss. Transmission loss is the reduction in light that a solar system would see due to soiling, and mass accumulation represents the level of soiling in the system. This experiment is first conducted at two sites in the Front Range of Colorado and then expanded to three additional sites. Second mass accumulation is examined as a function of airborne particulate matter (PM) concentrations, airborne size distributions, and meteorological data. In depth analysis of this process step is done at the first two sites in Colorado, and a more general analysis is done at the three additional sites. This step is identified as less understood step, but with results still allowing for a general soiling model to be developed. Third these two process steps are combined, and spatial variability of these steps are examined. The three additional sites (an additional site in the Front Range of Colorado, a site in Albuquerque New Mexico, and a site in Cocoa Florida) represent a much more spatially and climatically diverse set of locations than the original two sites and provide a much broader sample space in which to develop the combined soiling model. Finally a few additional parameters, precipitation, micro-meteorology, and some sampling artifacts, are cursorily examined. This is to provide a broader context for these results and to help future researchers in understanding the strengths and weaknesses of this dissertation and the results presented within.

  11. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake R.

    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology.more » CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.« less

  12. Final Technical Report- Virginia Solar Pathways Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Katharine; Cosby, Sarah

    This Report provides a technical review of the final results of a funding award to Virginia Electric and Power Company (Dominion Energy Virginia (DEV) or the Company) for a project under the U.S. Department of Energy’s Solar Energy Technologies Office. The three-year project was formally known as the Virginia Solar Pathways Project (VSPP or the Project). The purpose of the VSPP was to develop a collaborative utility-administered solar strategy (Solar Strategy) for DEV’s service territory in the Commonwealth that could serve as a replicable model for other states with similar policy environments.

  13. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor

    PubMed Central

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-01-01

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time. PMID:27898002

  14. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor.

    PubMed

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-11-25

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  15. Solar System Planetary Science Decadal Survey and Missions in the Next Decade, 2013-2022

    NASA Technical Reports Server (NTRS)

    Reh, Kim

    2011-01-01

    In 2010, the National Research Council Space Studies Board established a decadal survey committee to develop a comprehensive science, mission, and technology strategy for planetary science that updates and extends the Board's 2003 Solar System Exploration Decadal Survey, "New Frontiers in the Solar System: An Integrated Exploration Strategy." The scope of the survey encompasses the inner planets (Mercury, Venus, and Mars), the Earth's Moon, the giant planets (Jupiter, Saturn, Uranus, and Neptune), the moons of the giant planets, dwarf planets and small bodies, primitive bodies including comets and Kuiper Belt objects, and astrobiology. Over this past year, the decadal survey committee has interacted with the broad solar system science community to determine the current state of knowledge and to identify the most important scientific questions expected to face the community during the interval 2013-2022. The survey has identified candidate missions that address the most important science questions and has conducted, through NASA sponsorship, concept studies to assess the cost of such missions as well as technology needs. The purpose of this paper is to provide an overview of the 2012 Solar System Planetary Science Decadal Survey study approach and missions that were studied for implementation in the upcoming decade. Final results of the decadal survey, including studies that were completed and the specific science, programmatic, and technology recommendations will be disclosed publically in the spring of 2011 and are not the subject of this paper.

  16. Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Julia; Taylor, Mike

    2008-12-31

    The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able tomore » easily locate contractors in their geographic area and verify companies' qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university team's home.« less

  17. 75 FR 57286 - Notice of Availability of the Final Environmental Impact Statement for the NextLight Renewable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... Statement for the NextLight Renewable Power, LLC, Silver State Solar Project, Clark County, NV AGENCY... Statement (EIS) for the Silver State Solar Project, Clark County, Nevada, and by this notice is announcing its availability. DATES: The BLM will not issue a final decision on the Silver State Solar Project for...

  18. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-08-01

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979,more » while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)« less

  19. CONSOLIDATING AND CRUSHING EXOPLANETS: DID IT HAPPEN HERE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, Kathryn; Gladman, Brett

    2015-06-20

    The Kepler mission results indicate that systems of tightly packed inner planets (STIPs) are present around of order 5% of FGK field stars (whose median age is ∼5 Gyr). We propose that STIPs initially surrounded nearly all such stars, and those observed are the final survivors of a process in which long-term metastability eventually ceases and the systems proceed to collisional consolidation or destruction, losing roughly equal fractions of systems every decade in time. In this context, we also propose that our solar system initially contained additional large planets interior to the current orbit of Venus, which survived in amore » metastable dynamical configuration for 1%–10% of the solar system’s age. Long-term gravitational perturbations caused the system orbits to cross, leading to a cataclysmic event that left Mercury as the sole surviving relic.« less

  20. Concentrated solar power on demand demonstration: Construction and operation of a 25 kW prototype

    NASA Astrophysics Data System (ADS)

    Gil, Antoni; Codd, Daniel S.; Zhou, Lei; Trumper, David; Calvet, Nicolas; Slocum, Alexander H.

    2016-05-01

    Currently, the majority of concentrated solar power (CSP) plants built worldwide integrate thermal energy storage (TES) systems which enable dispatchable output and higher global plant efficiencies. TES systems are typically based on two tank molten salt technology which involves inherent drawbacks such as parasitic pumping losses and electric tracing of pipes, risk of solidification and high capital costs. The concept presented in this paper is based on a single tank where the concentrated sunlight is directly focused on the molten salt. Hot and cold volumes of salt (at 565 °C and 280 °C, respectively) are axially separated by an insulated divider plate which helps maintain the thermal gradient. The concept, based on existing technologies, seeks to avoid the listed drawbacks as well as reducing the final cost of the TES system. In order to demonstrate its feasibility, Masdar Institute (MI) and Massachusetts Institute of Technology are developing a 25 kW prototype to be tested in the Masdar Solar Platform beam down facility.

  1. Forbidden mass ranges for shower meteoroids

    NASA Astrophysics Data System (ADS)

    Moorhead, Althea V.

    2017-10-01

    Burns et al. (1979) use the parameter β to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1 - β), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of β at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical β values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical β value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet’s nucleus for 10 major meteor showers. Finally, we numerically solve for critical β values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.

  2. Forbidden Mass Ranges for Shower Meteoroids

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.

    2017-01-01

    Burns et al. (1979) use the parameter beta to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1- beta ), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of beta at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical beta values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet's nucleus for 10 major meteor showers. Finally, we numerically solve for critical beta values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.

  3. Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning Petri net

    NASA Astrophysics Data System (ADS)

    Wu, Jianing; Yan, Shaoze; Xie, Liyang

    2011-12-01

    To address the impact of solar array anomalies, it is important to perform analysis of the solar array reliability. This paper establishes the fault tree analysis (FTA) and fuzzy reasoning Petri net (FRPN) models of a solar array mechanical system and analyzes reliability to find mechanisms of the solar array fault. The index final truth degree (FTD) and cosine matching function (CMF) are employed to resolve the issue of how to evaluate the importance and influence of different faults. So an improvement reliability analysis method is developed by means of the sorting of FTD and CMF. An example is analyzed using the proposed method. The analysis results show that harsh thermal environment and impact caused by particles in space are the most vital causes of the solar array fault. Furthermore, other fault modes and the corresponding improvement methods are discussed. The results reported in this paper could be useful for the spacecraft designers, particularly, in the process of redesigning the solar array and scheduling its reliability growth plan.

  4. CSPonD demonstrative project: Start-up process of a 25 kW prototype

    NASA Astrophysics Data System (ADS)

    Gil, Antoni; Grange, Benjamin; Perez, Victor G.; Tetreault-Friend, Melanie; Codd, Daniel S.; Calvet, Nicolas; Slocum, Alexander S.

    2017-06-01

    The current concept of commercial concentrated solar power (CSP) plants, based on the concept of a solar field, receiver, storage and power block, experienced significant growth in the past decades. The power block is the most well know part of the plant, while solar field depends on the receiver technology. The dominant receiver technologies are parabolic troughs and central towers. Most thermal energy storage (TES) relies on two tanks of molten salts, one hot and one cold serviced by pumps and piping systems. In spite of the technical development level achieved by these systems, efficiency is limited, mainly caused by thermal losses in piping, parasitic losses due to electric tracing and pumping and receiver limitations. In order to mitigate the these issues, a new concept called Concentrated Solar Power on Demand (CSPonD), was developed, consisting of a direct absorption Solar Salt CSP receiver which simultaneously acts as TES tank. Currently, in the frame of the flagship collaborative project between the Masdar Institute (UAE) and the Massachusetts Institute of Technology (USA) a 25 kW demonstrative prototype is in its final building phase at the Masdar Institute Solar Platform. The present paper, explains the demonstration prototype based on the CSPonD concept, with emphasis on the planned start-up process for the facility.

  5. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  6. End-to-End Trajectory for Conjunction Class Mars Missions Using Hybrid Solar-Electric/Chemical Transportation System

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.

  7. Scientific Investigation of the Jovian System: the Jupiter System Observer Mission Concept

    NASA Astrophysics Data System (ADS)

    Spilker, Thomas R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; SDT, JSO

    2007-10-01

    NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." At abstract submission this JPL-led study is nearly complete, with final report submission in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. A rich set of science objectives that JSO can address quite well have been identified. The highly capable science payload (including 50-cm optic), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the Science Definition Team evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts. This work was performed at JPL, APL, and other institutions under contract to NASA.

  8. 76 FR 54454 - Issuance of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar Energy Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... DEPARTMENT OF ENERGY Issuance of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar... Energy Project (GSEP), a 250-megawatt (MW) nominal capacity solar power generating facility on.../Final Environmental Impact Statement for the Genesis Solar Energy Project, Riverside County, California...

  9. Summary of flat-plate solar array project documentation: Abstracts of published documents, 1975-1986, revision 1

    NASA Technical Reports Server (NTRS)

    Phillips, M. J.

    1986-01-01

    Abstracts of final reports, or the latest quarterly or annual, of the Flat-Plate Solar Array (FSA) Project Contractor of Jet Propulsion Laboratory (JPL) in-house activities are presented. Also presented is a list of proceedings and publications, by author, of work connected with the project. The aim of the program has been to stimulate the development of technology that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and Government applications at a cost per watt that is competitive with utility generated power. FSA Project activities have included the sponsoring of research and development efforts in silicon refinement processes, advanced silicon sheet growth techniques, higher efficiency solar cells, solar cell/module fabrication processes, encapsulation, module/array engineering and reliability, and economic analyses.

  10. Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives

    NASA Technical Reports Server (NTRS)

    Hillard, G. B.; Ferguson, Dale C.

    1993-01-01

    The solar array module plasma interactions experiment (SAMPIE) is an approved NASA flight experiment manifested for Shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. Various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of arcing and current collection. This paper describes the rationale for a space flight experiment, the measurements to be made, and the significance of the expected results. A future paper will present a detailed discussion of the engineering design.

  11. Electrodynamics of the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2017-12-01

    The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.

  12. Next Generation Solar Collectors for CSP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molnar, Attila; Charles, Ruth

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  13. High resolution observations using adaptive optics: Achievements and future needs

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, K.; Rimmele, T.

    2008-06-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  14. UNDERSTANDING THE TECHNICAL AND SOCIAL REASONS FOR SOLAR BATTERY CHARGING SYSTEM FAILURES IN THAILAND. (U915644)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. A nonmagnetic differentiated early planetary body

    DOE PAGES

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; ...

    2017-06-19

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<~1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. Finally, this supports a recent conclusion that the solar nebula had dissipated by ~4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<~1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. Finally, this supports a recent conclusion that the solar nebula had dissipated by ~4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  17. Interstellar Probe: The Next Step To Flight

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph; Zurbuchen, Thomas H.

    2016-07-01

    In the years following the discovery of the solar wind, the term "heliosphere" was coined and defined as "the region of interplanetary space where the solar wind is flowing supersonically." In June 1971, with the development of the Pioneer probes to Jupiter and beyond well underway, a session of the American Astronautical Society meeting considered scientific exploration reaching beyond the solar system and into the interstellar medium. Despite many discussions, studies, and meetings since, the most recent held under the auspices of the Keck Institute for Space Studies (8-11 September 2014 and 13-15 January 2015), such missions have been relegated to the '"future" due to the large distances and solar system escape speeds contemplated for their execution. In the meantime, the Voyager Interstellar Mission (VIM), consisting of the twin Voyager spacecraft almost 40 years since their respective launches, are making inroads into this region beyond the termination shock of the solar wind, a new region of the solid bodies of the solar system has been opened by the New Horizons flyby of the Pluto system, and the Cassini Ion and Neutral CAmera (INCA) and Interstellar Boundary Explorer (IBEX) have remotely sensed neutral atoms that have provided significant clues to the global structure of the interaction of the solar wind and interstellar medium. It is now time for a dedicated mission to the regime beyond the solar system to explore our galactic environment. A first, near-term implementation can be carried out with the near-current flight system technology. What is also clear is that the high speeds required will limit the spacecraft to a relatively small mass of no more than ~500 kg, regardless of the propulsion details. The recent success of the New Horizons mission at the Pluto system illustrates that with modern technologies, such spacecraft sizes can still accommodate the means to produce paradigm-shifting science, providing for a compelling scientific mission. The Committee on Space Research (COSPAR) has recently established a new Panel on Interstellar Research (PIR) to consider the next steps toward finally making a dedicated Interstellar Probe mission a reality. Crucial tasks are to build consensus amongst the international scientific community for the appropriate scientific campaigns and measurements to be carried out for such a mission, taking into account the new and continuing results from the outer solar system and beyond by VIM, IBEX, New Horizons, and exoplanet observations and studies.

  18. Look into Our "Eyes" and See the Future

    NASA Astrophysics Data System (ADS)

    Hussey, K.

    2016-12-01

    There are great plans ahead for NASA's "Eyes on…" suite of products. Come and see the latest advances and new features in "Eyes on the Earth", "Eyes on the Solar System" and "Eyes on Exoplanets", NASA's real-time, 3D interactive visualization tools that allow users to virtually explore the Earth, our Solar System and well beyond. This presentation will provide live demonstrations of some exciting new features in each of these products and how they may be used to inspire the next generation of students and educators in STEM. Relive Juno's majestic insertion into orbit around Jupiter and preview Cassini's "Grand Finale" as it prepares to plunge into the clouds of Saturn in September of 2017.

  19. SMUD Community Renewable Energy Deployment Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sison-Lebrilla, Elaine; Tiangco, Valentino; Lemes, Marco

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implementedmore » under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.« less

  20. Galileo Press Conference from JPL. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This two-tape Jet Propulsion Laboratory (JPL) video production presents a Dec. 8, 1992 press conference held at JPL to discuss the final Galileo spacecraft encounter with Earth before beginning its journey to Jupiter. The main theme of the conference was centered on the significance of the 2nd and final Earth/Moon flyby as being the spacecraft's last planetary encounter in the solar system before reaching Jupiter, as well as final flight preparations prior to its final journey. Each person of the five member panel was introduced by Robert MacMillan (JPL Public Information Mgr.) before giving brief presentations including slides and viewgraphs covering their area of expertise regarding Galileo's current status and future plans. After the presentations, the media was given an opportunity to ask questions of the panel regarding the mission. Mr. Wesley Huntress (Dir. of Solar System Exploration (NASA)), William J. ONeill (Galileo Project Manager), Neal E. Ausman, Jr. (Galileo Mission Director), Dr. Torrence V. Johnson (Galileo Project Scientist) and Dr. Ronald Greeley (Member, Imaging Team, Colorado St. Univ.) made up the panel and discussed topics including: Galileo's interplanetary trajectory; project status and performance review; instrument calibration activities; mission timelines; lunar observation and imaging; and general lunar science. Also included in the last three minutes of the video are simulations and images of the 2nd Galileo/Moon encounter.

  1. Final Report: The Influence of Novel Behavioral Strategies in Promoting the Diffusion of Solar Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillingham, Kenneth; Bollinger, Bryan

    This is the final report for a systematic, evidence-based project using an unprecedented series of large-scale field experiments to examine the effectiveness and cost-effectiveness of novel approaches to reduce the soft costs of solar residential photovoltaics. The approaches were based around grassroots marketing campaigns called ‘Solarize’ campaigns, that were designed to lower costs and increase adoption of solar technology. This study quantified the effectiveness and cost-effectiveness of the Solarize programs and tested new approaches to further improve the model.

  2. Near Earth Asteroid Scout Solar Sail Engineering Development Unit Test Suite

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 6U reconnaissance mission to investigate a near Earth asteroid utilizing an 86m(sub 2) solar sail as the primary propulsion system. This will be the largest solar sail NASA has launched to date. NEA Scout is currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis was able to capture understanding of thermal, stress, and dynamics of the stowed system as well as mature an integrated sail membrane model for deployed flight dynamics. Full scale system testing on the ground is the optimal way to demonstrate system robustness, repeatability, and overall performance on a compressed flight schedule. To physically test the system, the team developed a flight sized engineering development unit with design features as close to flight as possible. The test suite included ascent vent, random vibration, functional deployments, thermal vacuum, and full sail deployments. All of these tests contributed towards development of the final flight unit. This paper will address several of the design challenges and lessons learned from the NEA Scout solar sail subsystem engineering development unit. Testing on the component level all the way to the integrated subsystem level. From optical properties of the sail material to fold and spooling the single sail, the team has developed a robust deployment system for the solar sail. The team completed several deployments of the sail system in preparation for flight at half scale (4m) and full scale (6.8m): boom only, half scale sail deployment, and full scale sail deployment. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  3. High performance and thermally stable tandem solar selective absorber coating for concentrated solar thermal power (CSP) application

    NASA Astrophysics Data System (ADS)

    Prasad, M. Shiva; Kumar, K. K. Phani; Atchuta, S. R.; Sobha, B.; Sakthivel, S.

    2018-05-01

    A novel tandem absorber system (Mn-Cu-Co-Ox-ZrO2/SiO2) developed on an austenitic stainless steel (SS-304) substrate to show an excellent optical performance (αsol: 0.96; ɛ: 0.23@500 °C). In order to achieve this durable tandem, we experimented with two antireflective layers such as ZrO2-SiO2 and nano SiO2 layer on top of Mn-Cu-Co-Ox-ZrO2 layer. We optimized the thickness of antireflective layers to get good tandem system in terms of solar absorptance and emittance. Field emission scanning electron microscopy (FESEM), UV-Vis-NIR and Fourier transform infrared spectroscopy (FTIR) were used to characterize the developed coatings. Finally, the Mn-Cu-Co-Ox-ZrO2/SiO2 exhibits high temperature resistance up to 800 °C, thus allow an increase in the operating temperature of CSP which may lead to high efficiency. We successfully developed a high temperature resistant tandem layer with easy manufacturability at low cost which is an attractive candidate for concentrated solar power generation (CSP).

  4. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  5. The NWRA Classification Infrastructure: description and extension to the Discriminant Analysis Flare Forecasting System (DAFFS)

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, Graham; Wagner, Eric

    2018-04-01

    A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling "null" and "bad" data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes' theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of "Research to Operations" efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.

  6. Mars Reconnaissance Orbiter Operational Aerobraking Phase Assessment

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Striepe, Scott A.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) was inserted into orbit around Mars on March 10, 2005. After a brief delay, it began the process of aerobraking - using the atmospheric drag on the vehicle to reduce orbital period. The aerobraking phase lasted approximately 5 months (April 4 to August 30, 2006), during which teams from the Jet Propulsion Laboratory, Lockheed Martin Space Systems Corporation, and NASA Langley Research Center worked together to monitor and maneuver the spacecraft such that thermal margin on the solar arrays was maintained while schedule margin was upheld to provide a final local mean solar time (LMST) at ascending node of 3:00pm on the final aerobraking orbit. This paper will focus on the contribution of the flight mechanics team at NASA Langley Research Center (LaRC) during the aerobraking phase of the MRO mission.

  7. Development of a Solar Related Vocational Training Curriculum. Final Report.

    ERIC Educational Resources Information Center

    Charles, John F.

    A project developed a solar-related vocational training curriculum for use in the general technical trades training curriculum. Forty-seven firms comprising Washington State's "solar industry" were surveyed to identify existing and emerging solar-related occupations and prerequisites for entry. Results indicated that solar technologies…

  8. 75 FR 54961 - Final Supplemental Environmental Impact Statement, Single Nuclear Unit at the Bellefonte Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... facility, a wind farm, a methane- gas cofiring facility, and several small solar photovoltaic facilities... maintenance of select plant systems and other regulatory compliance activities. Major buildings and plant... the plant cooling towers and the reactor, auxiliary, control, turbine, office, and service buildings...

  9. The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution

    NASA Astrophysics Data System (ADS)

    Khain, Tali; Batygin, Konstantin; Brown, Michael E.

    2018-06-01

    The observation that the orbits of long-period Kuiper Belt objects (KBOs) are anomalously clustered in physical space has recently prompted the Planet Nine hypothesis—the proposed existence of a distant and eccentric planetary member of our solar system. Within the framework of this model, a Neptune-like perturber sculpts the orbital distribution of distant KBOs through a complex interplay of resonant and secular effects, such that in addition to perihelion-circulating objects, the surviving orbits get organized into apsidally aligned and anti-aligned configurations with respect to Planet Nine’s orbit. In this work, we investigate the role of Kuiper Belt initial conditions on the evolution of the outer solar system using numerical simulations. Intriguingly, we find that the final perihelion distance distribution depends strongly on the primordial state of the system, and we demonstrate that a bimodal structure corresponding to the existence of both aligned and anti-aligned clusters is only reproduced if the initial perihelion distribution is assumed to extend well beyond ∼36 au. The bimodality in the final perihelion distance distribution is due to the existence of permanently stable objects, with the lower perihelion peak corresponding to the anti-aligned orbits and the higher perihelion peak corresponding to the aligned orbits. We identify the mechanisms that enable the persistent stability of these objects and locate the regions of phase space in which they reside. The obtained results contextualize the Planet Nine hypothesis within the broader narrative of solar system formation and offer further insight into the observational search for Planet Nine.

  10. A review of in situ propellant production techniques for solar system exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.

    1983-01-01

    Representative studies done in the area of extraterrestrial chemical production as it applies to solar system exploration are presented. A description of the In Situ Propellant Production (ISPP) system is presented. Various propellant combinations and direct applications along with the previously mentioned benefits and liens are discussed. A series of mission scenarios is presented which is studied in the greatest detail. A general description of the method(s) of analysis used to study each mission is provided. Each section will be closed by an assessment of the performance advantage, if any, that can be provided by ISPP. A final section briefly summarizes those missions which, as a result of the studies completed thus far, should see a sizable benefit from the use of ISPP.

  11. A clustering approach for the analysis of solar energy yields: A case study for concentrating solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Peruchena, Carlos M. Fernández; García-Barberena, Javier; Guisado, María Vicenta; Gastón, Martín

    2016-05-01

    The design of Concentrating Solar Thermal Power (CSTP) systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest. Meteorological series are often condensed into one representative year with the aim of data volume reduction and speeding-up of energy system simulations, defined as Typical Meteorological Year (TMY). This approach seems to be appropriate for rather detailed simulations of a specific plant; however, in previous stages of the design of a power plant, especially during the optimization of the large number of plant parameters before a final design is reached, a huge number of simulations are needed. Even with today's technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work presents a simple and efficient methodology for selecting number of individual days able to represent the electrical production of the plant throughout the complete year. To achieve this objective, a new procedure for determining a reduced set of typical weather data in order to evaluate the long-term performance of a solar energy system is proposed. The proposed methodology is based on cluster analysis and permits to drastically reduce computational effort related to the calculation of a CSTP plant energy yield by simulating a reduced number of days from a high frequency TMY.

  12. A 3D Multi-fluid MHD Study of the Interaction of the Solar Wind with the Ionosphere/Atmosphere System of Mars.

    NASA Astrophysics Data System (ADS)

    Najib, Dalal; Nagy, Andrew; Toth, Gabor; Ma, Yingjuan

    We use our new four species multi-fluid model to study the interaction of the solar wind with Mars. The lower boundary of our model is at 100 km, below the main ionospheric peak, and the radial resolution is about 10 km in the ionosphere, thus the model does a very good job in reproducing the ionosphere and the associated processes. We carry out calculations for high and low solar activity conditions and establish the importance of mass loading by the extended exosphere of Mars. We also calculate the atmospheric escape of the ionospheric species, including pick up ions. Finally, we compare our model results with the Viking, MGS and Mars Express observations.

  13. Development of Low Cost Contacts to Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Tanner, D. P.

    1979-01-01

    Different electroless plating systems were evaluated in conjunction with copper electroplating. All tests involved simultaneous deposition of front and back contacts using a standard cell materials. Cells with good adhesion and good curve fill factors were obtained using a palladium-chromium-copper metallization system. The final copper contact system was evaluated to determine if the copper would migrate at elevated temperatures. The copper migrated at elevated temperatures causing cell output degradation.

  14. Physics of Coupled CME and Flare Systems

    DTIC Science & Technology

    2016-12-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0162 TR-2016-0162 PHYSICS OF COUPLED CME AND FLARE SYSTEMS K. S. Balasubramaniam, et al. 21 December 2016 Final...30 Sep 2016 4. TITLE AND SUBTITLE Physics of Coupled CME and Flare Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F...objectives for this task were: (i) derive measureable physical properties and discernible structural circumstances in solar active regions that

  15. Collisional and Dynamical Evolution of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    2004-01-01

    Senior Scientst S. J. Weidenschilling presents his final administrative report in the research program entitled "Collisional and Dynamical Evolution of Planetary Systems," on which he was the Principal Investigator. This research program produced the following publications: 1) "Jumping Jupiters" in binary star systems. F. Marzari, S. J. Weidenschilling, M. Barbieri and V. Granata. Astrophys. J., in press, 2005; 2) Formation of the cores of the outer planets. To appear in "The Outer Planets" (R. Kallenbach, ED), ISSI Conference Proceedings (Space Sci. Rev.), in press, 2005; 3) Accretion dynamics and timescales: Relation to chondrites. S. J. Weidenschilling and J. Cuzzi. In Meteorites and the Early Solar System LI (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005; 4) Asteroidal heating and thermal stratification of the asteroid belt. A. Ghosh, S. J.Weidenschilling, H. Y. McSween, Jr. and A. Rubin. In Meteorites and the Early Solar System I1 (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005.

  16. TRMM Solar Array Panels

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  17. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.

    2011-07-01

    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections tomore » solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.« less

  18. Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leidholm, C.; Hotz, C.; Breeze, A.

    2012-09-01

    This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter of the subcontract.

  19. Report of the solar physics panel

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.; Fisher, Richard R.; Antiochos, Spiro; Brueckner, Guenter; Hoeksema, J. Todd; Hudson, Hugh; Moore, Ronald; Radick, Richard R.; Rottman, Gary; Scherrer, Philip

    1991-01-01

    Recent accomplishments in solar physics can be grouped by the three regions of the Sun: the solar interior, the surface, and the exterior. The future scientific problems and areas of interest involve: generation of magnetic activity cycle, energy storage and release, solar activity, solar wind and solar interaction. Finally, the report discusses a number of future space mission concepts including: High Energy Solar Physics Mission, Global Solar Mission, Space Exploration Initiative, Solar Probe Mission, Solar Variability Explorer, Janus, as well as solar physics on Space Station Freedom.

  20. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  1. Community Solar Program Final Report for Austin Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Austin Energy seeks to expand its portfolio of renewable programs with an innovative community solar program. The program provides an opportunity for Austin Energy's customers, who are unable or uninterested in installing solar on their own premises, to purchase solar power.

  2. The Jupiter System Observer Mission Concept: Scientific Investigation of the Jovian System

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; Sdt, J.

    2007-12-01

    NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." This JPL-led study's final report is now complete and was submitted in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. The study's NASA-appointed, multi-institutional Science Definition Team (SDT) identified a rich set of science objectives that JSO can address quite well. The highly capable science payload (including ~50-cm optics), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the SDT evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts, and some options available for emphasizing specific science objectives. This work was performed at JPL, APL, and other institutions under contract to NASA.

  3. Cleaning at the Edge of Science: NASA's Genesis Mission

    NASA Technical Reports Server (NTRS)

    Stansbery, Eileen K.; Biesinger, Paul H.

    2000-01-01

    As part of NASA's continuing exploration of the origins of our solar system, the California Institute of Technology, Jet Propulsion Laboratory, Lockheed Martin Astronautics, Los Alamos National Laboratory, and the Johnson Space Center are working together to develop the Genesis mission to return solar matter for analysis in terrestrial laboratories. These samples will be used to define a baseline for the chemical and isotopic composition of the solar nebula. Deviations from the baseline resulted as the solar system evolved; thus, providing a tracer for materials incorporated into meteorites, comets and planetary bodies. These differences represent "fossil residues" that provide invaluable insight into how the solar nebula evolved to form the planets. We cannot collect a sample of the Sun as we would for a planet; fortunately, solar material comes to us in the form of the solar wind. Ultrapure materials will be exposed at the Earth-Sun L1, outside the Earth's magnetic influence, where solar wind nuclei will be captured for 2 years before returning to Earth in January 2001. The key challenge to obtaining a good sample of solar wind, uncontaminated by terrestrial atoms, is a clean collection surface in a clean sample canister and clean facilities with which to handle the samples for allocation and future reference. The Johnson Space Center QSQ is responsible for contamination control for the mission, for ensuring the cleanliness of collection surfaces and providing a clean environment for their subsequent handling. The level of cleanliness required is high; at the time of analysis (after sample return), the surface contamination by C, N, O must each be less than 10(exp 15) atoms per centimeter squared and for elements other than C, N, O, the number of atoms per centimeter squared of each surface contaminant shall not exceed the estimated solar wind fluence of the species (varies by element between U at approx. 10 (exp 4) atoms per centimeter squared to Fe, Si, Mg, and Ne at approx. 10(exp 12), atoms per centimeter squared). Typical spacecraft assembly is done in class 10,000 cleanrooms. The final cleaning and reintegration of the Genesis payload canister as well as all sample material handling will be done within a class 10 cleanroom using Dryden suits to protect the collector materials from any human debris. Each component is unique, no standard size, shape, material, or precleaning history. We are developing new final cleaning techniques utilizing ultra-pure water to minimize molecular residues on the hardware components.

  4. Point-Focus Concentration Compact Telescoping Array: Extreme Environments Solar Power Base Phase Final Report

    NASA Technical Reports Server (NTRS)

    McEachen, Michael E.; Murphy, Dave; Meinhold, Shen; Spink, Jim; Eskenazi, Mike; O'Neill, Mark

    2017-01-01

    Orbital ATK, in partnership with Mark ONeill LLC (MOLLC), has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 125th the size of the lens. CTA stands for Compact Telescoping Array, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018.The NASA Game Changing Development Extreme Environment Solar Power (EESP) Base Phase study has enabled Orbital ATK to refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL 4. Key performance metrics currently projected are as follows: Scalability from 5 kW to 300 kW per wing (AM0); Specific Power 500 Wkg (AM0); Stowage Efficiency 100 kWm3; 5:1 margin on pointing tolerance vs. capability; 50 launched cost savings; Wide range of operability between Venus and Saturn by active andor passive thermal management.

  5. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  6. Progress in preliminary studies at Ottana Solar Facility

    NASA Astrophysics Data System (ADS)

    Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.

    2016-05-01

    The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.

  7. 75 FR 52966 - Notice of Availability of the Final Environmental Impact Statement for the Genesis Solar, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Genesis Solar Energy Project and Proposed California Desert Conservation Area Plan Amendment AGENCY... Solar LLC's Genesis Solar Energy Project (GSEP) and by this notice is announcing its availability. DATES... amendment the CDCA Plan to make the area suitable for solar energy development; a reduced acreage...

  8. Terrestrial Planet Formation from an Annulus -- Revisited

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Walsh, Kevin J.; Kretke, Katherine A.; Levison, Harold F.

    2018-04-01

    Numerous recent theories of terrestrial planet formation suggest that, in order to reproduce the observed large Earth to Mars mass ratio, planets formed from an annulus of material within 1 au. The success of these models typically rely on a Mars sized embryo being scattered outside 1 au (to ~1.5 au) and starving, while those remaining inside 1 au continue growing, forming Earth and Venus. In some models the scattering is instigated by the migration of giant planets, while in others an embryo-instability naturally occurs due to the dissipation of the gaseous solar nebula. While these models can typically succeed in reproducing the overall mass ratio among the planets, the final angular momentum deficit (AMD) of the present terrestrial planets in our Solar System, and their radial mass concentration (RMC), namely the position where Mars end up in the simulations, are not always well reproduced. Assuming that the gas nebula may not be entirely dissipated when such an embryo-instability happens, here, we study the effects that the time of such an instability can have on the final AMD and RMC. In addition, we also included energy dissipation within embryo-embryo collisions by assuming a given coefficient of restitution for collisions. Our results show that: i) dissipation within embryo-embryo collisions do not play any important role in the final terrestrial planetary system; ii) the final AMD decreases only when the number of final planets formed increases; iii) the RMC tends to always be lower than the present value no matter the number of final planets; and iv) depending on the time that the embryo-instability happen, if too early, with too much gas still present, a second instability will generally happen after the dissipation of the gas nebula.

  9. Analysis of Surface Charging for a Candidate Solar Sail Mission Using NASCAP-2K

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph L.; Davis, V. A.; Mandell, Myron; Gardner, Barbara

    2005-01-01

    The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design tasks. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.9 AU LI solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k. the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.

  10. Analysis of Surface Charging for a Candidate Solar Sail Mission Using Nascap-2k

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.; Davis, Victoria; Mandell, Myron; Gardner, Barbara

    2005-01-01

    The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design task. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.0 AU L1 solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.

  11. Thermal State-of-Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., Jr.; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  12. Thermal design of spacecraft solar arrays using a polyimide foam

    NASA Astrophysics Data System (ADS)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  13. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert; Abplanalp, Jennifer M.

    2015-03-01

    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19more » locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.« less

  14. NASA's Advanced Solar Sail Propulsion System for Low-Cost Deep Space Exploration and Science Missions that Use High Performance Rollable Composite Booms

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.; Rose, Geoffrey K.; Younger, Casey J.; Dean, Gregory D.; Warren, Jerry E.; Stohlman, Olive R.; Wilkie, W. Keats

    2017-01-01

    Several low-cost solar sail technology demonstrator missions are under development in the United States. However, the mass saving derived benefits that composites can offer to such a mass critical spacecraft architecture have not been realized yet. This is due to the lack of suitable composite booms that can fit inside CubeSat platforms and ultimately be readily scalable to much larger sizes, where they can fully optimize their use. With this aim, a new effort focused at developing scalable rollable composite booms for solar sails and other deployable structures has begun. Seven meter booms used to deploy a 90 m2 class solar sail that can fit inside a 6U CubeSat have already been developed. The NASA road map to low-cost solar sail capability demonstration envisioned, consists of increasing the size of these composite booms to enable sailcrafts with a reflective area of up to 2000 m2 housed aboard small satellite platforms. This paper presents a solar sail system initially conceived to serve as a risk reduction alternative to Near Earth Asteroid (NEA) Scout's baseline design but that has recently been slightly redesigned and proposed for follow-on missions. The features of the booms and various deployment mechanisms for the booms and sail, as well as ground support equipment used during testing, are introduced. The results of structural analyses predict the performance of the system under microgravity conditions. Finally, the results of the functional and environmental testing campaign carried out are shown.

  15. Road Nail: Experimental Solar Powered Intelligent Road Marking System

    NASA Astrophysics Data System (ADS)

    Samardžija, Dragan; Teslić, Nikola; Todorović, Branislav M.; Kovač, Erne; Isailović, Đorđe; Miladinović, Bojan

    2012-03-01

    Driving in low visibility conditions (night time, fog or heavy precipitation) is particularly challenging task with an increased probability of traffic accidents and possible injuries. Road Nail is a solar powered intelligent road marking system of wirelessly networked signaling devices that improve driver safety in low visibility conditions along hazardous roadways. Nails or signaling devices are autonomous nodes with capability to accumulate energy, exchange wireless messages, detect approaching vehicles and emit signalization light. We have built an experimental test-bed that consists of 20 nodes and a cellular gateway. Implementation details of the above system, including extensive measurements and performance evaluations in realistic field deployments are presented. A novel distributed network topology discovery scheme is proposed which integrates both sensor and wireless communication aspects, where nodes act autonomously. Finally, integration of the Road Nail system with the cellular network and the Internet is described.

  16. Field Performance of Photovoltaic Systems in the Tucson Desert

    NASA Astrophysics Data System (ADS)

    Orsburn, Sean; Brooks, Adria; Cormode, Daniel; Greenberg, James; Hardesty, Garrett; Lonij, Vincent; Salhab, Anas; St. Germaine, Tyler; Torres, Gabe; Cronin, Alexander

    2011-10-01

    At the Tucson Electric Power (TEP) solar test yard, over 20 different grid-connected photovoltaic (PV) systems are being tested. The goal at the TEP solar test yard is to measure and model real-world performance of PV systems and to benchmark new technologies such as holographic concentrators. By studying voltage and current produced by the PV systems as a function of incident irradiance, and module temperature, we can compare our measurements of field-performance (in a harsh desert environment) to manufacturer specifications (determined under laboratory conditions). In order to measure high-voltage and high-current signals, we designed and built reliable, accurate sensors that can handle extreme desert temperatures. We will present several benchmarks of sensors in a controlled environment, including shunt resistors and Hall-effect current sensors, to determine temperature drift and accuracy. Finally we will present preliminary field measurements of PV performance for several different PV technologies.

  17. Deadwood Community Center and Firehall, Deadwood, Oregon. Phase I. Design documentation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. Z.; Kellett, R.; Reynolds, J. S.

    1980-01-01

    The energy related portions of an architectural design process for a passive solar heating system that directly incorporated the needs, values, and aspirations of the people who will construct and use the buildings are described. The design process and the documentation and evaluation of the final design are presented. (MHR)

  18. Final Environmental Assessment for a Solar Power System at Davis-Monthan Air Force Tucson, Arizona

    DTIC Science & Technology

    2009-09-01

    construction would occur in previously disturbed area, soil condition would not be substantially altered. Best Management Practices (BMP), to include...installation of silt fencing and sediment traps, water spray application, disturbed area revegatation, would be used to limit soil movement, stabilize...implementation of BMPs and adherence to the Arizona Pollutant Discharge Elimination System Permit would minimize the potential for exposed soils or other

  19. Multiaperture Optical System Research.

    DTIC Science & Technology

    1987-11-06

    pp. 179-185 (1965). 6. Welford, W. T. and Winston , R., The Optics of Nonimaging Concentrators , P. 3, Academic Press, New York (1978). 7. Schneider, R...Welford and Winston investigated it was a possible concentrator for solar energy. They came up with the "ideal concentrator ", which has walls shaped...MULTIAPZRTURE OPTICAL SYSTEM RESEARCH ." Office of Naval Research Contract Number N00014-85-C-0862 . FINAL REPORT by RTS LABORATORIES, INC. 1663

  20. Design of a solar collector system formed by a Fresnel lens and a CEC coupled to plastic fibers

    NASA Astrophysics Data System (ADS)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.; Ceballos-Herrera, Daniel E.; Selvas-Aguilar, Romeo

    2015-08-01

    Among the main challenges for systems based in solar concentrators and plastic optical fibers (POF) the accuracy needed for the solar tracking is founded. One approach to overcome these requirements is increasing acceptance angle of the components, usually by secondary optical elements (SOE), however this technique is effective for photovoltaic applications but it has not been analyzed for systems coupled to POFs for indoor illumination. On this subject, it is presented a numerical analysis of a solar collector assembled by a Fresnel lens as primary optical element (POE) combined with a compound elliptical concentrator (CEC) coupled to POF in order to compare its performance under incidence angle direction and also to show a trade-off analysis for two different Fresnel lens shapes, imaging and nonimaging, used in the collector system. The description of the Fresnel lenses and its designs are included, in addition to the focal areas with space and angular distribution profiles considering the optimal alignment with the source and maximum permissible incident angle for each case. For both systems the coupling between the optical components is analyzed and the total performance is calculated, having as result its comparison for indoor illumination. In both cases, the systems have better performance increasing the final output power, but the angular tolerance only was improved for the system with nonimaging concentrator that had an efficiency over 80% with acceptance angles 𝜃𝑖 ≤ 2° and, the system integrated by the imaging lens, presented an efficiency ratio over 75% for acceptance angles 𝜃𝑖 ≤ 0.7°.

  1. Oscar: a portable prototype system for the study of climate variability

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Rosoldi, Marco; Amato, Francesco

    2015-04-01

    The study of the techniques for the exploitation of solar energy implies the knowledge of nature, ecosystem, biological factors and local climate. Clouds, fog, water vapor, and the presence of large concentrations of dust can significantly affect the way to exploit the solar energy. Therefore, a quantitative characterization of the impact of climate variability at the regional scale is needed to increase the efficiency and sustainability of the energy system. OSCAR (Observation System for Climate Application at Regional scale) project, funded in the frame of the PO FESR 2007-2013, aims at the design of a portable prototype system for the study of correlations among the trends of several Essential Climate Variables (ECVs) and the change in the amount of solar irradiance at the ground level. The final goal of this project is to provide a user-friendly low cost solution for the quantification of the impact of regional climate variability on the efficiency of solar cell and concentrators to improve the exploitation of natural sources. The prototype has been designed on the basis of historical measurements performed at CNR-IMAA Atmospheric Observatory (CIAO). Measurements from satellite and data from models have been also considered as ancillary to the study, above all, to fill in the gaps of existing datasets. In this work, the results outcome from the project activities will be presented. The results include: the design and implementation of the prototype system; the development of a methodology for the estimation of the impact of climate variability, mainly due to aerosol, cloud and water vapor, on the solar irradiance using the integration of the observations potentially provided by prototype; the study of correlation between the surface radiation, precipitation and aerosols transport. In particular, a statistical study will be presented to assess the impact of the atmosphere on the solar irradiance at the ground, quantifying the contribution due to aerosol and clouds and separating their effect on the direct and the diffuse components of the solar radiation. This also aims to provide recommendations to the manufacturer of the devices used to exploit solar radiation.

  2. Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Morbidelli, Alessandro

    2012-10-01

    Several properties of the solar system, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early solar system evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly 104 numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large (M disk >~ 50 M Earth), but we found that a massive disk would lead to excessive dynamical damping (e.g., final e 55 <~ 0.01 compared to present e 55 = 0.044, where e 55 is the amplitude of the fifth eccentric mode in the Jupiter's orbit), and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the solar system was assumed to have five giant planets initially, and one ice giant, with mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn and M disk ~= 20 M Earth. The range of possible outcomes is rather broad in this case, indicating that the present solar system is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a sime5% probability (as defined by the success criteria described in the main text). The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five-planet case.

  3. Disformal theories of gravity: from the solar system to cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk

    This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use localmore » tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.« less

  4. An approach for finding long period elliptical orbits for precursor SEI missions

    NASA Technical Reports Server (NTRS)

    Fraietta, Michael F.; Bond, Victor R.

    1993-01-01

    Precursors for Solar System Exploration Initiative (SEI) missions may require long period elliptical orbits about a planet. These orbits will typically have periods on the order of tens to hundreds of days. Some potential uses for these orbits may include the following: studying the effects of galactic cosmic radiation, parking orbits for engineering and operational test of systems, and ferrying orbits between libration points and low altitude orbits. This report presents an approach that can be used to find these orbits. The approach consists of three major steps. First, it uses a restricted three-body targeting algorithm to determine the initial conditions which satisfy certain desired final conditions in a system of two massive primaries. Then the initial conditions are transformed to an inertial coordinate system for use by a special perturbation method. Finally, using the special perturbation method, other perturbations (e.g., sun third body and solar radiation pressure) can be easily incorporated to determine their effects on the nominal trajectory. An algorithm potentially suitable for on-board guidance will also be discussed. This algorithm uses an analytic method relying on Chebyshev polynomials to compute the desired position and velocity of the satellite as a function of time. Together with navigation updates, this algorithm can be implemented to predict the size and timing for AV corrections.

  5. Continued Analysis of EUVE Solar System Observations

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. We proposed to continue our work on extracting important results from the EUVE (Extreme UltraViolet Explorer) archive of lunar and jovian system observations. In particular, we planned to: (1) produce several monochromatic images of the Moon at the wavelengths of the brightest solar EUV emission lines; (2) search for evidence of soft X-ray emissions from the Moon and/or X-ray fluorescence at specific EUV wavelengths; (3) search for localized EUV and soft X-ray emissions associated with each of the Galilean satellites; (4) search for correlations between localized Io Plasma Torus (IPT) brightness and volcanic activity on Io; (5) search for soft X-ray emissions from Jupiter; and (6) determine the long term variability of He 58.4 nm emissions from Jupiter, and relate these to solar variability. However, the ADP review panel suggested that the work concentrate on the Jupiter/IPT observations, and provided half the requested funding. Thus we have performed no work on the first two tasks, and instead concentrated on the last three. In addition we used funds from this project to support reduction and analysis of EUVE observations of Venus. While this was not part of the original statement of work, it is entirely in keeping with extracting important results from EUVE solar system observations.

  6. Jupiter and Its Galilean Satellites

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2012-01-01

    Jupiter is one of the two most studied planets other than Earth in our Solar System. It is the largest, fastest rotating, has the strongest magnetic field, and an incredibly diverse set of satellites, most prominent of which are the four Galilean satellites discovered in 1610. Io, Europa, Ganymede and Callisto encompass some of the most bizarre environments known in the solar system, from Io, the most volcanically active and perhaps the most inhospitable body known, to Europa, currently thought to be the most likely extraterrestrial abode for habitability, to Ganymede, which is larger than Mercury, and Callisto, which has the oldest surface known in the solar system with the widest array of crater morphologies known. One of the premier areas of scientific return in solar system research in the past 15 years, due in large part to the Galileo mission and observations by the Hubble Space Telescope, has been a remarkable increase in our knowledge about these satellites. Discoveries have been made of tenuous molecular oxygen atmospheres on Europa and Ganymede, a magnetic field and accompanying auroral emissions at the poles of Ganymede, and of ozone and sulfur dioxide embedded in the surfaces of Europa, Ganymede and Callisto. Io's unusual sulfur dioxide atmosphere, including its volcanic plumes and strong electrodynamic interaction with magnetospheric plasma, has finally been quantitatively characterized. This talk will present highlights from the recent discoveries and advances in our understanding of these fascinating objects.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  8. Optimal Capacitor Bank Capacity and Placement in Distribution Systems with High Distributed Solar Power Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Mather, Barry A; Cho, Gyu-Jung

    Capacitor banks have been generally installed and utilized to support distribution voltage during period of higher load or on longer, higher impedance, feeders. Installations of distributed energy resources in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile across a feeder, and therefore when a new capacitor bank is needed analysis of optimal capacity and location of the capacitor bank is required. In this paper, we model a particular distribution system including essential equipment. An optimization method is adopted to determine the best capacitymore » and location sets of the newly installed capacitor banks, in the presence of distributed solar power generation. Finally we analyze the optimal capacitor banks configuration through the optimization and simulation results.« less

  9. Mountain Retail Stores Become Showcase for Solar Energy

    Science.gov Websites

    -seam metal roof, a transpired solar collector (solar wall), daylighting, energy efficient windows and during daytime hours. The Bighorn Center's final design includes clerestory windows for daylighting and a

  10. Benefits of Colocating Concentrating Solar Power and Wind

    DOE PAGES

    Sioshansi, Ramteen; Denholm, Paul

    2013-09-16

    Here, we analyze the potential benefits of colocating wind and concentrating solar power (CSP) plants in the southwestern U.S. Using a location in western Texas as a case study, we demonstrate that such a deployment strategy can improve the capacity factor of the combined plant and the associated transmission investment. This is because of two synergies between wind and CSP: 1) the negative correlation between real-time wind and solar resource availability and 2) the use of low-cost high-efficiency thermal energy storage in CSP. The economic tradeoff between transmission and system performance is highly sensitive to CSP and transmission costs. Finally,more » we demonstrate that a number of deployment configurations, which include up to 67% CSP, yield a positive net return on investment.« less

  11. Optimization of the interplanetary trajectories of spacecraft with a solar electric propulsion power plant of minimal power

    NASA Astrophysics Data System (ADS)

    Ivanyukhin, A. V.; Petukhov, V. G.

    2016-12-01

    The problem of optimizing the interplanetary trajectories of a spacecraft (SC) with a solar electric propulsion system (SEPS) is examined. The problem of investigating the permissible power minimum of the solar electric propulsion power plant required for a successful flight is studied. Permissible ranges of thrust and exhaust velocity are analyzed for the given range of flight time and final mass of the spacecraft. The optimization is performed according to Portnyagin's maximum principle, and the continuation method is used for reducing the boundary problem of maximal principle to the Cauchy problem and to study the solution/ parameters dependence. Such a combination results in the robust algorithm that reduces the problem of trajectory optimization to the numerical integration of differential equations by the continuation method.

  12. Effects of Solar Array Shadowing on the Power Capability of the Interim Control Module

    NASA Technical Reports Server (NTRS)

    Fincannon, James; Hojnicki, Jeffrey S.; Garner, James Christopher

    1999-01-01

    The Interim Control Module (ICM) is being built by the US Naval Research Laboratory (NRL) for NASA as a propulsion module for the International Space Station (ISS). Originally developed as a spinning spacecraft used to move payloads to their final orbit, for ISS, the ICM will be in a fixed orientation and location for long periods resulting in substantial solar panel shadowing. This paper describes the methods used to determine the incident energy incident energy on the ICM solar panels and the power capability of the electric power system (EPS). Applying this methodology has resulted in analyses and assessments used to identify ICM early design changes/options, placement and orientations that enable successful operation of the EPS under a wide variety of anticipated conditions.

  13. Statistical properties of correlated solar flares and coronal mass ejections in cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2018-01-01

    Outstanding problems in understanding early stellar systems include mass loss, angular momentum evolution, and the effects of energetic events on the surrounding environs. The latter of these drives much research into our own system's space weather and the development of predictive algorithms for geomagnetic storms. So dually motivated, we have leveraged a big-data approach to combine two decades of GOES and LASCO data to identify a large sample of spatially and temporally correlated solar flares and CMEs. In this presentation, we revisit the analysis of Aarnio et al. (2011), adding 10 years of data and further exploring the relationships between correlated flare and CME properties. We compare the updated data set results to those previously obtained, and discuss the effects of selecting smaller time windows within solar cycles 23 and 24 on the empirically defined relationships between correlated flare and CME properties. Finally, we discuss a newly identified large sample of potentially interesting correlated flares and CMEs perhaps erroneously excluded from previous searches.

  14. Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C.

    1977-01-01

    The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection.

  15. 75 FR 78992 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...--Solar Energy Development in Six Southwestern States, To Establish a New BLM Solar Energy Program applicable to Utility-Scale Solar Energy Development and DOE's Proposed Action to Develop new Program... 01/20/2011. EIS No. 20100339, Final EIS, BLM, CA, Adoption--Genesis Solar Energy Project, Application...

  16. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.

    1987-01-01

    A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.

  17. Final Report Ra Power Management 1255 10-15-16 FINAL_Public

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iverson, Aaron

    Ra Power Management (RPM) has developed a cloud based software platform that manages the financial and operational functions of third party financed solar projects throughout their lifecycle. RPM’s software streamlines and automates the sales, financing, and management of a portfolio of solar assets. The software helps solar developers automate the most difficult aspects of asset management, leading to increased transparency, efficiency, and reduction in human error. More importantly, our platform will help developers save money by improving their operating margins

  18. Renewable Energy in Rural Southeastern Arizona: Decision Factors: A Comparison of the Consumer Profiles of Homeowners Who Purchased Renewable Energy Systems With Those Who Performed Other Home Upgrades or Remodeling Projects

    NASA Astrophysics Data System (ADS)

    Porter, Wayne Eliot

    Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas in Arizona. This thesis tests the hypothesis that a consumer profile developed to characterize the adopters of renewable energy technology (RET) systems in rural Arizona is the same as the profile of other area residents who performed renovations, upgrades or additions to their homes. Residents of Santa Cruz and Cochise Counties who had obtained building permits to either install a solar or wind energy system or to perform a substantial renovation or upgrade to their home were surveyed to gather demographic, psychographic and behavioristic data. The data from 133 survey responses (76 from RET adopters and 57 from non-adopters) provided insights about their decisions regarding whether or not to adopt a RET system. The results, which are statistically significant at the 99% level of confidence, indicate that RET adopters had smaller households, were older and had higher education levels and greater income levels than the non-adopters. The research also provides answers to three related questions: First, are the energy conservation habits of RET adopters the same as those of non-adopters? Second, what were the sources of information consulted and the most important factors that motivated the decision to purchase a solar or wind energy system? And finally, are any of the factors which influenced the decision to live in a rural area in southeastern Arizona related to the decision to purchase a renewable energy system? The answers are provided, along with a series of recommendations that are designed to inform marketers and other promoters of RETs about how to utilize these results to help achieve their goals.

  19. MODIS. Volume 2: MODIS level 1 geolocation, characterization and calibration algorithm theoretical basis document, version 1

    NASA Technical Reports Server (NTRS)

    Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.

    1994-01-01

    The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.

  20. Series-parallel solar-augmented rock-bed heat pump. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Othmer, P.W.

    1979-12-31

    This report deals with a system representing an alternate arrangement of the components in an air-type, heat pump augmented solar heating system. In this system, referred to as Series-Parallel, the heat pump coils are at opposite ends of the rock bed, allowing heating and cooling of the air entering and leaving the bed. This allows a number of unique modes of operation, some of which allow off-peak use of the necessary utility power. Cooling modes are also available, including off-peak cooling-effect storage, night cooling, and free cooling (economizing). The system finds applications principally in single-family residences. The study examined themore » performance of this system at three locations (Sacramento, Albuquerque, and New York) by means of a simulation model. Seasonal heating and cooling performance factors of about 3 were obtained for Albuquerque for the system integrated into a 200 m/sup 2/ residence. Design integration studies suggest an installed cost of approximately $28,000 above a conventional heat pump system using commercially available components. This high cost is largely due to solar hardware, although system complexity also adds. Availability of low-cost air type collectors may make the system attractive. The study also addresses the general problem of predictive control necessary whenever off-peak storage is employed. An algorithm is presented, along with results.« less

  1. 77 FR 15794 - Final Environmental Impact Statement for the Proposed KRoad Moapa Solar Generation Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... construct, operate, and maintain an up to 350 MW solar photovoltaic electricity generating [[Page 15795... Proposed KRoad Moapa Solar Generation Facility, Clark County, NV AGENCY: Bureau of Indian Affairs, Interior... KRoad Moapa Solar Generation Facility on the Moapa River Indian Reservation (Reservation) in Clark...

  2. The role of the sun in the celestial compass of dung beetles

    PubMed Central

    Dacke, M.; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day. PMID:24395963

  3. The role of the sun in the celestial compass of dung beetles.

    PubMed

    Dacke, M; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.

  4. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2018-01-01

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10-5. By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10-5 and the Sun's gravitational oblateness, J2⊙J2⊙ = (2.246 ± 0.022) × 10-7. Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, GM⊙°/GM⊙GM⊙°/GM⊙ = (-6.13 ± 1.47) × 10-14, which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain ∣∣G°∣∣/GG°/G to be <4 × 10-14 per year.

  5. Improvements In solar dry kiln design

    Treesearch

    E. M. Wengert

    1971-01-01

    Interest in solar drying of lumber has increased in recent years because previous results had indicated that: Drying times are shorter and final moisture contents are lower in solar drying than in air drying; much less lumber degrade occurs in solar drying when compared to air drying; and the cost of energy is less in solar drying than in kiln drying. Work in the field...

  6. 75 FR 72836 - Notice of Availability of Final Environmental Impact Statement for the Tonopah Solar Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... of the solar field. A heat transfer fluid is heated as it passes through the receiver tower and is... Statement for the Tonopah Solar Energy Crescent Dunes Solar Energy Project, Nye County, NV AGENCY: Bureau of... Statement (EIS) for the Crescent Dunes Solar Energy Project, Nye County, Nevada, and by this notice is...

  7. Brownfields City of Houston Solar Project: Solar Power Analysis and Design Specifications

    EPA Pesticide Factsheets

    This document details the scope of work elements completed in support of this project, as well as recommendations for next steps towards solar project development and power purchase agreement negotiation and finalization.

  8. Triumph of the Voyager mission

    USGS Publications Warehouse

    Kerr, R. A.

    1989-01-01

    It had been a long, productive trip. Launched in 1977, the two Voyager spacecraft had visited three giant planets, a dozen major Moons, three ring systems with thousands of rings composed of a myriad of tiny Moonlets. The spacecraft had returned 5 trillion bits of data and over 100,000 photographs. The last encounter in our Solar System by Voyager 2 with Neptune was to be a spectacular finale to the 12-year drama. 

  9. Optical system design of solar-blind UV target receiver with large FOV

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2014-11-01

    Ultraviolet (UV) radiation of 200nm-300nm waveband from the sun is absorbed by atmosphere, which is often referred to the solar-blind region of the solar spectrum. Solar-blind characteristics of this waveband have important application value in forest-fire prevention, UV security communication, UV corona detection and other aspects. Especially in military fields such as missile warning, the application of solar-blind waveband has developed very rapidly, which is receiving more and more attention recently. In this paper, ZEMAX software is used to design an optical system of solar-blind UV target receiver with waveband 240nm-280nm, with which UV target signal can be detected. The optional materials are very few for UV optical systems to choose from, in which only CaF2 and JGS1 are commonly used. Various aberrations are not easy to be corrected. So it is very difficult to design a good UV system. Besides, doublet or triplet cannot be used in UV optical system considering possible cracking for different thermal expansion coefficients of different materials. So the doublet in initial structure is separated for this reason. During the optimization process, an aspheric surface is used to correct the aberrations. But this surface is removed before the design is finished to save production cost and enhance the precision of fabrication and test, which still keeps the image quality meeting the usage requirements. What we care for is the converging condition for different field of view from the far object on image plane. So this is an energy system. Spot diagram is taken as the evaluation criterion of image quality. The system is composed of 6 lenses with field of view (FOV) 31 degrees. In the final design results, the root mean square (RMS) radius for marginal FOV is less than 6.3 microns, while the value is only 4 microns for zero FOV. Point Spread Function and diffraction encircled energy diagram within the maximum FOV confirms the good performance of system further.

  10. Transient analysis and energy optimization of solar heating and cooling systems in various configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calise, F.; Dentice d'Accadia, M.; Palombo, A.

    2010-03-15

    In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H{sub 2}O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used asmore » the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation. The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis. The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems. (author)« less

  11. Exploring the Potential Competitiveness of Utility-Scale Photovoltaics plus Batteries with Concentrating Solar Power, 2015–2030

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, David; Margolis, Robert; Denholm, Paul

    Declining costs of both solar photovoltaics (PV) and battery storage have raised interest in the creation of “solar-plus-storage” systems to provide dispatchable energy and reliable capacity. There has been limited deployment of PV-plus-energy storage systems (PV+ESS), and the actual configuration and performance of these systems for dispatchable energy are in the early stages of being defined. In contrast, concentrating solar power with thermal energy storage (CSP+TES) has been deployed at scale with the proven capability of providing a dispatchable, reliable source of renewable generation. A key question moving forward is how to compare the relative costs and benefits of PV+ESSmore » and CSP+TES. While both technologies collect solar radiation and produce electricity, they do so through very different mechanisms, which creates challenges for direct comparison. Nonetheless, it is important to establish a framework for comparison and to identify cost and performance targets to aid meeting the nation’s goals for clean energy deployment. In this paper, we provide a preliminary assessment comparing the cost of energy from CSP+TES and PV+ESS that focuses on a single metric: levelized cost of energy (LCOE). We begin by defining the configuration of each system, which is particularly important for PV+ESS systems. We then examine a range of projected cost declines for PV, batteries, and CSP. Finally, we summarize the estimated LCOE over a range of configuration and cost estimates. We conclude by acknowledging that differences in these technologies present challenges for comparison using a single performance metric. We define systems with similar configurations in some respects. In reality, because of inherent differences in CSP+TES and PV+ESS systems, they will provide different grid services and different value. For example, depending on its configuration, a PV+ESS system may provide additional value over CSP+TES by providing more flexible operation, including certain ancillary services and the ability to store off-peak grid energy. Alternatively, direct thermal energy storage allows a greater capture of solar energy, reducing the potential for curtailments in very high solar scenarios. So while this analysis evaluates a key performance metric (cost per unit of generation) under a range of cost projections, additional analysis of the value per unit of generation will be needed to comprehensively assess the relative competitiveness of solar energy systems deployed with energy storage.« less

  12. Fifty year canon of solar eclipses: 1986 - 2035

    NASA Technical Reports Server (NTRS)

    Espenak, Fred

    1987-01-01

    A complete catalog is presented, listing the general characteristics of every solar eclipse from 1901 through 2100. To complement this catalog, a detailed set of cylindrical projection world maps shows the umbral paths of every solar eclipse over the 200 year interval. Focusing in on the next 50 years, accurate geodetic path coordinates and local circumstances for the 71 central eclipses from 1987 through 2035 are tabulated. Finally, the geodetic paths of the umbral and penumbral shadows of all 109 solar eclipses in this period are plotted on orthographic projection maps of the Earth. Appendices are included which discuss eclipse geometry, eclipse frequency and occurrence, modern eclipse prediction and time determination. Finally, code for a simple Fortran program is given to predict the occurrence and characteristics of solar eclipses.

  13. A solar-pumped Nd:YAG laser in the high collection efficiency regime

    NASA Astrophysics Data System (ADS)

    Lando, Mordechai; Kagan, Jacob; Linyekin, Boris; Dobrusin, Vadim

    2003-07-01

    Solar-pumped lasers can be used for space and terrestrial applications. We report on solar side-pumped Nd:YAG laser experiments, which included comprehensive beam quality measurements and demonstrated record collection efficiency and day long operation. A 6.75 m 2 segmented primary mirror was mounted on a commercial two-axis positioner and focused the solar radiation towards a stationary non-imaging-optics secondary concentrator, which illuminated a Nd:YAG laser rod. Solar side-pumped laser experiments were conducted in both the low and the high pumping density regimes. The low density system was composed of a 89 × 98-mm 2 aperture two-dimensional compound parabolic concentrator (CPC) and a 10-mm diameter 130-mm long Nd:YAG laser rod. The laser emitted up to 46 W and operated continuously for 5 h. The high density system was composed of a three-dimensional CPC with 98 mm entrance diameter and 24 mm exit diameter, followed by a two-dimensional CPC with a rectangular 24 × 33 mm 2 aperture. It pumped a 6-mm diameter 72 mm long Nd:YAG laser rod, which emitted up to 45 W. The results constitute a record collection efficiency of 6.7 W/m 2 of primary mirror. We compare the current results to previous solar side-pumped laser experiments, including experiments at higher pumping density but with low collection efficiency. Finally, we present a scaled up design for a 400 W laser pumped by a solar collection area of 60 m 2, incorporating simultaneously high collection efficiency and high pumping density.

  14. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

    NASA Astrophysics Data System (ADS)

    Naldoni, Alberto; Riboni, Francesca; Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.; Kildishev, Alexander V.

    2016-06-01

    Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.

  15. Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations

    NASA Astrophysics Data System (ADS)

    Bubolz, K.; Schenk, H.; Hirsch, T.

    2016-05-01

    Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.

  16. Catch as Catch Can: The History of the Theory of Gravitational Capture.

    ERIC Educational Resources Information Center

    Osipov, Y.

    1992-01-01

    Traces cosmogonic history of solar system from Laplace's hypothesis of revolving gas nebulae, to Newton's two-body problem with its mathematical impossibility of gravitational capture, to the isosceles three-body problem of Schmidt and Sitnikov with its notion of partial capture, and finally to the total capture model of Alexeyev verified by the…

  17. Studies of new media radiation induced laser. Final Report, 1 February 1979-30 April 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, K.S.; Shiu, Y.J.; Raju, S.R.

    Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed.

  18. Calibration of solar radiation measuring instruments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahm, R J; Nakos, J C

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  19. Solar Array Power Conditioning for a Spinning Satellite

    NASA Astrophysics Data System (ADS)

    De Luca, Antonio; Chirulli, Giovanni

    2008-09-01

    The conditioning of the output power from a solar array can mainly be achieved by the adoption of DET or MPPT based architecture. There are several factors that can orientate the choice of the system designer towards one solution or the other; some of them maybe inherent to the mission derived requirements (Illumination levels, EMC cleanliness, etc.), others come directly from a careful assessment of performances and losses of both power conditioner and solar array.Definition of the criteria on which basis the final choice is justified is important as they have to guarantee a clear determination of the available versus the required power in all those mission conditions identifiable as design drivers for the overall satellite system both in terms of mass and costs.Such criteria cannot just be simple theoretical enunciations of principles; nor the meticulous definition of them on a case by case basis for different types of missions as neither option gives a guarantee of being conclusive.The aim of this paper is then to suggest assessment steps and guidelines that can be considered generically valid for any mission case, starting from the exposition of the trade off activity performed in order to choose the power conditioning solution for a spinning satellite having unregulated power bus architecture. Calculations and numerical simulations have been made in order to establish the needed solar array surface in case of adoption of a DET or MPPT solution, taking into account temperature and illumination levels on the solar cells, as well as power losses and inefficiencies from the solar generator to the main power bus, in different mission phases. Particular attention has been taken in order to correctly evaluate the thermal effects on the rest of the spacecraft as function of the adopted power system regulation.

  20. Solar energy and the aeronautics industry. Thesis

    NASA Technical Reports Server (NTRS)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  1. Detection of Planets Orbiting Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Butler, R. Paul

    1996-12-01

    During the past 11 months, astronomers have finally discovered planets orbiting Sun-like stars. A total of eight planets has been detected by the Doppler technique, and there are possible planets detected by astrometry around one other star. Some of the new planets exhibit properties similar to those in our Solar System. But many of them have properties that were unexpected. Several planets are more massive than Jupiter, and some orbit their host star in orbits smaller than Mercury's orbit. Equally unexpected is that three of these planets have noncircular orbits. Current theory of the formation of planetary systems is challenged to account for these new planetary properties, but several models are emerging, involving gravitational scattering of planetesimals and viscous or tidal decay of orbits. The occurrence rate of true analogs of our Solar System will soon be determined with the detection of long-period gas giants analogous to Jupiter.

  2. Solar vs. Fission Surface Power for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; hide

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per crewed expedition mission. Unlike the demonstration mission, a lengthy power outage due to the global dust storms that are known to occur on Mars would pose a safety hazard to a crewed mission. A similar fission versus solar power trade study performed by NASA in 2007 concluded that fission power was more reliable-with a much lower mass penalty-than solar power for this application. However, recent advances in solar cell and energy storage technologies and changes in operational assumptions prompted NASA to revisit the analysis. For the purpose of this exercise a particular landing site at Jezero Crater, located at 18o north latitude, was assumed. A fission power system consisting of four each 10 kW Kilopower fission reactors was compared to a distributed network of Orion-derived Ultraflex solar arrays and Lithium ion batteries mounted on every lander. The team found that a solar power system mass of about 9,800 kg would provide the 22 kilowatts (kW) keep-alive power needed to survive a dust storm lasting up to 120-days at average optical depth of 5, and 35 kW peak power for normal operations under clear skies. Although this is less than half the mass estimated during the 2007 work (which assumed latitudes up to 30o) it is still more than the 7,000 kg mass of the fission system which provides full power regardless of dust storm conditions.

  3. Powering an in-space 3D printer using solar light energy

    NASA Astrophysics Data System (ADS)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    This paper describes how a solar power source can enable in-space 3D printing without requiring conversion to electric power and back. A design for an in-space 3D printer is presented, with a particular focus on the power generation system. Then, key benefits are presented and evaluated. Specifically, the approach facilitates the design of a spacecraft that can be built, launched, and operated at very low cost levels. The proposed approach also facilitates easy configuration of the amount of energy that is supplied. Finally, it facilitates easier disposal by removing the heavy metals and radioactive materials required for a nuclear-power solution.

  4. Development of an Ultra-Low-Cost Solar Water Heater: Cooperative Research and Development Final Report, CRADA Number CRD-12-487

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrigan, Tim

    2016-02-17

    NREL and RhoTech will collaborate to bring long-lived, ultra-low-cost, high-performance solar water heaters (SWH) to market readiness. An existing RhoTech design uses seam-welded polymer thin films to make an unglazed thermosiphon, and this design will be modified to improve durability through ultraviolet and overheat protection, and to improve performance by adding a glazing to the collector. Two generations of the new glazed systems will be tested in the field, resulting in a robust market-ready SWH design that can be installed for under $1,000 without rebates.

  5. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency

  6. The Science Goals of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Grunsfeld, John

    2004-01-01

    The recently released policy directive, "A Renewed Spirit of Discovery: The President's Vision for U. S. Space Exploration," seeks to advance the U. S. scientific, security and economic interest through a program of space exploration which will robotically explore the solar system and extend human presence to the Moon, Mars and beyond. NASA's implementation of this vision will be guided by compelling questions of scientific and societal importance, including the origin of our Solar System and the search for life beyond Earth. The Exploration Roadmap identifies four key targets: the Moon, Mars, the outer Solar System, and extra-solar planets. First, a lunar investigation will set up exploration test beds, search for resources, and study the geological record of the early Solar System. Human missions to the Moon will serve as precursors for human missions to Mars and other destinations, but will also be driven by their support for furthering science. The second key target is the search for past and present water and life on Mars. Following on from discoveries by Spirit and Opportunity, by the end of the decade there will have been an additional rover, a lander and two orbiters studying Mars. These will set the stage for a sample return mission in 2013, increasingly complex robotic investigations, and an eventual human landing. The third key target is the study of underground oceans, biological chemistry, and their potential for life in the outer Solar System. Beginning with the arrival of Cassini at Saturn in July 2004 and a landing on Titan in 2006, the next decade will see an extended investigation of the Jupiter icy moons by a mission making use of Project Prometheus, a program to develop space nuclear power and nuclear-electric propulsion. Finally, the search for Earth-like planets and life includes a series of telescopic missions designed to find and characterize extra-solar planets and search them for evidence of life. These missions include HST and Spitzer, operating now; Kepler, SIM, JWST, and TPF, currently under development; and the vision missions, Life Finder and Planet Imager, which will possibly be constructed in space by astronauts.

  7. A simple orbit-attitude coupled modelling method for large solar power satellites

    NASA Astrophysics Data System (ADS)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  8. Preliminary design of a solar central receiver for site-specific repowering application (Saguaro Power Plant). Volume II. Preliminary design. Final report, October 1982-September 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1983-09-01

    The solar central receiver technology, site, and specific unit for repowering were selected in prior analyses and studies. The objectives of this preliminary design study were to: develop a solar central receiver repowering design for Saguaro that (1) has potential to be economically competitive with fossil fueled plants in near and long term applications, (2) has the greatest chance for completion without further government funding, (3) will further define technical and economic feasibility of a 66 MWe gross size plant that is adequate to meet the requirements for utility and industrial process heat applications, (4) can potentially be constructed andmore » operated within the next five years, and (5) incorporates solar central receiver technology and represents state-of-the-art development. This volume on the preliminary design includes the following sections: executive summary; introduction; changes from advanced conceptual design; preliminary design; system characteristics; economic analysis; and development plan.« less

  9. Technology Pathway Partnership Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at themore » photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.« less

  10. Operation and maintenance of the SOL-DANCE building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-29

    The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in themore » distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)« less

  11. Heat and electricity from the sun using parabolic dish collector systems

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Williams, A. N.

    1979-01-01

    The paper investigates point focus distributed receiver (PFDR) solar thermal technology for the production of electric power and of industrial process heat. Attention is given to a thermal systems project conducted by JPL under DOE sponsorship. It is reported that project emphasis is on the development of cost-effective systems which will accelerate the commercialization and industrialization of plants up to 10 MWe, using parabolic dish collectors. Also discussed are the characteristics of PFDR systems, the cost targets for major systems hardware, and markets for this technology. Finally, the present system status of the technology development effort is discussed.

  12. Thermal design, analysis and comparison on three concepts of space solar power satellite

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS concept, and the three concepts are compared. The design layouts, analysis results and parameter discussions of the thermal management sub-system proposed in this study can help inform future SSPS thermal designs.

  13. Process development for automated solar cell and module production. Task 4: Automated array assembly

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1981-01-01

    Progress in the development of automated solar cell and module production is reported. The unimate robot is programmed for the final 35 cell pattern to be used in the fabrication of the deliverable modules. The mechanical construction of the automated lamination station and final assembly station phases are completed and the first operational testing is underway. The final controlling program is written and optimized. The glass reinforced concrete (GRC) panels to be used for testing and deliverables are in production. Test routines are grouped together and defined to produce the final control program.

  14. Small Satellite Constellations for Geospace Sciences

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific return with comparatively low investments in small satellite missions.

  15. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700more » ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.« less

  16. Saving the Inner Solar System with an Early Instability

    NASA Astrophysics Data System (ADS)

    Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.

    2018-04-01

    An orbital instability between the solar system’s giant planets (the so-called Nice Model) has been shown to greatly disturb the orbits of the young terrestrial planets. Undesirable outcomes such as over-excitated orbits, ejections and collisions can be avoided if the instability occurs before the inner planets are fully formed. Such a scenario also has the advantage of limiting the mass and formation time of Mars when it occurs within several million years (Myr) of gas disk dissipation. The dynamical effects of the instability cause many small embryos and planetesimals to scatter away from the forming Mars, and lead to heavy mass depletion in the Asteroid Belt. We present new simulations of this scenario that demonstrate its ability to accurately reproduce the eccentricity, inclination and resonant structures of the Asteroid Belt. Furthermore, we perform simulations using an integration scheme which accounts for the fragmentation of colliding bodies. The final terrestrial systems formed in these simulations provide a better match to the actual planets' compact mass distribution and dynamically cold orbits. An early instability scenario is thus very successful at simultaneously replicating the dynamical state of both the inner and outer solar system.

  17. Theoretical models for ice mixtures in outer solar system bodies

    NASA Astrophysics Data System (ADS)

    Escribano, R. M.; Gómez, P. C.; Molpeceres, G.; Timón, V.; Moreno, M. A.; Maté, B.

    2016-12-01

    In a recent work [1], we have measured the optical constants and band strengths of methane/ethane ice mixtures in the near- and mid-infrared ranges. We present here recent calculations on models for these and other ice mixtures containing water. Methane and ethane are constituents of planetary ices in our solar system. Methane has been detected in outer solar system bodies like Titan, Pluto, Charon, Triton, or other TNO's [2]. Ethane has also been identified in some of those objects [2]. The motivation of this work has been to provide new laboratory data and theoretical models that may contribute to the understanding of those systems, in the new era of TNO's knowledge opened up by the New Horizons mission [3,4]. The models are designed to cover a range of mixtures of molecular species that match the composition and density of some of the systems in outer solar systems bodies. The calculations include several steps: first, amorphous samples are generated, via a Metropolis Montecarlo procedure (see Figure, left); next, the amorphous structures are relaxed to reach a minimum in the potential energy surface; at this point, the harmonic vibrational spectrum is predicted. Finally, the relaxed structures are processed by ab initio molecular dynamics simulations with the final aim of obtaining an anharmonic prediction of the spectra, which includes the near-infrared region (see Figure, right). Both the harmonic and anharmonic spectra are compared to experimental measurements in the mid- and near-infrared regions. All calculations are carried out by means of Materials Studio software, using the Density Functional Theory method, with GGA-PBE functionals and Grimme D2 dispersion correction. Acknowledgements This research has been supported by the Spanish MINECO, Projects FIS2013-48087-C2-1-P. G.M. acknowledges MINECO PhD grant BES-2014-069355. We are grateful to V. J. Herrero and I. Tanarro for discussions. References [1] G. Molpeceres et al., Astrophys. J, accepted (2016). [2] D.P. Cruikshank et al., Icarus, 246, 82-92, 2015. [3] A. Stern et al., Science, 350, 260-292, 2015. [4] W.M. Grundy et al. Science, 351, 1283, 2016. Figure caption Left: Representation of an amorphous mixture with 1 methane and 3 water molecules; right: spectra predicted in the near-IR from a molecular dynamics calculation.

  18. Addressing the statistical mechanics of planet orbits in the solar system

    NASA Astrophysics Data System (ADS)

    Mogavero, Federico

    2017-10-01

    The chaotic nature of planet dynamics in the solar system suggests the relevance of a statistical approach to planetary orbits. In such a statistical description, the time-dependent position and velocity of the planets are replaced by the probability density function (PDF) of their orbital elements. It is natural to set up this kind of approach in the framework of statistical mechanics. In the present paper, I focus on the collisionless excitation of eccentricities and inclinations via gravitational interactions in a planetary system. The future planet trajectories in the solar system constitute the prototype of this kind of dynamics. I thus address the statistical mechanics of the solar system planet orbits and try to reproduce the PDFs numerically constructed by Laskar (2008, Icarus, 196, 1). I show that the microcanonical ensemble of the Laplace-Lagrange theory accurately reproduces the statistics of the giant planet orbits. To model the inner planets I then investigate the ansatz of equiprobability in the phase space constrained by the secular integrals of motion. The eccentricity and inclination PDFs of Earth and Venus are reproduced with no free parameters. Within the limitations of a stationary model, the predictions also show a reasonable agreement with Mars PDFs and that of Mercury inclination. The eccentricity of Mercury demands in contrast a deeper analysis. I finally revisit the random walk approach of Laskar to the time dependence of the inner planet PDFs. Such a statistical theory could be combined with direct numerical simulations of planet trajectories in the context of planet formation, which is likely to be a chaotic process.

  19. Recent advances of flexible hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk

    2017-11-01

    Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.

  20. Space Solar Power Demonstrations: Challenges and Progress

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)

    2002-01-01

    The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).

  1. Mass breakdown model of solar-photon sail shuttle: The case for Mars

    NASA Astrophysics Data System (ADS)

    Vulpetti, Giovanni; Circi, Christian

    2016-02-01

    The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth-Mars-Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty-fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014-2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty-fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.

  2. Solar Collector Thermal Power System. Volume 3. Basic Study and Experimental Evaluation of Thermal Train Components

    DTIC Science & Technology

    1974-11-01

    15. Lumsden, J., "Thermodynamics of Molten Salt Mixtures," Academic Press, London, 1966. 16. TRW Final Report, " Brayton Cycle Cavity Receiver Design...Applications, WADD TR 61-96, Nov. 1961. 20. C. T. Ewig, et al., - Journal of Chemical and Engineering Data 11, pg. 468, 1966. 21. J. W. Taylor , The

  3. Systems engineering analysis of five 'as-manufactured' SXI telescopes

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Atanassova, Martina; Krywonos, Andrey

    2005-09-01

    Four flight models and a spare of the Solar X-ray Imager (SXI) telescope mirrors have been fabricated. The first of these is scheduled to be launched on the NOAA GOES- N satellite on July 29, 2005. A complete systems engineering analysis of the "as-manufactured" telescope mirrors has been performed that includes diffraction effects, residual design errors (aberrations), surface scatter effects, and all of the miscellaneous errors in the mirror manufacturer's error budget tree. Finally, a rigorous analysis of mosaic detector effects has been included. SXI is a staring telescope providing full solar disc images at X-ray wavelengths. For wide-field applications such as this, a field-weighted-average measure of resolution has been modeled. Our performance predictions have allowed us to use metrology data to model the "as-manufactured" performance of the X-ray telescopes and to adjust the final focal plane location to optimize the number of spatial resolution elements in a given operational field-of-view (OFOV) for either the aerial image or the detected image. The resulting performance predictions from five separate mirrors allow us to evaluate and quantify the optical fabrication process for producing these very challenging grazing incidence X-ray optics.

  4. Final report for project "Next-Generation Semiconductors for Solar Photoelectrolysis"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifah, Peter

    2016-09-15

    In this paper, effective methods have been developed for preparing high-quality LaTiO 2N films on conductive La 5Ti 5O 17 substrates that can serve as photoanodes for photoelectrochemical water oxidation. One paper has been written by the post-doc who completed this comprehensive, interdisciplinary study, and it is presently being finalized for submission. Our approach to this system integrates expertise that we have developed in single crystal growth, thin film growth, and thin film post-processing. Through this work, LTON films have been fully optimized for light harvesting, as their band gap is optimally matched with the incident solar spectrum and themore » film thicknesses have been optimized based on the absolute absorption coefficients that we have measured for this system. The next step is to optimize the co-catalyst functionalization and the solution conditions to maximize the catalytic activity for water oxidation. Since the preliminary tests described here were done without a water oxidation co-catalyst, and since good water oxidation catalysts have previously been identified based on studies of powder samples, this next step is highly likely to be successful.« less

  5. Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okawa, David

    Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaicmore » (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra Solar’s Next-Generation Dense Cell Interconnect PV Module Manufacturing Technology. This program is now very successfully building off of this work and commercializing the technology to enable increased solar adoption.« less

  6. High-Resolution Infrared Filter System for Solar Spectroscopy and Polarimetry

    NASA Astrophysics Data System (ADS)

    Cao, W.; Ma, J.; Wang, J.; Goode, P. R.; Wang, H.; Denker, C.

    2003-05-01

    We report on the design of an imaging filter system working at the near infrared (NIR) of 1.56 μ m to obtain monochromatic images and to probe weak magnetic fields in different layers of the deep photosphere with high temporal resolution and spatial resolution at Big Bear Solar Observatory (BBSO). This filter system consists of an interference filter, a birefringent filter, and a Fabry-Pérot etalon. As the narrowest filter system, the infrared Fabry-Pérot plays an important role in achieving narrow band transmission and high throughput, maintaining wavelength tuning ability, and assuring stability and reliability. In this poster, we outline a set of methods for the evaluation and calibration of the near infrared Fabry-Pérot etalon. Two-dimensional characteristic maps of the near infrared Fabry-Pérot etalon, including full-width-at-half-maximum (FWHM), effective finesse, peak transmission, along with free spectral range, flatness, roughness, stability and repeatability were obtained with lab equipments. Finally, by utilizing these results, a detailed analysis of the filter performance for the Fe I 1.5648 μ m and Fe I 1.5652 μ m Zeeman sensitive lines is presented. These results will benefit the design of NIR spectro-polarimeter of Advanced Technology Solar Telescope (ATST).

  7. The Final Results from the Sudbury Neutrino Observatory

    ScienceCinema

    Bellerive, Alain

    2017-12-15

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  8. NASA advanced aeronautics design solar powered remotely piloted vehicle

    NASA Technical Reports Server (NTRS)

    Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.

  9. Solar powered multipurpose remotely powered aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar-powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is, therefore, beneficial to society. The design and construction of a Multipurpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of using solar propulsion as a primary fuel source. This task has been a year-long effort by a group of eight students, divided into four teams, each dealing with different aspects of the design. The aircraft was designed to take off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design to achieve flight in this regime. Optimal performance requires a lightweight configuration with both structural integrity and maximum power availability. The structural design and choice of solar cells for the propulsion were governed by weight, efficiency, and cost considerations. The final design is an MPRPV weighing 35 N that cruises at 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 12.5 percent-efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were researched and tested during the design process.

  10. Construction Status and Early Science with the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Martinez Pillet, Valentin; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Berukoff, Steven J.; Casini, Roberto; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Lin, Haosheng; Mathioudakis, Mihalis; Reardon, Kevin P.; Rosner, Robert; Schmidt, Wolfgang

    2016-05-01

    The 4-m Daniel K. Inouye Solar Telescope (DKIST) is in its seventh year of overall development and its fourth year of site construction on the summit of Haleakala, Maui. The Site Facilities (Utility Building and Support & Operations Building) are in place with ongoing construction of the Telescope Mount Assembly within. Off-site the fabrication of the component systems is completing with early integration testing and verification starting.Once complete this facility will provide the highest sensitivity and resolution for study of solar magnetism and the drivers of key processes impacting Earth (solar wind, flares, coronal mass ejections, and variability in solar output). The DKIST will be equipped initially with a battery of first light instruments which cover a spectral range from the UV (380 nm) to the near IR (5000 nm), and capable of providing both imaging and spectro-polarimetric measurements throughout the solar atmosphere (photosphere, chromosphere, and corona); these instruments are being developed by the National Solar Observatory (Visible Broadband Imager), High Altitude Observatory (Visible Spectro-Polarimeter), Kiepenheuer Institute (Visible Tunable Filter) and the University of Hawaii (Cryogenic Near-Infrared Spectro-Polarimeter and the Diffraction-Limited Near-Infrared Spectro-Polarimeter). Further, a United Kingdom consortium led by Queen's University Belfast is driving the development of high speed cameras essential for capturing the highly dynamic processes measured by these instruments. Finally, a state-of-the-art adaptive optics system will support diffraction limited imaging capable of resolving features approximately 20 km in scale on the Sun.We present the overall status of the construction phase along with the current challenges as well as a review of the planned science testing and the transition into early science operations.

  11. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The solar panels on the GOES-L weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES- L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  12. Exploring the Solar System in the Classroom: A Hands-On Approach

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.

    2000-01-01

    This final report discusses the development and implementation of several educational products for K-16 teachers and students. Specifically, I received support for: (A) three K-12 Teacher workshops, Exploring the Solar System in the Classroom: A Hands-On Approach, and minimal Support to finish two computer-based tutorials. (B) Contact Light: An Interactive CD-ROM, and (C) Another Look at Taurus Littrow: An Interactive GIS Database. Each of these projects directly supports NASA's Strategic Plan to: "Involve the education community in our endeavors to inspire America's students, create learning opportunities, enlighten inquisitive minds", and, to "communicate widely the content, relevancy, and excitement of NASA's missions and discoveries to inspire and to increase understanding and the broad application of science and technology." Attachment: Appendix A. And also article: "Aristarchus plateau: as potential lunar base site."

  13. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    PubMed

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants.

    PubMed

    Beltrán, Fernando J; Rey, Ana

    2017-07-14

    An incipient advanced oxidation process, solar photocatalytic ozonation (SPO), is reviewed in this paper with the aim of clarifying the importance of this process as a more sustainable water technology to remove priority or emerging contaminants from water. The synergism between ozonation and photocatalytic oxidation is well known to increase the oxidation rate of water contaminants, but this has mainly been studied in photocatalytic ozonation systems with lamps of different radiation wavelength, especially of ultraviolet nature (UVC, UVB, UVA). Nowadays, process sustainability is critical in environmental technologies including water treatment and reuse; the application of SPO systems falls into this category, and contributes to saving energy and water. In this review, we summarized works published on photocatalytic ozonation where the radiation source is the Sun or simulated solar light, specifically, lamps emitting radiation to cover the UVA and visible light spectra. The main aspects of the review include photoreactors used and radiation sources applied, synthesis and characterization of catalysts applied, influence of main process variables (ozone, catalyst, and pollutant concentrations, light intensity), type of water, biodegradability and ecotoxicity, mechanism and kinetics, and finally catalyst activity and stability.

  15. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  16. Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions

    DTIC Science & Technology

    2012-02-01

    Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions by Kendall Bianchi, Jay R. Maddux, Kimberly Sablon-Ramsey...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5920 February 2012 Survey of Thermoelectric and Solar Technologies as Alternative Energy...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Survey of Thermoelectric and Solar Technologies as Alternative Energy Solutions 5a

  17. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission.

    PubMed

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2018-01-18

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10 -5 . By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10 -5 and the Sun's gravitational oblateness, [Formula: see text] = (2.246 ± 0.022) × 10 -7 . Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, [Formula: see text] = (-6.13 ± 1.47) × 10 -14 , which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain [Formula: see text] to be <4 × 10 -14 per year.

  18. Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

    Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

  19. Theoretical studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  20. Solar Hot Air Balloons: A Low Cost, Multi-hour Flight System for Lightweight Scientific Instrumentation Packages

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.

    2017-12-01

    Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.

  1. Theoretical studies of massive stars. II - Evolution of a 15 solar-mass star from carbon shell burning to iron core collapse

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Endal, A. S.

    1980-01-01

    The evolution of a Population I star of 15 solar masses is described from the carbon shell burning stage to the formation and collapse of an iron core. An unusual aspect of the evolution is that neon ignition occurs off-center and neon burning propagates inward by a series of shell flashes. The extent of the core burning is generally smaller than the Chandrasekhar mass, so that most of the nuclear energy generation occurs in shell sources. Because of degeneracy and the influence of rapid convective mixing, these shell sources are unstable and the core goes through large excursions in temperature and density. The small core also causes the shell sources to converge into a narrow mass region slightly above the Chandrasekhar mass. Thus, the final nucleosynthesis yields are generally small, with silicon being most strongly enhanced with respect to solar system abundances.

  2. The Solar Development Corporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, C.E.

    1997-12-01

    This paper describes a proposed stand alone company, the Solar Development Corporation (SDC), to be a business development and financing entity for photovoltaic operations with the potential to be commercially sustainable. SDC will have a fully integrated policy advocacy link to the World Bank. SDC will define target countries where the potential exists for significant early market expansion. In those countries it will provide: market and business development services that will accelerate the growth of private firms and deepen the penetration of Solar Home Systems (SHS) and other rural PV applications in the market; and access to pre-commercial and parallelmore » financing for private firms to (1) expand their capability in PV distribution businesses, and (2) strengthen their ability to provide credit to end users. SDC itself will not engage in direct financing of the final consumer. It is intended that as far as possible SDC`s finance will be provided in parallel with financing from Financial Intermediaries.« less

  3. Nuuanu YMCA Honolulu, Hawaii solar-water-heating project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-10-14

    The Nuuanu YMCA is a combination athletic facility and men's dormitory. The building is of masonry construction, and includes a four-story dormitory on which the solar water heating system was mounted. The water storage tank was placed at a higher elevation than the collectors so that the majority of the system would operate in thermosyphon. A small system with a pump is included on another roof of the building and is circulated into the same storage tank. A pump was later added to the thermosyphon system. The system has 182 collector panels, each consisting of a polycarbonate box, low ironmore » tempered glazing, copper waterways and painted aluminum absorber. The water is stored in a 4000-gallon storage tank on the roof. The system provides domestic hot water and serves as a preheat system for the existing building water heaters. The system was installed and met performance criteria. An acceptance test plan is described and data are given. The thermosyphon system was found not to be efficient compared to the pumped system. System operation, maintenance and controls are described, and YMCA energy consumption data are given. Blueprints are included. (LEW)« less

  4. Photovoltaic at Hollywood and Desert Breeze Recreational Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammerman, Shane

    Executive Summary Renewable Energy Initiatives for Clark County Parks and Recreation Solar Project DOE grant # DE-EE0003180 In accordance with the goals of the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy for promoting solar energy as clean, carbon-free and cost-effective, the County believed that a recreational center was an ideal place to promote solar energy technologies to the public. This project included the construction of solar electricity generation facilities (40kW) at two Clark County facility sites, Desert Breeze Recreational Center and Hollywood Recreational Center, with educational kiosks and Green Boxes for classroom instruction. The major objectivesmore » and goals of this Solar Project include demonstration of state of the art technologies for the generation of electricity from solar technology and the creation of an informative and educational tool in regards to the benefits and process of generating alternative energy. Clark County partnered with Anne Johnson (design architect/consultant), Affiliated Engineers Inc. (AEI), Desert Research Institute (DRI), and Morse Electric. The latest photovoltaic technologies were used in the project to help create the greatest expected energy savings for60443 each recreational center. This coupled with the data created from the monitoring system will help Clark County and NREL further understand the real time outputs from the system. The educational portion created with AEI and DRI incorporates material for all ages with a focus on K - 12. The AEI component is an animated story telling the fundamentals of how sunlight is turned into electricity and DRI‘s creation of Solar Green Boxes brings environmental education into the classroom. In addition to the educational component for the public, the energy that is created through the photovoltaic system also translates into saved money and health benefits for the general public. This project has helped Clark County to further add to its own energy reduction goals created by the energy management agenda (Resolution to Encourage Sustainability) and the County’s Eco-initiative. Each site has installed photovoltaic panels on the existing roof structures that exhibit suitable solar exposure. The generation systems utilize solar energy creating electricity used for the facility’s lighting system and other electrical requirements. Unused electricity is sent to the electric utility grid, often at peak demand times. Educational signage, kiosks and information have been included to inform and expand the public’s understanding of solar energy technology. The Solar Green Boxes were created for further hands on classroom education of solar power. In addition, data is sent by a Long Term PV performance monitoring system, complete with data transmission to NREL (National Renewable Energy Laboratory), located in Golden, CO. This system correlates local solar irradiance and weather with power production. The expected outcomes of this Solar Project are as follows: (1) Successful photovoltaic electricity generation technologies to capture solar energy in a useful form of electrical energy. (2) Reduction of greenhouse gas emissions and environmental degradation resulting from reduced energy demand from traditional electricity sources such as fossil fuel fired and nuclear power plants. (3) Advance the research and development of solar electricity generation. (4) The education of the general public in regards to the benefits of environmentally friendly electricity generation and Clark County’s efforts to encourage sustainable living practices. (5) To provide momentum for the nexus for future solar generation facilities in Clark County facilities and buildings and further the County’s energy reduction goals. (6) To ultimately contribute to the reduction of dependence on foreign oil and other unsustainable sources of energy. This Solar Project addresses several objectives and goals of the U.S. Department of Energy’s Solar Energy Technology Program. The project improves the integration and performance of solar electricity directly through implementation of cutting edge technology. The project further addresses this goal by laying important ground work and infrastructure for integration into the utility grid in future related projects. There will also be added security, reliability, and diversity to the energy system by providing and using reliable, secure, distributed electricity in Clark County facilities as well as sending such electricity back into the utility electric grid. A final major objective met by the Solar Project will be the displacement of energy derived by fossil fuels with clean renewable energy created by photovoltaic panels.« less

  5. Design and implementation of a 38 kW dish-Stirling concentrated solar power system

    NASA Astrophysics Data System (ADS)

    Yan, J.; Peng, Y. D.; Cheng, Z. R.; Liu, F. M.; Tang, X. H.

    2017-11-01

    Dish-Stirling concentrated solar power system (DS-CSP) is an important pathway for converting solar energy into electricity at high efficiency. In this study, a rated power 38 kW DS-CSP system was developed (installed in Xiangtan Electric Manufacturing Group). The heat engine adopted the alpha-type four cylinders double-acting Stirling engine (Stirling Biopower Flexgen S260). The absorber flux distribution simulation was conducted using ray tracing method and then the 204 m2 parabolic dish concentrator system (diameter is 17.70 m and focal length is 9.49 m) with single concentrator plus single pillar supporting has been designed and built. A water-cooled disc target and an absorber imitation device were adopted to test the tracking performance of the dish concentrator system, homogeneity of the focal spot and flux distribution of the absorber. Finally, the S260 Stirling engine was installed on the focal position of the dish concentrator and then the net output power date of the 38 kW DS-CSP system was tested. The absorber overheating problem on the DS-CSP system performance was discussed when the DS-CSP system was installed in different locations. The testing result shows that this system achieved the net output power of 38 kW and solar-to-electricity efficiency (SEE) of 25.3% with the direct normal irradiation (DNI) at 750 W/m2. The net output power can further increase to 40.5 kW with the SEE of 26.6% when the DNI reaches up to the maximum of 761 W/m2. The net output power of the 38 kW DS-CSP system has a linear function relationship with the DNI. The fitting function is Net power output=0.1003×DNI-36.129, where DNI is at the range of 460∼761 W/m2. This function could be used to predict the amount of the 38 kW DS-CSP system annual generation power.

  6. Mapping suitability areas for concentrated solar power plants using remote sensing data

    DOE PAGES

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on amore » Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.« less

  7. A 200kW central receiver CPV system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasich, John, E-mail: jbl@raygen.com; Thomas, Ian, E-mail: ithomas@raygen.com; Hertaeg, Wolfgang

    2015-09-28

    Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.

  8. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  9. The Final Proceedings of the DOE/NASA Solar Power Satellite Program Review

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar power satellite (SPS) concept defined as 'placing gigantic satellites in geosynchronous orbit to capture sunlight, changing the energy into an appropriate form for transmission to Earth, and introducing the energy into the electric power grid' is evaluated in terms of costs and benefits. The concept development and evaluation program is reviewed in four general areas: systems definition; environmental; societal; and comparative assessments. Specific factors addressed include: transportation, construction in space, methods of conversion of sunlight into energy, transmission to Earth, maintenance in orbit and decommissioning of satellites; environmental, political, and economic effects; and comparison of SPS to other forms of power generation, both terrestrial and in space.

  10. KSC-02pd2012

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- Workers complete the final steps to detach a Pegasus XL Expendable Launch Vehicle from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle nestled beneath, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  11. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    DOE PAGES

    Werner, Jeremie; Barraud, Loris; Walter, Arnaud; ...

    2016-07-30

    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less

  12. Tracking and shape errors measurement of concentrating heliostats

    NASA Astrophysics Data System (ADS)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-09-01

    In solar tower power plants, factors such as tracking accuracy, facets misalignment and surface shape errors of concentrating heliostats are of prime importance on the efficiency of the system. At industrial scale, one critical issue is the time and effort required to adjust the different mirrors of the faceted heliostats, which could take several months using current techniques. Thus, methods enabling quick adjustment of a field with a huge number of heliostats are essential for the rise of solar tower technology. In this communication is described a new method for heliostat characterization that makes use of four cameras located near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. From knowledge of a measured sun profile, data processing of the acquired images allows reconstructing the slope and shape errors of the heliostats, including tracking and canting errors. The mathematical basis of this shape reconstruction process is explained comprehensively. Numerical simulations demonstrate that the measurement accuracy of this "backward-gazing method" is compliant with the requirements of solar concentrating optics. Finally, we present our first experimental results obtained at the THEMIS experimental solar tower plant in Targasonne, France.

  13. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Jeremie; Barraud, Loris; Walter, Arnaud

    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less

  14. Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Linjawi, Majid T.; Talal, Qazi; Al-Sulaiman, Fahad A.

    2017-11-01

    In this study solar driven absorption chiller is used to reduce the peak cooling load in office buildings in Saudi Arabia for different selected cities. The study is conducted for six cities of Abha, Dhahran, Hail, Jeddah, Nejran and Riyadh under three operating durations of 4, 6, and 8 hours using flat plate or evacuated tube collectors. The energy analysis concluded that flat plate collectors are better than evacuated tube collectors. However, the results from economic analysis suggest that while proposing a gas fired absorption chiller will reduce running costs, further reduction by using solar collectors is not feasible because of its high initial cost. At the best case scenario the Net Present Value of a 10 Ton Absorption chiller operated by natural gas boiler and two large flat plate collectors (12m2 each) running for 8 hours/day, 5days/week has a value of 117,000 and Internal Rate of Return (IRR) of 12%. Solar driven absorption chiller could be more feasible if the gas prices increases or the solar collector prices decreases significantly. Finally, government economic incentives and taxes are recommended to provide a boost for the feasibility of such projects.

  15. Current Status of Study on Hydrogen Production with Space Solar Power Systems (SSPS)

    NASA Astrophysics Data System (ADS)

    Mori, M.; Kagawa, H.; Nagayama, H.; Saito, Y.

    2004-12-01

    Japan Aerospace Exploration Agency (JAXA) has been conducting studies on Space Solar Power Systems (SSPS) using microwave and laser beams for years since FY1998 organizing a special committee and working groups. The microwave based SSPS are huge solar power systems that generate GW power by solar cells. The electric power is transmitted via microwave from the SSPS to the ground. In the laser based SSPS, a solar condenser equipped with lenses or mirrors and laser-generator would be put into orbit. A laser beam would be sent to Earth-based hydrogen generating device. We are proposing a roadmap that consists of a stepwise approach to achieve commercial SSPS in 20-30 years. The first step is 50kW class Technology Demonstration Satellite to demonstrate microwave power transmission. The second step is to demonstrate robotic assembly of 10MW class large scale flexible structure in space on ISS co-orbit. The third step is to build a prototype SSPS in GEO. The final step is to build commercial SSPS in GEO. We continue the study of SSPS concepts and architectures, technology flight demonstration and major technology development. System design of tens of kW class Technology Demonstration Satellite and conceptual study of 10MW class demonstration system on ISS co-orbit are also conducted. Several key technologies which are needed to be developed in appropriate R&D roadmap, such as high-voltage solar cell array, fiber type of direct solar pumping solid-state laser, high efficiency magnetron, thermal control technology and control technology of large scale flexible structure etc. are also investigated. In the study of concept design of commercial SSPS mentioned above, we have studied some configurations of both microwave based SSPS and laser based SSPS. In case of microwave based SSPS, the solar energy must be converted to electricity and then converted to a microwave beam. The on-ground rectifying antenna will collect the microwave beam and convert it to electricity to connect to commercial power grids. From the past experiences of the conceptual design of the1GW class SSPS, it is clear that system with the mirrors and modularized unit which integrated solar cells and microwave power transmitters is promising. In this type of SSPS, the solar lights are directed to the energy conversion unit integrated solar cells and microwave power transmitters using mirrors. The key factor in designing systems is feasibility of thermal system. Considering above these factors, some reference models are being considered now. FY2003 reference model is the model for formation flight without the center truss which connect to primary mirrors to energy conversion unit. Using this model as basis, we are carrying out examination from various viewpoints aiming at the cost minimum to build and maintain the systems. In case of laser based SSPS, the laser beam would be directly produced from the solar light using the direct solar pumping solid-state laser device. This laser beams would be collected on ground and used to produce hydrogen from seawater. The receiving / energy conversion station is settled on an ocean, and producing hydrogen can be stored and transported by ships to consumers. In designing laser based SSPS, conversion efficiency of the direct solar pumping solid-state laser and feasibility of thermal system are critical factors. Since magnification of solar concentrator is very high, improvement of thermal control system is important. Feasibility of its ground facilities and production technology of hydrogen using laser beams has been also studied. Both hydrogen generating systems with photo-catalyst device and electrolytic ones have been examined. From the past experiences of this study, high efficient electric power generating technology using the solar cell which suited the wavelength of laser is promising. The life cycle cost model of laser based SSPS was created and evaluated its validity. Sensitivity analysis of laser based SSPS are also continued aiming at hydrogen generating cost of around 20 cent per Nm3 . This paper presents a summary of studies on SSPS that JAXA has examined.

  16. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailedmore » subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)« less

  17. Sighten Final Technical Report DEEE0006690 Deploying an integrated and comprehensive solar financing software platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Conlan

    Over the project, Sighten built a comprehensive software-as-a-service (Saas) platform to automate and streamline the residential solar financing workflow. Before the project period, significant time and money was spent by companies on front-end tools related to system design and proposal creation, but comparatively few resources were available to support the many back-end calculations and data management processes that underpin third party financing. Without a tool like Sighten, the solar financing processes involved passing information from the homeowner prospect into separate tools for system design, financing, and then later to reporting tools including Microsoft Excel, CRM software, in-house software, outside software,more » and offline, manual processes. Passing data between tools and attempting to connect disparate systems results in inefficiency and inaccuracy for the industry. Sighten was built to consolidate all financial and solar-related calculations in a single software platform. It significantly improves upon the accuracy of these calculations and exposes sophisticated new analysis tools resulting in a rigorous, efficient and cost-effective toolset for scaling residential solar. Widely deploying a platform like Sighten’s significantly and immediately impacts the residential solar space in several important ways: 1) standardizing and improving the quality of all quantitative calculations involved in the residential financing process, most notably project finance, system production and reporting calculations; 2) representing a true step change in terms of reporting and analysis capabilities by maintaining more accurate data and exposing sophisticated tools around simulation, tranching, and financial reporting, among others, to all stakeholders in the space; 3) allowing a broader group of developers/installers/finance companies to access the capital markets by providing an out-of-the-box toolset that handles the execution of running investor capital through a rooftop solar financing program. Standardizing and improving all calculations, improving data quality, and exposing new analysis tools previously unavailable affects investment in the residential space in several important ways: 1) lowering the cost of capital for existing capital providers by mitigating uncertainty and de-risking the solar asset class; 2) attracting new, lower cost investors to the solar asset class as reporting and data quality resemble standards of more mature asset classes; 3) increasing the prevalence of liquidity options for investors through back leverage, securitization, or secondary sale by providing the tools necessary for lenders, ratings agencies, etc. to properly understand a portfolio of residential solar assets. During the project period, Sighten successfully built and scaled a commercially ready tool for the residential solar market. The software solution built by Sighten has been deployed with key target customer segments identified in the award deliverables: solar installers, solar developers/channel managers, and solar financiers, including lenders. Each of these segments greatly benefits from the availability of the Sighten toolset.« less

  18. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  19. GIS-based approach for optimal siting and sizing of renewables considering techno-environmental constraints and the stochastic nature of meteorological inputs

    NASA Astrophysics Data System (ADS)

    Daskalou, Olympia; Karanastasi, Maria; Markonis, Yannis; Dimitriadis, Panayiotis; Koukouvinos, Antonis; Efstratiadis, Andreas; Koutsoyiannis, Demetris

    2016-04-01

    Following the legislative EU targets and taking advantage of its high renewable energy potential, Greece can obtain significant benefits from developing its water, solar and wind energy resources. In this context we present a GIS-based methodology for the optimal sizing and siting of solar and wind energy systems at the regional scale, which is tested in the Prefecture of Thessaly. First, we assess the wind and solar potential, taking into account the stochastic nature of the associated meteorological processes (i.e. wind speed and solar radiation, respectively), which is essential component for both planning (i.e., type selection and sizing of photovoltaic panels and wind turbines) and management purposes (i.e., real-time operation of the system). For the optimal siting, we assess the efficiency and economic performance of the energy system, also accounting for a number of constraints, associated with topographic limitations (e.g., terrain slope, proximity to road and electricity grid network, etc.), the environmental legislation and other land use constraints. Based on this analysis, we investigate favorable alternatives using technical, environmental as well as financial criteria. The final outcome is GIS maps that depict the available energy potential and the optimal layout for photovoltaic panels and wind turbines over the study area. We also consider a hypothetical scenario of future development of the study area, in which we assume the combined operation of the above renewables with major hydroelectric dams and pumped-storage facilities, thus providing a unique hybrid renewable system, extended at the regional scale.

  20. Early Paleogene Orbital Variations in Atmospheric CO2 and New Astronomical Solutions

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2017-12-01

    Geologic records across the globe show prominent variations on orbital time scales during numerous epochs going back hundreds of millions of years. The origin of the Milankovic cycles are variations in orbital parameters of the bodies of the Solar System. On long time scales, the orbital variations can not be computed analytically because of the chaotic nature of the Solar System. Thus, numerical solutions are used to estimate changes in, e.g., Earth's orbital parameters in the past. The orbital solutions represent the backbone of cyclostratigraphy and astrochronology, now widely used in geology and paleoclimatology. Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 Myr. In this presentation, I will touch on the basic physics behind, and present new results of, accurate Solar System integrations for Earth's eccentricity over the past hundred million years. I will discuss various limitations within the framework of the present simulations and compare the results to existing solutions. Furthermore, I will present new results from practical applications of such orbital solutions, including effects of orbital forcing on coupled climate- and carbon cycle variations. For instance, we have recently revealed a mechanism for a large lag between changes in carbon isotope ratios and eccentricity at the 400-kyr period, which has been observed in Paleocene, Oligocene, and Miocene sections. Finally, I will present the first estimates of orbital-scale variations in atmospheric CO2 during the early Paleogene.

  1. The ARA Mark 3 solar array design and development

    NASA Technical Reports Server (NTRS)

    vanHassel, Rob H. A.

    1996-01-01

    The ARA (Advanced Rigid Array) Mark3 solar array of Fokker Space BV is currently in its final stages of qualification (wing tests to be completed in March, 1996; unit/part tests in April, 1996). With regard to its predecessor, the ARA Mark2, the design has not only been improved in terms of mechanical and electrical performance, but also with regard to production cost and throughput time. This 'state of the art' array is designed to fit the needs of a wide variety of geostationary telecommunications satellites and is qualified for launch on the complete range of medium/large size commercial launchers (Ariane IV & V, Atlas, Delta, Proton, Long March, H2). The first mission to fly the new ARA Mk3 array is Hot Bird 2 (customer: Eutelsat, prime contractor: Matra Marconi Space; launch: mid-1996). In this configuration, its end of life (EOL) power-to-mass ratio is 42 W/kg, with an operational life of more than 12 years. The main mechanisms on a solar array are typically found in the deployment system and in the hold down and release system. During the design and development phase of these mechanisms, extensive engineering and qualification tests have been performed. This paper presents the key design features of these mechanisms and the improvements that were made with regard to their predecessors. It also describes the qualification philosophy on unit/part and wing level. Finally, some of the development items that turned out to be critical, as well as the lessons learned from them, are discussed.

  2. Methods for constraining surface properties and volatile migration on Phoebe, Triton, Pluto, and the moon

    NASA Astrophysics Data System (ADS)

    Miller, Charles Frederick

    The surface properties and surface volatile content of rocky bodies contain clues as to the formation and subsequent evolution of our Solar System. Many Solar System bodies retain essentially pristine subsurface volatiles, but their surface volatiles have often undergone chemical processing from UV irradiation and heating from impacts over millennia. The result is a wide range of surface properties observed today. We analyze the surfaces of these primitive bodies with the goal of deducing their evolutionary history. To this end, we employed three targeted analysis methods to characterize the surface properties and/or volatile distribution of three Solar System satellites. We derived photometric properties of Saturn's moon Phoebe from observations taken at low solar phase angles and corn-pared these results to those published for other Solar System objects. We conclude that Phoebe's surface has similarities to both Jupiter family comets and Kuiper Belt Objects (KBOs), supporting the conjecture that Phoebe migrated to Saturn the outer Solar System. We converted a General Circulation Model (GCM) to simulate the atmospheric motion of Neptune's moon Triton. We used this model to investigate the effect of N2 surface frosts on Triton's global atmospheric circulation. Our simulations identified specific atmospheric thermal conditions that led to wind speeds and directions consistent with the motion of erupting geysers captured by Voyager 2 images. Finally, we developed an 3-D n-body ballistic plume model to analyze the geometry and dynamics of the ejecta plume created by the impact of the Lunar CRater Observation and Sensing Satellite (LCROSS) on the Moon. LCROSS was designed to detect water content in lunar regolith, but also served as a test bed for comparing the properties of a large-scale, controlled impact with laboratory impact experiments. By comparing plume simulation results to our observations of the LCROSS impact, we confirmed the predictions that the LCROSS ejecta plume was in fact a multi-component plume and found that the low velocity cutoff for high-angle particles varied with ejection angle.

  3. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    PubMed

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of < 1 CFU/100 mL within 2-5 h exposure to sunlight. However, under cloudy conditions, the two FSP systems did not reduce the concentrations of faecal indicator bacteria to levels of < 1 CFU/100 mL. Nonetheless, sufficient evidence was obtained to show that UV radiation of sunlight plus heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria < C. perfringens < F RNA virus < enterococci < E. coli < faecal coliform. In summary, time of exposure to heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  4. Trans-Pecos Photovoltaic Concentration Experiment. Final report for Phase-I system design, 6 June 1978-28 February 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcy, W.M.; Dudek, R.A.

    1979-03-30

    The Trans-Pecos Photovoltaic Concentrating Experiment is the design of a 200 kWe peak photovoltaic concentrating system applied to deep well irrigation in the Trans-Pecos region of Texas. The site selected is typical of deep well irrigation in arid regions of Texas, New Mexico, and Arizona. The existing well utilizes a 200 horse power, three phase, 480 volt induction motor to lift water 540 feet to irrigate 380 acres. The Trans-Pecos Photovoltaic Concentration (PVC) system employs a two axis (azimuth-elevation) tracking parabolic concentrator module that focuses sunlight at 38X concentration on two strings of actively cooled silicon solar cells. The directmore » current from a field of 102 collector modules is converted by a maximum power point electric power conditioning system to three phase alternating current. The power from the power conditioning system is connected through appropriate switchgear in parallel with the utility grid to the well's induction motor. The operational philosophy of the experiment is to displace daytime utility power with solar generated electric power. The solar system is sized to provide approximately 50 percent of the 24 hour energy demand of the motor. This requires an energy exchange with the utility since peak solar power (200 kWe) generated exceeds the peak motor demand (149.2 kWe). The annual energy production is projected to be 511 Mwh using El Paso, Texas solar TMY data. System electrical power production efficiency is projected to be 7.4 percent at the design point, and 7.0 percent on an annual electrical energy production basis. The system is projected to provide 37.8 percent of the 24 hour energy demand of the motor at the design point of March 10, excluding energy delivered to the grid in excess of motor demand. The total energy produced is projected to be 39.0 percent of the 24 hour energy demand of the motor at the design point of March 10.« less

  5. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    NASA Astrophysics Data System (ADS)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  6. Installation of a Roof Mounted Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  7. Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David

    1995-01-01

    The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  8. Program to monitor and evaluate a passive solar greenhouse/aquaculture system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    A temperature monitoring program of Amity's solar greenhouse demonstrated that air, soil, and water temperatures can be maintained at optimal levels without supplemental heat. A foil reflector placed in front of the greenhouse glazing at an angle of between 0 and 5/sup 0/ above horizontal enhanced direct light entering the greenhouse by as much as 22%. Aquaculture in the water heat storage of a solar greenhouse has been a success. Fish reached harvest size in about seven months. The two species that were received the best by the public were African perch (Tilapia mossambica) and channel catfish (Ictalurus punctatus). Althoughmore » carp (Cyprinus carpio) were the fastest growers they were not well received by the public. Linking hydroponics to greenhouse aquaculture shows a lot of promise. Different support medias were examined and tomatoes and European cucumbers were raised successfully. A savonius windmill was successfully linked to an aquaculture aeration system but because of the wind pattern in the Willamette valley the windmill system did not provide air in the evening when it was needed most. Alternate designs are discussed. Locally grown fish diets were evaluated for their ability to promote fish growth. Diets such as water hyacinth, duckweed, earthworms, beans, and comfrey were raised on the Amity site, pelleted with a hand grinder and solar dried. Duckweed and earthworms appear to hold promise for a nutritous, easy to grow and pelletize, food source. Amity's solar greenhouse, three coldframe designs and a PVC tunnel cloche were compared in a vegetable growing trial. Most impressive was the cloche design because it provided adequate protection, was inexpensive and very easy to build.« less

  9. Preparation of p-type NiO films by reactive sputtering and their application to CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryousuke; Furuya, Yasuaki; Araki, Ryouichi; Nomoto, Takahiro; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Tsuboi, Nozomu

    2016-02-01

    Transparent p-type NiO films were prepared by reactive sputtering using the facing-target system under Ar-diluted O2 gas at Tsub of 30 and 200 °C. The increasing intensity of dominant X-ray diffraction (XRD) peaks indicates improvements in the crystallinity of NiO films upon Cu doping. In spite of the crystallographic and optical changes after Cu-doping, the electrical properties of Cu-doped NiO films were slightly improved. Upon Ag-doping at 30 °C under low O2 concentration, on the other hand, the intensity of the dominant (111) XRD peaks was suppressed and p-type conductivity increased from ˜10-3 to ˜10-1 S cm-1. Finally, our Ag-doped NiO films were applied as the back contact of CdTe solar cells. CdTe solar cells with a glass/ITO/CdS/CdTe/NiO structure exhibited an efficiency of 6.4%, suggesting the high potential of using p-type NiO for the back-contact film in thin-film solar cells.

  10. Evaluation of Pathogen Removal in a Solar Sludge Drying Facility Using Microbial Indicators

    PubMed Central

    Shanahan, Emily F.; Roiko, Anne; Tindale, Neil W.; Thomas, Michael P.; Walpole, Ronald; Kurtböke, D. İpek

    2010-01-01

    South East Queensland is one of the fastest growing regions in Australia with a correspondingly rapid increase in sewage production. In response, local councils are investing in more effective and sustainable options for the treatment and reuse of domestic and industrial effluents. A novel, evaporative solar dryer system has been installed on the Sunshine Coast to convert sewage sludge into a drier, usable form of biosolids through solar radiation exposure resulting in decreased moisture concentration and pathogen reduction. Solar-dried biosolids were analyzed for selected pathogenic microbial, metal and organic contaminants at the end of different drying cycles in a collaborative study conducted with the Regional Council. Although fecal coliforms were found to be present, enteroviruses, parasites, E. coli, and Salmonella sp. were not detected in the final product. However, elevated levels of zinc and copper were still present which restricted public use of the biosolids. Dilution of the dried biosolids with green waste as well as composting of the biosolids is likely to lead to the production of an environmentally safe, Class A end-product. PMID:20616991

  11. VISdish: A new tool for canting and shape-measuring solar-dish facets.

    PubMed

    Montecchi, Marco; Cara, Giuseppe; Benedetti, Arcangelo

    2017-06-01

    Solar dishes allow us to obtain highly concentrated solar fluxes used to produce electricity or feed thermal processes/storage. For practical reasons, the reflecting surface is composed by a number of facets. After the dish assembly, facet-canting is an important task for improving the concentration of solar radiation around the focus-point, as well as the capture ratio at the receiver placed there. Finally, flux profile should be measured or evaluated to verify the concentration quality. All these tasks can be achieved by the new tool we developed at ENEA, named VISdish. The instrument is based on the visual inspection system (VIS) approach and can work in two functionalities: canting and shape-measurement. The shape data are entered in a simulation software for evaluating the flux profile and concentration quality. With respect to prior methods, VISdish offers several advantages: (i) simpler data processing, because light point-source and its reflections are univocally related, (ii) higher accuracy. The instrument functionality is illustrated through the preliminary experimental results obtained on the dish recently installed in ENEA-Casaccia in the framework of the E.U. project OMSoP.

  12. The place of solar power: an economic analysis of concentrated and distributed solar power.

    PubMed

    Banoni, Vanessa Arellano; Arnone, Aldo; Fondeur, Maria; Hodge, Annabel; Offner, J Patrick; Phillips, Jordan K

    2012-04-23

    This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models' benefits and costs. The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm, outweigh any minor concerns or potential externalities.

  13. The place of solar power: an economic analysis of concentrated and distributed solar power

    PubMed Central

    2012-01-01

    Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm, outweigh any minor concerns or potential externalities. PMID:22540991

  14. The use of multi criteria analysis to compare the operating scenarios of the hybrid generation system of wind turbines, photovoltaic modules and a fuel cell

    NASA Astrophysics Data System (ADS)

    Ceran, Bartosz

    2017-11-01

    The paper presents the results of the use of multi-criteria analysis to compare hybrid power generation system collaboration scenarios (HSW) consisting of wind turbines, solar panels and energy storage electrolyzer - PEM type fuel cell with electricity system. The following scenarios were examined: the base S-I-hybrid system powers the off-grid mode receiver, S-II, S-III, S-IV scenarios-electricity system covers 25%, 50%, 75% of energy demand by the recipient. The effect of weights of the above-mentioned criteria on the final result of the multi-criteria analysis was examined.

  15. High temperature latent heat thermal energy storage to augment solar thermal propulsion for microsatellites

    NASA Astrophysics Data System (ADS)

    Gilpin, Matthew R.

    Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling technology for the platform. The use of silicon and boron as high temperature latent heat thermal energy storage materials has been in the background of solar thermal research for decades without a substantial investigation. This is despite a broad agreement in the literature about the performance benefits obtainable from a latent heat mechanisms which provides a high energy storage density and quasi-isothermal heat release at high temperature. In this work, an experimental approach was taken to uncover the practical concerns associated specifically with applying silicon as an energy storage material. A new solar furnace was built and characterized enabling the creation of molten silicon in the laboratory. These tests have demonstrated the basic feasibility of a molten silicon based thermal energy storage system and have highlighted asymmetric heat transfer as well as silicon expansion damage to be the primary engineering concerns for the technology. For cylindrical geometries, it has been shown that reduced fill factors can prevent damage to graphite walled silicon containers at the expense of decreased energy storage density. Concurrent with experimental testing, a cooling model was written using the "enthalpy method" to calculate the phase change process and predict test section performance. Despite a simplistic phase change model, and experimentally demonstrated complexities of the freezing process, results coincided with experimental data. It is thus possible to capture essential system behaviors of a latent heat thermal energy storage system even with low fidelity freezing kinetics modeling allowing the use of standard tools to obtain reasonable results. Finally, a technological road map is provided listing extant technological concerns and potential solutions. Improvements in container design and an increased understanding of convective coupling efficiency will ultimately enable both high temperature latent heat thermal energy storage and a new class of high performance bi-modal solar thermal spacecraft.

  16. 76 FR 21402 - Notice of Availability of the Final Environmental Impact Statement for the Desert Sunlight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... proposed DSSF which includes a 550-megawatt (MW) solar photovoltaic (PV) facility and associated 220... Holdings, LLC, Desert Sunlight Solar Farm and Proposed California Desert Conservation Area Plan Amendment... Desert Sunlight Solar Farm (DSSF) project and by this notice is announcing its availability. DATES: The...

  17. 77 FR 72439 - Residential, Business, and Wind and Solar Resource Leases on Indian Land

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... Affairs 25 CFR Part 162 Residential, Business, and Wind and Solar Resource Leases on Indian Land; Final...-2011-0001] RIN 1076-AE73 Residential, Business, and Wind and Solar Resource Leases on Indian Land... adds new regulations to address residential leases, business leases, wind energy evaluation leases, and...

  18. 75 FR 49515 - Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... megawatt (MW) solar photovoltaic project which would connect to an existing Southern California Edison 33... Solutions Lucerne Valley Solar Project, California and the Proposed Amendment to the California Desert... Chevron Energy Solutions Lucerne Valley Solar Project and by this notice is announcing its availability...

  19. 78 FR 68860 - Notice of Availability of a Final Environmental Impact Statement and Environmental Impact Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... decommission a photovoltaic solar energy facility on public lands in compliance with FLPMA, BLM ROW regulations... Proposed Stateline Solar Farm and Proposed California Desert Conservation Area Plan Amendment AGENCY... Environmental Impact Report (EIR) for the Stateline Solar Farm Project (SSFP) and by this notice is announcing...

  20. Alternative Architecture for Commercial Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth

    2000-01-01

    This presentation discuss the space solar power (SSP) concept. It takes us step by step through the process: the use of sunlight and solar cells to create power, the conversion of the sunlight into electricity, the conversion of electricity to microwaves, and finally the from microwaves back to electricity by the Rectennas on Earth.

  1. 76 FR 7844 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    .... Rassbach 509-522-6290. Amended Notices EIS No. 20100444, Final EIS, BLM, NV, Tonopah Solar Energy Crescent Dunes Solar Energy Project, a 7,680-Acre Right-of-Way (ROW) on Public Lands to Construct a Concentrated Solar Thermal Power Plant Facility, Nye County, NV, Contact: Julie Ann Smith 202-586-7668. Revision to...

  2. The Wide-area Energy Management System Phase 2 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resultingmore » system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.« less

  3. A new Space Station power system

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1988-01-01

    A new concept for a Space Station power system is proposed which reduces the drag effect of the solar panels and eliminates eclipsing by the Earth. The solar generator is physically separated from the Space Station, and power transmitted to the station by a microwave beam. The power station can thus be placed high enough that drag is not a significant factor. For a resonant orbit where the ratio of periods s:p is a ratio of odd integers, and the orbital planes nearly perpendicular, an orbit can be chosen such that the line of sight is never blocked if the lower orbit has an altitude greater than calculatable mininum. For the 1:3 resonance, this minimum altitude is 0.5 r(e). Finally, by placing the power station into a sun-synchronous orbit, it can be made to avoid shadowing by the Earth, thus providing continuous power.

  4. Investigating the Consistency of Models for Water Splitting Systems by Light and Voltage Modulated Techniques.

    PubMed

    Bertoluzzi, Luca; Bisquert, Juan

    2017-01-05

    The optimization of solar energy conversion devices relies on their accurate and nondestructive characterization. The small voltage perturbation techniques of impedance spectroscopy (IS) have proven to be very powerful to identify the main charge storage modes and charge transfer processes that control device operation. Here we establish the general connection between IS and light modulated techniques such as intensity modulated photocurrent (IMPS) and photovoltage spectroscopies (IMVS) for a general system that converts light to energy. We subsequently show how these techniques are related to the steady-state photocurrent and photovoltage and the external quantum efficiency. Finally, we express the IMPS and IMVS transfer functions in terms of the capacitive and resistive features of a general equivalent circuit of IS for the case of a photoanode used for solar fuel production. We critically discuss how much knowledge can be extracted from the combined use of those three techniques.

  5. Is supernova 1987A a stripped asymptotic-branch giant in a binary system?

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Podsiadlowski, PH.; Hsu, J. J. L.; Rappaport, S.

    1988-01-01

    It is proposed that the progenitor of supernova 1987A was a previously undetected red star in orbit about a blue supergiant. The progenitor was the remnant of an asymptotic-branch giant that had lost most of its hydrogen-rich envelope to its blue companion by type C mass transfer. A detailed evolutionary model strongly supports the feasibility of this proposition. It is found that the original mass of the supernova precursor was 10-15 solar (unless a large fraction of the mass was ejected from the binary sytem), and its final mass, just before the supernova event, was 3-6 solar. The system remained bound, with a new orbital period of 3-10 yr and an eccentricity of 0.1-0.4. This picture can provide plausible qualitative explanations for several anomalies in the observational properties of this supernova.

  6. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    NASA Technical Reports Server (NTRS)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  7. Sedna Orbit Animation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  8. Micro solar concentrators: Design and fabrication for microcells arrays

    NASA Astrophysics Data System (ADS)

    Jutteau, Sébastien; Paire, Myriam; Proise, Florian; Lombez, Laurent; Guillemoles, Jean-François

    2015-09-01

    In this work we look at a micro-concentrating system adapted to a new type of concentrator photovoltaic material, well known for flate-plate applications, Cu(In,Ga)Se2. Cu(In,Ga)Se2 solar cells are polycrystalline thin film devices that can be deposited by a variety of techniques. We proposed to use a microcell architecture [1], [2], with lateral dimensions varying from a few μm to hundreds of μm, to adapt the film cell to concentration conditions. A 5% absolute efficiency increase on Cu(In,Ga)Se2 microcells at 475 suns has been observed for a final efficiency of 21.3%[3]. We study micro-concentrating systems adapted to the low and middle concentration range, where thin film concentrator cells will lean to substrate fabrication simplification and cost savings. Our study includes optical design, fabrication and experimental tests of prototypes.

  9. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    NASA Technical Reports Server (NTRS)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  10. Origin of the orbital architecture of the giant planets of the Solar System.

    PubMed

    Tsiganis, K; Gomes, R; Morbidelli, A; Levison, H F

    2005-05-26

    Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.

  11. Solar electric power for instruments at remote sites

    USGS Publications Warehouse

    McChesney, P.J.

    2000-01-01

    Small photovoltaic (PV) systems are the preferred method to power instruments operating at permanent locations away from the electric power grid. The low-power PV power system consists of a solar panel or small array of panels, lead-acid batteries, and a charge controller. Even though the small PV power system is simple, the job of supplying power at a remote site can be very demanding. The equipment is often exposed to harsh conditions. The site may be inaccessible part of the year or difficult and expensive to reach at any time. Yet the system must provide uninterrupted power with minimum maintenance at low cost. This requires good design. Successful small PV systems often require modifications by a knowledgeable fieldworker to adapt to conditions at the site. Much information is available in many places about solar panels, lead-acid batteries, and charging systems but very little of it applies directly to low power instrument sites. The discussion here aims to close some of the gap. Each of the major components is described in terms of this application with particular attention paid to batteries. Site problems are investigated. Finally, maintenance and test procedures are given. This document assumes that the reader is engaged in planning or maintaining low-power PV sites and has basic electrical and electronic knowledge. The area covered by the discussion is broad. To help the reader with the many terms and acronyms used, they are shown in bold when first used and a glossary is provided at the end of the paper.

  12. The formation of giant planets and its effects on protoplanetary disks: the case of Jupiter and the Jovian Early Bombardment

    NASA Astrophysics Data System (ADS)

    Turrini, D.; ISSI Team "Vesta, the key to the origins of the Solar System"; EChO "Planetary Formation" Working Group

    The formation of giant planets is accompanied by a short but intense primordial bombardment \\citep{safronov69,weidenschilling75,weidenschilling01,turrini11}: the prototype for this class of events is the Jovian Early Bombardment (JEB) caused by the formation of Jupiter in the Solar System \\citep{turrini11,turrini12}. The JEB affected the collisional evolution of the minor bodies in the inner Solar System by inflicting mass loss to planetesimals \\citep{turrini12,turrini14a,turrini14b} due to cratering erosion and, at the same time, delivering water and volatile materials to the asteroid belt \\citep{turrini14b}. The JEB also resulted in a significant number of collisions between Jupiter and planetesimals formed over a wide orbital range, delivering volatile and refractory materials to the giant planet and its circumplanetary disk \\citep{turrini14c}. In this talk I'll discuss how the study of the effects of the JEB on Vesta can be used to constrain the early evolution of the Solar System \\citep{turrini14a,turrini14b} and how these constraints can, in turn, provide insight on the composition of Jupiter and of its satellites. Finally, I'll discuss the implications of the JEB model for extrasolar planets \\citep{turrini14c}.

  13. Characterization of the RPW Electric Antenna System aboard Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Rucker, H. O.; Oswald, T.; Sampl, M.; Fischer, G.; Macher, W.; Maksimovic, M.

    2009-12-01

    Radio and Plasma Waves Experiment The Radio and Plasma Waves experiment (RPW) is unique amongst the Solar Orbiter instruments in that it makes both important in situ and remote-sensing measurements. It is of prime importance for the Solar Orbiter mission. RPW will perform measurements to determine the properties, dynamics and interactions of plasma, fields and particles in the near-Sun heliosphere. It will participate in the investigation of the links between the solar surface, corona and inner heliosphere. RPW will explore, at all latitudes, the energetics, dynamics and fine-scale structure of the Sun’s magnetized atmosphere. More specifically, RPW will measure magnetic and electric fields in high time resolution using a number of sensors, to determine the characteristics of electromagnetic and electrostatic waves in the solar wind from almost DC to 20 MHz. Electric Antenna System A novel electric antenna design is proposed for the RPW experiment. It consists of a set of three identical monopoles, each of a total length of more than 6 meters, deployed from the corners of the spacecraft and perpendicular to the spacecraft-Sun axis. Each of the three antennas rods has a length of 5m and is mounted on a boom. The antennas are equally spaced, so the angles between the antennas are 120°. Simulation of the Antenna System Performance The electromagnetic wave reception properties of the spacecraft antenna system are influenced by the currents flowing on the conductive surface of the spacecraft body and the impedances at the foot points of the antenna rods. In the specific case of Solar Orbiter the spacecraft body and the antenna system structure is not yet finally defined, however the preliminary known schematics enable a first estimate of the effective length vectors. The foot point voltages for all antenna elements are calculated for linear polarized waves, incident from different directions. Applying the reciprocity theorem a full polarimetric characterization of the antenna system is performed in a frequency range from 100 kHz up to 20 MHz. One-side heating of the antenna rods caused by solar radiation will lead to a significant antenna bending. This will influence the effective antenna vectors and has to be taken into account for the calibration process, especially if the bending will cause asymmetries in the antenna system. A detailed study of radiation coupling effects caused for instance by solar panels and high gain communication antenna (HGA) has been performed. The orientation of solar panels and HGA as well as the bending of the antenna elements has a significant influence on the instrument calibration. The analysis of different combinations of the three foot point voltages points out the instrument capabilities in polarization sensitive direction finding. The results of the computer simulations together with model scaled measurements will be used to evaluate the influence of the spacecraft on the antenna system reception properties and may be used for a re-evaluation of the structure and position of antennas and instruments on board Solar Orbiter

  14. Automatic computation for optimum height planning of apartment buildings to improve solar access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Yoon-Bok; Kim, Yong-Yee; Seok, Ho-Tae

    2011-01-15

    The objective of this study is to suggest a mathematical model and an optimal algorithm for determining the height of apartment buildings to satisfy the solar rights of survey buildings or survey housing units. The objective is also to develop an automatic computation model for the optimum height of apartment buildings and then to clarify the performance and expected effects. To accomplish the objective of this study, the following procedures were followed: (1) The necessity of the height planning of obstruction buildings to satisfy the solar rights of survey buildings or survey housing units is demonstrated by analyzing through amore » literature review the recent trend of disputes related to solar rights and to examining the social requirements in terms of solar rights. In addition, the necessity of the automatic computation system for height planning of apartment buildings is demonstrated and a suitable analysis method for this system is chosen by investigating the characteristics of analysis methods for solar rights assessment. (2) A case study on the process of height planning of apartment buildings will be briefly described and the problems occurring in this process will then be examined carefully. (3) To develop an automatic computation model for height planning of apartment buildings, geometrical elements forming apartment buildings are defined by analyzing the geometrical characteristics of apartment buildings. In addition, design factors and regulations required in height planning of apartment buildings are investigated. Based on this knowledge, the methodology and mathematical algorithm to adjust the height of apartment buildings by automatic computation are suggested and probable problems and the ways to resolve these problems are discussed. Finally, the methodology and algorithm for the optimization are suggested. (4) Based on the suggested methodology and mathematical algorithm, the automatic computation model for optimum height of apartment buildings is developed and the developed system is verified through the application of some cases. The effects of the suggested model are then demonstrated quantitatively and qualitatively. (author)« less

  15. Final Technical Report for Contract No. DE-EE0006332, "Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormier, Dallas; Edra, Sherwin; Espinoza, Michael

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations,more » identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.« less

  16. Solar conspiracy: the $3,000,000,000,000 game plan of the energy barons' shadow government

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, J.

    1975-01-01

    The author, Chairman of the Board of International Solarthermics Corp. of Nederland, Colo., presents some very provocative questions and comments in this analysis of solar energy development in the U.S.--and in the process, the analysis pervades the whole muddled energy picture. Mr. Keyes' frustration and concern results essentially from the following: (1) his company invented and developed a backyard solar furnace with collector space approximately 100 ft/sup 2/ (about 10 times smaller than most other systems to date); (2) the furnace was tested, made a production-ready item, and was to be made and marketed by many independent manufacturers licensed undermore » a patents-pending arrangement and in competition with each other; and (3) instead of being greeted with ''huzzahs'' as a breakthrough product, the furnace ''seemed to act like a red-flag stimulus designed to prompt the anger of the people already working in the field of solar energy research.'' It is (3) and the attacks by ''learned'' PhD's and other scientists and engineers that apparently inspired this book--indeed, Mr. Keyes attempts to analyze the motives behind these attacks, first pointing out that respected scientists had been wrestling with the problem for years and could not build a practical system with less than 1000 ft/sup 2/ of solar collector. He states further that many attackers suspended final judgment until they had visited the research facility and examined the data and collection methods; and that each who took the time to investigate carefully became a ''convert'' and advocate of the system. Mr. Keyes' analysis of the forces at play behind his charge of ''conspiracy''--that big business, aided unwittingly by governmental agencies, is inhibiting rapid development of solar energy--indeed provides food for thought for those who should scrutinize the whole energy ballgame. (LMT)« less

  17. 76 FR 28029 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... 210- 424-8346. EIS No. 20110143, Final EIS, BLM, CA, Palen Solar Power Plant Project, Construction, Operation and Decommission a Solar Thermal Facility on Public Lands, Approval for Right-of-Way Grant...

  18. 75 FR 63469 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ...: Sandra Stiles, 504-862-1583. EIS No. 20100407, Final EIS, BLM, NV, Amargosa Farm Road Solar Energy Project, Construction and Operation of Two Concentrated Solar Power Plant Facilties, Right-of-Way...

  19. 77 FR 75632 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ..., McCoy Solar Energy Project, Proposed Plan Amendment, Riverside County, CA, Review Period Ends: 01/ 22..., Contact: Sandra Shelin 509-527-7265. EIS No. 20120393, Final EIS, WAPA, AZ, Quartzsite Solar Energy...

  20. 75 FR 55326 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ..., Contact: Kimberly Kler 360- 396-0927. EIS No. 20100365, Final EIS, BLM, NV, Silver State Solar Energy Project, Construction and Operation of a 400-megawatt Photovoltaic Solar Plant and Associated Facilities...

  1. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  2. A synthetic method of solar spectrum based on LED

    NASA Astrophysics Data System (ADS)

    Wang, Ji-qiang; Su, Shi; Zhang, Guo-yu; Zhang, Jian

    2017-10-01

    A synthetic method of solar spectrum which based on the spectral characteristics of the solar spectrum and LED, and the principle of arbitrary spectral synthesis was studied by using 14 kinds of LED with different central wavelengths.The LED and solar spectrum data were selected by Origin Software firstly, then calculated the total number of LED for each center band by the transformation relation between brightness and illumination and Least Squares Curve Fit in Matlab.Finally, the spectrum curve of AM1.5 standard solar spectrum was obtained. The results met the technical indexes of the solar spectrum matching with ±20% and the solar constant with >0.5.

  3. On the occurrence and strength of multi-frequency multi-GNSS Ionospheric Scintillations in Indian sector during declining phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Srinivasu, V. K. D.; Dashora, N.; Prasad, D. S. V. V. D.; Niranjan, K.; Gopi Krishna, S.

    2018-04-01

    This study presents unique perspectives of occurrence and strength of low latitude ionospheric scintillations on multiple signals of Global Navigation Satellite System (GNSS) and its frequency dependence using continuous observation records of 780 nights. A robust comparative analysis is performed using scintillation index, S4 and its variation during pre-midnight and post-midnight duration from a GNSS receiver located at Waltair (17.7°N, 83.3°E), India, covering period from July 2014 to August 2016. The results, generally exhibit the impact of declining phase of solar cycle 24 on occurrence and strength of scintillations, which, however, is evidently different over different frequencies transmitted from different GNSS systems. A deeper quantitative analysis uniquely reveals that apart from the solar cycle and seasonal effects, the number of visible satellites of a selected GNSS markedly affect the occurrence and also the strength. Processing scheme of adopting 6 hourly time windows of pre-midnight and post-midnight brought a novel result that the strength and occurrence of strong scintillations decrease with declining solar activity during pre-midnight hours but remarkably increase for moderate and weak scintillations during post-midnight. The physical processes that dominate the post-midnight equatorial ionosphere are invoked to explain such variations that are special during declining solar activity. Finally, inter-GNSS signal analysis in terms of the effect of strong, moderate and weak scintillations is presented with due consideration of number of satellite passes affected and frequency dependence of mean S4. The quantitative results of this study emphasize for the first time effect of low latitude scintillation on GNSS signals in Indian zone under changing background solar and seasonal conditions.

  4. Missions to the Outer Solar System and Beyond - Concept Study for a Kuiper Belt Sample-Return

    NASA Astrophysics Data System (ADS)

    Ganapathy, Rohan M.

    The exploration of Kuiper belt objects (KBOs) might deliver crucial data for answering questions about the evolution of the solar system and the origin of life. Whereas the current New Horizons mission performs a flyby at KBOs, an in-depth exploration of the Kuiper belt requires an orbiter, lander or even a sample return. In this paper, we present a range of potential mission architectures for a Kuiper belt sample return mission. We use the Systems Modeling Language (SysML) for the necessary modeling and the systems engineering tool MagicDraw. A process similar to the NASA Rapid Mission Architecture approach was used. We start with a rationale a KBO sample return, dene science objectives, high-level requirements and select a strawman payload. From a key trade-matrix, mission architecture options are generated. Finally, necessary technologies and prerequisites for the mission are identied. We conclude that one of the dwarf planets Pluto, Haumea, Orcus or Quaoar and their moons should be considered as a target for the mission. The samples should be collected from the dwarf planet of choice or from its moon(s), which omits the rather high velocity requirements for a landing and departure from the dwarf planet itself. Attractive mission architectures include radioisotopic electric propulsion-based missions, missions with a combination of a solar electric propulsion stage and radioisotopic electric propulsion, or missions using nuclear electric propulsion.

  5. Life Cycle Analysis for the Feasibility of Photovoltaic System Application in Indonesia

    NASA Astrophysics Data System (ADS)

    Yudha, H. M.; Dewi, T.; Risma, P.; Oktarina, Y.

    2018-03-01

    Electricity has become the basic need for everyone, from industry to domestic. Today electricity source still depends heavily on fossil fuels that soon will be diminished from the earth in around 50 years. This condition demands us to find the renewable energy to support our everyday life. One of the famous renewable energy sources is from solar, harnessed by energy conversion device named solar cells. Countries like Indonesia are gifted with an abundance of sunlight all the yearlong. The application of solar cells with its photovoltaic (PV) technology harnesses the sunlight and converts it into electricity. Although this technology is emerging very fast, it still has some limitation due to the current PV technology, economic feasibility, and its environmental impacts. Life cycle assessment is the method to analyze and evaluate the sustainability of PV system and its environmental impact. This paper presents literature study of PV system from the cradle to grave, it begins with the material choices (from the first generation and the possibility of the fourth generation), manufacturing process, implementation, and ends it with the after-life effect of PV modules. The result of this study will be the insights look of the PV system application in Indonesia, from the best option of material choice, the best method of application, the energy payback time, and finally the possible after life recycle of PV materials.

  6. Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems

    USGS Publications Warehouse

    Amelin, Y.; Connelly, J.; Zartman, R.E.; Chen, J.-H.; Gopel, C.; Neymark, L.A.

    2009-01-01

    In this paper, we evaluate the factors that influence the accuracy of lead (Pb)-isotopic ages of meteorites, and may possibly be responsible for inconsistencies between Pb-isotopic and extinct nuclide timescales of the early Solar System: instrumental mass fractionation and other possible analytical sources of error, presence of more than one component of non-radiogenic Pb, migration of ancient radiogenic Pb by diffusion and other mechanisms, possible heterogeneity of the isotopic composition of uranium (U), uncertainties in the decay constants of uranium isotopes, possible presence of "freshly synthesized" actinides with short half-life (e.g. 234U) in the early Solar System, possible initial disequilibrium in the uranium decay chains, and potential fractionation of radiogenic Pb isotopes and U isotopes caused by alpha-recoil and subsequent laboratory treatment. We review the use of 232Th/238U values to assist in making accurate interpretations of the U-Pb ages of meteorite components. We discuss recently published U-Pb dates of calcium-aluminum-rich inclusions (CAIs), and their apparent disagreement with the extinct nuclide dates, in the context of capability and common pitfalls in modern meteorite chronology. Finally, we discuss the requirements of meteorites that are intended to be used as the reference points in building a consistent time scale of the early Solar System, based on the combined use of the U-Pb system and extinct nuclide chronometers.

  7. Integrated energy system for the Asphalt Green Youth Sports and Arts Center and the Fireboat House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, J.; Cole, W.J.

    Energy conservation and solar energy measures are described for two old buildings, different in scale and character, that are being recycled by the Neighborhood Committee for the Asphalt Green into a community Sports and Arts Center and an Environmental Studies Center. The approach taken by the Authority in developing the integrated energy system design for the larger, commercial-scale Sports and Arts Center was to incorporate energy conservation and renewable energy measures that minimize life cycle costs. The benefits of this approach are significant. As documented in this report, energy costs will be reduced from about $50,000 per year (in 1979more » dollars) to $15,000 per year. The final design incorporates exterior shell insulation, on-site mechanical equipment, and a wind energy conversion system to generate electricity for the large lighting and cooling requirements, heat recovery from the ventilation exhaust air, generator motors and refrigeration system, and hot and cold thermal storage for load management. The Environmental Studies Center, formerly a fireboat station on the East River, is a smaller residential-scale structure. The approach in developing the renovation plan was to assess retrofit potential for cost-effective energy conservation, solar domestic hot water, and active and passive solar space heating. Energy measures were selected which would maximize educational potential for school children and which could be replicated by the general public.« less

  8. High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Final Technical Report, 4 March 1998--15 October 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2003-10-01

    This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less

  9. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  10. Propulsion options for the HI SPOT long endurance drone airship. Final report, November 1978-August 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcy, W.L.; Hookway, R.O.

    1979-09-15

    Airbreathing, monofueled, stored-energy, and solar-rechargeable propulsion systems have been studied for the HI SPOT Long Endurance Drone Airship, providing constant-level electrical power as well as variable aerodynamic thrust to maintain position in winds varying from 15 to 100 knots at high altitude. A hydrogen fueled airbreathing engine is optimum for mission lengths up to 30 days or more.

  11. NASA's search for the solar connection. I. [OSO Skylab, Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Chapman, R. W.

    1979-01-01

    NASA's solar research, which leans toward the study of the sun as a star, is surveyed. The Orbiting Solar Observatory (OSO) program is covered, which yielded data such as spectras of 140-400 A wavelength of the entire solar disk. Attention is also given to the results obtained by Skylab, such as data showing that whenever a large coronal hole exists near the sun's equator, a stream of high-speed solar wind will be observed at the earth. Finally areas of future research, such as a concerted study of flare phenomenon, are discussed.

  12. High resolution solar observations from first principles to applications

    NASA Astrophysics Data System (ADS)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the polarization optics for the Visible-light Imaging Magnetograph (VIM) is presented. VIM uses a set of two Liquid Crystal Variable Retarders (LCVRs) as the main components of its Stokes analyzer. Calibration of these components is a crucial step in providing reliable polarimetric measurements of the Sun using VIM. On 2007 July 15, using the Dunn Solar Telescope (DST) at the National Solar Observatory at Sacramento Peak (NSO/SP), New Mexico, the first polarimetric measurements using VIM were made. As a final step, illustrating an application of high-resolution solar observations, the results of a two-dimensional time-series acquired on 2006 June 11, using the DST at NSOP is presented. The data is used in a study of upflow events that are observed to occur in the Halpha 656.3 nm and Na D2 589.0 nm chromospheric absorption lines.

  13. Solar 2 Green Energy, Arts & Education Center. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paquette, Jamie C; Collins, Christopher J

    The Solar 2 Green Energy, Arts and Education Center is an 8,000 sq.ft. demonstration project that will be constructed to Platinum LEED certification and will be the first carbon-neutral, net-zero energy use public building in New York City, giving it local and national appeal. Employing green building features and holistic engineering practices throughout its international award-winning design, Solar 2 will be powered by a 90kW photovoltaic (PV) array in conjunction with a geothermal heating and cooling system and a high efficient design that seeks to reduce the overall energy load of the building. Solar 2 will replace our current 500more » sq.ft. prototype facility - known as Solar 1 - as the educational and cultural centerpiece of a five-block public greenway on the East River in Stuyvesant Cove Park, located along two acres of public riverfront on a newly reclaimed, former brownfield in lower Manhattan. Designed as a public-use complex for year-round environmental education exhibits and onsite activities for all ages and backgrounds, Solar 2 will demonstrate energy-efficiency technologies and sustainable environmental practices available now to all urban residents, eco-tourists, teachers, and students alike. Showcasing one of Solar 2's most striking design elements is the PV roof array with a cafe and river vistas for miles of New York City's skylines. Capping the building as a solar-powered landmark, and visible from the FDR Drive, the PV array is also designed to provide visitors below a view of the solar roof when standing outside, as well as directly underneath it. Recognized by an international jury of architects, civil engineers and urban designers by the Swiss-based Holcim Foundation, the Solar 2 design was awarded the prestigious Holcim North American 2008 Gold Award for Sustainable Construction for innovative, future-oriented and tangible sustainable construction projects, selected from more than 1900 entries. Funding from the Department of Energy was provided to assist with the ongoing design work of Solar 2, including architecture, engineering and the development of construction specifications. The work performed during the project period brought this process as far along as it could go pending the raising of funds to begin construction of the building. Once those funds are secured, we will finalize any additional details needed before beginning the bidding process and then moving into construction. DOE's funding was extremely valuable in helping Solar One determine the feasibility of a net-zero construction on the site and allowed for the design to project to meet the high standards necessary for LEED Platinum status.« less

  14. Solar wind parameters and magnetospheric coupling studies

    NASA Technical Reports Server (NTRS)

    King, Joseph H.

    1986-01-01

    This paper presents distributions, means, and standard deviations of the fluxes of solar wind protons, momentum, and energy as observed near earth during the solar quiet and active years 1976 and 1979. Distributions of ratios of energies (Alfven Mach number, plasma beta) and distributions of interplanetary magnetic field orientations are also given. Finally, the uncertainties associated with the use of the libration point orbiting ISEE-3 spacecraft as a solar wind monitor are discussed.

  15. Different orders of lives in the universe

    NASA Astrophysics Data System (ADS)

    Sikdar, M. K.

    2014-08-01

    In this article, main life sensitive elements involved in life creating processes on earth have been explored. An in-depth study has been made to search out material abundances of all life sensitive elements in the periodic table mainly on earth, celestial bodies like star, binary stars, extra-solar system, extra solar planets and galaxies etc. at large. Extensive review has been made to project how life processes are being triggered in our earth and intakes required for continuous metabolism, mutation, reproducibility etc. Finally on the basis of ideas developed about the life processes on earth, other life chains that may happen to exist on other celestial bodies have been predicted. The constraints and barriers that stand in the way of communications have also been pointed out.

  16. Solar system to scale

    NASA Astrophysics Data System (ADS)

    Gerwig López, Susanne

    2016-04-01

    One of the most important successes in astronomical observations has been to determine the limit of the Solar System. It is said that the first man able to measure the distance Earth-Sun with only a very slight mistake, in the second century BC, was the wise Greek man Aristarco de Samos. Thanks to Newtońs law of universal gravitation, it was possible to measure, with a little margin of error, the distances between the Sun and the planets. Twelve-year old students are very interested in everything related to the universe. However, it seems too difficult to imagine and understand the real distances among the different celestial bodies. To learn the differences among the inner and outer planets and how far away the outer ones are, I have considered to make my pupils work on the sizes and the distances in our solar system constructing it to scale. The purpose is to reproduce our solar system to scale on a cardboard. The procedure is very easy and simple. Students of first year of ESO (12 year-old) receive the instructions in a sheet of paper (things they need: a black cardboard, a pair of scissors, colored pencils, a ruler, adhesive tape, glue, the photocopies of the planets and satellites, the measurements they have to use). In another photocopy they get the pictures of the edge of the sun, the planets, dwarf planets and some satellites, which they have to color, cut and stick on the cardboard. This activity is planned for both Spanish and bilingual learning students as a science project. Depending on the group, they will receive these instructions in Spanish or in English. When the time is over, the students bring their works on their cardboard to the class. They obtain a final mark: passing, good or excellent, depending on the accuracy of the measurements, the position of all the celestial bodies, the asteroids belts, personal contributions, etc. If any of the students has not followed the instructions they get the chance to remake it again properly, in order not to obtain the "failing" mark. When the teacher notices that some mistakes can be easily improved, students can do it. If the students have forgotten to write the names of the celestial bodies, they should add them. Finally, their works will be exposed in the classroom.

  17. 78 FR 57880 - Notice of Availability of the Final Supplemental Environmental Impact Statement and Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ...-MW PV solar energy facility. The BLM approved a Record of Decision on October 12, 2010, for the... PV solar energy facility on 618 acres of BLM-administered lands, which represented the first phase of... the Silver State Solar South Project, Clark County, NV AGENCY: Bureau of Land Management, Interior...

  18. 75 FR 65306 - Notice of Intent To Prepare an Environmental Impact Statement for a Proposed Federal Loan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... installation of about nine million photovoltaic (PV) solar modules within approximately 437 arrays and... final project design. The proposed Project would consist of: A solar field of ground-mounted PV modules... Federal Loan Guarantee To Support Construction of the Topaz Solar Farm, San Luis Obispo County, CA AGENCY...

  19. Urban Options Solar Greenhouse Demonstration Project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  20. Constructing probabilistic scenarios for wide-area solar power generation

    DOE PAGES

    Woodruff, David L.; Deride, Julio; Staid, Andrea; ...

    2017-12-22

    Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less

  1. An analytical study of the minority carrier distribution and photocurrent of a p-i-n quantum dot solar cell based on the InAs/GaAs system

    NASA Astrophysics Data System (ADS)

    Biswas, Sayantan; Sinha, Amitabha

    2017-10-01

    An analytical study has been carried out on the InAs/GaAs p+-i-n+ quantum dot solar cell, taking into consideration the contributions of each region of the cell to the total photocurrent. The expressions for the excess minority carrier concentration and photocurrent from the front and the rear regions of the device have been obtained and their variations with different device parameters have been studied. Also, based on the investigations reported by some researchers earlier, the photocurrent contribution from the intrinsic region of the solar has been studied, taking into account the quantum dot ensemble absorption coefficient, which depends significantly on the quantum dot size and size dispersion. It is observed that all the three regions of the cell contribute to the overall internal quantum efficiency (IQE) of the cell. The contribution of each region of the solar cell to the total IQE has been shown graphically. From these studies it is observed that the incorporation of the quantum dots in the intrinsic region enhance the photocurrent density and hence the IQE of such solar cell, as it absorbs low energy photons, which are beyond the absorption range of GaAs. Finally, the fill factor of the solar cell has been calculated.

  2. Electrostatic Discharge Test of Multi-Junction Solar Array Coupons After Combined Space Environmental Exposures

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George

    2010-01-01

    A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.

  3. Tribal Renewable Energy Report - Final Report: Bishop Paiute Tribe Residential Solar Program. Phase 1 (DOE Award # DE-EE0006949)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, Brian; Castilone, Lisa

    The objective of the project was to provide affordable renewable energy to 22 low income reservation homeowners; provide job training to tribal members and reduce air pollution by equivalent carbon offsets. The project exceeded grant objectives installing 66kW of rooftop solar on 22 low income single family homes and providing hands-on PV rooftop solar installation training to 24 tribal individuals (four more than planned). The project was a phased installment of an on-going partnership between the Tribe and GRID that was initiated in 2013 whereby 62 rooftop solar units were installed prior to this funded effort. The reported work inmore » this report describes the funded effort where US Department of Energy provided partial funding through grant award IE0006949 and marks the first phase of an effort matching California Solar SASH Initiative funding with DOE Office of Indian Energy Funding and brings the total for the program to 84 installed systems (running total of 271 Kw installed) and the end of the project. Tribal workforce development was a key aspect of the project and trained 24tribal members for a total 1168 cumulative on-job training hours. The solar installations and training efforts were fully completed by September of 2016 with 66.6 kW installed - 8 kW more than the original estimate stated in the grant application.« less

  4. Constructing probabilistic scenarios for wide-area solar power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, David L.; Deride, Julio; Staid, Andrea

    Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less

  5. Mitigating Interconnection Challenges of the High Penetration Utility-Interconnected Photovoltaic (PV) in the Electrical Distribution Systems: Cooperative Research and Development Final Report, CRADA Number CRD-14-563

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sudipta

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less

  6. Photovoltaic solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting themore » photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.« less

  7. Online Analysis of Wind and Solar Part I: Ramping Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.

    2012-01-31

    To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.

  8. Low Leakage Turbine Shaft Seals for Advanced Combined Cycle Systems.

    DTIC Science & Technology

    1984-11-01

    Both used feedwater -supplied buffer water as required by advanced combined cycle steam turbomachinery. It was shown to be advantageous, at least from...RD-fi149 372 LOW LEAKAGE’TURBINE SHAFT SEALS FOR ADVANCED COMBINED 1/2- CYCLE SYSTEMS(U) SOLAR TURBINES INC SAN DIEGO CA G W HOSANG NOV 84 SR84-R...4622-36 N88824-7B-C-5345 UNCLASSIFIED F/1 i/i NL AIONA L RUEA OF B 20NADS16 Final Report N 4 <Low Leakage Turbine Shaft Seals for Advanced Combined Cycle

  9. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  10. KSC-97DC1286

    NASA Image and Video Library

    1997-08-19

    Final prelaunch preparations are made at Launch Complex 17A, Cape Canaveral Air Station, for liftoff of the Boeing Delta II expendable launch vehicle with the Advanced Composition Explorer (ACE) spacecraft, at top. The black rectangular-shaped panel in front is one of ACE’s solar arrays. ACE will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. This will be the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff is scheduled Aug. 24

  11. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  12. Solar Living House Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Bradley

    The Solar Living House is a high-performance solar-powered dwelling designed by a team of faculty and students from the University of Florida, in collaboration with Santa Fe College, the National University of Singapore, and Alachua Habitat for Humanity. The project was designed in accordance with the Solar Decathlon 2015, a research, design, education, and outreach program developed by the U.S. Department of Energy (DOE). The Solar Living House is fundamentally a house for living, centered on people and the activities of daily life while quietly introducing advanced design, construction, and engineering technologies. The 993 square-foot two-bedroom one-bath home was designedmore » to embrace and frame an exterior courtyard space. This courtyard acts as an extension of the interior living spaces, maximizing the spatial potentials of a modest building footprint and introducing natural light into the primary living spaces of the house. Research Outcomes: The Solar Living House advances work on high-performance buildings through three principal technological innovations: wet/dry modular construction, a building automation system, and solar dehumidification systems. Wet / Dry Modular Construction: The house is designed as a series of five modules, including one that is designated as the “wet core.” The wet core consolidates the mechanical systems and bathroom into a single module to reduce plumbing runs, efficiency losses, and on-site construction time. The other four modules are designed to eliminate interior load bearing walls to allow for maximum flexibility in the reconfiguring of the space over time. The modules are designed to meet the structural challenges of both Florida’s hurricanes and California’s earthquakes. Building Automation System: The house is equipped with an integrated building automation system, allowing the houses environmental systems, lights, security systems, and smoke detectors to be programmed, monitored, and controlled through any mobile or computing device. These systems allow for more precise calibrations of temperature/humidity/lighting to correspond with user needs and preferences, minimizing energy losses with economical night- or day-time setbacks. Solar Dehumidification System: The most significant technological innovation in the Solar Living House is the solar thermal dehumidification system. This system generates hot water through two rooftop-mounted evacuated tube solar thermal collectors. The hot water is used to continually dry a regenerative solid desiccant material, typically white silica gel. The solid desiccant is used to adsorb moisture and humidity from the air without additional mechanical cooling. This strategy allows humidity to be modulated independently of air temperature, providing greater thermal comfort and reducing the opportunity for the growth of mold spores within the house while also reducing the overall energy consumption of the HVAC system. Economic Feasibility: The team set aggressive goals for affordability, targeting a construction cost of $138,710. An independent professional cost estimator determined the overall project costs, as designed, would be $333,799, or $336.15 per square foot of finished floor area. This is more than 2.4 times the target construction cost. By comparison, the average construction cost for a home in the United States in 2015 was $289,415, or $103.29 per square foot of finished floor area. Following work on the Solar Living House, team leaders incorporated many of its objectives into a net-zero energy home on a site in Gainesville, Florida. This site-built home avoided many of the constraints and complications of modular construction necessitated by the Solar Decathlon, allowing it to be built for a much more modest budget. This two-bedroom two bath 1,800 square foot home was constructed for $135.39 per square foot, including active photovoltaic solar systems, careful attention to continuous air barriers, increased insulation levels, and permanent site constructions. This project suggest that high-performance buildings can be realized for more modest budgets. Public Benefits: Work on the Solar Living House and Solar Decathlon 2015 offered our student team unparalleled learning opportunities. Because of the duration of the project, a number of students participated at different points in their education, from first year undergraduates all the way through to advanced graduate students. The opportunity for collaboration with students and faculty from the National University of Singapore was also extraordinary, allowing for a sharing of technical knowledge and cultural exchange. The wider public has benefited from this work as its findings have been shared through public presentations and publications. It serves as a useful stepping stone along the path towards affordable, high-performance buildings.« less

  13. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10% enhancement over those based on PBDTT-DPP. Finally, in Chapter 5, I demonstrate a new polymer system based on alternating dithienopyran and benzothiadiazole units with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions, which is the first certified polymer solar cell efficiency over 10%.

  14. Electric Solar Wind Sail Kinetic Energy Impactor for Asteroid Deflection Missions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kouhei; Yamakawa, Hiroshi

    2016-03-01

    An electric solar wind sail uses the natural solar wind stream to produce low but continuous thrust by interacting with a number of long thin charged tethers. It allows a spacecraft to generate a thrust without consuming any reaction mass. The aim of this paper is to investigate the use of a spacecraft with such a propulsion system to deflect an asteroid with a high relative velocity away from an Earth collision trajectory. To this end, we formulate a simulation model for the electric solar wind sail. By summing thrust vectors exerted on each tether, a dynamic model which gives the relation between the thrust and sail attitude is proposed. Orbital maneuvering by fixing the sail's attitude and changing tether voltage is considered. A detailed study of the deflection of fictional asteroids, which are assumed to be identified 15 years before Earth impact, is also presented. Assuming a spacecraft characteristic acceleration of 0.5 mm/s 2, and a projectile mass of 1,000 kg, we show that the trajectory of asteroids with one million tons can be changed enough to avoid a collision with the Earth. Finally, the effectiveness of using this method of propulsion in an asteroid deflection mission is evaluated in comparison with using flat photonic solar sails.

  15. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    PubMed

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  16. Polymer-fullerene miscibility: a metric for screening new materials for high-performance organic solar cells.

    PubMed

    Treat, Neil D; Varotto, Alessandro; Takacs, Christopher J; Batara, Nicolas; Al-Hashimi, Mohammed; Heeney, Martin J; Heeger, Alan J; Wudl, Fred; Hawker, Craig J; Chabinyc, Michael L

    2012-09-26

    The improvement of the power conversion efficiency (PCE) of polymer bulk heterojunction (BHJ) solar cells has generally been achieved through synthetic design to control frontier molecular orbital energies and molecular ordering of the electron-donating polymer. An alternate approach to control the PCE of a BHJ is to tune the miscibility of the fullerene and a semiconducting polymer by varying the structure of the fullerene. The miscibility of a series of 1,4-fullerene adducts in the semiconducting polymer, poly(3-hexylselenophene), P3HS, was measured by dynamic secondary ion mass spectrometry using a model bilayer structure. The microstructure of the bilayer was investigated using high-angle annular dark-field scanning transmission microscopy and linked to the polymer-fullerene miscibility. Finally, P3HS:fullerene BHJ solar cells were fabricated from each fullerene derivative, enabling the correlation of the active layer microstructure to the charge collection efficiency and resulting PCE of each system. The volume fraction of polymer-rich, fullerene-rich, and polymer-fullerene mixed domains can be tuned using the miscibility leading to improvement in the charge collection efficiency and PCE in P3HS:fullerene BHJ solar cells. These results suggest a rational approach to the design of fullerenes for improved BHJ solar cells.

  17. Prediction of global ionospheric VTEC maps using an adaptive autoregressive model

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Xin, Shaoming; Liu, Xiaolu; Shi, Chuang; Fan, Lei

    2018-02-01

    In this contribution, an adaptive autoregressive model is proposed and developed to predict global ionospheric vertical total electron content maps (VTEC). Specifically, the spherical harmonic (SH) coefficients are predicted based on the autoregressive model, and the order of the autoregressive model is determined adaptively using the F-test method. To test our method, final CODE and IGS global ionospheric map (GIM) products, as well as altimeter TEC data during low and mid-to-high solar activity period collected by JASON, are used to evaluate the precision of our forecasting products. Results indicate that the predicted products derived from the model proposed in this paper have good consistency with the final GIMs in low solar activity, where the annual mean of the root-mean-square value is approximately 1.5 TECU. However, the performance of predicted vertical TEC in periods of mid-to-high solar activity has less accuracy than that during low solar activity periods, especially in the equatorial ionization anomaly region and the Southern Hemisphere. Additionally, in comparison with forecasting products, the final IGS GIMs have the best consistency with altimeter TEC data. Future work is needed to investigate the performance of forecasting products using the proposed method in an operational environment, rather than using the SH coefficients from the final CODE products, to understand the real-time applicability of the method.

  18. Journey to a Star Rich with Planets

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Journey to a Star Rich with Planets

    This artist's animation takes us on a journey to 55 Cancri, a star with a family of five known planets - the most planets discovered so far around a star besides our own.

    The animation begins on Earth, with a view of the night sky and 55 Cancri (flashing dot), located 41 light-years away in the constellation Cancer. It then zooms through our solar system, passing our asteroids and planets, until finally arriving at the outskirts of 55 Cancri.

    The first planet to appear is the farthest out from the star -- a giant planet, probably made of gas, with a mass four times that of Jupiter. This planet orbits its star every 14 years, similar to Jupiter's 11.9-year orbit.

    As the movie continues, the three inner planets are shown, the closest of which is about 10 to 13 times the mass of Earth with an orbital period of less than three days.

    Zooming out, the animation highlights the newest member of the 55 Cancri family - a massive planet, likely made of gas, water and rock, about 45 times the mass of Earth and orbiting the star every 260 days. This planet is the fourth out from the star, and lies in the system's habitable zone (green). A habitable zone is the place around a star where liquid water would persist. Though the newest planet probably has a thick gaseous envelope, astronomers speculate that it could have one or more moons. In our own solar system, moons are common, so it seems likely that they also orbit planets in other solar systems. If such moons do exist, and if they are as large as Mars or Earth, astronomers speculate that they would retain atmospheres and surface liquid water that might make interesting environments for the development of life.

    The animation ends with a comparison between 55 Cancri and our solar system.

    The colors of the illustrated planets were chosen to resemble those of our own solar system. Astronomers do not know what the planets look like.

  19. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    PubMed

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. SYSTEMATIC AND STOCHASTIC VARIATIONS IN PULSAR DISPERSION MEASURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, M. T.; Cordes, J. M.; Chatterjee, S.

    2016-04-10

    We analyze deterministic and random temporal variations in the dispersion measure (DM) from the full three-dimensional velocities of pulsars with respect to the solar system, combined with electron-density variations over a wide range of length scales. Previous treatments have largely ignored pulsars’ changing distances while favoring interpretations involving changes in sky position from transverse motion. Linear trends in pulsar DMs observed over 5–10 year timescales may signify sizable DM gradients in the interstellar medium (ISM) sampled by the changing direction of the line of sight to the pulsar. We show that motions parallel to the line of sight can alsomore » account for linear trends, for the apparent excess of DM variance over that extrapolated from scintillation measurements, and for the apparent non-Kolmogorov scalings of DM structure functions inferred in some cases. Pulsar motions through atomic gas may produce bow-shock ionized gas that also contributes to DM variations. We discuss the possible causes of periodic or quasi-periodic changes in DM, including seasonal changes in the ionosphere, annual variations of the solar elongation angle, structure in the heliosphere and ISM boundary, and substructure in the ISM. We assess the solar cycle’s role on the amplitude of ionospheric and solar wind variations. Interstellar refraction can produce cyclic timing variations from the error in transforming arrival times to the solar system barycenter. We apply our methods to DM time series and DM gradient measurements in the literature and assess their consistency with a Kolmogorov medium. Finally, we discuss the implications of DM modeling in precision pulsar timing experiments.« less

  1. Amorphous silicon research. Final technical progress report, 1 August 1994--28 February 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, S

    1998-05-01

    This report describes the status and accomplishments of work performed under this subcontract by United Solar Systems. United Solar researchers explored several new deposition regimes/conditions to investigate their effect on material/device performance. To facilitate optimum ion bombardment during growth, a large parameter space involving chamber pressure, rf power, and hydrogen dilution were investigated. United Solar carried out a series of experiments using discharge modulation at various pulsed-plasma intervals to study the effect of Si-particle incorporation on solar cell performance. Hydrogen dilution during deposition is found to improve both the initial and stable performance of a-Si and a-SiGe alloy cells. Researchersmore » conducted a series of temperature-ramping experiments on samples prepared with high and low hydrogen dilutions to study the effect of hydrogen effusion on solar cell performance. Using an internal photoemission method, the electrical bandgap of a microcrystalline p layer used in high-efficiency solar cells was measured to be 1.6 eV. New measurement techniques were developed to evaluate the interface and bulk contributions of losses to solar cell performance. Researchers replaced hydrogen with deuterium and found deuterated amorphous silicon alloy solar cells exhibit reduced light-induced degradation. The incorporation of a microcrystalline n layer in a multijunction cell is seen to improve cell performance. United Solar achieved a world-record single-junction a-Si alloy stable cell efficiency of 9.2% with an active area of 0.25 cm{sup 2} grown with high hydrogen dilution. They also achieved a world-record triple-junction, stable, active-area cell efficiency of 13.0% with an active area of 0.25 cm{sup 2}.« less

  2. Solar Rocket Component Study

    DTIC Science & Technology

    1985-02-01

    3460V4.a0A&L M a..e.aS SLP඄ "LPda M ss C 0fed ______ Amsa C.f 00 FORM 󈧒M3 3 440101 eaof Ian A" 0001 aS0 WCUM?’ Ck8pi..PTION’ of I"""V4 UNCLASSIFIED... 3 Phase I, Concept Assessment . . . . . . . . . . . . . . . . 10 Incident Solar Radiation Distribution...4 3 . Windowless Heat Exchanger Cavity Solar Rocket Thruster ... ..... 6 4. Final Hardware Assembly ........... ... ............... 8 5. Solar

  3. Solar Wind Earth Exchange Project (SWEEP)

    DTIC Science & Technology

    2016-10-28

    AFRL-AFOSR-UK-TR-2016-0035 Solar Wind Earth Exchange Project 140200 Steven Sembay UNIVERSITY OF LEICESTER Final Report 10/28/2016 DISTRIBUTION A...To) 01 Sep 2014 to 31 Aug 2016 4. TITLE AND SUBTITLE Solar Wind Earth Exchange Project (SWEEP) 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1...SUPPLEMENTARY NOTES 14. ABSTRACT The grant received from AFRL/AOFSR/EOARD funded the Solar Wind Earth Exchange Project (SWEEP) at Leicester University. The goal

  4. Metal Nanoshells for Plasmonically Enhanced Solar-to-Fuel Photocatalytic Conversion

    DTIC Science & Technology

    2014-05-09

    Final 3. DATES COVERED (From - To) 04/16/2013 – 04/15/2014 4. TITLE AND SUBTITLE Metal Nanoshells for Plasmonically Enhanced Solar -to...following experiments, the core-shell of nanoshell@SiO2, as well as the nanostructure of photocatalyst, were further investigated. Solar energy in the...nanoshells as the core can absorb the solar energy in the IR and visible-light region ranging from 500 nm to 900 nm. Our data showed that the plasmonic

  5. Work Station For Inverting Solar Cells

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Final work station along walking-beam conveyor of solar-array assembly line turns each pretabbed solar cell over, depositing it back-side-up onto landing pad, which centers cell without engaging collector surface. Solar cell arrives at inverting work station collector-side-up with two interconnect tabs attached to collector side. Cells are inverted so that second soldering operation takes place in plain view of operator. Inversion protects collector from damage when handled at later stages of assembly.

  6. Final Environmental Assessment for Decommissioning and Demolition of the Central Heat Plant, GHLN 09-1010B F. E. Warren Air Force Base, Wyoming

    DTIC Science & Technology

    2012-06-01

    could either be accomplished by installing a solar heating panel on the roof of each of the 104 buildings or having a solar photovoltaic array...Prior to 1981 , ACMs were used extensively in plaster, wall board, joint compound, felt material , roofing material , floor tile , mastic, piping...5 5.4. Alternative D-lnstall Solar Heating Panels or Solar Photovoltaic Array ......................... 5 5.5. Alternative E

  7. Special section guest editorial: Hybrid organic-inorganic solar cells

    DOE PAGES

    Nogueira, Ana Flavia; Rumbles, Garry

    2015-04-06

    In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.

  8. 75 FR 51458 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ..., Contact: Kristin Kerwin 720-356-1564. EIS No. 20100329, Final EIS, BLM, CA, Blythe Solar Power Project (09- AFC-6), Application for Right-of Way Grant to Construct and Operate, and Decommission a Solar Thermal...

  9. Overview and accomplishments of the Borexino experiment

    NASA Astrophysics Data System (ADS)

    Ranucci, G.; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    The Borexino experiment is running at the Laboratori del Gran Sasso in Italy since 2007. Its technical distinctive feature is the unprecedented ultralow background of the inner scintillating core, which is the basis of the outstanding achievements accumulated by the experiment. In this talk, after recalling the main features of the detector, the impressive solar data gathered so far by the experiment will be summarized, with special emphasis to the most recent and prominent result concerning the detection of the fundamental pp solar neutrino flux, which is the direct probe of the engine mechanism powering our star. Such a milestone measurement puts Borexino in the unique situation of being the only experiment able to do solar neutrino spectroscopy over the entire solar spectrum; the counterpart of this peculiar status in the oscillation interpretation of the data is the capability of Borexino alone to perform the full validation across the solar energy range of the MSW-LMA paradigm. The talk will be concluded highlighting the perspectives for the final stage of the solar program of the experiment, centered on the goal to fully complete the solar spectroscopy with the missing piece of the CNO neutrinos. If successful, such a measurement would represent the final crowning of the long quest of Borexino to unravel all the properties of the neutrinos from the Sun.

  10. Stratospheric controlled perturbation experiment (SCoPEx): overview, status, and results from related laboratory experiments

    NASA Astrophysics Data System (ADS)

    Keith, D.; Dykema, J. A.; Keutsch, F. N.

    2017-12-01

    Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., < 1 kg of 0.3 µm radius CaCO3 particles) at can be injected; while, the propellers allow the gondola to move at speeds up to 3 m/sec relative to the local air mass driving the gondola back forth through the volume to measure properties of the perturbed air mass. This presentation will provide an overview of the experiment including (a) a systems engineering perspective from high-level scientific questions through instrument selection, mission design, and proposed operations and data analysis; (b) instruments, include current status of integration testing; (c) payload engineering including structure, power and mass budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.

  11. Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I; Merino, S

    2018-03-15

    The aim of this work was to evaluate the performance of a novel self-autonomous reactor technology (capable of working with solar irradiation and artificial UV light) for water treatment using aniline as model compound. This new reactor design overcomes the problems of the external mass transfer effect and the accessibility to photons occurring in traditional reaction systems. The UV-light source is located inside the rotating quartz drums (where TiO 2 is immobilized), allowing light to easily reach the water and the TiO 2 surface. Several processes (UV, H 2 O 2 , Solar, TiO 2 , Solar/TiO 2 , Solar/TiO 2 /H 2 O 2 and UV/Solar/H 2 O 2 /TiO 2 ) were tested. The synergy between Solar/H 2 O 2 and Solar/TiO 2 processes was quantified to be 40.3% using the pseudo-first-order degradation rate. The apparent photonic efficiency, ζ, was also determined for evaluating light utilization. For the Solar/TiO 2 /H 2 O 2 process, the efficiency was found to be practically constant (0.638-0.681%) when the film thickness is in the range of 1.67-3.87 μm. However, the efficiency increases up to 2.67% when artificial UV light was used in combination, confirming the efficient design of this installation. Thus, if needed, lamps can be switched on during cloudy days to improve the degradation rate of aniline and its mineralization. Under the optimal conditions selected for the Solar/TiO 2 /H 2 O 2 process ([H 2 O 2 ] = 250 mg/L; pH = 4, [TiO 2 ] = 0.65-1.25 mg/cm 2 ), 89.6% of aniline is degraded in 120 min. If the lamps are switched on, aniline is completely degraded in 10 min, reaching 85% of mineralization in 120 min. TiO 2 was re-used during 5 reaction cycles without apparent loss in activity (<2%). Quantification of hydroxyl radicals and dissolved oxygen allows a chemical-based explanation of the process. Finally, the UV/Solar/TiO 2 /H 2 O 2 process was found to have lower operation costs than other systems described in literature (0.67 €/m 3 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. ESA to launch six scientific satellites

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The Infrared Space Observatory, ISO, will lead the trio into space. It will be launched on an Ariane 4 rocket in early November from the European launch site at Kourou, French Guiana. It will be followed in mid-December by SOHO, the Solar and Heliospheric Observatory, which will be launched by an Atlas IIAS rocket from Cape Canaveral, USA. Finally, in mid-January the four Cluster probes will be carried into space on the inaugural flight of Ariane 5. ISO is the world's only orbiting infrared observatory and is the most sophisticated ever. Its sensitive detectors will be cooled to below -270 degrees C, allowing it to observe cool objects in space, invisible through ordinary telescopes. ISO's many scientific goals include studying newly formed stars and planets, investigating the aging process of galaxies and search for the universe's elusive 'dark matter' that is believed to outweigh visible stars and galaxies. The SOHO observatory will provide scientists with a comprehensive study of the sun, the nuclear powerhouse in the centre of our solar system. Its twelve experiments, developed by scientists from Europe and the United States, will investigate the sun from its core outwards -from the very inner workings of the star, to the solar wind which blows through the solar system. The four identical Cluster spacecraft will focus on studying the interaction of the sun with plasmas of the Earth and the magnetic field in a region known as the magnetosphere. The four probes, flying in formation, will allow scientists to build up a three-dimensional picture of the battle between the sun's streams of wind and the Earth's protective magnetic field. These missions represent years of work by scientists across Europe and around the world. The data they gather will provide us with a greater understanding of our own solar neighbourhood and deep space. SPACECRAFT STATUS AS AT 1 SEPTEMBER 95 ISO The ISO satellite, together with all the associated equipment, was transported in June by ship to Europe's spaceport in Kourou, French Guiana. Since then, all the satellite subsystems and scientific instruments have been thoroughly tested and found to be in order. ISO is now waiting its turn to be mated with the Ariane 44P launcher. The launch campaign will resume in early October for a launch on 3 November. Preparations for flight operations by ESA's space operation centre, ESOC in Darmstadt, Germany and the flight control centre at Villafranca, near Madrid, Spain are also in the final stages. Most of the work in the last two months before a launch involves training and performing simulations to prove flight readiness. The scientific community is eagerly awaiting the preliminary results of ISO's first look into space in November. SOHO SOHO arrived at Kennedy Space Centre on 1 August. It was given a welcome by hurricane ERIN, which forced an immediate transfer to its reserved NASA facility just after its transport plane had safely landed. Spacecraft preparation for launch has started with a thorough check of all the systems and instruments onboard SOHO and will proceed with an end-to-end test with the NASA control station at Goddard Spaceflight Centre. Parallel activities are proceeding in Europe on the final testing and inspection of the four reaction wheels which the spacecraft control system uses to keep all its instruments pointed very precisely at the sun. At the end of its preparation, the spacecraft will be mated to its Atlas IIAS launcher, which is due to lift off in the first week of December. CLUSTER All four Cluster spacecraft, together with all ancillary equipment, have now arrived at Europe's spaceport in Kourou, French Guiana. The spacecraft have been set up for final electrical testing in the Final Assembly Building , a new Ariane 5 facility. Major milestones in the campaign are the start of spacecraft fuelling operations at the beginning of November and the start of integration of the spacecraft with the launch vehicle in mid- December. The Cluster launch campaign is proceeding on schedule for the planned launch date of 17 January 1996. At the same time, final acceptance tests are being carried out on the new Ariane 5 launch vehicle components. Note to TV editors: Video indexes describing in detail the ISO, SOHO and Cluster missions will be available on request from ESA PR as from 15 September 1995.

  13. The Damper Spring Unit of the Sentinel 1 Solar Array

    NASA Technical Reports Server (NTRS)

    Doejaaren, Frans; Ellenbroek, Marcel

    2012-01-01

    The Damper Spring Unit (DSU, see Figure 1) has been designed to provide the damping required to control the deployment speed of the spring driven solar array deployment in an ARA Mk3 or FRED based Solar Array in situations where the standard application of a damper at the root-hinge is not feasible. The unit consists of four major parts: a main bracket, an eddy current damper, a spring unit, an actuation pulley which is coupled via Kevlar cables to a synchro-pulley of a hinge. The damper slows down the deployment speed and prevents deployment shocks at deployment completion. The spring unit includes 4 springs which overcome the resistances of the damper and the specific DSU control cable loop. This means it can be added to any spring driven deployment system without major modifications of that system. Engineering models of the Sentinel 1 solar array wing have been built to identify the deployment behavior, and to help to determine the optimal pulley ratios of the solar array and to finalize the DSU design. During the functional tests, the behavior proved to be very sensitive for the alignment of the DSU. This was therefore monitored carefully during the qualification program, especially prior to the TV cold testing. During TV "Cold" testing the measured retarding torque exceeded the max. required value: 284 N-mm versus the required 247 N-mm. Although this requirement was not met, the torque balance analysis shows that the 284 N-mm can be accepted, because the spring unit can provide 1.5 times more torque than required. Some functional tests of the DSU have been performed without the eddy current damper attached. It provided input data for the ADAMS solar array wing model. Simulation of the Sentinel-1 deployment (including DSU) in ADAMS allowed the actual wing deployment tests to be limited in both complexity and number of tests. The DSU for the Sentinel-1 solar array was successfully qualified and the flight models are in production.

  14. 76 FR 50477 - Notice of Availability of the Final Environmental Impact Statement for a Proposed Federal Loan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... consist of: a solar field of approximately nine million ground-mounted PV modules, within up to 460 PV... Statement for a Proposed Federal Loan Guarantee To Support Construction and Start-up of the Topaz Solar Farm... for Construction and Startup of the Topaz Solar Farm, San Luis Obispo County, California (DOE/EIS-0458...

  15. Energy Implementation Centers: A Method of Speeding the Use of Solar Energy and Other Energy Conserving Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hirshberg, A. S.; And Others

    This report examines the role of implementation centers as a vehicle for speeding the use of solar energy and energy conservation. It covers a study of previous building industry innovations; a brief review of the diffusion of innovation literature, including several case studies; identification of the solar thermal application process and…

  16. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    DTIC Science & Technology

    2014-03-06

    Microscopy Research, 2012, 7, 158-169. Organic photovoltaic materials, hybrid organic devices, solar cells 6 1 FINAL TECHNICAL REPORT 1... hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an

  17. Design and Development of High Voltage Direct Current (DC) Sources for the Solar Array Module Plasma Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Bibyk, Irene K.; Wald, Lawrence W.

    1995-01-01

    Two programmable, high voltage DC power supplies were developed as part of the flight electronics for the Solar Array Module Plasma Interaction Experiment (SAMPIE). SAMPIE's primary objectives were to study and characterize the high voltage arcing and parasitic current losses of various solar cells and metal samples within the space plasma of low earth orbit (LEO). High voltage arcing can cause large discontinuous changes in spacecraft potential which lead to damage of the power system materials and significant Electromagnetic Interference (EMI). Parasitic currents cause a change in floating potential which lead to reduced power efficiency. These primary SAMPIE objectives were accomplished by applying artificial biases across test samples over a voltage range from -600 VDC to +300 VDC. This paper chronicles the design, final development, and test of the two programmable high voltage sources for SAMPIE. The technical challenges to the design for these power supplies included vacuum, space plasma effects, thermal protection, Shuttle vibrations and accelerations.

  18. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    NASA Astrophysics Data System (ADS)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar-wind, magnetosphere and ionosphere. The three simulations are directly or indirectly connected each other based on real-time observa-tion data to reproduce a virtual geo-space region on the super-computer. Informatics is a new methodology to make precise forecast of space weather. Based on new information and communication technologies (ICT), it provides more information in both quality and quantity. At NICT, we have been developing a cloud-computing system named "space weather cloud" based on a high-speed network system (JGN2+). Huge-scale distributed storage (1PB), clus-ter computers, visualization systems and other resources are expected to derive new findings and services of space weather forecasting. The final goal of NICT space weather service is to predict near-future space weather conditions and disturbances which will be causes of satellite malfunctions, tele-communication problems, and error of GPS navigations. In the present talk, we introduce our recent activities on the space weather services and discuss how we are going to develop the services from the view points of space science and practical uses.

  19. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting.

    PubMed

    Galliou, F; Markakis, N; Fountoulakis, M S; Nikolaidis, N; Manios, T

    2018-05-01

    Olive mill wastewater (OMW) is generated during the production of olive oil. Its disposal is still a major environmental problem in Mediterranean countries, despite the fact that a large number of technologies have been proposed up to date. The present work examines for the first time a novel, simple and low-cost technology for OMW treatment combining solar drying and composting. In the first step, OMW was dried in a chamber inside a solar greenhouse using swine manure as a bulking agent. The mean evaporation rate was found to be 5.2 kg H 2 O/m 2 /d for a drying period of 6 months (February-August). High phenol (75%) and low nitrogen (15%) and carbon (15%) losses were recorded at the end of the solar drying process. The final product after solar drying was rich in nutrients (N: 27.8 g/kg, P: 7.3 g/kg, K: 81.6 g/kg) but still contained significant quantities of phenols (18.4 g/kg). In order to detoxify the final product, a composting process was applied as a second step with or without the use of grape marc as bulking agent. Results showed that the use of grape marc as a bulking agent at a volume ratio of 1:1 achieved a higher compost temperature profile (60 °C) than 2:1 (solar drying product: grape marc) or no use (solar drying product). The end product after the combination of solar drying and composting had the characteristics of an organic fertilizer (57% organic carbon) rich in nutrients (3.5% N, 1% P, 6.5% K) with quite low phenol content (2.9 g/kg). Finally, the use of this product for the cultivation of pepper plants approved its fertility which was found similar with commercial NPK fertilizers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Equipment Only - Solar Resources Measurements at the University of Texas at Austin, TX: Cooperative Research and Development Final Report, CRADA Number CRD-07-222

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoffel, T.

    Faculty and staff at the University of Texas at Austin collected solar resource measurements at their campus using equipment on loan from the National Renewable Energy Laboratory. The equipment was used to train students on the operation and maintenance of solar radiometers and was returned to NREL's Solar Radiation Research Laboratory upon completion of the CRADA. The resulting data augment the solar resource climatology information required for solar resource characterizations in the U.S. The cooperative agreement was also consistent with NREL's goal of developing an educated workforce to advance renewable energy technologies.

Top